
Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Note: This file is also saved in Rich Text Format as APPA.RTF. We recommend that you use

APPA.RTF if you have a word processor that can read Rich Text Format files.

Appendix A

A C++ Briefing

This appendix is intended to be a briefing about C++ for C

programmers. It explains the C++ language from a C perspective

so that you can understand the code in this book. This appendix

does not describe any details about OLE itself but covers the

aspects of the C++ language that I use in the book’s samples to

implement OLE features. When I use the word object in this
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 1 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

appendix, I mean a C++ object, not an OLE object. I do not claim

to be a C++ expert, so please refer to any of the plethora of C++

books available in order to understand this language more fully.

User-Defined Types: C++ Classes

Many a C application is built on top of a number of data
structures. One of these might be a typical user-defined structure
of application variables such as the following:

typedef struct tagAPP
 {
 HINSTANCE hInst; //WinMain parameters
 HINSTANCE hInstPrev;
 LPSTR pszCmdLine;
 int nCmdShow;
 HWND hWnd; //Main window handle
 } APP;

typedef APP *PAPP;

To manage this structure, an application implements a function to
allocate one of these structures, a function to initialize it, and a
function to free it:

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 2 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

PAPP AppPAllocate(HINSTANCE, HINSTANCE, LPSTR, int);
BOOL AppInit(PAPP);
PAPP AppPFree(PAPP);

When another piece of code wants to obtain one of these
structures, it calls AppPAllocate to retrieve a pointer. Through that
pointer, it can initialize the structure with AppInit (which in this
case might attempt to create a window and store it in hWnd) or
access each field in the structure.

By creating this structure and providing functions that know
how to manipulate it, you have defined a type. C++ formalizes
this commonly used technique into a class defined by the class
keyword:

class CApp
 {
 public:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 LPSTR m_pszCmdLine;
 int m_nCmdShow;
 HWND m_hWnd; //Main window handle
 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);
 ~CApp(void); BOOL Init(void);
 };

typedef CApp *PCApp;

The name after class can be whatever name you want.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 3 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Although we could have used APP, paralleling the C structure,
CApp conforms to a C++ convention of using mixed-case names
for classes prefixed with a C for class. Another convention in C++
classes—at least around Microsoft—is to name data fields with an
m_ prefix to clearly identify the variable as a member of a class.

To use this class, another piece of code must instantiate a C+
+ object of the class. In C terms, CApp is a structure. To use the
structure, you still have to allocate it. In C++, we do not need
separate functions to allocate the structure, nor do we use typical
memory allocation functions. Instead we use C++’s new operator,
which allocates an object of this class and returns a pointer to it,
as follows:

PCApp pApp;

pApp=new CApp(hInst, hInstPrev, pszCmdLine, nCmdShow);

In a 32-bit memory model, new allocates far memory and
returns a far pointer. (In 16-bit Windows, this requires the keyword
__far before CApp in the class declaration with Microsoft compilers
or __huge for Borland compilers.) If the allocation fails, new
returns NULL. But this is not the whole story. After the allocation is
complete and before returning, new calls the class constructor
function, which is the funny-looking entry in the following class

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 4 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

declaration:

 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);

To implement a constructor, you supply a piece of code in
which the function name is <class>::<class> (<argument list>),
where :: means “member function of,” as in the following:

CApp::CApp(HINSTANCE hInst, HINSTANCE hInstPrev
 , LPSTR pszCmdLine, int nCmdShow)
 { //Initialize members of the object.
 m_hInst=hInst;
 m_hInstPrev=hInstPrev;
 m_pszCmdLine=pszCmdLine;
 m_nCmdShow=nCmdShow;
 }

The :: notation allows different classes to have member
functions with identical names because the actual name of the
function known to the compiler internally is a combination of the
class name and the member function name. This allows
programmers to remove the extra characters from function
names that are used in C to identify the structure on which those
functions operate.

The constructor, which always has the same name as the
class, can take any list of arguments. Unlike a C function,
however, it has no return value because the new operator will

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 5 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

return regardless of whether the allocation succeeded. Because
the constructor cannot return a value, C++ programmers
typically avoid placing code that might fail in the constructor,
opting instead for a second function to initialize the object after it
has been positively instantiated.

Inside the constructor, as well as inside any other member
function of the class, you can directly access the data members in
this object instantiation. Again, the m_ prefix on data members is
the common convention used to distinguish their names from
other variables, especially because the names of data members
often conflict with argument names.

Implicitly, all the members (both data and functions) are
dereferenced off a pointer named this, which provides the
member function with a pointer to the object that’s being
affected. Accessing a member such as m_hInst directly is
equivalent to writing this->m_hInst; the latter is more verbose, so
it is not often used.

The code that calls new will have a pointer through which it
can access members in the object, just as it would access any
field in a data structure:

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 6 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

UpdateWindow(pAV->m_hWnd);

What is special about C++ object pointers is that you can
also call the member functions defined in the class through that
same pointer. In the preceding class declaration, you’ll notice that
the functions we defined separately from a structure are pulled
into the class itself. The caller does not have to call a function and
pass a structure pointer, as is illustrated in the following:

//C call to a function that operates on a structure pointer
if (!AppInit(pAV))
 {
 [Other code here]
 }

Instead, the caller can dereference a member function
through the following pointer:
//C++ call to an object's member function
if (!pAV->Init())
 {
 [Other code here]
 }

The Init function is implemented with the same :: notation
that the constructor uses:

BOOL CApp::Init(void)
 {
 //Code to register window class might go here.

 m_hWnd=CreateWindow(...); //Create main application window.

 if (NULL!=m_hWnd)
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 7 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC
 {
 ShowWindow(m_hWnd, m_nCmdShow);
 UpdateWindow(m_hWnd);
 }

 return (NULL!=m_hWnd);
 }

Again, because a constructor cannot indicate failure through a
return value, C++ programmers typically supply a second
initialization function, such as Init, to perform operations that
might be prone to failure.

You could, of course, still provide a separate function outside
the class that took a pointer to an object and manipulated it in
some way. However, one great advantage of using member
functions is that you can call member functions in a class only
through a pointer to an object of that class. This prevents
problems that occur when you accidentally pass the wrong
pointer to the wrong function, an act that usually brings about
some very wrong events.

Finally, when you are finished with this object, you’ll want to
clean up the object and free the memory it occupies. Instead of
calling a specific function for this purpose, you use C++’s delete
operator:

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 8 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

delete pApp;

The delete operator frees the memory allocated by new, but
before doing so it calls the object’s destructor, which is that even
funnier-looking function in the class declaration (with the tilde, ~)
but which comes with an implementation like any other member
function:

//In the class
public:
 ~CApp(void);

.

.

.

//Destructor implementation
CApp::~CApp(void)
 {
 //Perform any cleanup on the object.
 if (IsWindow(m_hWnd))
 DestroyWindow(m_hWnd);

 return;
 }

The destructor has no parameters and no return value
because after this function returns, the object is simply gone.
Therefore, telling anyone that something in here worked or failed
has no point because there is no longer an object to which such
information would apply. The destructor is a great place—your
only chance, in fact—to perform final cleanup of any allocations
made in the course of this object’s lifetime.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 9 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Of course, you can define classes and use constructors,
destructors, and member functions in many other ways than I’ve
shown here. However, this reflects the way I’ve implemented all
the sample code in this book.

Access Rights

You probably noticed those public labels in the class definitions
and might by now be wondering what they’re for. In addition to
public, two variations of public can appear anywhere in the class
definition: protected and private.

When a data member or a member function is declared
under a public label, any other piece of code with a pointer to an
object of this class can directly access those members by means
of dereferencing, as follows:

PCApp pApp;
HINSTANCE hInst2;

pApp=new CApp(hInst, hPrevInst, pszCmdLine, nCmdShow);

hInst2=pApp->m_hInst; //Public data member access

if (!pApp->Init()) //Public member function access
 {
 [Other code here]
 }

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 10 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

When data members are marked public, another piece of code is
allowed to change that data without the object knowing, as in the
following:

pApp->m_hInst=NULL; //Generally NOT a good idea

This is a nasty thing to do to some poor object that assumes
that m_hInst never changes. To prevent such arbitrary access to
an object’s data members, you can mark such data members as
private in the class, as in the following:

class CApp
 {
 private:
 HINSTANCE m_hInst; //WinMain parameters
 HINSTANCE m_hInstPrev;
 LPSTR m_pszCmdLine;
 int m_nCmdShow;

 HWND m_hWnd; //Main window handle

 public:
 CApp(HINSTANCE, HINSTANCE, LPSTR, int);
 ~CApp(void);
 BOOL Init(void);
 };

Now code such as pApp->hInst=NULL will fail with a compiler
error because the user of the object does not have access to
private members of the object. If you want to allow read-only
access to a data member, provide a public member function to

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 11 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

return that data. If you want to allow write access but would like
to validate the data before storing it in the object, provide a
public member function to change a data member.

Both data members and member functions can be private.
Private member functions can be called only from within the
implementation of any other member function. In the absence of
any label, private is used by default.

If a class wants to provide full access to its private members,
it can declare another class or a specific function as a friend. Any
friend code has as much right to access the object as the object’s
implementation has. For example, a window procedure for a
window created inside an object’s initializer is a good case for a
friend:

class CApp
 {
 friend LRESULT APIENTRY AppWndProc([WndProc parameters]);

 private:
 [Private members accessible in AppWndProc]

 .
 .
 .

 };

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 12 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Any member declared after a protected label is the same as
private as far as the object implementation or the object’s user is
concerned. The difference between private and protected
manifests itself in derived classes, which brings us to the subject
of inheritance.

Single Inheritance

A key feature of the C++ language is code reusability through a
mechanism called inheritance—one class can inherit the members
and implementation of those members from another class. The
inheriting class is called a derived class; the class from which the
derived class inherits is called a base class.

Inheritance is a technique used to concentrate code common
to a number of other classes in one base class—that is, to place
the code where other classes can reuse it. Applications for
Windows written in C++ typically have some sort of base class to
manage a window, as in the following CWindow class:

class CWindow
 {
 protected:

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 13 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC
 HINSTANCE m_hInst;
 HWND m_hWnd;

 public:
 CWindow(HINSTANCE);
 ~CWindow(void);

 HWND Window(void);
 };

The CWindow member function Window simply returns m_hWnd,
allowing read-only access to that member.

If you now want to make a more specific type of window,
such as a frame window, you can inherit the members and the
implementation from CWindow by specifying CWindow in the
class definition, using a colon to separate the derived class from
the base class, as follows:

class CFrame : public CWindow
 {
 //CFrame gets all CWindow’s variables.
 protected:
 //We can now add more members specific to our class.
 HMENU m_hMenu;

 public:
 CFrame(HINSTANCE);
 ~CFrame(void);

 //We also get CWindow's Window function.
 };

The implementation of CFrame can access any member
marked protected in its base class CWindow. However, CFrame
has no access to private members of CWindow.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 14 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

You will also see a strange notation in constructor functions:

CFrame::CFrame(HINSTANCE hInst) : CWindow(hInst)

This notation means that the hInst parameter to the CFrame
constructor is passed to the constructor of the CWindow base
class first, before we start executing the CFrame constructor.

Code that has a pointer to a CFrame object can call
CWindow::Window through that pointer. The code that executes
will be the implementation of CWindow. The implementation of
CFrame can, if it wants, redeclare Window in its class and provide
a separate implementation that might perform other operations,
as follows:

class CFrame : public CWindow
 {

 .
 .
 .

 HWND Window(void);
 };

CFrame::Window(void)
 {
 [Other code here]

 return m_hWnd; //Member inherited from CWindow
 }

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 15 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

If a function in a derived class wants to call the
implementation in the base class, it explicitly uses the base
class’s name in the function call. For example, we could write an
equivalent CFrame::Window as follows:

CFrame::Window(void)
 {
 return CWindow::Window();
 }

In programming, it is often convenient to typecast pointers of
various types to a single type that contains the common
elements. In C++, you can legally typecast a CFrame pointer to a
CWindow pointer because CFrame looks like CWindow. However,
calling a member function through that pointer might not do what
you expect, as in the following:

CWindow *pWindow;
HWND hWnd;

pWindow=(CWindow *)new CFrame(); //Legal conversion
hWnd=pWindow->Window();

Whose Window is called? Because it is calling through a pointer of
type CWindow *, this code calls CWindow::Window, not
CFrame::Window.

Programmers would like to be able to write a piece of code

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 16 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

that knows about only the CWindow class but that is also capable
of calling the Window member functions of the derived class. For
example, a call to pWindow->Window would call CFrame::Window

if, in fact, pWindow is physically a pointer to a CFrame. To
accomplish this requires what is known as a virtual function.

Virtual Functions and Abstract Base Classes

To solve the typecasting problem described in the previous
section, we have to redefine the CWindow class to make Window
a virtual function using the keyword virtual, as follows:

class CWindow
 {

 .
 .
 .

 virtual HWND Window(void);
 };

The virtual keyword does not appear in the implementation of
CWindow::Window.

If CFrame wants to override CWindow::Window, it declares
the same function in its own class and provides an

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 17 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

implementation of Window, as shown in the following:

class CFrame : public CWindow
 {

 .
 .
 .

 virtual HWND Window(void);
 };

CFrame::Window(void)
 {
 [Code that overrides default behavior of CWindow]
 }

Such an override might be useful in a class that hides the fact
that it actually contains two windows; the implementation of
Window would then perhaps return one or the other window
handle, depending on some condition.

With CWindow::Window declared as virtual, the piece of code
we saw earlier has a different behavior:

pWindow=(CWindow *)new CFrame(); //Legal conversion
hWnd=pWindow->Window();

The compiler, knowing that CWindow::Window is virtual, is now
responsible for figuring out what type pWindow actually points to,
although the program itself thinks it’s a pointer to a CWindow. In
this code, pWindow->Window calls CFrame::Window. If pWindow

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 18 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

actually points to a CWindow, the same code would call
CWindow::Window instead.

C++ compilers implement this mechanism by means of a
virtual function table (sometimes referred to as a vtable or vtbl)
that lives with each object. The function table of a CWindow
object will contain one pointer to CWindow::Window. If CFrame
overrides the virtual functions in CWindow, its table will contain a
pointer to CFrame::Window. If, however, CFrame does not
override the Window function, its table contains a pointer to
CWindow::Window.

A pointer to any object in certain implementations of C++ (at
least Visual C++ and Borland C++) is really a pointer to a pointer
to the object’s function table. Whenever the compiler needs to
call a member function through an object pointer, it looks in the
table to find the appropriate address, as shown in Figure A-1. So if
the virtual Window of the CWindow class and of all derived
classes always occupies the first position in the table, calls such
as pWindow->Window are actually calls to whatever address is in
that position.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 19 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 20 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 21 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Figure A-1.
C++ compilers call virtual functions of an object by means of a function table.

Virtual functions can also be declared as pure virtual by appending =0 to the

function in the class declaration, as follows:

class CWindow
 {
 .
 .
 .
 virtual HWND Window(void)=0;
 };

Pure virtual means “no implementation defined,” which renders CWindow into an

abstract base class—that is, you cannot instantiate a CWindow by itself. In other

words, pure virtual functions do not create entries in an object’s function table, so

C++ cannot create an object through which someone might try to make that call.

As long as a class has at least one pure virtual member function, it is an abstract

base class and cannot be instantiated, a fact compilers will kindly mention.

An abstract base class tells derived classes, “You must override my pure

virtual functions!” A normal base class with normal virtual functions tells derived

classes, “You can override these if you really care to.”

You might have noticed by now that an OLE interface is exactly like a C++
© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 22 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

function table, and this is intentional. OLE’s interfaces are defined as abstract base

classes, so an object that inherits from an interface must override every interface

member function—that is, when implementing an object in C++, you must create a

function table for each interface, and because interfaces themselves cannot create a

table, you must provide the implementations that will. OLE, however, does not

require that you use C++ to generate the function table; although C++ compilers

naturally create function tables, you can just as easily write explicit C code to do

the same.

Multiple Inheritance

The preceding section described single inheritance—that is, inheritance from a

single base class. C++ allows a derived class to inherit from multiple base classes

and thus to inherit implementations and members from multiple sources. The

samples in this book do not use multiple inheritance, although no technical reasons

prevent them from doing so. They use single inheritance only to remain

comprehensible to C programmers who are just beginning to understand the

concept. In any case, multiple inheritance is evident in the following class

declaration:

class CBase
 {
 public:
 virtual FunctionA(void);
 virtual FunctionB(void);

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 23 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC
 virtual FunctionC(void);
 };

class CAbstractBase
 {
 public:
 virtual FunctionD(void)=0;
 virtual FunctionE(void)=0;
 virtual FunctionF(void)=0;
 };

//Note comma delineating multiple base classes.
class CDerived : public CBase, public CAbstractBase
 {
 public:
 virtual FunctionA(void);
 virtual FunctionB(void);
 virtual FunctionC(void);
 virtual FunctionD(void);
 virtual FunctionE(void);
 virtual FunctionF(void);
 };

An object of a class using multiple inheritance actually lives with multiple function

tables, as shown in Figure A-2. A pointer to an object of the derived class points to

a table that contains all the member functions of all the base classes. If this pointer

is typecast to a pointer to one of the derived classes, the pointer actually used will

refer to a table for that specific base class. In all cases, the compiler dutifully calls

the function in whatever table the pointer referenced.

Of course, there are limitations to using multiple inheritance, primarily when

the base classes have member functions with the same names. In such cases, the

object can have only one implementation of a given member that is shared between

all function tables, just as each function in Figure A-2 is shared between the base

class table and the derived class table.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 24 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 25 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 26 of 13

Kraig Brockschmidt, Inside OLE, 2nd edition. Appendix A, EG3, dC

Figure A-2.

Objects of classes using multiple inheritance contain

multiple tables.

© Microsoft Press CONFIDENTIAL 05/01/95 12:37 PM 27 of 13

