
Cracking Guides

Cracklist Tutorial: The Amatuer Crackist Tutorial 1.3
Cracking 101:    Novice Guide

Help file generated by VB HelpWriter.

Cracklist Tutorial

 VOL 1 NUM 1

 The Amatuer Crackist Tutorial
 Version 1.3
 By
 Specular Vision

 Special Thanks to:
 Mr. Transistor
 Ironman
 The Grand Elusion
 Banzai Buckaroo

 Another fine PTL Production
 Call The Myth Inc. BBS
 Table of Contents:
 ------------------ (Page Numbers will be aprox. until
 final version is finished)
 i. Table of Contents 2

 ii. Introduction 3

 I. How to Crack 4
 Debugging DOS 4
 Cracking on the IBM PC Part 1 7
 Cracking on the IBM PC Part 2 11

 II. Example Cracks 14
 Mean-18 by Accolade 14
 Submarine by Eypx 18
 Space Station Oblivion by Eypx 22

 III. Removing Doc Check Questions 23
 F-15 Strike Eagle by MicroProse 23
 Battlehawks 1945 by Lucasfilms 25
 Yeager's AFT by Electronic Arts 26

 IV. Cracking Self Booters 27
 Disk Basics
 Victory Road by Data East 27
 MS-Flight Simulator (Ver 2.x) 30

 V. Creating Title Screens 33

 VI. Appendix 35
 A - Interrupt Tables 36
 (This will be an add-on file)

 2
 Introduction:

 Due to the current lack of Crackers, and also keeping in mind
 the time it took me to learn the basics of cracking, I de-
 cided to put this tutorial together. I will include many
 files which I have found helpful in my many cracking endeav-
 ors. It also has comments that I have included to make it
 easier to understand.

 Comments Key:

 Comments in the following material will be made by one of the
 following and the lines that enclose the comments show who
 made the comment.

 Specular Vision = -------------
 Mr. Transistor = +++++++++++++
 Ironman = |||||||||||||

 Special thanks to Mr. Transistor, for coming out of "Retire-
 ment" to help compose this document.

 3
 Chapter I How to Crack

 Let's start with a simple introduction to patching a program
 using the DOS DEBUG program. The following article will in-
 troduce you to the basic ideas and concepts of looking for a
 certain area of a program and making a patch to it.

 By: Charles Petzold / Specular Vision
 Title: Case Study: A Colorful CLS

 This article originally appeared in the Oct. 14,1986 Issue
 of PC Magazine (Vol 15. Num 17.). Written by Charles Petzold.

 The hardest part of patching existing programs is determin-
 ing where the patch should go. You really have to make an
 intelligent guess about the functioning of the program.

 As an example, let's attempt to modify COMMAND.COM so that
 is colors the screen on a CLS command. As with any type of
 patch try it out on a copy and NOT the original.

 First, think about what we should look for. CLS is differ-
 ent from all the other DOS internal Commands, It is the only
 internal command that does something to the screen other than
 just write to it with simple teletype output. CLS blanks the
 screen and homes the cursor. Since it can't do this through
 DOS Calls (unless ANSI.SYS is loaded), it is probably calling
 the BIOS Directly. The BIOS Interrupt 10h call controls the
 video, and so the CLS command probably uses several INT 10h
 instructions. The machine code for INT 10h is CD 10.

 (While this same method will work under any version of
 PC-DOS, Version 2.0 and later, the addresses I'll be using

 are from PC-DOS 3.1. Other versions of PC-DOS(or MS-DOS) will
 have different addresses; you should be absolutely certain
 that you're using the correct addresses.)

 Load COMMAND.COM into DEBUG:

 DEBUG COMMAND.COM

 and do an R (Registers) command. The size of COMMAND.COM is
 in register CX. For DOS 3.1's COMMAND.COM, this value is
 5AAA.

 Now do Search command to look for the CD 10 bytes:

 S 100 L 5AAA CD 10

 You'll get a list of six addresses, all clustered close to-

 4
 gether. The first one is 261D. You can now pick an address a
 little before that (to see what the first call is doing) and
 start disassembling:

 U 261B

 The first INT 10 has AH set to 0F which is a Current Video
 State call. The code checks if the returned value of AL
 (Which is the video mode) is less than 3 or equal to 7.
 These are the text modes. If so, it branches to 262C. If
 not, it just resets the video mode with another INT 10 at ad-
 dress 2629.

 At 262C, the code first sets the border black (the INT 10
 at 2630), then does another Current Video State call (at
 2634) to get the screen width in register AH. It uses infor-
 mation from this call to set DX equal to the bottom right row
 and column. It then clears the screen by scrolling the en-
 tire screen up with another INT 10 (at 2645), and then sets
 the cursor to the zeroth row and zeroth column with the final
 INT 10 (at 264D).

 When it scrolls the whole screen, the zero value in AL ac-
 tually means blank the screen, the value of BH is the at-
 tribute to be used on the blanked area. In an unmodified
 COMMAND.COM, BH is set to 7 (Which is white on black) by the
 following statement at address 2640:

 MOV BX,0700

 If you prefer a yellow-on-blue attribute (1E), you can
 change this line by going into Assemble mode by entering:

 A

 then entering

 MOV BX,1E00

 and exiting Assemble mode by entering a blank line.

 Now you can save the modified file:

 W

 and quit DEBUG:

 Q

 When you load the new version of COMMAND.COM (and you can
 do so without rebooting by just entering:

 COMMAND

 5
 on the DOS command level), a CLS will turn the screen blue
 and display characters as yellow.

 If it doesn't or if anything you type shows up as white on
 black, that probably means you have ANSI.SYS loaded. If you
 use ANSI.SYS, you don't have to make this patch but can in-
 stead use the prompt command for coloring the screen.

 END.

 6

 That was just one section of a very large article that helped
 me to get started. Next we'll look at two other articles,
 both written by Buckaroo Banzi. These two articles CRACK-1
 and CRACK-2 give you an introduction to the different copy
 protection schemes used on IBM PC's, and how to find and by-
 pass them.

 By: Buckaroo Banzai
 Title: Cracking On the IBM PC Part I

 Introduction

 For years, I have seen cracking tutorials for the APPLE
 computers, but never have I seen one for the PC. I have de-
 cided to try to write this series to help that pirate move up
 a level to a crackest.

 In this part, I will cover what happens with INT 13 and how
 most copy protection schemes will use it. I strongly suggest

 a knowledge of Assembler (M/L) and how to use DEBUG. These
 will be an important figure in cracking anything.

 INT-13 - An overview

 Many copy protection schemes use the disk interrupt
 (INT-13). INT-13 is often use to either try to read in a il-
 legally formatted track/sector or to write/format a
 track/sector that has been damaged in some way.

 INT-13 is called like any normal interrupt with the assem-
 bler command INT 13 (CD 13). [AH] is used to select which
 command to be used, with most of the other registers used for
 data.

 INT-13 Cracking College

 Although, INT-13 is used in almost all protection schemes,
 the easiest to crack is the DOS file. Now the protected pro-
 gram might use INT-13 to load some other data from a normal
 track/sector on a disk, so it is important to determine which
 tracks/sectors are important to the protection scheme. I
 have found the best way to do this is to use LOCKSMITH/pc
 (what, you don't have LS. Contact your local pirate for it.)

 Use LS to analyze the diskette. Write down any track/sector
 that seems abnormal. These track are must likely are part of
 the protection routine. Now, we must enter debug. Load in

 7
 the file execute a search for CD 13. Record any address
 show.

 If no address are picked up, this mean 1 or 2 things, the
 program is not copy protected (right...) or that the check is
 in an other part of the program not yet loaded. The latter
 being a real hassle to find, so I'll cover it in part II.
 There is another choice. The CD 13 might be hidden in self
 changing code. Here is what a sector of hidden code might
 look like

 -U CS:0000
 1B00:0000 31DB XOR BX,BX
 1B00:0002 8EDB MOV DS,BX
 1B00:0004 BB0D00 MOV BX,000D
 1B00:0007 8A07 MOV AL,[BX]
 1B00:0009 3412 XOR AL,12
 1B00:000B 8807 MOV [BX],AL
 1B00:000D DF13 FIST WORD...

 In this section of code, [AL] is set to DF at location
 1B00:0007. When you XOR DF and 12, you would get a CD(hex)
 for the INT opcode which is placed right next to a 13 ie,
 giving you CD13 or INT-13. This type of code can't and will
 not be found using debug's [S]earch command.

 Finding Hidden INT-13s

 The way I find best to find hidden INT-13s, is to use a
 program called PC-WATCH (TRAP13 works well also). This pro-
 gram traps the interrupts and will print where they were
 called from. Once running this, you can just disassemble
 around the address until you find code that look like it is
 setting up the disk interrupt.

 An other way to decode the INT-13 is to use debug's [G]o
 command. Just set a breakpoint at the address give by
 PC-WATCH (both programs give the return address). Ie, -G
 CS:000F (see code above). When debug stops, you will have
 encoded not only the INT-13 but anything else leading up to
 it.

 What to do once you find INT-13

 Once you find the INT-13, the hard part for the most part
 is over. All that is left to do is to fool the computer in
 to thinking the protection has been found. To find out what
 the computer is looking for, examine the code right after the
 INT-13. Look for any branches having to do with the

 8
 CARRYFLAG or any CMP to the AH register. If a JNE or JC
 (etc) occurs, then [U]nassembe the address listed with the
 jump. If it is a CMP then just read on.

 Here you must decide if the program was looking for a pro-
 tected track or just a normal track. If it has a CMP AH,0
 and it has read in a protected track, it can be assumed that
 it was looking to see if the program had successfully com-
 plete the READ/FORMAT of that track and that the disk had
 been copied thus JMPing back to DOS (usually). If this is
 the case, Just NOP the bytes for the CMP and the correspond-
 ing JMP.

 If the program just checked for the carry flag to be set,
 and it isn't, then the program usually assumes that the disk
 has been copied. Examine the following code

 INT 13 <-- Read in the Sector
 JC 1B00 <-- Protection found
 INT 19 <-- Reboot
 1B00 (rest of program)

 The program carries out the INT and find an error (the il-
 legally formatted sector) so the carry flag is set. The com-
 puter, at the next instruction, see that the carry flag is
 set and know that the protection has not been breached. In

 this case, to fool the computer, just change the "JC 1B00" to
 a "JMP 1B00" thus defeating the protection scheme.

 NOTE: the PROTECTION ROUTINE might be found in more than just
 1 part of the program

 Handling EXE files

 As we all know, Debug can read .EXE files but cannot write
 them. To get around this, load and go about cracking the
 program as usual. When the protection scheme has been found
 and tested, record (use the debug [D]ump command) to save + &
 - 10 bytes of the code around the INT 13. Exit back to dos
 and rename the file to a .ZAP (any extension but .EXE will
 do) and reloading with debug. Search the program for the 20+
 bytes surrounding the code and record the address found.
 Then just load this section and edit it like normal. Save
 the file and exit back to dos. Rename it back to the .EXE
 file and it should be cracked.

 ***NOTE: Sometimes you have to play around with it for a
 while to make it work.

 9
 DISK I/O (INT-13)

 This interrupt uses the AH resister to select the function
 to be used. Here is a chart describing the interrupt.

 AH=0 Reset Disk
 AH=1 Read the Status of the Disk
 system in to AL

 AL Error

 00 - Successful
 01 - Bad command given to INT
 *02 - Address mark not found
 03 - write attempted on write protected disk
 *04 - request sector not found
 08 - DMA overrun
 09 - attempt to cross DMA boundary
 *10 - bad CRC on disk read
 20 - controller has failed
 40 - seek operation failed
 80 - attachment failed
 (* denotes most used in copy protection)
 AH=2 Read Sectors

 input
 DL = Drive number (0-3)

 DH = Head number (0or1)
 CH = Track number
 CL = Sector number
 AL = # of sectors to read
 ES:BX = load address
 output
 AH =error number (see above)
 [Carry Flag Set]
 AL = # of sectors read

 AH=3 Write (params. as above)
 AH=4 Verify (params. as above -ES:BX)
 AH=5 Format (params. as above -CL,AL
 ES:BX points to format
 Table)

 --
 For more information on INT-13 refer to appendix A.
 --

 END.

 10

 In part II, Buck cover's Calls to INT-13 and INT-13 that are
 located in different overlays of the program. This is a
 method that is used often.

 Cracking Tutorial II.

 By: Buckaroo Banzai
 Title: Cracking On the IBM PC Part II

 Introduction

 OK guys, you now passed out of Copy Class 101 (dos files)
 and have this great new game with overlays. How do I crack
 this one. You scanned the entire .EXE file for the CD 13 and
 it's nowhere. Where can it be you ask yourself.

 In part II, I'll cover cracking Overlays and the use of
 locksmith in cracking. If you haven't read part I, then I
 suggest you do so. The 2 files go together.

 Looking for Overlays

 So, you cant find CD 13 in the .EXE file, well, it can mean
 4 things.

 1: The .EXE (though it is mostly .COM) file is just a
 loader for the main file.

 2: The .EXE file loads in an overlay.

 3: The CD 13 is encrypted &/or hidden in the .EXE file.

 4: Your looking at the WRONG file.

 I won't discuss case 1 (or at least no here) because so
 many UNP files are devoted to PROLOCK and SOFTGUARD, if you
 can't figure it out with them, your stupid.

 If you have case 3, use the technique in part I and restart
 from the beginning. And if you have case 4, shoot your self.

 You know the program uses overlays but don't see and on
 disk? Try looking at the disk with good old Norton's. Any
 hidden files are probably the overlays. These are the ones
 we are after. If you still can't find them, use PC-WATCH
 (this program is a must!!! For all crackists. Traps ALL in-
 terrupts).

 11

 Using PC-Watch to Find Overlays

 Start up PC-Watch and EXCLUDE everything in the left Col..
 Search the right Col. until you find DOS21 - OpnFile and
 select it.

 Now run the program to be cracked.
 Play the game until the protection is checked.
 Examine you PCWatch output to see what file was loaded
 right before it.
 This probably is the one holding the check.
 If not, go through all the files.

 You Have Found the Overlays

 Great, now just crack the overlay as if it was a DOS file.
 You don't need to worry about .EXE file, debug can write an
 overlay file. Part I explains the basics of cracking. I
 suggest that you keep a backup copy of the overlay so if you
 mess up, and you will, you can recover quickly. Ah, and you
 thought cracking with overlays was going to be hard.

 Locksmith and Cracking

 The copy/disk utility program Locksmith by AlphaLogic is a
 great tool in cracking. It's analyzing ability is great for
 determining what and where the protection is.

 I find it useful, before I even start cracking, to analyze
 the protected disk to find and id it's protection. This
 helps in 2 ways. First, it helps you to know what to do in
 order to fake out the protection. Second, it helps you to
 find what the program is looking for.

 I suggest that you get locksmith if you don't already have
 it. Check your local pirate board for the program. I also
 suggest getting PC-Watch and Norton Utilities 3.1.(Now 4.1)
 All of these program have many uses in the cracking world.

 END.

 12
 Chapter II Example Cracks

 OK, now let's put some of this information into practice by
 examining a few cracks of some common programs. First we'll
 look at a Crack for Mean-18 Golf by Accolade. Accolade has
 been one of those companies that has a fervent belief in Copy
 Protection.

 Title: MEAN-18 UnProtect For CGA/EGA Version

 This crack works by eliminating the code that tests for known
 bad sectors on the original diskette to see if it is the
 genuine article or an illegal copy. The code begins with an
 INT 13 (CD 13 HEX), a DOS BIOS disk service routine followed
 a few bytes later by another INT 13 instruction. The program
 then checks the returned value for the bit configuration that
 signifies the bad sectors and, if all is as expected, contin-
 ues on with program execution.

 The code that needs to be patched is in the GOLF.EXE file and
 in the ARCH.EXE file. It is identical in both files and lies
 near the end of each file.

 In the following steps, you'll locate the start of the test
 code and patch it by replacing it with NOP instructions (HEX
 90). The method described uses the DOS DEBUG utility but
 Norton's Utility (NU) works too.

 Copy all of the files from the MEAN-18 disk onto a fresh
 floppy using the DOS COPY command and place your original
 diskette out of harm's way.

 Assuming DEBUG is in the A: drive and the floppy containing
 the files to be unlocked is in the B: drive , proceed as fol-
 lows:

 First REName the GOLF.EXE file so it has a different
 EXTension other than .EXE.

 REN GOLF.EXE GOLF.DEB

 Next load the file GOLF.DEB into DEBUG and displays the "-"
 DEBUG prompt.

 A:> DEBUG B:GOLF.EXE

 13
 Search for the beginning of the code to be patched by typing:

 - S CS:100 FFFF CD 13

 Searches the file for the two byte INT 13 instruction. If
 all goes well, two addresses should appear on the screen.

 XXXX:019C
 XXXX:01A8

 XXXX indicates that the numbers preceeding the ":" vary from
 system to system but the numbers following the ":" are the
 same on all systems.

 The next step is to use the "U" command as indicated to
 un-assemble a few bytes in order to verify your position in
 the file)

 - U CS:019C

 (Un-assembles 32 bytes of code. Verify the following se-
 quence of instructions:

 INT 13
 JB 01E9
 MOV AL,[BX+01FF]
 PUSH AX
 MOV AX,0201
 INT 13
 POP AX

 JB 01E9
 CMP AL,F7
 JNZ 01B5

 These are the instructions you'll be patching out in the fol-
 lowing step)

 - A CS:019C

 This command assembles the new instructions you enter at the
 keyboard into the addresses shown. Beginning at CS:019C, and
 for the next 21 bytes, ending with and including CS:01B0, en-
 ter the no op command "NOP" (90h) followed by a <return> or
 <enter>. Just hit <enter> at address XXXX:01B1 to end the
 assemble command.)

 XXXX:019C NOP <enter>
 XXXX:019D NOP <enter>
 .
 .
 .
 XXXX:01AE NOP <enter>
 XXXX:01AF NOP <enter>

 14
 XXXX:01B0 NOP <enter>
 XXXX:01B1 <enter>

 This just wipes out the section of code containing the INT 13
 check.

 Now do a HEX dump and verify that bytes 019C through 01B0
 have been set to 90 HEX.

 - D CS:019C

 If they have, write the patched file to the disk as follows)

 - W

 This writes the patched file back to the
 disk where it can be run by typing GOLF just as before but
 now, it can be run from any drive, including the hard
 drive)

 Now just [Q]uit or exit back to DOS. This command can be ex-
 ecuted at any "-" DEBUG prompt if you get lost. No modifica-
 tion will be made to the file on the disk until you issue the
 "W" command.

 - Q

 The process is the same for the ARCH.EXE file but because it
 is a different length, the segment address, (XXXX part of the
 address), will be different. You should find the first INT
 13 instruction at address XXXX:019C and the second one at
 XXXX:01A8 as before.

 You will again be patching 21 bytes and you will start with
 019C and end with 01B0 as before. After doing the HEX dump
 starting at address 019C, you again write the file back to
 the disk with a "W" command then "Q" uit.

 Norton's utilities can also be used to make this patch. Be-
 gin by searcing the GOLF.EXE or ARCH.EXE files for the two
 byte combination CD 13 (remember to enter these as HEX
 bytes). Once located, change the 21 bytes, starting with the
 first "CD" byte, to 90 (a NOP instruction). As a check that
 you are in the right place, the byte sequence in both files
 is CD 13 72 49 8A 87 FF 01 50 B8 01 02 CD 13 58 72 3C 3C F7
 75 04. After modifying the bytes, write the modified file
 back to the disk. It can then be run from any drive.

 END.

 15
 --
 That was the first the tutorial cracks, here's another crack
 based on the same ideas but using Norton's Utilities instead.
 The following is an unprotect method for Eypx Submarine.
 Eypx is another one of those companies bent on protecting the
 world.
 --

 By: Assembler Magic
 Title: EPYX Submarine Unprotect

 You will only need to make one modification to the main
 executable program of Submarine, SUB.EXE. I will assume that
 your computer has a hard disk and that you have a path to
 DOS. It's time to fire up DEBUG as follows:

 DEBUG SUB.EXE<cr>

 The computer should respond with a "-" prompt. Now look at
 the registers, just to make sure everything came up okay.
 Type the letter "R" immediately after the prompt. The com-
 puter should respond with a few lines of info as follows:

 AX=0000 BX=0001 CX=6103 DX=0000 SP=0080 BP=0000 SI=0000
 DI=0000 DS=12CE ES=12CE SS=37B2 CS=27FC IP=0010 NV UP EI PL
 NZ NA PO NC
 27FC:0010 8CC0 MOV AX,ES
 -

 Note the value of CS is "27FC". That is the hexadecimal
 segment address for the beginning of the program code in your

 computer's memory. It is highly probable that the value you
 see for CS will differ from mine. Whatever it is, write it
 down. Also, the values you see for DS, ES and SS will almost
 certainly differ from mine and should not cause you concern.
 The other registers should show the same values mine do, and
 the flags should start with the same values.

 Next, we will do a search for Interrupt 13's. These are
 BIOS (not DOS) Interrupts built into the program which are
 used to ensure that the original disk is being used to run
 the program. The whole key to this unprotect scheme is to by-
 pass these Interrupts in the program code. The tricky part
 of this unprotect is to find them! They are not in the seg-
 ment of program code starting at the value of CS equal to
 "27FC". They are closer to the beginning of the program in
 memory. Easy enough! Reset the value of CS to equal the
 value of DS as follows; type immediately after Debug's "-"
 prompt:

 RCS<cr>

 16
 Debug will prompt you for the new value of CS with:

 CS:27FC:

 You respond by typing the value of DS you saw when you
 dumped the registers the first time. For example, I typed
 "12CE<cr>". The value you type will be different. Debug
 will again respond with the "-" prompt which means we are
 ready to do our search. Type in the following after the "-"
 prompt:

 S CS:0 FFFF CD 13<cr>

 The computer should respond with three lines of information
 which are the addresses of the three Interrupt 13 calls built
 into the program. The first four digits are the segment ad-
 dress and will equal to the value of CS you have just set.
 The second four digits following the colon are the offset ad-
 dresses which are of primary interest to us. On my machine
 they came back as follows:

 12CE:4307
 12CE:431F
 12CE:4335

 The segment addresses will be identical and the three off-
 set addresses should all be relatively close together. Now
 look at the first offset address. (As you can see, mine was
 "4307".) Write it down. Now we do a bit of Unassembly.

 Type "U4307<cr>" which is the letter "U", followed immedi-
 ately (with no blank spaces) by whatever your first offset
 address turned out to be, followed by a carriage return. If
 you are not familiar with unassembled machine code, it will

 look like lines of gibberish as follows:

 12CE:4307 CD13 INT 13
 12CE:4309 4F DEC DI
 12CE:430A 744C JZ 4358
 .
 .
 12CE:431F CD13 INT 13
 12CE:4321 4F DEC DI
 .
 .
 12CE:4324 BF0400 MOV DI,0004
 12CE:4326 B80102 MOV AX,0201

 In my computer, Unassemble will automatically output 16
 lines of code to the screen. Yours may differ. Note, in the
 abbreviated list I have shown above, the addresses at the be-
 ginning of the two lines which contain the Interrupt 13's
 (INT 13) correspond to the first two addresses we found in
 our search. Now we continue the unassemble, and here comes

 17
 another tricky part. Just type in "U<cr>" after the "-"
 prompt.

 You'll get sixteen more lines of code with the third Inter-
 rupt 13 on a line which begins with the address (CS):4335 if
 you have the same version of Submarine as I do. It's not
 terribly important to this exercise, but it will at
 least show you that things are proceeding okay. Now type in
 "U<cr>" again after the prompt. You are now looking for
 three key lines of code. On my program they appear as fol-
 lows:

 12CE:4335 07 POP ES
 12CE:4356 5D POP BP
 12CE:4357 CB RETF

 The true key is the instruction "POP ES". This instruction
 begins the normal return sequence after the program has ex-
 ecuted its Interrupt 13 instructions and accompanying checks.
 If Debug on your machine prints fewer than 16 lines of code
 at a shot, you may have to type in "U" more than twice at the
 "-" to find these instructions. (If you haven't found any of
 this stuff, either get help on the use of Debug or go back to
 using your diskette version!) Write down the offset address
 of the "POP ES" instruction; the four digits following the
 colon, which in my example is "4354". You're well on your
 way now, so please persevere.

 The next step is to modify the program to JUMP around the
 code which executes the Interrupt 13's and go immediately to
 the instruction which begins the normal return sequence
 (again, it's the "POP ES". Type in the following instruc-
 tions carefully:

 A4307<cr>

 This first bit tells Debug that new Assembler code will be
 inserted at the address of the first Interrupt 13. If your
 first Interrupt 13 is at an address other that "4307", use
 the correct address, not mine. The computer will prompt you
 with the address:

 12CE:4307

 After which you will immediately type:

 JMP 4354<cr>

 This instruction jumps the program immediately to the normal
 return code instructions. Again, at the risk of being redun-
 dant, if your "POP ES" instruction is at a different address,
 use that address, not "4354"!

 The computer will prompt you with the address of the next in-

 18
 struction if all went well. MAKE SURE you just hit the
 carriage return at this point. Debug will then return the
 familiar "-" prompt.

 Now it's time to examine your handiwork. Let's do the
 unassemble again starting at the address of what had been the
 first Interrupt 13 instruction, but which is now the Jump in-
 struction. Type in "U4307<cr>" or "U" followed by the appro-
 priate address and a carriage return. The first line begin-
 ning with the address should appear as follows:

 12CE:4307 EB4B JMP 4354

 The key here is the four bytes immediately following the ad-
 dress. In my example they are "EB4B". Yours may not be.
 But, they are VERY IMPORTANT because they represent the ac-
 tual machine code which is the Jump instruction. WRITE THESE
 FOUR BYTES DOWN AND MAKE SURE THEY ARE CORRECT.

 Now if you want to have some fun before we go on, reset
 register CS to its original value by first typing "RCS<cr>"
 at the "-" prompt. Then type in the original value of CS
 that I asked you to write down. Using my example, I typed
 "27FC<cr>". Next, you will type "G<cr>" after the "-" prompt
 which means GO! If all went well, SUB should run at this
 point. At least it will if you put all of the Submarine
 files onto the diskette or into the hard disk subdirectory
 where youre working. If it didn't run, you may have made an
 error. Check through what you have done.

 Don't give up at this point if it does not run. Your version
 of Debug may simply have not tolerated our shenanigans. When
 you are done playing, quit Submarine ("Alt-Q<cr>") and type a
 "Q<cr>" after the Debug prompt "-" appears.

 Now comes the tough part. I can't walk you through this

 phase in complete detail, because you may be using one of
 several programs available to modify the contents of SUB.EXE.
 Debug is not the way to go, because it can't write out .EXE
 files, only .COM files.

 Note: Another method of doing this is to REName the SUB.EXE
 file so it has a different extension other than .EXE before
 you enter DEBUG. That way after you've made the change you
 can then [W]rite then changes out to the file right in DEBUG.
 Then one drawback is that you can't run the program in DEBUG
 once you've changed the name.

 You have to get into your sector modification package (NORTON
 works good) and work on the SUB.EXE file on your new diskette
 or your hard disk. Remember, I warned you that doing this on
 your hard disk is dangerous if you are not fully aware of

 19
 what you are doing. So, IF YOU MESS UP, it's YOUR OWN FAULT!

 You are looking for the first occurrence of an Interrupt 13
 (the "CD 13") using the search facility in your program. If
 you don't have the ability to search for the two-byte hexa-
 decimal code "CD 13" directly, then you will have to manually
 search.

 Note: Norton 4.x now has a search utility. When you get to
 the point of typing in the search text, just press the TAB
 key, and you can type in the actual hexadecimal code "CD 13".

 Start at the beginning of SUB.EXE and proceed. Again, you
 want to find the first of the three (first from the beginning
 of the program).

 I will give you a hint. I found it in NORTON at location
 4407 hexadecimal which is location 17,415 decimal in the
 SUB.EXE program file. DOS standard sectors are 512 decimal
 bytes. Replace the two bytes "CD 13" with the "EB 4B" or
 whatever your Jump instruction turned out to be. Write or
 save the modified file.

 That's ALL there is to modifying SUB.EXE. You can go ahead
 and execute your program. If you have followed my instruc-
 tions, it should run fine. Get help if it doesn't. Now, you
 should be all set. You can load onto your hard disk, if you
 haven't already. You can run it from a RAM disk using a BAT
 file if you really want it to hum. Or, if you have the fa-
 cilities, you can copy it from 5-1/4" floppy to 3-1/2" dis-
 kette and run it on machines which accept that medium if you
 upgrade to a new computer.

 END.

 20

 Now let's take a look at a newer crack on the program, Space
 Station Oblivion by Eypx. At a first [S]earch with Debug and
 Norton's Utility no CD 13's could be found, and yet it was
 using them... So a different approach had to be taken...

 By: PTL
 Title: Space Station Oblivion Crack

 First of all, you must determine which file the INT 13's are
 in, in this case it had to be the file OBLIVION.EXE since it
 was the main program and probably contained the INT 13's. So
 then rename it to a different EXTension and load it into De-
 bug.

 Then do a [S]earch for INT 13's.

 -S 100 FFFF CD 13

 Which will promptly turned up nothing. Hmmm...

 Next you might decide that, maybe, the code was modifying it-
 self. So quit from Debug and load up PC-Watch, include all
 the INT 13 Calls. For those of you not familiar with
 PC-Watch, it is a memory resident program that can be set to
 look for any type of BIOS call. When that call is made
 PC-Watch prints to the screen the contents of all the regis-
 ters and the current memory location that the call was made
 from.

 After PC-Watch is initialized, then run the OBLIVION.EXE file
 from the hard disk, leaving the floppy drive door open, and
 sure enough, when the red light comes on in the diskette
 drive, PC-Watch will report the address's of some INT 13
 calls. Which you should then write down.

 From there, quit the game, reboot, (To dump PC-Watch from
 memory) and load the OBLIVION.EXE into Debug and issue a [G]o
 command with a breakpoint. What address should you use for a
 breakpoint? You guessed it, the same address PC-Watch gives
 you.

 Well, it locked up did'nt it? Which is quite common in this
 line of work so don't let that discourage you. So next re-
 loaded it into debug and this time [U]nassemble the address
 that you got from PC-Watch. But instead of finding the INT
 13's you'll find harmless INT 21's.

 Hmm... could it be that the program was converting the CD
 21's to CD 13's during the run? Well, to test the idea as-
 semble an INT 20 (Program Terminate) right after the first

 21
 INT 21. Then I run the program, and yes immediately after the
 red light comes on the drive, the program will terminate nor-
 mally.

 Then [U]nassemble that same area of memory, and low and be-
 hold, some of the INT 21's have magically turned into INT
 13's. How clever...

 So, then it is just a matter of locating the address of the
 routine that it jumped (JMP) to if the correct disk was found
 in drive A:. Once you have that address, just go to the
 start of all this nonsense and [A]ssemble a JMP XXXX command.
 Where XXXX was the address to jump to if the original disk
 was in drive A:.

 Then just [W]rite the file back out to the disk and [Q]uit
 debug, and then REName the file back to OBLIVION.EXE
 afterwhich it should work fine.

 END.

 22
 Chapter III Removing Doc Check Questions

 A new fad has recently started up with software vendors, it
 involves the use of "Passwords" which are either stored in
 the documentation or are actually the documentation itself.
 Then when you reach a certain part of the program (Usually
 the beginning) the program will ask for the password and you
 have to look it up in the Docs before being allowed to con-
 tinue. If the wrong password is entered, it will usually
 drop you to DOS or take you to a Demo version of the program.

 This new form of copy protection is very annoying, but can
 usually be cracked without too much effort, and the files
 and the disk are usually in the standard DOS format. So now

 we'll take a look at cracking the Doc check questions.

 First of all we'll crack the startup questions in F-15
 Strike Eagle by MicroProse.

 By: JP ASP
 Title: F-15 Unprotect

 Make a copy of the original disk using the DOS DISKCOPY pro-
 gram.

 >DISKCOPY A: B:

 Then insert the copy disk in the A drive and invoke DOS DE-
 BUG.

 >DEBUG

 Now we'll [F]ill an area of memory with nothing (00).

 -F CS:100 L FEFF 0

 Next we will [L]oad into address CS:0100 the data that is on
 the A: disk (0) from sector 0 to sector 80.

 -l cs:100 0 0 80

 Now lets [S]earch the data we loaded for the area where the
 copy protection routine is.

 -s cs:100 l feff FA EB FD

 Then for each of the occurences listed, use the address DEBUG
 returned in the [E]nter command below.

 23

 -e xxxx 90 90 90

 Here's the part we are interested in, it's where you change
 all the autorization codes to a space. Notice how you can
 use the [S]earch command to look for ASCII text.

 -s cs:100 l feff "CHIP"

 Then for each occurance of "CHIP" use the address DEBUG re-
 turned in the [F]ill command below.

 -F XXXX L F 20

 Write out the modified data

 -W CS:100 1 0 80

 Quit DEBUG

 -Q

 You should now be able to DISKCOPY and boot from all copies
 also just press the space bar when it ask for ANY authority
 code and then press "ENTER". Now there is no need to remember
 (or look up) any codes that are so finely tucked away in the
 manual!

 END.

 24

 Here is a similar method that was used break the passwords in
 the program BATTLEHAWKS 1945 by Lucasfilms. However Norton
 Utilities is used to search for the passwords and change
 them.

 By: PTL
 Title: BATTLEHAWKS-1945 Doc Check Crack

 In keeping in line with their previous programs, Lucasfilms
 has released yet another program which uses Doc Checks for
 its means of copy protection, Battlehawks 1942.

 When you run this program, it first goes through a series of
 graphic displays, then it goes through a series of questions,
 asking what type of mission you want to fly, such as Train-

 ing, Active Duty, or which side of the war you want to be on.

 Then right before the simulation begins, it shows you a pic-
 ture of a Japanese Zero and ask you for a password which you

 are then supposed to get by looking up the picture of the
 Zero in the User Manual and typing the corresponding password
 in. After which it enters the simulation, in the event you
 enter the wrong password, it puts you into a training mis-
 sion.

 Removing the Doc Check in a program like this is usually
 pretty easy. The ideal way to do it is to remove the Doc
 Check routine itself, but if you don't have all day to debug
 and trace around the code this might not be the best way.
 For instance if you only have your lunch hour to work on it
 (Like I did), then you need to use the standard Q.D.C.R.S.
 (Quick Doc Check Removal System).

 How do you do a QDCRS? Well first of all, play around with
 the program, find out what it will and will NOT accept as a
 password. Most programs will accept anything, but a few
 (Like Battlehawks) will only accept Alpha characters.

 Once you've learned what it likes, make an educated guess as
 to what program the Doc Check routine is in. Then load that
 program into Norton's Utility (NU).

 At this point, take a look at the passwords, and write down
 the most unusual one that you can find (I'll explain later).
 Now type that password in as the search string, and let NU
 search through the file until it finds the password. Now a
 couple of things can happen.

 1. It only finds one occurrence
 2. It finds more than one occurrence
 3. It doesn't find any occurrence

 In the event of case 2 then YOU have to determine where the
 passwords are stored, you can do this by opening your eyes
 and looking.

 In the event of case 3, go to the kitchen and start a pot of
 coffee, then tell you wife to go to bed without you, because
 you have a "Special Project" that you have to finish tonight.
 And by the way, Good Luck. You'll need it.

 Hopefully case 1 will occur, now you have to take a look at
 the data and ask yourself 2 questions:

 1. Are all the passwords the same length?
 2. Is there a set number of spaces between each pass-
 word?
 3. Does the next password always start a certain number
 of characters from the first character of the previ-
 ous password?

 If you can answer yes to any of the above questions, you in
 luck. All you have to do is change the passwords to spaces

 (If the program allows that, Battlehawks doesn't) or change
 them to you favorite character. The letter X works good, it's
 easy to type and easy to remember.

 If you can't answer yes to any of the questions then you ei-
 ther need to bypass the Doc Check routine itself or you need
 to be adventurous and experiment. Battlehawks will not follow
 any of the above patterns, and your quickly running out of
 time, so you'll have to try something, fast...

 So just wiped out all of the data area with X's, all the
 passwords and associated "garbage" between them. Then saved
 the changes and drop out of NU and into BH. Then when it ask
 for the password, just filed the area with X's. Next thing
 you know, you'll be escorting a bombing run on a Japanese
 carrier.

 So, this one turned out to be fairly simple. Where you may
 run into trouble is on Doc Checks that use a graphic system,
 such as Gunship by MicroProse. When it comes to this type of
 Doc Check, you almost have to bypass the routine itself. And
 again, a good way to do this is with setting break points and
 using the trace option in Debug.

 END.

 25

 That was the easy version Doc Check crack, however there a
 "Better" way to crack Doc Checks, is to bypass the routine
 completely so the user can just press enter and not worry
 about spaces. Let's take a lot at this method by looking at
 a crack for the program, Yeager's Advanced Flight Trainer, by
 Electronic Arts.

 By: PTL
 Title: Yeager's Advanced Flight Trainer

 26
 Chapter 5 Cracking Self Booters

 Now we'll take a look at cracking self booters. A few compa-
 nies have found this to be the best copy protection scheme
 for them, one of which is DataEast, makers of Ikari Warriors,
 Victory Road, Lock-On, Karnov, etc... This posses a special
 problem to the Amateur Cracker, since they seldom use stan-
 dard DOS formats. So let's jump right in!

 This is the area where a "Higher than Normal" knowledge of
 Assembly Language and DOS Diskette structures, so first of
 all, the Basic's.

 The Disk's Physical Structure

 Data is recorded on a disk in a series of concentric circles,
 called Tracks. Each track if further divided into segments,
 called Sectors. The standard double-density drives can
 record 40 tracks of data, while the new quad-density drives
 can record 80 tracks.

 However, the location, size, and number of the sectors within
 a track are under software control. This is why the PC's
 diskettes are known as soft-sectored. The characteristics of
 a diskette's sectors (Their size, and the number per track)
 are set when each track is formatted. Disk Formatting can be
 done either by the operating system or by the ROM-BIOS format
 service. A lot of self booters and almost all forms of copy
 protection create unusual formats via the ROM-BIOS diskette
 services.

 The 5 1/4-inch diskettes supported by the standard PC BIOS
 may have sectors that are 128,256,512, or 1,024 bytes in
 size. DOS, from versions 1.00 through 4.01 has consistently
 used sectors of 512 bytes, and it is quite possible that this
 will continue.

 Here is a table displaying 6 of the most common disk formats:

 Type Sides Sectors Tracks Size(bytes)

 S-8 1 8 40 160K
 D-8 2 8 40 320K
 S-9 1 9 40 180K
 D-9 2 9 40 360K
 QD-9 2 9 80 720K
 QD-15 2 15 80 1,200K

 S - Single Density
 D - Double Density
 QD - Quad Density

 Of all these basic formats, only two are in widespread use:
 S-8 and D-9. The newer Quad Density formats are for the 3
 1/2" and 5 1/4" high density diskettes.

 The Disk's Logical Structure

 So, as we have already mentioned, the 5 1/4-inch diskette
 formats have 40 tracks, numbered from 0 (the outside track)
 through 39 (the inside track, closest to the center). On a
 double sided diskette, the two sides are numbered 0 and 1
 (the two recording heads of a double-sided disk drive are
 also numbered 0 and 1).

 The BIOS locates the sectors on a disk by a three-dimensional
 coordinate composed of a track number (also referred to as
 the cylinder number), a side number (also called the head
 number), and a sector number. DOS, on the other hand, lo-
 cates information by sector number, and numbers the sectors
 sequentially from the outside to inside.

 We can refer to particular sectors either by their
 three-dimensional coordinates or by their sequential order.
 All ROM-BIOS operations use the three-dimensional coordinates
 to locate a sector. All DOS operations and tools such as DE-
 BUG use the DOS sequential notation.

 The BASIC formula that converts the three-dimensional coordi-
 nates used by the ROM-BIOS to the sequential sector numbers
 used by DOS is as follows:

 DOS.SECTOR.NUMBER = (BIOS.SECTOR - 1) + DIOS.SIDE
 * SECTORS.PER.SIDE + BIOS.TRACK * SECTORS.PER.SIDE
 * SIDES.PER.DISK

 And here are the formulas for converting sequential sector
 numbers to three-dimensional coordinates:

 BIOS.SECTOR = 1 + DOS.SECTOR.NUMBER MOD SECTORS.PER.SIDE
 BIOS.SIDE = (DOS.SECTOR.NUMBER \ SECTORS.PER.SIDE)
 MOD SIDE.PER.DISK
 BIOS.TRACK = DOS.SECTOR.NUMBER \ (SECTORS.PER.SIDE

 * SIDES.PER.DISK)

 (Note: For double-sided nine-sector diskettes, the PC's
 most common disk format, the value of SECTORS.PER.SIDE
 is 9 and the value of SIDES.PER.DISK is 2. Also note
 that sides and tracks are numbered differently in the
 ROM-BIOS numbering system: The sides and tracks are num-
 bered from 0, but the sectors are numbered from 1.)

 Diskette Space Allocation

 The formatting process divides the sectors on a disk into
 four sections, for four different uses. The sections, in the
 order they are stored, are the boot record, the file alloca-
 tion table (FAT), the directory, and the data space. The
 size of each section varies between formats, but the struc-
 ture and the order of the sections don't vary.

 The Boot Record:

 This section is always a single sector located at sector
 1 of track 0, side 0. The boot record contains, among other
 things, a short program to start the process of loading the
 operating system on it. All diskettes have the boot record
 on them even if they don't have the operating system. Asisde
 from the start-up program, the exact contents of the boot
 record vary from format to format.

 The File Allocation Table:

 The FAT follows the boot record, usually starting at
 sector 2 of track 0, side 0. The FAT contains the official
 record of the disk's format and maps out the location of the
 sectors used by the disk files. DOS uses the FAT to keep a
 record of the data-space usage. Each entry in the table con-
 tains a specific code to indicate what space is being used,
 what space is available, and what space is unusable (Due to
 defects on the disk).

 The File Directory:

 The file directory is the next item on the disk. It is
 used as a table of contents, identifying each file on the
 disk with a directory entry that contains several pieces of
 information, including the file's name and size. One part of
 the entry is a number that points to the first group of sec-
 tors used by the file (this number is also the first entry
 for this file in the FAT).

 The Data Space:

 Occupies the bulk of the diskette (from the directory
 through the last sector), is used to store data, while the
 other three sections are used to support the data space.
 Sectors in the data space are allocated to files on an
 as-needed basis, in units known as clusters. The clusters
 are one sector long and on double-sided diskettes, they are a

 pair of adjacent sectors.

 (From here on I'll continue to describe the basics of DOS
 disk structures, and assembly language addressing technics.

 Here is a simple routine to just make a backup copy of the
 Flight Simulator Version 1.0 by Microsoft. I know the latest
 version is 3.x but this version will serve the purpose of
 demonstrating how to access the data and program files of a
 selfbooter.

 By: PTL
 Title: Microsoft Flight Simulator 1.00 Unprotect

 This procedure will NOT convert the Flight Simulator disk to
 files that can be loaded on a hard drive. But... it will
 read off the data from the original and put it onto another
 floppy. And this should give you an idea of how to read data
 directly from a disk and write it back out to another disk.

 First of all take UNFORMATTED disk and place it in drive B:.
 This will be the target disk.

 Now place your DOS disk (which has Debug) into drive A:, or
 just load Debug off you hard disk.

 A>DEBUG

 Then we are going to enter (manually) a little program to
 load the FS files off the disk.

 -E CS:0000 B9 01 00 BA 01 00 BB 00
 01 0E 07 06 1F 88 E8 53
 5F AA 83 C7 03 81 FF 1C
 01 76 F6 B8 08 05 CD 13
 73 01 90 FE C5 80 FD 0C
 76 E1 90 CD 20

 -E CS:0100 00 00 01 02 00 00 02 02 00 00 03 02
 00 00 04 02 00 00 05 02 00 00 06 02
 00 00 07 02 00 00 08 02

 Next we'll [R]eset the IP Register by typing.

 -R IP

 And then typing four zeros after the address prefix.

 xxxx:0000

 Next insert the original Flight Simulator disk into drive A:
 and we'll run our little loader.

 -G =CS:0000 CS:22 CS:2A

 Now enter a new address to load from.

 -E CS:02 0E
 -E CS:27 19

 And run the Loader again.

 -G =CS:0000 CS:22 CS:2A

 New address

 -E CS:02 27
 -E CS:27 27

 Run Loader

 -G =CS:0000 CS:22 CS:2A

 Here we'll do some [L]oading directly from the disk our-
 selves.

 -L DS:0000 0 0 40

 And the in turn, write it back out to the B: (1) drive

 -W DS:0000 1 0 40

 Etc...

 -L DS:0000 0 40 28
 -W DS:0000 1 70 30
 -L DS:0000 0 A0 30
 -W DS:0000 1 A0 30
 -L DS:0000 0 138 8
 -W DS:0000 1 138 8

 When we are all through, [Q]uit from debug and you should
 have a backup copy of the Flight Simulator.

 -Q

 And that's all there is to it.

 END.

Help file generated by VB HelpWriter.

Cracking 101

              CRACKING 101 - 1990 edition

  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³ INTRODUCTION ³
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

  by Buckaroo Banzai

                            A long time a go, in a galaxy far far away, a great
                  adventure took ... What, oh sorry, wrong textfile.

                            Hello my children.    Let me introduce myself, I am the
                  great cracking guru BUCKAROO BANZAI (the original) and I'm
                  back after a couple of years of hiding (from the Feds? from
                  the IRS? No, from this girl MaryLou.    Let me tell you, she
                  could ... oh well let's get back to the textfile).

                            Let me tell you a little history about cracking on the
                  IBMpc.    It all started about 11 years ago with an apple IIe.
                  See, I owned one and always wanted to learn how to crack (I
                  was already a good pirate).    Unfortunately, I just never
                  could get the hang of it.

                            Well anyway, then I got my PC, and right away started to
                  learn to program.    Soon, I had pick up oh 4 languages one of
                  which was assemble language.    So I started down the long road
                  to becoming a crackist.

                            But the road was hard since unlike the apple, there were
                  NO textfiles on cracking the PC.    Several unprotects, but
                  nothing that really told you what to do.    But thanks to some
                  of the better known crackists of the day (Thanks SPI for the
                  help) I got through.

                            It was at that point I decided to give something back.
                  And thus, after a long (and I mean long) night of sex, drugs
                  and rock and roll I started on my first cracking textfile.
                  (Ok, so there really wasn't any drugs)

                            Since then, I have written about 10 different textfiles,
                  4 utilities and cracked several dozen programs.    So, why the
                  long pause, well I never really stopped cracking.    I just
                  basicly stuck to myself.    I never released any of my cracks
                  cause I was never first but several of my cracking programs
                  (most known is SECTOR-C) reached the pirate world.

                            So, why am I back.    3 reasons.    First is because now DOC
                  CHECKS have taken over the scene and nobody has really
                  written about them (plus I'm tired of seeing my old textfiles
                  butchered in "CRACKING" mags).    Second is because I have some
                  free time, and third, because it was there.

                            It feels kinda funny.    I have written this intro file
                  several times, and the whole series has been rewritten.    What
                  started off as 4 simple textfiles has grown.    I have givin up
                  trying to write a book.    What I'm doing is as a new game
                  reaches me, I will crack it, and then tell how it was done,
                  highlight the odd quirks about the crack.

                            I have also compiled a preaty good reference on INT 13h.
                  I have included it with this series.    And in the near future,
                  I hope to release several utilities that I use to help me
                  crack.

                            As of this writing, I have 2 actual lessons done, and 2
                  ready to be written.    For the first 2 lessons I touch on both
                  types on copy protection (On disk copy protection with
                  I.B.M.'s DRAWING ASSISTANT and dos checks with EOA's ESCAPE
                  FROM HELL).    I still have to compose 2 more files, 1 more on
                  each type (usings STAR CONTROL and CHAMBER OF THE SCI-MUNTANT
                  PREISTEST).    From there, who the hells knows.

                            So anyway, sit back, watch, listen, learn and if that
                  doesn't work, kick a small kid in the head...

                            -Buckaroo Banzai
                              -the cracking guru

  CRACKING 101 - 1990 edition

  Lession #1

  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³ CRACKING DOS Files ³
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

  By Buckaroo Banzai

                            Today I'm here to about is cracking a dos format (either
                  .EXE or .COM) file.    This, in my mind is releativly the
                  simplest (in theory although pratice might say otherwise)
                  type of crack to do.

                            There are really 3 steps in cracking a dos file.    Step
                  1, is finding where the protection routine is.    How to go
                  about it, well, there are several diffrent methods.    Here are
                  the steps that I often use.

                            First, I will run the program under PC-WATCH (PW)
                  trapping INT13 all functions and INT21 functions 3Dh and 3Fh.
                  Why trap the functions.    This will give (hopefully) a
                  starting place to look for the protection.    Once you have set

                  the breakpoints, press [F4] to execute and you will drop to
                  dos.    When you do, PW should display several calls to INT13.
                  What closly at the CS:IP of these calls.    Record it for later
                  because these are calls from dos.    We will uses this data to
                  recognize what is a call to the protection and what is not.

                            Next, run the program to be cracked.    As it executes,
                  PC-WATCH will show what files are opened (including the file
                  you just ran since DOS uses function 3Dh to open a file when
                  it executes one) and what (and more improtantly WHERE) data
                  is read to.    Makes a list saying what data is read in from
                  what file.    Here is an example.    Lets say you ran the program
                  "XXX.COM".    While running, "XXX.COM", you noticed that 2
                  other files "YYY.BIN" and "ZZZ.BIN" were also opened.    So
                  make a list like this:

                          XXX.COM              YYY.BIN              ZZZ.BIN
                          ÄÄÄÄÄÄÄ              ÄÄÄÄÄÄÄ              ÄÄÄÄÄÄÄ

                            Now, lets say that after "XXX.COM" was opened, PW showed
                  that there were 2 reads from "XXX.COM" (the way to tell where
                  the data is being read from is by checking the BX register on
                  calls to 3Fh and the AX registers after calls to 3Dh.    Yes,
                  you should select both INPUT REGISTERS and OUTPUT REGISTERS
                  from the PW menu) 1 at aaaa:bbbb and 1 as cccc:dddd.    Right
                  after "YYY.BIN" was opened, PW showed data was read to
                  eeee:ffff and then after "ZZZ.BIN" was opened, data was
                  written to gggg:hhhh and iiii:jjjj.    Now, our list looks like
                  this:

                          XXX.COM              YYY.BIN              ZZZ.BIN
                          ÄÄÄÄÄÄÄ              ÄÄÄÄÄÄÄ              ÄÄÄÄÄÄÄ
                          aaaa:bbbb          eeee:ffff          gggg:hhhh
                          cccc:dddd                                      iiii:jjjj

                            What we have just created in a program load map.    This
                  map shows where to program to be cracked is loaded in memory.
                  Next, scan though the calls to INT13.    Look for either calls
                  that return with errors, calls that have high values in the
                  CH (> 28) or CL (> 9) registers, or calls not made by dos
                  (those calls that have a CS:IP diffrent from the one we
                  copied down before we executed the program).    Now, look at
                  the CS:IP of the call to INT13.    Match the segment address
                  against the program load map.    If only 1 match occurs, then
                  you now know what module the check is in so continue on to
                  step #2.    If more than 1 match occurs, check the offset (IP).
                  Find the one that is closest to one of the write address's
                  offset.    Once you find a match, then go on to step #2.    If no
                  match occurs after both steps, it's time to track through the
                  program.

                            Tracking your way though the program is a real bitch.    I
                  do not like to do because it can just take to long.    But here
                  is an overview on how it is done.

                            The object, is to keep narowing down calls until disk

                  access if found.    How to do this.    Well, load the program
                  under debug.    Keep tracing through the program in till a
                  "CALL" instruction is found.    Jot down you current IP and
                  PROCEED (using debug P command) over the instruction without
                  tracing in to it.    If you end up at the next instruction
                  without access that disk, then you have not found the routine
                  you are looking for so keep going.    Search for the next
                  "CALL" and then the next and then the next etc.    At some
                  point, when you proceed over a call, the disk will either
                  check protection or load in a new module.

                            How to tell the diffrence, well PW is still active and
                  will tell you if it was a call to INT13 or INT21 or BOTH.    If
                  it was the call to INT13 or a call to BOTH then you have
                  found a call to the protection routine (although the actual
                  call may be 100 levels deeper, you are on the right track).
                  Exit and restart but this time when you reach the call,
                  trace into it.    Now do the same process until you get to the
                  call to the next level, then again for the next, etc.
                  Finally you should find where it is.

                            But hopefully, you won't have to do that.    As I said, it
                  is very time consumming.    Hopefully, you will know which
                  module to look in.    If you do, here is how to find the call
                  to the protection.    First, try the simple search method.
                  Load up the module using DEBUG and simply type:

                                      S CS:100 FFFF CD 13    (use CS:100 if .EXE)

                            Debug will hopefully list 1 or more address.    If not,
                  try the same command only using CS:0000.    If again you are
                  not givin any address, you have some tricky debugging at hand
                  (an I suggest rereading the exercise in self-modifying code).

                            I will explain in detail how to find self-modifying code
                  later but for now, lets assume we have found the protection
                  routine.    Next, is to figure out what the copy protection is
                  trying to do.    First, look to the printout from PW.    Look
                  through it until you find the calls the INT13 from the
                  protection routine.    Look at the AH register.    If it is 00h
                  then the protection routine is probally reading in data from
                  the protected tracks.    If not, then the protection is simply
                  looking for some KEY (in other words a damaged track or
                  sector) that DOS canno't duplicate.

                            The second choice is much eaiser to defeat.    2 quick
                  methods to defeating this type.    First, you can fake the call
                  and simply set the registers.    Take the follow check to a
                  protection routine:

                  1:            mov AX,0201h            ; Read 1 sectors using int 13h
                  2:            mov CX,2909h            ; Track 29h sector 09h
                  3:            xor DX,DX                  ; Drive 0, head 0
                  4:            int 13h                      ; Read sector
                  5:            jnc Bad                      ; If no error then it's a copy
                  6:            cmp AH,10h                ; Was it a CRC error

                  7:            jne Bad                      ; No, then it's a copy
                  8:            mov AX,0h                  ; clear error flag
                  9:            jmp Done                    ; we are done
                  Bad:        mov AX,1                    ; set error flag
                  Done:      ret                              ; we are done

                            What is the above code trying to do.    Well, it's
                  checking for a KEY on track 29h.    That key is sector 09h.
                  Normally sector 09h would not have an error.    On a read to
                  the original disk, after the int13 (line 4) is executed, the
                  carry flag (CF) would be set.    The jnc in line 5 would jump
                  if CF is not set (indicating no error, which is bad since the
                  original disk would have an error there).    The next line
                  checks AH to see if it is 10h.    This is checking to see if
                  the error was a Bad CRC on the read (the error that should be
                  there).    If it was not, then again it is not the protected
                  disk.    Only after both of thoses conditions are met, will the
                  protection routine return a "GOOD" result.

                            The key here is the value returned in AX an possibly
                  CF.    When the disk is the original, AX would return the value
                  of 0000h and CF = 1 but when it was a copy, it would return
                  0001h and CF = 0 or 1.    Since on a bad return, CF can be 0 or
                  1 then it is preaty safe to assume CF is not used to signal
                  the return.    So what must we do to beat the protection
                  routine, well, simply return from this CHECK with AX = 0000h.
                  Simple.    Just change line 1 to "mov AX,0000h" and line 2 to
                  "RET".    This will just bypass the check.

                            Now, this example is quite simple and would probally
                  never be used in a REAL protection routine.    I kept it simple
                  to show the point, see the example on how to crack DRAWING
                  ASSISTANT for a better example.

                            The second and more perferd method is to simply bypass
                  the call to the protection routine and kill of the section of
                  code that test for the check position.    Take the following
                  example:

                  10:          call 1                                    ; call the first example
                  11:          cmp AX,0                                ; Was it the original
                  12:          jz    Good2                              ; Yes, then good
                  13:          ... BAD it was a copy      ; No, then bad
                  Good2:

                            The above example, when used with the last example show
                  a typical call to a protection routine.    The perfered method
                  to crack this protection would not be to simply fake the
                  return, but to remove the call to the protection.    How to do
                  it, simple.    Just jump over the check.    Change line 10 to
                  "jmp Good2".    This will bypass the protection routine.

                            Now, you might ask why would you want to take the extra
                  step of finding the call to the protection routine rather
                  than simply faking an int13 and returning with the proper
                  registers set.    2 reasons.    First, What if there wasn't

                  enough room to setup the registers the way you needed them.
                  Then you would have to take the extra step.    Second, what if
                  somewhere down the line, that routine is used for something
                  else (like the int13 is modified into an int10 in a game).
                  Since you have changed the bytes at that location, the
                  modifying routine would create code that wasn't exepcted.
                  But as always, if you can fake the return, and the program
                  works, leave it.    After all, not to many people go around
                  look at other peoples cracks (do they???).

                            Now, what to do, if the program actually reads in
                  important data from the disk.    Well, there are 2 ways to go
                  about this (possibly more).    First, you could patch the
                  program so that when it calls it's protection routine, it
                  jumps to your user routine that opens a file and reads in the
                  data to the right place.    This method is preaty simple to add
                  to a .COM file but a much harder to patch on to the back of a
                  .EXE.    I won't really go in to this method much more than to
                  say use your brains.    It's not a difficult concept.

                            The other method, is to create a LOADER or a TSR.    I
                  suggest creating an Interrupt Service Routine (ISR) that
                  handles loading in the data.    For example, let say you wrote
                  a routine to read in the needed data for a file.    It is not
                  to difficult to convert that routine into an ISR.    (For notes
                  on ISR and TSRs, try reading The Waite Group's "MS-DOS
                  PAPERS".    It has one of the best sections on the subject).

  Consider this following example:

                  A:                        call 1                      ; test protection
                  B:                        jnc Good                  ; was it successfull
                  C:                        ... BAD load          ; no then it's a copy
  ... EXIT TO DOS    ; so exit to dos
                  Good:                  ... Good load        ; yes then it original
  call 7C00:0000      ; then jump of protection
  ; data

                  1:                        mov ax,0209            ; Read 9 sectors starting from
                  2:                        mov cx,290a            ; Track 29h Sector 0Ah (10)
                  3:                        xor dx,dx                ; for drive A: head 0
                  4:                        mov bx,7c00            ; read to 7c00:0
                  5:                        mov es,bx                ;
                  6:                        mov bx,0                  ;
                  7:                        int 13h                    ;
                  8:                        ret

                            What the above example dos.    Lines 1-8 try to read in
                  sectors 0Ah - 12h for track 29h on drive A:.    This is the
                  protection check routine.    Lines A - Good attempt to check
                  the protection, and then if the check is good (CF = 0) then
                  a call to the loaded in code (the data loaded in by the
                  protection check) is made.

                            What we want to do, is somehow when INT 13h is called,
                  load in the needed data for disk.    Well, here is my
                  suggestion.    First, I would change line 7 from "int 13h" to
                  "int BBh".    Next, I would create a small .COM loader that
                  would execute the main program as a child process (read the
                  DOS TECH REF on the EXEC function).    But before I did that, I
                  would write an ISR (interrupt service routine) for INT BBh.
                  Here is the general outline for the ISR

                            þ Use dos to open the file containing the needed data
                            þ Read in the data to ES:BX (where int 13h would put it)
                            þ Close the file
                            þ set AX to 0000 and clear CF
                            þ iret

                            The loader would go like this :

                            þ Get current int BBh address (DOS func. 35h)
                            þ Set int BBh address to ours (DOS func. 25h)
                            þ use DOS to EXECUTE (Dos func. 4Bh) the program to be
                                cracked
                            þ Restore the address of BBh

                            Well, that about all I have to say about cracking a dos
                  file.    I hope this section has been usefull to you.    Next I
                  will show by example the techinques in this section while
                  cracking I.B.M. Drawing Assistance (1.00).

                            One last thing.    After you have cracked the program, try
                  running it from a hard drive with PW set to trap calls to INT
                  21h function 1Bh (get fat byte).    If the program make a call
                  to here, get the address and find that section of code.    What
                  the program is trying to do is check to see if you are
                  running from a hard drive (most programs have diffrent
                  protection routines for hard drives).    When you find it,
                  simply replace the "INT 21h" with a "MOV DS:[BX],FDh".    This
                  will fake the program in to thinking you are working on a
                  floppy disk.

                            Ok, for our example we will be removing the code from
                  IBM's Drawing assistant.    Now now, I know it's not the best
                  program out there, but shit, It's hard to find shit with on
                  disk copy protection anymore.    So here we go...

                            I needed 3 programs in cracking the assist. series.
                  Locksmith by Alph Logic, Periscope debugger, and DEBUG
                  (supplied with DOS).    By using these three programs together,
                  I was able to figure out and remove the copy protection in
                  under 30 minutes.

                            Drawing Assistant (DA) is IBM's answer to colorpaint for
                  the Jr.    It is a simple drawing program (a more advanced
                  version is included in StoryBoard Deluxe) but easy to learn
                  and use.    So far, I have only seen version 1.00 of this
                  program.

                            DA made calls to the copy protection routine in 3
                  diffrent modules.    The files "SETDRAW.EXE", "DRAWASST.EXE"
                  and "DRAWASST.TWO" all contained calls to the copy
                  protection.    Also, "DRAWASST.TWO" and "DRAWASST.EXE" are for
                  all intensive puporses then same file.

                            I first started off by loading DRAWASST.EXE with debug
                  and searched for any int 13's by executing the debug command

                                s CS:0 FFFF CD 13                  Search CS:0 - CS:FFFF for CD
  13 (int 13)

                      I located 2 diffrent calls to int 13h, so I then listed
                  them.    Here is what I found...

  { First, some initialization routines }

  18FD:0343 1E                        PUSH      DS
  18FD:0344 B80000                MOV        AX,0000
  18FD:0347 50                        PUSH      AX
  18FD:0348 B89724                MOV        AX,2497
  18FD:034B 8ED8                    MOV        DS,AX
  18FD:034D BB1000                MOV        BX,0010
  18FD:0350 2E                        CS:
  18FD:0351 8A07                    MOV        AL,[BX]
  18FD:0353 3C00                    CMP        AL,00
  18FD:0355 7418                    JZ          036F

                                { This set is called if DA has been installed }
  { on the hard drive }
                                    { When cracked, this will NEVER be called }

  18FD:0357 B419                    MOV        AH,19
  18FD:0359 CD21                    INT        21
  18FD:035B 8AD0                    MOV        DL,AL
  18FD:035D FEC2                    INC        DL
  18FD:035F B41C                    MOV        AH,1C
  18FD:0361 CD21                    INT        21
  18FD:0363 8A07                    MOV        AL,[BX]
  18FD:0365 BB9724                MOV        BX,2497
  18FD:0368 8EDB                    MOV        DS,BX
  18FD:036A 3CF8                    CMP        AL,F8
  18FD:036C 7475                    JZ          03E3
  18FD:036E CB                        RETF

                        { This set is called if DA is running from the floppy }

  18FD:036F B419                    MOV        AH,19
  18FD:0371 CD21                    INT        21
  18FD:0373 FEC0                    INC        AL
  18FD:0375 B400                    MOV        AH,00
  18FD:0377 A320C6                MOV        [C620],AX
  18FD:037A 8AD0                    MOV        DL,AL
  18FD:037C B41C                    MOV        AH,1C

  18FD:037E CD21                    INT        21
  18FD:0380 8A07                    MOV        AL,[BX]
  18FD:0382 BB9724                MOV        BX,2497
  18FD:0385 8EDB                    MOV        DS,BX
  18FD:0387 3CF8                    CMP        AL,F8
  18FD:0389 7408                    JZ          0393

                                  { Here is the called to read in the key disk }

  18FD:038B E8A675                CALL      7934
  18FD:038E 3D0100                CMP        AX,0001
  18FD:0391 7450                    JZ          03E3

                      Let's take these code segments 1 at a time.    The fist, is
                  some simple initialization routines.    Here is the code, only
                  this time full comments are added.

                  { First, some initialization routines }
                  ; Setup for return to DOS

                  18FD:0343 1E                        PUSH      DS
                  18FD:0344 B80000                MOV        AX,0000
                  18FD:0347 50                        PUSH      AX

                  ; Setup DS to point to the data segment

                  18FD:0348 B89724                MOV        AX,2497
                  18FD:034B 8ED8                    MOV        DS,AX

                  18FD:034D BB1000                MOV        BX,0010        ; CS:10 points to
  ; installed flag
                  18FD:0350 2E                        CS:
                  18FD:0351 8A07                    MOV        AL,[BX]

                  18FD:0353 3C00                    CMP        AL,00            ; If not installed,
  ; jump to diskette
                  18FD:0355 7418                    JZ          036F              ; routines

                      What we are want to do, is fool DA in to thinking that it
                  is stilling loading from diskette.    Nothing really needs to
                  be changed in this segment, but, just to be safe, we will
                  force the jump at 355.    To change the current values, use
                  DEBUG's [A]ssembler command.

                                  A CS:355
                                  18FD:355 JMP 36F

                      Now, we have forced the jump, we can move on to the third
                  code segment skipping over the second since it will never be
                  called again.    The 3rd code segment checks to see if you are
                  using a hard drive.    It does so by first getting the logical
                  drive letter, then reading in the FAT descriptor byte for
                  that drive.    Here is the commented code.

                  { This set is called if DA is running from the floppy }

                  ; First, get the current drive

                  18FD:036F B419                    MOV        AH,19          ; DOS function 19h -
  ; Get Current Drive
                  18FD:0371 CD21                    INT        21

                  18FD:0373 FEC0                    INC        AL                  ; Add 1 for BIOS
                  18FD:0375 B400                    MOV        AH,00            ; Clear AH
                  18FD:0377 A320C6                MOV        [C620],AX    ; Store it at C620
                  18FD:037A 8AD0                    MOV        DL,AL            ; Store it in DL
                  18FD:037C B41C                    MOV        AH,1C            ; DOS function 1Ch
  ; Get Fat desc.
                  18FD:037E CD21                    INT        21                  ; returns pointer
  ; in DS:BX
                  18FD:0380 8A07                    MOV        AL,[BX]        ; Get the actual
  ; byte
                  18FD:0382 BB9724                MOV        BX,2497        ; Restore DS
                  18FD:0385 8EDB                    MOV        DS,BX

                  18FD:0387 3CF8                    CMP        AL,F8            ; Check to see if
  ; it is a H/D
                  18FD:0389 7408                    JZ          0393              ; Yes, then jump
                  abort

                  { Fall in to the check for the key disk }

                      As you can see, this section of code is quite straigth
                  forward.    It just checks to see if you are using a hard
                  drive.    What we want to do is to fake an DOS function 1Ch and
                  return the value for a floppy.    This is done by putting the
                  value of FDh in AL then NOPing the rest.    Again use the
                  Debug's [A] command.

                                  A CS:37C

                                  18FD:037C MOV AL,FD
                                  18FD:0380 NOP
                                  18FD:0381 NOP
                                  18FD:0382 NOP
                                  18FD:0383 NOP

                      Now, you might ask why I didn't simple force a jump over
                  the code.    The answer is what if DA uses the value at C620 at
                  a later time (which it doesn't but let's pretend).    If I had
                  forced the jump then the value might not have been
                  initialized and the crack might not work.    Now that we have
                  simulated running from diskette, we must deal for the check
                  for the key disk.

                            This is where Periscope came in to play.    Using
                  periscope, I made the above corrections and ran the program
                  up till CS:038B (the call to the check). Here is the code,
                  including the actual check.    I have indented the check to
                  make it easier to read.

                  { Here is the called to read in the key disk }

                  18FD:038B E8A675                CALL      7934        ; Check key on disk
  ; (track 27h side 0)

                      18FD:7934 A120C6                MOV      AX,[C620]          ; Get drive
  ; letter
                      18FD:7937 FEC8                    DEC      AL
                      18FD:7939 A23BC6                MOV      [C63B],AL          ; Store it for
  ; later
                      18FD:793C 1E                        PUSH    DS
                      18FD:793D 07                        POP      ES
                      ; Setup pointers to what sectors to try to read

                      18FD:793E BB30C6                MOV      BX,C630
                      18FD:7941 891E39C6            MOV      [C639],BX
                      18FD:7945 C6063CC603        MOV      BYTE PTR [C63C],03
                      18FD:794A C6063DC601        MOV      BYTE PTR [C63D],01

                      ; Reset the disk

                      18FD:794F B400                    MOV      AH,00
                      18FD:7951 CD13                    INT      13

                      ; Get address of sector to read an put it in CL

                      18FD:7953 8B1E39C6            MOV      BX,[C639]
                      18FD:7957 8A0F                    MOV      CL,[BX]

                      ; Setup the rest of the read information

                      18FD:7959 BBAE3D                MOV      BX,3DAE
                      18FD:795C 81C3D007            ADD      BX,07D0
                      18FD:7960 B001                    MOV      AL,01
                      18FD:7962 B527                    MOV      CH,27
                      18FD:7964 8A163BC6            MOV      DL,[C63B]
                      18FD:7968 B600                    MOV      DH,00
                      18FD:796A B402                    MOV      AH,02
                      18FD:796C CD13                    INT      13

                      ; Test for an error and jump if none is present (ie: the
                      ; copy protection has been removed)

                      18FD:796E 80FC00                CMP      AH,00
                      18FD:7971 740C                    JZ        797F

                      ; test the bad read (protection is missing) 3 times

                      18FD:7973 FE0E3CC6            DEC      BYTE PTR [C63C]
                      18FD:7977 75D6                    JNZ      794F
                      18FD:7979 B80000                MOV      AX,0000
                      18FD:797C EB13                    JMP      7991

                      ; Get next sector to check.    If finished, set the flag and
                      ; return.

                      18FD:797F FF0639C6            INC      WORD PTR [C639]
                      18FD:7983 FE063DC6            INC      BYTE PTR [C63D]
                      18FD:7987 803E3DC603        CMP      BYTE PTR [C63D],03
                      18FD:798C 75C1                    JNZ      794F
                      18FD:798E B80100                MOV      AX,0001
                      18FD:7991 C3                        RET

                  ; Check to see if the OK flag was set (ax = 0001h means check
                  ; was good)
                  18FD:038E 3D0100                CMP        AX,0001
                  18FD:0391 7450                    JZ          03E3

                      The key check used in DA is quite simple.    It simple tries
                  to read in the illegaly numbered sectors on Track 27h side
                  0h.    If they are missing, it assumes that it is running a
                  pirated copy.    What we must do, is to fool the scheme in to
                  thinking a good read happened.    I choses to fake the read
                  using the easiest method.    Since the protection scheme only
                  check to see if AX returns the value > 0000h, I simply
                  modified the routine at 1BFD:7934 to set AX to 0000h and then
                  return.    Here is the new code (enter using debug's A
                  command)...

                                  A 1BFD:7934
                                  1BFD:7934 MOV AX,0000
                                  1BFD:7936 RET

                      Now, this file is unprotected and if you type "G" at
                  debug's command prompt, the program will execute, sort-of.
                  See DRAWASST.EXE calls DRAWASST.TWO which also has the
                  protection scheme.    So both must be changed.    To make to
                  changes perement in DRAWASST.EXE, rename the file to
                  DRAWASST.DEB and edit it.    To find the address of the start
                  of the protection code, use debug's search command...

                                  S CS:0 FFFF B4 19 CD 21 8A D0

                      Now, just uses the modified address to change the program
                  (the code will still be the same, just all calls and jumps
                  will be to diffrent addresses).    Use the same process to stip
                  DRAWASST.TWO (it uses the exact same code).    When you have
                  both of those files unprotected, you can move on to
                  unprotecting the setup program "SETDRAW.EXE"

                            DRAWASST.EXE AND .TWO are not the only programs that
                  make calls to the protection routine.    SETDRAW.EXE also makes
                  the above calls.    Although the check here is much easier to
                  bypass.    Here is the asm listing of SETDRAW with all of the
                  calls to the protection.    This time, I will not go in to
                  quite as much detail as I did for the other two version.

                      I will tell you this.    When SETDRAW checks the key disk,
                  first it checks to see if the protection exists and then to
                  see if the track hasn't been modified.    It again uses AX to
                  determine what happeded.    I used Periscope to trace through
                  the original version to find out what the correct values are.
                      Here is the asm code...

                  ; Initialization - checks the current mode and saves it.

                  18FD:0000 1E                        PUSH          DS
                  18FD:0001 B80000                MOV            AX,0000
                  18FD:0004 50                        PUSH          AX
                  18FD:0005 B8321A                MOV            AX,1A32
                  18FD:0008 8ED8                    MOV            DS,AX
                  18FD:000A B40F                    MOV            AH,0F
                  18FD:000C CD10                    INT            10
                  18FD:000E 3C02                    CMP            AL,02
                  18FD:0010 740D                    JZ              001F
                  18FD:0012 3C03                    CMP            AL,03
                  18FD:0014 7409                    JZ              001F
                  18FD:0016 A28900                MOV            [0089],AL
                  18FD:0019 B002                    MOV            AL,02
                  18FD:001B B400                    MOV            AH,00
                  18FD:001D CD10                    INT            10

                  ; Gets the current drive

                  18FD:001F B400                    MOV            AH,00
                  18FD:0021 B419                    MOV            AH,19
                  18FD:0023 CD21                    INT            21
                  18FD:0025 A28700                MOV            [0087],AL
                  18FD:0028 8AD0                    MOV            DL,AL
                  18FD:002A FEC2                    INC            DL

                  ; Checks the FAT descriptor

                  18FD:002C B41C                    MOV            AH,1C
                  18FD:002E CD21                    INT            21
                  18FD:0030 8A07                    MOV            AL,[BX]
                  18FD:0032 BB321A                MOV            BX,1A32
                  18FD:0035 8EDB                    MOV            DS,BX
                  18FD:0037 C606880000        MOV            BYTE PTR [0088],00
                  18FD:003C 3CF8                    CMP            AL,F8
                  18FD:003E 742A                    JZ              006A

                  ; Read in protection scheme

                  18FD:0040 8A168700            MOV            DL,[0087]
                  18FD:0044 E87E0A                CALL          0AC5
                  18FD:0047 C606880000        MOV            BYTE PTR [0088],00
                  18FD:004C 3D0000                CMP            AX,0000
                  18FD:004F 7419                    JZ              006A

                  ; Read in the dummy scheme

                  18FD:0051 C606880001        MOV            BYTE PTR [0088],01

                  18FD:0056 8A168700            MOV            DL,[0087]
                  18FD:005A B84500                MOV            AX,0045
                  18FD:005D E8BD0A                CALL          0B1D
                  18FD:0060 3D0000                CMP            AX,0000
                  18FD:0063 7405                    JZ              006A

                  ; Start of actual routine.

                  18FD:0065 C606880000        MOV            BYTE PTR [0088],00

                      There is isn't much to say about the above code.    To bypass
                  it, we will change the hard drive check (int 21 function 1c).
                  Do the same thing we did for DRAWASST.EXE

                                A 18FD:2C
                                18FD:002C mov AL,FD
                                18FD:002E nop
                                18FD:002F nop
                                18FD:0030 nop
                                18FD:0031 nop

                      Now, just jump over the check to the key disk.

                              A 18FD:40

                              18FD:0040 jmp 0065

                      And thats it.    Now SETDRAW is unprotected.    Drawing
                  Assistant may be used, copied or backed up at your pleasure.

                            As you can see, this was a good example although the
                  fact that if you only made the changes in DRAWASST.EXE and
                  not in DRAWASST.TWO then the program would copy DRAWASST.TWO
                  to DRAWASST.EXE to restore the protection was a bit strange.

                            Well, I hope you are proud.    But be warned, next we take
                  on DOC checks, so get a good nights sleep.    Till then, play
                  lots of SMASH T.V.

  -Buckaroo Banzai

  CRACKING 101 - 1990 edition

  Lesson 2

  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³ DOC CHECK PRIMER ³
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

  by Buckaroo Banzai

                            Ok, in      this    textfile,    I    will    start    talking    about
                  removing doc check protection schemes.    I find, the doc check
                  scheme to be slightly more difficult    to    work on than normal
                  INT 13 schemes.

                            What is    a    doc    check.      Usually, a doc    check    when    a
                  program ask the    user to enter a phrase or code supplied with
                  the manual.    Now, one might think    that    "Shit,    we    can just
                  type all the codes in to a textfile and upload    it    with    the
                  DOCS", but that    way of thinking breaks down on programs such
                  as Future Classics where there    are    6    pages    with about 200
                  codes per page.      So    it is just better to remove    the    check
                  completely.

                            In this    primer, I will get in to the theory of removing
                  a doc check, then start with    a    simple    example    (Electronic
                  Art's ESCAPE FROM HELL).    Then in the next file,    I will take
                  you deeper in    to    the world of doc checks and work with more
                  difficult examples.    But for now, lets get started.

                            A doc check, in basic theory works much like normal
                  INT 13 copy protection.    Somewhere    in    the    beginning of the
                  program before it really starts, the check is    made.      If the
                  result is ok    (ie the user enters the correct word or phrase)
                  then the program continues.    If    not, then the program simply
                  exits to dos.

                            Simple right,    well    not    really.      Usually,    the    input
                  routine is part    of the standard input routine of the program
                  so you just can't go about modify    the    call    to INT 16h (the
                  keyboard interrupt) like you could with INT 13h.      So,    where
                  do we start.      If    you    think back to cracking the old INT 13
                  protection schemes, you would    use    a program like PCWATCH or
                  TRAP13 to get a rough idea of where the call    resides.      With
                  doc checks, this is really not the best way to do it.

                            I suggest    that    you try to break in to the program well
                  before the protection is checked.      Remember,    we must remove
                  the check without messing with the actual input routine so we
                  want to come in highest level.

                            So, how    do we break in.    By using a good    debugger.      I
                  suggest Periscope.    I find it is the best and easiest to use.
                  Once we are    in,    all    the    is    left    is to trace through the
                  program until we find the topmost call to the doc check.    Now
                  we're moving.

                            So let's say we have broken    in to the program and found
                  the topmost call to the doc check.    What next.      We    must try
                  to figure out      what      the      program      does.        There    are    2
                  possibilities.    First, the program    could    simply    check    the
                  inputed string against a value in memory, and    if    they don't
                  match simply exit    to    dos and if they do, just continue with
                  the program; or if the input    matches    it    can    set a flag in
                  memory that is checked by some routine later.

                            So, on    to    the    example.      NOTE! All address    might    be
                  different.    This is    how    it    looked when I cracked it.    ALSO
                  NOTE, you should    be cracking    without    any    memory    resident
                  programs.    Make sure MEMORY is clear, and that    you    load the
                  system the same      way    each    time.      Remember,    if    you    load
                  everything the same, everything    will    be    in the same memory
                  location.

                            So, what is our first step.    Well, I suggest picking out
                  the right tools to do the job.    In this case,    You    will only
                  need PERISCOPE (and    the    addin    program    that    comes with it
                  called PSKEY) and a good file editor    (when I say good I mean
                  it can edit and search in hex).    So let's get started.

                            First, we    load    PERISCOPE (PS from now    on).      This    is
                  gonna be the    debugger    we use.    Next, we need a quick way in
                  to the debugger.    Since ESCAPE FROM HELL (EFH from now on) is
                  not all the picky about how it    keeps    a    crackest out, PSKEY
                  will do just fine but not without using a little trick.

                            Normally, when using PSKEY (for those of    you who do not
                  know what PSKEY does, it allows up to break in to PS usings a
                  TSR hotkey) and    you    hit    the    hotkey,    PSKEY does an INT 2h
                  (NMI).    This then brings up PS    and    you    are    set.    But, EFH
                  revectors INT 2h (NMI) to simply an IRET so this    method does
                  not work.    How    do    we    get    around this, well, INT 2h is the
                  default used with PSKEY but not the only way to work it.    You
                  can also use    INT    3h    (Breakpoint      interrupt)    or    INT    15h
                  (Extended services interrrupt) to activate PS.      In this case
                  we will use    INT    3h;    so    when    we    invoke    PSKEY we add the
                  command line parameter "3" (ie:    "PSKEY    3CAL"    invokes PSKEY
                  using INT 3h setting the hotkey to CTRL-ALT-LEFT_SHIFT).

                            So, now that we have a way in to EFH, where    do    we want
                  to break out.      Well    boys    (and Girls, and BTW: if there are
                  any Fems reading this, give me    a ring, I'd like to hear from
                  ya) I don't have any formula to give, but remember, I suggest
                  that we try    to    break    in    to    the    outermost      loop.        So,
                  experiance (and a    good    fucking guess) tells me to break out
                  in the title screen before the music begins.

                            It just so happens that this time I was right (And noone
                  had to get nail to anything -D.A.)      Right    after    the    title
                  picture comes up, press your hotkey (oooh).    The PS debugging
                  screen should come up and you should see the    follow    section
                  of code..

                  2309:019C CF                        IRET
                  2309:019D 3D0085                CMP AX,8500
                  etc.

                            This is    the exit code from PSKEY.    By usings the J(ump)
                  command, and executing the IRET,    you    will be put back right
                  to the spot    where    you pressed the hotkey (boy    I'm    getting
                  excited).    I would love to give you a code fragment here, but

                  each time you press the hotkey you will end up at a different
                  point.

                            So what    do we do next.    Well, we will just have to keep
                  executing code until we find some    reference point.    Remember
                  how I said we wanted to break out before we reached    to music
                  at the title    screen.      Well,    you can bet that we are in the
                  outermost loop since the music comes before the doc check and
                  we haven't reached the call to    the music routine yet.    So we
                  start executing code.

                            Then all    of    the    sudden    BOOM!    you    execute      a    CALL
                  instruction and music    bursts    through    the    speaker.    AHa, a
                  reference point.    We know we are on the right track.

                            Press <ESC> during the music    so    that    we    can skip the
                  stupid intro for now.    After pressing <ESC> you should regain
                  control at the    instruction    after    the    call    to    the    music
                  routine.

                            From here    on    out,    we    want    to procede rather slowly.
                  Each time you reach a CALL instruction you want to write down
                  the address where it is located.      Sooner    or    later you will
                  execute a CALL instruction and EFH will jump    in    to it's doc
                  check routine.    But    damn,    you    have the address of the that
                  call WRITTEN DOWN    right.      So      simply      reboot    and    reload
                  everything.

                            Break out      in    to    PS    at    the    title    picture.        Now,
                  unassemble the address      you    wrote    down.      You    should    see
                  something like this

                  21DD:3EA4 9AA5368132          CALL 3281:36A5    (current line)
                  21DD:3EA4 9A522F8132          CALL 3281:2F52
                  21DD:3EA4 C706BB070000      MOV WORD PTR [07BB],0000
                  21DD:3EA4 8BE5                      MOV SP,BP
                  21DD:3EA4 5D                          POP BP
                  21DD:3EA4 CB                          RETF

                            The first call, is the call    to the doc check, therefore
                  it can for    now    be assumed that the second call    is    to    the
                  actual game (remember,        most        programmers      follow      good
                  programming practice and will exit    the routine that does the
                  doc check to    finish the game).    Please NOTE,    from    here    on
                  out, if I    say    go back to STEP 1, reboot the machine, reload
                  and get to this point.    Ok.

                            Our first though in seeing    code like this is shit maybe
                  they just check the keyword and exit to dos if    it's bad;    if
                  it it's good,    then    they just exit that subroutine and start
                  the game.    So having lots of time    on    our hands, we try just
                  executing the second CALL and bypass the first    (you    can    do
                  that by setting    the IP (instruction pointer) register to the
                  offset of the second call [In    our    case 3EA9]).    When you do
                  this, the screen clears, and you see the character    (Richard)
                  on the screen.      But just as you think it worked, it switches

                  back to text mode and prints the message "Hell is HOT".    Shit
                  I hate it when that happens.

                            So now we know that somewhere    in the doc check routine,
                  EFH sets a    flag in memory.    We must figure    out    where    this
                  flag is and    figure out a way to fake it.    So go back to step
                  1, this time, let's trace (using the T command) in to the doc
                  check routine.

                            I have included the entire    outerloop    of    the doc check
                  routine here.    The      small    subroutines    are      not      of      any
                  importants and infact    when I first crack EFH, I never traced
                  in to any of them.    It wasn't    until    I    was out getting this
                  information that I took a look to see what they did.

                            Here is    the    dos check code.    I have place    some    basic
                  instructions that should    help you as you go along.    Although
                  you address might be different than mine, I will use mine for
                  reference.    Also, I have noted some special subroutines along
                  the way.

                  (- Unassembled DOC CHECK for ESCAPE FROM HELL [outer loop])

                            First, we start off with    some    initialization routines.
                  You don't need to be all to concerned with them.

                  3281:36A5 55                        PUSH BP
                  3281:36A6 8BEC                    MOV BP,SP
                  3281:36A8 83EC2A                SUB SP,+2A
                  3281:36AB C746DE0000        MOV WORD PTR [BP-22],0000
                  3281:36B0 B80600                MOV AX,0006
                  3281:36B3 50                        PUSH AX
                  3281:36B4 9AE3169900        CALL 0099:16E3
                  3281:36B9 59                        POP CX
                  3281:36BA 48                        DEC AX
                  3281:36BB 8946DA                MOV [BP-26],AX
                  3281:36BE B80F00                MOV AX,000F
                  3281:36C1 50                        PUSH AX
                  3281:36C2 9AE3169900        CALL 0099:16E3
                  3281:36C7 59                        POP CX
                  3281:36C8 48                        DEC AX
                  3281:36C9 8946DC                MOV [BP-24],AX
                  3281:36CC C706CB070E00    MOV WORD PTR [07CB],000E
                  3281:36D2 C746D60000        MOV WORD PTR [BP-2A],0000
                  3281:36D7 E9C002                JMP 399A
                  3281:36DA C746D80000        MOV WORD PTR [BP-28],0000
                  3281:36DF E92501                JMP 3807
                  3281:36E2 9A9B479900        CALL 0099:479B
                  3281:36E7 B83866                MOV AX,6638
                  3281:36EA 50                        PUSH AX
                  3281:36EB A03407                MOV AL,[0734]
                  3281:36EE B400                    MOV AH,00
                  3281:36F0 50                        PUSH AX
                  3281:36F1 B80C00                MOV AX,000C
                  3281:36F4 50                        PUSH AX
                  3281:36F5 B8CF00                MOV AX,00CF

                  3281:36F8 50                        PUSH AX
                  3281:36F9 8B46DC                MOV AX,[BP-24]
                  3281:36FC BA5800                MOV DX,0058
                  3281:36FF F7E2                    MUL DX
                  3281:3701 8BD8                    MOV BX,AX
                  3281:3703 8A87F640            MOV AL,[BX+40F6]
                  3281:3707 B400                    MOV AH,00
                  3281:3709 8BD8                    MOV BX,AX
                  3281:370B 81C39400            ADD BX,0094
                  3281:370F D1E3                    SHL BX,1
                  3281:3711 D1E3                    SHL BX,1
                  3281:3713 FFB7F25D            PUSH [BX+5DF2]
                  3281:3717 FFB7F05D            PUSH [BX+5DF0]
                  3281:371B 9AE7019900        CALL 0099:01E7
                  3281:3720 83C40C                ADD SP,+0C
                  3281:3723 8B46DA                MOV AX,[BP-26]
                  3281:3726 3D0500                CMP AX,0005
                  3281:3729 7603                    JBE 372E
                  3281:372B E9B200                JMP 37E0
                  3281:372E 8BD8                    MOV BX,AX
                  3281:3730 D1E3                    SHL BX,1
                  3281:3732 2E                        CS:
                  3281:3733 FFA73737            JMP [BX+3737]
                  3281:3737 43                        INC BX
                  3281:3738 37                        AAA
                  3281:3739 5E                        POP SI
                  3281:373A 37                        AAA
                  3281:373B 7837                    JS 3774
                  3281:373D 92                        XCHG DX,AX
                  3281:373E 37                        AAA
                  3281:373F AC                        LODSB
                  3281:3740 37                        AAA
                  3281:3741 C637B8                MOV BYTE PTR [BX],B8
                  3281:3744 2000                    AND [BX+SI],AL
                  3281:3746 50                        PUSH AX
                  3281:3747 B82E01                MOV AX,012E
                  3281:374A 50                        PUSH AX
                  3281:374B B88100                MOV AX,0081
                  3281:374E 50                        PUSH AX
                  3281:374F B87348                MOV AX,4873
                  3281:3752 50                        PUSH AX
                  3281:3753 9AD6029900        CALL 0099:02D6
                  3281:3758 83C408                ADD SP,+08
                  3281:375B E98200                JMP 37E0
                  3281:375E B82000                MOV AX,0020
                  3281:3761 50                        PUSH AX
                  3281:3762 B82E01                MOV AX,012E
                  3281:3765 50                        PUSH AX
                  3281:3766 B88100                MOV AX,0081
                  3281:3769 50                        PUSH AX
                  3281:376A B88648                MOV AX,4886
                  3281:376D 50                        PUSH AX
                  3281:376E 9AD6029900        CALL 0099:02D6
                  3281:3773 83C408                ADD SP,+08
                  3281:3776 EB68                    JMP 37E0
                  3281:3778 B82000                MOV AX,0020

                  3281:377B 50                        PUSH AX
                  3281:377C B82E01                MOV AX,012E
                  3281:377F 50                        PUSH AX
                  3281:3780 B88100                MOV AX,0081
                  3281:3783 50                        PUSH AX
                  3281:3784 B8AD48                MOV AX,48AD
                  3281:3787 50                        PUSH AX
                  3281:3788 9AD6029900        CALL 0099:02D6
                  3281:378D 83C408                ADD SP,+08
                  3281:3790 EB4E                    JMP 37E0
                  3281:3792 B82000                MOV AX,0020
                  3281:3795 50                        PUSH AX
                  3281:3796 B82E01                MOV AX,012E
                  3281:3799 50                        PUSH AX
                  3281:379A B88100                MOV AX,0081
                  3281:379D 50                        PUSH AX
                  3281:379E B8C748                MOV AX,48C7
                  3281:37A1 50                        PUSH AX
                  3281:37A2 9AD6029900        CALL 0099:02D6
                  3281:37A7 83C408                ADD SP,+08
                  3281:37AA EB34                    JMP 37E0
                  3281:37AC B82000                MOV AX,0020
                  3281:37AF 50                        PUSH AX
                  3281:37B0 B82E01                MOV AX,012E
                  3281:37B3 50                        PUSH AX
                  3281:37B4 B88100                MOV AX,0081
                  3281:37B7 50                        PUSH AX
                  3281:37B8 B8E848                MOV AX,48E8
                  3281:37BB 50                        PUSH AX
                  3281:37BC 9AD6029900        CALL 0099:02D6
                  3281:37C1 83C408                ADD SP,+08
                  3281:37C4 EB1A                    JMP 37E0
                  3281:37C6 B82000                MOV AX,0020
                  3281:37C9 50                        PUSH AX
                  3281:37CA B82E01                MOV AX,012E
                  3281:37CD 50                        PUSH AX
                  3281:37CE B88100                MOV AX,0081
                  3281:37D1 50                        PUSH AX
                  3281:37D2 B80F49                MOV AX,490F
                  3281:37D5 50                        PUSH AX
                  3281:37D6 9AD6029900        CALL 0099:02D6
                  3281:37DB 83C408                ADD SP,+08
                  3281:37DE EB00                    JMP 37E0
                  3281:37E0 B82D00                MOV AX,002D
                  3281:37E3 50                        PUSH AX
                  3281:37E4 B88200                MOV AX,0082
                  3281:37E7 50                        PUSH AX
                  3281:37E8 9A96029900        CALL 0099:0296
                  3281:37ED 59                        POP CX
                  3281:37EE 59                        POP CX
                  3281:37EF B82849                MOV AX,4928
                  3281:37F2 50                        PUSH AX
                  3281:37F3 9A3F039900        CALL 0099:033F
                  3281:37F8 59                        POP CX
                  3281:37F9 837ED800            CMP WORD PTR [BP-28],+00
                  3281:37FD 7505                    JNZ 3804

                            Here is the first point of interest.    The call on the
                  following line will display the "what is xxxx" message. Ä¿
  ³
                  3281:37FF 9A1B019900        CALL 0099:011B <ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

                  3281:3804 FF46D8                INC WORD PTR [BP-28]
                  3281:3807 837ED802            CMP WORD PTR [BP-28],+02
                  3281:380B 7D03                    JGE 3810
                  3281:380D E9D2FE                JMP 36E2
                  3281:3810 8B46DA                MOV AX,[BP-26]
                  3281:3813 3D0500                CMP AX,0005
                  3281:3816 7603                    JBE 381B
                  3281:3818 E97401                JMP 398F
                  3281:381B 8BD8                    MOV BX,AX
                  3281:381D D1E3                    SHL BX,1
                  3281:381F 2E                        CS:
                  3281:3820 FFA72438            JMP [BX+3824]
                  3281:3824 3038                    XOR [BX+SI],BH
                  3281:3826 6E                        DB 6E
                  3281:3827 38AC38EA            CMP [SI+EA38],CH
                  3281:382B 3827                    CMP [BX],AH
                  3281:382D 396439                CMP [SI+39],SP
                  3281:3830 B81000                MOV AX,0010
                  3281:3833 50                        PUSH AX
                  3281:3834 16                        PUSH SS
                  3281:3835 8D46E2                LEA AX,[BP-1E]
                  3281:3838 50                        PUSH AX
                  3281:3839 9AFB149900        CALL 0099:14FB
                  3281:383E 83C406                ADD SP,+06
                  3281:3841 8D46E2                LEA AX,[BP-1E]
                  3281:3844 50                        PUSH AX
                  3281:3845 9A0F00B81B        CALL 1BB8:000F
                  3281:384A 59                        POP CX
                  3281:384B 8B46DC                MOV AX,[BP-24]
                  3281:384E BA5800                MOV DX,0058
                  3281:3851 F7E2                    MUL DX
                  3281:3853 05F740                ADD AX,40F7
                  3281:3856 50                        PUSH AX
                  3281:3857 8D46E2                LEA AX,[BP-1E]
                  3281:385A 50                        PUSH AX
                  3281:385B 9A0E00661A        CALL 1A66:000E
                  3281:3860 59                        POP CX
                  3281:3861 59                        POP CX
                  3281:3862 0BC0                    OR AX,AX
                  3281:3864 7505                    JNZ 386B
                  3281:3866 C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:386B E92101                JMP 398F
                  3281:386E B81000                MOV AX,0010
                  3281:3871 50                        PUSH AX
                  3281:3872 16                        PUSH SS
                  3281:3873 8D46E2                LEA AX,[BP-1E]
                  3281:3876 50                        PUSH AX
                  3281:3877 9AFB149900        CALL 0099:14FB
                  3281:387C 83C406                ADD SP,+06
                  3281:387F 8D46E2                LEA AX,[BP-1E]

                  3281:3882 50                        PUSH AX
                  3281:3883 9A0F00B81B        CALL 1BB8:000F
                  3281:3888 59                        POP CX
                  3281:3889 8B46DC                MOV AX,[BP-24]
                  3281:388C BA5800                MOV DX,0058
                  3281:388F F7E2                    MUL DX
                  3281:3891 050841                ADD AX,4108
                  3281:3894 50                        PUSH AX
                  3281:3895 8D46E2                LEA AX,[BP-1E]
                  3281:3898 50                        PUSH AX
                  3281:3899 9A0E00661A        CALL 1A66:000E
                  3281:389E 59                        POP CX
                  3281:389F 59                        POP CX
                  3281:38A0 0BC0                    OR AX,AX
                  3281:38A2 7505                    JNZ 38A9
                  3281:38A4 C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:38A9 E9E300                JMP 398F
                  3281:38AC B81000                MOV AX,0010
                  3281:38AF 50                        PUSH AX
                  3281:38B0 16                        PUSH SS
                  3281:38B1 8D46E2                LEA AX,[BP-1E]
                  3281:38B4 50                        PUSH AX
                  3281:38B5 9AFB149900        CALL 0099:14FB
                  3281:38BA 83C406                ADD SP,+06
                  3281:38BD 8D46E2                LEA AX,[BP-1E]
                  3281:38C0 50                        PUSH AX
                  3281:38C1 9A0F00B81B        CALL 1BB8:000F
                  3281:38C6 59                        POP CX
                  3281:38C7 8B46DC                MOV AX,[BP-24]
                  3281:38CA BA5800                MOV DX,0058
                  3281:38CD F7E2                    MUL DX
                  3281:38CF 051941                ADD AX,4119
                  3281:38D2 50                        PUSH AX
                  3281:38D3 8D46E2                LEA AX,[BP-1E]
                  3281:38D6 50                        PUSH AX
                  3281:38D7 9A0E00661A        CALL 1A66:000E
                  3281:38DC 59                        POP CX
                  3281:38DD 59                        POP CX
                  3281:38DE 0BC0                    OR AX,AX
                  3281:38E0 7505                    JNZ 38E7
                  3281:38E2 C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:38E7 E9A500                JMP 398F
                  3281:38EA B81000                MOV AX,0010
                  3281:38ED 50                        PUSH AX
                  3281:38EE 16                        PUSH SS
                  3281:38EF 8D46E2                LEA AX,[BP-1E]
                  3281:38F2 50                        PUSH AX
                  3281:38F3 9AFB149900        CALL 0099:14FB
                  3281:38F8 83C406                ADD SP,+06
                  3281:38FB 8D46E2                LEA AX,[BP-1E]
                  3281:38FE 50                        PUSH AX
                  3281:38FF 9A0F00B81B        CALL 1BB8:000F
                  3281:3904 59                        POP CX
                  3281:3905 8B46DC                MOV AX,[BP-24]
                  3281:3908 BA5800                MOV DX,0058
                  3281:390B F7E2                    MUL DX

                  3281:390D 052A41                ADD AX,412A
                  3281:3910 50                        PUSH AX
                  3281:3911 8D46E2                LEA AX,[BP-1E]
                  3281:3914 50                        PUSH AX
                  3281:3915 9A0E00661A        CALL 1A66:000E
                  3281:391A 59                        POP CX
                  3281:391B 59                        POP CX
                  3281:391C 0BC0                    OR AX,AX
                  3281:391E 7505                    JNZ 3925
                  3281:3920 C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:3925 EB68                    JMP 398F
                  3281:3927 B81000                MOV AX,0010
                  3281:392A 50                        PUSH AX
                  3281:392B 16                        PUSH SS
                  3281:392C 8D46E2                LEA AX,[BP-1E]
                  3281:392F 50                        PUSH AX

                            Next point of interest.    When you execute this line, the
                  game will pause and wait for you to enter the code word from
                  the manual.    ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³
  ³
                  3281:3930 9AFB149900        CALL 0099:14FB <ÄÄÄÄÄÙ

                  3281:3935 83C406                ADD SP,+06
                  3281:3938 8D46E2                LEA AX,[BP-1E]
                  3281:393B 50                        PUSH AX
                  3281:393C 9A0F00B81B        CALL 1BB8:000F
                  3281:3941 59                        POP CX
                  3281:3942 8B46DC                MOV AX,[BP-24]
                  3281:3945 BA5800                MOV DX,0058
                  3281:3948 F7E2                    MUL DX
                  3281:394A 053B41                ADD AX,413B
                  3281:394D 50                        PUSH AX
                  3281:394E 8D46E2                LEA AX,[BP-1E]
                  3281:3951 50                        PUSH AX
                  3281:3952 9A0E00661A        CALL 1A66:000E
                  3281:3957 59                        POP CX
                  3281:3958 59                        POP CX
                  3281:3959 0BC0                    OR AX,AX
                  3281:395B 7505                    JNZ 3962
                  3281:395D C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:3962 EB2B                    JMP 398F
                  3281:3964 33D2                    XOR DX,DX
                  3281:3966 B8B80B                MOV AX,0BB8
                  3281:3969 52                        PUSH DX
                  3281:396A 50                        PUSH AX

                            Next point of interest.    This call is the final
                  evaluation of the entered word (or phrase).    On return, it
                  checks a checksum value.    This whole next section of code
                  (up to 3281:39Ad) simply test the validity of the keyword you
                  entered. I have marked the all jumps that happened when I
                  entered my keyword with an " * ".

                  3281:396B 9A71139900        CALL 0099:1371

                  3281:3970 59                        POP CX
                  3281:3971 59                        POP CX
                  3281:3972 8946E0                MOV [BP-20],AX
                  3281:3975 8B46DC                MOV AX,[BP-24]
                  3281:3978 BA5800                MOV DX,0058
                  3281:397B F7E2                    MUL DX
                  3281:397D 8BD8                    MOV BX,AX
                  3281:397F 8B874C41            MOV AX,[BX+414C]
                  3281:3983 3B46E0                CMP AX,[BP-20]
                  3281:3986 7505                  *JNZ 398D
                  3281:3988 C746DEFFFF        MOV WORD PTR [BP-22],FFFF
                  3281:398D EB00                    JMP 398F
                  3281:398F 837EDE00            CMP WORD PTR [BP-22],+00
                  3281:3993 7402                  *JZ 3997
                  3281:3995 EB0C                    JMP 39A3
                  3281:3997 FF46D6                INC WORD PTR [BP-2A]
                  3281:399A 837ED602            CMP WORD PTR [BP-2A],+02
                  3281:399E 7D03                  *JGE 39A3
                  3281:39A0 E937FD                JMP 36DA
                  3281:39A3 837EDE00            CMP WORD PTR [BP-22],+00
                  3281:39A7 7504                  *JNZ 39AD
                  3281:39A9 0E                        PUSH CS
                  3281:39AA E8E8FC                CALL 3695

                            This is the last point of interest.    The next
                  instruction is where we set the key (by moving FFFFh to the
                  memory location DS:0744h).    This is what we need to fake to
                  allow the system to run.    ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³
                  3281:39AD C7064407FFFF    MOV WORD PTR [0744],FFFF <ÄÄÄÙ
                  3281:39B3 B8FFFF                MOV AX,FFFF
                  3281:39B6 50                        PUSH AX
                  3281:39B7 9AC0479900        CALL 0099:47C0
                  3281:39BC 59                        POP CX
                  3281:39BD 8BE5                    MOV SP,BP
                  3281:39BF 5D                        POP BP
                  3281:39C0 CB                        RETF

                            Ok, we have now finished the doc check, and control has
                  returned (when the RETF instruction was executed) to
                  21DD:3EA9.    We are now ready to continue with the game.

                            Notice the instruction at 3281:39AD.    This    is where EFH
                  sets that external    flag.      But    how    did    I    determine this.
                  Well, by luck.    If you look through    the    entire routine, you
                  will not find any other instructions placing    a    value in the
                  data segment (DS).      And since I decided a long time ago that
                  EFH was written in a higher level    language,    we    can    assume
                  that it is writting to some variable.

                            So, hoping that we have found the flag,    we    go    back to
                  step 1.    This    time,    we manualy edit the word at DS:0744 and
                  place the value FFFFh there.    We    then skip over the call the
                  the doc check    and execute the game.    Then before    our    eyes,
                  shit happenes.    The    game    comes    up, and everything is fine.

                  By George you've got it.

                            So how do we fix the program to always return a good doc
                  check.    Well, we could go about it 2 ways.    The first, is you
                  could simple modify the instruction at 3281:3935 to perform a
                  long jump to 3281:39AD.    This    would    force    set the value no
                  matter what was    typed.    But who the fuck wants    to    have    to
                  type anything.    I sure don't so lets think of another way.

                            If we    look at the entire doc check routine, we will see
                  that it does nothing but handle    the doc check (remember when
                  we first bypassed    the    check.      The    screen      came      up    and
                  everything looked fine    until    it dropped you out.    So we can
                  assume that the actual screen is    not setup in doc check.    So
                  I suggest placing a small patch right in the begining    of the
                  doc check.

                            But what    should    this    patch    do? (BTW: it's late and I
                  don't know If I'm using ?s right.      So    if    not    TOO    FUCKING
                  BAD).    Well, all    it should do is place the    value    FFFFh    at
                  DS:0744h.    Here is the assembly language routine to do it.

  50              PUSH AX
  B8FFFF      MOV AX,FFFF
  3E              DS:
  A34407      MOV WORD PTR [0744],AX
  58              POP AX
  CB              RETF

                            This small    routine will place the value FFFFh at DS:744
                  and then exit back to the main    loop.      Simple huh (note, you
                  don't really need the save AX or load AX with    FFFFh for that
                  matter but I did it for clarity).

                            So now    that we have the patch, and now where to put it,
                  how do we get it there.    Well,    thats    where    the file editor
                  comes in, but    first    you    will    need    2    things.        The    hex
                  equivlent of out      patch      (in    this    case    the    10    bytes    :
                  50,B8,FF,FF,3E,A3,44,07,58,CB) and some string to search for.
                  I suggest usings the first 14    bytes    of    the routines we are
                  going to write    over (the code at address 3281:36A5).      Those
                  bytes are 55, 8B, EC, 83, EC ,2A ,C7, 46, DE ,00 ,00, B8, 06,
                  and 00.    When      selecting    the    search    string,    select    only
                  instructions that ARN'T call,    jump,    loop or any instruction
                  that has a memory address in them.    This value    will    NOT    be
                  the same when you do the search.

                            Now, using for file editor (I used PCTOOLS, but NORTON's
                  will do) search    for    our    string    (55,8B,    etc).    When it is
                  found (somewhere near sector 200)    write    down    the sector #.
                  Now, go and edit that sector.    Find our search string (55,8B,
                  etc) and replace    it    with the patch string (50,B8,FF,    etc).
                  Now save the sector.

                            Your down.      Try    playing    the game.    It should load up,
                  and then go right from the title    page    (or the intro) to the

                  game without stopping    at    the doc check.    If    your    doesn't,
                  then you fucked    up.      Restart    from    the beginning (NO, this
                  file didn't fuck up, and I DON'T MAKE MISTAKES).

                            Well, you did it.    You have    now    removed your first doc
                  check.    Don't ya feel real good.    With time, you will be able
                  to remove any type of doc check.

  -BUCKAROO BANZAI

  At this time I would just like to say

  `ALL CRACKING GROUPS SUCK!'

  CRACKING 101 - 1990 edition

  Lesson 3

  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
  ³ CHAMBER OF THE SCI-MUTANT PREISTEST ³
  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

                            Oh shit, I have finally found a newer program that has
                  on disk copy protection.    Good, you'all need a refresher
                  course on so here it is (YO JB study hard, you might learn
                  something).

                            CHAMBER of the SCI-MUTANT PREISTEST (CSMP) is a really
                  fucked up game but was simple to unprotect.    So, lets dive
                  right in.    We will be using DEBUG here (although I used
                  periscope but then shit I'm special) to do the crack.    Lets
                  dive in.    When we first load CSMP (the file ERE.COM) and
                  unassemble it here is what we get.

                  u 100 10B

                  119A:0100 8CCA                    MOV DX,CS
                  119A:0102 81C2C101            ADD DX,01C1
                  119A:0106 52                        PUSH DX
                  119A:0107 BA0F00                MOV DX,000F
                  119A:010A 52                        PUSH DX
                  119A:010B CB                        RETF

                            I included the register listing for a reason.    NOTICE
                  that this piece of code just seem to stop (the RETF)
                  statement.    Well, what is really does is place the address

                  (segment and offset) of the real starting point on to the
                  stack and the execute a far return to that location.    Now
                  this might fool a real beginner (or at least make him worry a
                  bit but us...no way).

                            If you take the current CS value and add 1C1 to it (in
                  segment addition) you will get the segment address 135B (that
                  is if you are using my example of 119A.    If not then you will
                  not get 135B but trust me, it's the right value).

                            So since we want to be at the real program, execute the
                  code until 10B (ie use the command "G 10B") then trace
                  through the next instruction.

                            If you now unassemble the code, here is what it should
                  look like.

                  -u 000f 36

                  135B:000F 9C                        PUSHF
                  135B:0010 50                        PUSH AX
                  135B:0011 1E                        PUSH DS
                  135B:0012 06                        PUSH ES
                  135B:0013 0E                        PUSH CS
                  135B:0014 1F                        POP DS
                  135B:0015 0E                        PUSH CS
                  135B:0016 07                        POP ES
                  135B:0017 FC                        CLD
                  135B:0018 89260B00            MOV [000B],SP
                  135B:001C C70600000102    MOV WORD PTR [0000],0201
                  135B:0022 B013                    MOV AL,13
                  135B:0024 A23500                MOV [0035],AL
                  135B:0027 A2FF01                MOV [01FF],AL
                  135B:002A A22F02                MOV [022F],AL
                  135B:002D A23901                MOV [0139],AL
                  135B:0030 B280                    MOV DL,80
                  135B:0032 B408                    MOV AH,08
                  135B:0034 CD21                    INT 21
                  135B:0036 7232                    JB 006A

                            Since we are looking for a disk based copy protection,
                  it might be a good time to look for INT 13.    So search the
                  current segment for INT 13 with the command

  S 135B:0 FFFF CD 13

                            But shit, nothing.    You mean this program doesn't use
                  int 13.    Be real.    Reread the first lesson.    You know the one
                  that talks about self modifing code.    This is what we have
                  here.    Let's take a closer look at the last bit of code but
                  this time, with my comments added.

                  -u 000f 36

                  ; The first part of the code simple sets up for the return to

                  ; dos as well as sets ES and DS

                  135B:000F 9C                        PUSHF
                  135B:0010 50                        PUSH AX
                  135B:0011 1E                        PUSH DS
                  135B:0012 06                        PUSH ES
                  135B:0013 0E                        PUSH CS
                  135B:0014 1F                        POP DS              ; Set DS to CS
                  135B:0015 0E                        PUSH CS
                  135B:0016 07                        POP ES              ; Set ES to DS
                  135B:0017 FC                        CLD

                  135B:0018 89260B00            MOV [000B],SP

                  ; The next instruction sets up a variable that is used in the
                  ; routine that reads in the sectors from the disk.    More on
                  ; later.

                  135B:001C C70600000102    MOV WORD PTR [0000],0201

                  ; Now, here is the self modifing code.    Notice at AL is 13
                  ; (INT 13h ... Get it).    Look at the first memory location
                  ; (35h) and remember that DS = CS.    With this in mind, when
                  ; then instuction at 135B:0024 is executed byte at 135B:0035
                  ; will be changed to 13h.    That will in fact change the
                  ; INT 21h at 135B:0034 to an INT 13h.    And so on, and so on.

                  135B:0022 B013                    MOV AL,13              ; New value
                  135B:0024 A23500                MOV [0035],AL      ; Change to INT 13h
                  135B:0027 A2FF01                MOV [01FF],AL      ; Change to INT 13h
                  135B:002A A22F02                MOV [022F],AL      ; Change to INT 13h
                  135B:002D A23901                MOV [0139],AL      ; Change to INT 13h

                  ; If you lookup DOS function 08 you will find it's CONSOLE
                  ; INPUT.    Now does that seem out of place to you.

                  135B:0030 B280                    MOV DL,80
                  135B:0032 B408                    MOV AH,08
                  135B:0034 CD21                    INT 21          ; Changed to INT 13h
                  135B:0036 7232                    JB 006A

                            Whoa, that was tricky.    If you execute up to 135B:30
                  here is what it should look like..

                  135B:0030 B280                    MOV DL,80
                  135B:0032 B408                    MOV AH,08
                  135B:0034 CD13                    INT 13
                  135B:0036 7232                    JB 006A

                            AHA, now we are getting somewhere.    If we lookup what
                  disk function 08 means, you won't be suprised.    Function 08h
                  is GET DRIVE TYPE.    It will tell what type of disk drive we
                  have.    Remember, if you are loading off of a hard disk then
                  it wants to use a different routine.    Since we want it to

                  think we are loading off of disk, then we want to take this
                  jump.    So for now, force the jmp by setting IP to 6A.

                            At 135B:006A you find another jmp instruction

                  135B:006A EB6B                    JMP 00D7

                            This jumps to the routine that does the actual disk
                  check.    Here is the outer loop of that code (With my comments
                  of course).

                  ; This first part of this routine simply test to see how many
                  ; disk drives you have.

                  135B:00D7 CD11                    INT 11
                  135B:00D9 25C000                AND AX,00C0
                  135B:00DC B106                    MOV CL,06
                  135B:00DE D3E8                    SHR AX,CL
                  135B:00E0 FEC0                    INC AL
                  135B:00E2 FEC0                    INC AL
                  135B:00E4 A20200                MOV [0002],AL

                  ; Next, so setup for the actual disk check

                  135B:00E7 C606090000        MOV BYTE PTR [0009],00
                  135B:00EC B9F127                MOV CX,27F1
                  135B:00EF 8BE9                    MOV BP,CX
                  135B:00F1 B107                    MOV CL,07
                  135B:00F3 F8                        CLC

                  ; This calls the protection routine part 1

                  135B:00F4 E82F00                CALL 0126

                  135B:00F7 B9DE27                MOV CX,27DE
                  135B:00FA 8BE9                    MOV BP,CX
                  135B:00FC B108                    MOV CL,08
                  135B:00FE F9                        STC

                  ; This calls the protection routine part 2

                  135B:00FF E82400                CALL 0126

                  135B:0102 8D1E5802            LEA BX,[0258]
                  135B:0106 8D361C01            LEA SI,[011C]
                  135B:010A 8BCD                    MOV CX,BP
                  135B:010C AC                        LODSB
                  135B:010D 8AC8                    MOV CL,AL

                  ; This calls the protection routine part 3

                  135B:010F E8E300                CALL 01F5

                  ; Makes the final check

                  135B:0112 7271                    JB 0185
                  135B:0114 AC                        LODSB
                  135B:0115 0AC0                    OR AL,AL
                  135B:0117 75F4                    JNZ 010D    ; If not correct, try again
                  135B:0119 EB77                    JMP 0192    ; Correct, continue program
                  135B:011B 90                        NOP

                            There are calls to 2 different subroutines.    The routine
                  at 126 and the routine at 1F5.    If you examine the routine at
                  126 you find that it makes several calls to the routine at
                  1F5.    Then you you examine the routine at 1F5 you see the
                  actual call to INT 13.    Here is the code for both routine
                  with comments

                  ; First, it sets up the sector, head and drive information.
                  ; DS:000A holds the sector to read

                  135B:0126 880E0A00            MOV [000A],CL
                  135B:012A 8A160900            MOV DL,[0009]
                  135B:012E B600                    MOV DH,00

                  ; Sets the DTA

                  135B:0130 8D365802            LEA SI,[0258]
                  135B:0134 7213                    JB 0149

                  ; Resets the disk

                  135B:0136 33C0                    XOR AX,AX
                  135B:0138 CD13                    INT 13

                  ; Calls the the check

                  135B:013A B90114                MOV CX,1401    ; TRACK 14 sector 1
                  135B:013D 8BDE                    MOV BX,SI
                  135B:013F E8B300                CALL 01F5

                  ; The next track/sector to read in is stored in BP

                  135B:0142 8BCD                    MOV CX,BP
                  135B:0144 E8AE00                CALL 01F5
                  135B:0147 7234                    JB 017D          ; If an error occured,
  ; trap it.

                  135B:0149 88160900            MOV [0009],DL      ; Reset drive
                  135B:014D 8A0E0A00            MOV CL,[000A]      ; reset sector
                  135B:0151 E8A100                CALL 01F5              ; check protection
                  135B:0154 722F                    JB 0185                  ; Check for an error

                  135B:0156 8D5C20                LEA BX,[SI+20]

                  135B:0159 8BCD                    MOV CX,BP              ; Get next T/S
                  135B:015B B010                    MOV AL,10              ; Ignore this
                  135B:015D E89500                CALL 01F5              ; Check protection
                  135B:0160 7223                    JB 0185                  ; check for error

                  ; The next sector of code checks to see if what was read in
                  ; is the actual protected tracks

                  ; First check

                  135B:0162 8DBCAC00            LEA DI,[SI+00AC]
                  135B:0166 B91000                MOV CX,0010
                  135B:0169 F3                        REPZ
                  135B:016A A7                        CMPSW

                  ; NOTE: If it was a bad track, it will jmp to 185.    A good
                  ; read should just continue

                  135B:016B 7518                    JNZ 0185

                  ; Second check

                  135B:016D 8D365802            LEA SI,[0258]
                  135B:0171 8D3E3702            LEA DI,[0237]
                  135B:0175 B90400                MOV CX,0004
                  135B:0178 F3                        REPZ
                  135B:0179 A7                        CMPSW

                  ; see NOTE above

                  135B:017A 7509                    JNZ 0185

                  ; This exit back to the main routine.

                  135B:017C C3                        RET

                  ; Here is the start of the error trap routines.    Basicly what
                  ; they do is check an error count.    If it's not 0 then it
                  ; retries everything.    If it is 0 then it exit back to dos.

                  135B:017D FEC2                    INC DL
                  135B:017F 3A160200            CMP DL,[0002]
                  135B:0183 72B1                    JB 0136
                  135B:0185 E85400                CALL 01DC
                  135B:0188 8B260B00            MOV SP,[000B]
                  135B:018C 2BC9                    SUB CX,CX
                  135B:018E 58                        POP AX
                  135B:018F 50                        PUSH AX
                  135B:0190 EB1F                    JMP 01B1

                  ** Here is the actual code the does the check    **

                  ; ES:BX points to the buffer

                  135B:01F5 1E                        PUSH DS
                  135B:01F6 07                        POP ES

                  ; SI is set to the # of retries

                  135B:01F7 56                        PUSH SI
                  135B:01F8 BE0600                MOV SI,0006

                  ; Remember how I said we would use what was in DS:0000 later.
                  ; well, here is where you use it.    It loads in the FUNCTION
                  ; and # of sectors from what is stored in DS:0000.    This is
                  ; just a trick to make the int 13 call more vague.

                  135B:01FB A10000                MOV AX,[0000]
                  135B:01FE CD13                    INT 13

                  ; If there is no errors, then exit this part of the loop

                  135B:0200 7309                    JNB 020B
                  135B:0202 F6C480                TEST AH,80

                  ; Check to see if it was a drive TIMEOUT.    If so, then set
                  ; an error flag and exit

                  135B:0205 7503                    JNZ 020A

                  ; It must have been a load error.    Retry 6 times

                  135B:0207 4E                        DEC SI
                  135B:0208 75F1                    JNZ 01FB

                  ; Set the error flag

                  135B:020A F9                        STC

                  ; restore SI and return

                  135B:020B 5E                        POP SI
                  135B:020C C3                        RET

                            If you follow through all of that.    You will see that
                  the only real way out is the jmp to "135B:0192" at 135B:0119.
                  So, how do we test it.    Simple.    Exit back to dos and let's
                  add a temporary patch.

                            Reload ERE.COM under debug.    Execute the program setting
                  a breakpoint at 135B:0022 (if you remember, that is right at
                  the begining of the self modifing code).    When execution
                  stops, change you IP register to 192.    Now execute the code.

                            Well shit, we are at the main menu.    We just bypassed
                  the entire protection routine.    So, now where to add the
                  patch.    We will be adding the patch at 135B:0022.    But what
                  should the patch be.    In this case, simply jumping to
                  135B:0192 will do.    So, reload ERE.COM under debug.    Execute

                  the code until 135B:0022.    Now unassemble it.    Here is the
                  code fragment we need.

                  135B:0022 B013                    MOV AL,13
                  135B:0024 A23500                MOV [0035],AL
                  135B:0027 A2FF01                MOV [01FF],AL
                  135B:002A A22F02                MOV [022F],AL
                  135B:002D A23901                MOV [0139],AL

                            Here is the code we want to use as the patch

                  135B:0022 E96D01                JMP 192

                            So, to add the patch, we search the file ERE.COM using
                  PC-TOOLS.    For our search string we use

                                  B0 13 A2 35 00 A2 FF 01 A2 2F 02 A2 39 01

                            PC-TOOLS should find the search string at reletive
                  sector #13.    Edit the sector and change "B0 13 A2" to
                  "E9 6D 01" (our patch) and save the sector.

                            BOOM! your done and CSMP is cracked.    Fun huh.    You just
                  kicked 5 seconds off of the load time.    Preaty fucken good.
                  Well, I hope this textfile helped.

                            -Buckaroo Banzai
                              -Cracking Guru

  CRACKING 101 - 1990 Edition

  Lesson 4
  revision 1

                                    ÚÄÄÄ¿
                                    ³ REMOVING THE DOC CHECK FOR STAR CONTROL ³
                                    ÀÄÄÄÙ

                  <

                    Added for revision 1 -

                            First, let    me    tell    you    about    a major fuckup I made.
                  When I first wrote this file, I    left out a major part of the
                  patch.    For all of the user who got that version,    I'm    sorry
                  but even I    make    mistakes    at    3:00 in the morning.    Anyway,
                  just replace the original with this updated version

  - Buckaroo Banzai

                  >

                            Hey, Buckaroo Banzai .. Cracking Guru back once again to
                  help you lesser crackist learn.      This time, we will be going
                  over Star Control.    This is the last lesson in    the    original
                  4.    From here    on    out,    I    will    simply release lessons as I
                  write them.

                            I want to say a few things    about some of the groups out
                  there right now.    Speed isn't everything.    I really wish that
                  for example when you remove a doc check, most    of    us want it
                  REMOVED.    We don't    want    to have to enter your group name or
                  even typing 1 letter is to much.      We    shouldn't even see the
                  menu for the doc check.    Now, I don't direct    this    to all of
                  you, but there    seems    to    have    been    a move from quality to
                  quickness.    Let's go back to the    days    of    SPI (and INC when
                  they were first getting started) and crack right.      If    there
                  is a doc check, remove it, not just fake it.

                            Nuff said, on with the tutorial.

                            Star Control    (SC    for    here out) is a preaty good game.
                  The protection on it wasn't too    hard, but if you didn't read
                  enough in to it, you would just kill the title music also.

                            So, how do we go about cracking SC.    Well for this one I
                  opted to break out when SC asks for the code    from    the    code
                  wheel.    Originaly I    did this just for the hell of it, but it
                  turned out to be a luck guess and made life a lot easier.

                            As usual we will be using periscope to crack SC.    I used
                  PSKEY (using int 3 as the trap interrupt not int 2) to pop in
                  at the input routine.    So lets    get    started.    Load up PS and
                  PSKEY, then execute Star Control.    When you get    to    the    doc
                  check, break out.

                            Now you    should    be at the usual IRET insturction that's
                  part of PSKEY.    Now comes the    tricky    part.      Since    we    are
                  using a key trap to break out during the input    sequence,    we
                  could be anywhere    inside    the    entire    input routine.    So in
                  cases like this I suggest finding a reference point.

                            So how    do you pick the reference    point.      Well,    since
                  this doc check must be entered via the keyboard    you    can bet
                  somewhere it will    call    INT    16h    (bios    keyboard) (although
                  there are times when this is not    true, it rare).    I think we
                  should go off and find that call to that interrupt.

                            So we    trace (using the 'T' command) through    some    code
                  and finally come apon the follow subroutine

                  (NOTE: all comments were added by me)

                  ; This is the actual routine that is used to get a key

                  2A00:09D4 55                        PUSH BP

                  2A00:09D5 8BEC                    MOV BP,SP
                  2A00:09D7 8A6606                MOV AH,[BP+06]
                  2A00:09DA 8AD4                    MOV DL,AH
                  2A00:09DC 80E20F                AND DL,0F
                  2A00:09DF CD16                    INT 16            ; Call to bios.    We will
                  2A00:09E1 7509                    JNZ      09EC            ;    use    this    as    our
                  2A00:09E3 80FA01                CMP DL,01      ; reference point
                  2A00:09E6 7504                    JNZ 09EC
                  2A00:09E8 33C0                    XOR AX,AX
                  2A00:09EA EB0A                    JMP 09F6
                  2A00:09EC 80FA02                CMP DL,02
                  2A00:09EF 7405                    JZ 09F6
                  2A00:09F1 0BC0                    OR AX,AX
                  2A00:09F3 7501                    JNZ 09F6
                  2A00:09F5 48                        DEC AX
                  2A00:09F6 5D                        POP BP
                  2A00:09F7 CB                        RETF

                            So we write down the address    of our REFERENCE point and
                  get ready to procede.    Now, It's really kinda    boring to keep
                  trying to trace through the entire input routine while trying
                  to enter the    code    string, so what we want to do next, is to
                  figure out the input routine.      A    quick    look    at    this last
                  section of code shows that it only reads in a    character    but
                  really does not handle it.

                            So, we    exit via the RETF at 9F7 enter the next level of
                  the subroutine.    Again,    if you    manual    trace    through    this
                  routine (as well as the next level up) you see that it simple
                  exits out rather quickly.    This is definitly not the top loop
                  of the imput routine.

                            So, we trace through the next level up,    and    again exit
                  quickly to a    higher    level.      But    this    time,    as    we trace
                  through, we find that the it loops    back on itself.    AHA, the
                  outer input loop.    Here is the code to the entire input loop.
                  I have marked the place where you should enter from the lower
                  level.

                  (String input loop -- Outer level)

                  7C00:0835 FF365220            PUSH [2052]
                  7C00:0839 FF365020            PUSH [2050]
                  7C00:083D 9A2802FD41        CALL 41FD:0228          ;    Entery here
                  7C00:0842 888670FE            MOV [BP+FE70],AL
                  7C00:0946 0AC0                    OR AL,AL
                  7C00:0848 7503                    JNZ 084D
                  7C00:084A E99200                JMP 08DF
                  7C00:084D 2AE4                    SUB AH,AH
                  7C00:084F 2D0800                SUB AX,0008
                  7C00:0852 745A                    JZ 08AE
                  7C00:0854 48                        DEC AX
                  7C00:0855 48                        DEC AX
                  7C00:0856 7503                    JNZ 085B
                  7C00:0858 E90901                JMP 0964
                  7C00:085B 2D0300                SUB AX,0003

                  7C00:085E 7503                    JNZ 0863
                  7C00:0860 E90101                JMP 0964
                  7C00:0863 8A9E70FE            MOV BL,[BP+FE70]
                  7C00:0867 2AFF                    SUB BH,BH
                  7C00:0869 F687790B57        TEST BYTE PTR [BX+0B79],57
                  7C00:086E 746F                    JZ 08DF
                  7C00:0870 F687790B03        TEST BYTE PTR [BX+0B79],03
                  7C00:0875 740C                    JZ 0883
                  7C00:0877 F687790B02        TEST BYTE PTR [BX+0B79],02
                  7C00:087C 7405                    JZ 0883
                  7C00:087E 80AE70FE20        SUB BYTE PTR [BP+FE70],20
                  7C00:0883 8A8670FE            MOV AL,[BP+FE70]
                  7C00:0887 C49E7EFE            LES BX,[BP+FE7E]
                  7C00:088B 8BB682FE            MOV SI,[BP+FE82]
                  7C00:088F 26                        ES:
                  7C00:0890 8800                    MOV [BX+SI],AL
                  7C00:0892 FF8682FE            INC WORD PTR [BP+FE82]
                  7C00:0896 FFB688FE            PUSH [BP+FE88]
                  7C00:089A 8D8678FE            LEA AX,[BP+FE78]
                  7C00:089E 50                        PUSH AX
                  7C00:089F 9A56049324        CALL 2493:0456
                  7C00:08A4 83C404                ADD SP,+04
                  7C00:08A7 0BC0                    OR AX,AX
                  7C00:08A9 7534                    JNZ 08DF
                  7C00:08AB EB27                    JMP 08D4
                  7C00:08AD 90                        NOP
                  7C00:08AE 83BE82FE00        CMP WORD PTR [BP+FE82],+00
                  7C00:08B3 7404                    JZ 08B9
                  7C00:08B5 FF8E82FE            DEC WORD PTR [BP+FE82]
                  7C00:08B9 B008                    MOV AL,08
                  7C00:08BB 50                        PUSH AX
                  7C00:08BC 9A1003443D        CALL 3D44:0310
                  7C00:08C1 8D8684FE            LEA AX,[BP+FE84]
                  7C00:08C5 16                        PUSH SS
                  7C00:08C6 50                        PUSH AX
                  7C00:08C7 9A6A00843D        CALL 3D84:006A
                  7C00:08CC B047                    MOV AL,47
                  7C00:08CE 50                        PUSH AX
                  7C00:08CF 9A1003443D        CALL 3D44:0310
                  7C00:08D4 8D8678FE            LEA AX,[BP+FE78]
                  7C00:08D8 16                        PUSH SS
                  7C00:08D9 50                        PUSH AX
                  7C00:08DA 9A8202C93C        CALL 3CC9:0282
                  7C00:08DF 83BE8CFE00        CMP WORD PTR [BP+FE8C],+00
                  7C00:08E4 7503                    JNZ 08E9
                  7C00:08E6 E94CFF                JMP 0835        ; <ÄÄÄ¿
  ³
                            as you can see, at this point it loops back    on    itself.
                  This is what    tells    use    that    it's the outer loop.    Knowing
                  that, we can just set a code    breakpoint    at    8E9    (the    next
                  instruction after the loop) and execute the code.

                            At this    point,    the SC will pause waiting    for    you    to
                  enter the code key.    Use the code wheel and enter the correct
                  key (after all,    it's    kinda    hard    to    crack    a game without
                  having the proper codes right...)

                            So, we have now exited the    input    loop    with everything
                  intact (ie: the proper code was entered).    Next    step    is    to
                  figure out what    happens    when    the    proper    code is entered.
                  Well, since you have entered    the    proper    code,    just follow
                  this routine out.    Remember back to lesson 2.      What    we want
                  to do is find the call the to routine that does the doc check
                  and remove it    somehow (a PROPER crack).    So since everything
                  is in the right place, if we just    keep jumping over the code
                  we should find our way out.

                            So after jumping over many instructions, we come the the
                  follow piece of code

                  7C00:0B74 8BE5                    MOV SP,BP
                  7C00:0B76 5D                        POP BP
                  7C00:0B77 CB                        RETF

                            By now, you should know that what you are    looking at is
                  the exit routine for a higher level language's (C or pascal)
                  code.    So we    have    found    the    end    of the doc check.    After
                  tracing through the RETF you find yourself looking down a cmp
                  and a conditional jump.    Here    is    the    code    (NOTE!    I    have
                  included the actual call to the doc check just for reference)

                  45E2:0235 9A46010F4A        CALL 7C00:146      ; Call to Doc Check
                  45E2:023A 83C404                ADD    SP,+04
                  45E2:023D 0BC0                    OR      AX,AX
                  45E2:023F 7465                    JZ      02A6

                            Notice the value of the AX register.    Since    right after
                  the doc check, it is acted upon, then it has some importance.
                  So, now that    we know where the doc check takes place, how do
                  we remove it.

                            Well, We could patch it with the code

                  45E2:0235 B40100                MOV    AX,0001
                  45E2:0238 90                        NOP
                  45E2:0239 90                        NOP

                            This patch will work (I know,    it's    how I first patched
                  the program).    But there is one small problem.      If    you    run
                  the program after    adding    this patch, you will find that the
                  title music doesn't play.    So,    this    is    now a good place to
                  put the patch.

                            So where    then.    Well, make note of the address    of    the
                  call to the    doc    check.      Now,    restart the process but this
                  time right after SC switches in to graphics mode, break out.

                            Now, set a breakpoint at    the    address from above (in my
                  case 45E2:0235).    Let SC run in to the intro.      You will find
                  that although the    title    screen    comes up, the music doesn't
                  kick in before the breakpoint is reached.

                            No, they couldn't...they wouldn't..    well they did.    The
                  music routines for    the intro are stored in the    routine    for
                  the doc check.      Here    is    the    entire    doc    check.      I    have
                  commented on some of the code

                  ; these first few calls seem to load something from disk

                  7C00:0146 55                        PUSH BP
                  7C00:0147 8BEC                    MOV BP,SP
                  7C00:0149 81EC9001            SUB SP,0190
                  7C00:014D 57                        PUSH DI
                  7C00:014E 56                        PUSH SI
                  7C00:014F 8B4608                MOV AX,[BP+08]
                  7C00:0152 0B4606                OR AX,[BP+06]
                  7C00:0155 740E                    JZ 0165
                  7C00:0157 FF7608                PUSH [BP+08]
                  7C00:015A FF7606                PUSH [BP+06]
                  7C00:015D 9A65341E2D        CALL 2D1E:3465
                  7C00:0162 83C404                ADD SP,+04
                  7C00:0165 FF365220            PUSH [2052]
                  7C00:0169 FF365020            PUSH [2050]
                  7C00:016D 9A2802FD41        CALL 41FD:0228
                  7C00:0172 0AC0                    OR AL,AL
                  7C00:0174 75EF                    JNZ 0165
                  7C00:0176 B80200                MOV AX,0002
                  7C00:0179 898664FF            MOV [BP+FF64],AX
                  7C00:017D 898672FF            MOV [BP+FF72],AX
                  7C00:0181 2BC0                    SUB AX,AX
                  7C00:0183 898662FF            MOV [BP+FF62],AX
                  7C00:0187 89866AFF            MOV [BP+FF6A],AX
                  7C00:018B 898674FF            MOV [BP+FF74],AX
                  7C00:018F B80100                MOV AX,0001
                  7C00:0192 898666FF            MOV [BP+FF66],AX
                  7C00:0196 89866CFF            MOV [BP+FF6C],AX
                  7C00:019A 898670FF            MOV [BP+FF70],AX
                  7C00:019E 898676FF            MOV [BP+FF76],AX
                  7C00:01A2 B80300                MOV AX,0003
                  7C00:01A5 898668FF            MOV [BP+FF68],AX
                  7C00:01A9 89866EFF            MOV [BP+FF6E],AX
                  7C00:01AD 898678FF            MOV [BP+FF78],AX

                  ; Although I have NO IDEA what the hell is being setup
                  ; here I suspect that it is the must

                  7C00:01B1 C746860400        MOV WORD PTR [BP-7A],0004
                  7C00:01B6 C746880100        MOV WORD PTR [BP-78],0001
                  7C00:01BB C7468A0200        MOV WORD PTR [BP-76],0002
                  7C00:01C0 C7468C0000        MOV WORD PTR [BP-74],0000
                  7C00:01C5 C7468E0000        MOV WORD PTR [BP-72],0000
                  7C00:01CA C746900500        MOV WORD PTR [BP-70],0005
                  7C00:01CF C746920600        MOV WORD PTR [BP-6E],0006
                  7C00:01D4 C746940700        MOV WORD PTR [BP-6C],0007
                  7C00:01D9 C746960C00        MOV WORD PTR [BP-6A],000C
                  7C00:01DE 894698                MOV [BP-68],AX

                  7C00:01E1 C7469A0500        MOV WORD PTR [BP-66],0005
                  7C00:01E6 C7469C0D00        MOV WORD PTR [BP-64],000D
                  7C00:01EB C7469E0000        MOV WORD PTR [BP-62],0000
                  7C00:01F0 C746A00100        MOV WORD PTR [BP-60],0001
                  7C00:01F5 C746A20200        MOV WORD PTR [BP-5E],0002
                  7C00:01FA C746A40800        MOV WORD PTR [BP-5C],0008
                  7C00:01FF B80400                MOV AX,0004
                  7C00:0202 8946A6                MOV [BP-5A],AX
                  7C00:0205 8946A8                MOV [BP-58],AX
                  7C00:0208 C746AA0600        MOV WORD PTR [BP-56],0006
                  7C00:020D C746AC0800        MOV WORD PTR [BP-54],0008
                  7C00:0212 C746AE0700        MOV WORD PTR [BP-52],0007
                  7C00:0217 C746B00900        MOV WORD PTR [BP-50],0009
                  7C00:021C C746B20A00        MOV WORD PTR [BP-4E],000A
                  7C00:0221 8946B4                MOV [BP-4C],AX
                  7C00:0224 C746B60C00        MOV WORD PTR [BP-4A],000C
                  7C00:0229 C746B80300        MOV WORD PTR [BP-48],0003
                  7C00:022E C746BA0B00        MOV WORD PTR [BP-46],000B
                  7C00:0233 C746BC0D00        MOV WORD PTR [BP-44],000D
                  7C00:0238 C746BE0B00        MOV WORD PTR [BP-42],000B
                  7C00:023D C746C00500        MOV WORD PTR [BP-40],0005
                  7C00:0242 C746C20100        MOV WORD PTR [BP-3E],0001
                  7C00:0247 C746C40700        MOV WORD PTR [BP-3C],0007
                  7C00:024C C746C60000        MOV WORD PTR [BP-3A],0000
                  7C00:0251 C746C80600        MOV WORD PTR [BP-38],0006
                  7C00:0256 C746CA0200        MOV WORD PTR [BP-36],0002
                  7C00:025B C746CC0300        MOV WORD PTR [BP-34],0003
                  7C00:0260 C746CE0800        MOV WORD PTR [BP-32],0008
                  7C00:0265 C746D00900        MOV WORD PTR [BP-30],0009
                  7C00:026A C746D20A00        MOV WORD PTR [BP-2E],000A
                  7C00:026F C746D40B00        MOV WORD PTR [BP-2C],000B
                  7C00:0274 C746D60C00        MOV WORD PTR [BP-2A],000C
                  7C00:0279 C746D80A00        MOV WORD PTR [BP-28],000A
                  7C00:027E C746DA0500        MOV WORD PTR [BP-26],0005
                  7C00:0283 C746DC0D00        MOV WORD PTR [BP-24],000D
                  7C00:0288 C746DE0800        MOV WORD PTR [BP-22],0008
                  7C00:028D C746E00900        MOV WORD PTR [BP-20],0009
                  7C00:0292 C746E20300        MOV WORD PTR [BP-1E],0003
                  7C00:0297 C746E40B00        MOV WORD PTR [BP-1C],000B
                  7C00:029C C78692FE0000    MOV WORD PTR [BP+FE92],0000
                  7C00:02A2 C78694FE2B00    MOV WORD PTR [BP+FE94],002B
                  7C00:02A8 C78696FE0200    MOV WORD PTR [BP+FE96],0002
                  7C00:02AE C78698FE0300    MOV WORD PTR [BP+FE98],0003
                  7C00:02B4 89869AFE            MOV [BP+FE9A],AX
                  7C00:02B8 C7869CFE0500    MOV WORD PTR [BP+FE9C],0005
                  7C00:02BE C7869EFE0600    MOV WORD PTR [BP+FE9E],0006
                  7C00:02C4 C786A0FE0E00    MOV WORD PTR [BP+FEA0],000E
                  7C00:02CA C786A2FE2B00    MOV WORD PTR [BP+FEA2],002B
                  7C00:02D0 C786A4FE0900    MOV WORD PTR [BP+FEA4],0009
                  7C00:02D6 C786A6FE0A00    MOV WORD PTR [BP+FEA6],000A
                  7C00:02DC C786A8FE0B00    MOV WORD PTR [BP+FEA8],000B
                  7C00:02E2 C786AAFE0C00    MOV WORD PTR [BP+FEAA],000C
                  7C00:02E8 C786ACFE2B00    MOV WORD PTR [BP+FEAC],002B
                  7C00:02EE C786AEFE0F00    MOV WORD PTR [BP+FEAE],000F
                  7C00:02F4 C786B0FE0D00    MOV WORD PTR [BP+FEB0],000D
                  7C00:02FA C786B2FE1000    MOV WORD PTR [BP+FEB2],0010

                  7C00:0300 C786B4FE1100    MOV WORD PTR [BP+FEB4],0011
                  7C00:0306 C786B6FE1200    MOV WORD PTR [BP+FEB6],0012
                  7C00:030C C786B8FE1300    MOV WORD PTR [BP+FEB8],0013
                  7C00:0312 C786BAFE1400    MOV WORD PTR [BP+FEBA],0014
                  7C00:0318 C786BCFE1500    MOV WORD PTR [BP+FEBC],0015
                  7C00:031E C786BEFE1600    MOV WORD PTR [BP+FEBE],0016
                  7C00:0324 C786C0FE1700    MOV WORD PTR [BP+FEC0],0017
                  7C00:032A C786C2FE0800    MOV WORD PTR [BP+FEC2],0008
                  7C00:0330 C786C4FE1800    MOV WORD PTR [BP+FEC4],0018
                  7C00:0336 C786C6FE2B00    MOV WORD PTR [BP+FEC6],002B
                  7C00:033C C786C8FE1900    MOV WORD PTR [BP+FEC8],0019
                  7C00:0342 C786CAFE2B00    MOV WORD PTR [BP+FECA],002B
                  7C00:0348 C786CCFE1A00    MOV WORD PTR [BP+FECC],001A
                  7C00:034E C786CEFE1B00    MOV WORD PTR [BP+FECE],001B
                  7C00:0354 C786D0FE1C00    MOV WORD PTR [BP+FED0],001C
                  7C00:035A C786D2FE1D00    MOV WORD PTR [BP+FED2],001D
                  7C00:0360 C786D4FE1E00    MOV WORD PTR [BP+FED4],001E
                  7C00:0366 C786D6FE1F00    MOV WORD PTR [BP+FED6],001F
                  7C00:036C C786D8FE2000    MOV WORD PTR [BP+FED8],0020
                  7C00:0372 C786DAFE2100    MOV WORD PTR [BP+FEDA],0021
                  7C00:0378 C786DCFE0700    MOV WORD PTR [BP+FEDC],0007
                  7C00:037E C786DEFE2200    MOV WORD PTR [BP+FEDE],0022
                  7C00:0384 C786E0FE2300    MOV WORD PTR [BP+FEE0],0023
                  7C00:038A C786E2FE2400    MOV WORD PTR [BP+FEE2],0024
                  7C00:0390 C786E4FE2500    MOV WORD PTR [BP+FEE4],0025
                  7C00:0396 C786E6FE2600    MOV WORD PTR [BP+FEE6],0026
                  7C00:039C C786E8FE2B00    MOV WORD PTR [BP+FEE8],002B
                  7C00:03A2 C786EAFE2700    MOV WORD PTR [BP+FEEA],0027
                  7C00:03A8 C786ECFE2800    MOV WORD PTR [BP+FEEC],0028
                  7C00:03AE C786EEFE2900    MOV WORD PTR [BP+FEEE],0029
                  7C00:03B4 C786F0FE2A00    MOV WORD PTR [BP+FEF0],002A
                  7C00:03BA 8D46F4                LEA AX,[BP-0C]
                  7C00:03BD 50                        PUSH AX
                  7C00:03BE 8D867AFF            LEA AX,[BP+FF7A]
                  7C00:03C2 50                        PUSH AX
                  7C00:03C3 8D862CFF            LEA AX,[BP+FF2C]
                  7C00:03C7 50                        PUSH AX
                  7C00:03C8 8D8628FF            LEA AX,[BP+FF28]
                  7C00:03CC 50                        PUSH AX
                  7C00:03CD E832FC                CALL 0002      ; Music Plays
                  7C00:03D0 0BC0                    OR AX,AX
                  7C00:03D2 7503                    JNZ 03D7
                  7C00:03D4 E99B07                JMP 0B72
                  7C00:03D7 FF36AA1E            PUSH [1EAA]
                  7C00:03DB 9A0200443D        CALL 3D44:0002
                  7C00:03E0 FF36AE1E            PUSH [1EAE]
                  7C00:03E4 FF36AC1E            PUSH [1EAC]
                  7C00:03E8 9A0C008D3D        CALL 3D8D:000C
                  7C00:03ED B80201                MOV AX,0102
                  7C00:03F0 50                        PUSH AX
                  7C00:03F1 9ADE02443D        CALL 3D44:02DE
                  7C00:03F6 B80400                MOV AX,0004
                  7C00:03F9 BA4000                MOV DX,0040
                  7C00:03FC 52                        PUSH DX
                  7C00:03FD 50                        PUSH AX
                  7C00:03FE 8D868CFE            LEA AX,[BP+FE8C]

                  7C00:0402 50                        PUSH AX
                  7C00:0403 9A7000963B        CALL 3B96:0070        ; Music plays
                  7C00:0408 89868EFE            MOV [BP+FE8E],AX
                  7C00:040C 899690FE            MOV [BP+FE90],DX
                  7C00:0410 0BD0                    OR DX,AX
                  7C00:0412 7471                    JZ 0485
                  7C00:0414 2BC0                    SUB AX,AX
                  7C00:0416 898686FE            MOV [BP+FE86],AX
                  7C00:041A 898684FE            MOV [BP+FE84],AX
                  7C00:041E FFB690FE            PUSH [BP+FE90]
                  7C00:0422 FFB68EFE            PUSH [BP+FE8E]
                  7C00:0426 9A0A00F93C        CALL 3CF9:000A
                  7C00:042B 898688FE            MOV [BP+FE88],AX
                  7C00:042F 89968AFE            MOV [BP+FE8A],DX
                  7C00:0433 833EB41E00        CMP WORD PTR [1EB4],+00
                  7C00:0438 7514                    JNZ 044E
                  7C00:043A 8B4608                MOV AX,[BP+08]
                  7C00:043D 0B4606                OR AX,[BP+06]
                  7C00:0440 740C                    JZ 044E
                  7C00:0442 B80100                MOV AX,0001
                  7C00:0445 50                        PUSH AX
                  7C00:0446 9AF4019324        CALL 2493:01F4
                  7C00:044B 83C402                ADD SP,+02
                  7C00:044E 2AC0                    SUB AL,AL
                  7C00:0450 50                        PUSH AX
                  7C00:0451 9A4803443D        CALL 3D44:0348
                  7C00:0456 9A57331E2D        CALL 2D1E:3357
                  7C00:045B 9A9911A73B        CALL 3BA7:1199
                  7C00:0460 8D8684FE            LEA AX,[BP+FE84]
                  7C00:0464 16                        PUSH SS
                  7C00:0465 50                        PUSH AX
                  7C00:0466 9A04007E3D        CALL 3D7E:0004        ; Music plays
                  7C00:046B FFB68AFE            PUSH [BP+FE8A]
                  7C00:046F FFB688FE            PUSH [BP+FE88]
                  7C00:0473 9AF001F93C        CALL 3CF9:01F0
                  7C00:0478 FFB690FE            PUSH [BP+FE90]
                  7C00:047C FFB68EFE            PUSH [BP+FE8E]
                  7C00:0480 9A78068D3D        CALL 3D8D:0678        ; Music plays
                  7C00:0485 8B4608                MOV AX,[BP+08]
                  7C00:0488 0B4606                OR AX,[BP+06]
                  7C00:048B 7429                    JZ 04B6
                  7C00:048D 833EB41E00        CMP WORD PTR [1EB4],+00
                  7C00:0492 740C                    JZ 04A0
                  7C00:0494 B80100                MOV AX,0001
                  7C00:0497 50                        PUSH AX
                  7C00:0498 9AF4019324        CALL 2493:01F4        ; Music Plays
                  7C00:049D 83C402                ADD SP,+02
                  7C00:04A0 9A8C341E2D        CALL 2D1E:348C
                  7C00:04A5 FF7608                PUSH [BP+08]
                  7C00:04A8 FF7606                PUSH [BP+06]
                  7C00:04AB 9A2A006342        CALL 4263:002A
                  7C00:04B0 50                        PUSH AX
                  7C00:04B1 9A54006342        CALL 4263:0054

                  ; this is the start of the actual    doc check.    OH! As you can
                  ; tell, I wasn't too intrested in the music routines, but

                  ; thought it might be fun to track them down

                  7C00:04B6 9AD0098D3D        CALL 3D8D:09D0    ; Show Doc check
  ; screen
                  7C00:04BB B80301                MOV AX,0103
                  7C00:04BE 50                        PUSH AX
                  7C00:04BF 9ADE02443D        CALL 3D44:02DE
                  7C00:04C4 C746F60B00        MOV WORD PTR [BP-0A],000B
                  7C00:04C9 C746F87900        MOV WORD PTR [BP-08],0079
                  7C00:04CE C746FA2801        MOV WORD PTR [BP-06],0128
                  7C00:04D3 C746FC4500        MOV WORD PTR [BP-04],0045
                  7C00:04D8 B008                    MOV AL,08
                  7C00:04DA 50                        PUSH AX
                  7C00:04DB 9A1003443D        CALL 3D44:0310
                  7C00:04E0 8D867AFF            LEA AX,[BP+FF7A]
                  7C00:04E4 16                        PUSH SS
                  7C00:04E5 50                        PUSH AX
                  7C00:04E6 9A36007E3D        CALL 3D7E:0036    ; Show alien's face

                  7C00:04EB C746E6A000        MOV WORD PTR [BP-1A],00A0
                  7C00:04F0 C746EA0100        MOV WORD PTR [BP-16],0001
                  7C00:04F5 C746840300        MOV WORD PTR [BP-7C],0003
                  7C00:04FA 2AC0                    SUB AL,AL
                  7C00:04FC 50                        PUSH AX
                  7C00:04FD 9A1003443D        CALL 3D44:0310
                  7C00:0502 8B46F8                MOV AX,[BP-08]
                  7C00:0505 050700                ADD AX,0007
                  7C00:0508 8946E8                MOV [BP-18],AX
                  7C00:050B FFB62EFF            PUSH [BP+FF2E]
                  7C00:050F FFB62CFF            PUSH [BP+FF2C]
                  7C00:0513 FFB62EFF            PUSH [BP+FF2E]
                  7C00:0517 FFB62CFF            PUSH [BP+FF2C]
                  7C00:051B 9AE400FC44        CALL 44FC:00E4
                  7C00:0520 8BF0                    MOV SI,AX
                  7C00:0522 9A1201E245        CALL 45E2:0112
                  7C00:0527 B90500                MOV CX,0005
                  7C00:052A 8BD0                    MOV DX,AX
                  7C00:052C 8BC6                    MOV AX,SI
                  7C00:052E 8BDA                    MOV BX,DX
                  7C00:0530 2BD2                    SUB DX,DX
                  7C00:0532 F7F1                    DIV CX
                  7C00:0534 8BD0                    MOV DX,AX
                  7C00:0536 4A                        DEC DX
                  7C00:0537 8BC3                    MOV AX,BX
                  7C00:0539 8BDA                    MOV BX,DX
                  7C00:053B 2BD2                    SUB DX,DX
                  7C00:053D F7F3                    DIV BX
                  7C00:053F 42                        INC DX
                  7C00:0540 8BC2                    MOV AX,DX
                  7C00:0542 D1E2                    SHL DX,1
                  7C00:0544 D1E2                    SHL DX,1
                  7C00:0546 03D0                    ADD DX,AX
                  7C00:0548 52                        PUSH DX
                  7C00:0549 9A2801FC44        CALL 44FC:0128
                  7C00:054E 89868EFE            MOV [BP+FE8E],AX
                  7C00:0552 899690FE            MOV [BP+FE90],DX

                  7C00:0556 C78672FE0000    MOV WORD PTR [BP+FE72],0000

                  ; This is the start of the loop the prints out the stupid
                  ; message

                  7C00:055C 52                        PUSH DX
                  7C00:055D 50                        PUSH AX
                  7C00:055E 9A4602FC44        CALL 44FC:0246
                  7C00:0563 8946EC                MOV [BP-14],AX
                  7C00:0566 8956EE                MOV [BP-12],DX
                  7C00:0569 FFB690FE            PUSH [BP+FE90]
                  7C00:056D FFB68EFE            PUSH [BP+FE8E]
                  7C00:0571 9AF201FC44        CALL 44FC:01F2
                  7C00:0576 8946F0                MOV [BP-10],AX
                  7C00:0579 8D46E6                LEA AX,[BP-1A]
                  7C00:057C 16                        PUSH SS
                  7C00:057D 50                        PUSH AX
                  7C00:057E 9A8202C93C        CALL 3CC9:0282
                  7C00:0583 8346E80A            ADD WORD PTR [BP-18],+0A
                  7C00:0587 FFB690FE            PUSH [BP+FE90]
                  7C00:058B FFB68EFE            PUSH [BP+FE8E]
                  7C00:058F B80100                MOV AX,0001
                  7C00:0592 50                        PUSH AX
                  7C00:0593 9A7E01FC44        CALL 44FC:017E
                  7C00:0598 89868EFE            MOV [BP+FE8E],AX
                  7C00:059C 899690FE            MOV [BP+FE90],DX
                  7C00:05A0 FF8672FE            INC WORD PTR [BP+FE72]
                  7C00:05A4 83BE72FE05        CMP WORD PTR [BP+FE72],+05
                  7C00:05A9 7CB1                    JL 055C

                  ; Reads in the code to check    (I think.    Oh hell it really
                  ; doesn't matter)

                  7C00:05AB 9A1201E245        CALL 45E2:0112
                  7C00:05B0 B90C00                MOV CX,000C
                  7C00:05B3 99                        CWD
                  7C00:05B4 F7F9                    IDIV CX
                  7C00:05B6 895682                MOV [BP-7E],DX
                  7C00:05B9 9A1201E245        CALL 45E2:0112
                  7C00:05BE B90C00                MOV CX,000C
                  7C00:05C1 99                        CWD
                  7C00:05C2 F7F9                    IDIV CX
                  7C00:05C4 8956F2                MOV [BP-0E],DX
                  7C00:05C7 9A1201E245        CALL 45E2:0112
                  7C00:05CC B90C00                MOV CX,000C
                  7C00:05CF 99                        CWD
                  7C00:05D0 F7F9                    IDIV CX
                  7C00:05D2 8956FE                MOV [BP-02],DX
                  7C00:05D5 9A1201E245        CALL 45E2:0112
                  7C00:05DA B90C00                MOV CX,000C
                  7C00:05DD 99                        CWD
                  7C00:05DE F7F9                    IDIV CX
                  7C00:05E0 8996F4FE            MOV [BP+FEF4],DX
                  7C00:05E4 FFB62AFF            PUSH [BP+FF2A]
                  7C00:05E8 FFB628FF            PUSH [BP+FF28]
                  7C00:05EC FF7682                PUSH [BP-7E]

                  7C00:05EF 9A2801FC44        CALL 44FC:0128
                  7C00:05F4 89868EFE            MOV [BP+FE8E],AX
                  7C00:05F8 899690FE            MOV [BP+FE90],DX
                  7C00:05FC 52                        PUSH DX
                  7C00:05FD 50                        PUSH AX
                  7C00:05FE 8D86F6FE            LEA AX,[BP+FEF6]
                  7C00:0602 16                        PUSH SS
                  7C00:0603 50                        PUSH AX
                  7C00:0604 9A9A02FC44        CALL 44FC:029A
                  7C00:0609 FFB62AFF            PUSH [BP+FF2A]
                  7C00:060D FFB628FF            PUSH [BP+FF28]
                  7C00:0611 8B46FE                MOV AX,[BP-02]
                  7C00:0614 050C00                ADD AX,000C
                  7C00:0617 50                        PUSH AX
                  7C00:0618 9A2801FC44        CALL 44FC:0128
                  7C00:061D 89868EFE            MOV [BP+FE8E],AX
                  7C00:0621 899690FE            MOV [BP+FE90],DX
                  7C00:0625 52                        PUSH DX
                  7C00:0626 50                        PUSH AX
                  7C00:0627 8DBEF6FE            LEA DI,[BP+FEF6]
                  7C00:062B 16                        PUSH SS
                  7C00:062C 07                        POP ES
                  7C00:062D B9FFFF                MOV CX,FFFF
                  7C00:0630 33C0                    XOR AX,AX
                  7C00:0632 F2                        REPNZ
                  7C00:0633 AE                        SCASB
                  7C00:0634 F7D1                    NOT CX
                  7C00:0636 49                        DEC CX
                  7C00:0637 8BF1                    MOV SI,CX
                  7C00:0639 8D82F6FE            LEA AX,[BP+SI+FEF6]
                  7C00:063D 16                        PUSH SS
                  7C00:063E 50                        PUSH AX
                  7C00:063F 9A9A02FC44        CALL 44FC:029A
                  7C00:0644 FFB62AFF            PUSH [BP+FF2A]
                  7C00:0648 FFB628FF            PUSH [BP+FF28]
                  7C00:064C 8B46F2                MOV AX,[BP-0E]
                  7C00:064F 051800                ADD AX,0018
                  7C00:0652 50                        PUSH AX
                  7C00:0653 9A2801FC44        CALL 44FC:0128
                  7C00:0658 89868EFE            MOV [BP+FE8E],AX
                  7C00:065C 899690FE            MOV [BP+FE90],DX
                  7C00:0660 52                        PUSH DX
                  7C00:0661 50                        PUSH AX
                  7C00:0662 8DBEF6FE            LEA DI,[BP+FEF6]
                  7C00:0666 16                        PUSH SS
                  7C00:0667 07                        POP ES
                  7C00:0668 B9FFFF                MOV CX,FFFF
                  7C00:066B 33C0                    XOR AX,AX
                  7C00:066D F2                        REPNZ
                  7C00:066E AE                        SCASB
                  7C00:066F F7D1                    NOT CX
                  7C00:0671 49                        DEC CX
                  7C00:0672 8BF1                    MOV SI,CX
                  7C00:0674 8D82F6FE            LEA AX,[BP+SI+FEF6]
                  7C00:0678 16                        PUSH SS
                  7C00:0679 50                        PUSH AX

                  7C00:067A 9A9A02FC44        CALL 44FC:029A
                  7C00:067F FFB62AFF            PUSH [BP+FF2A]
                  7C00:0683 FFB628FF            PUSH [BP+FF28]
                  7C00:0687 8B86F4FE            MOV AX,[BP+FEF4]
                  7C00:068B 052400                ADD AX,0024
                  7C00:068E 50                        PUSH AX
                  7C00:068F 9A2801FC44        CALL 44FC:0128
                  7C00:0694 89868EFE            MOV [BP+FE8E],AX
                  7C00:0698 899690FE            MOV [BP+FE90],DX
                  7C00:069C 52                        PUSH DX
                  7C00:069D 50                        PUSH AX
                  7C00:069E 8DBEF6FE            LEA DI,[BP+FEF6]
                  7C00:06A2 16                        PUSH SS
                  7C00:06A3 07                        POP ES
                  7C00:06A4 B9FFFF                MOV CX,FFFF
                  7C00:06A7 33C0                    XOR AX,AX
                  7C00:06A9 F2                        REPNZ
                  7C00:06AA AE                        SCASB
                  7C00:06AB F7D1                    NOT CX
                  7C00:06AD 49                        DEC CX
                  7C00:06AE 8BF1                    MOV SI,CX
                  7C00:06B0 8D82F6FE            LEA AX,[BP+SI+FEF6]
                  7C00:06B4 16                        PUSH SS
                  7C00:06B5 50                        PUSH AX
                  7C00:06B6 9A9A02FC44        CALL 44FC:029A
                  7C00:06BB C746E8B200        MOV WORD PTR [BP-18],00B2
                  7C00:06C0 8D86F6FE            LEA AX,[BP+FEF6]
                  7C00:06C4 8946EC                MOV [BP-14],AX
                  7C00:06C7 8C56EE                MOV [BP-12],SS
                  7C00:06CA 8DBEF6FE            LEA DI,[BP+FEF6]
                  7C00:06CE 16                        PUSH SS
                  7C00:06CF 07                        POP ES
                  7C00:06D0 B9FFFF                MOV CX,FFFF
                  7C00:06D3 33C0                    XOR AX,AX
                  7C00:06D5 F2                        REPNZ
                  7C00:06D6 AE                        SCASB
                  7C00:06D7 F7D1                    NOT CX
                  7C00:06D9 49                        DEC CX
                  7C00:06DA 894EF0                MOV [BP-10],CX
                  7C00:06DD B084                    MOV AL,84
                  7C00:06DF 50                        PUSH AX
                  7C00:06E0 9A1003443D        CALL 3D44:0310
                  7C00:06E5 8D46E6                LEA AX,[BP-1A]
                  7C00:06E8 16                        PUSH SS
                  7C00:06E9 50                        PUSH AX
                  7C00:06EA 9A8202C93C        CALL 3CC9:0282    ; Displays the code
  ; to check

                  7C00:06EF 8346E80A            ADD WORD PTR [BP-18],+0A
                  7C00:06F3 FFB62AFF            PUSH [BP+FF2A]
                  7C00:06F7 FFB628FF            PUSH [BP+FF28]
                  7C00:06FB B85B00                MOV AX,005B
                  7C00:06FE 50                        PUSH AX
                  7C00:06FF 9A2801FC44        CALL 44FC:0128
                  7C00:0704 89868EFE            MOV [BP+FE8E],AX
                  7C00:0708 899690FE            MOV [BP+FE90],DX

                  7C00:070C 52                        PUSH DX
                  7C00:070D 50                        PUSH AX
                  7C00:070E 9A4602FC44        CALL 44FC:0246
                  7C00:0713 8946EC                MOV [BP-14],AX
                  7C00:0716 8956EE                MOV [BP-12],DX
                  7C00:0719 FFB690FE            PUSH [BP+FE90]
                  7C00:071D FFB68EFE            PUSH [BP+FE8E]
                  7C00:0721 9AF201FC44        CALL 44FC:01F2
                  7C00:0726 8946F0                MOV [BP-10],AX
                  7C00:0729 2AC0                    SUB AL,AL
                  7C00:072B 50                        PUSH AX
                  7C00:072C 9A1003443D        CALL 3D44:0310
                  7C00:0731 8D46E6                LEA AX,[BP-1A]
                  7C00:0734 16                        PUSH SS
                  7C00:0735 50                        PUSH AX
                  7C00:0736 9A8202C93C        CALL 3CC9:0282      ; Displays "PROPER
  ; response" msg

                  7C00:073B 8B86F4FE            MOV AX,[BP+FEF4]
                  7C00:073F 2B46F2                SUB AX,[BP-0E]
                  7C00:0742 898672FE            MOV [BP+FE72],AX
                  7C00:0746 0346FE                ADD AX,[BP-02]
                  7C00:0749 898676FE            MOV [BP+FE76],AX
                  7C00:074D 0BC0                    OR AX,AX
                  7C00:074F 7D09                    JGE 075A
                  7C00:0751 050C00                ADD AX,000C
                  7C00:0754 898676FE            MOV [BP+FE76],AX
                  7C00:0758 EB0A                    JMP 0764
                  7C00:075A 3D0C00                CMP AX,000C
                  7C00:075D 7C05                    JL 0764
                  7C00:075F 83AE76FE0C        SUB WORD PTR [BP+FE76],+0C
                  7C00:0764 8B4682                MOV AX,[BP-7E]
                  7C00:0767 038672FE            ADD AX,[BP+FE72]
                  7C00:076B 898674FE            MOV [BP+FE74],AX
                  7C00:076F 0BC0                    OR AX,AX
                  7C00:0771 7D09                    JGE 077C
                  7C00:0773 050C00                ADD AX,000C
                  7C00:0776 898674FE            MOV [BP+FE74],AX
                  7C00:077A EB0A                    JMP 0786
                  7C00:077C 3D0C00                CMP AX,000C
                  7C00:077F 7C05                    JL 0786
                  7C00:0781 83AE74FE0C        SUB WORD PTR [BP+FE74],+0C
                  7C00:0786 8BB6F4FE            MOV SI,[BP+FEF4]
                  7C00:078A D1E6                    SHL SI,1
                  7C00:078C 8BB262FF            MOV SI,[BP+SI+FF62]
                  7C00:0790 89B672FE            MOV [BP+FE72],SI
                  7C00:0794 8B8676FE            MOV AX,[BP+FE76]
                  7C00:0798 D1E0                    SHL AX,1
                  7C00:079A D1E0                    SHL AX,1
                  7C00:079C 03F0                    ADD SI,AX
                  7C00:079E D1E6                    SHL SI,1
                  7C00:07A0 8B8292FE            MOV AX,[BP+SI+FE92]
                  7C00:07A4 8986F4FE            MOV [BP+FEF4],AX
                  7C00:07A8 3D2B00                CMP AX,002B
                  7C00:07AB 7515                    JNZ 07C2
                  7C00:07AD 8BB674FE            MOV SI,[BP+FE74]

                  7C00:07B1 D1E6                    SHL SI,1
                  7C00:07B3 D1E6                    SHL SI,1
                  7C00:07B5 03B672FE            ADD SI,[BP+FE72]
                  7C00:07B9 D1E6                    SHL SI,1
                  7C00:07BB 8B4286                MOV AX,[BP+SI-7A]
                  7C00:07BE 8986F4FE            MOV [BP+FEF4],AX
                  7C00:07C2 C78684FE7800    MOV WORD PTR [BP+FE84],0078
                  7C00:07C8 B85100                MOV AX,0051
                  7C00:07CB 898686FE            MOV [BP+FE86],AX
                  7C00:07CF 898688FE            MOV [BP+FE88],AX
                  7C00:07D3 C7868AFE0900    MOV WORD PTR [BP+FE8A],0009
                  7C00:07D9 C78678FE7900    MOV WORD PTR [BP+FE78],0079
                  7C00:07DF C7867AFE5900    MOV WORD PTR [BP+FE7A],0059
                  7C00:07E5 C7867CFE0000    MOV WORD PTR [BP+FE7C],0000
                  7C00:07EB 8D86F6FE            LEA AX,[BP+FEF6]
                  7C00:07EF 89867EFE            MOV [BP+FE7E],AX
                  7C00:07F3 8C9680FE            MOV [BP+FE80],SS
                  7C00:07F7 C78682FE0000    MOV WORD PTR [BP+FE82],0000
                  7C00:07FD FFB62AFF            PUSH [BP+FF2A]
                  7C00:0801 FFB628FF            PUSH [BP+FF28]
                  7C00:0805 8B86F4FE            MOV AX,[BP+FEF4]
                  7C00:0809 053000                ADD AX,0030
                  7C00:080C 50                        PUSH AX
                  7C00:080D 9A2801FC44        CALL 44FC:0128
                  7C00:0812 89868EFE            MOV [BP+FE8E],AX
                  7C00:0816 899690FE            MOV [BP+FE90],DX
                  7C00:081A 52                        PUSH DX
                  7C00:081B 50                        PUSH AX
                  7C00:081C 8D8630FF            LEA AX,[BP+FF30]
                  7C00:0820 16                        PUSH SS
                  7C00:0821 50                        PUSH AX
                  7C00:0822 9A9A02FC44        CALL 44FC:029A
                  7C00:0827 B047                    MOV AL,47
                  7C00:0829 50                        PUSH AX
                  7C00:082A 9A1003443D        CALL 3D44:0310
                  7C00:082F C7868CFE0000    MOV WORD PTR [BP+FE8C],0000

                  ; All the code you just saw.    I have no clue what it does
                  ; (hey at least I'm honest) but it wasn't important.

                  ; Here is the imput outer loop

                  7C00:0835 FF365220            PUSH [2052]
                  7C00:0839 FF365020            PUSH [2050]
                  7C00:083D 9A2802FD41        CALL 41FD:0228
                  7C00:0842 888670FE            MOV [BP+FE70],AL
                  7C00:0846 0AC0                    OR AL,AL
                  7C00:0848 7503                    JNZ 084D
                  7C00:084A E99200                JMP 08DF
                  7C00:084D 2AE4                    SUB AH,AH
                  7C00:084F 2D0800                SUB AX,0008
                  7C00:0852 745A                    JZ 08AE
                  7C00:0854 48                        DEC AX
                  7C00:0855 48                        DEC AX
                  7C00:0856 7503                    JNZ 085B
                  7C00:0858 E90901                JMP 0964

                  7C00:085B 2D0300                SUB AX,0003
                  7C00:085E 7503                    JNZ 0863
                  7C00:0860 E90101                JMP 0964
                  7C00:0863 8A9E70FE            MOV BL,[BP+FE70]
                  7C00:0867 2AFF                    SUB BH,BH
                  7C00:0869 F687790B57        TEST BYTE PTR [BX+0B79],57
                  7C00:086E 746F                    JZ 08DF
                  7C00:0870 F687790B03        TEST BYTE PTR [BX+0B79],03
                  7C00:0875 740C                    JZ 0883
                  7C00:0877 F687790B02        TEST BYTE PTR [BX+0B79],02
                  7C00:087C 7405                    JZ 0883
                  7C00:087E 80AE70FE20        SUB BYTE PTR [BP+FE70],20
                  7C00:0883 8A8670FE            MOV AL,[BP+FE70]
                  7C00:0887 C49E7EFE            LES BX,[BP+FE7E]
                  7C00:088B 8BB682FE            MOV SI,[BP+FE82]
                  7C00:088F 26                        ES:
                  7C00:0890 8800                    MOV [BX+SI],AL
                  7C00:0892 FF8682FE            INC WORD PTR [BP+FE82]
                  7C00:0896 FFB688FE            PUSH [BP+FE88]
                  7C00:089A 8D8678FE            LEA AX,[BP+FE78]
                  7C00:089E 50                        PUSH AX
                  7C00:089F 9A56049324        CALL 2493:0456
                  7C00:08A4 83C404                ADD SP,+04
                  7C00:08A7 0BC0                    OR AX,AX
                  7C00:08A9 7534                    JNZ 08DF
                  7C00:08AB EB27                    JMP 08D4
                  7C00:08AD 90                        NOP
                  7C00:08AE 83BE82FE00        CMP WORD PTR [BP+FE82],+00
                  7C00:08B3 7404                    JZ 08B9
                  7C00:08B5 FF8E82FE            DEC WORD PTR [BP+FE82]
                  7C00:08B9 B008                    MOV AL,08
                  7C00:08BB 50                        PUSH AX
                  7C00:08BC 9A1003443D        CALL 3D44:0310
                  7C00:08C1 8D8684FE            LEA AX,[BP+FE84]
                  7C00:08C5 16                        PUSH SS
                  7C00:08C6 50                        PUSH AX
                  7C00:08C7 9A6A00843D        CALL 3D84:006A
                  7C00:08CC B047                    MOV AL,47
                  7C00:08CE 50                        PUSH AX
                  7C00:08CF 9A1003443D        CALL 3D44:0310
                  7C00:08D4 8D8678FE            LEA AX,[BP+FE78]
                  7C00:08D8 16                        PUSH SS
                  7C00:08D9 50                        PUSH AX
                  7C00:08DA 9A8202C93C        CALL 3CC9:0282
                  7C00:08DF 83BE8CFE00        CMP WORD PTR [BP+FE8C],+00
                  7C00:08E4 7503                    JNZ 08E9
                  7C00:08E6 E94CFF                JMP 0835

                  ; Next comes the code that checks your entry.    If you follow
                  ; it through you will see it handles not only clearing the
                  ; screen and printing the "GOOD GOING" message but it also
                  ; handles bad entries, etc.

                  7C00:08E9 8BB682FE            MOV SI,[BP+FE82]
                  7C00:08ED C682F6FE00        MOV BYTE PTR [BP+SI+FEF6],00
                  7C00:08F2 8DBE30FF            LEA DI,[BP+FF30]

                  7C00:08F6 8DB6F6FE            LEA SI,[BP+FEF6]
                  7C00:08FA 16                        PUSH SS
                  7C00:08FB 07                        POP ES
                  7C00:08FC B9FFFF                MOV CX,FFFF
                  7C00:08FF 33C0                    XOR AX,AX
                  7C00:0901 F2                        REPNZ
                  7C00:0902 AE                        SCASB
                  7C00:0903 F7D1                    NOT CX
                  7C00:0905 2BF9                    SUB DI,CX
                  7C00:0907 F3                        REPZ
                  7C00:0908 A6                        CMPSB
                  7C00:0909 7405                    JZ 0910
                  7C00:090B 1BC0                    SBB AX,AX
                  7C00:090D 1DFFFF                SBB AX,FFFF
                  7C00:0910 3D0100                CMP AX,0001
                  7C00:0913 1BC0                    SBB AX,AX
                  7C00:0915 F7D8                    NEG AX
                  7C00:0917 8986F2FE            MOV [BP+FEF2],AX
                  7C00:091B 0BC0                    OR AX,AX
                  7C00:091D 7509                    JNZ 0928
                  7C00:091F 837E8401            CMP WORD PTR [BP-7C],+01
                  7C00:0923 7703                    JA 0928
                  7C00:0925 E91C02                JMP 0B44
                  7C00:0928 0BC0                    OR AX,AX
                  7C00:092A 7506                    JNZ 0932
                  7C00:092C 837E8403            CMP WORD PTR [BP-7C],+03
                  7C00:0930 740A                    JZ 093C
                  7C00:0932 0BC0                    OR AX,AX
                  7C00:0934 745E                    JZ 0994
                  7C00:0936 837E8403            CMP WORD PTR [BP-7C],+03
                  7C00:093A 7358                    JNB 0994
                  7C00:093C B047                    MOV AL,47
                  7C00:093E 50                        PUSH AX
                  7C00:093F 9A1003443D        CALL 3D44:0310
                  7C00:0944 8D867AFF            LEA AX,[BP+FF7A]
                  7C00:0948 16                        PUSH SS
                  7C00:0949 50                        PUSH AX
                  7C00:094A 9A36007E3D        CALL 3D7E:0036
                  7C00:094F 83BEF2FE00        CMP WORD PTR [BP+FEF2],+00
                  7C00:0954 7518                    JNZ 096E
                  7C00:0956 FF7680                PUSH [BP-80]
                  7C00:0959 FFB67EFF            PUSH [BP+FF7E]
                  7C00:095D 9A1C04F93C        CALL 3CF9:041C
                  7C00:0962 EB16                    JMP 097A
                  7C00:0964 C7868CFE0100    MOV WORD PTR [BP+FE8C],0001
                  7C00:096A E972FF                JMP 08DF
                  7C00:096D 90                        NOP
                  7C00:096E FF7680                PUSH [BP-80]
                  7C00:0971 FFB67EFF            PUSH [BP+FF7E]
                  7C00:0975 9A7204F93C        CALL 3CF9:0472
                  7C00:097A 89867EFF            MOV [BP+FF7E],AX
                  7C00:097E 895680                MOV [BP-80],DX
                  7C00:0981 B008                    MOV AL,08
                  7C00:0983 50                        PUSH AX
                  7C00:0984 9A1003443D        CALL 3D44:0310
                  7C00:0989 8D867AFF            LEA AX,[BP+FF7A]

                  7C00:098D 16                        PUSH SS
                  7C00:098E 50                        PUSH AX
                  7C00:098F 9A36007E3D        CALL 3D7E:0036
                  7C00:0994 B047                    MOV AL,47
                  7C00:0996 50                        PUSH AX
                  7C00:0997 9A1003443D        CALL 3D44:0310
                  7C00:099C 8D46F6                LEA AX,[BP-0A]
                  7C00:099F 16                        PUSH SS
                  7C00:09A0 50                        PUSH AX
                  7C00:09A1 9A6A00843D        CALL 3D84:006A
                  7C00:09A6 B008                    MOV AL,08
                  7C00:09A8 50                        PUSH AX
                  7C00:09A9 9A1003443D        CALL 3D44:0310
                  7C00:09AE 8D8684FE            LEA AX,[BP+FE84]
                  7C00:09B2 16                        PUSH SS
                  7C00:09B3 50                        PUSH AX
                  7C00:09B4 9A6A00843D        CALL 3D84:006A
                  7C00:09B9 83BEF2FE00        CMP WORD PTR [BP+FEF2],+00
                  7C00:09BE 7503                    JNZ 09C3
                  7C00:09C0 E98500                JMP 0A48
                  7C00:09C3 2AC0                    SUB AL,AL
                  7C00:09C5 50                        PUSH AX
                  7C00:09C6 9A1003443D        CALL 3D44:0310
                  7C00:09CB 8B46F8                MOV AX,[BP-08]
                  7C00:09CE 050700                ADD AX,0007
                  7C00:09D1 8946E8                MOV [BP-18],AX
                  7C00:09D4 FFB62EFF            PUSH [BP+FF2E]
                  7C00:09D8 FFB62CFF            PUSH [BP+FF2C]
                  7C00:09DC 2BC0                    SUB AX,AX
                  7C00:09DE 50                        PUSH AX
                  7C00:09DF 9A2801FC44        CALL 44FC:0128
                  7C00:09E4 89868EFE            MOV [BP+FE8E],AX
                  7C00:09E8 899690FE            MOV [BP+FE90],DX
                  7C00:09EC C78672FE0000    MOV WORD PTR [BP+FE72],0000
                  7C00:09F2 EB04                    JMP 09F8
                  7C00:09F4 FF8672FE            INC WORD PTR [BP+FE72]
                  7C00:09F8 83BE72FE05        CMP WORD PTR [BP+FE72],+05
                  7C00:09FD 7C03                    JL 0A02
                  7C00:09FF E94201                JMP 0B44
                  7C00:0A02 52                        PUSH DX
                  7C00:0A03 50                        PUSH AX
                  7C00:0A04 9A4602FC44        CALL 44FC:0246
                  7C00:0A09 8946EC                MOV [BP-14],AX
                  7C00:0A0C 8956EE                MOV [BP-12],DX
                  7C00:0A0F FFB690FE            PUSH [BP+FE90]
                  7C00:0A13 FFB68EFE            PUSH [BP+FE8E]
                  7C00:0A17 9AF201FC44        CALL 44FC:01F2
                  7C00:0A1C 8946F0                MOV [BP-10],AX
                  7C00:0A1F 8D46E6                LEA AX,[BP-1A]
                  7C00:0A22 16                        PUSH SS
                  7C00:0A23 50                        PUSH AX
                  7C00:0A24 9A8202C93C        CALL 3CC9:0282
                  7C00:0A29 8346E80A            ADD WORD PTR [BP-18],+0A
                  7C00:0A2D FFB690FE            PUSH [BP+FE90]
                  7C00:0A31 FFB68EFE            PUSH [BP+FE8E]
                  7C00:0A35 B80100                MOV AX,0001

                  7C00:0A38 50                        PUSH AX
                  7C00:0A39 9A7E01FC44        CALL 44FC:017E
                  7C00:0A3E 89868EFE            MOV [BP+FE8E],AX
                  7C00:0A42 899690FE            MOV [BP+FE90],DX
                  7C00:0A46 EBAC                    JMP 09F4
                  7C00:0A48 B084                    MOV AL,84
                  7C00:0A4A 50                        PUSH AX
                  7C00:0A4B 9A1003443D        CALL 3D44:0310
                  7C00:0A50 C746E88C00        MOV WORD PTR [BP-18],008C
                  7C00:0A55 FFB62AFF            PUSH [BP+FF2A]
                  7C00:0A59 FFB628FF            PUSH [BP+FF28]
                  7C00:0A5D B85C00                MOV AX,005C
                  7C00:0A60 50                        PUSH AX
                  7C00:0A61 9A2801FC44        CALL 44FC:0128
                  7C00:0A66 89868EFE            MOV [BP+FE8E],AX
                  7C00:0A6A 899690FE            MOV [BP+FE90],DX
                  7C00:0A6E 52                        PUSH DX
                  7C00:0A6F 50                        PUSH AX
                  7C00:0A70 9A4602FC44        CALL 44FC:0246
                  7C00:0A75 8946EC                MOV [BP-14],AX
                  7C00:0A78 8956EE                MOV [BP-12],DX
                  7C00:0A7B FFB690FE            PUSH [BP+FE90]
                  7C00:0A7F FFB68EFE            PUSH [BP+FE8E]
                  7C00:0A83 9AF201FC44        CALL 44FC:01F2
                  7C00:0A88 8946F0                MOV [BP-10],AX
                  7C00:0A8B 8D46E6                LEA AX,[BP-1A]
                  7C00:0A8E 16                        PUSH SS
                  7C00:0A8F 50                        PUSH AX
                  7C00:0A90 9A8202C93C        CALL 3CC9:0282
                  7C00:0A95 2AC0                    SUB AL,AL
                  7C00:0A97 50                        PUSH AX
                  7C00:0A98 9A1003443D        CALL 3D44:0310
                  7C00:0A9D 8346E80B            ADD WORD PTR [BP-18],+0B
                  7C00:0AA1 FFB690FE            PUSH [BP+FE90]
                  7C00:0AA5 FFB68EFE            PUSH [BP+FE8E]
                  7C00:0AA9 B80100                MOV AX,0001
                  7C00:0AAC 50                        PUSH AX
                  7C00:0AAD 9A7E01FC44        CALL 44FC:017E
                  7C00:0AB2 89868EFE            MOV [BP+FE8E],AX
                  7C00:0AB6 899690FE            MOV [BP+FE90],DX
                  7C00:0ABA 52                        PUSH DX
                  7C00:0ABB 50                        PUSH AX
                  7C00:0ABC 9A4602FC44        CALL 44FC:0246
                  7C00:0AC1 8946EC                MOV [BP-14],AX
                  7C00:0AC4 8956EE                MOV [BP-12],DX
                  7C00:0AC7 FFB690FE            PUSH [BP+FE90]
                  7C00:0ACB FFB68EFE            PUSH [BP+FE8E]
                  7C00:0ACF 9AF201FC44        CALL 44FC:01F2
                  7C00:0AD4 8946F0                MOV [BP-10],AX
                  7C00:0AD7 8D46E6                LEA AX,[BP-1A]
                  7C00:0ADA 16                        PUSH SS
                  7C00:0ADB 50                        PUSH AX

                  ; Lot's of code Huh?

                  7C00:0ADC 9A8202C93C        CALL 3CC9:0282
                  7C00:0AE1 C746E8BC00        MOV WORD PTR [BP-18],00BC
                  7C00:0AE6 FFB690FE            PUSH [BP+FE90]
                  7C00:0AEA FFB68EFE            PUSH [BP+FE8E]
                  7C00:0AEE B80100                MOV AX,0001
                  7C00:0AF1 50                        PUSH AX
                  7C00:0AF2 9A7E01FC44        CALL 44FC:017E
                  7C00:0AF7 89868EFE            MOV [BP+FE8E],AX
                  7C00:0AFB 899690FE            MOV [BP+FE90],DX
                  7C00:0AFF 52                        PUSH DX
                  7C00:0B00 50                        PUSH AX
                  7C00:0B01 9A4602FC44        CALL 44FC:0246
                  7C00:0B06 8946EC                MOV [BP-14],AX
                  7C00:0B09 8956EE                MOV [BP-12],DX
                  7C00:0B0C FFB690FE            PUSH [BP+FE90]
                  7C00:0B10 FFB68EFE            PUSH [BP+FE8E]
                  7C00:0B14 9AF201FC44        CALL 44FC:01F2
                  7C00:0B19 8946F0                MOV [BP-10],AX
                  7C00:0B1C 8D46E6                LEA AX,[BP-1A]
                  7C00:0B1F 16                        PUSH SS
                  7C00:0B20 50                        PUSH AX
                  7C00:0B21 9A8202C93C        CALL 3CC9:0282
                  7C00:0B26 B80100                MOV AX,0001
                  7C00:0B29 50                        PUSH AX
                  7C00:0B2A 9AF4019324        CALL 2493:01F4
                  7C00:0B2F 83C402                ADD SP,+02
                  7C00:0B32 B047                    MOV AL,47
                  7C00:0B34 50                        PUSH AX
                  7C00:0B35 9A1003443D        CALL 3D44:0310
                  7C00:0B3A 8D46F6                LEA AX,[BP-0A]
                  7C00:0B3D 16                        PUSH SS
                  7C00:0B3E 50                        PUSH AX
                  7C00:0B3F 9A6A00843D        CALL 3D84:006A
                  7C00:0B44 83BEF2FE00        CMP WORD PTR [BP+FEF2],+00
                  7C00:0B49 7508                    JNZ 0B53
                  7C00:0B4B FF4E84                DEC WORD PTR [BP-7C]
                  7C00:0B4E 7403                    JZ 0B53
                  7C00:0B50 E9A7F9                JMP 04FA
                  7C00:0B53 FF76F4                PUSH [BP-0C]
                  7C00:0B56 8D867AFF            LEA AX,[BP+FF7A]
                  7C00:0B5A 50                        PUSH AX
                  7C00:0B5B FFB62EFF            PUSH [BP+FF2E]
                  7C00:0B5F FFB62CFF            PUSH [BP+FF2C]
                  7C00:0B63 FFB62AFF            PUSH [BP+FF2A]
                  7C00:0B67 FFB628FF            PUSH [BP+FF28]
                  7C00:0B6B E88EF5                CALL 00FC
                  7C00:0B6E 8B86F2FE            MOV AX,[BP+FEF2]
                  7C00:0B72 5E                        POP SI
                  7C00:0B73 5F                        POP DI

                  ; Here is the exit code I was talking about

                  7C00:0B74 8BE5                    MOV SP,BP
                  7C00:0B76 5D                        POP BP
                  7C00:0B77 CB                        RETF

                  7C00:0B78 B85A06                MOV AX,065A
                  7C00:0B7B CB                        RETF
                  7C00:0B7C B89006                MOV AX,0690
                  7C00:0B7F CB                        RETF

                            Ok, after looking through all of that, can    you    tell me
                  where to put    the    patch.      Simple.      How    about right at the
                  begining of the doc check right    after the music routines (ie
                  address 7C00:04B6).    Hey yeah ... good idea.      But    how do we
                  want to patch    it.      Well,    since    this    is    a    higher    level
                  language, we just can't use RETF.    We must reset the stack.
                            Since I hate large patches,    a    simply    decided    on    the
                  follow patch

                  7C00:04B6 E9BB06                JMP B74

                            Ok, by jumping to 0B74, we still get the    music    but the
                  actual doc check    is    not    executed.      But    there    is still a
                  problem.    Remember how I said    that    AX    was tested after the
                  doc check.    Well,    we    still    have    to fake the    check.      The
                  easiest way, is to simply NOP the condition jmp.    Here is the
                  section of code again

                  45E2:0235 9A46010F4A        CALL 7C00:146      ; Call to Doc Check
                  45E2:023A 83C404                ADD    SP,+04
                  45E2:023D 0BC0                    OR      AX,AX
                  45E2:023F 7465                    JZ      02A6

                            If you    remember, when you enter the right code, AX will
                  be set to 0001 when we exit to    45E2:023A.    If we OR 0001 and
                  0001 we get 0001.    Here is the binary ...

  0000 0000 0000 0001    (remember OR means
  if    either is bit
  or    0000 0000 0000 0001        is 1)
  ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
  0000 0000 0000 0001

                            Clearly we    don't want to branch at the JZ at 45E2:023F.
                  So, to finish the patch we simply NOP that jmp.

                            Oh boy.. that was hard.      So    let's    test    it    out.    But
                  first, a little    forsight.    We will need a unique    string    of
                  bytes to search    for when making the patch.    I say we use the
                  code from 7C00:04C4    to    7C00:04CE      and    from    45E2:0235    to
                  45E2:023F.    Yea, write    down    the    hex    equivelent    and    then
                  restart.    Again break    in right after the switch to graphics.
                  Now add the    patch    (ie    A    7C00:04B6    <ENTER>,    etc.).      Now
                  execute the program.

                            SHIT!    It    worked,    we    are    fucking amazing.      Ok,    now
                  adding the patch    permenatly.      Using    PCTOOLS    (or whatever)
                  search the file STARCON.EXE for the bytes mention above

                  (ie: C746F60B00C746F87900C746FA2801)            But        wait,        now
                  matches...Hmmm strange.    It was there just a minute ago...but
                  wait there... another file STARCON.OVL (as we    all    know .OVL
                  mean OVERLAY).    Let's try searching this one.

                            There we    go,    that's better (it should should up on the
                  13 sector read in).    Now to add    the    patch.    Simply find the
                  search bytes and    the go backwards until the first    occurance
                  of the hex byte 9A.    Add the patch here.    Save it.

                            Next, add    the patch to 45E2:023F.    Search for the bytes
                  83C4040BC07465.    The should appear    on sector 3 (give or take
                  a few sectors).    Now simply change the 2 bytes 74 65 to 90 90
                  and save the sector.    Now, you are good to go.

                            Well shit, this has been some hell of a textfile.      1113
                  lines in all.      But    what    detail.      Ok    I    hope    you learned
                  something from all of this.    And    this    end the first part of
                  CRACKING 101 - the 1990 edition.    From here out all lessons (
                  lesson 5 and up) will be released on their own.

                            I would like the thank Phantom Phlegm for    pushing me to
                  finish this shit.

                            Till lesson 5 this is Buckaroo Banzai, signing off.

                  OH... I can    be    reached for personal help via E-MAIL on LORD
                  WOLFEN's CASTLE or TOS...

Help file generated by VB HelpWriter.

