
Message Compiler Outline

Message Compiler (MC.EXE)
Using the Message Compiler
Message Compiler Source Files

Header Section
Message Definitions

Language-Specific Message Text Definitions

Utilities for the Windows NT SDK

C/C++ Compiler Outline
C/C++ Compiler Options
Linker Outline
Linker Options
Library Manager Outline
Library Manager Options
Message Compiler Outline
NMAKE Outline
NMAKE Options
Resource Compiler Outline
Resource Compiler Statements
Warnings and Error Messages

Message Compiler (MC.EXE)
The Message Compiler (MC.EXE) converts message text files into binary files suitable for inclusion in a
resource script (.RC file). The Resource Compiler is then used to places the messages into a resource
for inclusion in an application or DLL. Applications that perfom event logging typically use an
independent resource-only DLL that contains the messages, rather than carry the messages in the
application image. See "Message Compiler Source Files" for complete information on the Message
Compiler source-file format. For more information on event logging, see the event logging overviews in
the Win32 API documentation.

Contents
Using the Message Compiler

Message Compiler Source Files

Header Section

Message Definitions

Language-Specific Message Text Definitions

Using the Message Compiler
The Message Compiler utility has the following command-line syntax:

Syntax

MC [-v] [-w] [-s] [-h dir] [-r dir] filename[.MC]...

Parameters

-v
Generates verbose output to stderr.

-w
Generates a warning message whenever an insert escape sequence is seen that is a superset of
the type supported by the OS/2 MKMSGF utility. These are any escape sequences other than %0
and %n. This option is useful for converting MKMSGF message files to MC format.

-s
Adds an extra line to the beginning of each message that is the symbolic name associated with the
message identifier.

-c
Marks all messages as user-defined by setting the Customer code flag (the 29th bit of the 32-bit
message). This bit can be used to determine if a message has come from the system or from an
application.

-h dirs
Specifies the target directory of the generated include file. The include-file name is the base name of
the .MC file with a .H extension.

-r dir
Specifies the target directory of the generated Resource Compiler script (.RC file). The script file
name is the base name of the .MC file with a .RC extension.

filename[.MC]
Specifies one or more input message files that is compiled into one or more binary resource files,
one for each language specified in the Message Compiler source files.

The Message Compiler reads the source file and generates a C/C++ include file containing definitions
for the symbolic names. For each LanguageId statement, MC generates a binary file containing a
message table resource. It also generates a single RC script file that contains the appropriate
Resource Compiler statements to include each binary output file as a resource with the appropriate
symbolic name and language type.

Message Compiler Source Files
Message Compiler source files (default extension .MC) are converted into binary resource files by the
Message Compiler (MC.EXE). The binary resources are then passed to the Resource Compiler which
puts them in the resource table for an application or DLL. For applications performing event logging,
the messages are typically placed in a DLL that contains nothing but the message table. This DLL is
registered by the application as the source of message text for the events that it logs. The application
then uses the event logging APIs or the FormatMessage API to retrieve and use the message text.

Messages are defined using ASCII text in a text file. The Message Compiler source-format supports
multiple versions of the same message text, one for each national language supported by your
application. The Message Compiler automatically assigns numbers to each message, and generates a
C/C++ include file for use by the application to access a message using a symbolic constant. The
purpose of the message text file is to define all of the messages needed by an application, in a format
that makes it easy to support multiple languages with the same image file.

General Syntax
The general syntax for lines in the message source file is:

keyword=value

Spaces around the equal sign are ignored, and the value is delimited by white space (including line
breaks) from the next keyword=value pair. Case is ignored when comparing against keyword names.
The value portion can be a numeric integer constant using C/C++ syntax; a symbol name that follows
the rules for C/C++ identifiers; or a file name that follows the rules for then base name of a file with the
FAT file system (8 characters or less, with no period characters).

Comments
Comment lines are allowed in the source file. Place a semicolon (;) at the beginning of the line, and
follow it with the C++ line-comment delimiter (//). For example:

;//This is a comment.

The leading semicolon prevents the comment line from being processed. The emitted comment line will
begin with //.

Header Section
The overall structure of a message text file consists of a header which defines names and language
identifiers for use by the message definitions in the body of the file. The header contains zero or more
of the following statements:

MessageIdTypedef = [type]
SeverityNames = (name=number[:name])
FacilityNames = (name=number[:name])
LanguageNames = (name=number:filename)

These keywords have the following meaning:

MessageIdTypedef = type
Gives a typedef name that is used in a type cast for each message code in the generated include
file. Each message code appears in the include file with the format:
#define name ((type) 0xnnnnnnnn)
The default value for type is empty, and no type cast is generated. It is the programmer's
responsibility to specify a typedef statement in the application source code to define the type. The
type used in the typedef must be large enough to accommodate the entire 32-bit message code.

SeverityNames = (name=number[:name])
Defines the set of names that are allowed as the value of the Severity keyword in the message
definition. The set is delimited by left and right parentheses. Associated with each severity name is a
number that, when shifted left by 30, gives the bit pattern to logical-OR with the Facility value and
MessageId value to form the full 32-bit message code.
The default value of this keyword is:
SeverityNames=(
 Success=0x0
 Informational=0x1
 Warning=0x2
 Error=0x3
)

Severity values occupy the high two bits of a 32-bit message code. Any severity value that does not
fit in two bits is an error. The severity codes can be given symbolic names by following each value
with :name

FacilityNames = (name=number[:name])
Defines the set of names that are allowed as the value of the Facility keyword in the message
definition. The set is delimited by left and right parentheses. Associated with each facility name is a
number that, when shift it left by 16 bits, gives the bit pattern to logical-OR with the Severity value
and MessageId value to form the full 32-bit message code.
The default value of this keyword is:
FacilityNames=(
 System=0x0FF
 Application=0xFFF
)

Facility codes occupy the low order 12 bits of the high order 16-bits of a 32-bit message code. Any
facility code that does not fit in 12 bits is an error. This allows for 4,096 facility codes. The first 256
codes are reserved for use by the system software. The facility codes can be given symbolic names

by following each value with :name
LanguageNames = (name=number:filename)

Defines the set of names that are allowed as the value of the Language keyword in the message
definition. The set is delimited by left and right parentheses. Associated with each language name is
a number and a file name that are used to name the generated resource file that contains the
messages for that language. The number corresponds to the language identifier to use in the
resource table. The number is separated from the file name with a colon.
The initial value of LanguageNames is:
LanguageNames=(English=1:MSG00001)

Any new names in the source file which don't override the built-in names are added to the list of
valid languages. This allows an application to support private languages with descriptive names.

Message Definitions
Following the header section is the body of the Message Compiler source file. The body consists of
zero or more message definitions. Each message definition begins with one or more of the following
statements.

MessageId = [number|+number]
Severity = severity_name
Facility = facility_name
SymbolicName = name

The MessageId statement marks the beginning of the message definition. A MessageID statement is
required for each message, although the value is optional. If no value is specified, the value used is the
previous value for the facility plus one. If the value is specified as +number then the value used is the
previous value for the facility, plus the number after the plus sign. Otherwise, if a numeric value is
given, that value is used. Any MessageId value that does not fit in 16 bits is an error.

The Severity and Facility statements are optional. These statements specify additional bits to OR into
the final 32-bit message code. If not specified they default to the value last specified for a message
definition. The initial values prior to processing the first message definition are:

Severity=Success
Facility=Application

The value associated with Severity and Facility must match one of the names given in the
FacilityNames and SeverityNames statements in the header section.

The SymbolicName statement allows you to associate a C/C++ symbolic constant with the final 32-bit
message code.

The constant definition in the generated include file has the format:

//
// message text
//

#define name ((type) 0xnnnnnnnn)

The comment before the definition is a copy of the message text for the first language specified in the
message definition. The name is the value given in the SymbolicName statement. The type is the type
name specified in the MessageIdTypedef statement. If no type was specified, the cast is not
generated.

The following comment appears in each header file to explain the bit-fields in the 32-bit message:

// Values are 32 bit values, laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//

The meanings of the fields in the message code are:

Sev
The severity code:
Bits Meaning
00 Success
01 Informational
10 Warning
11 Error

C
The Customer code flag.

R
A reserved bit.

Facility
The facility code.

Code
The status code for the facility.

Language-Specific Message Text Definitions
After the message definition statements, you specify one or more message text definitions.

Syntax

Language=language_name
messagetext
.

Each message begins with a Language statement that identifies the binary output file for this
message. The first line of the message text begins with the next line. The message text is terminated
by a line containing a single period at the beginning of the line, immediately followed by a new line. No
spaces are allowed around the terminating period. Within the message, blank lines and white space
are preserved as part of the message.

You can specify several escape sequences for formatting the message when the message text is used
by the application or an event viewer. The percent sign character (%) begins all escape sequences.

%0
Terminates a message text line without a trailing newline. This can be used to build up long lines or
to terminate the message without a trailing newline, which is useful for prompt messages.

%n[!printf-format-specifier!]
Identifies an insert. Each insert refers to a parameter used in a call to the FormatMessage API.
FormatMessage returns an error if the message text specifies an insert that was not passed to
FormatMessage.
The value of n can be between 1 and 99. The printf format specifier must be enclosed in
exclamation marks. It is optional and defaults to !s! if not specified.
The printf format specifier can contain the * specifier for either the precision or width components.
When specified, they consume inserts numbered n+1 and n+2 for their values at run time. MC prints
a warning message if these inserts are specified elsewhere in the message text.

Any character following a percent sign other than a digit is formatted in the output message without the
percent sign.

You can specify the following additional escape sequences:

%%
Generates a single percent sign in the formatted message text.

%\
Generates a hard line break when it occurs at the end of a a line. Useful when FormatMessage is
supplying normal line breaks so the message fits in a certain width.

%r
Generates a hard carriage return, without a trailing newline character.

%b
Generates a space character in the formatted message text. This can be used to insure there are
the appropriate number of trailing spaces in a message text line.

%.
Generates a single period character in the formatted message text. This can be used to get a period
at the beginning of a line without terminating the message definition.

%!
Generates a single exclamation point in the formatted message text. This can be used to specify an

exclamation point immediately after an insert.

