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A P P E N D I X   B

The Details of Standard 
Marshaling

Chapter 6 briefly mentioned the architecture of COM’s standard 
marshaling. Figure 6-3 on page 291 illustrates how a proxy and its
facelets communicate with a stub and its stublets through an RPC 
Channel object, which itself communicates with a system RPC 
service. This appendix explores the overall architecture of 
standard marshaling. We’ll look at the interfaces on these objects 
and their role in making Local/Remote Transparency work its 
magic, using a typical object creation sequence involving 
IClassFactory::CreateInstance as the focal point.
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The information here applies to objects provided by local or 
remote servers and does not apply at all to in-process servers, for 
which no marshaling is necessary. As a convenience, the following
text uses remote to refer to both local and remote objects and 
servers.

Architectural Objects

In Figure 6-3 on page 291, you can see the five separate object 
types that make up COM’s remoting architecture for each remote 
object:

n The RPC Channel, which implements IRpcChannelBuffer 

and performs the low-level RPC necessary to transmit 
information between processes and machines

n The proxy manager, which forms the shell of the overall 
proxy and controls which interfaces a client can access 
through QueryInterface

n Any number of facelets contained in the proxy, each of 
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which implements one specific interface exposed to the 
client as well as IRpcProxyBuffer, which is exposed only to 
the proxy manager

n The stub manager, which forms the shell of the overall stub
and controls the remote object’s lifetime

n Any number of stublets, one for each remote object 
interface that a client has requested (each stublet 
implements IRpcStubBuffer and maintains a single 
interface pointer to the remote object)

Let’s look at these objects in more detail as well as the 
interfaces they implement. This will let us see how they fit into 
the overall architecture.

New from CBS! It’s the RPC Channel!

No, it’s not one of those 500 new cable-TV channels that shows 
you nothing but hex dumps of RPC packets all day long.1 (Now 
there’s true nerd TV!) As you can discern from Figure 6-3, the RPC
Channel is an object that implements the interface 
IRpcChannelBuffer:
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interface IRpcChannelBuffer : IUnknown
   {
   HRESULT GetBuffer(RPCOLEMESSAGE *pMessage, REFIID riid);
   HRESULT SendReceive(RPCOLEMESSAGE *pMessage, ULONG *pStatus);
   HRESULT FreeBuffer(RPCOLEMESSAGE *pMessage);
   HRESULT GetDestCtx(DWORD *pdwDestContext, void **ppvDestContext);
   HRESULT IsConnected(void);
   };

typedef struct  tagRPCOLEMESSAGE
   {
   void         *reserved1;
   RPCOLEDATAREP dataRepresentation;   //An unsigned long
   void         *Buffer;
   ULONG         cbBuffer;             //Size of buffer to allocate
   ULONG         iMethod;              //Method being called
   void         *reserved2[5];
   ULONG         rpcFlags;
   } RPCOLEMESSAGE;

You can probably speculate about the sequence of calls that a
facelet would make to this interface in order to generate a remote
interface call. The facelet first obtains a marshaling packet from 
the RPC Channel using IRpcChannelBuffer::GetBuffer, in which the
riid argument identifies the interface being called. The 
RPCOLEMESSAGE structure is also an in-parameter to GetBuffer 

that causes the facelet to initialize all fields except Buffer so that 
the channel can allocate the correct structures internally. Besides 
the self-explanatory cbBuffer and iMethod fields, rpcFlags 

indicates the type of call, such as synchronous or asynchronous, 
and dataRepresentation indicates specific information about the 
data structure, which includes character size (ANSI, Unicode, 
EBCDIC), floating-point format (IEEE, VAX, Cray, IBM), and big 
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endian vs. little endian. Data representation is obviously critical 
for interface remoting between different hardware architectures! 
Fortunately, COM is designed expressly with that in mind.

On return from GetBuffer, the facelet fills Buffer with the 
arguments to the member function. Once the buffer is filled, the 
facelet invokes IRpcChannelBuffer::SendReceive to send the 
function call across the wire, so to speak, to the corresponding 
stublet. (Although there’s no wire, of course, in the strictly local 
case.) Every single consideration about how the interprocess or 
intermachine communication happens is encapsulated within 
SendReceive.

On the other side of the universe, in the remote process, the 
call shows up in the stublet that receives both the 
RPCOLEMESSAGE structure and the IRpcChannelBuffer pointer. 
The stublet reads arguments from the buffer and calls the remote 
object. When the remote object returns, the stublet changes the 
cbBuffer and dataRepresentation fields in the RPCOLEMESSAGE 
structure and calls IRpcChannelBuffer::GetBuffer to allocate the 
necessary space for return values and out-parameters. It then fills
the buffer and returns from the call. The RPC Channel sends this 
new structure back to the facelet.
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When IRpcChannelBuffer::SendReceive returns, the contents 
of the buffer into which the arguments were originally marshaled 
have been replaced by the return values and out-parameters from
the remote object. The facelet unpacks these from the buffer, 
stores them in the proper places in memory, calls 
IRpcChannelBuffer::FreeBuffer to clean up, and returns to the 
client.

The other two member functions in IRpcChannelBuffer 
provide useful information for facelets. GetDestCtx returns the 
MSHCTX flags appropriate to the nature of the RPC connection. 
IsConnected indicates whether the connection to the remote 
object is still active—that is, whether a SendReceive call will even 
work. This can save a lot of time that would otherwise be spent 
waiting for the channel to time out before returning from 
SendReceive. IsConnected will always give a definite negative 
answer if the connection is dead, but a positive response is not so
final: the server might die after the call returns, in which case the 
time-out will still occur. But subsequent calls to IsConnected will 
return the definite negative.

Keep in mind that regardless of what you might implement as
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a custom interface, the RPC Channel is always implemented 
inside COM and is the core of standard marshaling. There is no 
COM API to create or access an RPC Channel itself—a facelet is 
explicitly given the RPC Channel’s pointer when it’s told to 
connect to a remote stublet. A stublet is always given a pointer to
the RPC Channel whenever it’s asked to invoke a member 
function in the remote object. Having access to an instantiation of
this channel outside this context is simply not necessary.

The Proxy Manager and Facelets

The proxy manager is an aggregation of any number of facelets. 
Whereas the proxy exposes an IUnknown along with IMarshal (its 
initialization interface), each facelet exposes one public interface 
to the client through aggregation with the proxy.

This collection of facelets in one proxy is entirely a matter of 
proxy implementation—the client doesn’t care at all how that 
implementation is accomplished. The interfaces available through
the proxy’s QueryInterface are what matter to the client. The 
proxy’s QueryInterface has to provide a pointer to whatever 
supported interface the client might request. Each pointer to each
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different interface comes from an individual facelet for each 
interface. QueryInterface is, in fact, the part of a proxy that 
creates a new facelet when any given IID is requested the first 
time.2 What the client then sees in the proxy is a single object 
with IUnknown and any other number of interfaces. The proxy 
implements IUnknown internally but obtains its other interfaces 
through aggregation on individual facelets.

A facelet itself is a small object that implements only two 
interfaces: IRpcProxyBuffer and whatever interface it knows how 
to marshal. Figure 6-3 shows one facelet with IAnimal and one 
with IKoala; both have IRpcProxyBuffer. IRpcProxyBuffer is rather 
special because it also acts as the controlling IUnknown 

implementation for the facelet and is the interface that the proxy 
obtains when it first creates a new facelet. This bends the 
aggregation rules slightly (by which the outer object must ask for 
IUnknown when creating the inner object), but because 
IRpcProxyBuffer is never exposed outside the proxy-facelet 
relationship, and because this relationship is specifically defined, 
this minor variation is not a problem. Also, the proxy can ask 
IRpcProxyBuffer::QueryInterface for a pointer to the other 
interface on that facelet. This other interface’s IUnknown 

functions, as you would expect, delegate to the proxy’s IUnknown,
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as defined by normal aggregation rules. Thus, the client sees the 
proper IUnknown behavior through any interface pointer it can get
from the proxy.3

Marshaling a single interface is the life purpose of any given 
facelet implementation. It is how a facelet knows which member 
functions in its public interface require a new proxy entirely. The 
problem that remains is how the facelet becomes aware of the 
IRpcChannelBuffer pointer through which it can communicate with
the remote stub. This is the purpose of the IRpcProxyBuffer 
interface, which contains only two specific member functions:

interface IRpcProxyBuffer : IUnknown
   {
   HRESULT Connect(IRpcChannelBuffer *pRpcChannel);
   HRESULT Disconnect(void);
   };

A new proxy maintains a pointer to its RPC Channel, which it 
received through its IMarshal::Unmarshal interface. When the 
proxy creates a new facelet in its QueryInterface, it obtains an 
IRpcProxyBuffer pointer in return. It then calls Connect, passing to
the facelet the proxy’s IRpcChannelBuffer pointer. Whenever a 
facelet subsequently receives a call from a client to one of its 
member functions, it uses this IRpcChannelBuffer pointer to 
marshal arguments and to make the remote call. Simple! Of 
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course, sooner or later the client will call Release often enough to 
destroy the remote object and tear down all the magic in 
between, which means destruction of the proxy. (The client’s 
Release calls will decrement the proxy’s reference count to 0 
along with the remote object’s.) During destruction, the proxy 
calls IRpcProxyBuffer::Disconnect to ensure that the facelet is 
finished with the RPC Channel.

The Stub Manager and Stublets

Now that we understand a little more about how a client talks to a
proxy and how a proxy talks to the RPC Channel, let’s see how the
RPC Channel talks to the stub to complete an interface call to a 
remote object.

The stub manager is a collection of stublets, although 
aggregation is not used, as it is with the proxy. The stub as a 
whole manages the individual stublets, telling them when to 
connect to an interface in the remote object and when to delete 
themselves. Because a stub is used only in standard marshaling, 
COM provides the implementation internally in all cases. There is 
no direct access to this code.
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COM creates a stub within CoMarshalInterface for any object 
that is using standard marshaling. In creating the stub, COM 
hands it the object’s IUnknown pointer. The stub holds this pointer
as is illustrated in Figure 6-3 on page 291. Now it waits until the 
RPC Channel (created in response to client-side actions) informs it
of a client’s call to some interface. At this point, the most the 
client can do is call some IUnknown member function because the
client has not yet requested any other interface pointer. What 
happens when the client does call QueryInterface is the 
interesting part. Any QueryInterface call from the client ends up in
the RPC Channel on the server side, which then privately informs 
the stub of the request. “Privately” here means that there is no 
set interface on the stub itself through which the RPC Channel 
communicates—such implementation is entirely internal to COM, 
so this is likely some call to a C++ member function.

In any case, the stub receives the QueryInterface request. In 
response, it creates a stublet appropriate for the IID being 
requested, and the stublet implements the single interface 
IRpcStubBuffer:

interface IRpcStubBuffer : IUnknown
   {
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   HRESULT Connect(IUnknown *pUnkServer);
   void    Disconnect(void);
   HRESULT Invoke(RPCOLEMESSAGE *pMessage
               , IRpcChannelBuffer *pChannel);
   BOOL    IsIIDSupported(REFIID riid);
   ULONG   CountRefs(void);
   };

After creating this object, the stub calls Connect, passing the 
remote object’s IUnknown. The stublet then calls QueryInterface 

to check whether the object actually supports the interface in 
question. If that query fails, the stublet returns E_NOINTERFACE to
the stub, which returns it to the RPC Channel and back across to 
the client.

If the query is successful, the stublet has an interface pointer 
of type IID, which it stores internally before returning NOERROR 
from Connect. A successful QueryInterface is returned to the 
proxy, which then creates a new facelet for the same interface, 
but this facelet is not effectively connected to the newly created 
stublet.

Eventually the client will make a call to a member function in 
this newly obtained interface. That call enters the facelet that 
marshals arguments in the RPC Channel and calls 
IRpcChannelBuffer::SendReceive. This call is picked up by the 
server-side RPC Channel, which internally informs the stub that a 
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call has occurred. Remember that the proxy passed to 
IRpcChannelBuffer::GetBuffer is the IID of the interface being 
called. This IID shows up in the channel’s private call to the stub, 
so the stub knows which stublet needs to handle the call and 
returns that stublet’s IRpcStubBuffer pointer to the channel. The 
channel then calls IRpcStubBuffer::Invoke, passing the 
RPCOLEMESSAGE structure and its own IRpcChannelBuffer 

pointer, which gives the stublet all the information it needs to 
generate the call into the real remote object.

The other member functions in IRpcStubBuffer are rather 
trivial compared to Invoke. Disconnect tells the stublet to release 
the interface pointer it holds to the remote object: the stub itself 
will instruct all stublets to release their holds when the client has 
released all of its references to the remote object. IsIIDSupported 

is usually a simple function that returns TRUE if the stublet 
handles the given IID; otherwise, it returns FALSE. This function 
must also, however, verify that the remote object itself supports 
the interface. Most often this has already happened through a call
to Connect, but if not, the stublet can perform such a check here. 
Finally, CountRefs returns to the remote object the number of 
reference counts that the stublet holds.
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How Everything Comes into (and out of) Memory

Having learned a little about the objects involved in remoting 
and their functionality, we can put the pieces together to see 
when and how each piece is brought into memory and how the 
pieces are connected to one another. As a beginning point, 
consider the following client code:

HRESULT            hr;
IClassFactory     *pIClassFactory;
IProvideClassInfo *pIPCI;
ITypeInfo         &pITypeInfo;

hr=CoGetClassObject(CLSID_Local, CLXCTX_LOCAL_SERVER, NULL
   , IID_IClassFactory, (void **)&pIClassFactory);

if (FAILED(hr))
   <error handling>;

hr=pIClassFactory->CreateInstance(NULL, IID_IProvideClassInfo
   , (void **)&pIPCI);
pIClassFactory->Release();

if (FAILED(hr))
   <error handling>;

hr=pIPCI->GetClassInfo(&pITypeInfo);

if (SUCCEEDED(hr))
   pITypeInfo->Release();

pIPCI->Release();

The calls to CoGetClassObject and IClassFactory could be 
combined into CoCreateInstance, which we’d usually do in writing 
concise code, but here we want to see all calls explicitly. This is a 
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typical sequence involving one call to a fundamental COM API 
function and calls to interfaces:

CoGetClassObject
IClassFactory::CreateInstance
IClassFactory::Release
IProvideClassInfo::GetClassInfo
ITypeInfo::Release
IProvideClassInfo::Release

A total of three server objects are involved here: the class 
factory, the object with IProvideClassInfo, and the object with 
ITypeInfo. This gives us the opportunity to explore how COM 
creates the proxy and stub for the first object (the class factory), 
how the proxies and stubs for the other two objects come into 
being, and how all of it is removed from memory as well.

From the client’s perspective, this process involves only a few
simple function calls. But COM is doing a tremendous amount of 
work to make transparent the remoting of three interfaces on 
three different objects. This work happens in the following phases:

Phase 1  CoGetClassObject causes the local server to be launched. The 
server calls CoRegisterClassObject, making that object appear in 
COM’s global class factory registration table. 
CoRegisterClassObject creates the stub for this class factory as 
well.
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Phase 2  Still in CoGetClassObject, COM creates a proxy and an RPC 
Channel for the class factory. At this point, only that object’s 
IUnknown interface is available to the client process.

Phase 3  CoGetClassObject requests an IClassFactory pointer from the 
class factory, causing the creation of a facelet in the proxy 
manager and a stublet in the stub manager. The resulting client-
side pointer, which is implemented on a facelet, is returned to the 
client.

Phase 4   The client calls IClassFactory::CreateInstance, which creates a 
new object as well as a new proxy with a facelet for 
IProvideClassInfo, a new stub with a stublet for the same 
interface, and a new RPC Channel for the new object.

Phase 5  The client calls IClassFactory::Release, which destroys the proxy 
and RPC Channel for the class factory but not the stub.

Phase 6   The client calls IProvideClassInfo::GetClassInfo to obtain an 
ITypeInfo pointer. This creates a new object, which means the 
creation of a new proxy, stub, and RPC Channel.

Phase 7   The client calls ITypeInfo::Release, which destroys that object 
and its remoting support but nothing else.
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Phase 8   The client calls IProvideClassInfo::Release, destroying the object
in the server and also terminating the server because this is the 
only remaining server object and no locks exist. The server starts 
shutdown and calls CoRevokeClassObject. This destroys the class 
factory and its stub (which were not destroyed in Phase 5).

After all of this is complete, no server will be in memory, no 
proxies, no stubs, no RPC Channels—just as it should be. Nothing 
will be in memory that wasn’t there before the client executed its 
code. Of course, each phase in itself has a complex series of 
operations, so let’s look at each one in turn.

Phase 1: Launching the Server and Registering the Class Factory

As we learned in Chapter 5, CoGetClassObject delegates 
responsibility for locating and launching a server for some CLSID 
to the SCM (Service Control Manager). CoGetClassObject also 
checks for the TreatAs key (by calling CoGetTreatAsClass) to 
determine the correct CLSID to give to the SCM. For whatever 
local server CLSID is used, the SCM launches that server and 
returns some sort of connection information. This information can 
be thought of as an RPC handle, but as we’ll see, that’s not 
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entirely accurate: there’s much more to it than that, most of 
which happens in the server process. CoGetClassObject, once it 
has asked the SCM to locate a server, waits patiently for the 
server to start and for it to register its class factory. Let’s leave 
the client process spinning in this little loop while we look at the 
server process.

When the server is launched to service a component, it sees -
Embedding on its command line. In response, it initializes COM 
and creates its class factory object. At this point, nothing else is in
memory except the COM Library, the server EXE itself, and its 
newly created class factory, to which the server has, say, an 
IUnknown pointer. The problem that Local/Remote Transparency 
solves is the creation of the structures necessary to allow a 
remote client to call member functions in this IUnknown interface.
Fortunately for the server, COM makes the process simple: the 
server needs only to pass the IUnknown pointer to its class 
factory to CoRegisterClassObject and wait for calls to happen.

So what does happen when the server passes a pointer to 
CoRegisterClassObject? The COM Library loaded into the server’s 
process maintains a table of class factories registered in that 
process. Each entry in this table includes an identifier for the class

© Microsoft Press CONFIDENTIAL 05/01/95 03:30 PM 18 of 23



Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix B, EG2, dC

factory (an integer called an object identifier [OID], not a GUID) 
and a pointer to the stub for that object. The stub itself manages 
the object’s real interface pointer passed to 
CoRegisterClassObject.

Obviously, a task-specific table of registered class factories 
doesn’t do us much good, especially considering that there are 
other registration mechanisms as well, such as the running object 
table. For that reason, COM also maintains a single global object 

table in shared memory, which is accessible to all instances of the
COM Library in all processes and is used for the registration of any
objects whatsoever. In this table, COM stores a pointer to the 
object’s stub manager along with a process identifier (task 
handle) that associates this information with a machine-unique 
OID.

We can see where these tables come into play through the 
following sequence of steps performed in CoRegisterClassObject:

1. Check whether a multiple-use class factory 
for the CLSID is already registered, in which case fail
with CO_E_OBJISREG. Otherwise, call AddRef to 
safeguard the object. (The reference count is now 1 
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as far as COM is concerned.)

2. Call CoMarshalInterface to determine whether
the object wants custom marshaling or whether 
standard marshaling should be used. In the latter 
case, CoMarshalInterface will create an instance of 
the generic stub and retrieve from it a generic 
marshaling packet.

3. Create an entry in the global object table 
storing the marshaling packet (regardless of the 
form of marshaling). If standard marshaling is used, 
also store the stub pointer and its task handle, 
assigning an OID to the entry.

4. If standard marshaling is used, connect the 
stub to the class factory by passing it the factory’s 
IUnknown pointer as passed to 
CoRegisterClassObject. The stub holds this pointer 
and calls AddRef. (The reference is now 2.)

5. In the class factory table, store the OID, the 
marshaling packet, the server CLSID, and the proxy 
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CLSID (also the stub pointer if standard marshaling 
is used). Include as well the dwUsage and 
dwContext flags passed to CoRegisterClassObject. 

This act creates the registration key returned to the 
server.

6. Call Release to reverse the safeguard AddRef

call in step 1. (The reference count is now 1; the 
AddRef was called in step 4.)

At the end of this process, we have a new entry in the class 
factory table that identifies the stub for the object and the flags 
and proxy CLSID necessary to manage it. In addition, an entry in 
the global object table identifies the stub and the server task with
a machine-unique OID. All that we’ve built so far is shown in 
Figure B-1. CoRegisterClassObject is complete and returns to the 
server, which completes its initialization and enters its message 
loop. The class factory is now available to the client, still waiting 
inside CoGetClassObject.
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Figure B-1.

The server-side results of CoRegisterClassObject.

Phase 2: Creation of the First Proxy and RPC Channel

While all the business of Phase 1 is going on, CoGetClassObject, 
and thus the client as a whole (at least that one thread), waits 
patiently for the new class factory to appear in the global object 
table. It is entirely possible, however, that the server is already 
running and that its class factory is already registered when the 
client calls CoGetClassObject, in which case the client doesn’t 
have to wait. What really happens in this function is that it first 
checks whether the class factory is already registered, and if not, 
it waits until any new registration occurs in the global object 
table, checks again, and then continues to wait until a time-out 
occurs (5–30 minutes or so).

Because this example started from scratch, the first check for
a class factory failed, and CoGetClassObject is simply waiting until
a new registration happens. When that event occurs, 
CoGetClassObject checks whether that new registration is the 
CLSID it wants. This basically involves walking through the global 
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object table to find an OID for a class factory matching the CLSID. 
(There can be multiple single-use factories in the table, mind 
you.)

CoGetClassObject now has the OID for the remote object, and
with that OID, the function can retrieve the proxy CLSID and 
marshaling packet necessary to connect the proxy to the stub (or 
to the object if custom marshaling is used). The process, which 
occurs in CoUnmarshalInterface, is as follows:

1. Create a proxy object through 
CoCreateInstance(CLSCTX_INPROC_HANDLER | 

CLSCTX_INPROC_SERVER) using the CLSID obtained 
from the stub. (Because CLSCTX_INPROC_* is used, 
there is no chance of winding up back in this process
again with a different remote class factory.) This call 
creates either a custom proxy or the standard 
generic proxy using CLSID_StdMarshal (00000017-

0000-0000-C000-000000000046).

2. CoCreateInstance calls CoGetClassObject, 
which, for CLSIDs internal to COM (such as 
CLSID_StdMarshal), creates the object using its own 
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internal means. Otherwise, CoGetClassObject and 
CoCreateInstance proceed to instantiate the proxy 
exactly as they would for any other in-process 
object, as we saw in Chapter 5.

3. Connect the new proxy to the remote object by 
passing it the marshaling packet that points to 
IMarshal::UnmarshalInterface. When standard 
marshaling is involved, the packet includes the 
necessary IRpcChannelBuffer pointer, which the proxy 
then holds (calling AddRef) until destroyed (when it 
calls Release).

After this process, CoGetClassObject (effectively client code 
because we’re outside the proxy itself) now has in hand an 
IUnknown pointer to the new proxy object. By this time, we’ve 
created, in both processes, all that is shown in Figure B-2 below. 
CoGetClassObject can call an IUnknown function through this 
pointer, and the proxy will marshal that call through the RPC 
Channel to the stub. The stub unmarshals the call and sends it to 
the object. Or does it? This is true for QueryInterface, as we’ll see 
below, but for AddRef and Release, the generic proxy does not 
forward every call to the stub. The simple reason is that a single 
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reference count, which the stub has already by virtue of its 
existence, will keep the remote object alive and the server 
running. Therefore, any number of additional calls to AddRef and 
matching calls to Release really don’t accomplish anything—only 
the last call to Release matters. The proxy doesn’t bother to 
forward every AddRef and Release call, and this is, as we 
discovered in Chapter 5, the reason why the reference count 
returned from AddRef and Release for a local or remote object is 
some large and meaningless number unless the return value is 0. 
COM’s generic proxy simply implements it that way.
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Figure B-2.

Objects in memory by the time CoGetClassObject obtains an

IUnknown pointer.

Phase 3: Creation of an Interface Proxy and Stub for IClassFactory

CoGetClassObject is almost ready to return a pointer to the client.
In this example, the client originally asked for IClassFactory, but 
CoGetClassObject has only an IUnknown pointer, implemented in 
the proxy. All it needs to do is to call QueryInterface; the proxy 
has to get an IClassFactory pointer. This involves quite a bit of 
new processing in the proxy and the stub because at the moment 
the only open communication path is through IUnknown. To 
handle this, the proxy must create a new IClassFactory facelet 
and hand it the IRpcChannelBuffer pointer through which that 
facelet can make its calls. At the same time, a new IClassFactory 

stublet in the remote stub must be created, with the stublet 
maintaining a pointer to the remote object’s actual interface.

The implementations of the facelet and stublet for any 
particular interface are now provided through a proxy/stub server,
as mentioned in Chapter 6. The server is an in-process server 
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registered as follows (ProxyStubClsid is used on 16-bit systems):

\
   Interface
       {<IID>} = <name of interface>
           NumMethods = <total number of interface members>
           BaseInterface = <{IID} of base interface>
           ProxyStubClsid32 = <{CLSID} of a server for the marshaler>

These entries map an IID to a CLSID whose server 
implements the specific marshalers for this interface. The 
BaseInterface entry frees these marshalers from having to 
implement marshalers for every member function when other 
marshalers already exist for those members of the base interface.
COM will use the marshaler for the base interface for any of its 
members. In any case, the class factory in the server identified 
with ProxyStubClsid32 implements the interface IPSFactory 

through which the proxy or stub can create either a facelet or a 
stublet:

interface IPSFactoryBuffer : IUnknown
   {
   HRESULT CreateProxy(IUnknown *pUnkOuter, REFIID riid
       , IRpcProxyBuffer *ppProxy, void **ppv);
   HRESULT CreateStub(REFIID riid, IUnknown *pUnkServer
       , IRpcStubBuffer **ppStub);
   }

With this interface, you can see that a Proxy/Stub Factory, or 
simply, PSFactory, can create both an interface proxy and an 
interface stub for a single interface. When a proxy or a stub needs
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a new facelet or stublet, it goes to the registry, looks up the 
ProxyStubClsid32 for the IID in question, and then calls 
CoGetClassObject(IID_IPSFactoryBuffer, 
CLSCTX_INPROC_HANDLER | CLSCTX_INPROC_SERVER). When an 
IPSFactoryBuffer pointer is returned, the proxy calls CreateProxy 

and the stub calls CreateStub in that interface. Both these 
member functions take an IID argument that identifies the 
interface in question. This argument serves the same purpose as 
the CLSID passed to DllGetClassObject. In this latter case, the 
CLSID allows an in-process server to handle multiple CLSIDs. In 
the PSFactory case, the IID allows that factory to create a different
object for each different interface, as it really must anyway.

The CreateProxy function actually returns two interface 
pointers. (Both have AddRef called through them, of course.) One 
is a pointer to the facelet’s IRpcProxyBuffer, and the other is a 
pointer to the interface that the proxy exposes to the client. This 
second interface must be of the type matching the riid argument. 
In a sense, CreateProxy has a built-in QueryInterface because the 
proxy always needs both pointers at the same time. As we’ve 
seen, the proxy calls IRpcProxyBuffer::Connect shortly after this to
make the facelet aware of the RPC Channel to the stub.
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On the other hand, CreateStub only returns the 
IRpcStubBuffer pointer to the new stublet—there’s no other 
interface to worry about. As we’ve also seen, the stub calls 
IRpcStubBuffer::Connect shortly after this, passing the remote 
object’s IUnknown. In Connect, the stublet calls QueryInterface 

through that pointer to obtain the one it holds on to for later 
handling of IRpcStubBuffer::Invoke.

The remaining argument to both CreateProxy and CreateStub

is an IUnknown pointer, but keep in mind that CreateProxy takes a
pUnkOuter, whereas CreateStub takes a pUnkServer. The pointer 
given to CreateProxy is the outer proxy’s IUnknown, the 
controlling unknown for the whole proxy. The facelet must 
delegate all IUnknown calls made to its public—and only its public
—interface. This allows the proxy to control the interfaces 
available to the client. The facelet does not delegate any 
IUnknown calls to its IRpcProxyBuffer interface because that acts 
as the controlling IUnknown for the facelet.

The pUnkServer passed to CreateStub is entirely different 
and is the same pointer that can be passed to 
IRpcStubBuffer::Connect later on; in either case, it is the remote 
object’s IUnknown. This argument to CreateStub can be NULL, 
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meaning that the stub must call the stublet’s Connect before ever
calling IRpcStubBuffer::Invoke. If the stub passes the object’s 
IUnknown to CreateStub, the stublet calls its own Connect 

internally so that the stub can call Invoke without calling Connect 

itself.

Now that we understand how facelets and stublets come into 
memory, spelling out the sequence of operations that makes it 
happen is fairly simple. It begins with a call from 
CoGetClassObject into the proxy’s QueryInterface with 
IID_IClassFactory:

1. The proxy’s QueryInterface checks whether 
the IID is IID_IUnknown and, if so, returns its own 
pointer.

2. Otherwise, QueryInterface checks whether a 
facelet for the IID is already present in this proxy. If 
so, it retrieves that facelet’s public interface, calls 
AddRef through it, and returns that pointer.

3. If the facelet is not present, the proxy first 
verifies that the remote object itself supports the IID
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being requested. The proxy marshals the necessary 
arguments into the RPC Channel and calls 
IRpcChannelBuffer::SendReceive, which is picked up
in the server process and sent to the stub.

4. The stub unmarshals the arguments and calls
the remote object’s QueryInterface. If that function 
returns E_NOINTERFACE, the same error code is 
propagated all the way back to the client, eventually
becoming the value returned from 
CoGetClassObject.

5. If QueryInterface succeeds, the stub 
instantiates a stublet for the IID using the PSFactory 
entries in the registry as described above. It calls 
IPSFactoryBuffer::CreateStub followed by 
IRpcStubBuffer::Connect, handing the stublet that 
object’s IUnknown.

6. The stublet calls QueryInterface to obtain and
save a pointer to the appropriate interface on the 
object and returns to the stub. With the stublet fully 
created and initialized, the stub returns from the 
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RPC Channel’s call.

7. The proxy’s call to 
IRpcChannelBuffer::SendReceive returns 
successfully, so the proxy knows that a remote 
stublet has been created. It then creates a 
corresponding facelet inside itself using aggregation
through IPSFactoryBuffer::CreateProxy.

8. The proxy calls IRpcProxyBuffer::Connect, 
passing the IRpcChannelBuffer pointer that COM 
passed the proxy during its own connection. The 
facelet stores this pointer and considers itself 
connected.

9. The proxy now knows that both stublet and 
facelet exist, and it has in hand the correct interface
pointer, in this case an IClassFactory pointer, which 
it returns to CoGetClassObject.

We’re now back inside CoGetClassObject, just after its call to 
QueryInterface(IID_IClassFactory). If all was successful, 
CoGetClassObject now returns the IClassFactory pointer to the 
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client. Everything we need to make local or remote calls through 
the interface is now in memory, as shown in Figure B-3.
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Figure B-3.

Objects in memory by the time CoGetClassObject returns an

IClassFactory pointer to the client, ready for making cross-

process or cross-machine calls.

Phase 3½: Intermission

Wow! We’ve really covered a lot of the Local/Remote Transparency
architecture in the previous pages. It’s worth it to take a short 
break to realize just how far we’ve come. Starting from scratch, 
with nothing in memory but the client’s code and its instance of 
the COM Library, we’ve seen how a simple call to 
CoGetClassObject spawns a flurry of activity inside COM: 
launching the server, registering the class factory in object tables,
instantiating proxies and stubs and facelets and stublets, and 
connecting everything together through the RPC Channel. That’s 
a lot of work! What we now have after all this work is a client with 
an IClassFactory pointer, and any call through that pointer winds 
up as a call to an object that exists in another process or on 
another machine. This, my friends, is way hot technology.

Well, let’s see now. I need to go to the post office and mail a 
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package. I’ll be back shortly. Let me pop in a CD for you while 
you’re waiting.

Take a walk outside myself
In some exotic land
Greet a passing stranger
Feel the strength in his hand
Feel the world expand

Hand Over Fist, from the “Presto” CD by Rush (the 
band)

OK, I’m back. Sorry I took a little longer than I expected, but 
there was a long line at the post office.4 Anyway, let’s explore 
what happens as we execute the rest of the client code.

Phase 4: Creation of a New Object and Its Remoting Support

Now that the client has an IClassFactory pointer, it calls 
CreateInstance, asking for an IProvideClassInfo pointer in return. 
This call goes directly to the proxy’s IClassFactory facelet because
that’s the object implementing the interface. Well, “implement” is
the wrong word—this facelet actually marshals this interface, 
relying on the remote object for the complete implementation. 
Once again, this is why a proxy is often called a handler.
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Inside its implementation of CreateInstance, the facelet takes
whatever arguments are required in the remote object and 
marshals them in an RPC Channel buffer. The only argument that 
really needs marshaling is the riid, which contains 
IProvideClassInfo; the pUnkOuter is unimportant because 
aggregation is in-process only, and the pointer stored in ppv will 
be that or some new facelet in the client process. So riid is all that
the facelet stuffs into the RPC Channel before calling 
IRpcChannelBuffer::SendReceive.

Let me point out how this example of an interface such as 
IClassFactory illustrates why standard marshaling needs interface-
specific facelets and stublets—only small pieces of code that 
understand an interface can know which arguments to marshal 
and which ones to manipulate solely on the client side. Marshaling
is different for every method of every interface; the facelets and 
stublets encapsulate that intelligence.

To continue, the facelet’s SendReceive call is picked up by 
the RPC Channel in the server process and sent to the stub 
connected to that channel. The RPC Channel privately tells the 
stub which interface is being called so that the stub passes the 
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call to the correct stublet through IRpcStubBuffer::Invoke. The 
IClassFactory stublet is told to invoke CreateInstance, in which it 
knows that the RPC Channel buffer holds the IID to request. It 
unmarshals that single argument, allocates a variable to hold the 
new pointer (probably a temporary stack variable), and calls the 
real class factory’s CreateInstance with NULL, the IID, and the 
pointer to the pointer variable.

If CreateInstance returns successfully, the IClassFactory 

stublet now holds a brand-new interface pointer—
IProvideClassInfo in our example here—attached to a brand-new 
object that is unrelated to the class factory that already exists. 
The stublet, by virtue of understanding what CreateInstance does,
knows that it must marshal this pointer to the new object. At this 
point, the stublet is in the same situation as 
CoRegisterClassObject: it has a pointer to a server-process object,
which it now makes available to the client process by calling 
CoMarshalInterface, which then creates the new stub as needed.

Now the original IClassFactory stublet is satisfied that it has 
built the necessary server-side structures, so it returns from 
SendReceive, storing NOERROR as the HRESULT as well as the 
new object’s OID. Because the stublet cannot marshal the new 
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object’s interface pointer to the facelet, it must marshal the OID 
to identify the new object. After we’re back in the client process, 
the facelet unmarshals the HRESULT; if that code indicates failure,
the facelet returns failure to the client. Otherwise, it takes the 
new OID and repeats the process of creating a new proxy for the 
remote object through CoUnmarshalInterface. The facelet now 
has the proxy’s IUnknown pointer in hand and can call 
QueryInterface with IID_IProvideClassInfo to have the proxy create
a new facelet for this new interface and connect that facelet to 
the RPC Channel. Again, this uses the same mechanisms we’ve 
already explored.

The IClassFactory facelet’s calls to QueryInterface result in a 
new client-side interface pointer (to the IProvideClassInfo facelet 
in the new proxy) that it can now, finally, return from the client’s 
original call to IClassFactory::CreateInstance. The necessary 
remoting architecture now exists in memory for both the class 
factory and the object it created, as illustrated in Figure B-4. You 
can also picture the intermediate stages that were shown in 
Figures 6-3 and 6-4 on pages 291 and 307, respectively; here it’s 
the same process for another object.
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Figure B-4.

Objects in memory after IClassFactory::CreateInstance 
returns with a new IProvideClassInfo pointer.

Phase 5: Releasing the Class Factory and Destroying Its Proxy

Now that the client has obtained the IProvideClassInfo pointer it 
wanted from IClassFactory::CreateInstance, it is finished with the 
class factory and calls IClassFactory::Release. Because the facelet
was created as an inner object in the proxy’s aggregation, this call
is delegated to the proxy’s IUnknown::Release implementation. 
The proxy maintains the total number of reference counts that the
client believes it has on the remote object. If this count is nonzero
after the decrement in Release, the proxy returns some 
meaningless nonzero number (not the actual internal count).

In our example, the client’s IClassFactory pointer is the only 
reference, so the proxy’s Release decrements this count to 0. The 
proxy thus knows that it has to start its self-destruction process, 
which proceeds as follows:

1. The proxy iterates over all of its contained 
facelets, calling each IRpcProxyBuffer::Disconnect 
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(which calls IRpcChannelBuffer::Release) followed 
by IRpcProxyBuffer::Release, causing the facelet to 
delete itself.

2. The proxy sends an IUnknown::Release over 
the RPC Channel to the stub, which removes the 
only reference between the two processes.

3. The stub picks up this IUnknown::Release call
and decrements an internal count of the number of 
client connections to this stub.

4. If the last connection is being removed, the 
stub iterates over all of its contained stublets, 
calling each IRpcStubBuffer::Disconnect (which calls
the real object’s Release) followed by 
IRpcStubBuffer::Release, which deletes the stublet.

5. If the stub maintains its own pointer to the 
object’s IUnknown—in other words, a strong 
connection—both the object and the stub remain 
alive. This is true for a registered class factory, 
which remains registered and available to other 
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clients that might call CoGetClassObject to connect 
to this already running class factory. If the stub does
not maintain such a pointer—a weak connection—
the object may well be dead, and the stub deletes 
itself because it no longer has any references to that
object, alive or dead. Some of the issues 
surrounding cases in which the stub disappears are 
described in “Strong and Weak Connections” in 
Chapter 6.

6. The stub returns from IUnknown::Release, 
and we’re back in the proxy, which now knows that 
its responsibility is taken care of. The proxy calls 
IRpcChannelBuffer::Release to remove the last 
reference to the channel.

7. The RPC Channel closes the RPC connection 
between the two processes and deletes itself.

8. The proxy finally deletes itself and is removed
from memory.

At the end of all this, nothing is left in the client process but the 
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client, regardless of whether that object is still running. The class 
factory’s proxy is gone, along with the RPC Channel and all 
facelets, as it should be. However, the class factory and its stub 
still exist in the server process, as shown in Figure B-5.
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Figure B-5.

Objects in memory after a client calls IClassFactory::Release.

The class factory remains in memory because the server 

must call CoRevokeClassObject to destroy it.

Phase 6: Obtaining a Pointer to Yet Another Object

After releasing the class factory, the client still has a pointer to 
the second object’s IProvideClassInfo interface, so a proxy for that
object is still in memory. The client now calls 
IProvideClassInfo::GetClassInfo, which returns an ITypeInfo pointer
to yet another separate object. Just as the IClassFactory facelet 
and stublet recognize that CreateInstance creates a new and 
separate object, so do the IProvideClassInfo facelet and stublet 
recognize that GetClassInfo does exactly the same thing.

In fact, as far as the creation of a new proxy and stub for the 
new object is concerned, CreateInstance and GetClassInfo involve
the same operations that we’ve already seen. This is true 
generally: any interface function that creates a new object and 
returns an interface pointer to that new object necessitates the 
creation of a new proxy and stub in client and server processes, 
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including a facelet in the proxy and a stublet in the stub. Same 
problem, same solution. A function such as CoGetClassObject is 
special only in that it is the first time any of this happens; 
afterward, the same process occurs from within interface calls 
themselves.

Phase 7: Releasing an Object and Removing Its Complete 

Remoting Support

Having obtained the ITypeInfo pointer it was looking for all along, 
the client does whatever it needs to with that interface and 
eventually calls its Release. The proxy called knows that this is 
the client’s only reference to the remote object, so it performs the
same steps as described earlier in Phase 5. In this situation, 
however, the remote object itself is destroyed because the stub’s 
only reference to that object is through its contained ITypeInfo 

stublet. Thus, the object deletes itself, the stub deletes itself, the 
proxy deletes itself and all its stublets, and the RPC Channel 
disappears, leaving no trace of the object, stub, or proxy 
anywhere in memory. Cleanup is complete.

The server, however, is still running because it still has at 
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least one active object, the one with IProvideClassInfo, so its 
object count is still 1. The memory snapshot is the same as that 
shown in Figure B-5. The remoting objects for ITypeInfo came into 
memory and went right back out again.

Phase 8: Terminating the Server and Revoking the Class Factory

The final act in this show is the client’s call to 
IProvideClassInfo::Release. As with any other object, this last call 
to Release destroys the proxy and the facelets on the client side 
along with the object, the stub, and the stublets on the server 
side. This leaves only the few server-side objects in memory, 
exactly as is shown in Figure 6-3 on page 291. However, because 
this was the last object being maintained in the server, its 
termination conditions are met, and the server begins its 
shutdown process.

As we saw in Chapter 5, part of this process is the server’s 
call to CoRevokeClassObject. This function performs the following 
steps:

1. Removes the class factory from the class factory 
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table.

2. Tells the stub to disconnect from the class 
factory, which calls that class factory’s Release. This
will be the final Release for that object, which now 
deletes itself.

3. Removes the object from the global object 
table, making it completely unavailable.

4. Deletes the stub object.

CoRevokeClassObject then returns to the server, which completes
its shutdown by calling CoUninitialize before exiting its message 
loop and WinMain, thus unloading itself completely and 
terminating the entire process (which unloads the COM Library in 
that process as well).

If we now looked in memory, we would see no server process,
no server or COM Library in such a process, no stubs, no stublets, 
no proxies, no facelets, and no entries in the global object table. 
In fact, there would be nothing, absolutely nothing that was not 
there before the client made its first call to CoGetClassObject, 
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which is exactly as it should be.

Q.E.D. (Aren’t you glad you didn’t have to implement all of 
this yourself?)

___________________________
1 This CBS is the COM Broadcasting Service, which, well, can’t be real or else a few 
trademark lawyers from the real CBS might come a knockin’ and a litigatin’!

2 A proxy can either maintain any previously instantiated facelets or allow facelets to 
delete themselves when their internal reference counts go to 0. In this case, the proxy’s
QueryInterface may need to re-create them later. This is a proxy implementation 
decision and does not affect client or facelet implementation.

3 You can prove to yourself that a client cannot access IRpcProxyBuffer by modifying 
Chapter 5’s ObjectUser to query one of the EKoala servers for IID_IRpcProxyBuffer. The 
call will always come back E_NOINTERFACE.

4 Really, I mailed a package to a new baby cousin. I did go to the post office today 
(1/17/95), and I did put in this particular CD, and I did play this particular song. 
Whaddya mean you didn’t hear it?
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