
Visual FoxPro ODBC Driver Overview
Visual FoxPro is a powerful object-oriented environment for database construction and application
development. The Microsoft Visual FoxPro ODBC Driver enables applications to open, query and
update data in Visual FoxPro and earlier versions of FoxPro through the Open Database Connectivity
(ODBC) interface.

For example, with the Microsoft Visual FoxPro ODBC Driver you can:

· Use Microsoft Query to query and update Visual FoxPro data from Microsoft Excel worksheets.
· Create mail-merge letters using Visual FoxPro data with Microsoft Word.
· Query and update Visual FoxPro views and tables from Microsoft Access.
· Use Visual FoxPro as the data store for Visual Basic, Visual C++ and C applications.
You can use the driver to accomplish many other tasks. The following table lists a few topics to help
you get started.

To See
Find out more about using
Visual FoxPro data with
Microsoft Office

Accessing Visual FoxPro data from a
Microsoft Office Application

Learn about using Visual
FoxPro data in Visual Basic
applications

Using the Visual FoxPro ODBC Driver
with your Visual Basic Application

View a simple example using
Visual C++ to access Visual
FoxPro data

Using the Visual FoxPro ODBC Driver
with your C or C++ Application

See a list of supported
hardware and software

System Requirements

Read an overview of the
system

Overview of Driver Architecture

Setting Up the Visual FoxPro ODBC Driver
You use the Visual FoxPro ODBC Driver Setup program to:
· Add new components.
· Remove installed components.
· Reinstall to restore missing files and settings.
· Remove all previously installed components.

 To set up the Visual FoxPro ODBC Driver
1 Run Setup.exe from Disk 1 of the Visual FoxPro ODBC Driver.
2 Follow the instructions on the screen.

Once you install the driver on your system, the Setup program recognizes the installed driver
components and presents additional dialog boxes that enable you to change your driver’s
configuration.

Accessing Visual FoxPro Data from a Microsoft Office Application
You can use the Microsoft Visual FoxPro ODBC Driver to access Visual FoxPro data from your
Microsoft Office for Windows 95 applications.

To See
Use Microsoft Access Querying and Updating Visual FoxPro

Data from Access
Use Microsoft Excel Importing Data into Microsoft Excel

from a Visual FoxPro Database
Use Microsoft Word Creating Mailing Labels in Microsoft

Word Using Visual FoxPro Data

Adding a Visual FoxPro Data Source
To access Visual FoxPro data from your application, you must have a data source. You can create a
data source from

· Within an application, such as Microsoft Word, Microsoft Excel, or Microsoft Access, that uses
ODBC drivers.

· Outside of your application, using the Windows 95 or Windows NT Control Panel.

Once a data source exists on your system, you can reuse the same data source each time you want
to access Visual FoxPro data. If you have several different databases or tables you want to access,
you can create a separate data source for each database or directory.

The following procedure creates a data source using the Control Panel. For more information on
creating a data source from an application, see Accessing Visual FoxPro Data from a Microsoft Office
Application.

 To add a Visual FoxPro data source
1 Choose the 32bit ODBC icon from the Windows 95 or Windows NT Control Panel. This option is

available after you’ve installed the Visual FoxPro ODBC Driver, or any ODBC driver software.
2 In the Data Sources dialog box, click Add.
3 In the Add Data Source dialog box, select Microsoft Visual FoxPro Driver from the Installed

ODBC Drivers list, then click OK.
4 In the ODBC Visual FoxPro Setup dialog box , enter the data source name, select the database

type, select the database or directory, and click OK.
The new data source name is displayed in the User Data Sources (Driver) list in the Data
Sources dialog box.

5 In the Data Sources dialog box, click Close.

Modifying a Visual FoxPro Data Source
You can modify a FoxPro data source.

 To modify a Visual FoxPro data source
1 Choose the 32bit ODBC icon from the Windows 95 or Windows NT Control Panel. This option is

available after you’ve installed the Visual FoxPro ODBC Driver, or any ODBC driver software.
2 In the Data Sources dialog box, select the name of the data source you want to modify in the Data

Sources (Driver) list and click Setup.
3 In the ODBC Visual FoxPro Setup dialog box , select and change the items you want to modify,

and then click OK.
4 In the Data Sources dialog box, click Close.

The changes you made are saved and take effect the next time you access the data source from your
application.

Deleting a Visual FoxPro Data Source
You can delete a FoxPro data source.

 To delete a Visual FoxPro data source
1 Choose the 32bit ODBC icon from the Windows 95 or Windows NT Control Panel. This option is

available after you’ve installed the Visual FoxPro ODBC Driver, or any ODBC driver software.
2 In the Data Sources dialog box, select the name of the data source you want to delete in the Data

Sources (Driver) list.
3 Click Delete.

The data source is no longer listed in the Data Sources dialog box.
4 Click Close.

Connecting to a Visual FoxPro Data Source
You can connect to a Visual FoxPro data source using your Microsoft Office application or using the
SQL API.

To connect from See
Microsoft Access,
Microsoft Excel, or
Word

Accessing Visual FoxPro Data from a
Microsoft Office Application.

Your C or C++   
application

SQLConnect
SQLDriverConnect

Your Visual Basic
application

Using the Visual FoxPro ODBC Driver
with your Visual Basic Application

Using Connection Strings
You can use a connection string to connect to a Visual FoxPro data source.

For example, to connect to the TasTrade data source and override the current setting of Exclusive
associated with the data source, you would use the string:
DSN=TasTrade;Exclusive=Yes
For a list of the attribute keywords and values you can include in the connection string, see
SQLDriverConnect.
For a complete explanation of connection string syntax, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

Accessing a Visual FoxPro Data Source from Microsoft Excel
If you have Microsoft Query installed, you can create a data source in Microsoft Excel that connects
to Visual FoxPro data.

 To access Visual FoxPro data from Microsoft Excel
1 Open a Microsoft Excel spreadsheet.
2 From the Data menu, choose Get External Data. Microsoft Query opens.
3 In the Select Data Source dialog box, click Other.
4 In the ODBC Data Sources dialog box, click New.
5 In the Add Data Source dialog box, select Microsoft Visual FoxPro Driver from the Installed

ODBC Drivers list box and click OK.
6 In the ODBC Visual FoxPro Setup dialog box , enter the data source name, select the Database

type, enter the path to the database or directory, and click OK.
The new data source name is displayed in the Enter Data Source text box of the ODBC Data
Sources dialog box.

7 Click OK.
The new data source name is selected in the Available Data Sources text box of the Select Data
Source dialog box.

8 Click Use.
You can now add tables to the open query. For more information on building a query, see Importing
Data into Microsoft Excel from a Visual FoxPro Database.

Importing Data into Microsoft Excel from a Visual FoxPro Database
You can import Visual FoxPro data into your Microsoft Excel worksheet if you have defined a data
source for it. For information about creating a Visual FoxPro data source, see Accessing a Visual
FoxPro Data Source from Microsoft Excel.

 To import Visual FoxPro data into an Microsoft Excel worksheet
1 Open a Microsoft Excel spreadsheet.
2 From the Data menu, choose Get External Data.

Microsoft Query opens.
3 In the Select Data Source dialog box, select a Visual FoxPro data source, then click Use.
4 If the database accessed by your data source includes tables, select a table from the Add Tables

dialog box.
Microsoft Query displays the added table in the top half of the query designer.
Note      The Owner list is not available in this dialog box because the driver does not support
owners. The Database list is not available because the driver does not support multiple databases
in a data source.

5 Select fields for your query by dragging them from the table onto the lower half of the designer.
6 Close Microsoft Query.

The data you selected is imported into your Microsoft Excel spreadsheet.

Creating Mailing Labels in Microsoft Word Using Visual FoxPro
Data
You can use Visual FoxPro data in a Microsoft Word for Windows 95 document. For example, you
might want to create mailing labels from the customer information stored in a FoxPro table.

 To create mailing labels
1 In Microsoft Word, create a new blank document.
2 From the Tools menu, choose Mail Merge.
3 In the Mail Merge Helper, choose Create, then select Mailing Labels.
4 Under Main Document, choose Active Window.
5 Under Data Source, choose Get Data, then select Open Data Source.
6 In the Open Data Source dialog box, choose MS Query.
7 In the Select Data Source dialog box, select a Visual FoxPro data source, then click Use.
8 If the database accessed by your data source includes tables, select a table from the Add Tables

dialog box.
Microsoft Query displays the added table in the top half of the query designer.

9 Select fields for your query by dragging them from the table onto the lower half of the designer.
10From the File menu, choose Return Data to Microsoft Word.

Microsoft Query closes, and the data you selected is available for use in your mail merge
document.

11Under Main Document, choose Setup.
12In the Label Options dialog box, select the printer and label information you want, then click OK.
13In the Create Labels dialog box, select the fields you want to print on the mailing labels, then click

OK
14.In the Mail Merge Helper, under Merge the Data with the Document, click Merge.
15In the Merge dialog box, select the options you want, then click Merge.

Importing Visual FoxPro Data into Microsoft Access
You can import data stored in a Visual FoxPro database into a Microsoft Access database using the
Import option.

 To import Visual FoxPro data into a Microsoft Access database
1 Open a Microsoft Access database.
2 From the File menu, choose Get External Data, then Import.
3 In the Import dialog box select ODBC Databases() in the Files of type list.
4 In the SQL Data Sources dialog box, select the Visual FoxPro data source that connects to the

FoxPro data you want to query and click OK.
5 In the Import Objects dialog box, select one or more tables you want to import and click OK.

The names of the Visual FoxPro tables you imported are displayed in the Tables tab of the
Microsoft Access database.

You can now use Microsoft Access to manipulate the data in the imported Visual FoxPro tables. The
data you import is a snapshot of the data stored in Visual FoxPro; changes you make to imported
data are not sent back to the Visual FoxPro data source.

If you want changes you make in Microsoft Access to change the data on the Visual FoxPro data
source, see Querying and Updating Visual FoxPro Data from Access.

Querying and Updating Visual FoxPro Data from Microsoft Access
You can query and update data stored in a Visual FoxPro database from a Microsoft Access database
by using the Link Table option.

 To link a Visual FoxPro database to a Microsoft Access database
1 Open a Microsoft Access database.
2 From the Tables tab, click New.
3 In the New Table dialog box, select Link Table and click OK.
4 In the Link dialog box, select ODBC Databases() in the Files of type list.
5 In the SQL Data Sources dialog box, select the data source that connects to the Visual FoxPro

data you want to query and click OK.
6 In the Link Tables dialog box, select the tables you want to query and update and click OK.

The linked Visual FoxPro tables are displayed in the Tables tab of the Microsoft Access database.

You can now use Microsoft Access to query and update data in the linked Visual FoxPro tables.
Changes you make to linked data are sent back to the Visual FoxPro data source.

If you don’t want changes you make in Microsoft Access to affect the data on the Visual FoxPro data
source, see Importing Visual FoxPro Data into Microsoft Access.

Using the Visual FoxPro ODBC Driver with your Visual Basic
Application
Your Visual Basic application can communicate with Visual FoxPro data by creating a data control
that connects to a Visual FoxPro data source.

 To connect to Visual FoxPro data using the Data Control in Visual Basic 4.0
1 Create a data source called test that connects to the TasTrade sample database included in

Visual FoxPro 3.0. The default Visual FoxPro installation places the TasTrade sample database in
the location:
c:\vfp\samples\mainsamp\data\tastrade.dbc

2 In Visual Basic 4.0, create a new form and place a text box and a Data control on it.
3 Change the Data control's Connect property to:
ODBC;DATABASE=tastrade;DSN=test

4 Change the RecordsetType property to
2 - Snapshot

5 Change the RecordSource property to:
customer

6 Change the DataSource property for the text box to the default name for the Data control:
data1

7 Change the text box's DataField property to
customer_id

8 Run the form and use the Data control to skip through the customer id fields from the Visual
FoxPro TasTrade sample database.

Using the Visual FoxPro ODBC Driver with your C or C++
Application
Example

Your application communicates with Visual FoxPro data by sending a SQLExecute or
SQLExecDirect statement to Visual FoxPro. This statement can contain:

· SQL statements native to the Visual FoxPro language, such as the DROP TABLE command

· Supported ODBC SQL grammar.

· Non-SQL Visual FoxPro language such as supported SET commands.

For more information about SQL native to Visual FoxPro, see the Visual FoxPro 3.0 documentation.

Using the Visual FoxPro ODBC Driver with your C or C++ Application

The following example uses the ODBC C API to retrieve data stored in the last_name field in the
employee table in the Visual FoxPro sample database TasTrade. This database is provided with
Visual FoxPro 3.0 and is installed by default in the following location:

c:\vfp\samples\mainsamp\data\tastrade.dbc

The example displays one last name at a time, allowing you to click the OK button on the message
box to see the next last name. It is assumed that a data source called tastrade has been set up to use
the tastrade.dbc database.

Note      Error checking should be performed on all ODBC API calls; this example excludes error
checking for the sake of brevity.
//To the maximum extent permitted by law, Microsoft and //its suppliers
disclaim all warranties, either //expressed or implied, including, but not
limited to //implied warranties of merchantability and fitness for
//particular purpose, with regard to this example.

#include <windows.h>
#include <sql.h>
#include <sqlext.h>
#include <stdlib.h>
#include <mbstring.h>

#define MAX_DATA 100
#define MYSQLSUCCESS(rc) ((rc==SQL_SUCCESS)||(rc==SQL_SUCCESS_WITH_INFO))

class direxec
{

RETCODE rc; // ODBC return code
HENV henv; // Environment
HDBC hdbc; // Connection handle
HSTMT hstmt; // Statement handle
unsigned char szData[MAX_DATA]; // Returned data storage
SDWORD cbData; // Output length of data
unsigned char chr_ds_name[SQL_MAX_DSN_LENGTH]; // Data source

name

public:
direxec(); // Constructor
void sqlconn(); // Allocate env,stat,and connect
void sqlexec(unsigned char *); // Execute SQL statement
void sqldisconn(); // Free pointers to env,stat,conn,

// and disconnect.
void error_out(); // Displays errors.

};

// Constructor initializes the string chr_ds_name with the data source
// name.
direxec::direxec()
{

_mbscpy(chr_ds_name,(const unsigned char *)"tastrade");
}

// Allocate environment handle, allocate connection handle,

// connect to data source, and allocate statement handle.
void direxec::sqlconn(void)
{

SQLAllocEnv(&henv);
SQLAllocConnect(henv,&hdbc);
rc=SQLConnect(hdbc,chr_ds_name,SQL_NTS,NULL,0,NULL,0);

// Deallocate handles, display error message, and exit.
if (!MYSQLSUCCESS(rc))
{

SQLFreeEnv(henv);
SQLFreeConnect(hdbc);
error_out();
exit(-1);

}

rc=SQLAllocStmt(hdbc,&hstmt);

}

// Execute SQL command with SQLExecDirect() ODBC API.
void direxec::sqlexec(unsigned char * cmdstr)
{

rc=SQLExecDirect(hstmt,cmdstr,SQL_NTS);
if (!MYSQLSUCCESS(rc)) //Error
{

error_out();
// Deallocate handles and disconnect.
SQLFreeStmt(hstmt,SQL_DROP);
SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);
exit(-1);

}
else
{

for (rc=SQLFetch(hstmt); rc == SQL_SUCCESS; rc=SQLFetch(hstmt))
{

SQLGetData(hstmt,1,SQL_C_CHAR,szData,sizeof(szData),&cbData);
// In this example, the data that is returned in a messagebox
// for simplicity. However, normally the SQLBindCol() ODBC API
// could be called to bind individual rows of data and assign
// for a a rowset. See Chapter 15: Returning Results in the
// ODBC SDK for a completed details.
MessageBox(NULL,(const char *)szData,"ODBC",MB_OK);

}
}

}

// Free the statement handle, disconnect, free the connection handle and
// free the environment handle.
void direxec::sqldisconn(void)
{

SQLFreeStmt(hstmt,SQL_DROP);
SQLDisconnect(hdbc);
SQLFreeConnect(hdbc);
SQLFreeEnv(henv);

}

// Display error message in a message box that has an OK button.
void direxec::error_out(void)
{

unsigned char szSQLSTATE[10];
SDWORD nErr;
unsigned char msg[SQL_MAX_MESSAGE_LENGTH+1];
SWORD cbmsg;

while(SQLError(0,0,hstmt,szSQLSTATE,&nErr,msg,sizeof(msg),&cbmsg)==
SQL_SUCCESS)

{
wsprintf((char *)szData,"Error:\nSQLSTATE=%s,Native error=

%ld,msg='%s'",
szSQLSTATE,nErr,msg);

MessageBox(NULL,(const char *)szData,"ODBC Error",MB_OK);

}

}

int WINAPI WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{
// Declare an instance of the direxec object.
direxec x;

// Allocate handles and connect.
x.sqlconn();

// Execute SQL command "SELECT last_name FROM employee"
x.sqlexec((UCHAR FAR *)"SELECT last_name FROM employee");

// Free handles and disconnect
x.sqldisconn();

// Return success code; example executed successfully.
return (TRUE);

}

System Requirements
The system requirements for installation provide the minimum operating system and disk space
needed to successfully install the driver. Once you’ve installed the driver, you can select the specific
application software you want to use to access Visual FoxPro data.

Installation Requirements
To install the Microsoft Visual FoxPro ODBC Driver, you need:

· Windows NT 3.50 (or later) or Windows 95
· 2 MB disk space

For information about installing the driver, see Setting Up the Visual FoxPro ODBC Driver.

Accessing Visual FoxPro Data
To access Microsoft Visual FoxPro 3.0 or FoxPro 2.x data, you must have the following:

· ODBC Client Software (automatically installed with the driver)
· Microsoft Visual FoxPro ODBC Driver
· Any of the following types of application software:

· Microsoft Office application such as Microsoft Excel or Word
· C or C++ language ODBC application
· Visual Basic 4.0 ODBC application

· Any of the following types of data:
· Visual FoxPro 3.0 database or a directory of free tables
· FoxPro 2.0, 2.5, 2.6 table

The Visual FoxPro ODBC Driver supports double-byte character sets (DBCS). For more information,
see International Support.

The driver does not support 16-bit Windows 3.1 applications.

Supported Versions of FoxPro
You can use the Visual FoxPro ODBC Driver to access data stored in FoxPro tables. The following
versions of FoxPro data are supported:

· 2.0
· 2.5
· 2.6
· 3.0 (Visual FoxPro)

When you access data stored in Visual FoxPro 3.0, you can choose to connect to a database
containing zero or more tables or to a directory of free tables.

For more information on connecting to a data source, see Adding a Visual FoxPro Data Source.

Overview of Driver Architecture
The Microsoft Visual FoxPro ODBC Driver is a 32-bit driver that enables you to open and query a
Microsoft Visual FoxPro database or FoxPro tables through the Open Database Connectivity (ODBC)
interface. You can access FoxPro data using:

· A Microsoft Office application, such as Excel or Microsoft Word, which uses Microsoft Query to
communicate with ODBC.

· An application written in Visual C++ or C that uses the ODBC SDK API.
· An application written in Visual Basic or Visual Basic for Applications.

In each case, the request for information uses the ODBC API. The ODBC Driver Manager works with
the Visual FoxPro ODBC Driver to open and retrieve data from FoxPro tables and databases.

The architecture is represented in the following diagram:

Bookmark Support
The Visual FoxPro ODBC Driver supports simple bookmarks. When you call SQLGetInfo with the
SQL_BOOKMARK_PERSISTENCE InfoType, the return value is SQL_BP_SCROLL.

For information about bookmarks, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK
Guide.

Supported Concurrency Model
The Visual FoxPro ODBC Driver supports read-only concurrency. Your application can call
SQLSetStmtOption with a SQL_CONCURRENCY option of SQL_CONCUR_READ_ONLY.

For more information about concurrency and SQLSetStmtOption, see the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

read-only concurrency
The cursor cannot be updated.

row versioning
Essentially timestamp support, in which row versions are compared at update time.

Supported Cursor Model
The Visual FoxPro ODBC Driver supports both block (rowset) and static cursors. Static cursors are
supported for any driver that conforms to Level 1 ODBC compliance. The driver does not support
dynamic, keyset-driven, or mixed (keyset and dynamic) cursors.

Your application can call SQLSetStmtOption with a SQL_CURSOR_TYPE option of
SQL_CURSOR_FORWARD_ONLY (block cursor) or SQL_CURSOR_STATIC (static cursor).

Note      If you call SQLSetStmtOption with a SQL_CURSOR_TYPE option other than
SQL_CURSOR_FORWARD_ONLY or SQL_CURSOR_STATIC, the function returns
SQL_SUCCESS_WITH_INFO with a SQLSTATE of 01S02 (Option value changed). The driver sets
all unsupported cursor modes to SQL_CURSOR_STATIC.

For more information on cursor types and on SQLSetStmtOption, see the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

block cursor
A forward-scrolling, read-only result set returned to the client, who is responsible for maintaining
storage for the data.

static cursor
A snapshot of a set of data defined by the query. Static cursors do not reflect real-time changes by
other users of the underlying data.    The cursor’s memory buffer is maintained by the ODBC cursor
library, which allows forward and backward scrolling.

rowset
Blocks of data stored in a cursor, representing rows retrieved from a data source.

Data Types
The list of data types supported by the driver are presented through the ODBC API and in Microsoft
Query.

Data Types in C Applications
You can obtain a list of data types supported by the Visual FoxPro ODBC Driver by using the
SQLGetTypeInfo function in C or C++ applications.

Data Types in Applications Using Microsoft Query
If your application uses Microsoft Query to create a new table on a Visual FoxPro data source,
Microsoft Query displays the New Table Definition dialog box. Under Field Description, the Type
box lists Visual FoxPro field data types, represented by single characters.

International Support
The Microsoft Visual FoxPro ODBC Driver supports:

· Double-byte character sets (DBCS)
· Multiple collating sequences

A collating sequence defines the sort order for data stored in a Visual FoxPro table or database. By
default the driver is configured to use the collating sequences that support the language version of
your operating system.

For a list of supported collating sequences, see SET COLLATE.

locale
The set of information that corresponds to a given language and country. A locale indicates specific
settings such as decimal separators, date and time formats, and character-sorting order.

sort order
Sort orders incorporate the sorting rules of different locales, allowing you to sort data in those
languages correctly. In Visual FoxPro, the current sort order determines the results of character
expression comparisons and the order in which the records appear in indexed or sorted tables.

ODBC Visual FoxPro Setup Dialog Box
Enables you to add or change a Visual FoxPro data source.

Dialog Box Options
Data Source Name      Enter the name you want to use for the data source.
Description      Enter a description for the data source.
Database type      Lets you choose the type of database you want your data source to connect to.
Visual FoxPro database (.DBC)      Specifies that the data source connects to a Visual FoxPro

database (.DBC file) and all the tables and local views in the database.
Free Table directory      Specifies that the data source connects to a directory of free tables. Any

database tables in the same directory are ignored by ODBC catalog functions such as
SQLColumns or SQLTables. Database tables can be accessed by using SQL SELECT
statements sent through SQLExecute and SQLExecDirect.

Path      Displays the path and name for the database or the directory of free tables to which the data
source connects

Browse      Enables you to search your system and network for the database or directory to which you
want to connect the data source.

Options      Expands the dialog box so you can see and sets Visual FoxPro ODBC Driver options.

Driver
Collating sequence      The sequence in which fields are sorted. The default sequences reflect the

sequences supported by your language version of the operating system. For a list of supported
collating sequences, see SET COLLATE.

Exclusive      When this checkbox is checked, the driver opens the Visual FoxPro database
exclusively when you access data using the data source. Other users cannot access the database
or the tables in the database while the database is opened exclusively. Tables within the
exclusively opened database are opened as SHARED. To open a table exclusively, use the SET
EXCLUSIVE command. This checkbox is disabled when the Database type is set to Free Table
directory.

Fetch data in background      Determines whether records will be fetched in the background
(progressive fetching) or your application will wait until all records in the result set are fetched.

Supported ODBC SQL Grammar
The Microsoft Visual FoxPro ODBC Driver supports:

· All SQL statements and clauses in the ODBC minimum SQL grammar
· An additional SQL statement from the ODBC core SQL grammar.

The following table lists the items supported by the driver by ODBC SQL Grammar level.

Level Elements Item
Minimum Data Definition

Language (DDL)
CREATE TABLE and DROP TABLE

Data Manipulation
Language (DML)

SELECT, INSERT, UPDATE, and
DELETE

Expressions Simple (such as A>B+C)
Data Types CHAR, VARCHAR, or LONG

VARCHAR

In addition to the supported ODBC SQL grammar, the Visual FoxPro ODBC Driver supports the
complete native Visual FoxPro language syntax for these Visual FoxPro commands:

ALTER TABLE

CREATE TABLE

DELETE

DELETE TAG

DROP TABLE

INDEX

INSERT

SELECT

UPDATE

Registry Entries
When you install the Visual FoxPro ODBC Driver, the installation program updates your system’s
registry, HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI, to add a new key called
Microsoft Visual FoxPro Driver. Under that key, the following values are added:

Value Name Value Type Value
APILevel REG_SZ “1”
ConnectFunctions REG_SZ “YYN”
Driver REG_SZ System path to the

VFPODBC.DLL file
DriverODBCVer REG_SZ “02.50”
FileExtns REG_SZ “*.dbf,*.cdx,*.fpt”
FileUsage REG_SZ “1”
Setup REG_SZ System path to the

VFPODBC.DLL file
SQLLevel REG_SZ “0”

The installation program also adds the key “Visual FoxPro Files”, representing the default Visual
FoxPro driver, to your system’s    HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI key. Under
this key, the installation program adds the following values:

Value Name Value Type Value
Driver REG_SZ System path to the

VFPODBC.DLL file

Each time you add a Visual FoxPro ODBC data source to your ODBC configuration, a new key is
added for that data source name. The values for the data source correspond to values you set in the
ODBC Visual FoxPro Setup dialog box, as listed in the following table:

Value Name Value Type Value
Collate REG_SQ Any supported collating sequence
Description REG_SZ User description of data source
Driver System path to the

VFPODBC.DLL file
Exclusive Yes or No
BackgroundFetch Yes or No
SourceDB REG_SZ Path to .DBC file
SourceType REG_SZ “DBC” or “DBF”

You should not access this information directly; any administration of the registry is handled by the
ODBC administrator as you add, modify or delete a data source.

You can use some of these keywords and values entered when you use the SQLDriverConnect
ODBC API function.

Supported Scalar Functions
The Visual FoxPro ODBC Driver supports three types of scalar functions as defined in the ODBC SQL
grammar:

· String functions
· Numeric functions
· Time and date functions

String Functions
The following table lists ODBC string manipulation functions supported by the Visual FoxPro ODBC
Driver; when the Visual FoxPro grammar for the same function differs from the ODBC syntax, the
Visual FoxPro equivalent is listed.

ODBC Grammar Visual FoxPro Grammar
ASCII (string_exp) ASC (string_exp)
CHAR (code) CHR (string_exp)
CONCAT (string_exp1, string_exp2) string_exp1 + string_exp2
DIFFERENCE (string_exp1,
string_exp2)
INSERT (string_exp1, start, length,
string_exp2)

STUFF (string_exp1, start, length,
string_exp2)

LCASE (string_exp) LOWER (string_exp)
LEFT (string_exp, count)
LENGTH (string_exp) LEN (string_exp)
LTRIM (string_exp)
REPEAT (string_exp, count) REPLICATE (string_exp, count)
REPLACE (string_exp1, string_exp2,
string_exp3)

STRTRAN (string_exp1, string_exp2,
string_exp3)

RIGHT (string_exp, count)
RTRIM (string_exp)
SOUNDEX (string_exp)
SPACE (count)
SUBSTRING (string_exp, start,
length)

SUBSTR (string_exp, start, length)

UCASE (string_exp) UPPER (string_exp)

Numeric Functions
The following table describes ODBC numeric functions supported by the Visual FoxPro ODBC Driver;
when the Visual FoxPro grammar for the same function differs from the ODBC syntax, the Visual
FoxPro equivalent is listed.

ODBC Grammar Visual FoxPro Grammar
ABS (numeric_exp)
ACOS (float_exp)
ASIN (float_exp)
ATAN (float_exp)
ATAN2 (float_exp1, float_exp2) ATN2(float_exp1, float_exp2)
CEILING (numeric_exp)
COS (float_exp)
COT (float_exp)
DEGREES (numeric_exp) RTOD (numeric_exp)
EXP (float_exp)
FLOOR (numeric_exp)
LOG (float_exp)
LOG10 (float_exp)
MOD (integer_exp1, integer_exp2)
PI ()
RADIANS (numeric_exp) DTOR (numeric_exp)
RAND ([integer_exp])
ROUND (numeric_exp, integer_exp)
SIGN (numeric_exp)
SIN (float_exp)
SQRT (float_exp)
TAN (float_exp)

The following numeric functions are not supported:

POWER (numeric_exp, integer_exp)

TRUNCATE (numeric_exp, integer_exp)

Time and Date Functions
The following table lists ODBC time and date functions supported by the Visual FoxPro ODBC Driver;
when the Visual FoxPro grammar for the same function differs from the ODBC syntax, the Visual
FoxPro equivalent is listed.

ODBC Grammar Visual FoxPro Grammar
CURDATE() DATE()
CURTIME() TIME()
DAYNAME(date_exp) CDOW(date_exp)
DAYOFMONTH(date_exp) DAY()
HOUR(time_exp)
MINUTE(time_exp)
MONTH(time_exp)
MONTHNAME(date_exp) CMONTH(date_exp)
NOW() DATETIME()
SECOND(time_exp) SEC(time_exp)
WEEK(date_exp)
YEAR(date_exp)

The following time and date functions are not supported:

DAYOFYEAR (date_exp)

QUARTER (date_exp)

TIMESTAMPADD (interval, integer_exp, timestamp_exp)

TIMESTAMPDIFF (interval, timestamp_exp1, timestamp_exp2)

ODBC Escape Sequences
The driver also supports the ODBC escape sequence for date and timestamp data. The escape
clause syntax is:

--(*vendor(Microsoft),product(ODBC) d ‘value’ *)—
--(*vendor(Microsoft),product(ODBC) ts ‘‘value’ *)—
In this syntax, d indicates value is a date in the “yyyy-mm-dd” format and ts indicates value is a
timestamp in the “yyyy-mm-dd hh:mm:ss[.f…]” format. The shorthand syntax for date and timestamp
data is:

{d ‘value’}
{ts ‘value’}

For example, each of the following statements update the ALLTYPES table using the date and
timestamp shorthand syntax in a supported SQL UPDATE command:
UPDATE alltypes

SET DAT_COL={d’1968-04-28’}
WHERE KEY=111

UPDATE alltypes
SET DTI_COL={ts’1968-04-28 12:00:00’}
WHERE KEY=111

For more information about escape sequences, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

Supported SET Commands
Your application can send the following Visual FoxPro SET commands to a data source:

SET ANSI

SET BLOCKSIZE

SET COLLATE

SET DELETED

SET EXACT

SET EXCLUSIVE

SET NULL

SET PATH

SET REPROCESS

SET UNIQUE

Thread Support
The Visual FoxPro ODBC Driver is thread-safe. Access to environment handles (henv), connection
handles (hdbc), and statement handles (hstmt) are wrapped in appropriate semaphores to prevent
other processes from accessing and potentially altering the driver's internal data structures.

In a multithreaded application, you can cancel a function that is running synchronously on an hstmt by
calling SQLCancel on a separate thread.

The driver uses a separate thread to fetch data when you use progressive fetching. To employ
progressive fetching for a data source, check the Fetch data in background checkbox on the ODBC
Visual FoxPro Setup dialog box, or use the BackgroundFetch attribute keyword in your connection
string. For information on connection string attribute keywords, see Using Connection Strings.

For more information about threads and SQLCancel, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

Troubleshooting
The following sections discuss how to improve performance and solve problems you might encounter
while using the Visual FoxPro ODBC Driver.

Accessing Parameterized Views
You can’t access parameterized views in a Visual FoxPro database using the driver. A parameterized
view creates a WHERE clause in the view’s SQL SELECT statement that limits the records
downloaded to only those records that meet the conditions of the WHERE clause built using the value
supplied for the parameter. Because the driver doesn’t support passing parameters to the view,
attempts to access a parameterized view will fail.

The parameter value can be:

· Supplied at run time.
· Passed programmatically to the view.

Accessing Remote Views
You can’t access remote views in a Visual FoxPro database using the driver. Remote views are views
that access either non-FoxPro data or a combination of FoxPro and non-FoxPro data. To access
remote views, use Visual FoxPro 3.0.

Deleting Records
You can mark records for deletion using the driver, but you can’t permanently remove records from
the database. To permanently remove records from a table, use Visual FoxPro.

Increasing Performance Using Background Fetching
You can improve performance on large fetches by using the background fetching feature of the driver.
Background fetching uses a separate thread to fetch data requested from a specific data source.

You can employ background fetching for a data source in one of two ways:

· Check the Fetch data in background checkbox on the ODBC Visual FoxPro Setup dialog box.
· Use the BackgroundFetch attribute keyword in your connection string.

For information on connection string attribute keywords, see Using Connection Strings.

Updating MultiTiered Views
A multitiered view is a view based on one or more views rather than on a base table. When you
update data in a multitiered view, the updates go down only one level, to the view on which the top-
level view is based; base tables are not updated.

Using Data Definition Language (DDL) in Stored Procedures
You can’t use DDL, such as CREATE TABLE, or ALTER TABLE in Visual FoxPro stored procedures.

For information on language you can use in stored procedures, see Visual FoxPro Language Support
in Rules, Triggers, Default Values, and Stored Procedures.

Using Positioned Updates
The driver doesn’t support positioned updates. Use the SQL WHERE clause to identify the rows you
want to update.

Using the SET ANSI Command

If you’re a Visual FoxPro developer, you should be aware that the default setting for SET ANSI is ON
for the driver, in contrast to a default setting of OFF for Visual FoxPro. The default ON setting for SET
ANSI allows Visual FoxPro data sources to behave consistently with other ODBC data sources that
typically perform exact comparisons. You can change the default setting. For more information, see
SET ANSI.

Error Messages Overview
When an error occurs, the Visual FoxPro driver returns the following information:

· The native error number and error message text.
· The SQLSTATE (an ODBC error code) and error message text.

You access this error information by calling SQLError.

Native Errors
For errors that occur in the data source, the Visual FoxPro driver returns the native error number and
error message text. For a list of native error numbers, see Visual FoxPro ODBC Driver Native Error
Messages.

SQLSTATE (ODBC Error Codes)
For errors that are detected and returned by the Visual FoxPro driver, the driver maps the returned
native error number to the appropriate SQLSTATE. If a native error number does not have an ODBC
error code to map to, the Visual FoxPro driver returns SQLSTATE S1000 (General error).

For a list of SQLSTATE values generated by the Visual FoxPro ODBC Driver for corresponding Visual
FoxPro errors, see ODBC Error Codes.

Syntax
Error messages have the following format:

[vendor][ODBC_component]error_message

The prefixes in brackets ([]) identify the source of the error as defined in the following table.

Data Source Prefix Value
Driver Manager [vendor]

[ODBC_component]
[data_source]

[Microsoft]
[ODBC Driver Manager]
N/A

Visual FoxPro driver vendor]
[ODBC_component]
[data_source]

[Microsoft]
[ODBC Visual FoxPro driver]
N/A

For example, if the Visual FoxPro ODBC Driver could not find the file EMPLOYEE.DBF, it might return
the following error message:

“[Microsoft][ODBC Visual FoxPro Driver]File ‘employee.dbf’ does not exist”

Visual FoxPro ODBC Driver Native Error Messages

The following table lists error messages native to the Visual FoxPro ODBC Driver.

001
1 Feature is not available.
2 Input/output operation failure.
3 Free handle is not found.
5 Use of unallocated handle.
14 ???????
97 ???????
99 Procedure canceled.

100
100 Too many files open.
101 Cannot open file.
102 Cannot create file.
105 Error writing to file.
107 Invalid key length.
109 Record is out of range.
110 Record is not in index.
111 Invalid file descriptor.
113 File is not open.
114 Not enough disk space for value.
115 Invalid operation for the cursor.
118 Index file does not match table.
119 No table is open.
120 File does not exist.
121 File already exists.
122 Table has no index order set.
123 Not a table.
125 Index expression exceeds maximum length.
127 You must use a logical expression with a FOR or

WHILE clause.
128 Not a numeric expression.
129 Variable is not found.
132 File is in use.
133 Index does not match the table. Delete the index file

and re-create the index.
135 End of file encountered.
136 Beginning of file encountered.
137 Alias is not found.
139 You must use a logical expression with FILTER.

142 Cyclic relation.
143 No fields were found to copy.
144 The LOCATE command must be issued before the

CONTINUE command.
145 Must be a character or numeric key field.
146 Cannot write to a read-only file.
147 Target table is already engaged in a relation.
148 Expression has been re-entered while the filter is

executing.
149 Not enough memory for buffer.
150 Not enough memory for file map.
155 Invalid buffdirty call.
156 Duplicate field names.
158 No fields found to process.
159 Numeric overflow. Data was lost.
162 Procedure 'value' is not found.
165 value is not related to the current work area.
170 Variable 'value' is not found.
171 Cannot open file value.
173 File 'value' does not exist.
174 'value' is not a memory variable.
175 'value' is not a file variable.
176 'value' is not an array.
177 Alias 'value' is not found.
180 File was not placed in memory using the LOAD

command.
182 There is not enough memory to complete this

operation.

200
200 Syntax error.
201 Too many names used.
202 Program is too large.
203 Too many memory variables.
205 Nesting error.
206 Recursive macro definition.
209 Line is too long.
210 Allowed DO nesting level exceeded.
211 An IF | ELSE | ENDIF statement is missing.
212 Structure nesting is too deep.
213 There is a missing keyword in the FOR...ENDFOR or

DO CASE...ENDCASE command structure.
219 Command contains unrecognized phrase/keyword.
221 Command is missing required clause.
222 Unrecognized command verb.
224 Invalid subscript reference.

227 Missing expression.
228 Table number is invalid.
229 Too few arguments.
230 Too many arguments.
233 Statement is not allowed in interactive mode.
234 Subscript is outside defined range.
236 Suspend program before using RESUME.
238 No PARAMETER statement is found.
239 Must specify additional parameters.
240 Not a character expression.
250 Too many PROCEDURE commands are in effect.
252 Compiled code for this line is too long.
257 Key string is too long.
291 Expression used with ASIN() is out of range.
292 Cannot use 0 or negative as the argument for

LOG10().
293 Expression used with ACOS() is out of range.
294 FOXUSER.DBF file is invalid.
295 Invalid path or file name.
296 Error reading the resource.
297 Command is allowed only in interactive mode.

300
301 Operator/operand type mismatch.
302 Data type mismatch.
305 Expression evaluated to an illegal value.
307 Cannot divide by 0.
308 Insufficient stack space.
337 Cannot nest the PRINTJOB command.

400
406 Printer is not ready.
 407 Invalid argument used with the SET function.
410 Unable to create temporary work files.
423 Error creating the OLE object.
424 Error copying the OLE object to the Clipboard.
462 value internal consistency error.
465 SQL pass-through internal consistency error.
466 Connection handle is invalid.
467 Property is invalid for local cursors.
468 Property is invalid for table cursors.
469 Property value is out of bounds.
470 Incorrect property name.
471 Incorrect column format.
473 Environment-level property is invalid.

474 Invalid call issued while executing a SQLEXEC()
sequence.

479 Invalid update column name \value\.
489 General fields cannot be used in the WHERE condition

of an update statement. Change the WhereType
property of the view.

491 No update tables are specified. Use the Tables
property of the cursor.

492 No key columns are specified for the update table \
value\. Use the KeyFieldList property of the cursor.

493 SQL parameter is missing.
494 View definition has been changed.
495 Warning: The key defined by the KeyField property for

table value is not unique
498 SQL SELECT statement is invalid.
499 SQL parameter value is invalid.

500
502 Cannot write to the record because it is in use.
503 File cannot be locked.
508 Error initializing OLE.
520 No database is open or set as the current database.
522 Connectivity internal consistency error.
523 Execution was canceled by the user.
525 Function is not supported on remote tables.
526 Connectivity error: value
527 Cannot load ODBC library, ODBC32.DLL.
528 ODBC entry point missing, value.
530 Fetching canceled; remote table is closed.
532 Type conversion is not supported.
533 This property is read-only.
536 Function is not supported on native tables.
538 A stored procedure is executing.
540 Session number is invalid.
541 Connection value is busy.
542 Base table fields have been changed and no longer

match view fields. View field properties cannot be set.
543 Type conversion required by the DataType property for

field 'value' is invalid.
544 DataType property for field 'value' is invalid.
545 Table buffer for alias \value\ contains uncommitted

changes.
546 Cannot close table during execution of table-bound

expression.
547 Cannot insert an empty row from a view into its base

table(s).
548 Table value has one or more non-structural indexes

open.    Please close them and retry the Begin
Transaction

549 Data session #value cannot be released with open
transaction(s).

550 .DBC internal consistency error.
557 The database must be opened exclusively.
559 Property is not found.
560 Property value is invalid.
561 Database is invalid. Please validate.
562 Cannot find object value in the database.
563 Cannot find view value in the current database.
566 Cannot issue the PACK command on a database while

its tables are in use.
567 Primary key property is invalid; please validate

database.
570 Database is read-only.
571 The name value is already used for another
575 Object name is invalid.
577 Table value is referenced in a relation.
578 Invalid database table name.
579 Command cannot be issued on a table with cursors in

table buffering mode.
580 Feature is not supported for non-.DBC tables.
581 Field value does not accept null value.
583 Record validation rule is violated.
585 Update conflict. Use TABLEUPDATE() with the lForce

parameter to commit the update or TABLEREVERT()
to roll back the update.

586 Function requires row or table buffering mode.
587 Illegal nested OLDVAL() or CURVAL().
589 Table or row buffering requires that SET MULTILOCKS

is set to ON.
590 BEGIN TRANSACTION command failed.    Nesting

level is too deep.
591 END TRANSACTION command cannot be issued

without a corresponding BEGIN TRANSACTION
command.

592 ROLLBACK command cannot be issued without a
corresponding BEGIN TRANSACTION command.

593 Command cannot be issued within a transaction.
594 Illegal to attempt a file lock in a transaction after taking

prior record locks.
596 Table buffering is not enabled.
597 Views require either DB_BUFOPTROW or

DB_BUFOPTTABLE.
598 Rule and trigger code must balance transaction usage.
599 Data session #value was forced to ROLLBACK all

transactions to avoid deadlock.

600
601 Alias name is already in use.
602 Operation is invalid for a Memo, General, or Picture

field.
612 No such menu or menu item is defined.
618 Menu has not been defined with DEFINE MENU.
624 Menu title has not been defined with DEFINE PAD.
625 Menu has not been defined with DEFINE POPUP.
631 Array dimensions are invalid.
637 File must be opened exclusively to convert the Memo

file.
638 Field must be a Memo field.
649 No previous PRINTJOB command to correspond to

this command.
651 CANCEL or SUSPEND is not allowed.
659 The table has memo fields that cannot be converted

while open read-only.
683 Index tag is not found.

700
700 Record is in use by another user.
701 File must be opened exclusively.
702 File is in use by another user.
703 Record is not locked.
705 File access is denied.
706 Cannot sort .IDX files in descending order.
707 Structural .CDX file is not found.
708 File is open in another work area.
712 Field name is a duplicate or invalid.
714 Window 'value' has not been defined.
718 File is read-only.
722 Preprocessor expression is invalid.
734 Property value is not found.
737 value is a method, event, or object.
738 Property value is not a method or event.
740 value is a read-only property.
748 This file is incompatible with the current version of

Visual FoxPro.    Run 30UPDATE.PRG to update the
file to the current version.

750 File was created in a later version of Visual FoxPro
than the current version.

763 Property value already exists.
773 Database object type is invalid.
784 This object is derived from a base class and does not

have a parent class.

800
802 SQL: Cannot locate table.
872 Too many columns.
879 No primary key.
884 Uniqueness of index value is violated.
885 Only structural tags can be defined as candidate.
886 Index does not accept NULL.
887 Illegal recursion in rule evaluation.
888 Tag name is too long.

900
901 Function argument value, type, or count is invalid.
902 Expression evaluator failed.
903 String is too long to fit.
904 ** or ^ domain error.
905 LOG(): Zero or negative used as argument.
906 SQRT() argument cannot be negative.
912 Operation is invalid for a General field.
914 Code page number is invalid.
915 Collating sequence 'value' is not found.
918 File name is too long.
922 Volume does not exist.
923 Object value is not found.
924 value is not an object.
925 Unknown member value.
928 Statement is only valid within a class definition.
929 value can only be used within a method.
930 Cannot redefine value.
931 Statement is not in a procedure.
934 Statement is only valid within a method.
935 The current object does not inherit from class value.
937 Procedure file 'value' is not found.
938 Object is not contained in a value.
939 WITH/ENDWITH mismatch.
940 Expression is not valid outside of WITH/ENDWITH.
941 Error code is invalid.
942 Objects cannot be assigned to arrays.
943 Member value does not evaluate to an object.
945 The current object has been released.
947 Expression is too complex.
951 Cannot clear the object in use.
955 WIN.INI/registry is corrupted.
957 Error accessing printer spooler.
959 Invalid coordinates.
960 Illegal redefinition of variable value.

971 Cannot compile until the current COMPILE command
has completed.

972 Array value is in use.
974 Arrays cannot be assigned to array elements.
976 Cannot resolve backlink.
988 Currency value is out of range.
990 Cancel.
999 Function is not implemented.

ODBC Error Codes
The following table lists Visual FoxPro error codes mapped to ODBC Error Code SQLSTATE values.
The mapped SQLSTATE values come from SQLExecDirect and SQLPrepare. No other SQLSTATE
values from other ODBC API are mapped because SQLExecDirect and SQLPrepare are the only
functions that access the Visual FoxPro engine.

For more information on ODBC error codes, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLSTATE Visual FoxPro Error Code
S1001 149

150
182
202
308

1004 159

37000 132
200
219
221
222
227
229
230
498
499
713
901

22005 301
302

22012 307

23000 581
583
884
886
988

S0001 121
571

S0002 173
120
123
295
562
563
802

S0012 683

S0021 156
712

S0022 158

806

S1000 100
101
102
105
107
109
110
111
113
114
115
118
119
125
133
135
136
137
145
146
171
173
177
201
205
239
240
252
257
296
305
407
410
462
502
503
520
538
550
561
567
570
575
578
580
585
602
702
705
707
708
718
750
872

879
887
888
912
914
915
918
922
923
947
976
999

Visual FoxPro Language Support in Rules, Triggers, Default
Values, and Stored Procedures

You cannot create Visual FoxPro rules, triggers, default values or stored procedures using the Visual
FoxPro ODBC Driver. However, your application might interact with existing rules, triggers, default
values or stored procedures as it inserts, updates, or deletes Visual FoxPro data stored in a
database.

The following table lists the Visual FoxPro commands and functions supported by the Visual FoxPro
ODBC Driver when the commands or functions exist in rules, triggers, default values or stored
procedures.

If your application interacts with data whose rules, triggers, default values or stored procedures call
any other Visual FoxPro commands or functions, the driver generates an error. See Unsupported
Visual FoxPro Commands and Functions for a list of commands and functions not supported by the
driver.

Tip      If you want to insert conditional code into your rules, triggers or stored procedures that
determines the commands to execute when called by the driver, you can use the VERSION()
function. The VERSION() function returns “Visual FoxPro ODBC Driver <version>” when called by
the driver.

Visual FoxPro Commands and Functions Supported in Rules, Triggers,
Default Values and Stored Procedures
$ Operator % Operator & Command

&& Command * Command = Command

A
ABS() Function ACOPY() Function ACOS() Function
ADATABASES()
Function

ADBOBJECTS()
Function

ADD TABLE Command

ADEL() Function AELEMENT() Function AERROR() Function
AFIELDS() Function AINS() Function ALEN() Function
ALIAS() Function ALLTRIM() Function ALTER TABLE - SQL

Command
AND Operator ANSITOOEM()

Function
APPEND Command

APPEND FROM
ARRAY Command

APPEND FROM
Command

APPEND GENERAL
Command

APPEND MEMO
Command

APPEND
PROCEDURES
Command

ASC() Function

ASCAN() Function ASIN() Function ASORT() Function
ASUBSCRIPT()
Function

AT() Function AT_C() Function

ATAN() Function ATC() Function ATCC() Function
ATCLINE() Function ATLINE() Function ATN2() Function
AUSED() Function AVERAGE Command

B
BEGIN TRANSACTION
Command

BETWEEN() Function BITAND() Function

BITCLEAR() Function BITLSHIFT() Function BITNOT() Function
BITOR() Function BITRSHIFT() Function BITSET() Function
BITTEST() Function BITXOR() Function BLANK Command
BOF() Function

C
CALCULATE Command CANDIDATE() Function CD Command
CDOW() Function CDX() Function CEILING() Function
CHDIR Command CHR() Function CHRTRAN() Function
CHRTRANC() Function CLOSE Commands CMONTH() Function
CONTINUE Command COPY INDEXES

Command
COPY MEMO
Command

COPY PROCEDURES
Command

COPY STRUCTURE
Command

COPY STRUCTURE
EXTENDED Command

COPY TAG Command COPY TO ARRAY
Command

COPY TO Command

COS() Function COUNT Command CPCONVERT()
Function

CPCURRENT()
Function

CPDBF() Function CTOD() Function

CTOT() Function CURDIR() Function CURSORGETPROP()
Function

CURSORSETPROP()
Function

CURVAL() Function

D
DATE() Function DATETIME() Function DAY() Function
DBC() Function DBF() Function DBGETPROP()

Function
DBUSED() Function DECLARE Command DELETE - SQL

Command
DELETE Command DELETE FILE

Command
DELETE TAG
Command

DELETED() Function DESCENDING()
Function

DIFFERENCE()
Function

DIMENSION Command DISKSPACE() Function DMY() Function
DO CASE ... ENDCASE
Command

DO Command DO WHILE ... ENDDO
Command

DOW() Function DTOC() Function DTOR() Function
DTOS() Function DTOT() Function

E
EMPTY() Function END TRANSACTION

Command
EOF() Function

ERASE Command ERROR Command ERROR() Function
 EVALUATE() Function EXIT Command EXP() Function

F
FCHSIZE() Function FCLOSE() Function FCOUNT() Function
FCREATE() Function FDATE() Function FEOF() Function
FERROR() Function FFLUSH() Function FGETS() Function
FIELD() Function FILE() Function FILTER() Function
FLDLIST() Function FLOCK() Function FLOOR() Function
FLUSH Command FOPEN() Function FOR ... ENDFOR

Command
FOR() Function FOUND() Function FPUTS() Function
FREAD() Function FREE TABLE

Command
FSEEK() Function

FSIZE() Function FTIME() Function FULLPATH() Function
FUNCTION Command FV() Function FWRITE() Function

G
GATHER Command GETCP() Function GETENV() Function
GETEXPR Command GETFLDSTATE()

Function
GETNEXTMODIFIED()
Function

GO/GOTO Command GOMONTH() Function

H
HEADER() Function HOME() Function HOUR() Function

I
IDXCOLLATE()
Function

IF ... ENDIF Command IIF() Function

INDBC() Function INDEX Command INLIST() Function
INSERT-SQL Command INT() Function ISALPHA() Function
ISBLANK() Function ISDIGIT() Function ISEXCLUSIVE()

Function
ISLEADBYTE()
Function

ISLOWER() Function ISNULL() Function

ISREADONLY()
Function

ISUPPER() Function

J

K
KEY() Function KEYMATCH() Function

L
LEFT() Function LEFTC() Function LEN() Function
LENC() Function LIKE() Function LIKEC() Function

LINENO() Function LOCAL Command LOCATE Command
LOCK() Function LOG() Function LOG10() Function
LOOKUP() Function LOWER() Function LPARAMETERS

Command
LTRIM() Function LUPDATE() Function

M
_MLINE System
Memory Variable

MAX() Function MD Command

MDX() Function MDY() Function MEMLINES() Function
MESSAGE() Function MIN() Function MINUTE() Function
MKDIR Command MLINE() Function MOD() Function
MONTH() Function MTON() Function

N
NDX() Function NORMALIZE()

Function
NOT Operator

NOTE Command NTOM() Function NVL() Function

O
OCCURS() Function OEMTOANSI()

Function
OLDVAL() Function

ON ERROR Command ON KEY Command ON() Function
OPEN DATABASE
Command

OR Operator ORDER() Function

OS() Function

P
PACK Command PAD() Function PADL() | PADR() |

PADC() Functions
PARAMETERS
Command

PARAMETERS()
Function

PAYMENT() Function

PI() Function PRIMARY() Function PRIVATE Command
PROCEDURE
Command

PROGRAM() Function PROPER() Function

PUBLIC Command PV() Function

Q

R
RAND() Function RAT() Function RATC() Function
RATLINE() Function RD Command RECALL Command
RECCOUNT() Function RECNO() Function RECSIZE() Function
REGIONAL Command RELATION() Function REMOVE TABLE

Command
REPLACE Command REPLACE FROM

ARRAY Command
REPLICATE() Function

RETRY Command RETURN Command RIGHT() Function
RIGHTC() Function RLOCK() Function RMDIR Command
ROLLBACK Command ROUND() Function RTOD() Function
RTRIM() Function

S
SCAN ... ENDSCAN
Command

SCATTER Command SEC() Function

SECONDS() Function SEEK Command SEEK() Function
SELECT Command SELECT() Function SELECT-SQL

Command
SET BLOCKSIZE
Command

SET CARRY Command SET CENTURY
Command

SET COLLATE
Command

SET DATABASE
Command

SET DATE Command

SET DEFAULT
Command

SET DELETED
Command

SET EXACT Command

SET EXCLUSIVE
Command

SET FDOW Command SET FIELDS Command

SET FILTER Command SET FIXED Command SET FULLPATH
Command

SET FWEEK Command SET HOURS Command SET INDEX Command
SET LOCK Command SET MULTILOCKS

Command
SET NEAR Command

SET NOCPTRANS
Command

SET NOTIFY Command SET NULL Command

SET OPTIMIZE
Command

SET ORDER Command SET PATH Command

SET PROCEDURE
Command

SET RELATION
Command

SET RELATION OFF
Command

SET REPROCESS
Command

SET SKIP Command SET UDFPARMS
Command

SET UNIQUE
Command

SET VOLUME
Command

SET() Function

SETFLDSTATE()
Function

SIGN () Function SIN() Function

SKIP Command SORT Command SPACE() Function
SQRT() Function STORE Command STR() Function
STRCONV() Function STRTRAN() Function STUFF() Function
STUFFC() Function SUBSTR() Function SUBSTRC() Function
SUM Command SYS(2011) Function

T
TABLEREVERT()
Function

TABLEUPDATE()
Function

TAG() Function

TAGCOUNT() Function TAGNO() Function _TALLY System
Memory Variable

TAN() Function TARGET() Function TIME() Function

TOTAL Command _TRIGGERLEVEL
System Memory
Variable

TRIM() Function

TTOC() Function TTOD() Function TXNLEVEL() Function
TYPE() Function

U
UNIQUE() Function UNLOCK Command UPDATE - SQL

Command
UPDATE Command UPPER() Function USE Command
USED() Function

V
VAL() Function VERSION() Function

W
WEEK() Function WITH ... ENDWITH

Command

X

Y
YEAR() Function

Z
ZAP Command

Unsupported FoxPro Commands and Functions

The following table lists FoxPro commands and functions that are not supported by the Visual FoxPro
ODBC Driver, but are supported by Microsoft Visual FoxPro 3.0.

If your application interacts with data whose rules, triggers, default values or stored procedures call
these Visual FoxPro commands or functions, the driver generates an error.

Unsupported Visual FoxPro Commands and Functions
#DEFINE ... #UNDEF #IF ... #ENDIF

Preprocessor Directive
#IFDEF | #IFNDEF

#INCLUDE
Preprocessor Directive

:: Scope Resolution
Operator

! Command (see RUN
| ! Command)

? | ?? Command ??? Command \ | \\ Command
@ ... BOX Command @ ... CLASS Command @ ... CLEAR Command
@ ... EDIT - Edit Boxes
Command

@ ... FILL Command @ ... GET

@ ... MENU Command @ ... PROMPT
Command

@ ... SAY Command

@ ... SCROLL
Command

@ ... TO Command

A
ACCEPT Command ACLASS() Function ACTIVATE MENU

Command
ACTIVATE POPUP
Command

ACTIVATE SCREEN
Command

ACTIVATE WINDOW
Command

ActivateCell Method ADD CLASS Command ADIR() Function
AFONT() Function AINSTANCE() Function _ALIGNMENT System

Memory Variable
AMEMBERS() Function APRINTERS() Function ASELOBJ() Function
ASSIST Command

B
BAR() Function BARCOUNT() Function BARPROMPT()

Function
_BEAUTIFY System
Memory Variable

_BOX System Memory
Variable

BROWSE Command

_BROWSER System
Memory Variable

BUILD APP Command BUILD EXE Command

BUILD PROJECT
Command

_BUILDER System
Memory Variable

C
_CALCVALUE System
Memory Variable

CALL Command CANCEL Command

CAPSLOCK() Function CHANGE Command CHRSAW() Function

_CLIPTEXT System
Memory Variable

CLOSE MEMO
Command

CNTBAR() Function

CNTPAD() Function COL() Function COMPILE Command
COMPILE DATABASE
Command

COMPILE FORM
Command

COMPOBJ() Function

Container Object Control Object _CONVERTER System
Memory Variable

COPY FILE Command CREATE CLASS
Command

CREATE CLASSLIB
Command

CREATE COLOR SET
Command

CREATE Command CREATE
CONNECTION
Command

CREATE DATABASE
Command

CREATE FORM
Command

CREATE FROM
Command

CREATE LABEL
Command

CREATE MENU
Command

CREATE PROJECT
Command

CREATE QUERY
Command

CREATE REPORT
Command

CREATE SCREEN
Command

CREATE SQL VIEW
Command

CREATE TRIGGER
Command

CREATE VIEW
Command

CREATEOBJECT()
Function

_CUROBJ System
Memory Variable

D
_DBLCLICK System
Memory Variable

DBSETPROP()
Function

DDE Functions

DEACTIVATE MENU
Command

DEACTIVATE POPUP
Command

DEACTIVATE WINDOW
Command

DECLARE - DLL
Command

DEFINE BAR
Command

DEFINE BOX
Command

DEFINE CLASS
Command

DEFINE MENU
Command

DEFINE PAD Command

DEFINE POPUP
Command

DEFINE WINDOW
Command

DELETE
CONNECTION
Command

DELETE DATABASE
Command

DELETE TRIGGER
Command

DELETE VIEW
Command

_DIARYDATE System
Memory Variable

DIR Command DIRECTORY Command

DISPLAY Command DISPLAY
CONNECTIONS
Command

DISPLAY DATABASE
Command

DISPLAY DLLS
Command

DISPLAY FILES
Command

DISPLAY MEMORY
Command

DISPLAY OBJECTS
Command

DISPLAY
PROCEDURES
Command

DISPLAY STATUS
Command

DISPLAY STRUCTURE
Command

DISPLAY TABLES
Command

DISPLAY VIEWS
Command

DO FORM Command

E
EDIT Command EJECT Command EJECT PAGE

Command
EXPORT Command EXTERNAL Command

F
FILER Command FIND Command FKLABEL() Function
FKMAX() Function FONTMETRIC()

Function
_FOXDOC System
Memory Variable

_FOXGRAPH System
Memory Variable

G
_GENGRAPH System
Memory Variable

_GENMENU System
Memory Variable

_GENPD System
Memory Variable

_GENSCRN System
Memory Variable

_GENXTAB System
Memory Variable

GETBAR() Function

GETCOLOR() Function GETDIR() Function GETFILE() Function
GETFONT() Function GETOBJECT()

Function
GETPAD() Function

GETPICT() Function GETPRINTER()
Function

H
HELP Command HIDE MENU Command HIDE POPUP

Command
HIDE WINDOW
Command

I
IMESTATUS() Function IMPORT Command _INDENT System

Memory Variable
INDEX ON Command INKEY() Function INPUT Command
INSERT Command INSMODE() Function ISCOLOR() Function
ISMOUSE() Function

J
JOIN Command

K
KEYBOARD Command

L
LABEL Command LASTKEY() Function LIST Commands

LIST CONNECTIONS
Command

_LMARGIN System
Memory Variable

LOAD Command

LOCFILE() Function

M
MCOL() Function MDOWN() Function MEMORY() Function
MENU Command MENU TO Command MENU() Function
MESSAGEBOX()
Function

MODIFY CLASS
Command

MODIFY COMMAND
Command

MODIFY
CONNECTION
Command

MODIFY DATABASE
Command

MODIFY FILE
Command

MODIFY FORM
Command

MODIFY GENERAL
Command

MODIFY LABEL
Command

MODIFY MEMO
Command

MODIFY MENU
Command

MODIFY PROCEDURE
Command

MODIFY PROJECT
Command

MODIFY QUERY
Command

MODIFY REPORT
Command

MODIFY SCREEN
Command

MODIFY STRUCTURE
Command

MODIFY VIEW
Command

MODIFY WINDOW
Command

MOUSE Command MOVE POPUP
Command

MOVE WINDOW
Command

MRKBAR() Function MRKPAD() Function

MROW() Function MWINDOW() Function

N
NUMLOCK() Function

O
OBJNUM() Function OBJTOCLIENT()

Function
OBJVAR() Function

ON APLABOUT
Command

ON BAR Command ON ESCAPE Command

ON EXIT BAR
Command

ON EXIT MENU
Command

ON EXIT PAD
Command

ON EXIT POPUP
Command

ON KEY = Command ON KEY LABEL
Command

ON MACHELP
Command

ON PAD Command ON PAGE Command

ON READERROR
Command

ON SELECTION BAR
Command

ON SELECTION MENU
Command

ON SELECTION PAD
Command

ON SELECTION
POPUP Command

ON SHUTDOWN
Command

P
PACK DATABASE
Command

_PADVANCE System
Memory Variable

_PAGENO System
Memory Variable

_PBPAGE System
Memory Variable

PCOL() Function _PCOLNO System
Memory Variable

_PCOPIES System
Memory Variable

_PDRIVER System
Memory Variable

_PDSETUP System
Memory Variable

_PECODE System
Memory Variable

_PEJECT System
Memory Variable

PEMSTATUS()
Function

_PEPAGE System
Memory Variable

_PLENGTH System
Memory Variable

_PLINENO System
Memory Variable

_PLOFFSET System
Memory Variable

PLAY MACRO
Command

POP KEY Command

POP MENU Command POP POPUP Command POPUP() Function
_PPITCH System
Memory Variable

_PQUALITY System
Memory Variable

_PRETEXT System
Memory Variable

PRINTJOB ...
ENDPRINTJOB
Command

PRINTSTATUS()
Function

PRMBAR() Function

PRMPAD() Function PROMPT() Function PROW() Function
PRTINFO() Function _PSCODE System

Memory Variable
_PSPACING System
Memory Variable

PUSH KEY Command PUSH MENU
Command

PUSH POPUP
Command

PUTFILE() Function _PWAIT System
Memory Variable

Q
QUIT Command

R
RDLEVEL() Function READ Command READ MENU

Command
READKEY() Function REFRESH() Function REINDEX Command
RELEASE BAR
Command

RELEASE CLASSLIB
Command

RELEASE Command

RELEASE LIBRARY
Command

RELEASE MENUS
Command

RELEASE MODULE
Command

RELEASE PAD
Command

RELEASE POPUPS
Command

RELEASE
PROCEDURE
Command

RELEASE WINDOWS
Command

REMOVE CLASS
Command

RENAME CLASS
Command

RENAME Command RENAME
CONNECTION
Command

RENAME TABLE
Command

RENAME VIEW
Command

REPORT Command REQUERY() Function

RESTORE FROM
Command

RESTORE MACROS
Command

RESTORE SCREEN
Command

RESTORE WINDOW
Command

RESUME Command RGB() Function

RGBSCHEME()
Function

_RMARGIN System
Memory Variable

ROW() Function

RUN | ! Command RUNSCRIPT Command

S
SAVE MACROS
Command

SAVE SCREEN
Command

SAVE TO Command

SAVE WINDOWS
Command

SCHEME() Function SCOLS() Function

SCROLL Command _SCREEN System
Memory Variable

SET Command

SET ALTERNATE
Command

SET ANSI Command SET APLABOUT
Command

SET AUTOSAVE
Command

SET BELL Command SET BLINK Command

SET BORDER
Command

SET BRSTATUS
Command

SET CLASSLIB
Command

SET CLEAR Command SET CLOCK Command SET COLOR OF
Command

SET COLOR OF
SCHEME Command

SET COLOR SET
Command

SET COLOR TO
Command

SET COMPATIBLE
Command

SET CONFIRM
Command

SET CONSOLE
Command

SET CPCOMPILE SET CPDIALOG SET CURRENCY
Command

SET CURSOR
Command

SET DATASESSION
Command

SET DEBUG Command

SET DECIMALS
Command

SET DELIMITERS
Command

SET DEVELOPMENT
Command

SET DEVICE Command SET DISPLAY
Command

SET DOHISTORY
Command

SET ECHO Command SET ESCAPE
Command

SET FORMAT
Command

SET FUNCTION
Command

SET HEADINGS
Command

SET HELP Command

SET HELPFILTER
Command

SET INTENSITY
Command

SET KEY Command

SET KEYCOMP
Command

SET LOGERRORS
Command

SET MACDESKTOP
Command

SET MACHELP
Command

SET MACKEY
Command

SET MARGIN
Command

SET MARK OF
Command

SET MARK TO
Command

SET MEMOWIDTH
Command

SET MESSAGE
Command

SET MOUSE Command SET ODOMETER
Command

SET OLEOBJECT
Command

SET PALETTE
Command

SET PDSETUP
Command

SET POINT Command SET PRINTER
Command

SET READBORDER
Command

SET REFRESH SET RESOURCE SET SAFETY

Command Command Command
SET SCOREBOARD
Command

SET SECONDS
Command

SET SEPARATOR
Command

SET SHADOWS
Command

SET SKIP OF
Command

SET SPACE Command

SET STATUS
Command

SET STATUS BAR
Command

SET STEP Command

SET STICKY Command SET SYSFORMATS
Command

SET SYSMENU
Command

SET TALK Command SET TEXTMERGE
Command

SET TEXTMERGE
DELIMITERS
Command

SET TOPIC Command SET TOPIC ID
Command

SET TRBETWEEN
Command

SET TYPEAHEAD
Command

SET VIEW Command SET WINDOW OF
MEMO Command

SET XCMDFILE
Command

_SHELL System
Memory Variable

SHOW GET Command

SHOW GETS
Command

SHOW MENU
Command

SHOW OBJECT
Command

SHOW POPUP
Command

SHOW WINDOW
Command

SIZE POPUP
Command

SIZE WINDOW
Command

SKPBAR() Function SKPPAD() Function

SOUNDEX() Function _SPELLCHK System
Memory Variable

SQL functions

SROWS() Function _STARTUP System
Memory Variable

SUSPEND Command

SYS() Functions except
SYS(2011)

SYSMETRIC()
Function

T
_TABS System Memory
Variable

TEXT ... ENDTEXT
Command

_THROTTLE System
Memory Variable

TRANSFORM()
Function

_TRANSPORT System
Memory Variable

TXTWIDTH() Function

TYPE Command

U
UPDATED() Function USE Command

V
VALIDATE DATABASE
Command

VARREAD() Function VERSION() Function

W
WAIT Command WBORDER() Function WCHILD() Function
WCOLS() Function WEXIST() Function WFONT() Function

_WINDOWS System
Memory Variable

_WIZARD System
Memory Variable

WLAST() Function

WLCOL() Function WLROW() Function WMAXIMUM()
Function

WMINIMUM() Function WONTOP() Function WOUTPUT() Function
WPARENT() Function _WRAP System

Memory Variable
WREAD() Function

WROWS() Function WTITLE() Function WVISIBLE() Function

X

Y

Z
ZOOM WINDOW
Command

Supported ODBC API
The Visual FoxPro ODBC Driver supports:

· All Core Level API
· All Level 1 API
· Most Level 2 API

For more detail on any ODBC API function, refer to the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

Each API topic provides a brief summary and any Visual FoxPro-specific details. Note that several of
the functions behave differently depending on whether the data source is defined as a connection to a
directory of free tables (.DBF files) or to a Visual FoxPro database (.DBC file). Certain operations are
only supported for database connections.

Core Level API Support

Level 1 API Support

Level 2 API Support

Core Level API Support
All of the ODBC Core Level API are supported. A brief description of each plus any details as they
pertain to Visual FoxPro are available below.

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact

Level 1 API Support
All of the ODBC Level 1 API are supported. A brief description of each plus any details as they pertain
to Visual FoxPro are available below.

SQLBindParameter

SQLColumns

SQLDriverConnect

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTables

Level 2 API Support
The following ODBC Level 2 APIs are fully or partially supported:

SQLDataSources

SQLDrivers

SQLExtendedFetch

SQLMoreResults

SQLNumParams

SQLParamOptions

SQLPrimaryKeys

SQLSetPos

SQLSetScrollOptions (partial support)

The following Level 2 APIs are not supported:

SQLBrowseConnect

SQLColumnPrivileges

SQLDescribeParam

SQLForeignKeys

SQLNativeSql

SQLProcedureColumns

SQLProcedures

SQLTablePrivileges

SQLAllocConnect
Support: Full                  ODBC API Conformance: Core Level

Allocates memory for a connection handle, hdbc, within the environment identified by henv. The driver
manager processes this call and calls the driver’s SQLAllocConnect whenever SQLConnect,
SQLBrowseConnect, or SQLDriverConnect is called.

For more information on SQLAllocConnect, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLAllocEnv
Support: Full                  ODBC API Conformance: Core Level

Allocates memory for an environment handle, henv, and initializes the ODBC call level interface for
use by an application.

For more information on SQLAllocEnv, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLAllocStmt
Support: Full                  ODBC API Conformance: Core Level

Allocates memory for a statement handle and associates the statement handle with the connection
specified by hdbc. The Driver Manager passes this call to the driver, which allocates the memory for
the hstmt structure.

For more information on SQLAllocStmt, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLBindCol
Support: Full                  ODBC API Conformance: Core Level

Assigns storage space for a result column and specifies the type of the result. When SQLFetch or
SQLExtendedFetch is called, the driver places the data for all bound columns in the assigned
locations. See SQLGetTypeInfo for the mapping between ODBC and Visual FoxPro data types.

For more information on SQLBindCol, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLBindParameter
Support: Full                  ODBC API Conformance: Level One

Associates a buffer with a parameter marker in a SQL statement. The Visual FoxPro ODBC Driver
supports input parameters as specified by the fParamType argument.

For more information on SQLBindParameter, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLCancel
Support: Full                  ODBC API Conformance: Core Level

Cancels the processing on a statement handle, hstmt.

For more information on SQLCancel, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK
Guide.

SQLColAttributes
Support: Full                  ODBC API Conformance: Core Level

Returns descriptor information for a column in a result set; Descriptor information is returned as a
character string, a 32-bit descriptor-dependent value, or an integer value.

Note      SQLColAttributes cannot be used to return information about the bookmark column (column
0).
The Visual FoxPro ODBC Driver supports all fDescType values. The following table includes
comments on the driver’s implementation of selected values:

fDescType Comment
SQL_COLUMN_AUTO_INCREMENT Returns FALSE: Visual FoxPro has no counter fields.
SQL_COLUMN_CASE_SENSITIVE Always returns TRUE if the column type is Character.
SQL_COLUMN_LABEL Returns the column name, which is also returned by

SQL_COLUMN_NAME.
SQL_COLUMN_MONEY Returns TRUE if the column type is Currency

(represented by a “Y” in the Visual FoxPro language).
SQL_COLUMN_OWNER_NAME Always returns an empty string.
SQL_COLUMN_SEARCHABLE Returns SQL_UNSEARCHABLE for columns of type

General; these columns cannot be used in a WHERE
clause.
Returns SQL_SEARCHABLE for columns of type
Character or Memo with NOCPTRANS not set; these
columns can be used in a WHERE clause with any
comparison operator.
Returns SQL_ALL_EXCEPT_LIKE for all other
column types; these columns can be used in a
WHERE clause with all comparison operators except
LIKE.

For more information on SQLColAttributes, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLColumns
Support: Full                  ODBC API Conformance: Level One

Creates a result set for a table which is the column list for the specified table or tables.

For more information on SQLColumns, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLConnect
Support: Full                  ODBC API Conformance: Core Level

Connects to a data source, which can be either a database or a directory of tables. The Visual FoxPro
ODBC Driver ignores the szUID, cbUID, szAuthStr, and cbAuthStr arguments.

For more information on SQLConnect, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLDataSources
Support: Full                  ODBC API Conformance: Level Two

Lists data source names.

For more information on SQLDataSources, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLDescribeCol
Support: Full                  ODBC API Conformance: Core Level

Returns the name, type, precision, scale and nullability of the given result column.

For more information on SQLDescribeCol, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLDisconnect
Support: Full                  ODBC API Conformance: Core Level

Closes a connection.

For more information on SQLDisconnect, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLDriverConnect
Support: Full                  ODBC API Conformance: Level One

Connects to an existing data source, which can be either a database or a directory of free tables. The
ODBC attribute keywords UID and PWD are ignored. The following table lists the additional supported
attribute keywords.

ODBC Attribute Keyword Attribute Value
DSN
UID Ignored by the Visual FoxPro ODBC Driver,

but does not generate an error.
PWD Ignored by the Visual FoxPro ODBC Driver,

but does not generate an error.
Driver The name and location of the Visual FoxPro

ODBC Driver; implemented by the driver
manager.

Visual FoxPro ODBC Driver
Attribute Keyword Attribute Value
BackgroundFetch “Yes” or “No”
Collate “Machine” or other collating sequence. For a

list of supported collating sequences, see SET
COLLATE.

Description
Exclusive “Yes” or “No”
SourceDB A fully qualified path to a directory containing

zero or more free tables, or the absolute path
and filename for a database.

SourceType “DBC” or “DBF”
Version

If the data source name is not specified, the driver manager prompts the user for the information
(depending on the setting of the fDriverCompletion argument) and then continues. If more information
is required, the Visual FoxPro ODBC Driver displays the prompt dialog.

For more information on SQLDriverConnect, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLDrivers
Support: Full                  ODBC API Conformance: Level Two

Lists driver descriptions and driver attribute keywords.

For more information on SQLDrivers, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLError
Support: Full                  ODBC API Conformance: Core Level

Returns error or status information about the last error. The driver maintains a stack or list of errors
that can be returned for the hstmt, hdbc, and henv arguments, depending on how the call to
SQLError is made. The error queue is flushed after each statement.

The following table describes the SQLError arguments and return values used by the driver.

SQLError Argument Return Value Description
szSQLState The value for the SQLSTATE represented by the

error.
pfNativeError A non-zero value indicates a Visual FoxPro

ODBC Driver Native Error Message. A value of
zero indicates the error has been detected by the
driver and mapped to the appropriate ODBC
Error Code.

szErrorMsg The text for the native error or ODBC error.
pcbErrorMsg The length of the message text plus the length of

the identifiers.

For more information on driver error messages, see Error Messages Overview. For more information
on SQLError, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

SQLExecDirect
Support: Full                  ODBC API Conformance: Core Level

Executes a new, preparable SQL statement. The Visual FoxPro ODBC Driver uses the current values
of the parameter marker variables if any parameters exist in the statement.

If you want to create a batch command to submit more than one SQL statement at a time, use a
semicolon (;) to separate each SQL statement in the batch.

If your table, view or field names contain spaces, contain the names in back quote marks. For
example, if your database contains a table named My Table and the field My Field, enclose each
element of the identifier as shown below:
SELECT `My Table`.`Field1`, `My Table`.`Field2` FROM `My Table`
For more information on SQLExecDirect, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLExecute
Support: Full                  ODBC API Conformance: Core Level

Executes a prepared SQL statement (a statement already prepared by SQLPrepare). The driver uses
the current values of the parameter marker variables if any parameters exist in the statement.

For more information on SQLExecute, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLExtendedFetch
Support: Full                  ODBC API Conformance: Level Two

Similar to SQLFetch, but returns multiple rows using an array for each column. The result set is
forward-scrollable and can be made backward-scrollable if the cursor is defined to be static, not
forward-only.

By default, the Visual FoxPro ODBC Driver does not return rows marked as deleted in a FoxPro table.
Rows marked for deletion but not yet removed from a table are not included in the result set cursor.
You can change this behavior by using the SET DELETED command.

For more information on SQLExtendedFetch, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLFetch
Support: Full                  ODBC API Conformance: Core Level

Retrieves one row from a result set into the locations specified by the previous calls to SQLBindCol.
Prepares the driver for a call to SQLGetData for the unbound columns.

For more information on SQLFetch, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK
Guide.

SQLFreeConnect
Support: Full                  ODBC API Conformance: Core Level

Releases a connection handle and frees all memory allocated for the handle.

For more information on SQLFreeConnect, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLFreeEnv
Support: Full                  ODBC API Conformance: Core Level

Closes the Visual FoxPro ODBC Driver, and releases all memory associated with the driver.

For more information on SQLFreeEnv, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLFreeStmt
Support: Full                  ODBC API Conformance: Core Level

Stops processing associated with a specific hstmt, closes any open cursors associated with the
hstmt, discards pending results, and, optionally, frees all resources associated with the statement
handle.

For more information on SQLFreeStmt, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLGetConnectOption
Support: Partial                  ODBC API Conformance: Level One

Returns the current setting of a connection option. This function is partially supported: the driver
supports all values for the fOption argument, but does not support some of vParam values for the
fOption argument SQL_TXN_ISOLATION.

For a complete list of fOption arguments, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

The following table describes only those arguments with behavior specific to the Visual FoxPro ODBC
Driver implementation of SQLGetConnectOption:

fOption Remarks
SQL_AUTOCOMMIT If you choose

SQL_AUTOCOMMIT_OFF, your
application must explicitly commit or
roll back transactions with
SQLTransact; the Visual FoxPro
ODBC Driver does not automatically
commit a transactable statement upon
completion. The driver does begin a
transaction if the statement is
transactable.

SQL_CURRENT_QUALIFIER Can be a fully qualified database
(.DBC file) name or fully qualified path
to a directory containing zero or more
tables (.DBF files).

SQL_LOGINTIMEOUT Returns “Driver Not Capable” error
SQL_CURSORS Returns “Driver Not Capable” error
SQL_PACKET_SIZE Returns “Driver Not Capable” error
SQL_TXN_ISOLATION The driver allows only:

SQL_TXN_READ_COMMITTED;
The following vParams are not
supported:
SQL_TXN_READ_UNCOMMITTED;
SQL_TXN_REAPEATABLE_READ;
SQL_TXN_SERIALIZABLE

For more information on SQLGetConnectOption, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

SQLGetCursorName
Support: Full                  ODBC API Conformance: Core Level

Returns the name of the cursor associated with the given hstmt. SQLGetCursorName is included in
the Visual FoxPro ODBC Driver API because it is a part of Core Level API functionality; it cannot be
used with other API functions because the driver does not support positioned updates.

For more information on SQLGetCursorName, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

SQLGetData
Support: Full                  ODBC API Conformance: Level One

Retrieves the value of a single field in the current record of the given result set.

For more information on SQLGetData, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLGetFunctions
Support: Full                  ODBC API Conformance: Level One

Returns TRUE for all supported functions.

The Visual FoxPro ODBC Driver supports all ODBC API Core and Level 1 functions. The following
table indicates whether the driver supports a specific Level 2 function:

fFunction Supported
SQL_API_SQLBROWSECONNECT No
SQL_API_SQLCOLUMNPRIVELEGES No
SQL_API_SQLDATASOURCES Yes
SQL_API_SQLDESCRIBEPARAM No
SQL_API_SQLDRIVERS Yes
SQL_API_SQLEXTENDEDFETCH Yes
SQL_API_SQLFOREIGNKEYS No
SQL_API_SQLMORERESULTS Yes
SQL_API_SQLNATIVESQL No
SQL_API_SQLNUMPARAMS Yes
SQL_API_SQLPARAMOPTIONS Yes
SQL_API_SQLPRIMARYKEYS Yes
SQL_API_SQLPROCEDURECOLUMNS No
SQL_API_SQLPROCEDURES No
SQL_API_SQLSETPOS Yes
SQL_API_SQLSETSCROLLOPTIONS Yes
SQL_API_SQLTABLEPRIVILEGES No

For more information on SQLGetFunctions, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLGetInfo
Support: Full                  ODBC API Conformance: Level One

Returns general information about the Visual FoxPro ODBC Driver and data source associated with a
connection handle, hdbc. The following list shows the value returned by the Visual FoxPro ODBC
Driver for each fInfoType argument, and comments regarding the returned values.

For more information on SQLGetInfo, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

A
SQL_ACCESSIBLE_PROCEDURES returns ‘N’.
SQL_ACCESSIBLE_TABLES returns ‘Y’.
SQL_ACTIVE_CONNECTIONS returns 0.
SQL_ACTIVE_STATEMENTS returns 0.
SQL_ALTER_TABLE returns

SQL_AT_ADD_COLUMN
SQL_AT_DROP_COLUMN .

B
SQL_BOOKMARK_PERSISTENCE returns SQL_BP_SCROLL.

C
SQL_COLUMN_ALIAS returns ‘Y’.
SQL_CONCAT_NULL_BEHAVIOR returns SQL_CB_NULL.
SQL_CONVERT_BIGINT returns 0. The Visual FoxPro ODBC Driver does not support BigInt.
SQL_CONVERT_BINARY returns 0.
SQL_CONVERT_BIT returns 0.
SQL_CONVERT_CHAR returns 0.
SQL_CONVERT_DATE returns 0.
SQL_CONVERT_DECIMAL returns 0.
SQL_CONVERT_DOUBLE returns 0.
SQL_CONVERT_FLOAT returns 0.
SQL_CONVERT_INTEGER returns 0.
SQL_CONVERT_LONGVARBINARY returns 0.
SQL_CONVERT_LONGVARCHAR returns 0.
SQL_CONVERT_NUMERIC returns 0.
SQL_CONVERT_REAL returns 0.
SQL_CONVERT_SMALLINT returns 0.
SQL_CONVERT_TIME returns 0.
SQL_CONVERT_TIMESTAMP returns 0.
SQL_CONVERT_TINYINT returns 0.
SQL_CONVERT_VARBINARY returns 0.
SQL_CONVERT_VARCHAR returns 0.

SQL_CONVERT_FUNCTIONS returns 0.
SQL_CORRELATION_NAME returns SQL_CN_ANY.
SQL_CURSOR_COMMIT_BEHAVIOR returns SQL_CB_PRESERVE.
SQL_CURSOR_ROLLBACK_BEHAVIOR returns SQL_CB_PRESERVE.

D
SQL_DATA_SOURCE_NAME returns the value passed as DSN to SQLConnect, or

SQLDriverConnect; returns an empty string if no DSN is specified.
SQL_DATA_SOURCE_READ_ONLY returns ‘N’.
SQL_DATABASE_NAME returns a full UNC path to the current database if the data source is a

database. If the data source connects to a directory of tables, the function returns the path to the
directory.

SQL_DBMS_NAME returns “Visual FoxPro”.
SQL_DBMS_VER returns “03.00.0000”.
SQL_DEFAULT_TXN_ISOLATION returns SQL_TXN_READ_COMMITTED. Dirty reads are not

possible, but    nonrepeatable reads and phantoms are possible.
SQL_DRIVER_HDBC is implemented by the Driver Manager.
SQL_DRIVER_HENV is implemented by the Driver Manager.
SQL_DRIVER_HLIB is implemented by the Driver Manager.
SQL_DRIVER_HSTMT is implemented by the Driver Manager.
SQL_DRIVER_NAME    returns “VFPODBC.DLL”.
SQL_DRIVER_ODBC_VER returns “02.50” (SQL_SPEC_MAJOR, SQL_SPEC_MINOR).
SQL_DRIVER_VER returns “01.00.0000”.

E
SQL_EXPRESSIONS_IN_ORDERBY returns ‘N’.

F
SQL_FETCH_DIRECTION returns

SQL_FD_FETCH_NEXT
SQL_FD_FETCH_FIRST
SQL_FD_FETCH_LAST
SQL_FD_FETCH_PRIOR
SQL_FD_FETCH_ABSOLUTE
SQL_FD_FETCH_RELATIVE
SQL_FD_FETCH_BOOKMARK.

SQL_FILE_USAGE returns SQL_FILE_QUALIFIER for both database
 (.DBC file) and free table (.DBF file) data sources.

G-H
SQL_GETDATA_EXENSIONS returns

SQL_GD_ANY_COLUMN
SQL_GD_ANY_BLOCK
SQL_GD_ANY_BOUND
SQL_GD_ANY_ORDER.

SQL_GROUP_BY returns SQL_GB_NO_RELATION.

I-J

SQL_IDENTIFIER_CASE returns SQL_IC_MIXED.
SQL_IDENTIFIER_QUOTE_CHAR returns `.

K
SQL_KEYWORDS returns “”.

L
SQL_LIKE_ESCAPE_CLAUSE returns ‘N’.
SQL_LOCK_TYPES returns SQL_LCK_NO_CHANGE.

M
SQL_MAX_BINARY_LITERAL_LEN returns 0.
SQL_MAX_CHAR_LITERAL_LEN returns 254.
SQL_MAX_COLUMN_NAME_LEN returns 128.
SQL_MAX_COLUMNS_IN_GROUP_BY returns 16.
SQL_MAX_COLUMNS_IN_ORDER_BY returns 16.
SQL_MAX_COLUMNS_IN_INDEX returns 0.
SQL_MAX_COLUMNS_IN_SELECT returns 254.
SQL_MAX_COLUMNS_IN_TABLE returns 254.
SQL_MAX_CURSOR_NAME_LEN returns 254.
SQL_MAX_INDEX_SIZE returns 0.
SQL_MAX_OWNER_NAME_LEN returns 0.
SQL_MAX_PROCEDURE_NAME_LEN returns 0. The Visual FoxPro ODBC Driver does not allow

direct access to Visual FoxPro stored procedures.
SQL_MAX_QUALIFIER_NAME_LEN returns the maximum operating system path length.
SQL_MAX_ROW_SIZE returns 254^2.
SQL_MAX_ROW_SIZE_INCLUDES_LONG returns ‘N’.
SQL_MAX_STATEMENT_LEN returns 8192.
SQL_MAX_TABLE_NAME_LEN returns 128.
SQL_MAX_TABLES_IN_SELECT returns 16.
SQL_MAX_USER_NAME_LEN returns 0.
SQL_MULT_RESULT_SETS returns ‘Y’.
SQL_MULTIPLE_ACTIVE_TXN returns ‘Y’. Multiple connections can have transactions open at once.

N
SQL_NEED_LONG_DATA_LEN returns ‘N’.
SQL_NON_NULLABLE_COLUMNS returns SQL_NNC_NON_NULL.
SQL_NULL_COLLATION returns SQL_NC_LOW.
SQL_NUMERIC_FUNCTIONS returns all functions except SQL_FN_NUM_POWER, which is not

supported by Visual FoxPro ODBC Driver. The following functions are supported:
SQL_FN_NUM_ABS
SQL_FN_NUM_ACOS
SQL_FN_NUM_ASIN
SQL_FN_NUM_ATAN
SQL_FN_NUM_ATAN2
SQL_FN_NUM_CELING
SQL_FN_NUM_COS

SQL_FN_NUM_COT
SQL_FN_NUM_DEGREES
SQL_FN_NUM_EXP
SQL_FN_NUM_FLOOR
SQL_FN_NUM_LOG
SQL_FN_NUM_LOG10
SQL_FN_NUM_MOD
SQL_FN_NUM_PI
SQL_FN_NUM_RADIANS
SQL_FN_NUM_RAND
SQL_FN_NUM_ROUND
SQL_FN_NUM_SIGN
SQL_FN_NUM_SIN
SQL_FN_NUM_SQRT
SQL_FN_NUM_TAN.

O
SQL_ODBC_API_CONFORMANCE returns SQL_OAC_LEVEL1.
SQL_ODBC_SAG_CLI_CONFORMANCE returns SQL_OSCC_COMPLIANT. .
SQL_ODBC_SQL_CONFORMANCE returns SQL_OSC_MINIMUM. Minimum SQL syntax is

supported .
SQL_ODBC_SQL_OPT_IEF returns “N”. .
SQL_ODBC_VER is implemented by the Driver Manager.
SQL_ORDER_BY_COLUMNS_IN_SELECT returns “N”.
SQL_OUTER_JOINS returns “N”.
SQL_OWNER_TERM returns “”. The Visual FoxPro ODBC Driver does not support owners for its

objects.
SQL_OWNER_USAGE returns 0. The Visual FoxPro ODBC Driver does not support owners for its

objects.

P
SQL_POS_OPERATIONS returns SQL_POS_POSITION.
SQL_POSITIONED_STATEMENTS returns 0.
SQL_PROCEDURE_TERM returns “”.
SQL_PROCEDURES returns ‘N’.

Q
SQL_QUALIFIER_LOCATION returns SQL_QL_START.
SQL_QUALIFIER_NAME_SEPARATOR returns ‘!’ or ‘\’. The separator between database and table is

‘!’ for data sources connected to databases, and ‘\’ for data sources that are directories of free
tables.

SQL_QUALIFIER_TERM returns “database” or “directory”. The qualifier is “database” for data
sources connected to databases, and “directory” for data sources that are directories of free tables.

SQL_QUALIFIER_USAGE does not support SQL_QU_PRIVILEGE_DEFINITION; it returns:
SQL_QU_DML_STATEMENT
SQL_QU_TABLE_DEFINITION .

SQL_QUOTED_IDENTIFIER_CASE returns SQL_IC_MIXED.

R

SQL_ROW_UPDATES returns “N”. The Visual FoxPro ODBC Driver supports only static and forward
cursors.

S
SQL_SCROLL_CONCURRENCY returns SQL_SCCO_READ_ONLY.
SQL_SCROLL_OPTIONS returns

SQL_SO_STATIC
SQL_SO_READONLY.

SQL_SEARCH_PATTERN_ESCAPE returns “\”.
SQL_SERVER_NAME returns “”.
SQL_SPECIAL_CHARACTERS returns “~@#$%^”.
SQL_STATIC_SENSITIVITY returns 0. The Visual FoxPro ODBC Driver does not supports positional

updates.
SQL_STRING_FUNCTIONS does not support SQL_FN_STR_INSERT, SQL_FN_STR_LOCATE,

SQL_FN_STR_LOCATE_2, or SQL_FN_STR_SOUNDEX.
It returns
SQL_FN_STR_ASCII
SQL_FN_STR_CHAR
SQL_FN_STR_CONCAT
SQL_FN_STR_DIFFERENCE
SQL_FN_STR_LCASE
SQL_FN_STR_LEFT
SQL_FN_STR_LENGTH
SQL_FN_STR_LTRIM
SQL_FN_STR_REPEAT
SQL_FN_STR_REPLACE
SQL_FN_STR_RIGHT
SQL_FN_STR_RTRIM
SQL_FN_STR_SUBSTRING
SQL_FN_STR_UCASE
SQL_FN_STR_SPACE.

SQL_SUBQUERIES returns
SQL_SQ_CORRELATED_SUBQUERIES
SQL_SQ_COMPARISON
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED.

SQL_SYSTEM_FUNCTIONS returns
SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
but not
SQL_FN_SYS_USERNAME.

T
SQL_TABLE_TERM returns “table”.
SQL_TIMEDATE_ADD_INTERVALS returns

SQL_FN_TSI_ SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_MONTH
SQL_FN_TSI_YEAR

Not SQL_FN_TSI_FRAC_SECOND, SQL_FN_TSI_WEEK, or SQL_FN_TSI_QUARTER.
SQL_TIMEDATE_DIFF_INTERVALS returns

SQL_FN_TSI_ SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_MONTH
SQL_FN_TSI_YEAR.

SQL_TIMEDATE_FUNCTIONS does not support SQL_FN_TD_QUARTER,
SQL_FN_TD_TIMESTAMPADD, SQL_FN_TD_DAYOFYEAR, or SQL_FN_TD_WEEK.
It returns
SQL_FN_TD_CURDATE
SQL_FN_TD_CURTIME
SQL_FN_TD_DAYNAME
SQL_FN_TD_DAYOFMONTH
SQL_FN_TD_DAYOFWEEK
SQL_FN_TD_HOUR
SQL_FN_TD_MINUTE
SQL_FN_TD_MONTH
SQL_FN_TD_MONTHNAME
SQL_FN_TD_NOW
SQL_FN_TD_SECOND
SQL_FN_TD_TIMESTAMPDIFF
SQL_FN_TD_YEAR .

SQL_TXN_CAPABLE returns SQL_TC_DML.
SQL_TXN_ISOLATION_OPTION returns SQL_TXN_READ_COMMITTED.

U-Z
SQL_UNION returns

SQL_U_UNION
SQL_U_UNION_ALL.

SQL_USER_NAME returns <blank>.

SQLGetStmtOption
Support: Full                  ODBC API Conformance: Level One

Returns the current setting of a statement option.

fOption Returns
SQL_GET_BOOKMARK 32-bit integer value that is the bookmark for

the current record number
SQL_ROW_NUMBER 32 bit integer specifying the position of the

current row within the result set
SQL_TRANSLATE_DLL Error: “Driver not capable”.

The Visual FoxPro ODBC Driver has no translation DLLs.

For more information on SQLGetStmtOption, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLGetTypeInfo
Support: Full                  ODBC API Conformance: Level One

Returns information about the data types supported by a data source. The driver returns the
information in a SQL result set. The following table lists ODBC data types and the corresponding
Visual FoxPro data type.

ODBC Type Visual FoxPro Type
SQL_BIGINT Not supported. There is no 64-bit Visual

FoxPro type.
SQL_BIT Logical
SQL_CHAR Character
SQL_DATE Date
SQL_DECIMAL Numeric
SQL_DOUBLE Double
SQL_FLOAT Double
SQL_INTEGER Integer
SQL_LONGVARBINARY Memo (Binary)
SQL_LONGVARCHAR Memo
SQL_NUMERIC Numeric*, Currency, Float
SQL_REAL Double
SQL_SMALLINT Integer
SQL_TIME Not supported. There is no Visual FoxPro time

type.
SQL_TIMESTAMP DateTime
SQL_TINYINT Integer
SQL_VARBINARY Memo (Binary)*, eneral
SQL_VARCHAR Character
*Default type

For more information on Visual FoxPro data types, see CREATE TABLE. For more information on
SQLGetTypeInfo, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

SQLMoreResults
Support: Full                  ODBC API Conformance: Level Two

Determines whether more results are pending on a statement handle, hstmt, containing SELECT,
UPDATE, INSERT, or DELETE statements and, if so, initializes processing for those results.

For more information on SQLMoreResults, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLNumParams
Support: Full                  ODBC API Conformance: Level Two

Returns the number of parameters in a SQL statement. The number of parameters should equal the
number of question marks in the SQL statement passed to SQLPrepare.

For more information on SQL grammar, see Supported ODBC SQL Grammar. For more information
on SQLNumParams, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide.

SQLNumResultCols
Support: Full                  ODBC API Conformance: Core Level

Returns the number of columns in a result set cursor.

For more information on SQLNumResultCols, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLParamData
Support: Full                  ODBC API Conformance: Level One

Used in conjunction with SQLPutData to specify parameter data at statement execution time.

For more information on SQLParamData, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLParamOptions
Support: Full                  ODBC API Conformance: Level One

Allows an application to specify multiple values for the set of parameters assigned by
SQLBindParameter. The ability to specify multiple values for a set of parameters is useful for bulk
inserts and other work that requires the data source to process the same SQL statement multiple
times with various parameter values. An application can, for example, specify three sets of values for
the set of parameters associated with an INSERT statement, and then execute the INSERT statement
once to perform the three insert operations.

For more information on SQLParamOptions, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLPrepare
Support: Full                  ODBC API Conformance: Core Level

Prepares a SQL statement by planning how to optimize and execute the statement. The SQL
statement is compiled for execution by SQLExecDirect.
If your table, view or field names contain spaces, contain the names in back quote (`) marks. For
example, if your database contains a table named My Table and the field My Field, enclose each
element of the identifier as shown below:
SELECT * FROM `My Table`.`My Field`
For more information on SQLPrepare, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLPrimaryKeys
Support: Full                  ODBC API Conformance: Level Two

Returns the column names that comprise the primary key for a table. The Visual FoxPro ODBC Driver
implementation of SQLPrimaryKeys:

· Ignores the szTableOwner and cbTableOwner arguments.
· Only works for data sources that are databases. The driver returns the error “Driver does not

support this function” if the data source is a directory of free tables.

For more information on SQLPrimaryKeys, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLPutData
Support: Full                  ODBC API Conformance: Level One

Allows an application to send data for a parameter or column to the driver at statement execution
time.

For more information on SQLPutData, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLRowCount
Support: Full                  ODBC API Conformance: Core Level

Returns the number of rows affected by the last UPDATE, INSERT, or DELETE statement.

For more information on SQLRowCount, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLSetConnectOption
Support: Partial                  ODBC API Conformance: Level One

Sets options that govern aspects of connections. This function is partially supported: the driver
supports all values for the fOption argument, but does not support some of vParam values for the
fOption argument SQL_TXN_ISOLATION.

For a complete list of fOption arguments, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

The following table describes only those arguments with behavior specific to the Visual FoxPro ODBC
Driver implementation of SQLSetConnectOption:

fOption Remarks
SQL_AUTOCOMMIT If you choose

SQL_AUTOCOMMIT_OFF, your
application must explicitly commit or
roll back transactions with
SQLTransact; the Visual FoxPro
ODBC Driver does not automatically
commit a transactable statement upon
completion. The driver does begin a
transaction if the statement is
transactable.

SQL_CURRENT_QUALIFIER Can be a fully qualified
databasename or fully qualified path
to a directory containing zero or more
free tables.

SQL_LOGINTIMEOUT Returns “Driver not capable” error
SQL_CURSORS Returns “Driver not capable” error
SQL_PACKET_SIZE Returns “Driver not capable” error
SQL_TXN_ISOLATION The driver allows only:

SQL_TXN_READ_COMMITTED;
The following vParams are not
supported:
SQL_TXN_READ_UNCOMMITTED;
SQL_TXN_REAPEATABLE_READ;
SQL_TXN_SERIALIZABLE

For more information on SQLSetConnectOption, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

SQLSetCursorName
Support: Full                  ODBC API Conformance: Core Level

Associates a cursor name with an active statement handle, hstmt. SQLSetCursorName is included in
the Visual FoxPro ODBC Driver API because it is a part of Core Level ODBC API functionality; it
cannot be used with other API functions because the driver does not support positioned updates.

For more information on SQLSetCursorName, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLSetPos
Support: Full                  ODBC API Conformance: Level Two

Sets the cursor position in a rowset. You can use SQLSetPos with SQLGetData to retrieve rows from
unbound columns after positioning the cursor to a specific row in the rowset.

For more information on SQLSetPos, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLSetScrollOptions
Support: Partial                  ODBC API Conformance: Level Two

Sets options that control the behavior of cursors associated with a statement handle, hstmt.

The Visual FoxPro ODBC Driver supports only SQL_CONCUR_READ_ONLY; it does not support the
fConcurrency value SQL_CONCUR_ROWVER. The driver converts SQL_KEYSET_SIZE,
SQL_CURSOR_DYNAMIC and SQL_CURSOR_KEYSET_DRIVEN to SQL_SCROLL_STATIC with
warning ODBC_01S02.

For more information on SQLSetScrollOptions, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

SQLSetStmtOption
Support: Full                  ODBC API Conformance: Level One

Sets options related to a statement handle, hstmt.

fOption Allowed Values Comments
SQL_ASYNC_ENABLE SQL_ASYNC_ENABLE_OFF If you attempt to set this fOption,

the driver returns the error: “Driver
not capable”. Visual FoxPro does
not support asynchronous
execution.

SQL_BIND_TYPE SQL_BIND_BY_COLUMN or a 32-
bit value denoting the length of the
structure or an instance of a buffer
into which result columns will be
bound.

SQL_CONCURRENCY SQL_CONCUR_READ_ONLY
SQL_CONCUR_LOCK
SQL_CONCUR_VALUES

The driver doesn’t allow
SQL_CONCUR_ROWVER, since
Visual FoxPro does not have row
versioning based on timestamps.

SQL_CURSOR_TYPE SQL_CURSOR_FORWARD_ONLY
SQL_CURSOR_STATIC

The driver does not allow
SQL_CURSOR_KEYSET_DRIVEN
or SQL_CURSOR_DYNAMIC; see
SQLSetScrollOptions for more
information.

SQL_KEYSET_SIZE Error: “Driver not capable” Visual FoxPro does not support the
keyset cursor model.

SQL_MAX_LENGTH 0 If you attempt to set this fOption
value, the driver returns the error
“Driver not capable”.

SQL_MAX_ROWS 0 If you attempt to set this fOption
value, the driver returns the error
“Driver not capable”.

SQL_NOSCAN SQL_NOSCAN_OFF
SQL_QUERY_TIMEOUT 0 If you attempt to set this fOption

value, the driver returns the error
“Driver not capable”.

SQL_RETRIEVE_DATA SQL_RD_ON, SQL_RD_OFF
SQL_ROWSET_SIZE 1 to 4,294,967,296
SQL_SIMULATE_CURSOR Error: “Driver not capable”
SQL_USE_BOOKMARKS SQL_UB_OFF

SQL_UB_ON

For more information on SQLSetStmtOption, see the Microsoft ODBC 2.0 Programmer’s Reference
and SDK Guide.

SQLSpecialColumns
Support: Full                  ODBC API Conformance: Level One

Retrieves the optimal set of columns that uniquely identifies a row in the table.

The Visual FoxPro ODBC Driver returns the columns that make up the primary key on the FoxPro
table (see SQLPrimaryKeys). If called with fColType set to SQL_ROWVER, no columns are
returned. SQLSpecialColumns only works for data sources that are databases.   

For more information on SQLSpecialColumns, see the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

SQLStatistics
Support: Full                  ODBC API Conformance: Level One

Retrieves a list of statistics about a single table and the indexes, or tag names, associated with the
table. The driver returns the information as a result set.

For more information on SQLStatistics, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

SQLTables
Support: Full                  ODBC API Conformance: Level One

Returns the list of table names specified by the parameter in the SQLTables statement. If no
parameter is specified, returns the table names stored in the current data source. The driver returns
the information as a result set.

Enumeration type calls will not receive a result set entry for remote views or local parameterized
views.    However, a call to SQLTables with a unique table name specifier will find a match for such a
view if present with that name; this allows the API to used to check for name conflicts prior to creation
of a new table.

Note      The Visual FoxPro ODBC driver differentiates between database tables and free tables, even
when both types of tables are stored in the same directory on your system. If your data source is a
directory of free tables, the Visual FoxPro ODBC Driver does not catalog or return the names of any
tables that are associated with a database.

For more information on SQLTables, see the Microsoft ODBC 2.0 Programmer’s Reference and SDK
Guide.

SQLTransact
Support: Full                  ODBC API Conformance: Core Level

Requests a commit or rollback operation for all active operations on all statement handles (hstmts)
associated with a connection, or all connections associated with the environment handle, henv.
SQLTransact only works for data sources that are databases.

If a commit fails when in manual mode, the transaction remains active; you can choose to rollback the
transaction or retry the commit operation. If a commit operation fails when in automatic transaction
mode, the transaction is rolled back automatically; the transaction cannot be inactive.

For more information on SQLTransact, see the Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

database
In Visual FoxPro, a database file has a .DBC extension and can contain one or more tables.

database table
In Visual FoxPro, a table that is associated with a database. Contrast free table.

free table
In Visual FoxPro, a table that is not associated with a database.

A .DBF file created in FoxPro version 2.x is a free table, unless it is converted to a Visual FoxPro table
and added to a Visual FoxPro database. Contrast database table.

preparable SQL statement
A SQL statement that has not already been processed by SQLPrepare.

table
In Visual FoxPro, records are stored in a table. Each row of a table represents a record and the
columns of the table represent the fields of the record. Each Visual FoxPro table is stored in its own
file with a .DBF extension. Visual FoxPro tables can be associated with a database.

FoxPro versions 2.x tables are not associated with a database.   

ALTER TABLE - SQL Command
See Also

Programmatically modifies the structure of a table.

Syntax
ALTER TABLE TableName1

ADD | ALTER [COLUMN] FieldName1
FieldType [(nFieldWidth [, nPrecision])]
[NULL | NOT NULL]
[CHECK lExpression1 [ERROR cMessageText1]]
[DEFAULT eExpression1]
[PRIMARY KEY | UNIQUE]
[REFERENCES TableName2 [TAG TagName1]]
[NOCPTRANS]

 - Or -
ALTER TABLE TableName1

ALTER [COLUMN] FieldName2
[NULL | NOT NULL]
[SET DEFAULT eExpression2]
[SET CHECK lExpression2 [ERROR cMessageText2]]
[DROP DEFAULT]
[DROP CHECK]

 - Or -
ALTER TABLE TableName1

[DROP [COLUMN] FieldName3]
[SET CHECK lExpression3 [ERROR cMessageText3]]
[DROP CHECK]
[ADD PRIMARY KEY eExpression3 TAG TagName2]
[DROP PRIMARY KEY]
[ADD UNIQUE eExpression4 [TAG TagName3]]
[DROP UNIQUE TAG TagName4]
[ADD FOREIGN KEY [eExpression5] TAG TagName4

REFERENCES TableName2 [TAG TagName5]]
[DROP FOREIGN KEY TAG TagName6 [SAVE]]
[RENAME COLUMN FieldName4 TO FieldName5]
[NOVALIDATE]

Arguments
TableName1      Specifies the name of the table whose structure is modified.
ADD [COLUMN] FieldName1      Specifies the name of the field to add.
ALTER [COLUMN] FieldName1      Specifies the name of an existing field to modify.
FieldType [(nFieldWidth [, nPrecision]])      Specifies the field type, field width, and field precision

(number of decimal places) for a new or modified field.
FieldType is a single letter indicating the field's data type. Some field data types require that you
specify nFieldWidth or nPrecision or both.
nFieldWidth and nPrecision are ignored for D, T, I, Y, L, M, G, and P types. nPrecision defaults to
zero (no decimal places) if nPrecision isn't included for the N, F, or B types.

NULL | NOT NULL      Allows or prevents null values in the field.
If you omit NULL and NOT NULL, the current setting of SET NULL determines if null values are
allowed in the field. However, if you omit NULL and NOT NULL and include the PRIMARY KEY or

UNIQUE clause, the current setting of SET NULL is ignored and the field defaults to NOT NULL.
CHECK lExpression1      Specifies a validation rule for the field. lExpression1 must evaluate to a

logical expression, and can be a user-defined function or a stored procedure. Note that when a
blank record is appended, the validation rule is checked. An error is generated if the validation rule
doesn't allow for a blank field value in an appended record.

ERROR cMessageText1      Specifies the error message displayed when the field validation rule
generates an error.

DEFAULT eExpression1      Specifies a default value for the field. The data type of eExpression1 must
be the same as the data type for the field.

PRIMARY KEY      Creates a primary index tag. The index tag has the same name as the field.
UNIQUE      Creates a candidate index tag with the same name as the field.

Note    Candidate indexes (created by including the UNIQUE option, provided for ANSI
compatibility in ALTER TABLE or CREATE TABLE) are not the same as indexes created with the
UNIQUE option in the INDEX command. An index created with UNIQUE in the INDEX command
allows duplicate index keys; candidate indexes do not allow duplicate index keys.

Null values and duplicate records are not permitted in a field used for a primary or candidate index.
If you are creating a new field with ADD COLUMN, Visual FoxPro will not generate an error if you
create a primary or candidate index for a field that supports null values. However, Visual FoxPro
will generate an error if you attempt to enter a null or duplicate value into a field used for a primary
or candidate index.
If you are modifying an existing field and the primary or candidate index expression consists of
fields in the table, Visual FoxPro checks the fields to see if they contain null values or duplicate
records. If they do, Visual FoxPro generates an error and the table is not altered.

REFERENCES TableName2 TAG TagName1      Specifies the parent table to which a persistent
relationship is established. TAG TagName1 specifies the parent table's index tag on which the
relationship is based. Index tag names can contain up to 10 characters.

NOCPTRANS      Prevents translation to a different code page for character and memo fields. If the
table is converted to another code page, the fields for which NOCPTRANS has been specified are
not translated. NOCPTRANS can only be specified for character and memo fields.
The following example creates a table named MYTABLE containing two character fields and two
memo fields. The second character field char2 and the second memo field memo2 include
NOCPTRANS to prevent translation.
CREATE TABLE mytable (char1 C(10), char2 C(10) NOCPTRANS,;

memo1 M, memo2 M NOCPTRANS)
ALTER [COLUMN] FieldName2      Specifies the name of an existing field to modify.
SET DEFAULT eExpression2      Specifies a new default value for an existing field. The data type of

eExpression2 must be the same as the data type for the field.
SET CHECK lExpression2      Specifies a new validation rule for an existing field. lExpression2 must

evaluate to a logical expression, and may be a user-defined function or a stored procedure.
ERROR cMessageText2      Specifies the error message displayed when the field validation rule

generates an error. The message is displayed only when data is changed within a Browse or Edit
window.

DROP DEFAULT      Removes the default value for an existing field.
DROP CHECK      Removes the validation rule for an existing field.
DROP [COLUMN] FieldName3      Specifies a field to remove from the table. Removing a field from

the table also removes the field's default value setting and field validation rule.
If index key or trigger expressions reference the field, the expressions become invalid when the
field is removed. In this case, an error isn't generated when the field is removed, but the invalid
index key or trigger expressions will generate errors at run time.

SET CHECK lExpression3      Specifies the table validation rule. lExpression3 must evaluate to a

logical expression, and may be a user-defined function or a stored procedure.
ERROR cMessageText3      Specifies the error message displayed when the table validation rule

generates an error. The message is only displayed when data is changed within a Browse or Edit
window.

DROP CHECK      Removes the table's validation rule.
ADD PRIMARY KEY eExpression3 TAG TagName2      Adds a primary index to the table.

eExpression3 specifies the primary index key expression, and TagName2 specifies the name of
the primary index tag. Index tag names can contain up to 10 characters. If TAG TagName2 is
omitted and eExpression3 is a single field, the primary index tag has the same name as the field
specified in eExpression3.

DROP PRIMARY KEY      Removes the primary index and its index tag. Because a table can have
only one primary key, it isn't necessary to specify the name of the primary key. Removing the
primary index also deletes any persistent relations based on the primary key.

ADD UNIQUE eExpression4 [TAG TagName3]      Adds a candidate index to the table. eExpression4
specifies the candidate index key expression, and TagName3 specifies the name of the candidate
index tag. Index tag names can contain up to 10 characters. If you omit TAG TagName3, and if
eExpression4 is a single field, the candidate index tag has the same name as the field specified in
eExpression4.

DROP UNIQUE TAG TagName4      Removes the candidate index and its index tag. Because a table
can have multiple candidate keys, you must specify the name of the candidate index tag.

ADD FOREIGN KEY [eExpression5] TAG TagName4      Adds a foreign (non-primary) index to the
table. eExpression5 specifies the foreign index key expression and TagName4 specifies the name
of the foreign index tag. Index tag names can contain up to 10 characters.

REFERENCES TableName2 [TAG TagName5]      Specifies the parent table to which a persistent
relationship is established. Include TAG TagName5 to establish a relation based on an existing
index tag for the parent table. Index tag names can contain up to 10 characters. If you omit TAG
TagName5, the relationship is established using the parent table's primary index tag.

DROP FOREIGN KEY TAG TagName6 [SAVE]      Deletes a foreign key whose index tag is
TagName6. If you omit SAVE, the index tag is deleted from the structural index. Include SAVE to
prevent the index tag from being deleted from the structural index.

RENAME COLUMN FieldName4 TO FieldName5      Allows you to change the name of a field in the
table. FieldName4 specifies the name of the field that is renamed. FieldName5 specifies the new
name of the field.

Caution      Exercise care when renaming table fields ¾ index expressions, field and table validation
rules, commands, functions, and so on may reference the original field names.

NOVALIDATE      Specifies that Visual FoxPro allows changes to be made to the structure of the table
that may violate the integrity of the data in the table. By default, Visual FoxPro prevents ALTER
TABLE from making changes to the structure of the table that violates the integrity of the data in
the table. Include NOVALIDATE to override this default behavior.

Remarks
ALTER TABLE can be used to modify the structure of a table that has not been added to a database.
However, Visual FoxPro generates an error if you include the DEFAULT, FOREIGN KEY, PRIMARY
KEY, REFERENCES, or SET clauses when modifying a free table.

ALTER TABLE may rebuild the table by creating a new table header and appending records to the
table header. For example, changing a field's type or width may cause the table to be rebuilt.

After a table is rebuilt, field validation rules are executed for any fields whose type or width are
changed. If you change the type or width of any field in the table, the table rule is executed.

If you modify field or table validation rules for a table that has records, Visual FoxPro tests the new
field or table validation rules against the existing data and issues a warning on the first occurrence of

a field or table validation rule or a trigger violation.

If the table you modify is in a database, ALTER TABLE - SQL requires exclusive use of the database.
To open a database for exclusive use, include EXCLUSIVE in OPEN DATABASE.

See Also
CREATE TABLE - SQL

INDEX

CREATE TABLE - SQL Command
See Also

Creates a table having the specified fields.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
CREATE TABLE | DBF TableName1 [NAME LongTableName] [FREE]

(FieldName1 FieldType [(nFieldWidth [, nPrecision])]
[NULL | NOT NULL]
[CHECK lExpression1 [ERROR cMessageText1]]
[DEFAULT eExpression1]
[PRIMARY KEY | UNIQUE]
[REFERENCES TableName2 [TAG TagName1]]
[NOCPTRANS]

[, FieldName2 ...]
[, PRIMARY KEY eExpression2 TAG TagName2
|, UNIQUE eExpression3 TAG TagName3]
[, FOREIGN KEY eExpression4 TAG TagName4 [NODUP]

REFERENCES TableName3 [TAG TagName5]]
[, CHECK lExpression2 [ERROR cMessageText2]])

| FROM ARRAY ArrayName

Arguments
CREATE TABLE | DBF TableName1      Specifies the name of the table to create. The TABLE and

DBF options are identical.
NAME LongTableName      Specifies a long name for the table. A long table name can be specified

only when a database is open because long table names are stored in databases.
Long names can contain up to 128 characters and can be used in place of short file names in the
database.

FREE      Specifies that the table will not be added to an open database. FREE isn't required if a
database isn't open.

(FieldName1 FieldType [(nFieldWidth [, nPrecision])]      Specifies the field name, field type, field width,
and field precision (number of decimal places), respectively.
FieldType is a single letter indicating the field's data type. Some field data types require that you
specify nFieldWidth or nPrecision, or both.
nFieldWidth and nPrecision are ignored for D, T, I, Y, L, M, G, and P types. nPrecision defaults to
zero (no decimal places) if nPrecision isn't included for the N, F, or B types.

NULL      Allows null values in the field.
NOT NULL      Prevents null values in the field.

If you omit NULL and NOT NULL, the current setting of SET NULL determines if null values are
allowed in the field. However, if you omit NULL and NOT NULL and include the PRIMARY KEY or
UNIQUE clause, the current setting of SET NULL is ignored and the field defaults to NOT NULL.

CHECK lExpression1      Specifies a validation rule for the field. lExpression1 can be a user-defined
function. Note that when a blank record is appended, the validation rule is checked. An error is
generated if the validation rule doesn't allow for a blank field value in an appended record.

ERROR cMessageText1      Specifies the error message Visual FoxPro displays when the field rule
generates an error. The message is only displayed when data is changed within a Browse window
or Edit window.

DEFAULT eExpression1      Specifies a default value for the field. The data type of eExpression1must
be the same as the field's data type.

PRIMARY KEY      Creates a primary index for the field. The primary index tag has the same name as
the field.

UNIQUE      Creates a candidate index for the field. The candidate index tag has the same name as
the field.
Note    Candidate indexes (created by including the UNIQUE option in CREATE TABLE or ALTER
TABLE - SQL) are not the same as indexes created with the UNIQUE option in the INDEX
command. An index created with the UNIQUE option in the INDEX command allows duplicate
index keys; candidate indexes do not allow duplicate index keys. See INDEX for additional
information on its UNIQUE option.

Null values and duplicate records are not permitted in a field used for a primary or candidate index.
However, Visual FoxPro will not generate an error if you create a primary or candidate index for a
field that supports null values. Visual FoxPro will generate an error if you attempt to enter a null or
duplicate value into a field used for a primary or candidate index.

REFERENCES TableName2 [TAG TagName1]      Specifies the parent table to which a persistent
relationship is established. If you omit TAG TagName1, the relationship is established using the
primary index key of the parent table. If the parent table does not have a primary index, Visual
FoxPro generates an error.
Include TAG TagName1 to establish a relation based on an existing index tag for the parent table.
Index tag names can contain up to 10 characters.
The parent table cannot be a free table.

NOCPTRANS      Prevents translation to a different code page for character and memo fields. If the
table is converted to another code page, the fields for which NOCPTRANS has been specified are
not translated. NOCPTRANS can only be specified for character and memo fields.
The following example creates a table named MYTABLE containing two character fields and two
memo fields. The second character field CHAR2 and the second memo field MEMO2 include
NOCPTRANS to prevent translation.
CREATE TABLE mytable (char1 C(10), char2 C(10) NOCPTRANS,;

memo1 M, memo2 M NOCPTRANS)
PRIMARY KEY eExpression2 TAG TagName2      Specifies a primary index to create. eExpression2

specifies any field or combination of fields in the table. TAG TagName2 specifies the name for the
primary index tag that is created. Index tag names can contain up to 10 characters.
Because a table can have only one primary index, you cannot include this clause if you have
already created a primary index for a field. Visual FoxPro generates an error if you include more
than one PRIMARY KEY clause in CREATE TABLE.

UNIQUE eExpression3 TAG TagName3      Creates a candidate index. eExpression3 specifies any
field or combination of fields in the table. However, if you have created a primary index with one of
the PRIMARY KEY options, you cannot include the field that was specified for the primary index.
TAG TagName3 specifies a tag name for the candidate index tag that is created. Index tag names
can contain up to 10 characters.
A table can have multiple candidate indexes.

FOREIGN KEY eExpression4 TAG TagName4 [NODUP]      Creates a foreign (non-primary) index,
and establishes a relationship to a parent table. eExpression4 specifies the foreign index key
expression and TagName4 specifies the name of the foreign index key tag that is created. Index
tag names can contain up to 10 characters. Include NODUP to create a candidate foreign index.
You can create multiple foreign indexes for the table, but the foreign index expressions must
specify different fields in the table.

REFERENCES TableName3 [TAG TagName5]      Specifies the parent table to which a persistent
relationship is established. Include TAG TagName5 to establish a relation based on an index tag
for the parent table. Index tag names can contain up to 10 characters. If you omit TAG TagName5,

the relationship is established using the parent table's primary index key by default.
CHECK eExpression2 [ERROR cMessageText2]      Specifies the table validation rule. ERROR

cMessageText2 specifies the error message Visual FoxPro displays when the table validation rule
is executed. The message is displayed only when data is changed within a Browse window or Edit
window.

FROM ARRAY ArrayName      Specifies the name of an existing array whose contents are the name,
type, precision, and scale for each field in the table. The contents of the array can be defined with
the AFIELDS() function.

Remarks
The new table is opened in the lowest available work area, and can be accessed by its alias. The new
table is opened exclusively, regardless of the current setting of SET EXCLUSIVE.

If a database is open and you don't include the FREE clause, the new table is added to the database.
You cannot create a new table with the same name as a table in the database.

If a database is open, CREATE TABLE -SQL requires exclusive use of the database. To open a
database for exclusive use, include EXCLUSIVE in OPEN DATABASE.

If a database isn't open when you create the new table, including the NAME, CHECK, DEFAULT,
FOREIGN KEY, PRIMARY KEY, or REFERENCES clauses generates an error.

Note that the CREATE TABLE syntax uses commas to separate certain CREATE TABLE options.
Also, the NULL, NOT NULL, CHECK, DEFAULT, PRIMARY KEY and UNIQUE clause must be placed
within the parentheses containing the column definitions.

Driver Remarks
When your application sends the ODBC SQL statement CREATE TABLE to the data source, the
Visual FoxPro ODBC Driver translates the command into the Visual FoxPro CREATE TABLE
command using the following syntax:

ODBC Syntax Visual FoxPro Syntax
CREATE TABLE base-table-name
(column-identifier data type

[NOT NULL]
[,column-identifier data type

[NOT NULL] ...)

CREATE TABLE TableName1 [NAME LongTableName]
(FieldName1 FieldType

[(nFieldWidth [, nPrecision])]
[NOT NULL])

When you create a table using the driver, the driver closes the table immediately after creation to
allow access to the table by other users. This differs from Visual FoxPro, which leaves the table open
exclusively upon creation. However, if a stored procedure on your data source containing a CREATE
TABLE statement executes, the table is left open.

If the data source is a database (.DBC file), the Visual FoxPro ODBC Driver creates a table named
LongTableName with the same name as the base-table-name.

Using Data Definition Language (DDL)
You cannot include DDL in the following places:

· In a batch SQL statements that requires a transaction
· Following a previously executed statement that required a transaction if not in autocommit mode

and if your application has not yet called SQLTransact.

If you want to create a temporary table, for example, you should create the table before you begin the
statement requiring a transaction. If you include the CREATE TABLE statement in a batch SQL
statement that requires a transaction, the driver returns an error message.

See Also
ALTER TABLE - SQL

Data Types

INSERT - SQL

SELECT - SQL

DELETE - SQL Command
See Also

Marks records for deletion.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
DELETE FROM [DatabaseName!]TableName

[WHERE FilterCondition1 [AND | OR FilterCondition2 ...]]

Arguments
FROM [DatabaseName!]TableName      Specifies the table in which records are marked for deletion.

DatabaseName! specifies the name of a database containing the table if the containing database is
not the database specified with the data source. You must include the name of a database
containing the table if the database is not the database specified with the data source. Include the
exclamation point (!) delimiter after the database name and before the table name.

WHERE FilterCondition1 [AND | OR FilterCondition2 ...]      Specifies that Visual FoxPro only mark
certain records for deletion.
FilterCondition specifies the criteria that records must meet to be marked for deletion. You can
include as many filter conditions as you like, connecting them with the AND or OR operator. You
can also use the NOT operator to reverse the value of a logical expression, or use EMPTY() to
check for an empty field.

Remarks
If SET DELETED is set to ON, records marked for deletion are ignored by all commands that include
a scope.

DELETE - SQL uses record locking when marking multiple records for deletion in tables opened for
shared access. This reduces record contention in multiuser situations, but may reduce performance.
For maximum performance, open the table for exclusive use.

Driver Remarks
When your application sends the ODBC SQL statement DELETE to the data source, the Visual
FoxPro ODBC Driver converts the command into the Visual FoxPro DELETE command without
translation.

See Also
SET DELETED

DELETE TAG Command
See Also

Removes a tag or tags from a compound index (.CDX) file.

Syntax
DELETE TAG TagName1 [OF CDXFileName1]

[, TagName2 [OF CDXFileName2]] ...

 - Or -

DELETE TAG ALL [OF CDXFileName]

Arguments
TagName1 OF CDXFileName1 [, TagName2 [OF CDXFileName2]] ...        Specifies a tag to remove

from a compound index file. You can delete multiple tags with one DELETE TAG by including a list
of tag names separated by commas. If two or more tags with the same name exist in the open
index files, you can remove a tag from a specific index file by including OF CDXFileName.

ALL [OF CDXFileName]      Removes every tag from a compound index file. If the current table has a
structural compound index file, all tags are removed from the index file, the index file is deleted
from the disk, and the flag in the table's header indicating the presence of an associated structural
compound index file is removed. Use ALL with OF CDXFileName to remove all tags from an open
compound index file other than the structural compound index file.

Remarks
Compound index files, created with INDEX, contain tags corresponding to index entries. DELETE
TAG is used to remove a tag or tags from open compound index files. You can delete only tags from
compound index files open in the current work area. If you remove all the tags from a compound
index file, the file is deleted from the disk.

Visual FoxPro looks first for a tag in the structural compound index file (if one is open). If the tag isn't
in the structural compound index file, Visual FoxPro then looks for the tag in the other open
compound index files.

See Also
INDEX

DROP TABLE Command

Removes a table from the database specified with the data source and deletes it from disk.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
DROP TABLE TableName | FileName | ?

Settings
TableName      Specifies the table to remove from the database specified with the data source and

delete from disk.
FileName      Specifies a free table to delete from disk.
?      Displays the Remove dialog from which you can choose a table to remove from the database

specified with the data source and delete from disk.

Remarks
When DROP TABLE is issued, all primary indexes, default values, and validation rules associated
with the table are also removed. DROP TABLE also affects other tables in the database specified with
the data source if those tables have rules or relations associated with the table being removed. The
rules and relations are no longer valid when the table is removed from the database.

Driver Remarks
When your application sends the ODBC SQL statement DROP TABLE to the data source, the Visual
FoxPro ODBC Driver converts the command into the Visual FoxPro DROP TABLE command using
the following syntax:

ODBC Syntax Data Source Visual FoxPro Syntax
DROP TABLE base-table-name Database

(.DBC file)
REMOVE TABLE TableName DELETE

Directory of
free tables
(.DBF files)

ERASE dbfName
ERASE cdxName
ERASE fptName

INDEX Command
See Also

Creates an index file to display and access table records in a logical order.

Syntax
INDEX ON eExpression TO IDXFileName | TAG TagName [OF CDXFileName]

[FOR lExpression]
[COMPACT]
[ASCENDING | DESCENDING]
[UNIQUE | CANDIDATE]
[ADDITIVE]

Arguments
eExpression      Specifies an index expression that can include the name of a field or fields from the

current table. An index key based on the index expression is created in the index file for each
record in the table. Visual FoxPro uses these keys to display and access records in the table.
Note    Although not recommended, eExpression can also be a memory variable, an array element,
or a field or field expression from a table in another work area. Memo fields cannot be used alone
in index file expressions; they must be combined with other character expressions. If you access
an index that contains a variable or field that no longer exists or cannot be located, Visual FoxPro
generates an error message.
If you attempt to build an index with a key that varies in length, the key will be padded with spaces.
Variable-length index keys aren't supported in Visual FoxPro.
It is possible to create an index key with zero length. For example, a zero length index key is
created when the index expression is a substring of an empty memo field. A zero length index key
generates an error message. When Visual FoxPro creates an index, it evaluates fields in the first
record in the table. If a field is empty, it may be necessary to enter some temporary data in the field
in the first record to prevent a 0 length index key.

TO IDXFileName      Creates an .IDX index file. The index file is given the default extension .IDX.
TAG TagName [OF CDXFileName]      Creates a compound index file. A compound index file is a

single index file that consists of any number of separate tags (index entries). Each tag is identified
by its unique tag name. Tag names must begin with a letter or an underscore and can consist of
any combination of up to 10 letters, digits, or underscores. The number of tags in a compound
index file is limited only by available memory and disk space.
Multiple-entry compound index files are always compact. It isn't necessary to include COMPACT
when creating a compound index file. Names of compound index files are given a .CDX extension.
Two types of compound index files can be created: structural and non-structural.
Structural Compound Index Files      You can create a structural compound index file with TAG
TagName by excluding the optional OF CDXFileName clause. A structural compound index file
always has the same base name as the table and is automatically opened when the table is
opened.
Non-Structural Compound Index Files      You can create a non-structural compound index file by
including OF CDXFileName after TAG TagName. Unlike a structural compound index file, a non-
structural compound index file must be explicitly opened with the INDEX clause in USE.
If a compound index file has already been created and opened, issuing INDEX with TAG TagName
adds a tag to the compound index file.

FOR lExpression      Specifies a condition whereby only records that satisfy the filter expression
lExpression are available for display and access; index keys are created in the index file for just
those records matching the filter expression.
Rushmore optimizes an INDEX ... FOR lExpression command if lExpression is an optimizable

expression. For best performance, use an optimizable expression in the FOR clause.
COMPACT      Creates a compact .IDX file.
ASCENDING      Specifies an ascending order for the .CDX file. By default, .CDX tags are created in

ascending order (you can include ASCENDING as a reminder of the index file's order). A table can
be indexed in reverse order by including DESCENDING.

DESCENDING      Specifies a descending order for the .CDX file. You can't include DESCENDING
when creating .IDX index files.

UNIQUE      Specifies that only the first record encountered with a particular index key value is
included in an .IDX file or a .CDX tag. UNIQUE can be used to prevent the display of or access to
duplicate records. All records added with duplicate index keys are excluded from the index file.
Using the UNIQUE option of INDEX is identical to executing SET UNIQUE ON before issuing
INDEX or REINDEX.
When a UNIQUE index or index tag is active and a duplicate record is changed in a manner that
changes its index key, the index or index tag is updated. However, the next duplicate record with
the original index key cannot be accessed or displayed until you reindex the file using REINDEX.

CANDIDATE      Creates a candidate structural index tag. The CANDIDATE keyword can be included
only when creating a structural index tag; otherwise Visual FoxPro generates an error message.
A candidate index tag prevents duplicate values in the field or combination of fields specified in the
index expression eExpression. The term "candidate" refers to the type of index; because candidate
indexes prevent duplicate values, they qualify as a "candidate" to be a primary index.
Visual FoxPro generates an error if you create a candidate index tag for a field or combination of
fields that already contain duplicate values.

ADDITIVE      Keeps open any previously opened index files. If you omit the ADDITIVE clause when
you create an index file or files for a table with INDEX, any previously opened index files (except
the structural compound index) are closed.

Remarks
Records in a table that has an index file are displayed and accessed in the order specified by the
index expression. The physical order of the records in the table isn't changed by an index file.

Index Types
Visual FoxPro lets you create two types of index files:

· Compound .CDX index files containing multiple index entries called tags
· .IDX index files containing one index entry

You can also create a structural compound index file, which is automatically opened with the table.

Tip    Because structural compound index files are automatically opened when the table is opened,
they are the preferred index type.

Include COMPACT to create compact .IDX index files. Compound index files are always compact.

Index Order and Updating
Only one index file (the master index file) or tag (the master tag) controls the order in which the table
is displayed or accessed. Certain commands (SEEK, for example) use the master index file or tag to
search for records. However, all open .IDX and .CDX index files are updated as changes are made to
the table.

User-Defined Functions
Although an index expression can contain a user-defined function, you should not use user-defined
functions in an index expression. User-defined function in an index expression increase the time it
takes to create or update the index. Also, index updates may not occur when a user-defined function

is used for an index expression.

If you use a user-defined function in an index expression, Visual FoxPro must be able to locate the
user-defined function. When Visual FoxPro creates an index, the index expression is saved in the
index file, but only a reference to the user-defined function is included in the index expression.

See Also
ALTER TABLE

DELETE TAG

SET COLLATE

SET UNIQUE

INSERT - SQL Command
See Also

Appends a record to the end of a table that contains the specified field values.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
INSERT INTO dbf_name [(fname1 [, fname2, ...])]

VALUES (eExpression1 [, eExpression2, ...])

Arguments
INSERT INTO dbf_name      Specifies the name of the table to which the new record is appended.

dbf_name can include a path and can be a name expression.
If the table you specify isn't open, it is opened exclusively in a new work area and the new record is
appended to the table. The new work area isn't selected; the current work area remains selected.
If the table you specify is open, INSERT appends the new record to the table. If the table is open in
a work area other than the current work area, it isn't selected after the record is appended; the
current work area remains selected.

[(fname1 [, fname2 [, ...]])]      Specifies the names of the fields in the new record into which the values
are inserted.

VALUES (eExpression1 [, eExpression2 [, ...]])      Specifies the field values inserted into the new
record. If you omit the field names, you must specify the field values in the order defined by the
table structure.

Remarks
The new record contains the data listed in the VALUES clause.

Driver Remarks
When your application sends the ODBC SQL statement INSERT to the data source, the Visual
FoxPro ODBC Driver converts the command into the Visual FoxPro INSERT command without
translation.

See Also
CREATE TABLE - SQL

SELECT - SQL

SELECT - SQL Command
See Also

Retrieves data from one or more tables.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
SELECT [ALL | DISTINCT]

[Alias.] Select_Item [AS Column_Name]
[, [Alias.] Select_Item [AS Column_Name] ...]

FROM [DatabaseName!]Table [Local_Alias]
[, [DatabaseName!]Table [Local_Alias] ...]

[WHERE JoinCondition [AND JoinCondition
…]

[AND | OR FilterCondition [AND | OR FilterCondition ...]]]]
[GROUP BY GroupColumn [, GroupColumn ...]]
[HAVING FilterCondition]
[UNION [ALL] SELECTCommand]
[ORDER BY Order_Item [ASC | DESC] [, Order_Item [ASC | DESC] ...]]

Arguments
[ALL | DISTINCT]

[Alias.] Select_Item [AS Column_Name]
[, [Alias.] Select_Item [AS Column_Name] ...]      The SELECT clause specifies the fields,

constants, and expressions that are displayed in the query results.
ALL, by default, displays all the rows in the query results.
DISTINCT excludes duplicates of any rows from the query results.
Note    You can use DISTINCT only once per SELECT clause.

Alias. qualifies matching item names. Each item you specify with Select_Item generates one
column of the query results. If two or more items have the same name, include the table alias and
a period before the item name to prevent columns from being duplicated.
Select_Item specifies an item to be included in the query results. An item can be one of the
following:
· The name of a field from a table in the FROM clause.
· A constant specifying that the same constant value is to appear in every row of the query

results.
· An expression that can be the name of a user-defined function.

User-Defined Functions with SELECT
Although using user-defined functions in the SELECT clause has obvious benefits, you should also
consider the following restrictions:
· The speed of operations performed with SELECT may be limited by the speed at which such

user-defined functions are executed. High-volume manipulations involving user-defined
functions may be better accomplished by using API and user-defined functions written in C or
assembly language.

· The only reliable way to pass values to user-defined functions invoked from SELECT is by the
argument list passed to the function when it is invoked.

· If you experiment and discover a supposedly forbidden manipulation that works correctly in a
certain version of FoxPro, there is no guarantee it will continue to work in later versions.

Apart from these restrictions, user-defined functions are acceptable in the SELECT clause.
However, don't forget that using SELECT might slow performance.
The following field functions are available for use with a select item that is a field or an expression
involving a field:
· AVG(Select_Item), which averages a column of numeric data.
· COUNT(Select_Item), which counts the number of select items in a column. COUNT(*) counts

the number of rows in the query output.
· MIN(Select_Item), which determines the smallest value of Select_Item in a column.
· MAX(Select_Item), which determines the largest value of Select_Item in a column.
· SUM(Select_Item), which totals a column of numeric data.

You cannot nest field functions.
AS Column_Name      Specifies the heading for a column in the query output. This is useful when

Select_Item is an expression or contains a field function and you want to give the column a
meaningful name. Column_Name can be an expression but cannot contain characters (for
example, spaces) that aren't permitted in table field names.

FROM [DatabaseName!]Table [Local_Alias]
[, [DatabaseName!]Table [Local_Alias] ...]      Lists the tables containing the data that the query

retrieves. If no table is open, Visual FoxPro displays the Open dialog box so you can specify the
file location. Once open, the table remains open once the query is complete.
DatabaseName! specifies the name of a database other than the one specified with the data
source. You must include the name of database containing the table if the database is not specified
with the data source. Include the exclamation point (!) delimiter after the database name and
before the table name.
Local_Alias specifies a temporary name for the table named in Table. If you specify a local alias,
you must use the local alias in place of the table name throughout the SELECT statement. The
local alias doesn't affect the Visual FoxPro environment.

WHERE JoinCondition [AND JoinCondition ...]
[AND | OR FilterCondition [AND | OR FilterCondition ...]]      Tells Visual FoxPro to include only

certain records in the query results. WHERE is required to retrieve data from multiple tables.
JoinCondition specifies fields that link the tables in the FROM clause. If you include more than one
table in a query, you should specify a join condition for every table after the first.
Important      Keep the following information in mind when creating join conditions:
· If you include two tables in a query and don't specify a join condition, every record in the first

table is joined with every record in the second table as long as the filter conditions are met. Such
a query can produce lengthy results.

· Use caution when joining tables with empty fields because Visual FoxPro matches empty fields.
For example, if you join on CUSTOMER.ZIP and INVOICE.ZIP, and CUSTOMER contains 100
empty zip codes and INVOICE contains 400 empty zip codes, the query output contains 40,000
extra records resulting from the empty fields. Use the EMPTY() function to eliminate empty
records from the query output.

You must use the AND operator to connect multiple join conditions. Each join condition has the
following form:

FieldName1 Comparison FieldName2
FieldName1 is the name of a field from one table, FieldName2 is the name of a field from another
table, and Comparison is one of the following operators.
Operator Comparison
= Equal
== Exactly equal
LIKE SQL LIKE

<>, !=, # Not equal
> More than
>= More than or equal to
< Less than
<= Less than or equal to

When you use the = operator with strings, it acts differently depending on the setting of SET ANSI.
When SET ANSI is set to OFF, Visual FoxPro treats string comparisons in a manner familiar to
Xbase users. When SET ANSI is set to ON, Visual FoxPro follows ANSI standards for string
comparisons. See SET ANSI and SET EXACT for additional information about how Visual FoxPro
performs string comparisons.
FilterCondition specifies the criteria that records must meet to be included in the query results. You
can include as many filter conditions as you like in a query, connecting them with the AND or OR
operator. You can also use the NOT operator to reverse the value of a logical expression, or use
EMPTY() to check for an empty field. FilterCondition can take any of the forms in the following
examples:
Example 1      FieldName1 Comparison FieldName2
customer.cust_id = orders.cust_id

Example 2      FieldName Comparison Expression
payments.amount >= 1000

Example 3      FieldName Comparison ALL (Subquery)
company < ALL ;
(SELECT company FROM customer WHERE country = "UK")

When the filter condition includes ALL, the field must meet the comparison condition for all values
generated by the subquery before its record is included in the query results.
Example 4      FieldName Comparison ANY | SOME (Subquery)
company < ANY ;
(SELECT company FROM customer WHERE country = "UK")

When the filter condition includes ANY or SOME, the field must meet the comparison condition for
at least one of the values generated by the subquery.
The following example checks to see whether the values in the field are within a specified range of
values.
Example 5      FieldName [NOT] BETWEEN Start_Range AND End_Range
customer.postalcode BETWEEN 90000 AND 99999

The following example checks to see whether at least one row meets the criteria in the subquery.
When the filter condition includes EXISTS, the filter condition evaluates to true (.T.) unless the
subquery evaluates to the empty set.
Example 6      [NOT] EXISTS (Subquery)
EXISTS ;
(SELECT * FROM orders WHERE customer.postalcode =

orders.postalcode)
Example 7      FieldName [NOT] IN Value_Set
customer.postalcode NOT IN ("98052","98072","98034")

When the filter condition includes IN, the field must contain one of the values before its record is
included in the query results.
Example 8      FieldName [NOT] IN (Subquery)
customer.cust_id IN ;
(SELECT orders.cust_id FROM orders WHERE orders.city="Seattle")

Here, the field must contain one of the values returned by the subquery before its record is
included in the query results.
Example 9      FieldName [NOT] LIKE cExpression
customer.country NOT LIKE "UK"

This filter condition searches for each field that matches cExpression. You can use the percent sign
(%) and underscore (_) wildcards as part of cExpression. The underscore represents a single
unknown character in the string.

GROUP BY GroupColumn [, GroupColumn ...]      Groups rows in the query based on values in one or
more columns. GroupColumn can be the name of a regular table field, or a field that includes a
SQL field function, or a numeric expression indicating the location of the column in the result table
(the leftmost column number is 1).

HAVING FilterCondition      Specifies a filter condition which groups must meet to be included in the
query results. HAVING should be used with GROUP BY. It can include as many filter conditions as
you like, connected with the AND or OR operator. You can also use NOT to reverse the value of a
logical expression.
FilterCondition cannot contain a subquery.
A HAVING clause without a GROUP BY clause acts like a WHERE clause. You can use local
aliases and field functions in the HAVING clause. Use a WHERE clause for faster performance if
your HAVING clause contains no field functions.

[UNION [ALL] SELECTCommand]      Combines the final results of one SELECT with the final results
of another SELECT. By default, UNION checks the combined results and eliminates duplicate
rows. Use parentheses to combine multiple UNION clauses.
ALL prevents UNION from eliminating duplicate rows from the combined results.
UNION clauses follow these rules:
· You cannot use UNION to combine subqueries.
· Both SELECT commands must have the same number of columns in their query output.
· Each column in the query results of one SELECT must have the same data type and width as

the corresponding column in the other SELECT.
· Only the final SELECT can have an ORDER BY clause, which must refer to output columns by

number. If an ORDER BY clause is included, it affects the entire result.

You can also use the UNION clause to simulate an outer join.
When you join two tables in a query, only records with matching values in the joining fields are
included in the output. If a record in the parent table doesn't have a corresponding record in the
child table, the record in the parent table isn't included in the output. An outer join allows you to
include all the records in the parent table in the output, along with the matching records in the child
table. To create an outer join in Visual FoxPro, you need to use a nested SELECT command, as in
the following example:
SELECT customer.company, orders.order_id, orders.emp_id ;

FROM customer, orders ;
WHERE customer.cust_id = orders.cust_id ;

UNION ;
SELECT customer.company, 0, 0 ;
FROM customer ;
WHERE customer.cust_id NOT IN ;
(SELECT orders.cust_id FROM orders)

Note    Be sure to include the space immediately preceding each semicolon. Otherwise, you'll
receive an error.

The section of the command before the UNION clause selects records from both tables that have
matching values. The customer companies that do not have associated invoices are not included.
The section of the command after the UNION clause selects records in the customer table that do

not have matching records in the orders table.
Regarding the second section of the command, note the following:

· The SELECT statement within the parentheses is processed first. This statement results in a
selection of all customer numbers in the orders table.

· The WHERE clause finds all customer numbers in the customer table that are not in the orders
table. Since the first section of the command provided all companies that had a customer number
in the orders table, all companies in the customer table are now included in the query results.

· Because the structures of tables included in a UNION must be identical, there are two placeholders
in the second SELECT statement to represent orders.order_id and orders.emp_id from the
first SELECT statement.

Note    The placeholders must be the same type as the fields they represent. If the field is a date
type, the placeholder should be { / / }. If the field is a character field, the placeholder should be the
empty string, ("").

ORDER BY Order_Item [ASC | DESC] [, Order_Item [ASC | DESC] ...]      Sorts the query results
based on the data in one or more columns. Each Order_Item must correspond to a column in the
query results and can be one of the following:
· A field in a FROM table that is also a select item in the main SELECT clause (not in a subquery).
· A numeric expression indicating the location of the column in the result table. (The leftmost

column is number 1.)

ASC specifies an ascending order for query results, according to the order item or items, and is the
default for ORDER BY.
DESC specifies a descending order for query results.
Query results appear unordered if you don't specify an order with ORDER BY.

Remarks
SELECT is a SQL command that is built into Visual FoxPro like any other Visual FoxPro command.
When you use SELECT to pose a query, Visual FoxPro interprets the query and retrieves the
specified data from the tables. You can create a SELECT query from within:

· The Command window
· A Visual FoxPro program (as with any other Visual FoxPro command)

Note that SELECT does not respect the current filter condition specified with SET FILTER.

Note    A subquery, referred to in the following arguments, is a SELECT within a SELECT and must be
enclosed in parentheses. You can have up to two subqueries at the same level (not nested) in the
WHERE clause (see that section of the arguments). Subqueries can contain multiple join conditions.

Driver Remarks
When your application sends the ODBC SQL statement SELECT to the data source, the Visual
FoxPro ODBC Driver converts the command into the Visual FoxPro SELECT command without
translation unless the command contains an ODBC escape sequence. Items enclosed in an ODBC
escape sequence are converted to Visual FoxPro syntax. For more information on using ODBC
escape sequences, see Time and Date Functions and the Microsoft ODBC 2.0 Programmer’s
Reference and SDK Guide.

See Also
CREATE TABLE - SQL

INSERT - SQL

SET ANSI

SET EXACT

SET ANSI Command
See Also

Determines how comparisons between strings of different lengths are made with the = operator in
Visual FoxPro SQL commands.

Syntax
SET ANSI ON | OFF

Arguments
ON      (Default for the driver; the default for Visual FoxPro is OFF) Pads the shorter string with the

blanks needed to make it equal to the longer string's length. The two strings are then compared
character for character for their entire lengths. Consider this comparison:
'Tommy' = 'Tom'
The result is false (.F.) if SET ANSI is on because when padded, 'Tom' becomes 'Tom    ' and the
strings 'Tom    ' and 'Tommy' don't match character for character.
The == operator uses this method for comparisons in Visual FoxPro SQL commands.

OFF      Specifies that the shorter string not be padded with blanks. The two strings are compared
character for character until the end of the shorter string is reached. Consider this comparison:
'Tommy' = 'Tom'
The result is true (.T.) when SET ANSI is off because the comparison stops after 'Tom'.

Remarks
SET ANSI determines whether the shorter of two strings is padded with blanks when a SQL string
comparison is made. SET ANSI has no effect on the == operator; when you use the == operator, the
shorter string is always padded with blanks for the comparison.

String Order
In SQL commands, the left-to-right order of the two strings in a comparison is irrelevant¾switching a
string from one side of the = or == operator to the other doesn't affect the result of the comparison.

See Also
SELECT - SQL

SET EXACT

SET BLOCKSIZE Command

Specifies how disk space is allocated for the storage of memo fields.

Syntax
SET BLOCKSIZE TO nBytes

Arguments
nBytes      Specifies the block size in which disk space for memo fields is allocated. If nBytes is 0, disk

space is allocated in single bytes (blocks of 1 byte). If nBytes is an integer between 1 and 32, disk
space is allocated in blocks of nBytes bytes multiplied by 512. If nBytes is greater than 32, disk
space is allocated in blocks of nBytes bytes. If you specify a block size value greater than 32, you
can save substantial disk space.

Remarks
The default value for SET BLOCKSIZE is 64. To reset the block size to a different value after the file
has been created, set it to a new value and then use COPY to create a new table. The new table has
the specified block size.

SET COLLATE Command
See Also

Specifies a collation sequence for character fields in subsequent indexing and sorting operations.

Syntax
SET COLLATE TO cSequenceName

Arguments
cSequenceName      Specifies a collation sequence. The following collation sequence options are

available.
Options Language
DUTCH Dutch
GENERAL English, French, German, Modern Spanish, Portuguese, and

other Western European languages
GERMAN German phone book order (DIN)
ICELAND Icelandic
MACHINE Machine (the default collation sequence for earlier FoxPro

versions)
NORDAN Norwegian, Danish
SPANISH Traditional Spanish
SWEFIN Swedish, Finnish
UNIQWT Unique Weight

Note    When you specify the SPANISH option, "ch" is a single letter that sorts between "c" and "d",
and "ll" sorts between "l" and "m".

If you specify a collation sequence option as a literal character string, be sure to enclose the option
in quotation marks:
SET COLLATE TO "SWEFIN"
MACHINE is the default collation sequence option and is the sequence Xbase users are familiar
with. Characters are ordered as they appear in the current code page.
GENERAL may be preferable for U.S. and Western European users. Characters are ordered as
they appear in the current code page. In FoxPro versions earlier than 2.5,    indexes might have
been created using the UPPER() or LOWER() functions to convert character fields to a consistent
case. In FoxPro versions later than 2.5, you can instead specify the GENERAL collation sequence
option and omit the UPPER() conversion.
Note that if you specify a collation sequence option other than MACHINE and if you create an .IDX
file, a compact .IDX is always created.
Use SET("COLLATE") to return the current collation sequence.
You can specify a collating sequence for a data source by using the ODBC Visual FoxPro Setup
Dialog Box or by using the Collate keyword in your connection string with SQLDriverConnect..
This is identical to issuing the following command:
SET COLLATE TO cSequenceName

Remarks
SET COLLATE enables you to order tables containing accented characters for any of the supported
languages. Changing the setting of SET COLLATE doesn't affect the collating sequence of previously
opened indexes. Visual FoxPro automatically maintains existing indexes, providing the flexibility to
create many different types of indexes, even for the same field.

For example, if an index is created with SET COLLATE set to GENERAL, and the SET COLLATE
setting is later changed to SPANISH, the index retains the GENERAL collation sequence.

See Also
ODBC Visual FoxPro Setup Dialog Box

SET DELETED Command
See Also

Specifies whether records marked for deletion are processed and whether they are available for use
in other commands.

Syntax
SET DELETED ON | OFF

Arguments
ON      (Default for the driver; the default for Visual FoxPro is OFF) Specifies that commands which

operate on records (including records in related tables) using a scope ignore records marked for
deletion.

OFF      Specifies that records marked for deletion can be accessed by commands that operate on
records (including records in related tables) using a scope.

Remarks
Queries that use DELETED() to test the status of records can be optimized using Rushmore
technology if the table is indexed on DELETED().

Important      SET DELETED is ignored if the default scope for the command is the current record or
you include a scope of a single record. INDEX always ignores SET DELETED and indexes all records
in the table.

See Also
DELETE - SQL

SET EXACT Command
See Also

Specifies the rules for comparing two strings of different lengths.

Syntax
SET EXACT ON | OFF

Arguments
ON      Specifies that expressions must match character for character to be equivalent. Any trailing

blanks in the expressions are ignored for the comparison. For the comparison, the shorter of the
two expressions is padded on the right with blanks to match the length of the longer expression.

OFF      (Default) Specifies that, to be equivalent, expressions must match character for character until
the end of the expression on the right side is reached.

Remarks
The SET EXACT setting has no effect if both strings are the same length.

String Comparisons
Visual FoxPro has two relational operators that test for equality.

The = operator performs a comparison between two values of the same type. This operator is suited
for comparing character, numeric, date, and logical data.

However, when you compare character expressions with the = operator, the results might not be
exactly what you expect. Character expressions are compared character for character from left to
right until one of the expressions isn't equal to the other, or until the end of the expression on the right
side of the = operator is reached (SET EXACT OFF), or until the ends of both expressions are
reached (SET EXACT ON).

The == operator can be used when an exact comparison of character data is needed. If two character
expressions are compared with the == operator, the expressions on both sides of the == operator
must contain exactly the same characters, including blanks, to be considered equal. The SET EXACT
setting is ignored when character strings are compared using ==.

The following table shows how the choice of operator and the SET EXACT setting affect
comparisons. (An underscore represents a blank space.)

Comparison = EXACT OFF = EXACT ON == EXACT ON or OFF
"abc" = "abc" Match Match Match
"ab" = "abc" No match No match No match
"abc" = "ab" Match No match No match
"abc" = "ab_" No match No match No match
"ab" = "ab_" No match Match No match
"ab_" = "ab" Match Match No match
"" = "ab" No match No match No match
"ab" = "" Match No match No match
"__" = "" Match Match No match
"" = "___" No match Match No match
TRIM("___") = "" Match Match Match
"" = TRIM("___") Match Match Match

See Also
SET ANSI

SET EXCLUSIVE Command
See Also

Specifies whether table files are opened for exclusive or shared use on a network.

Syntax
SET EXCLUSIVE ON | OFF

Arguments
ON      Limits accessibility of a table opened on a network to the user who opened it. The table isn't

accessible to other users on the network. SET EXCLUSIVE ON also prevents all other users from
having read-only access.

OFF        (Default for the driver; the defaults for Visual FoxPro are ON for the global data session and
OFF for a private data session.) Allows a table opened on a network to be shared and modified by
any user on the network.

Remarks
Changing the setting of SET EXCLUSIVE doesn't change the status of previously opened tables. For
example, if a table is opened with SET EXCLUSIVE set to ON, and SET EXCLUSIVE is later changed
to OFF, the table retains its exclusive-use status.

See Also
ODBC Visual FoxPro Setup Dialog Box

SET NULL Command
See Also

Determines how null values are supported by the ALTER TABLE - SQL, CREATE TABLE - SQL and
INSERT - SQL commands.

Syntax
SET NULL ON | OFF

Arguments
ON      (Default for the driver; the default for Visual FoxPro is OFF) Specifies that all columns in a table

created with ALTER TABLE and CREATE TABLE will allow null values. You can override null value
support for columns in the table by including the NOT NULL clause in the columns' definitions.
Also, specifies that INSERT - SQL will insert null values into any columns not included in the
INSERT - SQL VALUE clause. INSERT - SQL will only insert null values into columns that allow
null values.

OFF      Specifies that all columns in a table created with ALTER TABLE and CREATE TABLE will not
allow null values. You can designate null value support for columns in ALTER TABLE and CREATE
TABLE by including the NULL clause in the columns' definitions.
Also, specifies that INSERT - SQL will insert blank values into any columns not included in the
INSERT - SQL VALUE clause.

Remarks
SET NULL only affects how null values are supported by ALTER TABLE, CREATE TABLE and
INSERT - SQL. Other commands are unaffected by SET NULL.

See Also
ALTER TABLE

CREATE TABLE - SQL

INSERT - SQL

SET PATH Command
See Also

Specifies a path for file searches. For driver-specific information, see Driver Remarks below.

Syntax
SET PATH TO [Path]

Arguments
TO [Path]      Specifies the directories you want Visual FoxPro to search. Use commas or semicolons

to separate the directories.

Remarks
SET PATH allows you to specify search paths for other Visual FoxPro programs that can be called
within stored procedures. SET PATH will not change the path of the data source that you’ve specified
for the connection.

Issue SET PATH TO without Path to restore the path to the default directory or folder.

Driver Remarks
If you issue SET PATH in a stored procedure, it will be ignored by the following functions and
commands:

· Catalog functions such as SQLTables and SQLColumns will ignore the new path and continue to
reference the path specified by the data source in SQLPrepare or SQLExecDirect.

· Commands such as SELECT, INSERT, UPDATE, DELETE, and CREATE TABLE will ignore the
new path and continue to reference the path specified by the data source in SQLPrepare or
SQLExecDirect.

If you issue SET PATH in a stored procedure and don’t subsequently set the path back to its original
state, other connections to the database will use the new path (because SET PATH is not scoped to
data sessions).

If you want to create or select or update tables in a directory other than that specified by the data
source, specify the full path of the file with your command.

See Also
ODBC Visual FoxPro Setup Dialog Box

SQLColumns

SQLDriverConnect

SQLTables

SET REPROCESS Command

Specifies how many times or for how long to lock a file or record after an unsuccessful locking
attempt.

Syntax
SET REPROCESS TO nAttempts [SECONDS] | TO AUTOMATIC

Arguments
TO nAttempts [SECONDS]      Specifies the number of times or number of seconds to try to lock a

record or file after an initial unsuccessful attempt. The default value is 0, the maximum value is
32,000.
SECONDS specifies that Visual FoxPro attempts to lock a file or record for nAttempts seconds. It's
available only when nAttempts is greater than zero.
For example, if nAttempts is 30, Visual FoxPro attempts to lock a record or file up to 30 times. If
you also include SECONDS (SET REPROCESS TO 30 SECONDS), Visual FoxPro continuously
attempts to lock a record or file for up to 30 seconds.
If an ON ERROR routine is in effect, and attempts by a command to lock the record or file are
unsuccessful, the ON ERROR routine is executed. However, if a function attempts the lock, an ON
ERROR routine isn't executed and the function returns false (.F.).
If an ON ERROR routine isn't in effect, a command attempts to lock the record or file,    and the lock
can't be placed, an error is generated. If a function attempts to place the lock, the alert isn't
displayed, and the function returns false (.F.).
If nAttempts is 0 (the default value), and you issue a command or function that attempts to lock a
record or file, Visual FoxPro tries to lock the record or file indefinitely. The lock is placed and the
system message is cleared if the record or file becomes available for locking while you wait. If a
function attempted to place the lock, the function returns true (.T.).
If an ON ERROR routine is in effect and a command is attempting to lock the record or file, the ON
ERROR routine takes precedence over additional attempts to lock the record or file. The ON
ERROR routine is immediately executed. Visual FoxPro does not attempt additional record or file
locks and does not display the system message.
If nAttempts is -1, Visual FoxPro attempts to lock the record or file indefinitely, and an ON ERROR
routine isn't executed.
If a lock has been placed by another user on the record or file you are attempting to lock, you must
wait until the user releases the lock.

TO AUTOMATIC      Specifies that Visual FoxPro attempts to lock the record or file indefinitely. (SET
REPROCESS TO -2 is an equivalent command.)

Remarks
The first attempt to lock a record or file isn't always successful. Frequently, a record or file is locked by
another user on the network. SET REPROCESS determines if Visual FoxPro makes additional
attempts to lock the record or file when the initial attempt is unsuccessful. You can specify either how
many times additional attempts are made or for how long the attempts are made. An ON ERROR
routine affects how unsuccessful lock attempts are handled.

SET UNIQUE Command
See Also

Specifies if records with duplicate index key values are maintained in an index file.

Syntax
SET UNIQUE ON | OFF

Arguments
ON      Specifies that any record with a duplicate index key value not be included in the index file. Only

the first record with the original index key value is included in the index file.
OFF      (Default) Specifies that records with duplicate index key values be included in the index file.

Remarks
An index file retains its SET UNIQUE setting when you issue REINDEX. For more information, see
INDEX.

See Also
INDEX

UPDATE - SQL Command
See Also

Updates records in a table with new values.

The Visual FoxPro ODBC Driver supports the native Visual FoxPro language syntax for this
command. For driver-specific information, see Driver Remarks below.

Syntax
UPDATE [DatabaseName1!]TableName1
SET Column_Name1 = eExpression1

[, Column_Name2 = eExpression2 ...]
WHERE FilterCondition1 [AND | OR FilterCondition2 ...]]

Arguments
UPDATE [DatabaseName1!]TableName1      Specifies the table in which records are updated with new

values.
DatabaseName1! specifies the name of a database other than the database specified with the data
source containing the table. You must include the name of the database containing the table if the
database is not the current one. Include the exclamation point (!) delimiter after the database name
and before the table name.

SET Column_Name1 = eExpression1
[, Column_Name2 = eExpression2      Specifies the columns that are updated and their new

values. If you omit the WHERE clause, every row in the column is updated with the same value.
WHERE FilterCondition1 [AND | OR FilterCondition2 ...]]      Specifies the records that are updated

with new values.
FilterCondition specifies the criteria that records must meet to be updated with new values. You
can include as many filter conditions as you like, connecting them with the AND or OR operator.
You can also use the NOT operator to reverse the value of a logical expression, or use EMPTY()
to check for an empty field.

Remarks
UPDATE - SQL can only update records in a single table.

Unlike REPLACE, UPDATE - SQL uses record locking when updating multiple records in tables
opened for shared access. This reduces record contention in multiuser situations, but may reduce
performance. For maximum performance, open the table for exclusive use or use FLOCK() to lock
the table.

Driver Remarks
When your application sends the ODBC SQL statement UPDATE to the data source, the Visual
FoxPro ODBC Driver converts the command into the Visual FoxPro UPDATE command without
translation.

See Also
DELETE - SQL

INSERT - SQL

Visual FoxPro Field Data Types
The following table lists the values for the FieldType argument in ALTER TABLE and CREATE TABLE
and indicates whether nFieldWidth and nPrecision arguments are required.

FieldType nFieldWidth nPrecision Description
C n - Character field of width n
D - - Date
T - - DateTime
N n d Numeric field of width n with d

decimal places
F n d Floating numeric field of width

n with d decimal places
I - - Integer
B - d Double
Y - - Currency
L - - Logical
M - - Memo
G - - General

