
WinSock 2 Debug and Trace Facilities

1Introduction
Developers of WinSock 2 applications and service providers need to be able to isolate bugs to one of:

· The client application,

· The WinSock 2 DLL, or

· The service provider (transport or name space)

The WinSock 2 debug/trace layer address this problem. It allows all procedure calls across the WinSock
2 API or SPI to be monitored, and to some extent controlled.

Developers can use this mechanism to trace the procedure calls, procedure returns, parameter values, and
return values. Parameter values and returns can be altered on procedure-call or procedure-return. If
desired, a procedure-call can even be prevented or redirected. With access to this level of information
and control, it should be easy for a developer to isolate any problem to the application, WinSock 2 DLL
or service provider.

The debug/trace layer is supported only by a specially instrumented version of the WinSock 2 DLL. The
SDK license terms do not allow re-distribution of this instrumented WinSock 2 DLL in order to prevent
inappropriate use of the debug hooks in production systems.

This document serves two purposes. First, it defines the interface between the WinSock2 DLL and an
auxiliary debug/trace DLL. Second, it describes the functionality, design, and implementation of the
default debug/trace DLL (named dt_dll.dll), which is supplied in source-code form with the WinSock 2
SDK. Developers may find that the default debug/trace DLL supplies all the necessary functionality for
their purposes. However, they are also free to modify the code to provide additional debugging
functionality, or they may start from scratch and build a new debug/trace DLL. In the latter case, only
the interface definition portion of this document may be relevant, and the reader can skip the section
describing the default DLL. The default DLL does contain hooks, however, which allow it to be
extended for all but the most complex types of debugging and tracing.

2The Interface
2.1Overview
As mentioned above, the debug/trace layer is composed of a specially-instrumented WinSock 2 DLL,
combined with an auxiliary debug/trace DLL. The interface between these two modules is defined by
two functions which must be exported by dt_dll.dll and called WSAPreApiNotify and WSAPostApiNotify.
When the instrumented WinSock 2 DLL loads, it attempts to load dt_dll.dll and retrieve pointers to these
functions (the header file dt_dll.h in the WinSock 2 sources gives typedefs for these pointers, as well as
prototypes of the exported functions). Later, the application will call an API function. However, the
instrumented WinSock 2 DLL has API function names bound to special hook functions. These hook
functions wrap calls to WSAPre/PostApiNotify around the call to the actual API (and SPI) functions, as
follows.

· Before the hook function does anything, it calls the WSAPreApiNotify function, passing along
all the information about the call and parameters. WSAPreApiNotify, implemented in the
debug/trace DLL, returns a boolean indicating whether the original procedure call should
proceed or not. If WSAPreApiNotify returns a “should proceed” indication, the
instrumented WinSock 2 DLL goes ahead and proceeds with the function execution. When
the execution is ready to return to the application, the instrumented WinSock 2 DLL calls
the WSAPostApiNotify function in dt_dll.dll. When WSAPostApiNotify returns, the
WinSock 2 DLL returns to the application..

WinSock 2 Debug and Trace Facilities Page 1

· When the instrumented WinSock 2 DLL is about to call a SPI function, the WinSock 2 DLL first
calls WSAPreApiNotify in the auxiliary DLL. WSAPreApiNotify returns an indication of
whether or not the call should proceed. If the call should proceed, the instrumented
WinSock 2 DLL calls the SPI function. After the SPI function returns, the WinSock 2 DLL
calls WSAPostApiNotify and eventually returns to the caller.

The execution path through these debug hooks for a typical function such as WSAConnect is illustrated
in the figure below:

6

1

2

3

4

5

7

8
W inS ock 2

D LL dt_ d ll.d ll

se rv ice p rovider

A typical execution path for WSAConnect involving the debug/trace layer is shown. (1)
A client application calls WSAConnect. The WinSock 2 DLL calls the
WSAPreApiNotify entry point in dt_dll.dll passing WSAConnect call information. The
dt_dll.dll decodes the call info and returns. (2) The WinSock 2 DLL proceeds until it is
about to call the provider. (3) The WinSock 2 DLL calls WSAPreApiNotify with
WSPConnect call information. The dt_dll.dll decodes the information and returns. (4)
The WinSock 2 DLL calls the service provider’s WSPConnect function, which (5)
performs the connect and returns.

(6) The WinSock 2 DLL calls WSAPostApiNotify with WSPConnect call information.
The dt_dll.dll decodes and returns. The WinSock 2 DLL completes its processing. (7)
the WinSock 2 DLL calls WSAPostApiNotify with WSAConnect call information. The
dt_dll.dll decodes and returns. (8) The WinSock 2 DLL returns the final result to the
application.

Typical execution through the debug/trace layer

It is important to note the sequence of events as viewed by the dt_dll.dll:

1. WSAPreApiNotify announces a call into the WinSock 2 DLL at the WSAConnect function

2. WSAPreApiNotify announces a call out of the WinSock 2 DLL to the WSPConnect function

3. WSAPostApiNotify announces a return back into the WinSock 2 DLL from the WSPConnect
function.

4. WSAPostApiNotify announces a return back from the WinSock 2 DLL from the WSAConnect
function.

Since the invocation of the service provider’s WSPConnect function is nested within the invocation of the
API-level WSAConnect function, the Pre/Post notification pair announcing the SPI activity is nested
between the Pre/Post notification pair announcing the API activity. The default dt_dll.dll supplied with
the SDK (see below) includes fairly straightforward logic to match “post” notifications with their
corresponding “pre” notifications for each thread in spite of any intervening activity.

Page 2 WinSock 2 Debug and Trace Facilities

2.2Procedure Specifications
2.2.1WSAPreApiNotify
WSAPreApiNotify announces the start of processing for the WinSock 2 DLL’s implementation of an API
function or the start of processing for a service provider’s SPI function. A notification code passed to this
procedure indicates the specific function invocation that is being announced. The dt_dll.dll must
implement WSAPreApiNotify. Note that WSAPreApiNotify has “C” calling sequence with a variable
argument list.

BOOL WINAPIV
WSAPreApiNotify(
 IN INT NotificationCode,
 OUT LPVOID ReturnCode,
 IN LPSTR LibraryName,
 ...);
NotificationCode Supplies a value indicating the specific function invocation that is being

announced. Values for this parameter corresponding to each API and SPI
function are defined in the header file. Additional values may be defined in
the future to announce other WinSock 2 processing events of interest.

ReturnCode Returns a value that should replace the return value of the announced function
if the dt_dll.dll elects to skip the processing that would otherwise occur. The
actual type of the value depends on the specific function being announced.
This value is ignored if WSAPreApiNotify returns FALSE.

LibraryName Supplies the name of the library invoked. For API function announcements,
this is “winsock2.dll”. For SPI function announcements, this is the path of the
service provider DLL.

... Supplies a variable argument list of pointers to each of the parameters of the
specific function being announced. For example, for a function with three INT
parameters, the variable argument list has three “pointer-to-INT” values.

Return Value If WSAPreApiNotify returns TRUE, the caller (WinSock 2 DLL) will skip the
processing that otherwise would have been done and return from the original
announced function. The value used as the return value of the announced function
is the current value in the location pointed to by ReturnCode. If WSAPreApiNotify
returns FALSE, the ReturnCode value is ignored and processing proceeds as usual.

The variable argument list is filled with pointers to each of the formal parameters that were passed to the
original announced function. So for announcing a function such as connect(SOCKET s, const struct
sockaddr FAR *name, int namelen), the call sequence looks something like the following:

BOOL should_skip;
int connect_return;

should_skip = (* lpWSAPreApiNotify) (
 DTCODE_connect, // NotificationCode
 (LPVOID) & connect_return, // ReturnCode
 “winsock2.dll”, // LibraryName
 & s,
 & name,
 & namelen);

if (should_skip) {
 return(connect_return);
}

WinSock 2 Debug and Trace Facilities Page 3

This gives the WSAPreApiNotify function full access to the parameters of the function being announced
but with an extra level of indirection. The extra level of indirection is not needed in most cases, since a
typical WSAPreApiNotify function will simply log or display parameter values and return. However,
since WSAPreApiNotify has pointers to the original announced function’s formal parameters,
WSAPreApiNotify has the ability to modify the actual parameter values before any processing begins.
This gives the dt_dll.dll a very powerful tool to use in more complex debugging, diagnostic, and testing
scenarios.

Similarly, the WSAPreApiNotify function has a pointer to a variable where the original announced
function’s return value will be stored. The dt_dll.dll can modify this variable and return TRUE to
indicate that processing should be skipped for this API or SPI function. The modified return value is
used as the return value from the announced function as if the value had been determined from the actual
processing. Together with read/write access to the formal parameters this gives the dt_dll.dll the ability
to completely replace the announced function if desired. Note that a typical dt_dll.dll that only does
logging or display returns FALSE and the ReturnCode parameter is ignored.

2.2.2WSAPostApiNotify
WSAPostApiNotify announces the completion of processing for the WinSock 2 DLL’s implementation of
an API function or announces a return from processing by a service provider’s SPI function. A
notification code passed to this procedure indicates the specific function completion or return that is
being announced. The dt_dll.dll must implement WSAPostApiNotify. Note that WSAPostApiNotify has
“C” calling sequence with a variable argument list.

BOOL WINAPIV
WSAPostApiNotify(
 IN INT NotificationCode,
 IN OUT LPVOID ReturnCode,
 IN LPSTR LibraryName,
 ...);
NotificationCode Supplies a value indicating the specific function completion or return that is

being announced. Values for this parameter corresponding to each API and
SPI function are defined in the header file. Additional values may be defined
in the future to announce other WinSock 2 processing events of interest.

ReturnCode Supplies the return value determined by function processing or returned from
the service provider. Returns a value that should replace the return value from
the function processing or the value returned from the service provider. The
actual type of the value depends on the specific function completion or return
being announced.

LibraryName Supplies the name of the library whose processing has just completed. For API
function announcements, this is “winsock2.dll”. For SPI function
announcements, this is the path of the service provider DLL.

... Supplies a variable argument list of pointers to each of the parameters of the
specific function being announced. For example, for a function with three INT
parameters, the variable argument list has three “pointer-to-INT” values.

Return Value For announcements of API processing completion or SPI function return, the return
value is ignored. The dt_dll.dll’s implementation should return FALSE. The
interpretation of the return value is reserved for possible future use with new
NotificationCode values.

The variable argument list is filled with pointers to each of the formal parameters that were passed to the
original announced function. So for announcing completion of processing for a function such as
connect(SOCKET s, const struct sockaddr FAR *name, int namelen), the call sequence looks something
like the following:

Page 4 WinSock 2 Debug and Trace Facilities

BOOL dont_care;
int connect_return;

connect_return = actual_connect_processing(s, name, namelen);

dont_care = (* lpWSAPostApiNotify) (
 DTCODE_connect, // NotificationCode
 (LPVOID) & connect_return, // ReturnCode
 “winsock2.dll”, // LibraryName
 & s,
 & name,
 & namelen);

return(connect_return);
As with WSAPreApiNotify above, the WSAPostApiNotify function has full access to the parameters of
the function being announced but with an extra level of indirection (we realize this is not particularly
useful). WSAPostApiNotify can modify any buffers or variables supplied as out parameters, but beware
that it must go through an extra level of indirection to get to them.

Similarly, the WSAPostApiNotify function has a pointer to a variable where the original announced
function’s return value was stored. The dt_dll.dll can modify this variable to alter the return value
determined from processing or returned from the service provider. Note that a typical dt_dll.dll that only
does logging or display leaves ReturnCode value unmodified.

3Typical Implementation
The following pseudo-code example illustrates one way a fragment of a WSAPreApiNotify function
could be implemented. The actual dt_dll.dll source code is somewhat more elaborate and differently
organized since processing common to all notifications is “factored out” to reduce the source-code size.
The dt_dll.dll implementation also contains additional logic not shown here to match pre/post
notifications, generate log output, synchronize multiple-thread access to the log output etc. See the
section on the default debug/trace DLL, below, for more details.

WinSock 2 Debug and Trace Facilities Page 5

BOOL WINAPIV
WSAPreApiNotify(
 IN INT NotificationCode,
 OUT LPVOID ReturnCode,
 IN LPSTR LibraryName,
 ...)
{
 va_list vl; // used for variable arg-list parsing

 // Prepare to parse variable argument list
 va_start(vl, LibraryName);

 // Determine which function is being announced
 switch (NotificationCode) {

 case DCODE_connect:
 // handle a “connect” announcement
 {
 // declare some local variables for parameters
 // and return value
 int * RetVal = (int *) ReturnCode;
 SOCKET * s;
 struct sockaddr FAR * * name;
 int * namelen;

 // parse parameters out of variable argument list
 s = va_arg(vl, SOCKET *);
 name = va_arg(vl, struct sockaddr FAR * *);
 namelen = va_arg(vl, int *);

 // construct a log entry including one of the
 // parameter values. Note the “extra” level
 // of indirection when accessing the “namelen”
 // parameter value.
 wsprintf(
 Buffer,
 “Library: %s, Function: connect, namelen=%d\n”,
 LibraryName,
 * namelen);

#if defined(DEMO_PARAM_MODIFICATION)
 // illustrate parameter value modification
 * namelen = sizeof(sockaddr);
#endif

#if defined(DEMO_EXECUTION_SKIPPING)
 // illustrate return-value substitution and
 // execution skipping
 * RetVal = SOCKET_ERROR;
 return(TRUE); // skip further execution
#endif
 }
 break;

 } // switch (NotificationCode)

Page 6 WinSock 2 Debug and Trace Facilities

 return(FALSE); // allow execution to proceed normally

} // WSAPreApiNotify

4DT_DLL.H header file (excerpt)
The following is an excerpt from the dt_dll.h header file that defines the syntax of the interface between
the WinSock 2 DLL and the auxiliary dt_dll.dll. The long list of manifest constants for the function
announcement codes is mostly omitted for brevity.

/*++

Copyright (c) 1995 Intel Corp

File Name:

 dt_dll.h

Abstract:

 Definitions, constants, and data structures for the Debug/Trace
 DLL for the WinSock2 DLL. Please refer to the design spec for
 more information.

Author:

 Michael A. Grafton

Revision History:

 10-August-1995 mike_grafton@ccm.jf.intel.com
 -- first working draft

--*/

#ifndef _DT_DLL_H
#define _DT_DLL_H

BOOL WINAPIV
WSAPreApiNotify(
 IN INT NotificationCode,
 OUT LPVOID ReturnCode,
 IN LPSTR LibraryName,
 ...);

BOOL WINAPIV
WSAPostApiNotify(
 IN INT NotificationCode,
 IN OUT LPVOID ReturnCode,
 IN LPSTR LibraryName,
 ...);

// API function codes for Pre/PostApiNotify functions

#define DTCODE_accept 1
#define DTCODE_bind 2

// skipping ...

#define DTCODE_WSAAccept 22
#define DTCODE_WSAAsyncSelect 23
#define DTCODE_WSACancelBlockingCall 24

// skipping ...

WinSock 2 Debug and Trace Facilities Page 7

#define DTCODE_WSPAccept 73
#define DTCODE_WSPAsyncSelect 74
#define DTCODE_WSPBind 75
#define DTCODE_WSPCancelBlockingCall 76
#define DTCODE_WSPCleanup 77

// skipping...

#define DTCODE_WPUCloseEvent 103
#define DTCODE_WPUCloseSocketHandle 104

// skipping...

#endif _DT_DLL_H

5The Default Debug/Trace DLL
5.1Overview
The default debug/trace DLL supplied with the WinSock2 SDK provides a simple logging mechanism for
API and SPI boundary crossings, as well as a base implementation from which developers can create
more complicated debugging and tracing schemes. This section of the document describes both the
functionality of the default DLL -- i.e. what you can expect from it “out of the box” -- as well as the
design and implementation of the module. Developers can use this information to quickly and easily
modify the DLL to suit their particular debugging needs.

5.2Functionality
The default debug/trace DLL, when loaded by the specially instrumented WinSock 2 DLL, simply logs
some key information about each API/SPI call or return event, as reported by WSAPre/PostApiNotify.
Each line of output corresponds to one such event, and each contains the following information:

· line number of the output.

· thread ID of the application thread that made the call.

· function call ID to keep track of nested calls (see below for further explanation).

· function name of the API or SPI.

· event type, i.e. whether this was a call event or a return event.

The function call ID field of the debugging output helps the reader of the listing quickly identify the
matching xxxx() called and xxxx() returned lines. This will be helpful when API functions may be nested
several levels deep and the matching lines have several lines of intervening WinSock 2 activity in
between them. As you can see below, API and SPI functions are treated exactly the same, and thus all
SPI calls are nested within a corresponding API call. It should also be noted that the function call IDs are
local to the calling thread; as described below in the implementation notes, each thread has it’s own
separate stack of function call numbers to keep track of this nesting.

Here is the first several lines of a listing created by the WS2 Chat sample application:

(0) Log initiated: 10-28-1995, 17:6:5
(1) Process ID: 0xFFFEFEB5 Thread ID: 0xFFFEFA15
(2) TID: 0xFFFEFA15 Function call: 0 WSAStartup() called.
(3) TID: 0xFFFEFA15 Function Call: 0 WSAStartup() returned.
(4) TID: 0xFFFEFA15 Function call: 1 WSAEnumProtocols() called.
(5) TID: 0xFFFEFA15 Function Call: 1 WSAEnumProtocols() returned.
(6) TID: 0xFFFEFA15 Function call: 2 WSAEnumProtocols() called.
(7) TID: 0xFFFEFA15 Function Call: 2 WSAEnumProtocols() returned.
(8) TID: 0xFFFEFA15 Function call: 3 WSASocket() called.
(9) TID: 0xFFFEFA15 Function call: 4 WSPSocket() called.
(10) TID: 0xFFFEFA15 Function Call: 4 WSPSocket() returned.
(11) TID: 0xFFFEFA15 Function Call: 3 WSASocket() returned.
(12) TID: 0xFFFEFA15 Function call: 5 bind() called.

Page 8 WinSock 2 Debug and Trace Facilities

(13) TID: 0xFFFEFA15 Function call: 6 WSPBind() called.
(14) TID: 0xFFFEFA15 Function Call: 6 WSPBind() returned.
(15) TID: 0xFFFEFA15 Function Call: 5 bind() returned.
(16) TID: 0xFFFEFA15 Function call: 7 WSAAsyncSelect() called.
(17) TID: 0xFFFEFA15 Function call: 8 WSPAsyncSelect() called.
(18) TID: 0xFFFEFA15 Function Call: 8 WSPAsyncSelect() returned.
(19) TID: 0xFFFEFA15 Function Call: 7 WSAAsyncSelect() returned.
(20) TID: 0xFFFEFA15 Function call: 9 listen() called.
(21) TID: 0xFFFEFA15 Function call: 10 WSPListen() called.
(22) TID: 0xFFFEFA15 Function Call: 10 WSPListen() returned.
(23) TID: 0xFFFEFA15 Function Call: 9 listen() returned.

When the debug/trace DLL is loaded, it brings up a dialog box asking the user to choose what type of
output he would like. The choices include file, debug window, or debugger output. It should be noted
that the debug window is exceptionally slow. If using the window, a workaround to this large
performance penalty is to minimize the window and pop it up after the activity in question has occurred.

5.3Implementation
The following is a brief description of the implementation of the default debug/trace DLL. It is intended
as a “roadmap” to the code. Please refer to the code itself for more detailed comments.

5.3.1User Interface
As noted above, the default debug/trace DLL, when first loaded, pops up a dialog box prompting the user
to choose an output method. The choices are window only, window and file, file only, and debugger
output. The user must choose one such method; choosing one of the middle two methods brings up a file
selection dialog box to specify a filename.

The debug output window, if used, is a simple subclassed edit control. It disallows editing, cutting or
pasting, but will allow users to copy text to the clipboard (we added that feature solely to paste the above
listing). If the debug window option is chosen, the debug/trace DLL launches a separate thread to create
and service the messages sent to the window.

5.3.2Thread Stacks
The debug/trace DLL uses a fairly straightforward stack class to keep track of function call ID numbers.
When the DLL is notified of the application creating a new thread, it creates an instance of a cstack
object and stores a pointer to the object in thread local storage (TLS). This is a classic stack with one
small difference; the push() method, rather than taking a pointer to a piece of data, takes no parameters.
Instead, it simply pushes a private variable called counter onto the stack, and increments it’s value
(counter is initialized to zero). Pop simply pulls the integer off the stack.

When an API function is called, WSAPreApiNotify retrieves it’s the stack object, records the counter,
and then performs a push operation. The output is then displayed. Any number of nested, intervening
API or SPI functions can now take place, pushing and popping their own function call IDs, but they will
all have returned by the time WSAPostApiNotify is called for this function in this thread. We then pop
the same counter off the stack and print that number in the output. Note that if WSAPreApiNotify
determines that it wants to short-circuit the API or SPI function by returning FALSE, it pops the counter
off the stack, but no output is displayed. Thus, it is possible for there to be no matching return
notification for some call events.

5.3.3Handler Functions
Both WSAPre- and WSAPostApiNotify can be called with over 100 different notification codes. To
handle all the different possibilities, the debug/trace DLL uses a slew of handler functions, one for each
possible notification code. These functions are contained in handlers.cpp. Rather than using a giant
switch statement to call the appropriate handler function, we use a table of function pointers which is
initialized during the DLL_PROCESS_ATTACH segment of DllMain(). WSAPre/PostApiNotify both
use the same method to call the handler functions -- the notification code is used to index into the pointer
table and that pointer is dereferenced with a common set of parameters. These parameters mostly
duplicate the information passed to WSAPre/PostApiNotify (i.e. a pointer to the API function’s return

WinSock 2 Debug and Trace Facilities Page 9

value, and a pointer to the variable-length parameter list). A few additional parameters give other
information to the handler functions, such as a boolean to distinguish the calling functions from each
other, and a buffer into which the handler may dump the rest of the (function-specific) output line.

Here is a typical handler function:

BOOL CALLBACK
DTHandler_accept(
 IN va_list vl,
 IN OUT LPVOID ReturnValue,
 IN LPSTR LibraryName,
 OUT char *Buffer,
 IN int Index,
 IN int BufLen,
 IN BOOL PreOrPost)
{
 SOCKET *RetVal = (SOCKET *)ReturnValue;
 SOCKET *s = va_arg(vl, SOCKET *);
 struct sockaddr FAR **addr = va_arg(vl, struct sockaddr FAR **);
 int FAR **addrlen = va_arg(vl, int FAR **);

 wsprintf(Buffer + Index, "accept() %s.\r\n",
 PreOrPost ? "called" : "returned");
 DTTextOut(DebugWindow, LogFileHandle, Buffer, OutputStyle);
 return(FALSE);
}

It doesn’t do much; basically, it uses the va_arg() macro to strip off pointers to the original API
function’s parameters, and puts these pointers into local variables. If the developer wants to examine the
parameters passed into any particular API/SPI call, he is encouraged to set breakpoints in these handler
functions; at that point, he can use the debugger to dereference the local variables that point to the
parameters (don’t forget about that extra level of indirection!). After stripping off the parameters, the
handler functions print some output into the given buffer and return FALSE, indicating to
WSAPreApiNotify to continue with execution of the function (WSAPostApiNotify ignores this return
value, of course). It is here, in these handler functions, that the more ambitious developer could add her
code. Type-specific formatting procedures could be written to output the API parameters in a readable
way. Or some processing may need to occur if indeed the API function is to be short-circuited. All these
possibilities are left as exercises for the reader.

5.3.4Thread Synchronization
There are a few minor thread synchronization issues addressed in the default implementation of
dt_dll.dll. First, the bodies of WSAPre/PostApiNotify are protected from simultaneous use of the global
text buffer by a Critical Section variable. Another solution would have been to give each thread its own
buffer in thread local storage.

Secondly, an event is used to ensure that the two line of header information printed at startup are not
printed after (or in the middle of) text from API function calls and returns. This was happening because
the debug window is created by another thread, and it is entirely possible for the original, intializing
thread to return to the application, call an API function, and print some output well before the debug
window is created by the new thread and the initialization information printed out.

5.3.5Error Preservation
Because WSAPre/PostApiNotify have system calls in them, it is possible for them to change the value
that would be returned by WSAGetLastError() or GetLastError(). This could be a very bad thing -- for
instance, an error set by the real API function would be lost after WSAPostApiNotify writes over it. To
counter this, these functions have some code in them to preserve the error code as it exists when they are
invoked. However, it also possible that one of the handler functions may wish to change the error using
SetLastError(), especially if a short-circuit is taking place. WSAPre/PostApiNotify both exit with the

Page 10 WinSock 2 Debug and Trace Facilities

error code being either the same value it was upon invocation, or, if the handler function changed the
value, the new value.

WinSock 2 Debug and Trace Facilities Page 11

	1 Introduction
	2 The Interface
	2.1 Overview
	2.2 Procedure Specifications
	2.2.1 WSAPreApiNotify
	2.2.2 WSAPostApiNotify

	3 Typical Implementation
	4 DT_DLL.H header file (excerpt)
	5 The Default Debug/Trace DLL
	5.1 Overview
	5.2 Functionality
	5.3 Implementation
	5.3.1 User Interface
	5.3.2 Thread Stacks
	5.3.3 Handler Functions
	5.3.4 Thread Synchronization
	5.3.5 Error Preservation

