
Winlogon User Interface
Microsoftâ Win32â Software Development Kit
for Microsoftâ Windowsâ

Legal Information

About Winlogon User Interface

Related Documentation

Winlogon Terminology

Winlogon Structure

Winlogon States

Window Stations and Desktops

Environment

Devices

Dialog Services

Messages to GINA

Screen Savers

User Profiles

Network Providers

Responsibilities and Features

MSGINA.DLL Features

Interaction Between Winlogon and GINA

Loading and Running a GINA DLL

GINA DLL Interface Functions

Winlogon Functions For Use By GINAs

Winlogon Structures

Legal Information

Microsoftâ Win32â Software Development Kit
for Microsoftâ Windowsâ

Winlogon User Interface for Windows NT
This document is an early release of the final specification. It is meant to specify and accompany
software that is still in development. Some of the information in this documentation may be inaccurate
or may not be an accurate representation of the functionality of the final specification or software.
Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from
these inaccuracies.

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

©1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Win32, Windows, and Windows NT are registered trademarks of Microsoft
Corporation in the U.S.A. and other countries.

About Winlogon User Interface

Winlogon is a component of Microsoft® Windows NT® that provides interactive, logon support. To allow
for independent software vendor (ISV) and developer modifications to the interactive logon model,
some aspects of Winlogon are replaceable. Specifically, the identification and authentication aspects of
Winlogon are implemented in a replaceable dynamic-link library (DLL). This replaceable DLL is referred
to as the Graphical Identification and Authentication DLL, or GINA. GINA lets developers implement
smart-card, retinal-scan, or other authentication mechanisms in place of the standard Windows NT
user name and password authentication.

This documentation provides a programmer's reference for anyone who needs to implement such a
replacement DLL. The primary goal of this documentation is to describe what functionality can be
achieved by the various components involved in interactive logon. (For example, what Winlogon takes
care of and what a GINA developer must take care of.)

Those who use this documentation should have a firm knowledge of the Windows NT security
architecture, especially with regard to tokens, authentication packages, and related matters. Any
developer intending to write a replacement GINA is encouraged to work with Microsoft's Vendor
Assistance program.

Note This technology is only applicable on Microsoft Windows NT.

Related Documentation

The following documents provide information related to the topics discussed in this documentation.

Windows NT Local Security Authority Authentication
This describes the authentication model supported by Windows NT. It also describes and defines the
Local Security Authority (LSA) services and Authentication Package interfaces.

Windows NT Local Security Authority Protected Subsystem (LSA)
This describes the aspects of the Windows NT Local Security Authority that relate to security policy
administration. Security policy of a system includes trust relationships with other machines and
domains, assignment of privileges, audit generation control, system accessibility, and other similar
topics.

Winlogon Terminology

Winlogon
WINLOGON.EXE is the executable image responsible for implementing interactive logon support.
There are many aspects of interactive logon support, including an actual collection of identification
and authentication information (as described under the term GINA), and a number of other functions
such as window station and desktop management, screen-saver control, and multiple-network
provider notifications.

GINA
This specification is used by developers who want to replace the component of Windows NT that
performs identification and authentication of interactive users. This replaceable functionality is
implemented as a dynamic-link library (DLL) which is loaded and called by WINLOGON.EXE. This
DLL is referred to as the Graphical Identification and Authentication DLL, or GINA.

MSGINA.DLL
The standard GINA shipped with Windows NT is MSGINA.DLL.

Secure Attention Sequence (SAS)
Winlogon uses a special sequence of events to recognize when a user wants to log on or perform
other secure operations. This sequence of events is referred to as the secure attention sequence or
SAS. The SAS provides a secure way for users to enter identification and authentication information.
In this way, users are protected from password-collection programs and other flaws inherent in
timeshare systems.
As an example, in earlier timeshare systems, users could walk up to an apparently unused terminal
and press the ENTER key. The system would then prompt for username and password information.
The problem with this was that the terminal could sometimes be in use and with a password
collector program running which made the logon appear like a normal logon. However, in reality, the
"Trojan horse" program would store away the user's password and then indicate that the user had
entered an invalid password (or indicate some other reason why the logon failed). The end result
would be that the user just gave his or her password to someone else.
In Windows NT, users can enter a secure attention sequence (SAS). This prompts Winlogon to
switch to a secure desktop that no "Trojan horse" program has access to. The SAS for a standard
Windows NT system is the CTRL+ALT+DEL key combination. Developers writing a replacement GINA
are encouraged to achieve the same level of security with their SAS. By using a device such as a
smart-card reader, the SAS could be the insertion or removal of a smart card. Developers can also
choose to retain the CTRL+ALT+DEL key combination as the SAS.

Winlogon Structure

Winlogon has a main body that handles nonuser interface functions and those that are independent of
authentication policy. This main program loads a GINA DLL that should include all authentication policy
and is expected to perform all identification and authentication user interactions. In addition to the main
body and GINA, Winlogon can load zero or more network providers that must perform secondary
authentication. The following diagram illustrates the Winlogon structure.

Winlogon States

Winlogon serves as the process that authenticates and logs on the interactive user. Winlogon is in one
of three states at any given time. These states are illustrated in the following diagram.

Logged-off State
When Winlogon is in the logged-off state, users are prompted to identify themselves and provide
authentication information. If a user provides correct user account information and no restrictions
prevent it, the user is logged on and a shell program (such as EXPLORER.EXE) is activated in the
user's context. Winlogon changes into the logged-on state.

Logged-on State
When Winlogon is in the logged-on state, users can interact with the shell, activate additional
applications, and generally perform their work. From the logged-on state, users can either stop all work
and log off, or lock their workstations (leaving all work in place). If the user decides to log off, Winlogon
will terminate all processes associated with that logon session and the window station will be available
for another user. If, instead, the user decides to lock the workstation, then a secure desktop is
displayed.

Workstation-locked State
When Winlogon is in the workstation-locked state, the secure desktop is displayed either until the user
unlocks the workstation (by providing identification and authentication information that matches the
information provided by the user who originally logged on), or until an administrator forces a logoff. If
the workstation is unlocked, the user's typical desktop is again displayed and work can resume. If,
however, an administrator unlocks the workstation (by providing the identification and authentication
information of an administrator account), the logged-on user's processes are terminated and the
workstation becomes available for another user.

As demonstrated, there are a number of different actions that can be performed in each of the
Winlogon states. Some of these are necessary, some can be customized, and some are optional.
There can also be other actions not provided by a standard Windows NT system that a GINA developer
would like supported. For example, a high security system could automatically lock a workstation every
10 minutes and force users to reauthenticate themselves.

Window Stations and Desktops

A console/keyboard/mouse combination is represented in Windows NT as a window-station object, and
within a window station several desktop objects can exist. A desktop is a collection of the windows that
are visible at any one time.

In Windows NT, the window station object representing the physical screen, keyboard, and mouse is
called WinSta0. Winlogon creates the following desktops in this window station:

Desktop Description
Winlogon desktop This is the desktop Winlogon uses (and GINAs should

also use) for interactive identification and
authentication, and other secure dialog boxes.
Winlogon switches to this desktop automatically once
it receives a secure attention sequence (SAS).

Application
desktop

Each time a user successfully logs on, an application
desktop is created for that logon session where all
logged-on user activity will take place. This desktop is
protected so no one but the system and the interactive
logon session can access it. Note that only a particular
instance of the logged-on user can access the
desktop. If the interactive user also activates a
process using the service controller, that service
application will not be able to access the application
desktop.

Screen saver
desktop

This desktop is used when a screen saver is running.
If a user is logged on, this desktop allows both system
and the logon session access to the desktop.
Otherwise, it allows only system access to the
desktop.

When Winlogon initializes, it registers the SAS of CTRL+ALT+DEL with the system. Making this the first
process ensures that no other application has hooked that key sequence. At this time, Winlogon
creates three desktops: one for itself, one for the user's applications, and one for the screen saver.

As the owner of these desktops, Winlogon (and GINA) can switch the active, or visible, desktop to any
of the three desktops. In general, GINA developers need not change the active thread desktop.
Winlogon generally sets the desktop appropriately before dispatching to the GINA DLL. The description
of each GINA dispatch routine clearly defines which desktop is established as the active thread
desktop for that call.

Environment

A GINA DLL operates in the context of the Winlogon process and, as such, is invoked very early during
the boot process. The DLL must follow rules so the integrity of the system is maintained, particularly in
respect to interaction with the user.

Devices

The most common use of GINA is to communicate with an external device such as a smart-card
reader. It is essential to set the start parameter for the device driver to system (WINNT.H:
SERVICE_SYSTEM_START) to ensure that the driver is loaded by the time GINA is invoked.

Dialog Services

Winlogon implements two time-out functions. During any secure dialog, such as logon or unlocking a
workstation, Winlogon can time-out the dialog boxes and return to the dialog process for the dialog.

Winlogon is also responsible for screen saver activation and termination. To enable Winlogon to
perform these time-out functions, Winlogon provides a set of dialog services for GINAs. GINAs must
use these services instead of the typical Win32â counterpart of these services. Otherwise, Winlogon
could behave incorrectly and possibly cause system problems.

The Winlogon services provided for this purpose are:

Function Description
WlxMessageBox Similar to the Win32 MessageBox

function.
WlxDialogBox Similar to the Win32 DialogBox function.
WlxDialogBoxIndirect Similar to the Win32 DialogBoxIndirect

function.
WlxDialogBoxParam Similar to the Win32 DialogBoxParam

function.
WlxDialogBoxIndirectPara
m

Similar to the Win32
DialogBoxIndirectParam function.

GINA DLLs can also receive WLX_WM_SAS messages from Winlogon. These are sent to active dialog
boxes if an SAS is received from either GINA or CTRL+ALT+DEL when Winlogon is so configured. This is
useful if GINA is in the process of prompting for the matching PIN for a smart card and the card is
removed from the smart-card reader. Winlogon provides WLX_DLG_SAS as an end code for use when
that occurs.

Time-outs are also delivered in this manner. A WLX_WM_SAS message is sent with
WLX_SAS_TYPE_SCRNSVR_TIMEOUT or WLX_SAS_TYPE_INPUT_TIMEOUT. The dialog box will
end with an appropriate exit code. This lets GINA writers hook the time-out notifications.

GINA DLLs can have dialog boxes terminated by Winlogon with the code WLX_DLG_USER_LOGOFF.
This indicates that the user has logged off during the running of the dialog box (for example, by calling
the ExitWindowsEx function from another thread).

Messages to GINA

Winlogon will send messages to GINA while a dialog box is displayed. These are all encapsulated in
the WLX_WM_SAS message as follows:

SAS Type in wParam Parameter Description
WLX_SAS_TYPE_TIMEOUT No user input was received within

the specified time-out period.
WLX_SAS_TYPE_CTRL_ALT_DEL A CTRL+ALT+DEL key sequence was

received.
WLX_SAS_TYPE_SCRNSVR_TIMEO
UT

The screen saver time-out period
has expired, and a screen saver
will be invoked.

WLX_SAS_TYPE_USER_LOGOFF The user has logged off.

For time-outs and logoffs, Winlogon will end the dialog once the message has been sent. This
message is sent so the dialog can respond in a useful manner (for example, by closing itself down if a
logoff has occurred).

For input time-outs, the dialog is ended with the code WLX_DLG_INPUT_TIMEOUT. For screen saver
time-outs, the dialog is ended with WLX_DLG_SCREEN_SAVER_TIMEOUT. For logoffs, the dialog is
ended with WLX_DLG_USER_LOGOFF.

Screen Savers

Screen savers run on their own desktops, so they cannot interfere with a user's applications or with
Winlogon's own windows. The screen saver type is loaded from the current user profile
(HKEY_CURRENT_USER\Control Panel\Desktop). If the screen saver is marked as secure, Winlogon
will place the workstation in the locked state after the screen saver runs.

User Profiles

In a standard Windows NT system, interactively logged-on users are given a profile. A profile is a
registry hive that is tailored to a particular user. The profile is generally used to save user-specific
information such as screen appearance (colors and border widths), mouse click speeds, whether there
is a screen saver, and whether the screen saver is secure. This profile, referenced using the special
registry key HKEY_CURRENT_USER, is loaded by Winlogon during the interactive boot process.

The interface between Winlogon and GINA DLLs includes information passed back from GINA that
allows Winlogon to locate and load the logged-on user's profile.

Network Providers

You can configure a Windows NT system to support zero or more network providers. Each of these
network providers can specify that it requires special interactive authentication processing. This
capability allows installed networks to collect identification and authentication information specific to
each network, yet allows them to collect it during normal logon and under the secure umbrella of
Winlogon's context and desktop.

Winlogon calls network providers under a number of circumstances. Following a successful logon,
Winlogon calls network providers so they can collect credentials and authenticate the user for their
network. Winlogon also calls network providers when users change their passwords. This lets each
user maintain a single password for use on all networks.

The WLX_MPR_NOTIFY_INFO structure, which is optional, provides this functionality and is used in a
number of Winlogon and GINA functions. This structure includes the following members:

Member Description
pszUserName The account name of the logged-on user.
pszDomain The domain name of the logged-on user. Not all

authentication models have a domain concept (or
its equivalent), so this member can be NULL.

pszPassword When the user gave a clear-text password during
authentication, providing it here lets other network
providers use the same password (to achieve
single logon) without prompting the user.

pszOldPassword After a password change, providing the original
password here as well as the new password in the
pszPassword member, lets network providers
upgrade their passwords without prompting the
user.

If a GINA developer chooses not to provide this information to network providers for security reasons,
or any other reason, this entire structure is optional. A NULL pointer can be provided requiring network
providers to prompt for all their information.

Responsibilities and Features

Each component of the interactive logon process has a set of responsibilities. This section defines
those responsibilities and indicates where you can implement features not contained in the standard
version of Windows NT.

This section also describes the optional features of MSGINA.DLL. If you are developing a replacement
GINA, you may want to implement some or all of these features as well.

Responsibilities of Winlogon

Winlogon has the following responsibilities:

· Window Station and Desktop Protection
Winlogon sets the protection of the window station and corresponding desktops to ensure each is
properly accessible. In general, this means that the local system has full access to these objects and
that an interactively logged-on user (if there is one) has read access to the window station object
and full access to the application desktop object.

· Standard SAS Recognition
Winlogon has special hooks into the User32 server that allow it to monitor CTRL+ALT+DEL as a secure
attention sequence. Winlogon makes this special relationship available to GINAs to use as their
SAS, or as part of their SAS. That is, in general, GINAs should monitor SASes on their own. Any
GINA that uses the standard CTRL+ALT+DEL key combination as its SAS (or one of several SASes it
supports) should use the Winlogon support provided for this purpose.

· SAS Routine Dispatching
When Winlogon encounters a standard SAS (if it is configured to monitor a standard SAS) or when
an SAS is delivered to Winlogon by GINA, Winlogon sets the state accordingly, changes to the
Winlogon desktop, and dispatches to one of the GINA's SAS processing routines.

· User Profile Loading
When users log on, their user profiles are loaded into the registry. In this way, the user's processes
can use the special registry key HKEY_LOCAL_USER. Winlogon does this automatically following
successful logon, but before activation of the shell for the newly logged-on user.

· Assignment of Security To User Shell
When a user logs on, GINA is responsible for creating one or more initial processes for that user
(see Responsibilities of GINA). Winlogon provides a service for GINA in which to apply the newly
logged-on user's security to these processes. Another option is that GINA can call the WIN32
function, CreateProcessAsUser, and let the system provide the service.

· Screen Saver Control
Winlogon monitors keyboard and mouse activity to determine when to activate screen savers. Once
the screen saver is activated, Winlogon continues to monitor keyboard and mouse activity to
determine when to terminate the screen saver. If the screen saver is marked as secure, Winlogon
treats the workstation as locked. When there is mouse or keyboard activity, Winlogon invokes
GINA's WlxDisplayLockedNotice function and normally locked workstation behavior resumes. If
the screen saver is not secure, any keyboard or mouse activity terminates the screen saver without
notification to GINA.

· Multiple Network Provider Support
Multiple networks installed on a Windows NT can be included in the authentication process and in
password updating operations. This inclusion lets additional networks gather identification and
authentication information all at one time during normal logon, using Winlogon's secure desktop.
Some of the parameters required in the Winlogon services available to GINAs explicitly support
these additional network providers.

Responsibilities of GINA

A GINA DLL has the following responsibilities:

· SAS Monitoring
GINA is responsible for recognizing an SAS and monitoring for those events. Note that there can be
more than one SAS and the definition of secure attention sequence can change over time. For
example, there can be one set of secure attention sequences when Winlogon is in the logged-off
state and another set when it is in the logged-on state.
Winlogon services are provided to assist GINA in using the CTRL+ALT+DEL key combination as a
secure attention sequence.

· SAS Processing
One reason for modularizing Winlogon and making GINA replaceable is to provide alternative
identification and authentication mechanisms. To do this, GINA must present all user interfaces
resulting from the recognition of a secure attention sequence. When no user is logged on, GINA is
responsible for collecting identification and authentication (as well as any other allowed,
nonauthenticated functions). When a user is logged on, GINA is responsible for presenting whatever
options or taking whatever actions are deemed appropriate. For example, in a system that includes
a smart card, it may be appropriate to automatically lock the workstation if the user removes the
smart card.

· Shell Activation
When a user logs on, GINA is responsible for creating one or more initial processes for that user. (In
this documentation, it is assumed that these initial processes present an interface to the user.
However, the processes can actually be any processes and do not necessarily have to interact with
the user.) These processes are referred to as the user shell or just the shell. As part of shell
activation, GINA must assign the newly logged-on user's token to the processes, so the initial
process(es) must be created suspended and the token assigned before the process(es) can run.
Winlogon provides a service to assist GINA in assigning the token.

MSGINA.DLL Features

If you are writing a GINA to replace the Microsoft standard GINA (MSGINA), you may want to provide
some or all of the MSGINA functionality. Following is a list of these features and a brief description of
how they are controlled.

Registry key values control the availability or behavior of many of the MSGINA features. Unless
otherwise noted, these key values belong to a registry key referred to as the Winlogon key and have
value types of [REG_SZ]. The actual path of the Winlogon key is:

\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

Having [REG_SZ] value types makes it convenient to query the key values using the GetProfileString
and GetProfileInt functions.

· Legal Notification Dialog Box
In many countries and states it is legal for anyone to walk up to a system, log on, and begin working
unless there are notifications indicating that the system is intended for the private use of authorized
users. Also, many users want company-specific messages displayed before normal logon. MSGINA
uses two registry key values of the Winlogon key to implement such capabilities. If either key value
is present and contains a non-null string, then a Legal Notice dialog box is displayed before the
usual Welcome screen. The caption of the dialog box is taken from one of these key values, while its
message is taken from the other.
These key value names are:
Value Description
LegalNoticeCaption Any string you want displayed as the dialog

caption.
LegalNoticeText Any string you want displayed as the dialog

body.

· Don't Display Last Username
By default, the MSGINA logon screen displays the name of the last user to successfully log on to a
computer. To alter this, MSGINA uses a registry key value of the Winlogon key. If this key value is
present and contains a string value of 1, no user name is displayed in the logon dialog box.

· AutoAdmin Logon
This feature allows a Windows NT system to log on a user automatically. This feature can be used in
two ways:
1. To enable a user to be automatically logged on exactly once. If the user logs off or the system is

shut down, the user will not be automatically logged on afterward. The user must have a null
password in order for this feature to be used.

2. To enable a user to be logged on every time the system boots or the user logs off.

This feature uses the following values of the Winlogon key:
Value Description
AutoAdminLogon "1" or any other string value.
DefaultUserName The name of the user to automatically log on.
DefaultDomainName The name of the domain that the user account

is in.
DefaultPassword The password of the user account, in clear text.

If the AutoAdminLogon key value is present and contains a 1, an automatic logon will occur based
on the DefaultPassword key value. The account being logged onto is specified using the
DefaultUserName and DefaultDomainName key values. If present and non-null, the password in

DefaultPassword is also used.
If an automatic logon is being performed but the DefaultPassword key value is not present or is null,
this is a one-time only autologon. The AutoAdminLogon key value will be set to contain a zero before
the logon is attempted. This prevents any future autologons.
There is one additional caveat to autologon. If an autologon is indicated, MSGINA checks the state
of the SHIFT key. If it is held down, it is assumed that the user wants to override autologon and
provide identification and authentication information interactively. This is a critical feature when you
are debugging a dedicated application. The SHIFT override of automatic logon is disabled if the
IgnoreShiftOverride key value is present and has a value of 1.

· Allow Unauthenticated Shutdown
You can configure MSGINA to include a Shutdown button in the logon dialog box. This lets users
shut down the system without first logging on. Inclusion of this button is controlled by the following
key value:
Value Description
ShutdownWithoutLogo
n

"1" to include button; any other value to
exclude button.

· USERINIT.EXE Activation
USERINIT.EXE is an application activated by MSGINA at user logon time. It runs in the newly
logged-on user's context and on the user's desktop. Its purpose is to set up the user's environment.
This includes restoring net uses, establishing profile settings (such as fonts and screen colors), and
running logon scripts, including those of network providers. It then activates the user shell
program(s), which inherit the environment that USERINIT.EXE sets up. The shell programs that
USERINIT.EXE activates are listed in the shell value under the Winlogon registry key.
There can be more than one program listed under Winlogon, each separated by a comma. By
default, Explorer is listed. If the shell registry value is not found or has no programs listed, Explorer
is activated as the default shell.

· Logged-On Security Options
When logged on, if a user enters an SAS, the user is presented with a security options screen.
Among the options listed are:
· Shut down the system
· Log off
· Change your password
· Go to the task list
· Lock the workstation
An alternative GINA may provide similar options when an SAS is provided while a user is logged on.

Interaction Between Winlogon and GINA

To assist you in keeping track of how Winlogon and GINA DLLs work, here is the flow and response
process:

Boot
Winlogon calls GINA's WlxNegotiate function.
Winlogon calls GINA's WlxInitialize function.
State of the workstation becomes "No one logged on."

No one logged on
(GINA monitoring devices for SAS).
GINA calls the WlxSasNotify function to indicate an SAS has been provided.
Winlogon delivers the SAS back to GINA by calling GINA's WlxLoggedOutSas function.

User logged on
GINA calls the WlxSasNotify function.
Winlogon delivers SAS back to GINA by calling GINA's WlxLoggedOnSas function.

User logged on, wants to lock computer
GINA calls the WlxSasNotify function.
Winlogon delivers the SAS back to GINA by calling GINA's WlxLoggedOnSas function.
GINA returns WLX_LOCKWINSTA.

User logged on, window station locked, wants to unlock computer
GINA calls the WlxSasNotify function.
Winlogon delivers the SAS back to GINA by calling GINA's WlxWkstaLockedSas function.
GINA returns WLX_UNLOCKWINSTA.

User logged on, program issues ExitWindowsEx
Winlogon calls GINA's WlxLogoff function.

User logged on, wants to log off using SAS
GINA calls the WlxSasNotify function.
Winlogon delivers the SAS back to GINA by calling GINA's WlxLoggedOnSas function.
GINA returns WLX_LOGOFFUSER.
Winlogon calls GINA's WlxLogoff function.

User logged on, wants to log off and shut down using ExitWindowsEx
Winlogon calls GINA's WlxLogoff function.
Winlogon calls GINA's WlxShutdown function.

User logged on, wants to log off and shut down using SAS
GINA calls the WlxSasNotify function.
Winlogon delivers SAS back to GINA by calling GINA's WlxLoggedOnSas function.
GINA returns WLX_LOGOFFANDSHUTDOWN.
Winlogon calls GINA's WlxLogoff function.
Winlogon calls GINA's WlxShutdown function.

Loading and Running a GINA DLL

Windows NT is shipped to load and execute the standard Microsoft GINA (MSGINA.DLL). To load a
different GINA, you must alter the following registry key value:

Key Name: \HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\Winlogon

Value Name: GinaDLL
Value Type: [REG_SZ]

If this key value is present and non-null, it should have a GINA DLL name. Winlogon will load and use
that GINA DLL.

Building and Testing a GINA DLL

All functions, prototypes, structures, and constants are defined in the WINWLX.H header file.

To test a GINA DLL, use the WINLOGON.EXE from a checked version of the operating system which is
available with the Windows NT DDK. The checked version of Winlogon supports the following features
for debugging GINAs:

· You can use the following syntax to create a section in WIN.INI to specify Winlogon debugging flags:
 [WinlogonDebug]
 DebugFlags=Flag1[, Flag2...]

The DebugFlags variable in a [WinlogonDebug] section can specify one or more of the following
debugging flags:
Debugging flag Description
Trace Verbose trace information is sent to the

debugger.
Init Initialization.
SAS Traces SAS notifications.
State Traces state.
CoolSwitch The CTRL+ALT+Shift+TAB key combination will

cause a debug break in Winlogon.

· You can cause Winlogon to start in a debugger on the checked version from the Windows NT
Device Driver Kit (DDK) by adding the following entry to the registry:

 Machine:Software\Microsoft\Windows NT\CurrentVersion
 Image File Execution Options
 winlogon.exe
 Debugger = REG_SZ ntsd -d

Note that you must use NTSD to debug Winlogon; you cannot use MSVC.

GINA DLL Interface Functions

A GINA DLL must export the following functions, which are called by Winlogon.

WlxActivateUserShell
WlxDisplayLockedNotice
WlxDisplaySASNotice
WlxInitialize
WlxIsLockOk
WlxIsLogoffOk
WlxLoggedOnSAS
WlxLoggedOutSAS
WlxLogoff
WlxNegotiate
WLXScreenSaverNotify
WlxShutdown
WlxStartApplication
WlxWkstaLockedSAS

Note Some of the above functions contain a description of the workstation state for that function. This
description indicates what desktop GINA can expect to have set for its thread when the function call is
made. In addition, the description also indicates whether the desktop is locked or unlocked. When it is
locked, anyone, including GINA, is prevented from displaying another desktop. When it is unlocked, it
permits the display of other desktops.

WlxActivateUserShell

The WlxActivateUserShell function is implemented by a replacement GINA DLL. Winlogon calls this
function following a successful logon. Its purpose is to request that GINA activate the user shell
program.

Note that the user shell should be activated in WlxActivateUserShell rather than in GINA's
WlxLoggedOutSAS function. This gives Winlogon a chance to update its state, including setting
workstation and desktop protections, before any logged-on user processes are allowed to run.

BOOL WlxActivateUserShell(
 PVOID pWlxContext,
 PWSTR pszDesktopName,
 PWSTR pszMprLogonScript,
 PVOID pEnvironment
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

pszDesktopName
(IN parameter) Name of the desktop on which to start the shell. Pass this string to the Win32
CreateProcess or CreateProcessAsUser function through the lpDesktop member of the
STARTUPINFO structure.

pszMprLogonScript
(IN parameter) Script names returned from the provider DLLs. Provider DLLs can return scripts to be
executed during logon. GINA can reject these, but Winlogon will provide them if they are there.

pEnvironment
(IN parameter) Initial environment for the process. Winlogon creates this environment and hands it
off to GINA. GINA can modify this environment before using it to initialize the user's shell.

Return Values

If the GINA DLL successfully started the shell processes, WlxActivateUserShell should return TRUE.

If the GINA DLL could not start the shell, WlxActivateUserShell should return FALSE. This indicates
that Winlogon should terminate the logon session.

Remarks

Before calling the WlxActivateUserShell function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is not locked, thus allowing the display

of other desktops.

Example

The following code shows a sample WlxActivateUserShell implementation:

WINAPI
WlxActivateUserShell(
 PVOID pWlxContext,
 PWSTR pszDesktopName,
 PWSTR pszMprLogonScript,
 PVOID pEnvironment)
{
 BOOL st;

 st = CreateProcessAsUser(hToken, ...);
 if (!st) {
 return (FALSE); // Could not start shell. Tell Winlogon to start
a logoff
 }
 return(TRUE);
}

See Also

WlxLoggedOutSAS, WlxInitialize

WlxDisplayLockedNotice

The WlxDisplayLockedNotice function is implemented by a replacement GINA DLL. Winlogon calls
this function when the workstation is placed in the locked state. This lets GINA display information
about the lock, such as who locked the workstation and when. GINA should display a dialog box that
will be interrupted by a WLX_WM_SAS message, much like the WlxDisplaySASNotice function.

VOID WlxDisplayLockedNotice(
 PVOID
pWlxContext
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

Return Values

None.

Remarks

Before calling the WlxDisplaySASNotice function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

See Also

WlxDisplaySASNotice

WlxDisplaySASNotice

The WlxDisplaySASNotice function is implemented by a replacement GINA DLL. Winlogon calls this
function when no user is logged on.

VOID WlxDisplaySASNotice(
 PVOID pWlxContext
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

Return Values

None.

Remarks

Before calling the WlxDisplaySASNotice function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

Example

The following code shows a sample WlxDisplaySASNotice implementation:

VOID
WINAPI
WlxDisplaySASNotice(
 PVOID pWlxContext)
{
 PGINA_CONTEXT pContext;

 pContext = (PGINA_CONTEXT) pWlxContext;
 pContext->pWlxFuncs->WlxDialogBox(pContext->hWlx,
 pContext->hDllInstance,
 MAKEINTRESOURCE(IDD_WELCOME_DIALOG),
 NULL,
 WelcomeDlgProc);
}

See Also

WlxInitialize

WlxInitialize

The WlxInitialize function is implemented by a replacement GINA DLL. Winlogon calls this function
once for each window station present on the computer.

BOOL WlxInitialize(
 LPWSTR lpWinsta,
 HANDLE hWlx,
 PVOID pvReserved,
 PVOID pWinlogonFunctions,
 PVOID *pWlxContext
);

Parameters

lpWinsta
Points to the name of the window station being initialized.

hWlx
Handle to Winlogon. GINA must provide this handle in subsequent Winlogon calls related to the
specified window station.

pvReserved
Reserved.

pWinlogonFunctions
Receives a pointer to a Winlogon function dispatch table. The contents of the table is dependent on
the GINA DLL version returned from the WlxNegotiate call. The table does not change, so the GINA
DLL can reference the table instead of copying it.

pWlxContext
(OUT parameter) This parameter lets GINA return a 32-bit context value that will be provided in all
future calls related to this window station. Generally, the value returned will be similar to a pointer to
a context structure allocated by GINA for this window station.

Return Values

If the GINA DLL is successfully initialized, WlxInitialize should return TRUE.

If the GINA DLL is not successfully initialized, WlxInitialize should return FALSE. In this case, the
system will not boot.

Remarks

The WlxInitialize function is called once for each window station present on the computer. This lets the
DLL initialize itself, including obtaining addresses of Winlogon support functions used by this DLL.

The DLL can return a context pointer that will be passed in all future interactions from Winlogon to
GINA. This lets GINA keep a global context associated with the specified window station.

Note Windows NT supports only one window station, called Winsta0. Additional physical window
stations may be supported in future releases.

Before calling the WlxInitialize function, Winlogon sets the desktop and workstation state as follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of another

desktop.

Example

The following code shows a sample WlxInitialize implementation:

static PWLX_DISPATCH_VERSION_1_0 pWinlogon;
BOOL
WlxInitialize(
 LPWSTR lpWinsta,
 HANDLE hWlx,
 PVOID pWinlogonFunctions,
 PVOID *pContext)
{
 PGINA_CONTEXT pGinaContext;

 // allocate a context block for this window station
 AllocateAndInitGinaContext(&pGinaContext, hWlx);
 (*pContext) = pGinaContext;

 // Save the pointer to the Winlogon dispatch table
 pWinlogon = (PWLX_DISPATCH_VERSION_1_0)pWinlogonFunctions;

 // Any other initialization that the DLL needs, e.g. open a card
 // reader device

 // Optionally, at this point, call WlxSASNotify, or return

 return(TRUE);
}

See Also

WlxNegotiate

WlxIsLockOk

The WlxIsLockOk function is implemented by a replacement GINA DLL. Winlogon calls this function
before locking the workstation if, for example, a screen saver is marked as secure.

BOOL WlxIsLockOk(
 PVOID
pWlxContext
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

Return Values

If it is acceptable to lock the workstation, WlxIsLockOk should return TRUE.

If it is not acceptable to lock the workstation, WlxIsLockOk should return FALSE.

See Also

WlxInitialize

WlxIsLogoffOk

The WlxIsLogoffOk function is implemented by a replacement GINA DLL. Winlogon calls this function
when the user has initiated a logoff operation (for example by calling the ExitWindowsEx function).
GINA can determine whether the logoff attempt should be allowed.

BOOL WlxIsLogoffOk(
 PVOID
pWlxContext
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

Return Values

If it is acceptable to log off the user, WlxIsLogoffOk should return TRUE.

If it is not acceptable to log off the user, WlxIsLogoffOk should return FALSE.

See Also

WlxInitialize

WlxLoggedOnSAS

The WlxLoggedOnSAS function is implemented by a replacement GINA DLL. Winlogon calls this
function when a secure SAS event is received and a user is logged on and the workstation is unlocked.
An SAS in this situation indicates that the user needs to contact the security system.

Note that an SAS in this situation is distinguished from an SAS when the workstation is locked.

int WlxLoggedOnSAS(
 PVOID pWlxContext,
 DWORD dwSasType,
 PVOID pReserved
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

dwSasType
(IN parameter) Indicates the type of SAS that occurred. Values from zero to
WLX_SAS_TYPE_MAX_MSFT_VALUE are reserved to define Microsoft standard SAS types. GINA
developers can use values greater than WLX_SAS_TYPE_MAX_MSFT_VALUE to define additional
SAS types. The following values are predefined:
Value Description
WLX_SAS_TYPE_CTRL_ALT_DEL Indicates that the user has typed

the standard CTRL+ALT+DEL SAS.

pReserved
(IN parameter) Reserved.

Return Values

The function should return one of the following values:

Return Values Description
WLX_SAS_ACTION_NONE Return to the default

desktop.
WLX_SAS_ACTION_LOCK_WKSTA Lock the workstation and

wait for next SAS.
WLX_SAS_ACTION_LOGOFF Log the user off the

workstation.
WLX_SAS_ACTION_SHUTDOWN Log the user off and shut

down the computer.
WLX_SAS_ACTION_SHUTDOWN_REBOOT Shut down and reboot the

computer.
WLX_SAS_ACTION_SHUTDOWN_POWER_
OFF

Shut down and turn off the
computer, if hardware
allows.

WLX_SAS_ACTION_PWD_CHANGED Indicates that the user
changed his or her
password. Notify network
providers.

WLX_SAS_ACTION_TASKLIST Invoke the task list.

Remarks

This function is generally used when the logged-on user wants to shut down, log out, or lock the
workstation. The extension DLL can lock the workstation by returning WLX_LOCK_WKSTA. Winlogon
locks the workstation and calls WlxWkstaLockedSAS the next time an SAS is received.

The extension DLL can use the profile to determine what information is needed about the system.

Before calling your WlxLoggedOnSAS function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

Example

The following code shows a sample WlxLoggedOnSAS implementation:

WINAPI
WlxLoggedOnSAS(
 PVOID pWlxContext,
 DWORD dwSasType,
 PVOID pReserved)
{
 int Ret;
 switch (

 Ret = MyLoggedOnSasDialog(pWlxContext);
 switch (Ret)
 {
 case IDCANCEL:
 return (WLX_SAS_ACTION_NONE);

 case MY_ID_LOCKWINSTA:
 return (WLX_SAS_ACTION_LOCK_WKSTA);

 case MY_ID_CHANGEPWD:
 // run a password change dialog

 case MY_ID_TASKLIST:
 return(WLX_SAS_ACTION_TASKLIST);

 case MY_ID_SHUTDOWN:
 return(WLX_SAS_ACTION_SHUTDOWN);

 case MY_ID_LOGOFF:
 return(WLX_LOGOFF);
 }
}

See Also

WlxInitialize, WlxWkstaLockedSAS

WlxLoggedOutSAS

The WlxLoggedOutSAS function is implemented by a replacement GINA DLL. Winlogon calls this
function when a secure attention sequence (SAS) event is received and no user is logged on. This
indicates that a logon attempt should be made.

int WlxLoggedOutSAS(
 PVOID pWlxContext,
 DWORD dwSasType,
 PLUID pAuthenticationId,
 PSID pLogonSid,
 PDWORD pdwOptions,
 PHANDLE phToken,
 PWLX_MPR_NOTIFY_INFO pMprNotifyInfo,
 PVOID *pProfile
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

dwSasType
(IN parameter) Indicates the type of SAS that occurred. Values from zero to
WLX_SAS_TYPE_MAX_MSFT_VALUE are reserved to define Microsoft standard SAS types. GINA
developers can use values greater than WLX_SAS_TYPE_MAX_MSFT_VALUE to define additional
SAS types. The following values are predefined:
Value Description
WLX_SAS_TYPE_CTRL_ALT_DEL Indicates that the user typed the

standard CTRL+ALT+DEL SAS.

pAuthenticationId
(OUT parameter) The authentication identifier associated with the current logon session. You can
get this value by using the GetTokenInformation function to retrieve a TOKEN_STATISTICS
structure for the token returned by the LogonUser function.

pLogonSid
(IN OUT parameter) This parameter contains a pointer to a security identifier (SID). The SID is
unique to the current logon session. Winlogon uses this SID to change the protection on the window
station and application desktop so the newly logged-on user can access them.
Winlogon provides a SID. You can also get the SID by using the GetTokenInformation function to
retrieve a TOKEN_GROUPS structure for the token returned by the LogonUser function. To do this,
search the array returned in the TOKEN_GROUPS structure for the group with the
SE_GROUP_LOGON_ID attribute.

pdwOptions
(OUT parameter) Points to a 32-bit variable that receives a set of logon options. The following option
is defined:
Value Description
WLX_LOGON_OPT_NO_PROFI
LE

Indicates that Winlogon must not
load a profile for the logged-on user.
Either the GINA DLL will take care
of this activity, or the user does not
need a profile.

phToken

(OUT parameter) Points to a handle variable. If the logon operation was successful, you must set
this handle to a token that represents the logged-on user. Use the LogonUser function to get this
token. When the user logs off, Winlogon closes this handle and then calls the WlxLogoff function. If
you will need this handle during your WlxLogoff, make a duplicate of the handle before returning it
to Winlogon.

pMprNotifyInfo
(OUT parameter) This parameter contains a pointer to a structure for returning password information
to other network providers. GINA is not required to return this information. If GINA returns password
information, it should fill in the pointers in the structure. Any NULL field in the structure will be
ignored by Winlogon. GINA should use the LocalAlloc function to allocate the strings individually;
Winlogon will then free them.

pProfile
(OUT parameter) Upon return from a successful authentication, the pProfile parameter must point
to one of the WLX_PROFILE_xxx structures. The first DWORD in the profile structure is used to
indicate which of the WLX_PROFILE_xxx structures is being returned. The information in this
structure is used by Winlogon to load the logged-on user's profile. This structure and any strings or
buffers pointed to from within this structure are freed by Winlogon when no longer needed.

Return Values

The function should return one of the following values:

WLX_SAS_ACTION_LOGON A user has logged on.
WLX_SAS_ACTION_NONE A logon attempt was unsuccessful or

canceled.
WLX_SAS_ACTION_SHUTDO
WN

The user requested that the system be
shut down.

Remarks

Before calling your WlxLoggedOutSAS function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

Example

The following code shows a sample WlxLoggedOutSAS implementation:

#define LOCAL_GROUP_COUNT (1)
WINAPI
WlxLoggedOutSAS(
 PVOID pWlxContext,
 DWORD dwSasType,
 PLUID pAuthenticationId,
 PSID pLogonSid,
 PDWORD pdwOptions,
 PHANDLE phToken,
 PWLX_MPR_NOTIFY_INFO pMprNotifyInfo,
 PVOID pProfile)
{
 HANDLE hToken;
 NTSTATUS Status;
 INT LengthLocalGroups;
 PTOKEN_GROUPS LocalGroups;

 //
 // Gather credentials, e.g. from card reader
 //

 if (!LogonUser(..., &hToken))
 {
 return(WLX_SAS_ACTION_NONE);
 }

 *phToken = hToken;
 // Otherwise, return NULL and MPR apps will not
get any credentials
 return (WLX_SAS_ACTION_LOGON);
}

See Also

WlxInitialize

WlxLogoff

The WlxLogoff function is implemented by a replacement GINA DLL. Winlogon calls this function to
notify GINA of a logoff operation on this workstation. No action is necessary.

VOID WlxLogoff(
 PVOID
pWlxContext
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

Return Values

None.

Remarks

Before calling the WlxLogoff function, Winlogon sets the desktop and workstation state as follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

Example

The following code shows a sample WlxLogoff implementation:

VOID
WlxLogoff(
 PVOID pWlxContext)
{
 //
 // Logoff action, if any:
 //
 // for example, spit out the smart card from the smart-card reader...
}

See Also

WlxInitialize

WlxNegotiate

The WlxNegotiate function is implemented by a replacement GINA DLL. This is the first call made by
Winlogon to the GINA DLL. Winlogon and a GINA DLL can use WlxNegotiate to determine the version
of the interface for which each was written.

BOOL WlxNegotiate(
 DWORD dwWinlogonVersion,
 PDWORD pdwDllVersion
);

Parameters

dwWinlogonVersion
Version supported by Winlogon.

pdwDllVersion
Version supported by the GINA DLL. This version must be no greater than the version indicated in
dwWinlogonVersion. This return value establishes which dispatch table will be passed to GINA in
subsequent WlxInitialize calls.

Return Values

If your GINA DLL can operate with the Winlogon version specified by dwWinlogonVersion,
WlxNegotiate should return TRUE. In this case, Winlogon will continue to initialize.

If your GINA DLL cannot operate with the Winlogon version specified by dwWinlogonVersion,
WlxNegotiate should return FALSE. In this case, Winlogon and the system will not boot.

Remarks

Before calling the WlxNegotiate function, Winlogon sets the desktop and workstation state as follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of

other desktops.

Example

The following code shows a sample WlxNegotiate implementation:

WINAPI
WlxNegotiate(
 DWORD dwWinlogonVersion,
 DWORD *pdwDllVersion)
{
 if (dwWinlogonVersion < WLX_CURRENT_VERSION)
 // panic: should never happen.
 return(FALSE);

 *pdwDllVersion = WLX_CURRENT_VERSION;
 return(TRUE)
}

See Also

WlxInitialize

WlxScreenSaverNotify

The WlxScreenSaverNotify function is implemented by a replacement GINA DLL. Winlogon calls this
function immediately before a screen saver is activated. This gives the GINA DLL an opportunity to
affect the screen saver operation.

VOID WlxScreenSaverNotify(
 PVOID pWlxContext,
 BOOL pfSecure
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

pfSecure
(IN OUT parameter) Indicates on entry whether the current screen saver will be treated as secure
(for example, the window station switched to the locked state). On return, Winlogon will use the
value that is returned.

Return Values

If the screen saver should be executed, WlxScreenSaverNotify should return TRUE.

If the screen saver should not be executed, WlxScreenSaverNotify should return FALSE.

Remarks

Before calling your WlxScreenSaverNofity function, Winlogon sets the desktop and workstation state
as follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is not locked, thus allowing the display

of other desktops.

The WlxScreenSaverNotify function supercedes the WlxIsLockOk function. If the GINA DLL does not
export this function, the default behavior is:

BOOL
DefaultScreenSaverNofify(
 PVOID pWlxContext,
 BOOL * pfSecure)
{
 if (*pfSecure)
 {
 *pfSecure = WlxIsLockOk();
 }

 return(TRUE);
}

Example

The following code shows a sample WlxScreenSaverNotify implementation:

BOOL
WlxScreenSaverNofify(
 PVOID pWlxContext,

 BOOL * pfSecure)
{
 //
 // Make all screen savers secure:
 //

 *pfSecure = TRUE;

 return(TRUE);
}

See Also

WlxInitialize

WlxShutdown

The WlxShutdown function is implemented by a replacement GINA DLL. Winlogon calls this function
just before shutting down so GINA can perform any shutdown tasks, such as ejecting a smart card from
a reader. The user has already logged off and the WlxLogoff function has been called.

VOID WlxShutdown(
 PVOID pWlxContext,
 DWORD ShutdownType
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

ShutdownType
(IN parameter) Indicates the type of shutdown. One of the following values is specified:

Value Description
WLX_SAS_ACTION_SHUTDOWN Log the user off and shut

down the computer.
WLX_SAS_ACTION_SHUTDOWN_REBOOT Shut down and reboot

the computer.
WLX_SAS_ACTION_SHUTDOWN_POWER_O
FF

Shut down and turn off
the computer, if the
hardware allows.

Return Values

None.

Remarks

Before calling your WlxShutdown function, Winlogon sets the desktop and workstation state as
follows:

Desktop If the user is logged on and the workstation is not
locked, the current desktop is the application desktop.
Otherwise, it is the Winlogon desktop.

Workstation If the current desktop is the application desktop, the
desktop is not locked, thus allowing the display of other
desktops.
If the current desktop is the Winlogon desktop, the
desktop is locked, preventing the display of another
desktop.

Example

The following code shows a sample WlxShutdown implementation:

VOID
 WlxShutdown(
 PVOID pWlxContext,
 DWORD ShutdownType)
{
 PGINA_CONTEXT pGinaContext = (PGINA_CONTEXT)pWlxContext;
 CloseHandle(GinaContext->hCardReaderDevice);
 return;
}

See Also

WlxInitialize, WlxLogoff

WlxStartApplication

The WlxStartApplication function is implemented by a replacement GINA DLL. Winlogon calls this
function when the system needs an application started in the user's context. In Windows NT 4.0
release, this can occur for two reasons: Explorer has terminated unexpectedly and needs to be
restarted, or the extended task manager needs to run. GINA can overide this behavior, if appropriate,
through the WlxStartApplication function.

BOOL WlxStartApplication(
 PVOID pWlxContext,
 PWSTR pszDesktopName,
 PVOID pEnvironment,
 PWSTR pszCmdLine
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

pszDesktopName
(IN parameter) Name of the desktop on which to start the shell. Pass this string to the Win32
CreateProcess or CreateProcessAsUser function through the lpDesktop member of the
STARTUPINFO structure.

pEnvironment
(IN parameter) Initial environment for the process. Winlogon creates this environment and hands it
off to GINA. GINA can modify this environment before using it to initialize the user's shell.

pszCmdLine
(IN parameter) Program to execute.

Return Values

If the application started, WlxScreenSaverNotify should return TRUE.

If the application did not start, WlxIsLogoffOk should return FALSE.

Remarks

Before calling the WlxScreenSaverNofity function, Winlogon sets the desktop and workstation state
as follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is not locked, thus allowing the display of

other desktops

The WlxStartApplication function is new. If it is not exported by GINA, then Winlogon will execute the
process.

Example

The following code shows a sample WlxStartApplication implementation:

BOOL
WlxStartApplication(
 PVOID pWlxContext,
 PWSTR pszDesktopName,
 PVOID pEnvironment,
 PWSTR pszCmdLine)

{
 CreateProcess(NULL, pszCmdLine,...);
}

See Also

WlxInitialize

WlxWkstaLockedSAS

The WlxWkstaLockedSAS function is implemented by a replacement GINA DLL. Winlogon calls this
function when it receives a secure attention sequence (SAS) and the workstation is locked. GINA can
return indicating the workstation is to remain locked, the workstation is to be unlocked, or the logged-on
user is being forced to log off (which leaves the workstation locked until the logoff is completed).

int WlxWkstaLockedSAS(
 PVOID pWlxContext,
 DWORD dwSasType
);

Parameters

pWlxContext
(IN parameter) Context value associated with this window station. This is the context value that
GINA returns when Winlogon calls the WlxInitialize function for this window station.

dwSasType
(IN parameter) Indicates the type of SAS that occurred. Values from zero to
WLX_SAS_TYPE_MAX_MSFT_VALUE are reserved to define Microsoft standard SAS types. GINA
developers can use values greater than WLX_SAS_TYPE_MAX_MSFT_VALUE to define additional
SAS types. The following values are predefined:
Value Description
WLX_SAS_TYPE_CTRL_ALT_DEL Indicates that the user has

typed the standard
CTRL+ALT+DEL SAS.

WLX_SAS_TYPE_SCRNSVR_TIMEO
UT

Indicates that keyboard/mouse
inactivity has lead to screen
saver activation. The GINA
DLL specifies whether this
constitutes a workstation
locking event.

WLX_SAS_TYPE_SCRNSVR_ACTIVI
TY

Indicates that keyboard or
mouse activity occurred while a
secure screen saver was
active.

Return Values

The function should return one of the following values:

Return Values Description
WLX_SAS_ACTION_NONE Workstation remains locked.
WLX_SAS_ACTION_UNLOCK_WKSTA Unlock the workstation.
WLX_SAS_ACTION_FORCE_LOGOFF Force the user to log off.

Remarks

Before calling the WlxWkstaLockedSAS function, Winlogon sets the desktop and workstation state as
follows:

Desktop The current desktop is the Winlogon desktop.
Workstation The desktop is locked, preventing the display of another

desktop.

Example

The following code shows a sample WlxWkstaLockedSAS implementation:

WINAPI
WlxWkstaLockedSAS(
 PVOID pWlxContext)
{
 //
 // Validate the user's credentials again (for example, read from
smart-
 // card reader)
 //

 if (valid credentials)
 {
 return(WLX_UNLOCK_WKSTA);
 }

 if (administrative override)
 {
 return(WLX_FORCE_LOGOFF);
 }

 return(WLX_NO_ACTION);
}

See Also

WlxInitialize

Winlogon Functions For Use By GINAs

Winlogon exports the following support functions to assist GINA DLLs. Note that, as with all GINA
services, these functions are Unicode only.

GINA DLLs are required to use Wlx dialog functions instead of the generic Win32 functions for handling
dialog calls. This is necessary for the Winlogon time-outs to operate correctly.

WlxAssignShellProtection
WlxChangePasswordNotify
WlxChangePasswordNotifyEx
WlxCreateUserDesktop
WlxDialogBox
WlxDialogBoxIndirect
WlxDialogBoxIndirectParam
WlxDialogBoxParam
WlxGetSourceDesktop
WlxMessageBox
WlxSasNotify
WlxSetContextPointer
WlxSetReturnDesktop
WlxSetTimeout
WlxSwitchDesktopToUser
WlxSwitchDesktopToWinlogon
WlxUseCtrlAltDel

WlxAssignShellProtection

The WlxAssignShellProtection function allows a GINA DLL to have Winlogon assign protection to the
shell program of a newly logged-on user. The shell process should be created suspended, then the
WlxAssignShellProtection function should be called to apply the correct protection to the shell
process.

int WlxAssignShellProtection(
 HANDLE hWlx,
 HANDLE hToken,
 HANDLE
hProcess,
 HANDLE hThread
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hToken
(IN parameter) Handle to a primary token. This token will be used as the primary token for the
process referred to in the following Remarks section. The token must be open for
TOKEN_DUPLICATE access.

hProcess
(IN parameter) Handle to the process to modify. The process must be created in the suspended
state, and this should be the handle returned in the PROCESS_INFORMATION structure.

hThread
(IN parameter) Handle to the initial thread of the process.

Return Values

The function returns any errors encountered while trying to assign protection.

Remarks

After the WlxAssignShellProtection function returns, the caller:

1. Makes a Primary Token duplicate of the token.
2. Changes the protection on the token so the new user can access it.
3. Changes the protection on the new shell process so the new user can access it.
4. Assigns the duplicate token as the primary token of the shell process.

If there are multiple top-level user shell processes, GINA must make a call for each one.

The WlxAssignShellProtection function is an optional call provided for the convenience of GINA
developers.

See Also

WlxInitialize

WlxChangePasswordNotify

The WlxChangePasswordNotify function should be called by GINA DLLs that have changed a
password. This allows the other network providers on the computer to update their passwords as well.
(This function has been superceded by the WlxChangePasswordNotifyEx function.)

int WlxChangePasswordNotify(
 HANDLE hWlx,
 PWLX_MPR_NOTIFY_INFO pMprInfo,
 DWORD dwChangeInfo
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

pMprInfo
(IN parameter) Points to a WLX_MPR_NOTIFY_INFO structure that contains Multiple Provider
Router (MPR) information. All pointers to memory in this structure will be freed by using the
LocalFree function. Password strings will be filled with zeros, then freed.

dwChangeInfo
Change the information flags from Network Provider API.

See Also

WlxInitialize, WLX_MPR_NOTIFY_INFO

WlxChangePasswordNotifyEx

The WlxChangePasswordNotifyEx function lets the GINA DLL optionally specify the particular
network provider to notify of a password change. In this way, a GINA DLL can pass a change password
request through to a specific network provider.

int WlxChangePasswordNotifyEx(
 HANDLE hWlx,
 PWLX_MPR_NOTIFY_INFO pMprInfo,
 DWORD dwChangeInfo,
 PWSTR ProviderName,
 PVOID Reserved
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

pMprInfo
(IN parameter) Points to a WLX_MPR_NOTIFY_INFO structure that contains Multiple Provider
Router (MPR) information. All pointers to memory in this structure will be freed by using the
LocalFree function. Password strings will be filled with zeros, then freed.

dwChangeInfo
Change the information flags from Network Provider API.

ProviderName
(IN parameter) Name of a specific network provider, or NULL to allow the system to notify them all.

Reserved
(IN parameter) Reserved. Must be zero.

Return Values

If the WlxChangePasswordNotifyEx function succeeds, zero is returned. Any other value indicates an
error.

See Also

WlxInitialize, WLX_MPR_NOTIFY_INFO

WlxCreateUserDesktop

The WlxCreateUserDesktop function is provided to GINA DLLS so they can create alternate desktops
for the user.

int WlxCreateUserDesktop(
 HANDLE hWlx,
 HANDLE hToken,
 DWORD Flags,
 PWSTR pszDesktopName,
 PWLX_DESKTOP *ppDesktop
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hToken
(IN parameter) Handle to the token of the user for whom the desktop is being created.

Flags
(IN parameter) Flags indicating how to create the desktop. These are the flag values:

Value Description
WLX_CREATE_INSTANCE_ONLY Indicates that only this instance

of the user has access.
WLX_CREATE_USER Indicates that any instance of

this user has access.

pszDesktopName
(IN parameter) Name of the desktop.

ppDesktop
(OUT parameter) If successful, receives a pointer to a WLX_DESKTOP structure for the new
desktop that is suitable for passing later into WlxSetReturnDesktop.

Remarks

If a handle to the desktop is provided, Winlogon will duplicate the handle. If no handle is provided,
Winlogon will attempt to open the desktop named in the pDesktop parameter. If the provided desktop is
not valid, or is Winlogon or ScreenSaver, the call will fail.

See Also

WlxInitialize, WlxSetReturnDesktop

WlxDialogBox

The WlxDialogBox function duplicates the Win32 DialogBox function, except that it allows Winlogon
to time-out the dialog box.

int WlxDialogBox(
 HANDLE hWlx,
 HANDLE hInst,
 LPWSTR lpszTemplate,
 HWND hwndOwner,
 DLGPROC dlgprc
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hInst
Identifies an instance of the module whose executable file contains the dialog box template.

lpszTemplate
Identifies the dialog box template. This parameter is either the address of a null-terminated character
string that specifies the name of the dialog box template, or an integer value that specifies the
resource identifier of the dialog box template. If the parameter specifies a resource identifier, its
high-order word must be zero and its low-order word must contain the identifier. You can use the
MAKEINTRESOURCE macro to create this value.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Points to the dialog box procedure. For more information about the dialog box procedure, see the
description of the DialogProc callback function in the Win32 SDK.

Return Values

If the function succeeds, the return value is the nResult parameter given in the call to the EndDialog
function used to terminate the dialog box.

If the function fails, the return value is -1.

Remarks

For more information, see the description of the DialogBox function in the Win32 SDK.

See Also

WlxInitialize

WlxDialogBoxIndirect

The WlxDialogBoxIndirect function duplicates the Win32 DialogBoxIndirect function, except that it
allows Winlogon to time-out the dialog box.

int WlxDialogBoxIndirect(
 HANDLE hWlx,
 HANDLE hInst,
 LPCDLGTEMPLATE hDialogTemplate,
 HWND hwndOwner,
 DLGPROC dlgprc
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hInst
Identifies the instance of the module that creates the dialog box.

hDialogTemplate
Specifies the address of a global memory object that contains a dialog box template used to create
the dialog box. The template is in the form of a DLGTEMPLATE structure followed by one or more
DLGITEMTEMPLATE structures. For a full description of these structures, see the Win32 SDK.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Points to the dialog box procedure. For more information about the dialog box procedure, see the
description of the DialogProc callback function in the Win32 SDK.

Return Values

If the function succeeds, the return value is the nResult parameter given in the call to the EndDialog
function used to terminate the dialog box.

If the function fails, the return value is -1.

Remarks

For more information, see the description of the DialogBoxIndirect function in the Win32 SDK.

See Also

WlxInitialize

WlxDialogBoxIndirectParam

The WlxDialogBoxIndirectParam function duplicates the Win32 DialogBoxIndirectParam function,
except that it allows Winlogon to time-out the dialog box.

int WlxDialogBoxIndirectParam(
 HANDLE hWlx,
 HANDLE hInst,
 LPCDLGTEMPLATE hDialogTemplate,
 HWND hwndOwner,
 DLGPROC dlgprc,
 LPARAM dwInitParam
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hInst
Identifies the instance of the module that creates the dialog box.

hDialogTemplate
Specifies the address of a global memory object that contains a dialog box template used to create
the dialog box. The template is in the form of a DLGTEMPLATE structure followed by one or more
DLGITEMTEMPLATE structures. For a full description of these structures, see the Win32 SDK.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Points to the dialog box procedure. For more information about the dialog box procedure, see the
description of the DialogProc callback function in the Win32 SDK.

dwInitParam
Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG
message.

Return Values

If the function succeeds, the return value is the nResult parameter given in the call to the EndDialog
function used to terminate the dialog box.

If the function fails, the return value is -1.

Remarks

For more information, see the description of the DialogBoxIndirectParam function in the Win32 SDK.

See Also

WlxInitialize

WlxDialogBoxParam

The WlxDialogBoxParam function duplicates the Win32 DialogBoxParam function, except that it
allows Winlogon to time-out the dialog box.

int WlxDialogBoxParam(
 HANDLE hWlx,
 HANDLE hInst,
 LPWSTR lpszTemplate,
 HWND hwndOwner,
 DLGPROC dlgprc,
 LPARAM dwInitParam
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hInst
Identifies an instance of the module whose executable file contains the dialog box template.

lpszTemplate
Identifies the dialog box template. This parameter is either the address of a null-terminated character
string that specifies the name of the dialog box template, or an integer value that specifies the
resource identifier of the dialog box template. If the parameter specifies a resource identifier, its
high-order word must be zero and its low-order word must contain the identifier. You can use the
MAKEINTRESOURCE macro to create this value.

hwndOwner
Identifies the window that owns the dialog box.

dlgprc
Points to the dialog box procedure. For more information about the dialog box procedure, see the
description of the DialogProc callback function in the Win32 SDK.

dwInitParam
Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG
message.

Return Values

If the function succeeds, the return value is the value of the nResult parameter given in the call to the
EndDialog function used to terminate the dialog box.

If the function fails, the return value is -1.

Remarks

For more information, see the description of the DialogBoxParam function in the Win32 SDK.

See Also

WlxInitialize

WlxGetSourceDesktop

The WlxGetSourceDesktop function is used by the GINA DLL to determine the name and handle of
the desktop that was active prior to Winlogon switching to the Winlogon desktop. GINA DLLs can use
this to modify their behavior, depending on the originating desktop.

BOOL WlxGetSourceDesktop(
 HANDLE hWlx,
 PWLX_DESKTOP *ppDesktop
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

ppDesktop
(OUT parameter) Receives a pointer to a WLX_DESKTOP structure containing necessary
information describing the desktop. This pointer can be freed with LocalFree.

Return Values

If the WlxGetSourceDesktop function succeeds, TRUE is returned. If the function fails, then FALSE is
returned.

Remarks

None.

See Also

WlxInitialize

WlxMessageBox

The WlxMessageBox function duplicates the Win32 MessageBox function, except that it allows
Winlogon to time-out the dialog box.

int WlxMessageBox(
 HANDLE hWlx,
 HWND hwndOwner,
 LPWST lpszText,
 LPWSTR lpszTitle,
 UINT fuStyle
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

hwndOwner
Identifies the owner window of the message box to be created. If this parameter is NULL, the
message box has no owner window.

lpszText
Points to a null-terminated string containing the message to be displayed.

lpszTitle
Points to a null-terminated string used for the dialog box title. If this parameter is NULL, the default
title Error is used.

fuStyle
Specifies the contents and behavior of the dialog box. This parameter can be a combination of the
following values:
Value Description
MB_ABORTRETRYIGNORE The message box contains three

push buttons: Abort, Retry, and
Ignore.

MB_APPLMODAL The user must respond to the
message box before continuing
work in the window identified by
the hWnd parameter. However, the
user can move to the windows of
other applications and work in
those windows.
Depending on the hieracrchy of
windows in the application, the
user may be able to move to other
windows within the application. All
child windows of the parent of the
message box are automatically
disabled, but pop-up windows are
not.
MB_APPLMODAL is the default
value if neither
MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

MB_DEFAULT_DESKTOP_ONLY The desktop currently receiving
input must be a default desktop;

otherwise, the function fails. A
default desktop is one that an
application runs on after the user
has logged on.

MB_DEFBUTTON1 The first button is the default
button. Note that the first button is
always the default unless
MB_DEFBUTTON2 or
MB_DEFBUTTON3 is specified.

MB_DEFBUTTON2 The second button is a default
button.

MB_DEFBUTTON3 The third button is a default button.
MB_DEFBUTTON4 The fourth button is a default

button.
MB_ICONASTERISK An icon consisting of a lowercase

letter i in a circle appears in the
message box.

MB_ICONEXCLAMATION An exclamation-point icon appears
in the message box.

MB_ICONHAND A stop-sign icon appears in the
message box.

MB_ICONINFORMATION An icon consisting of a lowercase
letter i in a circle appears in the
message box.

MB_ICONQUESTION A question-mark icon appears in
the message box.

MB_ICONSTOP A stop-sign icon appears in the
message box.

MB_OK The message box contains one
push button: OK.

MB_OKCANCEL The message box contains two
push buttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two
push buttons: Retry and Cancel.

MB_SERVICE_NOTIFICATION The caller is a service notifying the
user of an event. The function
brings up a message box on the
current active desktop, even if
there is no user logged on to the
computer.

MB_SETFOREGROUND The message box becomes the
foreground window. Internally,
Windows calls the
SetForegroundWindow function
for the message box.

MB_SYSTEMMODAL All applications are suspended
until the user responds to the
message box. Unless the
application specifies
MB_ICONHAND, the message
box does not become modal until

after it is created. Consequently,
the owner window and other
windows continue to receive
messages resulting from its
activation. Use system-modal
message boxes to notify the user
of serious, potentially damaging
errors that require immediate
attention (for example, running out
of memory).

MB_TASKMODAL Same as MB_APPLMODAL
except that all the top-level
windows belonging to the current
task are disabled if the hWnd
parameter is NULL. Use this flag
when the calling application or
library does not have a window
handle available, but still needs to
prevent input to other windows in
the current application without
suspending other applications.

MB_YESNO The message box contains two
push buttons: Yes and No.

MB_YESNOCANCEL The message box contains three
push buttons: Yes, No, and
Cancel.

Return Values

The return value is zero if there is not enough memory to create the message box.

If the function succeeds, the return value is one of the following menu item values returned by the
dialog box:

Value Description
IDABORT Abort button was selected.
IDCANCEL Cancel button was selected.
IDIGNORE Ignore button was selected.
IDNO No button was selected.
IDOK OK button was selected.
IDRETRY Retry button was selected.
IDYES Yes button was selected.

If a message box has a Cancel button, the function returns the IDCANCEL value if either the ESC key is
pressed or the Cancel button is selected. If the message box has no Cancel button, pressing ESC has
no effect.

Remarks

For more information, see the description of the MessageBox function in the Win32 SDK.

See Also

WlxInitialize

WlxSasNotify

The WlxSasNotify function lets a GINA DLL notify Winlogon of a secure attention sequence event.

VOID WlxSasNotify(
 HANDLE hWlx,
 DWORD dwSasType
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

dwSasType
(IN parameter.) Indicates the type of SAS that occurred. This value will be delivered to the GINA
SAS service routine Winlogon calls (WlxLoggedOutSAS, WlxLoggedOnSAS, or
WlxWkstaLockedSAS).
Values from zero to WLX_SAS_TYPE_MAX_MSFT_VALUE are reserved to define Microsoft
standard SAS types. GINA developers can use values greater than
WLX_SAS_TYPE_MAX_MSFT_VALUE to define additional SAS types. The following values are
predefined:

Value Description
WLX_SAS_TYPE_CTRL_ALT_DEL Indicates that the user has typed

the CTRL+ALT+DEL SAS.

Return Values

None.

See Also

WlxInitialize, WlxLoggedOnSAS, WlxLoggedOutSAS, WlxWkstaLockedSAS

WlxSetContextPointer

The WlxSetContextPointer function lets a GINA DLL specify the context pointer passed by Winlogon
as the first parameter to all the GINA functions. By using WlxSetContextPointer, GINA can specify a
new context pointer to update the one returned by the WlxInitialize function.

If a GINA DLL wants to call WlxSasNotify during the processing of the WlxInitialize function, it should
first call WlxSetContextPointer to associate any context with GINA.

VOID WlxSetContextPointer(
 HANDLE hWlx,
 PVOID pWlxContext
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

pWlxContext
(IN parameter) Context pointer that GINA associates with.

Return Values

None.

See Also

WlxInitialize, WlxSasNotify

WlxSetReturnDesktop

The WlxSetReturnDesktop function is used by the GINA DLL to specify the desktop to which
Winlogon will switch once the current SAS event is completed. This call is valid only during the
WlxLoggedOnSAS or WlxWkstaLockedSAS call. Attempts to call this function at other times will
return an error.

int WlxSetReturnDesktop(
 HANDLE hWlx,
 PWLX_DESKTOP pDesktop
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

pDesktop
(IN parameter) Pointer to desktop information about the return desktop.

Return Values

None.

Remarks

If a handle to the desktop is provided, Winlogon will duplicate the handle. If no handle is provided,
Winlogon will attempt to open the desktop named in the pDesktop parameter. If the provided desktop is
not valid, or is Winlogon or ScreenSaver, the call will fail.

See Also

WlxInitialize

WlxSetTimeout

The WlxSetTimeout function lets a GINA DLL change the time-out associated with a dialog box. The
default time-out is two minutes.

BOOL WlxSetTimeout(
 HANDLE hWlx,
 DWORD dwTimeout
);

Parameters

hWlx
Handle assigned by Winlogon during initialization.

dwTimeout
Requested time-out, in seconds.

Return Values

If the new time-out was accepted, the return value is TRUE.

If the new time-out was not accepted, the return value is FALSE.

WlxSwitchDesktopToUser

The WlxSwitchDesktopToUser function lets the GINA DLL switch between visual desktops. This
function is valid only for the currently operating thread.

int WlxSwitchDesktopToUser(
 HANDLE hWlx
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

See Also

WlxInitialize

WlxSwitchDesktopToWinlogon

The WlxSwitchDesktopToWinlogon function lets the GINA DLL switch between visual desktops. This
function is valid only for the currently operating thread.

int WlxSwitchDesktopToWinlogon(
 HANDLE hWlx
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

See Also

WlxInitialize

WlxUseCtrlAltDel

The WlxUseCtrlAltDel function lets GINA tell Winlogon to use the standard CTRL+ALT+DEL key
combination as a secure attention sequence (SAS). If a GINA DLL uses this function, it is not required
to use the WlxSasNotify function. However, if GINA has other SASes in addition to CTRL+ALT+DEL, it
must use WlxSasNotify to deliver those additional SASes.

VOID WlxUseCtrlAltDel(
 HANDLE hWlx
);

Parameters

hWlx
(IN parameter) Winlogon handle provided to GINA in the WlxInitialize call.

Return Values

None.

See Also

WlxInitialize, WlxSasNotify

Winlogon Structures

Use the following structures to implement GINA features:

WLX_DESKTOP
WLX_DISPATCH_VERSION_1_0
WLX_DISPATCH_VERSION_1_1
WLX_LOGON_OPT_xxx
WLX_MPR_NOTIFY_INFO
WLX_PROFILE_V1_0
WLX_PROFILE_V2_0
WLX_SAS_TYPE_XXX

WLX_DESKTOP

The WLX_DESKTOP structure and flags are used to pass desktop information between the GINA DLL
and Winlogon.

typedef struct _win32_WLX_DESKTOP {
 DWORD Size;
 DWORD Flags;
 HDESK hDesktop;
 PWSTR pszDesktopName;
} WLX_DESKTOP;

Members

Size
Size of the structure. This must be set to sizeof(WLX_DESKTOP).

Flags
Flags indicating the valid fields. These are:
Value Description
WLX_DESKTOP_NAME Indicates that the

pszDesktopName field is valid.
WLX_DESKTOP_HANDLE Indicates that the hDesktop

field is valid.

hDesktop
Handle returned from CreateDesktop or OpenDesktop.

pszDesktopName
Name of the desktop. See the WlxGetSourceDesktop or WlxCreateUserDesktop function for
details on the allocation of this string.

WLX_DISPATCH_VERSION_1_0

The WLX_DISPATCH_VERSION_1_0 structure defines the format of the version 1.0 Winlogon function
dispatch table passed to the GINA DLL in the WlxInitialize call.

The routine type definitions used in this structure are defined in WINWLX.H to match the routine
descriptions presented in this documentation.

typedef struct _win32_DISPATCH_VERSION_1_0 {
 PWLX_USE_CTRL_ALT_DEL WlxUseCtrlAltDel;
 PWLX_SET_CONTEXT_POINTER WlxSetContextPointer;
 PWLX_SAS_NOTIFY WlxSasNotify;
 PWLX_SET_TIMEOUT WlxSetTimeout;
 PWLX_ASSIGN_SHELL_PROTECTION WlxAssignShellProtection
 PWLX_MESSAGE_BOX WlxMessageBox;
 PWLX_DIALOG_BOX WlxDialogBox
 PWLX_DIALOG_BOX_PARAM WlxDialogBoxParam;
 PWLX_DIALOG_BOX_INDIRECT WlxDialogBoxIndirect;
 PWLX_DIALOG_BOX_INDIRECT_PARAM WlxDialogBoxIndirectParam;
 PWLX_SWITCH_DESKTOP_TO_USER WlxSwitchDesktopToUser;
 PWLX_SWITCH_DESKTOP_TO_WINLOGON WlxSwitchDesktopToWinlogon;
 PWLX_CHANGE_PASSWORD_NOTIFY WlxChangePasswordNotify;
} WLX_DISPATCH_VERSION_1_0;

See Also

WlxInitialize

WLX_DISPATCH_VERSION_1_1

The WLX_DISPATCH_VERSION_1_1 structure defines the format of the version 1.1 Winlogon function
dispatch table passed to the GINA DLL in the WlxInitialize call.

The routine type definitions used in this structure are defined in WINWLX.H to match the routine
descriptions presented in this documentation.

typedef struct _win32_DISPATCH_VERSION_1_1 {
 PWLX_USE_CTRL_ALT_DEL WlxUseCtrlAltDel;
 PWLX_SET_CONTEXT_POINTER WlxSetContextPointer;
 PWLX_SAS_NOTIFY WlxSasNotify;
 PWLX_SET_TIMEOUT WlxSetTimeout;
 PWLX_ASSIGN_SHELL_PROTECTION WlxAssignShellProtection
 PWLX_MESSAGE_BOX WlxMessageBox;
 PWLX_DIALOG_BOX WlxDialogBox
 PWLX_DIALOG_BOX_PARAM WlxDialogBoxParam;
 PWLX_DIALOG_BOX_INDIRECT WlxDialogBoxIndirect;
 PWLX_DIALOG_BOX_INDIRECT_PARAM WlxDialogBoxIndirectParam;
 PWLX_SWITCH_DESKTOP_TO_USER WlxSwitchDesktopToUser;
 PWLX_SWITCH_DESKTOP_TO_WINLOGON WlxSwitchDesktopToWinlogon;
 PWLX_CHANGE_PASSWORD_NOTIFY WlxChangePasswordNotify;
 PWLX_GET_SOURCE_DESKTOP WlxGetSourceDesktop;
 PWLX_SET_RETURN_DESKTOP WlxSetReturnDesktop;
 PWLX_CREATE_USER_DESKTOP WlxCreateUserDesktop;
} WLX_DISPATCH_VERSION_1_1;

See Also

WlxInitialize

WLX_LOGON_OPT_xxx

Upon successful logon, the GINA DLL can specify the following option to Winlogon (through the
dwOptions parameter of the WlxLoggedOutSAS function).

WLX_LOGON_OPT_NO_PROFILE
When set, this option specifies that Winlogon must not load a profile for the logged-on user. Either
the GINA DLL will take care of this activity, or the user does not need a profile.

WLX_MPR_NOTIFY_INFO

The WLX_MPR_NOTIFY_INFO structure is returned from a GINA DLL following successful
authentication. Winlogon uses this information to provide network providers with identification and
authentication information already collected. Winlogon is responsible for freeing both the main structure
and all string and other buffers pointed to from within the structure.

typedef struct _win32_MPR_NOTIFY_INFO {
 PWSTR pszUserName;
 PWSTR pszDomain;
 PWSTR pszPassword;
 PWSTR pszOldPassword;
} WLX_MPR_NOTIFY_INFO;

Members

pszUserName
The name of the account logged onto (for example, "joeu"). The string pointed to by this member
must be separately allocated and will be separately deallocated by Winlogon.

pszDomain
The name of the domain used for logon. The string pointed to by this member must be separately
allocated and will be separately deallocated by Winlogon.

pszPassword
Clear-text password of the user account. If the OldPassword member is non-null, the
pszPassword member contains the new password in a password change operation. The string
pointed to by this field must be separately allocated and will be separately deallocated by Winlogon.

pszOldPassword
Clear-text old password of the user account whose password has just been changed. The
Password member contains the new password. The string pointed to by this member must be
separately allocated and will be separately deallocated by Winlogon.

PROFILE TYPES

GINA DLLs are expected to return account information to Winlogon following a succcessful logon. This
information allows Winlogon to support profile loading and supplemental network providers.

In order for GINA DLLs to return different sets of profile information over time, the first DWORD of each
profile structure must contain a type identifier. The following constants are defined profile type
identifiers:

Profile Types Description
WLX_PROFILE_TYPE_V1_0 The standard profile for V1_0.
WLX_PROFILE_TYPE_V2_0 The advanced profile for

Windows NT 4.0 and later.

WLX_PROFILE_V1_0

The WLX_PROFILE_V1_0 structure is returned from a GINA DLL following authentication. Winlogon
uses the profile path to load the newly logged-on user's profile. Winlogon is responsible for freeing both
the main structure and all string and other buffers pointed to from within the structure.

typedef struct _win32_PROFILE_V1_0 {
 DWORD dwType;
 PWSTR pszProfile;
} WLX_PROFILE_V1_0;

Members

dwType
Must be set to WLX_PROFILE_TYPE_V1_0.

pszProfile
Profile path (for example, "%SystemRoot%\system32\config\JoeU001"). The string pointed to by this
member must be separately allocated and will be separately deallocated by Winlogon.

WLX_PROFILE_V2_0

The WLX_PROFILE_V2_0 structure is returned from a GINA DLL following authentication. It contains
information in addition to the information provided in V1_0 for setting up the initial environment.

typedef struct _win32_PROFILE_V2_0 {
 DWORD dwType;
 PWSTR pszProfile;
 PWSTR pszPolicy;
 PWSTR pszNetworkDefaultUserProfile;
 PWSTR pszServerName;
 PWSTR pszEnvironment;
} WLX_PROFILE_V2_0;

Members

dwType
Must be set to WLX_PROFILE_TYPE_V2_0.

pszProfile
Profile path (for example, "%SystemRoot%\system32\config\JoeU001") or a network path such as "\\
server\share\profiles\floating\JoeU.usr." This string must be separately allocated and will be freed by
Winlogon.

pszPolicy
Path to the policy file that will be applied to the user logging on. This string must be separately
allocated and will be freed by Winlogon. It can also be NULL.

pszNetworkDefaultUserProfile
If a new profile will be created, this is the path to the default profile to use. This string must be
separately allocated and will be freed by Winlogon. It can also be NULL.

pszServerName
Name of the server that validated the logon. This server will be used to enumerate the global groups
of which the user is a member. This string must be separately allocated and will be freed by
Winlogon. It can also be NULL.

pszEnvironment
Default environment variables to include during the construction of the user's environment. The
environment is a series of null-terminated strings of the form:

Variable=Value or
variable=%other variable% or
variable=other variable% (additional text is optional)

For example:
logonServer=\\pdc
homePath=%logonServer%\sharE

WLX_SAS_TYPE_XXX

Following are the secure attention sequence (SAS) types.

All values from zero to 127 are reserved for Microsoft definition. Values above 127 are reserved for
cutomer definition. These values are passed to routines that have a dwSasType parameter.

Value Description
WLX_SAS_TYPE_CTRL_ALT_DEL Indicates that the standard

CTRL+ALT+DEL SAS has been
entered.

WLX_SAS_TYPE_SCRNSVR_TIMEOU
T

Indicates that keyboard/mouse
inactivity has led to a screen
saver activation.

WLX_SAS_TYPE_TIMEOUT Indicates that an input time-out
has occurred.

