
What’s New

This version of the Microsoft ODBC Driver for Oracle includes performance and stability
improvements. You should find added functionality due to the following additions:

· Improved configuration control through additions to the ODBC Data Source Administrator,
including Translation, Performance, and a Customization option for enforcing the Standard Day-of-
Week. For details, see Adding and Modifying Data Sources Using Setup and Connection String
Attributes.

· Extended Help file.

Overview

The Microsoft® ODBC Driver for Oracle allows you to connect your ODBC-compliant application to an
Oracle database. This version adds additional performance and control features, including access to
PL/SQL packages, XA/DTC integration, and Oracle access from within Internet Information Server
(IIS).The ODBC driver conforms to the Open Database Connectivity (ODBC) specification described
in the ODBC Programmer's Reference (Version 2.0) for your platform.
This Help file describes how to set up, configure, and use the ODBC driver, and includes the following
sections:

· System Requirements
· Adding and Modifying Data Sources Using Setup
· Configuring the Oracle ODBC Driver
· Connecting to a Data Source
· ODBC Conformance Levels
· Mapping Data Types
· Using Microsoft Internet Information Server
· Using Operating System Authentication
· Limitations of Using Keyset-Driven Cursors
· Returning Array Parameters from Stored Procedures
· Connect Options Table
· Statement Options Table
· Cursor Type and Concurrency Combinations Table
· Error Messages
· API Functions

· Thread-Safety Notes on API Functions
· Notes on API Functions
· Core level Functions
· Level 1 Functions
· Level 2 Functions

System Requirements

To use the Microsoft ODBC Driver for Oracle, you must have, Windows 95 or Windows NT and Oracle
Client Software, version 7.3 or higher installed on your Windows system. The Microsoft ODBC Driver
for Oracle supports only SQL*Net 2.3 or later. For more information on Oracle products, refer to your
Oracle documentation set.

Adding and Modifying Data Sources Using Setup

A data source identifies a path to data that may include a network library, server, database, and other
attributes—in this case, the data source is the path to an Oracle database. In order to connect to a
data source, the Driver Manager checks the Window registry for specific connection information.

The registry entry created by the ODBC Data source Administrator is used by the ODBC Driver
Manager and ODBC drivers. This entry contains information about each data source and its
associated driver. Before you can connect to a data source, its connection information must be added
to the registry.

To add and configure data sources, access the ODBC Administrator through the 32bit ODBC Control
Panel in Windows. The ODBC Administrator then updates your data source connection information.
As you add data sources, the ODBC Administrator updates the registry information for you.

Adding a Data Source for Windows
1 To start the ODBC Administrator, double-click the ODBC icon in the Windows Control Panel.
2 When you see the ODBC Data Source Administrator dialog box, click the Add button. The

Create New Data Source dialog box appears.
3 Select the ODBC driver, and then click Finish. The Microsoft ODBC for Oracle Setup dialog box

appears.
4 In the Data Source Name box, enter the name of the data source you want to access. It can be

any name that you choose.
5 In the Description box, enter the description for the driver. This is an optional field that describes

the database driver that the data source connects to. It can be any name that you choose.
6 In the User Name box, enter your database user name. The user name is your database user id.
7 In the Server box, enter the connect string for the Oracle Server engine. The    connect string

identifies the Oracle Server engine that you want to access.
8 Click OK to add this data source.

Note      The Data Sources dialog box appears, and the ODBC Administrator updates the registry
information. The User Name and connect string that you enter become the default data source
connection values for this data source. That is, when you connect to the data source using either a
dialog box or connection string, these values become the default entries for the data source
connection.

9 You can click Options to make more specifications about the Oracle ODBC setup.
Translation
Click the Select button to choose a loaded data translator. The default is No Translator.

Performance
Include REMARKS in Catalog Functions specifies whether the driver returns Remarks columns
for the SQLColumns result set. The ODBC Driver provides faster access when this value is not set.
Include SYNONYMS in SQL Columns specifies whether the driver returns column information.

Customization
Enforce ODBC DayOfWeek Standard specifies whether the result set will conform to the ODBC
specified day-of-week format (Sunday=1; Saturday=7).

1 Click Add to add another data source or click Close to exit.

Modifying a data source for Windows
1 Invoke the ODBC Administrator. The Data Sources dialog box appears.
2 In the Data Sources dialog box, select the Oracle data source you want to modify and then click

Setup. The Microsoft ODBC for Oracle Setup dialog box appears.

3 Modify the applicable data source fields, and then click OK.

When you have finished modifying the information in this dialog box, the ODBC Administrator updates
the registry information.

Configuring the ODBC Driver for Oracle

You can control performance of the ODBC driver by knowing the data environment and correctly
setting the parameters of the data source connection through the ODBC Data Sources Administrator
dialog box or through connect string parameters. The dialog box provides the following controls for
connecting to a data source using the dialog box or using connect strings:

· User DSN tab      Displays a list of the Data Source Names that are local to the computer.
· System DSN tab      Displays a dialog box that allows you to add or remove a system data source.

System data sources are accessible to all users on the local machine.
· File DSN tab      Displays a dialog box that allows you to add or remove a file data source from the

local machine. File data sources can be shared by all users who have the same driver installed.
· ODBC Drivers tab      Displays a list of the installed ODBC drivers.
· Tracing tab      Displays a dialog box that enables you to specify how the ODBC Driver Manager

traces calls to ODBC functions. You can configure tracing separately for each installed ODBC
application.

· About tab      Displays a dialog box that lists the installed ODBC component files.

After you add a data source you can use the ODBC Data Sources Administrator dialog box to
configure the access to your data source. Select a data source, then click one of the tabs to edit or
review the information.

The default limit (50) on the number of Statement handles is set by the server.

Connecting to a Data Source

An ODBC application can pass connection information in a number of ways. For example, the
application might have the driver always prompt the user for connection information. Or the
application might expect a connection string that specifies the data source connection. How you
connect to a data source depends on the connection method that your ODBC applications uses.

One common way of connecting to a data source is through the Data Source dialog box. If your
ODBC application is set up to use a dialog box, that dialog box is displayed and prompts you for the
appropriate data source connection information.

Another way is through use of the connection string.

Connecting to a data source using a dialog box
1 When you see the Data Source dialog box, select an Oracle data source and then click OK. The

Connect dialog boxes appears.
2 Fill in the appropriate information for the Connect dialog box, and then click OK.

Once the connection information is verified, your application can access the information that the data
source contains using the ODBC driver.

Connection String Attributes

Some applications may require a connection string that specifies data source connection information
instead of using a dialog box to obtain this information. The connection string is made up of a number
of attributes that specify how a driver connects to a data source. An attribute identifies a specific piece
of information that the driver needs to know before it can make the appropriate data source
connection. Each driver may have a different set of attributes, but the connection string format is
always the same. A connection string has the following format:

“DSN=data-source-name[;SERVER=value] [;PWD=value] [;UID=value]
[;<Attribute>=<value>]”

Note      The version of the Microsoft ODBC Driver for Oracle supports the slightly different version 1
connection string format.
.

You must specify the data-source-name if you do not specify the UID, PWD, SERVER (or
CONNECTSTRING) and DRIVER attributes. However, all other attributes are optional. If you do not
specify an attribute, that attribute defaults to the one that you specified in the DSN tab of the ODBC
Data Source Administrator. The attribute value might be case-sensitive.

The attributes for the connection string are as follows:

Attribute Description Default value
DSN The data source name. This name is

listed in the ODBC Drivers tab of the
ODBC Data Sources Administrator.

“”

PWD The password for the Oracle server that
you want to access.

“”

SERVER The connect string for the Oracle Server
that you want to access.

“”

UID The Oracle Server user name.
Depending on your system, this attribute
may not be optional—that is, certain
databases and tables may require this
attribute for security purposes.
Use    “/” to use Oracle’s operating
system authentication.

“”

BUFFERSIZE The optimal buffer size used when
fetching columns.
The driver optimizes fetching so that one
fetch from the Oracle Server returns
enough rows to fill a buffer of this size.   
Larger values tend to increase
performance, if you’re fetching a lot of
data.

65535

SYNONYMCOLUMNS When this value is true (1), an
SQLColumn() API call returns column
information    Otherwise SQLColumn()
returns only columns for tables and
views. The ODBC Driver provides faster
access when this value is not set.

1

REMARKS When this value is true (1) the driver
returns Remarks columns for the

0

SQLColumns result set. The ODBC
Driver provides faster access when this
value is not set.

StdDayOfWeek Enforces the ODBC standard for the
DAYOFWEEK scalar;    By default this is
turned on, but those users who need the
localized version can change the
behavior to use whatever Oracle returns.

1

For example, a connection string that connects to the Employees data source using the mickey.world
Oracle server as the Oracle User cindy, would be:

“DSN=Employees;UID=cindy;PWD=secret;SERVER=mickey.world”

Another example, a connection string that connects to the Payroll data source using operating system
authentication and the moola Oracle server would be:

“DSN=Payroll;UID=/;PWD=;SERVER=moola”

ODBC Conformance Levels

ODBC defines two types of conformance standards for drivers—the API conformance standard and
the SQL grammar conformance standard. API conformance refers to the functions that a driver
supports. SQL conformance refers to the SQL grammar that the driver supports. Each conformance
standard is made up of levels.

API Conformance Level
The ODBC driver supports the Core and Level 1 API Functions. The driver also supports the following
Level 2 functions:

· SQLBrowseConnect()
· SQLDataSources()
· SQLDescribeParam()
· SQLExtendedFetch()
· SQLForeignKeys()
· SQLMoreResults()
· SQLNativeSql()
· SQLNumParams()
· SQLPrimaryKeys()
· SQLProcedureColumns()
· SQLProcedures()
· SQLSetPos()
· SQLSetScrollOptions()

Supported Options
The driver supports the following options for the SQLGetConnectOption() and
SQLSetConnectOption() Level 1 functions:

· SQL_ACCESS_MODE (SQLGetConnectOption() only)
· SQL_AUTOCOMMIT
· SQL_ODBC_CURSORS
· SQL_OPT_TRACEFILE
· SQL_OPT_TRACE
· SQL_TRANSLATE_DLL
· SQL_TRANSLATE_OPTION
· SQL_TXN_ISOLATION

The driver supports the following options for the SQLGetStmtOption() and SQLSetStmtOption()
Level 1 functions:

· SQL_BIND_TYPE
· SQL_CONCURRENCY
· SQL_CURSOR_TYPE
· SQL_KEYSET_SIZE
· SQL_MAX_ROW
· SQL_ROWSET_SIZE

SQL Conformance Levels

The ODBC driver supports the Minimum SQL grammar and Core SQL grammar and also supports the
following ODBC extensions to SQL:

· Date, time, and timestamp data
· Left and right Outer joins
· Numeric functions:

abs log round tan
ceiling log10 second truncate
cos mod sign
exp pi sin
floor power sqrt

· Date functions:
curdate dayofweek monthname second
curtime dayofyear minute week
dayname hour now year
dayofmonth month quarter

· String functions:
ascii left right ucase
char length rtrim
concat ltrim soundex
lcase replace substring

· Type-conversion function:
convert

· The following system functions:
ifnull user

Mapping Data Types

The Oracle Server supports a set of data types. The ODBC driver maps these data types to their
appropriate ODBC SQL data types. The following table lists the Oracle 7.3 Server data type and its
corresponding ODBC SQL data type.

Oracle Server Data Type ODBC SQL Data Type
CHAR SQL_CHAR
DATE SQL_TIMESTAMP
FLOAT SQL_DOUBLE
INTEGER SQL_DECIMAL
LONG SQL_LONGVARCHAR
LONG RAW SQL_LONGVARBINARY
NUMBER SQL_DECIMAL
RAW SQL_VARBINARY
VARCHAR2 SQL_VARCHAR

Note      ODBC SQL data types do not support the Oracle MLSLABEL data type. Scalar values are
returned in the local code page format.

Using Microsoft Transaction Server

You can enable an Oracle database to work with transactional Microsoft Transaction Server (MTS)
components on Windows NT and Windows 95. To enable an Oracle database to work with MTS
components that support transactions, systems administrators should create a view named
V$XATRANS$. To create this script, you must run an Oracle-supplied script. For more information,
see the Microsoft Transaction Server Help or your Oracle documentation.

Using Microsoft Internet Information Server

If you encounter difficulty connecting from within an Internet Information Server (IIS) script
(particularly an ORA-12641 error), add the following line to the SQLNET.ORA file.   
SQLNET.AUTHENTICATION_SERVICES = (none)

This will disable the Secure Network Services so that Anonymous authentication can work.   

Using Operating System Authentication

Oracle operating system authentication relies on the underlying operating system to control access to
database accounts. Users need not enter a password when using this type of login.

To take advantage of this feature, specify “/” as the userid and do not specify a password when
connecting using any of the connection APIs, SQLBrowseConnect, SQLConnect and
SQLDriverConnect.

Limitations of Using Keyset-Driven Cursors

You must be able to retrieve a single ROWID column for the table queried. A keyset-driven cursor
cannot be used on joins, queries, or statements containing DISTINCT, GROUP BY, UNION,
INTERSECT or MINUS clauses.

Returning Array Parameters from Stored Procedures

In Oracle 7.3 there is no way to access a PL/SQL Record Type except from a PL/SQL program. If a
packaged procedure/function has a formal argument defined as a PL/SQL Record Type, it is not
possible to bind that formal argument as a parameter. Use the PL/SQL TABLE type in the Microsoft
Oracle ODBC driver to invoke array parameters from procedures containing the correct escape
sequences.

 To invoke the procedure use the following syntax
{call <package-name>.<proc-or-func>;
(..., {resultset <max-records-requested> ,<formal-array-param_1>,;
 <formal-array-param_2>,...,<formal-array-param_n> }, ...) }

Note     
· The <max-records-requested> parameter must be >= number of rows present in the result

set. Otherwise Oracle returns an error that is passed to you by the driver.   
· You cannot use PL/SQL records as array parameters. Each array parameter can represent only

one column of a database table.

The following example defines a package containing two procedures that return different result sets,
then provides two ways to return result sets from the package:

Package definition:
CREATE OR REPLACE PACKAGE SimplePackage AS

TYPE t_id is TABLE of NUMBER(5)
 INDEX BY BINARY_INTEGER;

TYPE t_Course is TABLE of VARCHAR2(10)
 INDEX BY BINARY_INTEGER;

TYPE t_Dept is TABLE of VARCHAR2(5)
 INDEX BY BINARY_INTEGER;

PROCEDURE proc1
 (o_id OUT t_id,

 ao_course OUT t_Course,
ao_dept OUT t_Dept

);

TYPE t_pk1Type1 IS TABLE OF VARCHAR2(100) INDEX BY BINARY_INTEGER;
TYPE t_pk1Type2 IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
PROCEDURE proc2

(
i_Arg1 IN NUMBER,
ao_Arg2 OUT t_pk1Type1,
ao_Arg3 OUT t_pk1Type2
);

END SimplePackage;

CREATE OR REPLACE PACKAGE BODY SimplePackage AS
 PROCEDURE proc1 (o_id OUT t_id,
 ao_course OUT t_Course, ao_dept OUT t_Dept) AS
 BEGIN

 o_id(1):= 200;
 ao_course(1) := 'M101';
 ao_dept(1) := 'EEE' ;

 o_id(2) := 201;
 ao_course(2) := 'PHY320';
 ao_dept(2) := 'ECE' ;

 END proc1;
PROCEDURE proc2

(
i_Arg1 IN NUMBER,
ao_Arg2 OUT t_pk1Type1,
ao_Arg3 OUT t_pk1Type2
)

AS
i NUMBER;

BEGIN
FOR i IN 1 .. i_Arg1 LOOP

ao_Arg2(i) := 'Row Number ' || to_char(i);
END LOOP;
FOR i IN 1 .. i_Arg1 LOOP

ao_Arg3(i) := i;
END LOOP;

END proc2;
END SimplePackage;

 To invoke the procedure, PROC1
1 Return all the columns in a single result set:
{ call SimplePackage.Proc1({resultset 3, o_id , ao_course, ao_dept })
}

2 Return each column as a single result set:
{call SimplePackage.Proc1({resultset 3, o_id}, {resultset 3,
ao_course}, {resultset 3, ao_dept}) }
This returns three result sets, one for each column.

 To invoke procedure, PROC2
1 Return all the columns in a single result set:
{call SimplePackage.Proc2(5 , {resultset 5, ao_Arg2, ao_Arg3}) }

2 Return each column as a single result set:
{call SimplePackage.Proc2(5 , {resultset 5, ao_Arg2}, {resultset 5,
ao_Arg3}) }

Ensure that your applications fetch all the result sets using SQLMoreResults API. For more
information, refer to the Microsoft ODBC SDK documentation.

Note      In the Microsoft ODBC for Oracle driver version 2.0, you cannot use Oracle functions that
return PL/SQL arrays to return result sets.

Notes on API Functions

The Microsoft ODBC Driver for Oracle supports the Core, Level 1 and Level 2 API functions.    These
functions are listed in ODBC Conformance Levels.

· Core level interface(CLI) conformance provides features defined in the ISO CLI specification and
the mandatory features defined in the X/Open CLI specification.

· Level 1 conformance provides Core level interface functionality as well as additional features such
as transactions.

· Level 2 conformance provides Level 1 functionality as well as additional features like bookmarks,
dynamic parameters, and asynchronous execution of ODBC functions.

Thread-Safety Notes on API Functions

The Microsoft ODBC driver for Oracle is thread-safe, however Oracle does not allow active multiple
concurrent statements on a single connection. The driver enforces this restriction for you. In other
words, in multi-threaded applications, though any thread may call into the Oracle ODBC driver at any
time, the driver blocks any other thread from the driver on the same connection until the original
thread leaves the driver.

The driver does not block if there are two statements on two different connections. However, if there is
a single connection with two statements, there is potential for blocking.

Core Level API Functions

Functions at this level comprise the minimum level of interface conformance for ODBC drivers.

API Function Notes
SQLAllocConnect Allocates memory for a connection handle, hdbc, within the

environment identified by henv. The Driver Manager
processes this call and calls the driver’s SQLAllocConnect
whenever SQLConnect, SQLBrowseConnect, or
SQLDriverConnect is called.

SQLAllocEnv Displays a dialog box specifying the requirement for Oracle
Client software, then returns SQL_NULL_HANDLE. If the
Oracle Client software is not installed, this function
Allocates memory for an environment handle, henv, and
initializes the ODBC call level interface for use by an
application.

SQLAllocStmt Allocates memory for a statement handle and associates
the statement handle with the connection specified by hdbc.
The Driver Manager passes this call to the driver, which
allocates the memory for the hstmt structure.

SQLBindCol Assigns storage space for a result column and specifies the
type of the result.

SQLCancel Cancels the processing on a statement handle, hstmt. In
some cases, Oracle does not allow you to cancel a running
statement. This means that a running statement will
continue until Oracle completes the process, at which time
the results from the statements are cancelled by the ODBC
driver.

SQLColAttributes Returns descriptor information for a column in a result set.
Descriptor information is returned as a character string, a
32-bit descriptor-dependent value, or an integer value.

SQLConnect Connects to a data source. To use Oracle Operating
System Authentication, specify “/” as the szUID and “” as
the szAuthStr parameters.

SQLDescribeCol Returns the name, type, precision, scale and nullability of
the given result column.
Note SQLDescribeCol reports calculated columns as
SQL_VARCHAR.

SQLDisconnect Closes a connection. If connection pooling is enabled for a
shared environment, and an application calls
SQLDisconnect on a connection in that environment, the
connection is returned to the connection pool, and is still
available to other components using the same shared
environment.

SQLError Returns error or status information about the last error. The
driver maintains a stack or list of errors that can be returned
for the hstmt, hdbc, and henv arguments, depending on
how the call to SQLError is made. The error queue is
flushed after each statement. Usually retrieves an Oracle
error message, and is otherwise empty.

SQLExecDirect Executes a new, preparable SQL statement. The driver

uses the current values of the parameter marker variables if
any parameters exist in the statement. If your table, view or
field names contain spaces, enclose the names in back
quote marks. For example, if your database contains a table
named My Table and the field My Field, enclose each
element of the identifier as shown below:
SELECT “My Table”. “My Field1”,;
“My Table”.“My Field2” FROM “My Table”

SQLExecute Executes a prepared SQL statement (a statement already
prepared by SQLPrepare). The driver uses the current
values of the parameter marker variables if any parameters
exist in the statement.

SQLFetch Retrieves one row from a result set into the locations
specified by the previous calls to SQLBindCol. Prepares
the driver for a call to SQLGetData for the unbound
columns.

SQLFreeConnect Releases a connection handle and frees all memory
allocated for the handle.

SQLFreeEnv Closes the ODBC Driver and releases all memory
associated with the driver.

SQLFreeStmt Stops processing associated with a specific hstmt, closes
any open cursors associated with the hstmt, discards
pending results, and, optionally, frees all resources
associated with the statement handle.

SQLGetCursorName Returns the name of the cursor associated with the given
hstmt.

SQLNumResultCols Returns the number of columns in a result set cursor.
SQLPrepare Prepares an SQL statement by planning how to optimize

and execute the statement. The SQL statement is compiled
for execution by SQLExecDirect.
If your table, view or field names contain spaces, enclose
the names in back quote (“) marks. For example, if your
database contains a table named My Table and the field
My Field, enclose each element of the identifier as shown
below:

SELECT “My Table”.“My Field” FROM “My
Table”

For information on using result sets containing arrays as
formal parameters, see. Returning Array Parameters from
Stored Procedures.

SQLRowCount Oracle does not provide a way to determine the number of
rows in a result set until after you fetch the last row, so it
returns -1.

SQLSetCursorName Associates a cursor name with an active statement handle,
hstmt.

SQLSetParam Replaced by SQLBindParameter in ODBC 2.x
SQLTransact Requests a commit or rollback operation for all active

operations on all statement handles (hstmts) associated
with a connection, or all connections associated with the

environment handle, henv. If a commit fails when in manual
mode, the transaction remains active; you can choose to
rollback the transaction or retry the commit operation. If a
commit operation fails when in automatic transaction mode,
the transaction is rolled back automatically; the transaction
cannot be inactive.

Level 1 API Functions

Functions at this level provide Core interface conformance, plus additional functionality such as
transaction support.

API Function Notes
SQLColumns Creates a result set for a table which is the column list for

the specified table or tables. When you request columns for
a PUBLIC synonym, you must have set the
SYNONYMCOLUMNS connection attribute and specify an
empty string as the szTableOwner argument. When
returning columns for PUBLIC synonyms, the driver sets the
TABLE NAME column to an empty string. The result set
contains an additional column, ORDINAL POSITION, at the
end of each row. This value is the ordinal position of the
column in the table.

SQLDriverConnect Connects to an existing data source. For details, see
Connection String Attributes.

SQLGetConnectOption Returns the current setting of a connection option. This
function is partially supported: the driver supports all values
for the fOption argument, but does not support some of
vParam values for the fOption argument
SQL_TXN_ISOLATION.    For more information, see the
Connect Options Table.

SQLGetData Retrieves the value of a single field in the current record of
the given result set.

SQLGetFunctions Returns TRUE for all supported functions. Implemented by
the Driver Manager.

SQLGetInfo Returns information, including SQLHDBC,
SQLUSMALLINT, SQLPOINTER, SQLSMALLINT, and
SQLSMALLINT *, about the ODBC driver and data source
associated with a connection handle, hdbc.

SQLGetStmtOption Returns the current setting of a statement option. For more
information, see the Statement Options Table.

SQLGetTypeInfo Returns information about the data types supported by a
data source. The driver returns the information in a SQL
result set.

SQLParamData Used in conjunction with SQLPutData to specify parameter
data at statement execution time.

SQLPutData Allows an application to send data for a parameter or
column to the driver at statement execution time.

SQLSetConnectOption Provides access to options that govern aspects of the
connection. This function is partially supported: the driver
supports all values for the fOption argument, but does not
support some of vParam values for the fOption argument
SQL_TXN_ISOLATION. For more information, see the
Connect Options Table.

SQLSetStmtOption Sets options related to a statement handle, hstmt. For more
information, see the Statement Option Table.

SQLSpecialColumns Retrieves the optimal set of columns that uniquely identifies

a row in the table.
SQLStatistics Retrieves a list of statistics about a single table and the

indexes, or tag names, associated with the table. The driver
returns the information as a result set.

SQLTables Returns the list of table names specified by the parameter
in the SQLTables statement. If no parameter is specified,
returns the table names stored in the current data source.
The driver returns the information as a result set.
Enumeration type calls will not receive a result set entry for
remote views or local parameterized views.    However, a
call to SQLTables with a unique table name specifier will
find a match for such a view if present with that name; this
allows the API to used to check for name conflicts prior to
creation of a new table.
PUBLIC synonyms are returned with a TABLE_OWNER
value of “”.
VIEWS owned by SYS or SYSTEM are identified as
SYSTEM VIEW.

Level 2 API Functions

Functions at this level provide Level 1 interface conformance, plus additional functionality such as
support for bookmarks.

API Function Notes
SQLBindParameter Associates a buffer with a parameter marker in a SQL

statement.
SQLBrowseConnect Returns successive levels of attributes and attribute values.
SQLDataSources Lists data source names. Implemented by the Driver

Manager
SQLDescribeParam Returns the description of a parameter marker associated

with a prepared SQL statement.
Returns a best guess of what the parameter is, based upon
parsing the statement. If the parameter type cannot be
determined, SQL_VARCHAR returns with length 2000.

SQLDrivers Implemented by the Driver Manager.
SQLExtendedFetch Similar to SQLFetch, but returns multiple rows using an

array for each column. The result set is forward-scrollable
and can be made backward-scrollable if the cursor is
defined to be static, not forward-only. For forward-only
cursors with default column binding, column data from data
sets larger than the BUFFERSIZE connection attribute is
fetched directly into data buffers. Does not support variable-
length bookmarks and does not support fetching a rowset at
an offset (other than 0) from a bookmark

SQLForeignKeys Returns a list of foreign keys in a single table or a list of
foreign keys in other tables that refer to a single table.

SQLMoreResults Determines whether more results are pending on a
statement handle, hstmt, containing SELECT, UPDATE,
INSERT, or DELETE statements and, if so, initializes
processing for those results.
Oracle supports multiple result sets only from stored
procedures, when using {resultset… } escape sequences.

SQLNativeSql For information on usage, see Returning Array Parameters
from Stored Procedures.

SQLNumParams Returns the number of parameters in a SQL statement. The
number of parameters should equal the number of question
marks in the SQL statement passed to SQLPrepare.

SQLPrimaryKeys Returns the column names that comprise the primary key
for a table.

SQLProcedureColumns Returns a list of input and output parameters, the return
value, and the columns in the result set of a single
procedure, and two additional columns, OVERLOAD, and
ORDINAL_POSITION. OVERLOAD is the OVERLOAD
column from the ALL_ARGUMENTS table of the Oracle
Data Dictionary View. ORDINAL_POSITION is the
SEQUENCE column from the ALL_ARGUMENTS table of
the Oracle Data Dictionary View. For packaged procedures,
the PROCEDURE NAME column is in

packagename.procedurename format.
SQLProcedures Returns a list of procedures in the data source. For

packaged procedures, the PROCEDURE NAME column is
in packagename.procedurename format.

Since Oracle does not provide a way to distinguish
packaged procedures from packaged functions, the driver
returns SQL_PT_UNKNOWN for the PROCEDURE_TYPE
column.

SQLSetPos Sets the cursor position in a rowset. You can use
SQLSetPos with SQLGetData to retrieve rows from
unbound columns after positioning the cursor to a specific
row in the rowset. Rows added to the result set using
fOption SQL_ADD are added after the last row in the result
set.

SQLSetScrollOptions Sets options that control the behavior of cursors associated
with a statement handle, hstmt. For details, see the
supported Cursor Type and Concurrency Combinations
Table.

Connect Options Table

These options allow customization of the database connection within an application.

Connect Option Notes
SQL_AUTOCOMMIT If you choose SQL_AUTOCOMMIT_OFF, your

application must explicitly commit or roll back
transactions with SQLTransact.

SQL_ODBC_CURSORS This connection attribute is implemented in the
Driver Manager.

SQL_OPT_TRACE This connection attribute is implemented in the
Driver Manager.

SQL_OPT_TRACEFILE This connection attribute is implemented in the
Driver Manager.

SQL_TRANSLATE_DLL Returns error: “Driver not capable”.
SQL_TRANSLATE_OPTION A 32-bit value passed to the translation DLL.
SQL_TXN_ISOLATION The driver allows only:

SQL_TXN_READ_COMMITTED
The following vParams are not supported:
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_REAPEATABLE_READ
SQL_TXN_SERIALIZABLE

SQL_ATTR_ENLIST_IN_DTC This ODBC 3.0 connection attribute allows you to
use the Oracle ODBC driver in Distributed
Transactions coordinated by Microsoft Transaction
Server; provide the Interface pointer, pITransaction,
to the transaction as the vParam argument.

SQL_ATTR_CONNECTION_DE
AD

This read-only ODBC 3.5 connection attribute
allows you to determine whether the connection to
the Oracle server has failed. Get only, cannot Set.

Statement Options Table

These options allow customization of a specific execution statement within an application.

Statement Options Notes
SQL_BIND_TYPE Cannot exceed 2,147,483,647 bytes or available

memory.
SQL_CONCURRENCY For allowed values, see the Supported Cursor Type

and Concurrency Combinations Table
SQL_CURSOR_TYPE The driver does not allow

SQL_CURSOR_DYNAMIC. See
SQLSetScrollOptions for more information. For
allowed values, see the Supported Cursor Type and
Concurrency Combinations Table

SQL_GET_BOOKMARK Returns a 32-bit integer value that is the bookmark
for the current record number. Get only, cannot Set.

SQL_KEYSET_SIZE Can only be set to 0.
SQL_MAX_ROWS The maximum number of rows to return from a

result set.
SQL_ROW_NUMBER Returns a 32-bit integer specifying the position of

the current row within the result set. Get only,
cannot Set.

SQL_ROWSET_SIZE Cannot exceed 4,294,967,296 rows, however you
must have enough virtual memory in your computer
to handle whatever you request.

SQL_USE_BOOKMARKS Supports setting SQL_USE_BOOKMARKS to
SQL_UB_ON, and exposes fixed-length
bookmarks.

Cursor Type and Concurrency Combinations Table

Cursor types control the functionality of the cursor provided to the user. Concurrency options control
the updatability and locking behavior of a result set.

Cursor Type Concurrency (allowed values)
SQL_CURSOR_FORWARD_ONLY SQL_CONCUR_READ_ONLY
SQL_CURSOR_STATIC SQL_CONCUR_READ_ONLY
SQL_CURSOR_KEYSET_DRIVEN* SQL_CONCUR_READ_ONLY

SQL_CONCUR_LOCK **
SQL_CONCUR_VALUES

Notes
* See Limitations of Using Keyset-Driven Cursors.

** SQL_CONCUR_LOCK is only supported when the SQL_AUTOCOMMIT connection
option is set to SQL_AUTOCOMMIT_OFF.

Error Messages

When an error occurs, the Microsoft ODBC Driver for Oracle returns the SQLSTATE (an ODBC error
code), and an error message. The driver derives this information both from errors detected by the
driver and errors returned by the Oracle Server.

Messages returned by Oracle ODBC Driver
If there is an Oracle Error message available, it will be returned preceded by the [Microsoft], [ODBC
Driver for Oracle], and [Oracle] tags, otherwise the message is returned without the [Oracle] tag as in
the following examples:

Oracle error message:
[Microsoft][ODBC driver for Oracle][Oracle]ORA-nnnnn message-text

Oracle ODBC Driver error message
[Microsoft][ODBC driver for Oracle]

