
Dependency Walker Help Contents
Overview of Dependency Walker

Why use Dependency Walker?
Using Dependency Walker for Trouble Shooting Modules
Using Dependency Walker for General Information about Modules

Understanding the Module Session
The Module Session Window
The Module Dependency Tree View
The Module List View
The Parent Import Function List View
The Export Function List View

Menus and Toolbar
The File Menu
The Edit Menu
The View Menu
The Window Menu
The Help Menu
The Toolbar



Why use Dependency Walker?
Have you ever...

...ran LINK /DUMP or DUMPBIN to determine the imports or exports of a module?

...wondered what minimum set of files are required to run a particular application or 
load a particular DLL?

...wondered why a certain module was being loaded with a particular application?

...wanted to remove all dependencies for a given module?

...wanted to know the complete path of all the modules being loaded for a particular 
application?

...wanted to know all the base addresses of each module being loaded for a particular
application?    What about versions?    Or maybe machine types?

...received one of the following errors...
The dynamic link library BAR.DLL could not be found in the specified path...
The procedure entry point FOO could not be located in the dynamic link library 

BAR.DLL.
The application or DLL BAR.DLL is not a valid Windows image.
The application failed to initialize properly.
The image file BAR.EXE is valid, but is for a machine type other than the current 

machine.
Program too big to fit in memory.



Using Dependency Walker for Trouble Shooting Modules
Dependency Walker recursively scans all dependent modules required by a particular 
application.    During this scan it performs the following tasks:

Detects missing files.    These are files that are required as a dependency to another 
module.    A symptom of this problem is the "The dynamic link library BAR.DLL could not be 
found in the specified path..." error.

Detects invalid Files.    This includes files that are not Win32 compliant and files that 
are corrupt.    A symptom of this problem is the "The application or DLL BAR.EXE is not a 
valid Windows image" error.

Detects import/export mismatches.    Verifies that all functions imported to a module 
are actually exported from the dependent modules.    All unresolved import functions are 
flagged with an error.    A symptom of this problem is the "The procedure entry point FOO 
could not be located in the dynamic link library BAR.DLL" error.

Detects circular dependency errors.    This is a very rare error, but can occur with 
forwarded functions.

Detects mismatched machine types of modules.    This occurs if a module built for one
type of machine tries to load a module built for a different type of machine.



Using Dependency Walker for General Information about 
Modules
Dependency Walker is more than just a trouble shooting utility.    It also provides a great deal 
of valuable information about the module layout of a particular application and details on 
each module.    Dependency Walker provides the following information:

A complete module dependency tree diagram of all the modules required by a 
particular application.

A comprehensive list of all functions exported for each module.    These lists include 
functions exported by name, functions exported by ordinal, and functions that are actually 
forwarded to other modules.

A list of functions that are actually called in each module by other modules.    These 
lists can help developers understand why a particular module is being linked with an 
application, and also provides information on how to remove unneeded modules from being 
dependencies.

A complete list of the minimum set of files that are required in order for the 
application to run or DLL to load.    This list can be very useful when copying files to another 
machine or creating setup scripts.

For each individual module found, the following information is provided...
Full path to the module file.
Time and Date of the module file.
Size of the module file.
Attributes of the module file.
Type of machine that the module was built to run on.
Type of subsystem that the module was built to run in.
Whether or not the module contains debugging information.
The preferred base load address of the module.
The file version found in the module’s version resource.
The product version found in the module’s version resource.
The image version found in the module’s file header.
The version of the linker that was used to create the module file.
The version of the OS that the module file was built to run on.
The version of the subsystem that the module file was built to run in.
A possible error message if any error occurred while processing the file.



File Menu Commands
The File menu offers the following commands:

Open... Opens and processes a module file.
Close Closes the active Module Session Window.
File 1, 2, 3, ... Opens and processes the specified module file.
Exit Exits Dependency Walker.



Edit Menu Commands
The Edit menu offers the following commands:

Copy Copies the current selection to the clipboard as text.
Select All Selects all items in the current view.



View Menu Commands
The View menu offers the following commands:

Toolbar Shows or hides the toolbar.
Status Bar Shows or hides the status bar.
View Full Path Shows or hides full path strings in the Module Dependency Tree 

View and the Module List View.
Expand All Expands all nodes in the Module Dependency Tree View.
Refresh Updates all views for the active Module Session Window.
External Viewer Launches the external module viewer for the selected modules.
Configure External Viewer... Configures the 

external module viewer.
Properties Display’s the properties dialog for the selected modules.



Window Menu Commands
The Window menu offers the following commands:

Cascade Arranges windows in an overlapped fashion.
Tile Horizontally Arranges windows in non-overlapped horizontal tiles.
Tile Vertically Arranges windows in non-overlapped vertical tiles.
Arrange Icons Arranges the icons of all minimized windows.
Window 1, 2, 3, ... Activates the 

specified window.



Help Menu Commands
The Help menu offers the following commands, which provide you assistance with this 
application: 

Help Topics Displays the table of contents for the online help documentation.
About Dependency Walker... Displays program 

information, version, and copyright.



Open Command (File Menu)
Use this command to open and process a module.    Dependency Walker uses a multiple 
document interface that allows more than one Module Session Window to be opened and 
visible at once.    Use the Window Menu to switch between the multiple open Module Session 
Window.    See Window 1, 2, 3, ... for more information.

Dependency Walker registers itself with the Shell’s context menus for all known module 
extensions and for unknown modules that contain a PE signature.    You can right-click on a 
particular module anywhere in the Shell or in a Explorer window, and choose View 
Dependencies to launch Dependency Walker on that module.

Shortcuts
Keys: CTRL+O
Shell: Drag and drop modules on top of Dependency Walker to open them.
Shell Right-click on a module file in the Shell and choose View Dependencies from the 

Shell’s context menu.

Toolbar:



Close Command (File Menu)
Use this command to close the active Module Session Window.

Shortcuts
Keys: CTRL+F4.
Mouse: Single-click on the Close button in the Title Bar of the window you wish to close.

Mouse:Double-click on the System Menu icon in the Title Bar of the window you wish to 
close.



1, 2, 3, ... Command (File Menu)
Dependency Walker stores the eight most recently opened modules at the bottom of the File
menu for your convenience.    To open one of the modules listed, select the module from the 
menu or type the number that corresponds with the module you want to open.



Exit Command (File Menu)
Use this command to close all Module Session Windows and exit Dependency Walker.

Shortcuts
Keys: ALT+F4
Mouse: Single-click on the main window’s Close button in the Title Bar.

Mouse Double-click on the main window’s System Menu icon in the Title Bar.



Copy Command (Edit Menu)
Use this command to copy the current selection to the clipboard as text.    This command is 
unavailable if there is nothing selected that can be copied.    Copying data to the clipboard 
replaces any contents previously stored on the clipboard.

For the Module Dependency Tree View and the Module List View, the module name is copied. 
If the View Full Path option is enabled, then complete path strings will be copied, otherwise 
just the module file names are copied.

For the Parent Import Function List View and the Export Function List View, the function 
names are copied.

Shortcuts
Keys: CTRL+C
Keys: CTRL+INSERT

Toolbar:



Select All Command (Edit Menu)
Use this command to select all the items in a particular view.    This command works only in 
the Module List View, the Parent Import Function List View, and the Export Function List 
View.    Select All is often useful before performing a Copy if the entire contents of a view 
wish to be copied.

Shortcuts
Keys: CTRL+A



Toolbar Command (View Menu)
Use this command to display and hide the Toolbar, which includes buttons for some of the 
most common commands in Dependency Walker, such as File Open.    A check mark appears 
next to the menu item when the Toolbar is displayed.

See Toolbar for more help on using the toolbar.



Status Bar Command (View Menu)
Use this command to display and hide the Status Bar, which describes the action to be 
executed by the selected menu item or depressed toolbar button.    A check mark appears 
next to the menu item when the Status Bar is displayed.

See Status Bar for more help on using the status bar.



View Full Path Command (View Menu)
Use this command to toggle the View Full Paths option on or off.    When this option is on, a 
check mark appears next to View Full Paths menu item and the View Full Paths toolbar 
button is displayed as depressed.

When the View Full Paths option is on, both the Module Dependency Tree View and the 
Module List View will display the complete path to each module.    When this option is off, 
these views will display only the file names.

This option also effects the how the Copy command works.    Copy will copy full path strings 
when this option is on, and copy just file names when this option is off.

Shortcuts
Keys: F9

Toolbar:



Expand All Command (View Menu)
This command will expand all the module nodes in the Module Dependency Tree View, 
making the entire tree visible.



Refresh Command (View Menu)
This command will force the active Module Session Window to clear all of its views and 
reprocess the original module.    This can be useful during trouble shooting a module to 
determine is some action you performed, such as locating and copying a missing module, 
has alleviated the problem.

Shortcuts
Keys: F5

Toolbar:



External Viewer Command (View Menu)
The external viewer command is provided as a means to launch a secondary module viewer. 
The external viewer application is completely user configurable.    See the Configure External
Viewer... command for more information.

If the active view is the Module Dependency Tree View, the Parent Import Function List View, 
or Export Function List View, the External Viewer command will launch the external viewer 
application with the module that is currently selected in the Module Dependency Tree View.   
If the Module List View has the focus, then Dependency Walker will launch a separate 
instance of the external viewer application for every module that is selected in the list.

Shortcuts
Keys: ENTER (while one or more modules are highlighted in the active view)
Mouse: Double-click on a module.

Toolbar:



Configure External Viewer Command (View Menu)
This command will display a dialog to configure the external viewer application and 
arguments.    See the 
Configure External Viewer Dialog topic for more information.



Properties Command (View Menu)
The properties command is provided as a means to launch the Shell’s Properties dialog for 
selected modules.

If the active view is the Module Dependency Tree View, the Parent Import Function List View, 
or Export Function List View, then the Shell’s Properties dialog will be displayed for    the 
module that is currently selected in the Module Dependency Tree View.    If the Module List 
View has the focus, then Dependency Walker will display a separate Properties dialog for 
every module that is selected in the list.

Shortcuts
Keys: F10
Toolbar:



Cascade Command (Window Menu)
Use this command to arrange multiple opened Module Session Windows in an overlapped 
fashion. 

Shortcuts

Toolbar:



Tile Horizontal Command (Window Menu)
Use this command to arrange multiple opened Module Session Windows as non-overlapping 
horizontal tiles.

Shortcuts

Toolbar:



Tile Vertical Command (Window Menu)
Use this command to arrange multiple opened Module Session Windows as non-overlapping 
vertical tiles.

Shortcuts

Toolbar:



Arrange Icons Command (Window Menu)
Use this command to arrange the icons for minimized windows at the bottom of the 
Dependency Walker’s main window.



1, 2, 3, ... Command (Window Menu)
Dependency Walker displays a list of currently open Module Session Windows at the bottom 
of the Window menu.    A check mark appears in front of the Module Session Window name of
the active Module Session Window.    Choose a module session from this list to make its 
window active.



Help Topics Command (Help Menu)
Use this command to display the opening screen of Help.    From the opening screen, you can
jump to any area of Dependency Walker’s online help documentation.

Once you open Help, you can click the Contents button whenever you want to return to the 
opening screen.



About Dependency Walker Command (Help Menu)
Use this command to display program information, the version, and the copyright of your 
copy of Dependency Walker.



Context Help Command
Use the Context Help command to obtain help on a particular area of Dependency Walker.    
When you choose the Toolbar's Context Help button, the mouse pointer will change to an 
arrow and question mark.    Then click somewhere in the Dependency Walker window, such 
as another Toolbar button, menu item, or a view.    The Help topic will be shown for the item 
you clicked on.

Shortcuts
Keys: SHIFT+F1

Toolbar:



Restore Command (System Menu)
Use this command to return the active window to its size and position before you it was 
Maximized or Minimized.

Shortcuts
Mouse Single-click the Restore button on the Title Bar of the maximized window or 

minimize icon bar.



Move Command (System Menu)
Use this command to display the four-headed arrow cursor which allows you to move the 
active window or dialog box with the arrow keys.

Note:    This command is unavailable if you maximize the window.

Shortcuts
Keys: CTRL+F7
Mouse: Grab the Title Bar of the window and drag the window it to a new location.



Size Command (System Menu)
Use this command to display the four-headed arrow cursor which allows you to re-size the 
window with the arrow keys.

After the pointer changes to the four-headed arrow:
1. Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the 

pointer to the border you want to move.    The cursor will change to one of the 
following images:

2. Press a DIRECTION key to move the border.
3. Press ENTER when the window is the size you want.

Note: This command is unavailable if you maximize or minimize the window.

Shortcuts
Mouse: Drag the size bars at the corners or edges of the window.



Minimize Command (System Menu)
Use this command to reduce the a window to an icon.

Shortcuts
Keys: ALT+F9
Mouse: Single-click the Minimize button on the Title Bar.



Maximize Command (System Menu)
Use this command to enlarge the active window to fill the available space.

Shortcuts
Keys: CTRL+F10.
Mouse: Single-click the Maximize button on the Title Bar.

Mouse:Double-click on the Title Bar.



Close Command (System Menu)
Use this command to close the window.

Shortcuts
Keys: CTRL+F4 to close the active Module Session Window.
Keys: ALT+F4 to close all Module Session Windows and Dependency Walker.
Mouse: Single-click on the Close button in the Title Bar of the window you wish to close.

Mouse:Double-click on the System Menu icon in the Title Bar of the window you wish to 
close.



Next Window Command (System Menu)
Use this command to switch to the next open Module Session Window.    Dependency Walker 
determines which window is next according to the order in which you opened the Module 
Session Windows.

See the Previous Window command also.

Shortcuts
Keys: CTRL+F6



Previous Window Command (System Menu)
Use this command to switch to the previous open Module Session Window.    Dependency 
Walker determines which window is previous according to the order in which you opened the
Module Session Windows.

See the Next Window command also.

Shortcuts
Keys: SHIFT+CTRL+F6



Next Pane Command
This command allows you to use the keyboard to switch between the different views in a 
Module Session Window.    The Next Pane Command navigates forward through the views in 
the following order:

1. Module Dependency Tree View
2. Parent Import Function List View
3. Export Function List View
4. Module List View

See the Previous Pane command for navigating through the views in opposite order.

Shortcuts
Keys: F6



Previous Pane Command
This command allows you to use the keyboard to switch between the different views in a 
Module Session Window.    The Previous Pane Command navigates backwards through the 
views in the following order:

1. Module List View
2. Export Function List View
3. Parent Import Function List View
4. Module Dependency Tree View

See the Next Pane command for navigating through the views in opposite order.

Shortcuts
Keys: SHIFT+F6



File Open Dialog
The following options allow you to specify which module file to open:

Look in
Lists the available folders and files.    To see how the current folder fits in the hierarchy on
your computer, click the down arrow.    To see what’s inside a folder, click it.

Up one Level
First button to the right of the Look in drop-down list box.    This button will move you up 
one folder in the hierarchy on your computer specified in the Look in field

Create New Folder
Second button to the right of the Look in drop-down list box.    This button will create a 
new folder in the current folder listed in the Look in field

List
Third button to the right of the Look in drop-down list box.    This button will cause all 
files and folders in the File and Folder List to be displayed in a multi-column list .

Details
Forth button to the right of the Look in drop-down list box.    This button will cause all 
files and folders in the File and Folder List to be displayed in a single column list along 
with size, type, date, time, and attribute details for each file.

File and Folder List
This list displays all the files and folders located in the folder specified by the Look in 
field that match the search specifications of the File name field and/or the Files of 
type field.    You may select any file in this list and press Ok to open the file.    You may 
also double-click any file in this list to open the file.

File name
This box allows you to type a full path to a file, a relative path to a file, a path to another 
folder to browse, a file name to open, or a partial filename with wildcards (* and ?) to 
search for.    Depending on what you choose to do, the Look in field and the File and 
Folder List will update to reflect the change.    If you type an exact match to a particular 
file, then that file will be opened.

Files of type
Select the types of files you want to open from the drop-down list.    The File and Folder
List will update to show only the types of files specified by the Files of type field.    
Dependency Walker considers the following to be common file extensions for 32 bit 
Windows modules:

*.EXE, *.DLL, *.SYS, *.DRV, *.OCX, *.CPL, *.SCR, and *.COM
If you need to open a module file of a different type, select the "All Files (*.*)" entry in 
the Files of type field or type your own search specification in File name field.



Configure External Viewer Dialog
Command

This field specifies a path to the executable to be ran when the External Viewer 
command is invoked.

Arguments
This field specifies the command line arguments to be passed to the executable specified
in the Command field when the External Viewer command is invoked.    You may use a 
%1 anywhere in the argument string to represent the full path to the module file.    When
the external viewer application is launched, all %1 tokens will be replaced with the full 
path to the module file.    You should surround all %1 arguments in quotes so that the 
external viewer can handle long filenames with spaces.    For example, "%1".

Browse
This button will display a File Open Dialog, which allows you to browse your file system 
for the executable file to be used as your external viewer.    If a file is chosen in this 
dialog, the Command field will be updated to show the new file.



About Dependency Walker Dialog
This dialog displays program information, the version, and the copyright of your copy of 
Dependency Walker.



Toolbar

The toolbar is displayed by default across the top of the application window, below the menu
bar.    The toolbar provides quick mouse access to many tools used in Dependency Walker.

There are three ways you can learn what a particular toolbar button’s action is.    You can 
float the mouse over the button and a tool tip will pop up with the command name.    You can
press and hold the mouse down over a button and read the text displayed in the Status Bar 
for a more detailed description.    If you do not wish to execute the command, move the 
mouse off the toolbar button and release the mouse.    Last, you can use the Context Help 
utility to activate the online help documentation for the toolbar button.

The toolbar can be docked to the top, left, right, and bottom of Dependency Walker’s main 
window, as well as free floated anywhere above Dependency Walker in its own mini window   
To change the docking location of the toolbar, simply grab the toolbar along its edge and 
drag it to where you would like it to go.

To hide or display the Toolbar, choose the Toolbar option from the View menu.

Click To
Opens and processes a module file.    See the Open... command for more information.
Copies the current selection to the clipboard as text.    See the Copy command for 

more information.
Shows or hides full path strings in the Module Dependency Tree View and the Module 

List View.    See the View Full Path option for more information.
Launches the external module viewer for the selected modules.    See the External 

Viewer command for more information.
Display’s the properties dialog for the selected modules.    See the Properties 

command for more information.
Arranges windows in an overlapped fashion.    See the Cascade command for more 

information.
Arranges windows as non-overlapping horizontal tiles.    See the Tile Horizontally 



command for more information.
Arranges windows as non-overlapping vertical tiles.    See the Tile Vertically command

for more information.

Enters context help mode.    See the Context Help command for more information.



Status Bar

The status bar is displayed at the bottom of Dependency Walker’s main window.    To display 
or hide the status bar, use the Status Bar option from the View menu.

The status bar describes actions of menu items as you use the arrow keys or mouse to 
navigate through menus.    This area similarly shows messages that describe the actions of 
Toolbar buttons as you depress them and before releasing them.    If after viewing the 
description of the toolbar button command you wish not to execute the command, then 
move the mouse pointer off the toolbar button and release the mouse button.



Module Dependency Tree View
The Module Dependency Tree View displays a hierarchical view of all the modules' 
dependencies.    There are three ways a module can be a dependent of another module:

1. Implicit Module Dependency: Module A is implicitly linked with a .LIB file for Module B 
at compile/link time, and Module A actually calls one or more functions in Module B.    
Module B is a load time dependency of Module A. and will be listed in Module A’s 
import table.

2. Dynamic Module Dependency: Module A is not linked with Module B.    At runtime, 
Module A dynamically loads Module B via a LoadLibrary() type technique.    Module B 
becomes a run time dependency of Module A, but will not be listed in Module A’s 
import table.

3. Forward Module Dependency: Module A is implicitly linked with a .LIB file for Module B
at compile/link time, and Module A actually calls one or more functions in Module B.    
One of the functions called in Module B is actually a forwarded function to Module C.   
Module B and Module C are both load time dependencies of Module A, but only 
Module B will be listed in Module A’s import table.

Dependency Walker fully handles cases 1 and 3.    Case 2 is out of the scope of Dependency 
Walker since there is no way to detect a dynamic module dependency without actually 
loading the application as a running process and monitoring it.    Even this approach is not 
guaranteed to find all dynamic module dependencies since certain modules may only be 
dynamically loaded when the application enters a particular state and requires the 
functionality of that particular module.

Dependency Walker starts with the root module you chose to open and scans its import 
table to build a list of required dependent modules.    Dependency Walker then scans each of
these dependent modules for their dependent modules.    This recursion continues until all 
modules and their dependent modules have been processed.

To prevent a bloated tree and possible infinite circular loops with dependent modules, 
Dependency Walker stops processing a given branch of the tree when it reaches a module 
that it has already processed somewhere else in the tree.    Duplicate modules are marked 
with a small arrow in the middle of their accompanying image (see below).    To determine 
what the branch would have looked like if Dependency Walker had processed it, simply look 
at the branch under the original instance of that module that was processed elsewhere in 
the tree.

Dependency Walker also scans each dependent module looking for forwarded function calls 
to other modules.    If a forwarded function is found and actually called by the parent module,
then the module that the function is forwarded to is also pulled in and added to the 
dependency tree.    These forwarded modules are specially mark in the dependency tree with
a small state image next to their accompanying image (see below).

While processing the dependency tree, Dependency Walker performs several validity checks 
along the way.    It checks to make sure each module is a valid Windows 32 bit module.    It 
checks for mismatched binaries, such as an Intel x86 module with a DEC Alpha module.    It 
scans import and export function tables looking for unresolved external functions.    It checks
for circular dependencies, which are allowed, and for circular forwarded dependencies, 
which are not allowed.    Any errors that are encountered while processing the tree will be 
displayed using a special image (see below) for the particular modules in error and/or by a 
message box.



Modules are initially shown with just the file name of the module.    You can display the full 
path to each module by using the View Full Path option.    You may also copy the selected 
module’s file name or path to the clipboard by selecting the Copy command.    The actual 
text copied will differ depending on how the View Full Path option is set.

The following is a table of the possible images that can accompany each module in the 
dependency tree:

Normal module with no errors.
Forwarded module with no errors.
Duplicate module with no errors.
Forwarded duplicate module with no errors.
Module with one or more missing export functions that are required by the parent 

module.    The Parent Import Function List View will list the actual unresolved functions that 
are causing the problem.

Forwarded module with one or more missing export functions that are required by the
parent module.    The Parent Import Function List View will list the actual unresolved 
functions that are causing the problem.

Duplicate module with one or more missing export functions that are required by the 
parent module.    The Parent Import Function List View will list the actual unresolved 
functions that are causing the problem.

Forwarded duplicate module with one or more missing export functions that are 
required by the parent module.    The Parent Import Function List View will list the actual 
unresolved functions that are causing the problem.

Missing module.    This module could not be found in the local directory or search 
path.

Missing forwarded module.    This module could not be found in the local directory or 
search path.

Invalid module.    See the Module List View for an error message describing the 
module error.

Invalid forwarded module.    See the Module List View for an error message describing
the module error.



Module List View
The Module List View displays a list of all unique modules that are required dependencies for
the module you opened.    This list defines the minimum set of files needed for the module to
execute or load as a running process.

Modules are initially shown with just the file name of the module.    You can display the full 
path to each module by using the View Full Path option.    You may also copy the selected 
modules’ file names or paths to the clipboard by selecting the Copy command.    The actual 
text copied will differ depending on how the View Full Path option is set.    If more than one 
module is selected, a list will be copied to the clipboard with carriage returns after each 
module.

Along side each module are several columns that contain useful information about each 
module.    The columns include the following:

Full path or file name for the module file.    See the View Full Path option for toggling 
between the two modes.

Time and Date of the module file.
Size of the module file.
Attributes of the module file.
Type of machine that the module was built to run on.    Possible values are Intel x86, 

MIPS R3000, MIPS R4000, MIPS R10000, DEC Alpha AXP, PowerPC, and Hitachi SH-3.
Type of subsystem that the module was built to run in.    Possible values are Native, 

Win32 GUI, Win32 console, OS/2 console, Posix console, and 8 subsystem.
Whether or not the module contains debugging information.
The preferred base load address of the module.
The file version found in the module’s version resource.
The product version found in the module’s version resource.
The image version found in the module’s file header.
The version of the linker that was used to create the module file.
The version of the OS that the module file was built to run on.
The version of the subsystem that the module file was built to run in.

The modules can be sorted on the data in any column in the list.    Simply click on the 
column header button for the column you wish to sort by.    A arrow (^) is displayed in the 
column header for the column that the list is currently sorted by.    You can also size a column
to its "best fit" width by double-clicking the divider line between two columns in the column 
header.

If a module was not found or was not a valid Windows 32 bit binary, then an error message 
will be displayed in place of the normal column information for that module.



Parent Import Function List View
The Parent Import Function List View displays the list of parent import functions for the 
currently selected module in the Module Dependency Tree View.    Parent import functions 
are functions that are actually called in the given module by the parent module.

The selected module needs to export every function that the parent is importing from it.    If 
the selected module does not export one of the functions that the parent module expects to 
call, then an unresolved external error would occur if the module was attempted to be 
loaded.    See the Export Function List View for viewing the selected module’s export 
functions.

Dependency Walker searches the exported function list for every parent import function to 
ensure there is a match.    If any function is unresolved, then the function is marked with an 
error image (see below) and the module is mark with an error image as well in the Module 
Dependency TreeView.

The Parent Import Function List View can also help you locate unnecessary modules in an 
application.    The fact that the parent module is calling functions in the selected module is 
what makes the selected module a dependency of the parent.    If you can safely stop the 
parent module from calling all the functions listed in the parent import function list for a 
given module, then that module will no longer be a dependent of the parent module.

The following are the possible images that can accompany each function in the parent 
import list:

Resolved parent import.
Unresolved parent import.

The Parent Import Function View is comprised of four columns:

Ordinal The ordinal value of the imported function, if the function is imported by 
ordinal.    This value can be "N/A" if the function is imported by name.

Hint The hint value for the imported function.    The hint value is used internally 
by the operating system’s loader to quickly match imports with exports.    
It is used as an index into the array of exported functions in the selected 
module.

Function The name of the imported function, if the function is imported by name.    
This can be "N/A" if the function is imported by ordinal.

Entry Point The entry point memory address for the function.    This is usually "Not 
Bound", meaning that the entry point address will not be known until load 
time.    If an address is given, then the parent module has bound by the 
BIND program.    BIND is a program that runs through a module’s import 
table and stores the most probable entry point address for each function.    
It does this for each function by opening the import module, looking up the
function, and added that function’s offset address with that module’s 
preferred base load address.    This results in a faster load time if a 
bounded module’s dependent modules actually load at their preferred 
base load addresses.

The functions can be sorted on the data in any column in the list.    Simply click on the 
column header button for the column you wish to sort by.    A arrow (^) is displayed in the 
column header for the column that the list is currently sorted by.    You can also size a column



to its "best fit" width by double-clicking the divider line between two columns in the column 
header.



Export Function List View
The Export Function List View displays the list of export functions for the currently selected 
module in the Module Dependency Tree View.    Export functions are functions that a module 
exposes to other modules.    They can be thought of as the module’s interface.

Dependency Walker uses the exported list to check for unresolved external errors in the 
selected module.    For more information, read the topic on the Parent Import Function List 
View.

While Dependency Walker scans the export list for a module, it checks each function to see if
it is really a forwarded function.    A forwarded function is a function that appears to be 
exported from a particular module, but in fact the code for the function actually lives in 
another module.    The operating system’s loader recognizes this and loads the forwarded 
module if necessary to resolve any imports from the parent module.    Dependency Walker, 
like the operating system’s loader, also loads the forwarded module if necessary.

The following are the possible images that can accompany each function in the export list:

Export function that resides in the selected module.
Forwarded export function that resides in a different module.

The Export Function View is comprised of four columns:

Ordinal The ordinal value of the exported function, if the function is exported by 
ordinal.    This value can be "N/A" if the function is exported by name.

Hint The hint value for the exported function.    The hint value is used internally 
by the operating system’s loader to quickly match imports with exports.    
It is used as an index into the array of exported functions in the selected 
module.

Function The name of the exported function, if the function is exported by name.    
This can be "N/A" if the function is exported by ordinal.

Entry Point The entry point memory address for the function.    This is usually a relative
offset from the base address at which the module will load at by the 
operating system’s loader.    This base address is usually the base address 
listed in the Module List View for the particular module.    If the function is 
forwarded to another module, then a forward string will be displayed 
instead of an address.    The forward string is in the form of 
ModuleName.FunctionName.

The functions can be sorted on the data in any column in the list.    Simply click on the 
column header button for the column you wish to sort by.    A arrow (^) is displayed in the 
column header for the column that the list is currently sorted by.    You can also size a column
to its "best fit" width by double-clicking the divider line between two columns in the column 
header.



Title Bar

The title bar is located along the top of a window.    For Dependency Walker’s main window 
(shown above), it contains the name of the application and the active-module session name 
if a module has been loaded.    For a Module Session Window, it will contain the name of the 
session module.

To move a window, drag the title bar.    To resize a window, drag the size bars at the corners 
or edges of the window.

Dependency Walker’s main window’s title bar contains the following elements:
System Menu button.    This is actually displayed as a small Dependency Walker icon 

on left size of the Title Bar
Name of the application, "Dependency Walker"
Name of the active module session; for example, "notepad.exe"
Minimize button
Restore/Maximize button
Close button



Scroll Bars
Scroll bars are displayed at the right and bottom edges of each view.    The scroll boxes 
inside the scroll bars indicate your vertical and horizontal location in the document.    You can
use the mouse to scroll to other parts of the view.



Module Session Window
A module session window is created for every module that is opened and processed.    The 
window is split into the following four views:

Module Dependency Tree View
Module List View
Parent Import Function List View
Export Function List View

All views support right-click context menus to commonly used commands for that view.    All 
views support context help.    You may press F1 anywhere in Dependency Walker to get help 
on the item that currently has the focus.    You may also use the Context Help tool to allow 
you to simply click on the item you wish to get help on.

For navigating through the views, see the Previous Pane command and the Next Pane 
command.    For navigating through the open Module Session Windows, see the Previous 
Window command, the Next Window command, and the Window 1, 2, 3, ... command.



No Help Available
Sorry, there is no help available for this area or topic.






