Complementary Error Function

f$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ = L$\left\{\vphantom{
f}\right.$f$\left.\vphantom{
f}\right\}$$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$
$\limfunc$erfc$\left(\vphantom{ \frac{a}{2\sqrt{t}}}\right.$${\frac{{a}}{{2\sqrt{t}}}}$$\left.\vphantom{ \frac{a}{2\sqrt{t}}}\right)$ = 1 - $\func$erf$\left(\vphantom{ \frac{a}{2\sqrt{t}}}\right.$${\frac{{a}}{{2\sqrt{t}}}}$$\left.\vphantom{ \frac{a}{2\sqrt{t}}}\right)$ ${\dfrac{{e^{-a\sqrt{s}}}}{{s}}}$


2$\sqrt{{\frac{t}{\pi }}}$e-a2/4t - a$\limfunc$erfc$\left(\vphantom{ \frac{a}{2\sqrt{t}%
}}\right.$${\frac{{a}}{{2\sqrt{t}%
}}}$$\left.\vphantom{ \frac{a}{2\sqrt{t}%
}}\right)$ ${\dfrac{{e^{-a\sqrt{s}}}}{{s\sqrt{s}}}}$


eabeb2t$\limfunc$erfc$\left(\vphantom{ b\sqrt{t}+\frac{a}{2\sqrt{t}}}\right.$b$\sqrt{{t}}$ + ${\frac{{a}}{{2\sqrt{t}}}}$$\left.\vphantom{ b\sqrt{t}+\frac{a}{2\sqrt{t}}}\right)$ ${\dfrac{{e^{-a\sqrt{s}}}}{{\sqrt{s}\left( \sqrt{s}+b\right) }}}$


- eabeb2t$\limfunc$erfc$\left(\vphantom{ b\sqrt{t}+\frac{a}{2\sqrt{t}}}\right.$b$\sqrt{{t}}$ + ${\frac{{a}}{{2\sqrt{t}}}}$$\left.\vphantom{ b\sqrt{t}+\frac{a}{2\sqrt{t}}}\right)$ + $\limfunc$erfc$\left(\vphantom{ \frac{a}{2\sqrt{t}}}\right.$${\frac{{a}}{{2\sqrt{t}}}}$$\left.\vphantom{ \frac{a}{2\sqrt{t}}}\right)$     ${\frac{{be^{-a\sqrt{%
s}}}}{{s\left( \sqrt{s}+b\right) }}}$