;SPMlt;!DOCTYPE HTML PUBLIC ;SPMquot;-//W3C//DTD HTML 3.2 Final//en;SPMquot;;SPMgt;

;SPMlt;!--Converted with LaTeX2HTML 2022 (Released January 1, 2022) --;SPMgt; ;SPMlt;HTML lang=;SPMquot;en;SPMquot;;SPMgt; ;SPMlt;HEAD;SPMgt; ;SPMlt;TITLE;SPMgt;Contents of Projectile Motion;SPMlt;/TITLE;SPMgt;

;SPMlt;META HTTP-EQUIV=;SPMquot;Content-Type;SPMquot; CONTENT=;SPMquot;text/html; charset=utf-8;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;viewport;SPMquot; CONTENT=;SPMquot;width=device-width, initial-scale=1.0;SPMquot;;SPMgt; ;SPMlt;META NAME=;SPMquot;Generator;SPMquot; CONTENT=;SPMquot;LaTeX2HTML v2022;SPMquot;;SPMgt;

;SPMlt;LINK REL=;SPMquot;STYLESHEET;SPMquot; HREF=;SPMquot;brian2.css;SPMquot;;SPMgt;

;SPMlt;LINK REL=;SPMquot;previous;SPMquot; HREF=;SPMquot;brian2_mn.html;SPMquot;;SPMgt; ;SPMlt;LINK REL=;SPMquot;up;SPMquot; HREF=;SPMquot;brian2_mn.html;SPMquot;;SPMgt; ;SPMlt;/HEAD;SPMgt;

;SPMlt;BODY bgcolor=;SPMquot;#ffffff;SPMquot; text=;SPMquot;#000000;SPMquot; link=;SPMquot;#9944EE;SPMquot; vlink=;SPMquot;#0000ff;SPMquot; alink=;SPMquot;#00ff00;SPMquot;;SPMgt;

;SPMlt;H1;SPMgt;;SPMlt;A ID=;SPMquot;SECTION00010000000000000000;SPMquot;;SPMgt; Projectile Motion;SPMlt;/A;SPMgt; ;SPMlt;/H1;SPMgt;

;SPMlt;P;SPMgt; ;SPMlt;DIV class=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;B;SPMgt;Brian Palmer and Steve Nava;SPMlt;/B;SPMgt; ;SPMlt;/DIV;SPMgt; ;SPMlt;P;SPMgt; ;SPMlt;DIV class=;SPMquot;CENTER;SPMquot;;SPMgt;Wednesday, January 1, 1997

;SPMlt;/DIV;SPMgt;

;SPMlt;P;SPMgt; Working together, we completed Lab #5 as given to us in class. Summarizing, Steve held the ball at what was determined by measurement to be about 1.895 meters from the ground. Then he threw it, releasing the ball from his hand at that spot. It struck the ground 2.56 seconds later, at a point 43.92 meters from the initial throwing position.

;SPMlt;P;SPMgt; The data was then available for analysis. Although it was performed in three dimensions, there are only two colinear points which were recorded; thus the third dimension (along the ;SPMlt;I;SPMgt;z;SPMlt;/I;SPMgt;-axis) can be ignored (this lab assumes that the force along the other axes applied by the wind blowing at the time was negligible). Then each of the two remaining dimensions, along the ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt; and ;SPMlt;I;SPMgt;y;SPMlt;/I;SPMgt; axes, to use traditional terminology, may be analyzed as if the other were not present. For the initial analysis, the kinematics equation, where ;SPMlt;!-- MATH #math17#1Δx --;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt; is the position displacement, ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt; is the initial velocity, ;SPMlt;I;SPMgt;a;SPMlt;/I;SPMgt; is the acceleration undergone by the object, and ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; is the time through which the analysis is concerned,

;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;!-- MATH

#math18#
Δx = v0t + #tex2html_wrap_indisplay549#at2 (1)
--;SPMgt; ;SPMlt;TABLE WIDTH=;SPMquot;100;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt; = ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; + ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img1.png;SPMquot; ALT=;SPMquot;#math19##tex2html_wrap_indisplay551#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;at;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt; ;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ();SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt; ;SPMlt;/DIV;SPMgt; shall be used extensively.

;SPMlt;P;SPMgt; When dealing with the ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;-component of the system, the relationship given in equation 1 can be explicated as follows ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math20#

Δxx = v0xt + #tex2html_wrap_indisplay553#axt2

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;x;SPMlt;/SUB;SPMgt; = ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0x;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; + ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img1.png;SPMquot; ALT=;SPMquot;#math21##tex2html_wrap_indisplay555#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;a;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;x;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; Since after the initial force applied by the throwing action, there is no force acting on the tennis ball, the relationship ;SPMlt;!-- MATH #math22#a = #tex2html_wrap_inline557# --;SPMgt; ;SPMlt;I;SPMgt;a;SPMlt;/I;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img2.png;SPMquot; ALT=;SPMquot;#math23##tex2html_wrap_inline559#;SPMquot;;SPMgt; for a force ;SPMlt;I;SPMgt;F;SPMlt;/I;SPMgt; acting upon a mass ;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt; shows that ;SPMlt;!-- MATH #math24#a = #tex2html_wrap_inline561# = 0 --;SPMgt; ;SPMlt;I;SPMgt;a;SPMlt;/I;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img3.png;SPMquot; ALT=;SPMquot;#math25##tex2html_wrap_inline563#;SPMquot;;SPMgt; = 0 ;SPMlt;!-- MATH #math26##tex2html_wrap_inline565#m/3#tex2html_wrap_inline566#s2 --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline570#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline572#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;. Simplifying the relationship further, ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math27#

Δxx = v0xt

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;x;SPMlt;/SUB;SPMgt; = ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0x;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; The displacement and time are known, allowing the initial velocity to be discovered

;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;!-- MATH

#math28#
v0x = #tex2html_wrap_indisplay575# = #tex2html_wrap_indisplay576# = 17.156#tex2html_wrap_indisplay577#m/#tex2html_wrap_indisplay578#s #tex2html_wrap_indisplay579# 17.16#tex2html_wrap_indisplay580#m/#tex2html_wrap_indisplay581#s (2)
--;SPMgt; ;SPMlt;TABLE WIDTH=;SPMquot;100;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt; ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0x;SPMlt;/SUB;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img5.png;SPMquot; ALT=;SPMquot;#math29##tex2html_wrap_indisplay583#;SPMquot;;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img6.png;SPMquot; ALT=;SPMquot;#math30##tex2html_wrap_indisplay585#;SPMquot;;SPMgt; = 17.156;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math31##tex2html_wrap_indisplay587#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math32##tex2html_wrap_indisplay589#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math33##tex2html_wrap_indisplay591#;SPMquot;;SPMgt; 17.16;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math34##tex2html_wrap_indisplay593#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math35##tex2html_wrap_indisplay595#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; ;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; (1);SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt; ;SPMlt;/DIV;SPMgt;

;SPMlt;P;SPMgt; The unknown value of the initial velocity's ;SPMlt;I;SPMgt;y;SPMlt;/I;SPMgt; component can be discovered similarly. However, for this, a force is known to be acting upon the tennis ball: gravity. Gravity can, for any mass ;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt; such that the mass of the Earth ;SPMlt;I;SPMgt;M;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;E;SPMlt;/SUB;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img9.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline597#;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;, the acceleration due to gravity on the object may be approximated as the constant ;SPMlt;I;SPMgt;g;SPMlt;/I;SPMgt;, about ;SPMlt;!-- MATH #math36#9.8006#tex2html_wrap_inline599#m/#tex2html_wrap_inline600#s2 --;SPMgt; 9.8006;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline604#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline606#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;. Thus, ;SPMlt;BR;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt;;SPMlt;A ID=;SPMquot;yexpress;SPMquot;;SPMgt;;SPMlt;/A;SPMgt;;SPMlt;!-- MATH

#math37#
Δxy = v0yt + #tex2html_wrap_indisplay611#at2 (3)
voyt = Δxy - #tex2html_wrap_indisplay615#at2 (4)
voy = #tex2html_wrap_indisplay619# - #tex2html_wrap_indisplay620#at  
voy #tex2html_wrap_indisplay623# #tex2html_wrap_indisplay625# - #tex2html_wrap_indisplay626#gt (5)

--;SPMgt; ;SPMlt;TABLE CELLPADDING=;SPMquot;0;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; WIDTH=;SPMquot;100;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0y;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; + ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math38##tex2html_wrap_inline628#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;at;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; (2);SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;oy;SPMlt;/SUB;SPMgt;;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math39##tex2html_wrap_inline630#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;at;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; (3);SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;oy;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img11.png;SPMquot; ALT=;SPMquot;#math40##tex2html_wrap_indisplay632#;SPMquot;;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math41##tex2html_wrap_inline634#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;at;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;oy;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math42##tex2html_wrap_indisplay636#;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img11.png;SPMquot; ALT=;SPMquot;#math43##tex2html_wrap_indisplay638#;SPMquot;;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math44##tex2html_wrap_inline640#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;gt;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; (4);SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt;;SPMlt;/DIV;SPMgt; ;SPMlt;BR CLEAR=;SPMquot;ALL;SPMquot;;SPMgt;

The time ;SPMlt;I;SPMgt;t;SPMlt;/I;SPMgt; is the same as that for the ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;-component; that is, it is the time until the ball hit the ground. Substituting in the values, and using the definition that ;SPMlt;!-- MATH #math45#Δh = hf - hi --;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;h;SPMlt;/I;SPMgt; = ;SPMlt;I;SPMgt;h;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;f;SPMlt;/SUB;SPMgt; - ;SPMlt;I;SPMgt;h;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;i;SPMlt;/SUB;SPMgt;, ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math46#

v0y = #tex2html_wrap_indisplay643# - #tex2html_wrap_indisplay644#gt = #tex2html_wrap_indisplay645# - #tex2html_wrap_indisplay646##tex2html_wrap_indisplay647#9.8#tex2html_wrap_indisplay648#m/#tex2html_wrap_indisplay649#s2#tex2html_wrap_indisplay650##tex2html_wrap_indisplay651#2.56#tex2html_wrap_indisplay652#s#tex2html_wrap_indisplay653# #tex2html_wrap_indisplay654# -0.74#tex2html_wrap_indisplay655#m/#tex2html_wrap_indisplay656#s +12.54#tex2html_wrap_indisplay657#m/6#tex2html_wrap_indisplay658#s = 13.284#tex2html_wrap_indisplay659#m/#tex2html_wrap_indisplay660#s

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0y;SPMlt;/SUB;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img12.png;SPMquot; ALT=;SPMquot;#math47##tex2html_wrap_indisplay662#;SPMquot;;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math48##tex2html_wrap_inline664#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;gt;SPMlt;/I;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img13.png;SPMquot; ALT=;SPMquot;#math49##tex2html_wrap_indisplay666#;SPMquot;;SPMgt; - ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img10.png;SPMquot; ALT=;SPMquot;#math50##tex2html_wrap_inline668#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img14.png;SPMquot; ALT=;SPMquot;#math51##tex2html_wrap_indisplay670##tex2html_wrap_indisplay671#9.8#tex2html_wrap_indisplay672#m/#tex2html_wrap_indisplay673#s2;SPMquot;;SPMgt;9.8;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math52##tex2html_wrap_indisplay675#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math53##tex2html_wrap_indisplay677#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img15.png;SPMquot; ALT=;SPMquot;#math54##tex2html_wrap_indisplay679##tex2html_wrap_indisplay680#9.8#tex2html_wrap_indisplay681#m/#tex2html_wrap_indisplay682#s2#tex2html_wrap_indisplay683#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img16.png;SPMquot; ALT=;SPMquot;#math55##tex2html_wrap_indisplay685##tex2html_wrap_indisplay686#2.56#tex2html_wrap_indisplay687#s;SPMquot;;SPMgt;2.56;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math56##tex2html_wrap_indisplay689#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img17.png;SPMquot; ALT=;SPMquot;#math57##tex2html_wrap_indisplay691##tex2html_wrap_indisplay692#2.56#tex2html_wrap_indisplay693#s#tex2html_wrap_indisplay694#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math58##tex2html_wrap_indisplay696#;SPMquot;;SPMgt; -0.74;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math59##tex2html_wrap_indisplay698#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math60##tex2html_wrap_indisplay700#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; +12.54;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math61##tex2html_wrap_indisplay702#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math62##tex2html_wrap_indisplay704#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; = 13.284;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math63##tex2html_wrap_indisplay706#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math64##tex2html_wrap_indisplay708#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt;

;SPMlt;P;SPMgt; At last, the ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt; and ;SPMlt;I;SPMgt;y;SPMlt;/I;SPMgt; components of the initial velocity have been calculated. Using some of the definitions and theorems associated with vectors, the characteristics of the vector as a whole can be calculated. First, the magnitude of the initial velocity vector, ;SPMlt;!-- MATH #math65##tex2html_wrap_inline710##tex2html_wrap_inline711##tex2html_wrap_inline712# --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img18.png;SPMquot; ALT=;SPMquot;#math66##tex2html_wrap_inline714##tex2html_wrap_inline715##tex2html_wrap_inline716#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img19.png;SPMquot; ALT=;SPMquot;#math67##tex2html_wrap_inline718# ;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img20.png;SPMquot; ALT=;SPMquot;#math68##tex2html_wrap_inline720##tex2html_wrap_inline721##tex2html_wrap_inline722##tex2html_wrap_inline723#;SPMquot;;SPMgt;, can be calculated as ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math69#

#tex2html_wrap_indisplay725##tex2html_wrap_indisplay726##tex2html_wrap_indisplay727# = #tex2html_wrap_indisplay728# #tex2html_wrap_indisplay729# #tex2html_wrap_indisplay730# #tex2html_wrap_indisplay731# 21.7#tex2html_wrap_indisplay732#m/#tex2html_wrap_indisplay733#s

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img21.png;SPMquot; ALT=;SPMquot;#math70##tex2html_wrap_indisplay735##tex2html_wrap_indisplay736##tex2html_wrap_indisplay737#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img22.png;SPMquot; ALT=;SPMquot;#math71##tex2html_wrap_indisplay739#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img23.png;SPMquot; ALT=;SPMquot;#math72##tex2html_wrap_indisplay741##tex2html_wrap_indisplay742##tex2html_wrap_indisplay743##tex2html_wrap_indisplay744#;SPMquot;;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img24.png;SPMquot; ALT=;SPMquot;#math73##tex2html_wrap_indisplay746#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math74##tex2html_wrap_indisplay748#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img25.png;SPMquot; ALT=;SPMquot;#math75##tex2html_wrap_indisplay750#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math76##tex2html_wrap_indisplay752#;SPMquot;;SPMgt; 21.7;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math77##tex2html_wrap_indisplay754#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math78##tex2html_wrap_indisplay756#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; The direction ;SPMlt;I;SPMgt;;SPMamp;#952;;SPMlt;/I;SPMgt; can also be determined, using the definition ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math79#

θ = arctan#tex2html_wrap_indisplay758##tex2html_wrap_indisplay759##tex2html_wrap_indisplay760# #tex2html_wrap_indisplay761# 37.74#tex2html_wrap_indisplay762#9#tex2html_wrap_indisplay763#0xb0

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#952;;SPMlt;/I;SPMgt; = arctan;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img26.png;SPMquot; ALT=;SPMquot;#math80##tex2html_wrap_indisplay765##tex2html_wrap_indisplay766##tex2html_wrap_indisplay767#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img27.png;SPMquot; ALT=;SPMquot;#math81##tex2html_wrap_indisplay769#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img28.png;SPMquot; ALT=;SPMquot;#math82##tex2html_wrap_indisplay771##tex2html_wrap_indisplay772##tex2html_wrap_indisplay773##tex2html_wrap_indisplay774#;SPMquot;;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img8.png;SPMquot; ALT=;SPMquot;#math83##tex2html_wrap_indisplay776#;SPMquot;;SPMgt; 37.74;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img29.png;SPMquot; ALT=;SPMquot;#math84##tex2html_wrap_indisplay778#;SPMquot;;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img30.png;SPMquot; ALT=;SPMquot;#math85##tex2html_wrap_indisplay780#;SPMquot;;SPMgt;0;SPMlt;I;SPMgt;xb;SPMlt;/I;SPMgt;0 ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt;

;SPMlt;P;SPMgt; In general form, the calculations above for the vertical velocity can be used to derive the equation of vertical velocity expressed as a function of time, as well as the fact that the velocity ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt; = 0 ;SPMlt;!-- MATH #math86##tex2html_wrap_inline782#m/#tex2html_wrap_inline783#s --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline785#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline787#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt; at the vertex of the flight. Using another fundamental equation of kinematics, ;SPMlt;BR;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;!-- MATH

#math87#
vy = v0y2 +2#tex2html_wrap_indisplay792#Δxy  
vy = #tex2html_wrap_indisplay796#  

--;SPMgt; ;SPMlt;TABLE CELLPADDING=;SPMquot;0;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; WIDTH=;SPMquot;100;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;0y;SPMlt;/SUB;SPMgt;;SPMlt;SUP;SPMgt;2;SPMlt;/SUP;SPMgt; +2;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img31.png;SPMquot; ALT=;SPMquot;#math88##tex2html_wrap_indisplay798# ;SPMquot;;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img32.png;SPMquot; ALT=;SPMquot;#math89##tex2html_wrap_indisplay800#;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt;;SPMlt;/DIV;SPMgt; ;SPMlt;BR CLEAR=;SPMquot;ALL;SPMquot;;SPMgt;

can be figured as describing the vertical velocity ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;. The highest point (or rather, the maximum ;SPMlt;!-- MATH #math90#Δxy --;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;) that shall be encountered in the trajectory can be discovered using the principle derived from min-max functions of calculus that at the vertex of the parabola, the velocity ;SPMlt;I;SPMgt;v;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt; = 0 ;SPMlt;!-- MATH #math91##tex2html_wrap_inline803#m/#tex2html_wrap_inline804#s --;SPMgt; ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline806#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;/;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline808#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;s;SPMlt;/I;SPMgt;. Rearranging the equation, ;SPMlt;P;SPMgt;;SPMlt;!-- MATH

#math92#

Δxy = #tex2html_wrap_indisplay810#

--;SPMgt; ;SPMlt;/P;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img33.png;SPMquot; ALT=;SPMquot;#math93##tex2html_wrap_indisplay812#;SPMquot;;SPMgt; ;SPMlt;/DIV;SPMgt;;SPMlt;P;SPMgt;;SPMlt;/P;SPMgt; Substiting in known values, ;SPMlt;BR;SPMgt; ;SPMlt;DIV ALIGN=;SPMquot;CENTER;SPMquot;;SPMgt; ;SPMlt;!-- MATH
#math94#
Δxy = #tex2html_wrap_indisplay817#  
Δxy = #tex2html_wrap_indisplay821# = #tex2html_wrap_indisplay822#  
Δxy = 8.998#tex2html_wrap_indisplay826#m  

--;SPMgt; ;SPMlt;TABLE CELLPADDING=;SPMquot;0;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; WIDTH=;SPMquot;100;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img34.png;SPMquot; ALT=;SPMquot;#math95##tex2html_wrap_indisplay828#2#tex2html_wrap_indisplay829# -9.8#tex2html_wrap_indisplay830#m/#tex2html_wrap_indisplay831#s#tex2html_wrap_indisplay832#;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img35.png;SPMquot; ALT=;SPMquot;#math96##tex2html_wrap_indisplay834#;SPMquot;;SPMgt; = ;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img36.png;SPMquot; ALT=;SPMquot;#math97##tex2html_wrap_indisplay836#;SPMquot;;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;TR VALIGN=;SPMquot;MIDDLE;SPMquot;;SPMgt;;SPMlt;TD NOWRAP ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt;;SPMlt;I;SPMgt;;SPMamp;#916;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=;SPMquot;10;SPMquot; ALIGN=;SPMquot;CENTER;SPMquot; NOWRAP;SPMgt;=;SPMlt;/TD;SPMgt; ;SPMlt;TD ALIGN=;SPMquot;LEFT;SPMquot; NOWRAP;SPMgt;8.998;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img7.png;SPMquot; ALT=;SPMquot;#math98##tex2html_wrap_indisplay838#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;;SPMlt;/TD;SPMgt; ;SPMlt;TD WIDTH=10 ALIGN=;SPMquot;RIGHT;SPMquot;;SPMgt; ;SPMamp;nbsp;;SPMlt;/TD;SPMgt;;SPMlt;/TR;SPMgt; ;SPMlt;/TABLE;SPMgt;;SPMlt;/DIV;SPMgt; ;SPMlt;BR CLEAR=;SPMquot;ALL;SPMquot;;SPMgt;

Since this is the difference in the ;SPMlt;I;SPMgt;x;SPMlt;/I;SPMgt;;SPMlt;SUB;SPMgt;y;SPMlt;/SUB;SPMgt; values, the maximum height of the tennis ball is this value plus its initial value, or ;SPMlt;!-- MATH #math99#8.998#tex2html_wrap_inline840#m +1.895#tex2html_wrap_inline841#m = 10.893#tex2html_wrap_inline842#m --;SPMgt; 8.998;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline844#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt; +1.895;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline846#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt; = 10.893;SPMlt;IMG STYLE=;SPMquot;;SPMquot; SRC=;SPMquot;img4.png;SPMquot; ALT=;SPMquot;#tex2html_wrap_inline848#;SPMquot;;SPMgt;;SPMlt;I;SPMgt;m;SPMlt;/I;SPMgt;.

;SPMlt;P;SPMgt;

;SPMlt;HR;SPMgt;

;SPMlt;/BODY;SPMgt; ;SPMlt;/HTML;SPMgt;