
Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Note: This file is also saved in Rich Text Format as APPB.RTF. We recommend that you

use APPB.RTF if you have a word processor that can read Rich Text Format files.

A P P E N D I X B

The Details of Standard
Marshaling

Chapter 6 briefly mentioned the architecture of COM’s standard
marshaling. Figure 6-3 on page 291 illustrates how a proxy and its
facelets communicate with a stub and its stublets through an RPC
Channel object, which itself communicates with a system RPC
service. This appendix explores the overall architecture of
standard marshaling. We’ll look at the interfaces on these objects
and their role in making Local/Remote Transparency work its
magic, using a typical object creation sequence involving
IClassFactory::CreateInstance as the focal point.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 1 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

The information here applies to objects provided by local or
remote servers and does not apply at all to in-process servers, for
which no marshaling is necessary. As a convenience, the following
text uses remote to refer to both local and remote objects and
servers.

Architectural Objects

In Figure 6-3 on page 291, you can see the five separate object
types that make up COM’s remoting architecture for each remote
object:

n The RPC Channel, which implements IRpcChannelBuffer

and performs the low-level RPC necessary to transmit
information between processes and machines

n The proxy manager, which forms the shell of the overall
proxy and controls which interfaces a client can access
through QueryInterface

n Any number of facelets contained in the proxy, each of
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 2 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

which implements one specific interface exposed to the
client as well as IRpcProxyBuffer, which is exposed only to
the proxy manager

n The stub manager, which forms the shell of the overall stub
and controls the remote object’s lifetime

n Any number of stublets, one for each remote object
interface that a client has requested (each stublet
implements IRpcStubBuffer and maintains a single
interface pointer to the remote object)

Let’s look at these objects in more detail as well as the
interfaces they implement. This will let us see how they fit into
the overall architecture.

New from CBS! It’s the RPC Channel!

No, it’s not one of those 500 new cable-TV channels that shows
you nothing but hex dumps of RPC packets all day long.1 (Now
there’s true nerd TV!) As you can discern from Figure 6-3, the RPC
Channel is an object that implements the interface
IRpcChannelBuffer:

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 3 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

interface IRpcChannelBuffer : IUnknown
 {
 HRESULT GetBuffer(RPCOLEMESSAGE *pMessage, REFIID riid);
 HRESULT SendReceive(RPCOLEMESSAGE *pMessage, ULONG *pStatus);
 HRESULT FreeBuffer(RPCOLEMESSAGE *pMessage);
 HRESULT GetDestCtx(DWORD *pdwDestContext, void **ppvDestContext);
 HRESULT IsConnected(void);
 };

typedef struct tagRPCOLEMESSAGE
 {
 void *reserved1;
 RPCOLEDATAREP dataRepresentation; //An unsigned long
 void *Buffer;
 ULONG cbBuffer; //Size of buffer to allocate
 ULONG iMethod; //Method being called
 void *reserved2[5];
 ULONG rpcFlags;
 } RPCOLEMESSAGE;

You can probably speculate about the sequence of calls that a
facelet would make to this interface in order to generate a remote
interface call. The facelet first obtains a marshaling packet from
the RPC Channel using IRpcChannelBuffer::GetBuffer, in which the
riid argument identifies the interface being called. The
RPCOLEMESSAGE structure is also an in-parameter to GetBuffer

that causes the facelet to initialize all fields except Buffer so that
the channel can allocate the correct structures internally. Besides
the self-explanatory cbBuffer and iMethod fields, rpcFlags

indicates the type of call, such as synchronous or asynchronous,
and dataRepresentation indicates specific information about the
data structure, which includes character size (ANSI, Unicode,
EBCDIC), floating-point format (IEEE, VAX, Cray, IBM), and big

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 4 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

endian vs. little endian. Data representation is obviously critical
for interface remoting between different hardware architectures!
Fortunately, COM is designed expressly with that in mind.

On return from GetBuffer, the facelet fills Buffer with the
arguments to the member function. Once the buffer is filled, the
facelet invokes IRpcChannelBuffer::SendReceive to send the
function call across the wire, so to speak, to the corresponding
stublet. (Although there’s no wire, of course, in the strictly local
case.) Every single consideration about how the interprocess or
intermachine communication happens is encapsulated within
SendReceive.

On the other side of the universe, in the remote process, the
call shows up in the stublet that receives both the
RPCOLEMESSAGE structure and the IRpcChannelBuffer pointer.
The stublet reads arguments from the buffer and calls the remote
object. When the remote object returns, the stublet changes the
cbBuffer and dataRepresentation fields in the RPCOLEMESSAGE
structure and calls IRpcChannelBuffer::GetBuffer to allocate the
necessary space for return values and out-parameters. It then fills
the buffer and returns from the call. The RPC Channel sends this
new structure back to the facelet.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 5 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

When IRpcChannelBuffer::SendReceive returns, the contents
of the buffer into which the arguments were originally marshaled
have been replaced by the return values and out-parameters from
the remote object. The facelet unpacks these from the buffer,
stores them in the proper places in memory, calls
IRpcChannelBuffer::FreeBuffer to clean up, and returns to the
client.

The other two member functions in IRpcChannelBuffer
provide useful information for facelets. GetDestCtx returns the
MSHCTX flags appropriate to the nature of the RPC connection.
IsConnected indicates whether the connection to the remote
object is still active—that is, whether a SendReceive call will even
work. This can save a lot of time that would otherwise be spent
waiting for the channel to time out before returning from
SendReceive. IsConnected will always give a definite negative
answer if the connection is dead, but a positive response is not so
final: the server might die after the call returns, in which case the
time-out will still occur. But subsequent calls to IsConnected will
return the definite negative.

Keep in mind that regardless of what you might implement as
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 6 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

a custom interface, the RPC Channel is always implemented
inside COM and is the core of standard marshaling. There is no
COM API to create or access an RPC Channel itself—a facelet is
explicitly given the RPC Channel’s pointer when it’s told to
connect to a remote stublet. A stublet is always given a pointer to
the RPC Channel whenever it’s asked to invoke a member
function in the remote object. Having access to an instantiation of
this channel outside this context is simply not necessary.

The Proxy Manager and Facelets

The proxy manager is an aggregation of any number of facelets.
Whereas the proxy exposes an IUnknown along with IMarshal (its
initialization interface), each facelet exposes one public interface
to the client through aggregation with the proxy.

This collection of facelets in one proxy is entirely a matter of
proxy implementation—the client doesn’t care at all how that
implementation is accomplished. The interfaces available through
the proxy’s QueryInterface are what matter to the client. The
proxy’s QueryInterface has to provide a pointer to whatever
supported interface the client might request. Each pointer to each

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 7 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

different interface comes from an individual facelet for each
interface. QueryInterface is, in fact, the part of a proxy that
creates a new facelet when any given IID is requested the first
time.2 What the client then sees in the proxy is a single object
with IUnknown and any other number of interfaces. The proxy
implements IUnknown internally but obtains its other interfaces
through aggregation on individual facelets.

A facelet itself is a small object that implements only two
interfaces: IRpcProxyBuffer and whatever interface it knows how
to marshal. Figure 6-3 shows one facelet with IAnimal and one
with IKoala; both have IRpcProxyBuffer. IRpcProxyBuffer is rather
special because it also acts as the controlling IUnknown

implementation for the facelet and is the interface that the proxy
obtains when it first creates a new facelet. This bends the
aggregation rules slightly (by which the outer object must ask for
IUnknown when creating the inner object), but because
IRpcProxyBuffer is never exposed outside the proxy-facelet
relationship, and because this relationship is specifically defined,
this minor variation is not a problem. Also, the proxy can ask
IRpcProxyBuffer::QueryInterface for a pointer to the other
interface on that facelet. This other interface’s IUnknown

functions, as you would expect, delegate to the proxy’s IUnknown,
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 8 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

as defined by normal aggregation rules. Thus, the client sees the
proper IUnknown behavior through any interface pointer it can get
from the proxy.3

Marshaling a single interface is the life purpose of any given
facelet implementation. It is how a facelet knows which member
functions in its public interface require a new proxy entirely. The
problem that remains is how the facelet becomes aware of the
IRpcChannelBuffer pointer through which it can communicate with
the remote stub. This is the purpose of the IRpcProxyBuffer
interface, which contains only two specific member functions:

interface IRpcProxyBuffer : IUnknown
 {
 HRESULT Connect(IRpcChannelBuffer *pRpcChannel);
 HRESULT Disconnect(void);
 };

A new proxy maintains a pointer to its RPC Channel, which it
received through its IMarshal::Unmarshal interface. When the
proxy creates a new facelet in its QueryInterface, it obtains an
IRpcProxyBuffer pointer in return. It then calls Connect, passing to
the facelet the proxy’s IRpcChannelBuffer pointer. Whenever a
facelet subsequently receives a call from a client to one of its
member functions, it uses this IRpcChannelBuffer pointer to
marshal arguments and to make the remote call. Simple! Of

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 9 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

course, sooner or later the client will call Release often enough to
destroy the remote object and tear down all the magic in
between, which means destruction of the proxy. (The client’s
Release calls will decrement the proxy’s reference count to 0
along with the remote object’s.) During destruction, the proxy
calls IRpcProxyBuffer::Disconnect to ensure that the facelet is
finished with the RPC Channel.

The Stub Manager and Stublets

Now that we understand a little more about how a client talks to a
proxy and how a proxy talks to the RPC Channel, let’s see how the
RPC Channel talks to the stub to complete an interface call to a
remote object.

The stub manager is a collection of stublets, although
aggregation is not used, as it is with the proxy. The stub as a
whole manages the individual stublets, telling them when to
connect to an interface in the remote object and when to delete
themselves. Because a stub is used only in standard marshaling,
COM provides the implementation internally in all cases. There is
no direct access to this code.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 10 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

COM creates a stub within CoMarshalInterface for any object
that is using standard marshaling. In creating the stub, COM
hands it the object’s IUnknown pointer. The stub holds this pointer
as is illustrated in Figure 6-3 on page 291. Now it waits until the
RPC Channel (created in response to client-side actions) informs it
of a client’s call to some interface. At this point, the most the
client can do is call some IUnknown member function because the
client has not yet requested any other interface pointer. What
happens when the client does call QueryInterface is the
interesting part. Any QueryInterface call from the client ends up in
the RPC Channel on the server side, which then privately informs
the stub of the request. “Privately” here means that there is no
set interface on the stub itself through which the RPC Channel
communicates—such implementation is entirely internal to COM,
so this is likely some call to a C++ member function.

In any case, the stub receives the QueryInterface request. In
response, it creates a stublet appropriate for the IID being
requested, and the stublet implements the single interface
IRpcStubBuffer:

interface IRpcStubBuffer : IUnknown
 {

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 11 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC
 HRESULT Connect(IUnknown *pUnkServer);
 void Disconnect(void);
 HRESULT Invoke(RPCOLEMESSAGE *pMessage
 , IRpcChannelBuffer *pChannel);
 BOOL IsIIDSupported(REFIID riid);
 ULONG CountRefs(void);
 };

After creating this object, the stub calls Connect, passing the
remote object’s IUnknown. The stublet then calls QueryInterface

to check whether the object actually supports the interface in
question. If that query fails, the stublet returns E_NOINTERFACE to
the stub, which returns it to the RPC Channel and back across to
the client.

If the query is successful, the stublet has an interface pointer
of type IID, which it stores internally before returning NOERROR
from Connect. A successful QueryInterface is returned to the
proxy, which then creates a new facelet for the same interface,
but this facelet is not effectively connected to the newly created
stublet.

Eventually the client will make a call to a member function in
this newly obtained interface. That call enters the facelet that
marshals arguments in the RPC Channel and calls
IRpcChannelBuffer::SendReceive. This call is picked up by the
server-side RPC Channel, which internally informs the stub that a

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 12 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

call has occurred. Remember that the proxy passed to
IRpcChannelBuffer::GetBuffer is the IID of the interface being
called. This IID shows up in the channel’s private call to the stub,
so the stub knows which stublet needs to handle the call and
returns that stublet’s IRpcStubBuffer pointer to the channel. The
channel then calls IRpcStubBuffer::Invoke, passing the
RPCOLEMESSAGE structure and its own IRpcChannelBuffer

pointer, which gives the stublet all the information it needs to
generate the call into the real remote object.

The other member functions in IRpcStubBuffer are rather
trivial compared to Invoke. Disconnect tells the stublet to release
the interface pointer it holds to the remote object: the stub itself
will instruct all stublets to release their holds when the client has
released all of its references to the remote object. IsIIDSupported

is usually a simple function that returns TRUE if the stublet
handles the given IID; otherwise, it returns FALSE. This function
must also, however, verify that the remote object itself supports
the interface. Most often this has already happened through a call
to Connect, but if not, the stublet can perform such a check here.
Finally, CountRefs returns to the remote object the number of
reference counts that the stublet holds.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 13 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

How Everything Comes into (and out of) Memory

Having learned a little about the objects involved in remoting
and their functionality, we can put the pieces together to see
when and how each piece is brought into memory and how the
pieces are connected to one another. As a beginning point,
consider the following client code:

HRESULT hr;
IClassFactory *pIClassFactory;
IProvideClassInfo *pIPCI;
ITypeInfo &pITypeInfo;

hr=CoGetClassObject(CLSID_Local, CLXCTX_LOCAL_SERVER, NULL
 , IID_IClassFactory, (void **)&pIClassFactory);

if (FAILED(hr))
 <error handling>;

hr=pIClassFactory->CreateInstance(NULL, IID_IProvideClassInfo
 , (void **)&pIPCI);
pIClassFactory->Release();

if (FAILED(hr))
 <error handling>;

hr=pIPCI->GetClassInfo(&pITypeInfo);

if (SUCCEEDED(hr))
 pITypeInfo->Release();

pIPCI->Release();

The calls to CoGetClassObject and IClassFactory could be
combined into CoCreateInstance, which we’d usually do in writing
concise code, but here we want to see all calls explicitly. This is a

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 14 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

typical sequence involving one call to a fundamental COM API
function and calls to interfaces:

CoGetClassObject
IClassFactory::CreateInstance
IClassFactory::Release
IProvideClassInfo::GetClassInfo
ITypeInfo::Release
IProvideClassInfo::Release

A total of three server objects are involved here: the class
factory, the object with IProvideClassInfo, and the object with
ITypeInfo. This gives us the opportunity to explore how COM
creates the proxy and stub for the first object (the class factory),
how the proxies and stubs for the other two objects come into
being, and how all of it is removed from memory as well.

From the client’s perspective, this process involves only a few
simple function calls. But COM is doing a tremendous amount of
work to make transparent the remoting of three interfaces on
three different objects. This work happens in the following phases:

Phase 1 CoGetClassObject causes the local server to be launched. The
server calls CoRegisterClassObject, making that object appear in
COM’s global class factory registration table.
CoRegisterClassObject creates the stub for this class factory as
well.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 15 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Phase 2 Still in CoGetClassObject, COM creates a proxy and an RPC
Channel for the class factory. At this point, only that object’s
IUnknown interface is available to the client process.

Phase 3 CoGetClassObject requests an IClassFactory pointer from the
class factory, causing the creation of a facelet in the proxy
manager and a stublet in the stub manager. The resulting client-
side pointer, which is implemented on a facelet, is returned to the
client.

Phase 4 The client calls IClassFactory::CreateInstance, which creates a
new object as well as a new proxy with a facelet for
IProvideClassInfo, a new stub with a stublet for the same
interface, and a new RPC Channel for the new object.

Phase 5 The client calls IClassFactory::Release, which destroys the proxy
and RPC Channel for the class factory but not the stub.

Phase 6 The client calls IProvideClassInfo::GetClassInfo to obtain an
ITypeInfo pointer. This creates a new object, which means the
creation of a new proxy, stub, and RPC Channel.

Phase 7 The client calls ITypeInfo::Release, which destroys that object
and its remoting support but nothing else.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 16 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Phase 8 The client calls IProvideClassInfo::Release, destroying the object
in the server and also terminating the server because this is the
only remaining server object and no locks exist. The server starts
shutdown and calls CoRevokeClassObject. This destroys the class
factory and its stub (which were not destroyed in Phase 5).

After all of this is complete, no server will be in memory, no
proxies, no stubs, no RPC Channels—just as it should be. Nothing
will be in memory that wasn’t there before the client executed its
code. Of course, each phase in itself has a complex series of
operations, so let’s look at each one in turn.

Phase 1: Launching the Server and Registering the Class Factory

As we learned in Chapter 5, CoGetClassObject delegates
responsibility for locating and launching a server for some CLSID
to the SCM (Service Control Manager). CoGetClassObject also
checks for the TreatAs key (by calling CoGetTreatAsClass) to
determine the correct CLSID to give to the SCM. For whatever
local server CLSID is used, the SCM launches that server and
returns some sort of connection information. This information can
be thought of as an RPC handle, but as we’ll see, that’s not

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 17 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

entirely accurate: there’s much more to it than that, most of
which happens in the server process. CoGetClassObject, once it
has asked the SCM to locate a server, waits patiently for the
server to start and for it to register its class factory. Let’s leave
the client process spinning in this little loop while we look at the
server process.

When the server is launched to service a component, it sees -
Embedding on its command line. In response, it initializes COM
and creates its class factory object. At this point, nothing else is in
memory except the COM Library, the server EXE itself, and its
newly created class factory, to which the server has, say, an
IUnknown pointer. The problem that Local/Remote Transparency
solves is the creation of the structures necessary to allow a
remote client to call member functions in this IUnknown interface.
Fortunately for the server, COM makes the process simple: the
server needs only to pass the IUnknown pointer to its class
factory to CoRegisterClassObject and wait for calls to happen.

So what does happen when the server passes a pointer to
CoRegisterClassObject? The COM Library loaded into the server’s
process maintains a table of class factories registered in that
process. Each entry in this table includes an identifier for the class

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 18 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

factory (an integer called an object identifier [OID], not a GUID)
and a pointer to the stub for that object. The stub itself manages
the object’s real interface pointer passed to
CoRegisterClassObject.

Obviously, a task-specific table of registered class factories
doesn’t do us much good, especially considering that there are
other registration mechanisms as well, such as the running object
table. For that reason, COM also maintains a single global object

table in shared memory, which is accessible to all instances of the
COM Library in all processes and is used for the registration of any
objects whatsoever. In this table, COM stores a pointer to the
object’s stub manager along with a process identifier (task
handle) that associates this information with a machine-unique
OID.

We can see where these tables come into play through the
following sequence of steps performed in CoRegisterClassObject:

1. Check whether a multiple-use class factory
for the CLSID is already registered, in which case fail
with CO_E_OBJISREG. Otherwise, call AddRef to
safeguard the object. (The reference count is now 1

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 19 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

as far as COM is concerned.)

2. Call CoMarshalInterface to determine whether
the object wants custom marshaling or whether
standard marshaling should be used. In the latter
case, CoMarshalInterface will create an instance of
the generic stub and retrieve from it a generic
marshaling packet.

3. Create an entry in the global object table
storing the marshaling packet (regardless of the
form of marshaling). If standard marshaling is used,
also store the stub pointer and its task handle,
assigning an OID to the entry.

4. If standard marshaling is used, connect the
stub to the class factory by passing it the factory’s
IUnknown pointer as passed to
CoRegisterClassObject. The stub holds this pointer
and calls AddRef. (The reference is now 2.)

5. In the class factory table, store the OID, the
marshaling packet, the server CLSID, and the proxy

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 20 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

CLSID (also the stub pointer if standard marshaling
is used). Include as well the dwUsage and
dwContext flags passed to CoRegisterClassObject.

This act creates the registration key returned to the
server.

6. Call Release to reverse the safeguard AddRef

call in step 1. (The reference count is now 1; the
AddRef was called in step 4.)

At the end of this process, we have a new entry in the class
factory table that identifies the stub for the object and the flags
and proxy CLSID necessary to manage it. In addition, an entry in
the global object table identifies the stub and the server task with
a machine-unique OID. All that we’ve built so far is shown in
Figure B-1. CoRegisterClassObject is complete and returns to the
server, which completes its initialization and enters its message
loop. The class factory is now available to the client, still waiting
inside CoGetClassObject.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 21 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 22 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-1.

The server-side results of CoRegisterClassObject.

Phase 2: Creation of the First Proxy and RPC Channel

While all the business of Phase 1 is going on, CoGetClassObject,
and thus the client as a whole (at least that one thread), waits
patiently for the new class factory to appear in the global object
table. It is entirely possible, however, that the server is already
running and that its class factory is already registered when the
client calls CoGetClassObject, in which case the client doesn’t
have to wait. What really happens in this function is that it first
checks whether the class factory is already registered, and if not,
it waits until any new registration occurs in the global object
table, checks again, and then continues to wait until a time-out
occurs (5–30 minutes or so).

Because this example started from scratch, the first check for
a class factory failed, and CoGetClassObject is simply waiting until
a new registration happens. When that event occurs,
CoGetClassObject checks whether that new registration is the
CLSID it wants. This basically involves walking through the global

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 23 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

object table to find an OID for a class factory matching the CLSID.
(There can be multiple single-use factories in the table, mind
you.)

CoGetClassObject now has the OID for the remote object, and
with that OID, the function can retrieve the proxy CLSID and
marshaling packet necessary to connect the proxy to the stub (or
to the object if custom marshaling is used). The process, which
occurs in CoUnmarshalInterface, is as follows:

1. Create a proxy object through
CoCreateInstance(CLSCTX_INPROC_HANDLER |

CLSCTX_INPROC_SERVER) using the CLSID obtained
from the stub. (Because CLSCTX_INPROC_* is used,
there is no chance of winding up back in this process
again with a different remote class factory.) This call
creates either a custom proxy or the standard
generic proxy using CLSID_StdMarshal (00000017-

0000-0000-C000-000000000046).

2. CoCreateInstance calls CoGetClassObject,
which, for CLSIDs internal to COM (such as
CLSID_StdMarshal), creates the object using its own

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 24 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

internal means. Otherwise, CoGetClassObject and
CoCreateInstance proceed to instantiate the proxy
exactly as they would for any other in-process
object, as we saw in Chapter 5.

3. Connect the new proxy to the remote object by
passing it the marshaling packet that points to
IMarshal::UnmarshalInterface. When standard
marshaling is involved, the packet includes the
necessary IRpcChannelBuffer pointer, which the proxy
then holds (calling AddRef) until destroyed (when it
calls Release).

After this process, CoGetClassObject (effectively client code
because we’re outside the proxy itself) now has in hand an
IUnknown pointer to the new proxy object. By this time, we’ve
created, in both processes, all that is shown in Figure B-2 below.
CoGetClassObject can call an IUnknown function through this
pointer, and the proxy will marshal that call through the RPC
Channel to the stub. The stub unmarshals the call and sends it to
the object. Or does it? This is true for QueryInterface, as we’ll see
below, but for AddRef and Release, the generic proxy does not
forward every call to the stub. The simple reason is that a single

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 25 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

reference count, which the stub has already by virtue of its
existence, will keep the remote object alive and the server
running. Therefore, any number of additional calls to AddRef and
matching calls to Release really don’t accomplish anything—only
the last call to Release matters. The proxy doesn’t bother to
forward every AddRef and Release call, and this is, as we
discovered in Chapter 5, the reason why the reference count
returned from AddRef and Release for a local or remote object is
some large and meaningless number unless the return value is 0.
COM’s generic proxy simply implements it that way.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 26 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 27 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-2.

Objects in memory by the time CoGetClassObject obtains an

IUnknown pointer.

Phase 3: Creation of an Interface Proxy and Stub for IClassFactory

CoGetClassObject is almost ready to return a pointer to the client.
In this example, the client originally asked for IClassFactory, but
CoGetClassObject has only an IUnknown pointer, implemented in
the proxy. All it needs to do is to call QueryInterface; the proxy
has to get an IClassFactory pointer. This involves quite a bit of
new processing in the proxy and the stub because at the moment
the only open communication path is through IUnknown. To
handle this, the proxy must create a new IClassFactory facelet
and hand it the IRpcChannelBuffer pointer through which that
facelet can make its calls. At the same time, a new IClassFactory

stublet in the remote stub must be created, with the stublet
maintaining a pointer to the remote object’s actual interface.

The implementations of the facelet and stublet for any
particular interface are now provided through a proxy/stub server,
as mentioned in Chapter 6. The server is an in-process server

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 28 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

registered as follows (ProxyStubClsid is used on 16-bit systems):

\
 Interface
 {<IID>} = <name of interface>
 NumMethods = <total number of interface members>
 BaseInterface = <{IID} of base interface>
 ProxyStubClsid32 = <{CLSID} of a server for the marshaler>

These entries map an IID to a CLSID whose server
implements the specific marshalers for this interface. The
BaseInterface entry frees these marshalers from having to
implement marshalers for every member function when other
marshalers already exist for those members of the base interface.
COM will use the marshaler for the base interface for any of its
members. In any case, the class factory in the server identified
with ProxyStubClsid32 implements the interface IPSFactory

through which the proxy or stub can create either a facelet or a
stublet:

interface IPSFactoryBuffer : IUnknown
 {
 HRESULT CreateProxy(IUnknown *pUnkOuter, REFIID riid
 , IRpcProxyBuffer *ppProxy, void **ppv);
 HRESULT CreateStub(REFIID riid, IUnknown *pUnkServer
 , IRpcStubBuffer **ppStub);
 }

With this interface, you can see that a Proxy/Stub Factory, or
simply, PSFactory, can create both an interface proxy and an
interface stub for a single interface. When a proxy or a stub needs

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 29 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

a new facelet or stublet, it goes to the registry, looks up the
ProxyStubClsid32 for the IID in question, and then calls
CoGetClassObject(IID_IPSFactoryBuffer,
CLSCTX_INPROC_HANDLER | CLSCTX_INPROC_SERVER). When an
IPSFactoryBuffer pointer is returned, the proxy calls CreateProxy

and the stub calls CreateStub in that interface. Both these
member functions take an IID argument that identifies the
interface in question. This argument serves the same purpose as
the CLSID passed to DllGetClassObject. In this latter case, the
CLSID allows an in-process server to handle multiple CLSIDs. In
the PSFactory case, the IID allows that factory to create a different
object for each different interface, as it really must anyway.

The CreateProxy function actually returns two interface
pointers. (Both have AddRef called through them, of course.) One
is a pointer to the facelet’s IRpcProxyBuffer, and the other is a
pointer to the interface that the proxy exposes to the client. This
second interface must be of the type matching the riid argument.
In a sense, CreateProxy has a built-in QueryInterface because the
proxy always needs both pointers at the same time. As we’ve
seen, the proxy calls IRpcProxyBuffer::Connect shortly after this to
make the facelet aware of the RPC Channel to the stub.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 30 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

On the other hand, CreateStub only returns the
IRpcStubBuffer pointer to the new stublet—there’s no other
interface to worry about. As we’ve also seen, the stub calls
IRpcStubBuffer::Connect shortly after this, passing the remote
object’s IUnknown. In Connect, the stublet calls QueryInterface

through that pointer to obtain the one it holds on to for later
handling of IRpcStubBuffer::Invoke.

The remaining argument to both CreateProxy and CreateStub

is an IUnknown pointer, but keep in mind that CreateProxy takes a
pUnkOuter, whereas CreateStub takes a pUnkServer. The pointer
given to CreateProxy is the outer proxy’s IUnknown, the
controlling unknown for the whole proxy. The facelet must
delegate all IUnknown calls made to its public—and only its public
—interface. This allows the proxy to control the interfaces
available to the client. The facelet does not delegate any
IUnknown calls to its IRpcProxyBuffer interface because that acts
as the controlling IUnknown for the facelet.

The pUnkServer passed to CreateStub is entirely different
and is the same pointer that can be passed to
IRpcStubBuffer::Connect later on; in either case, it is the remote
object’s IUnknown. This argument to CreateStub can be NULL,

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 31 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

meaning that the stub must call the stublet’s Connect before ever
calling IRpcStubBuffer::Invoke. If the stub passes the object’s
IUnknown to CreateStub, the stublet calls its own Connect

internally so that the stub can call Invoke without calling Connect

itself.

Now that we understand how facelets and stublets come into
memory, spelling out the sequence of operations that makes it
happen is fairly simple. It begins with a call from
CoGetClassObject into the proxy’s QueryInterface with
IID_IClassFactory:

1. The proxy’s QueryInterface checks whether
the IID is IID_IUnknown and, if so, returns its own
pointer.

2. Otherwise, QueryInterface checks whether a
facelet for the IID is already present in this proxy. If
so, it retrieves that facelet’s public interface, calls
AddRef through it, and returns that pointer.

3. If the facelet is not present, the proxy first
verifies that the remote object itself supports the IID

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 32 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

being requested. The proxy marshals the necessary
arguments into the RPC Channel and calls
IRpcChannelBuffer::SendReceive, which is picked up
in the server process and sent to the stub.

4. The stub unmarshals the arguments and calls
the remote object’s QueryInterface. If that function
returns E_NOINTERFACE, the same error code is
propagated all the way back to the client, eventually
becoming the value returned from
CoGetClassObject.

5. If QueryInterface succeeds, the stub
instantiates a stublet for the IID using the PSFactory
entries in the registry as described above. It calls
IPSFactoryBuffer::CreateStub followed by
IRpcStubBuffer::Connect, handing the stublet that
object’s IUnknown.

6. The stublet calls QueryInterface to obtain and
save a pointer to the appropriate interface on the
object and returns to the stub. With the stublet fully
created and initialized, the stub returns from the

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 33 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

RPC Channel’s call.

7. The proxy’s call to
IRpcChannelBuffer::SendReceive returns
successfully, so the proxy knows that a remote
stublet has been created. It then creates a
corresponding facelet inside itself using aggregation
through IPSFactoryBuffer::CreateProxy.

8. The proxy calls IRpcProxyBuffer::Connect,
passing the IRpcChannelBuffer pointer that COM
passed the proxy during its own connection. The
facelet stores this pointer and considers itself
connected.

9. The proxy now knows that both stublet and
facelet exist, and it has in hand the correct interface
pointer, in this case an IClassFactory pointer, which
it returns to CoGetClassObject.

We’re now back inside CoGetClassObject, just after its call to
QueryInterface(IID_IClassFactory). If all was successful,
CoGetClassObject now returns the IClassFactory pointer to the

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 34 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

client. Everything we need to make local or remote calls through
the interface is now in memory, as shown in Figure B-3.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 35 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 36 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-3.

Objects in memory by the time CoGetClassObject returns an

IClassFactory pointer to the client, ready for making cross-

process or cross-machine calls.

Phase 3½: Intermission

Wow! We’ve really covered a lot of the Local/Remote Transparency
architecture in the previous pages. It’s worth it to take a short
break to realize just how far we’ve come. Starting from scratch,
with nothing in memory but the client’s code and its instance of
the COM Library, we’ve seen how a simple call to
CoGetClassObject spawns a flurry of activity inside COM:
launching the server, registering the class factory in object tables,
instantiating proxies and stubs and facelets and stublets, and
connecting everything together through the RPC Channel. That’s
a lot of work! What we now have after all this work is a client with
an IClassFactory pointer, and any call through that pointer winds
up as a call to an object that exists in another process or on
another machine. This, my friends, is way hot technology.

Well, let’s see now. I need to go to the post office and mail a
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 37 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

package. I’ll be back shortly. Let me pop in a CD for you while
you’re waiting.

Take a walk outside myself
In some exotic land
Greet a passing stranger
Feel the strength in his hand
Feel the world expand

Hand Over Fist, from the “Presto” CD by Rush (the
band)

OK, I’m back. Sorry I took a little longer than I expected, but
there was a long line at the post office.4 Anyway, let’s explore
what happens as we execute the rest of the client code.

Phase 4: Creation of a New Object and Its Remoting Support

Now that the client has an IClassFactory pointer, it calls
CreateInstance, asking for an IProvideClassInfo pointer in return.
This call goes directly to the proxy’s IClassFactory facelet because
that’s the object implementing the interface. Well, “implement” is
the wrong word—this facelet actually marshals this interface,
relying on the remote object for the complete implementation.
Once again, this is why a proxy is often called a handler.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 38 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Inside its implementation of CreateInstance, the facelet takes
whatever arguments are required in the remote object and
marshals them in an RPC Channel buffer. The only argument that
really needs marshaling is the riid, which contains
IProvideClassInfo; the pUnkOuter is unimportant because
aggregation is in-process only, and the pointer stored in ppv will
be that or some new facelet in the client process. So riid is all that
the facelet stuffs into the RPC Channel before calling
IRpcChannelBuffer::SendReceive.

Let me point out how this example of an interface such as
IClassFactory illustrates why standard marshaling needs interface-
specific facelets and stublets—only small pieces of code that
understand an interface can know which arguments to marshal
and which ones to manipulate solely on the client side. Marshaling
is different for every method of every interface; the facelets and
stublets encapsulate that intelligence.

To continue, the facelet’s SendReceive call is picked up by
the RPC Channel in the server process and sent to the stub
connected to that channel. The RPC Channel privately tells the
stub which interface is being called so that the stub passes the

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 39 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

call to the correct stublet through IRpcStubBuffer::Invoke. The
IClassFactory stublet is told to invoke CreateInstance, in which it
knows that the RPC Channel buffer holds the IID to request. It
unmarshals that single argument, allocates a variable to hold the
new pointer (probably a temporary stack variable), and calls the
real class factory’s CreateInstance with NULL, the IID, and the
pointer to the pointer variable.

If CreateInstance returns successfully, the IClassFactory

stublet now holds a brand-new interface pointer—
IProvideClassInfo in our example here—attached to a brand-new
object that is unrelated to the class factory that already exists.
The stublet, by virtue of understanding what CreateInstance does,
knows that it must marshal this pointer to the new object. At this
point, the stublet is in the same situation as
CoRegisterClassObject: it has a pointer to a server-process object,
which it now makes available to the client process by calling
CoMarshalInterface, which then creates the new stub as needed.

Now the original IClassFactory stublet is satisfied that it has
built the necessary server-side structures, so it returns from
SendReceive, storing NOERROR as the HRESULT as well as the
new object’s OID. Because the stublet cannot marshal the new

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 40 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

object’s interface pointer to the facelet, it must marshal the OID
to identify the new object. After we’re back in the client process,
the facelet unmarshals the HRESULT; if that code indicates failure,
the facelet returns failure to the client. Otherwise, it takes the
new OID and repeats the process of creating a new proxy for the
remote object through CoUnmarshalInterface. The facelet now
has the proxy’s IUnknown pointer in hand and can call
QueryInterface with IID_IProvideClassInfo to have the proxy create
a new facelet for this new interface and connect that facelet to
the RPC Channel. Again, this uses the same mechanisms we’ve
already explored.

The IClassFactory facelet’s calls to QueryInterface result in a
new client-side interface pointer (to the IProvideClassInfo facelet
in the new proxy) that it can now, finally, return from the client’s
original call to IClassFactory::CreateInstance. The necessary
remoting architecture now exists in memory for both the class
factory and the object it created, as illustrated in Figure B-4. You
can also picture the intermediate stages that were shown in
Figures 6-3 and 6-4 on pages 291 and 307, respectively; here it’s
the same process for another object.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 41 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 42 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-4.

Objects in memory after IClassFactory::CreateInstance
returns with a new IProvideClassInfo pointer.

Phase 5: Releasing the Class Factory and Destroying Its Proxy

Now that the client has obtained the IProvideClassInfo pointer it
wanted from IClassFactory::CreateInstance, it is finished with the
class factory and calls IClassFactory::Release. Because the facelet
was created as an inner object in the proxy’s aggregation, this call
is delegated to the proxy’s IUnknown::Release implementation.
The proxy maintains the total number of reference counts that the
client believes it has on the remote object. If this count is nonzero
after the decrement in Release, the proxy returns some
meaningless nonzero number (not the actual internal count).

In our example, the client’s IClassFactory pointer is the only
reference, so the proxy’s Release decrements this count to 0. The
proxy thus knows that it has to start its self-destruction process,
which proceeds as follows:

1. The proxy iterates over all of its contained
facelets, calling each IRpcProxyBuffer::Disconnect

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 43 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

(which calls IRpcChannelBuffer::Release) followed
by IRpcProxyBuffer::Release, causing the facelet to
delete itself.

2. The proxy sends an IUnknown::Release over
the RPC Channel to the stub, which removes the
only reference between the two processes.

3. The stub picks up this IUnknown::Release call
and decrements an internal count of the number of
client connections to this stub.

4. If the last connection is being removed, the
stub iterates over all of its contained stublets,
calling each IRpcStubBuffer::Disconnect (which calls
the real object’s Release) followed by
IRpcStubBuffer::Release, which deletes the stublet.

5. If the stub maintains its own pointer to the
object’s IUnknown—in other words, a strong
connection—both the object and the stub remain
alive. This is true for a registered class factory,
which remains registered and available to other

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 44 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

clients that might call CoGetClassObject to connect
to this already running class factory. If the stub does
not maintain such a pointer—a weak connection—
the object may well be dead, and the stub deletes
itself because it no longer has any references to that
object, alive or dead. Some of the issues
surrounding cases in which the stub disappears are
described in “Strong and Weak Connections” in
Chapter 6.

6. The stub returns from IUnknown::Release,
and we’re back in the proxy, which now knows that
its responsibility is taken care of. The proxy calls
IRpcChannelBuffer::Release to remove the last
reference to the channel.

7. The RPC Channel closes the RPC connection
between the two processes and deletes itself.

8. The proxy finally deletes itself and is removed
from memory.

At the end of all this, nothing is left in the client process but the
© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 45 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

client, regardless of whether that object is still running. The class
factory’s proxy is gone, along with the RPC Channel and all
facelets, as it should be. However, the class factory and its stub
still exist in the server process, as shown in Figure B-5.

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 46 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 47 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

Figure B-5.

Objects in memory after a client calls IClassFactory::Release.

The class factory remains in memory because the server

must call CoRevokeClassObject to destroy it.

Phase 6: Obtaining a Pointer to Yet Another Object

After releasing the class factory, the client still has a pointer to
the second object’s IProvideClassInfo interface, so a proxy for that
object is still in memory. The client now calls
IProvideClassInfo::GetClassInfo, which returns an ITypeInfo pointer
to yet another separate object. Just as the IClassFactory facelet
and stublet recognize that CreateInstance creates a new and
separate object, so do the IProvideClassInfo facelet and stublet
recognize that GetClassInfo does exactly the same thing.

In fact, as far as the creation of a new proxy and stub for the
new object is concerned, CreateInstance and GetClassInfo involve
the same operations that we’ve already seen. This is true
generally: any interface function that creates a new object and
returns an interface pointer to that new object necessitates the
creation of a new proxy and stub in client and server processes,

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 48 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

including a facelet in the proxy and a stublet in the stub. Same
problem, same solution. A function such as CoGetClassObject is
special only in that it is the first time any of this happens;
afterward, the same process occurs from within interface calls
themselves.

Phase 7: Releasing an Object and Removing Its Complete

Remoting Support

Having obtained the ITypeInfo pointer it was looking for all along,
the client does whatever it needs to with that interface and
eventually calls its Release. The proxy called knows that this is
the client’s only reference to the remote object, so it performs the
same steps as described earlier in Phase 5. In this situation,
however, the remote object itself is destroyed because the stub’s
only reference to that object is through its contained ITypeInfo

stublet. Thus, the object deletes itself, the stub deletes itself, the
proxy deletes itself and all its stublets, and the RPC Channel
disappears, leaving no trace of the object, stub, or proxy
anywhere in memory. Cleanup is complete.

The server, however, is still running because it still has at

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 49 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

least one active object, the one with IProvideClassInfo, so its
object count is still 1. The memory snapshot is the same as that
shown in Figure B-5. The remoting objects for ITypeInfo came into
memory and went right back out again.

Phase 8: Terminating the Server and Revoking the Class Factory

The final act in this show is the client’s call to
IProvideClassInfo::Release. As with any other object, this last call
to Release destroys the proxy and the facelets on the client side
along with the object, the stub, and the stublets on the server
side. This leaves only the few server-side objects in memory,
exactly as is shown in Figure 6-3 on page 291. However, because
this was the last object being maintained in the server, its
termination conditions are met, and the server begins its
shutdown process.

As we saw in Chapter 5, part of this process is the server’s
call to CoRevokeClassObject. This function performs the following
steps:

1. Removes the class factory from the class factory

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 50 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

table.

2. Tells the stub to disconnect from the class
factory, which calls that class factory’s Release. This
will be the final Release for that object, which now
deletes itself.

3. Removes the object from the global object
table, making it completely unavailable.

4. Deletes the stub object.

CoRevokeClassObject then returns to the server, which completes
its shutdown by calling CoUninitialize before exiting its message
loop and WinMain, thus unloading itself completely and
terminating the entire process (which unloads the COM Library in
that process as well).

If we now looked in memory, we would see no server process,
no server or COM Library in such a process, no stubs, no stublets,
no proxies, no facelets, and no entries in the global object table.
In fact, there would be nothing, absolutely nothing that was not
there before the client made its first call to CoGetClassObject,

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 51 of 23

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

which is exactly as it should be.

Q.E.D. (Aren’t you glad you didn’t have to implement all of
this yourself?)

1 This CBS is the COM Broadcasting Service, which, well, can’t be real or else a few
trademark lawyers from the real CBS might come a knockin’ and a litigatin’!

2 A proxy can either maintain any previously instantiated facelets or allow facelets to
delete themselves when their internal reference counts go to 0. In this case, the proxy’s
QueryInterface may need to re-create them later. This is a proxy implementation
decision and does not affect client or facelet implementation.

3 You can prove to yourself that a client cannot access IRpcProxyBuffer by modifying
Chapter 5’s ObjectUser to query one of the EKoala servers for IID_IRpcProxyBuffer. The
call will always come back E_NOINTERFACE.

4 Really, I mailed a package to a new baby cousin. I did go to the post office today
(1/17/95), and I did put in this particular CD, and I did play this particular song.
Whaddya mean you didn’t hear it?

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 52 of 23

