
Resource Compiler for Windows NT
Microsoft Windows Resource Compiler (RC) is a tool for the Microsoft Windows NT operating system.
This document describes how to create a resource-definition (script) file, and how to compile your
application's resources and add them to the application's executable file.

Contents
Including Resources in an Application
Creating a Resource-Definition File

Preprocessing Directives
Single-Line Statements
Multiline Statements
Sample Resource-Definition File

Using RC (The RC Command Line)
Defining Names for the Preprocessor
Renaming the Compiled Resource File
Searching for Files
Displaying Progress Messages

Resource-Definition Statements
Common Statement Parameters
Common Resource Attributes

Statement Reference
Preprocessing Reference
RC Diagnostic Messages

Including Resources in an Application
To include resources in your 32-bit Windows application, do the following:

1. Create individual resource files for cursors, icons, bitmaps, dialog boxes, and fonts. To do this, you
can use Microsoft Image Editor and Dialog Editor (IMAGEDIT.EXE and DLGEDIT.EXE) and
Microsoft Windows Font Editor (FONTEDIT.EXE).

2. Create a resource-definition file (script) that describes all the resources used by the application.
3. Compile the script into a resource (.RES) file with RC.
4. Link the compiled resource files into the application's executable file.

Unlike for the 16-bit versions of the Windows development system, you do not use RC to include
compiled resources into the executable file or to mark the file as a Windows application. The linker
recognizes the compiled resource files and links them to the executable file.

Creating a Resource-Definition File
After creating individual resource files for your application's icon, cursor, font, bitmap, and dialog-box
resources, you create a resource-definition file, or script. A script file is a text file with the
extension .RC.

The script lists every resource in your application and describes some types of resources in great
detail. For a resource that exists in a separate file, such as an icon or cursor, the script names the
resource and the file that contains it. For some resources, such as a menu, the entire definition of the
resource exists within the script .

A script file can contain the following types of information:

· Preprocessing directives, which instruct RC to perform actions on the script before compiling it.
Directives can also assign values to names.

· Statements, which name and describe resources.

The following sections describe directives and statements you can use in a script. For detailed
descriptions and syntax for each statement, see "Resource-Definition Statements".

Preprocessing Directives
The following directives can be used as needed in the script to instruct RC to perform actions or to
assign values to names:

Directi
ve

Description

#define Defines a specified name by assigning it a given value.
#elif Marks an optional clause of a conditional-compilation block.
#else Marks the last optional clause of a conditional-compilation block.
#endif Marks the end of a conditional-compilation block.
#if Conditionally compiles the script if a specified expression is true.
#ifdef Conditionally compiles the script if a specified name is defined.
#ifndef Conditionally compiles the script if a specified name is not

defined.
#includ
e

Copies the contents of a file into the resource-definition file.

#undef Removes the definition of the specified name.

The syntax and semantics for the RC preprocessor is the same as for a C compiler. For more
information on preprocessing in RC, see "Preprocessing Reference".

Single-Line Statements
A single-line statement can begin with any of the following keywords:

Keyword Description
BITMAP Defines a bitmap by naming it and specifying the

name of the file that contains it. (To use a particular
bitmap, the application requests it by name.)

CURSOR Defines a cursor by naming it and specifying the
name of the file that contains it. (To use a particular
cursor, the application requests it by name.)

FONT Specifies the name of a file that contains a font.
ICON Defines an icon by naming it and specifying the

name of the file that contains it. (To use a particular
icon, the application requests it by name.)

LANGUAGE Sets the language for all resources up to the next
LANGUAGE statement or to the end of the file.
When the LANGUAGE statement appears before
the BEGIN in an ACCELERATORS, DIALOG,
MENU, RCDATA, or STRINGTABLE resource
definition, the specified language applies only to
that resource.

MESSAGETABLE Defines a message table by naming it and
specifying the name of the file that contains it. The
file is a binary resource file generated by the
Message Compiler.

Multiline Statements
A multiline statement can begin with any of the following keywords:

Keyword Description
ACCELERATOR
S

Defines menu accelerator keys.

DIALOG Defines a template that an application can use to create
dialog boxes.

MENU Defines the appearance and function of a menu.
RCDATA Defines data resources. Data resources let you include

binary data in the executable file.
STRINGTABLE Defines string resources. String resources are Unicode

strings that can be loaded from the executable file.

Each of these multiline statements allows optional statements before the BEGIN ... END block that
defines the resource. You can specify zero or more of the following statements:

Statement Decription
CHARACTERISTICS dword User-defined information about the

resource that can be used by tools that
read and write resource files. The
value appears in the compiled resource
file. However, it is not stored in the
executable file and is not used by
Windows.

LANGUAGE language ,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools that
read and write resource files. The
value appears in the compiled resource
file. However, it is not stored in the
executable file and is not used by
Windows.

Sample Resource-Definition File
The following example shows a script file that defines the resources for an application named Shapes:

#include "SHAPES.H"

ShapesCursor CURSOR SHAPES.CUR
ShapesIcon ICON SHAPES.ICO

ShapesMenu MENU
 BEGIN
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Clear", ID_CLEAR
 MENUITEM "&Rectangle", ID_RECT
 MENUITEM "&Triangle", ID_TRIANGLE
 MENUITEM "&Star", ID_STAR
 MENUITEM "&Ellipse", ID_ELLIPSE
 END
 END

The CURSOR statement names the application's cursor resource ShapesCursor and specifies the
cursor file SHAPES.CUR, which contains the image for that cursor.

The ICON statement names the application's icon resource ShapesIcon and specifies the icon file
SHAPES.ICO, which contains the image for that icon.

The MENU statement defines an application menu named ShapesMenu, a pop-up menu with five
menu items.

The menu definition, enclosed by the BEGIN and END keywords, specifies each menu item and the
menu identifier that is returned when the user selects that item. For example, the first item on the
menu, Clear, returns the menu identifier ID_CLEAR when the user selects it. The menu identifiers are
defined in the application header file, SHAPES.H.

Using RC (The RC Command Line)
To start RC, use the RC command. The following line shows RC command-line syntax:

RC [options] script-file

The RC command's options parameter can include one or more of the following options:

/?
Displays a list of RC command-line options.

/d
Defines a symbol for the preprocessor that you can test with the #ifdef directive.

/foresname
Uses resname for the name of the .RES file.

/h
Displays a list of RC command-line options.

/i
Searches the specified directory before searching the directories specified by the INCLUDE
environment variable.

/lcodepage
Specifies default language for compilation. For example, -l409 is equivalent to including the following
statement at the top of the resource script file:
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US

/r
Ignored. Provided for compatibility with existing makefiles.

/v
Displays messages that report on the progress of the compiler.

/x
Prevents RC from checking the INCLUDE environment variable when searching for header files or
resource files.

Options are not case-sensitive, and a hyphen (-) can be used in place of a slash mark (/). You can
combine single-letter options if they do not require any additional parameters. For example, the
following two commands are equivalent:

RC /V /X SAMPLE.RC
rc -vz sample.rc

The script-file parameter specifies the name of the resource-definition file that contains the names,
types, filenames, and descriptions of the resources to be compiled.

Defining Names for the Preprocessor
You can specify conditional compilation in a script, based on whether a name is defined on the RC
command line with the /d option, or in the file or an include file with the #define directive.

For example, suppose your application has a pop-up menu, the Debug menu, that should appear only
with debugging versions of the application. When you compile the application for normal use, the
Debug menu is not included. The following example shows the statements that can be added to the
resource-definition file to define the Debug menu:

MainMenu MENU
BEGIN
 . . .
#ifdef DEBUG
 POPUP "&Debug"
 BEGIN
 MENUITEM "&Memory usage", ID_MEMORY
 MENUITEM "&Walk data heap", ID_WALK_HEAP
 END
#endif
END

When compiling resources for a debugging version of the application, you could include the Debug
menu by using the following RC command:

rc -d DEBUG myapp.rc

To compile resources for a normal version of the application¾one that does not include the Debug
menu¾you could use the following RC command:

rc myapp.rc

Renaming the Compiled Resource File
By default, when compiling resources, RC names the compiled resource (.RES) file with the base
name of the .RC file and places it in the same directory as the .RC file. CVTRES must then be invoked
to convert the .RES file to a binary resource format which can be understood by the linker (.RBJ). The
following example compiles MYAPP.RC and creates a compiled resource file named MYAPP.RES in
the same directory as MYAPP.RC:

rc myapp.rc

The /fo option lets you give the resulting .RES file a name that differs from the name of the
corresponding .RC file. For example, to name the resulting .RES file NEWFILE.RES, you would use
the following command:

rc -fo newfile.res myapp.rc

The /fo option can also place the .RES file in a different directory. For example, the following command
places the compiled resource file MYAPP.RES in the directory C:\SOURCE\RESOURCE:

rc -fo c:\source\resource\myapp.res myapp.rc

Searching for Files
By default, RC searches for header files and resource files (such as icon and cursor files) first in the
current directory and then in the directories specified by the INCLUDE environment variable. (The
PATH environment variable has no effect on which directories RC searches.)

Adding a Directory to Search
You can use the /i option to add a directory to the list of directories RC searches. The compiler then
searches the directories in the following order:

1. The current directory
2. The directory or directories you specify by using the /i option, in the order in which they appear on

the RC command line
3. The list of directories specified by the INCLUDE environment variable, in the order in which the

variable lists them, unless you specify the /x option

The following example compiles the resource-definition file MYAPP.RC:

rc /i c:\source\stuff /i d:\resources myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory, then in C:\SOURCE\STUFF and D:\RESOURCES, and then in the directories
specified by the INCLUDE environment variable.

Suppressing the INCLUDE Environment Variable
You can prevent RC from using the INCLUDE environment variable when determining the directories to
search. To do so, use the /x option. The compiler then searches for files only in the current directory
and in any directories you specify by using the /i option.

The following example compiles the script file MYAPP.RC:

rc /x /i c:\source\stuff myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory and then in C:\SOURCE\STUFF. It does not search the directories specified by the
INCLUDE environment variable.

Displaying Progress Messages
By default, RC compiles quietly. It does not display messages that report on its progress. You can,
however, specify that RC is to display these messages. To do so, use the /v option.

The following example causes RC to report on its progress as it compiles the resource-definition file
SAMPLE.RC and creates the compiled resource file SAMPLE.RES:

rc /v sample.rc

Resource-Definition Statements
This section describes the statements that define the resources that the Resource Compiler puts in the
resource (.RES) file. Once a resource is linked to the executable file, the application can load the
resource as it is needed at run time.

All resource statements associate an identifying name or number with a given resource.

Common Statement Parameters
Common Resource Attributes
ACCELERATORS Resource
AUTO3STATE Control
AUTOCHECKBOX Control
AUTORADIOBUTTON Control
BITMAP Resource
CAPTION Statement
CHARACTERISTICS Statement
CHECKBOX Control
CLASS Statement
COMBOBOX Control
CONTROL: General Control
CTEXT Control
CURSOR Resource
DEFPUSHBUTTON Control
DIALOG Resource
DIALOGEX Resource
EDITTEXT Control
EXSTYLE Statement
FONT Resource
FONT Statement
GROUPBOX Control
ICON Resource
ICON Control
LANGUAGE Statement
LISTBOX Control
LTEXT Control
MENU Resource
MENU Statement
MENUEX Statement
MENUITEM Statement
MESSAGETABLE Resource
POPUP Resource
PUSHBOX Control
PUSHBUTTON Control
RADIOBUTTON Control
RCDATA
RTEXT Control
SCROLLBAR Control
STATE3 Control
STRINGTABLE Resource
STYLE Statement
User-Defined Resource
VERSION Statement

VERSIONINFO Resource

Common Statement Parameters
This section lists parameters in common among the resource or control statements. Occasionally, a
certain statement will use a parameter differently, or may ignore a parameter. The statement-specific
variation is described with the statement in the alphabetical reference.

Common Control Parameters
The general syntax for a control definition, and the meaning of each parameter is as follows:

control [text,] id, x, y, width, height [, style [, extended-style]]

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels. The coordinates are
relative to the origin of the dialog box.

Parameters

control
Keyword that indicates the type of control being defined, such as PUSHBUTTON or CHECKBOX.

text
Specifies text that is displayed with the control. The text is positioned within the control's specified
dimensions, or adjacent to the control.
This parameter must contain zero or more characters enclosed in double quotation marks. Strings
are automatically null-terminated and converted to Unicode in the resulting resource file, except for
strings specified in raw-data statements. (raw-data can be specified in RCDATA and user-defined
resources.) To specify a Unicode string in raw-data, explicitly qualify the string as a wide-character
string by using the L prefix.
By default, the characters listed between the double quotation marks are ANSI characters and
escape sequences are interpreted as byte escape sequences. If the string is preceded by the L
prefix, the string is a wide-character string and escape sequences are interpreted as two-byte
escape sequences that specify Unicode characters. If a double quotation mark is required in the
text, you must include the double quotation mark twice or use the \" escape sequence.
An ampersand (&) character in the text indicates that the following character is used as a mnemonic
character for the control. When the control is displayed, the ampersand is not shown, but the
mnemonic character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character. To use the ampersand as a character in a
string, insert two ampersands (&&).

id
Specifies the control identifier. This value must be a 16-bit unsigned integer in the range 0 through
65,535 or a simple arithmetic expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the left side of the control relative to the left side of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units and is relative to the origin of the dialog box, window, or control containing the specified
control.

y
Specifies the y-coordinate of the top side of the control relative to the top of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units relative to the origin of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be a 16-bit unsigned integer in the range 1

through 65,535. The width is in 1/4-character units.
height

Specifies the height of the control. This value must be a 16-bit unsigned integer in the range 1
through 65,535. The height is in 1/8-character units.

style
Specifies the control styles. Use the bitwise OR (|) operator to combine styles.

extended-style
Specifies extended (WS_EX_xxx) styles. You must specify a style to specify an extended-style. See
also EXSTYLE.

text
Specifies text that is displayed with the control. The text is positioned within the control's specified
dimensions, or adjacent to the control.
This parameter must contain zero or more characters enclosed in double quotation marks. Strings
are automatically null-terminated and converted to Unicode in the resulting resource file, except for
strings specified in raw-data statements. (raw-data can be specified in RCDATA and user-defined
resources.) To specify a Unicode string in raw-data, explicitly qualify the string as a wide-character
string by using the L prefix.
By default, the characters listed between the double quotation marks are ANSI characters and
escape sequences are interpreted as byte escape sequences. If the string is preceded by the L
prefix, the string is a wide-character string and escape sequences are interpreted as two-byte
escape sequences that specify Unicode characters. If a double quotation mark is required in the
text, you must include the double quotation mark twice or use the \" escape sequence.
An ampersand (&) character in the text indicates that the following character is used as a mnemonic
character for the control. When the control is displayed, the ampersand is not shown, but the
mnemonic character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character. To use the ampersand as a character in a
string, insert two ampersands (&&).

id
Specifies the control identifier. This value must be a 16-bit unsigned integer in the range 0 through
65,535 or a simple arithmetic expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the left side of the control relative to the left side of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units and is relative to the origin of the dialog box, window, or control containing the specified
control.

y
Specifies the y-coordinate of the top side of the control relative to the top of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units relative to the origin of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be a 16-bit unsigned integer in the range 1
through 65,535. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be a 16-bit unsigned integer in the range 1
through 65,535. The height is in 1/8-character units.

style
Specifies the control styles. Use the bitwise OR (|) operator to combine styles.

extended-style
Specifies extended (WS_EX_xxx) styles. You must specify a style to specify an extended-style. See
also EXSTYLE.

Common Resource Attributes
All resource-definition statements include a load-mem option that specifies the loading and memory
characteristics of the resource. These attributes are divided into two groups: load attributes and
memory attributes. The only attribute that is used by Win32 is the DISCARDABLE attribute. The
remaining attribute specifiers are allowed in the script for compatibility with existing scripts, but are
ignored.

Load Attributes

The load attributes specify when the resource is to be loaded. The load parameter must be one of the
following:

PRELOAD
Ignored. In 16-bit Windows, the resource is loaded with the executable file.

LOADONCALL
Ignored. In 16-bit Windows, the resource is loaded when called.

Memory Attributes

The memory attributes specify whether the resource is fixed or movable, whether it is discardable, and
whether it is pure. The memory parameter can be one or more of the following:

FIXED
Ignored. In 16-bit Windows, the resource remains at a fixed memory location.

MOVEABLE
Ignored. In 16-bit Windows, the resource can be moved if necessary in order to compact memory.

DISCARDABLE
Resource can be discarded if no longer needed.

PURE
Ignored. Accepted for compatibility with existing resource scripts.

IMPURE
Ignored. Accepted for compatibility with existing resource scripts.

The default is DISCARDABLE for cursor, icon, and font resources.

ACCELERATORS Resource
acctablename ACCELERATORS
[optional-statements]
BEGIN
 event, idvalue, [type] [options]
 . . .
END

The ACCELERATORS statement defines one or more accelerators for an application. An accelerator is
a keystroke defined by the application to give the user a quick way to perform a task. The
TranslateAccelerator function is used to translate accelerator messages from the application queue
into WM_COMMAND or WM_SYSCOMMAND messages.

Parameters

acctablename
Specifies either a unique name or a 16-bit unsigned integer value that identifies the resource.

optional-statements
Zero or more of the following statements:
Statement Decription
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language ,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

event
Specifies the keystroke to be used as an accelerator. It can be any one of the following character
types:
"char"

A single character enclosed in double quotation marks. The character can be preceded by a caret
(^), meaning that the character is a control character.

Character
An integer value representing a character. The type parameter must be ASCII.

Virtual-key character
An integer value representing a virtual key. The virtual key for alphanumeric keys can be specified
by placing the uppercase letter or number in double quotation marks (for example, "9" or "C").
The type parameter must be VIRTKEY.

idvalue
Specifies a 16-bit unsigned integer value that identifies the accelerator.

type
Required only when the event parameter is a character or a virtual-key character. The type
parameter specifies either ASCII or VIRTKEY; the integer value of event is interpreted accordingly.
When VIRTKEY is specified and event contains a string, event must be uppercase.

options
Specifies the options that define the accelerator. This parameter can be one or more of the following

values:
NOINVERT

Specifies that no top-level menu item is highlighted when the accelerator is used. This is useful
when defining accelerators for actions such as scrolling that do not correspond to a menu item. If
NOINVERT is omitted, a top-level menu item will be highlighted (if possible) when the accelerator
is used.

ALT
Causes the accelerator to be activated only if the ALT key is down.

SHIFT
Causes the accelerator to be activated only if the SHIFT key is down.

CONTROL
Defines the character as a control character (the accelerator is only activated if the CONTROL
key is down). This has the same effect as using a caret (^) before the accelerator character in the
event parameter.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

Example

The following example demonstrates the use of accelerator keys:

1 ACCELERATORS
BEGIN
 "^C", IDDCLEAR ; control C
 "K", IDDCLEAR ; shift K
 "k", IDDELLIPSE, ALT ; alt k
 98, IDDRECT, ASCII ; b
 66, IDDSTAR, ASCII ; B (shift b)
 "g", IDDRECT ; g
 "G", IDDSTAR ; G (shift G)
 VK_F1, IDDCLEAR, VIRTKEY ; F1
 VK_F1, IDDSTAR, CONTROL, VIRTKEY ; control F1
 VK_F1, IDDELLIPSE, SHIFT, VIRTKEY ; shift F1
 VK_F1, IDDRECT, ALT, VIRTKEY ; alt F1
 VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
 VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2
 VK_F2, IDDRECT, ALT, CONTROL, VIRTKEY ; alt control F2
END

See Also

TranslateAccelerator
Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

AUTO3STATE Control
AUTO3STATE text, id, x, y, width, height [, style [, extended-style]]

The AUTO3STATE statement creates an automatic 3-state check box. The control is an open box with
the given text positioned to the right of the box. When chosen, the box automatically advances
between three states: checked, unchecked, and disabled (grayed). The control sends a message to its
parent whenever the user chooses the control.

Parameters

style
Specifies styles for the control, which can be a combination of the BS_AUTO3STATE style and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for this control is BS_AUTO3STATE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

See Also

AUTOCHECKBOX, CHECKBOX, CONTROL, STATE3

AUTOCHECKBOX Control
AUTOCHECKBOX text, id, x, y, width, height [, style [, extended-style]]

The AUTOCHECKBOX statement creates an automatic check box control. The control is a small
rectangle (check box) that has the specified text displayed next to it (typically, to the right). When the
user chooses the control, the control highlights the rectangle and sends a message to its parent
window. The AUTOCHECKBOX statement, which can only be used in the body of a DIALOG
statement, defines the text, identifier, dimensions, and attributes of the control.

Parameters

style
Specifies the styles of the control. This value can be a combination of the button class style
BS_AUTOCHECKBOX and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_AUTOCHECKBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

See Also

AUTO3STATE, CHECKBOX, CONTROL, STATE3

AUTORADIOBUTTON Control
AUTORADIOBUTTON text, id, x, y, width, height [, style [, extended-style]]

The AUTORADIOBUTTON control statement specifies an automatic radio button control. This control
automatically performs mutual exclusion with the other AUTORADIOBUTTON controls in the same
group. When the button is chosen, the application is notified with BN_CLICKED

Parameters

text
The specified text appears next to the radio button.

style
Specifies styles for the automatic radio button, which can be a combination of BUTTON-class styles
and the following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for AUTORADIOBUTTON is BS_AUTORADIOBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

See Also

CONTROL, RADIOBUTTON

BITMAP Resource
nameID BITMAP [load-mem] filename

The BITMAP resource-definition statement specifies a bitmap that an application uses in its screen
display or as an item in a menu or control.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or non-
quoted string.

Example

The following example specifies two bitmap resources:

disk1 BITMAP disk.bmp
12 BITMAP PRELOAD diskette.bmp

See Also

LoadBitmap

CAPTION Statement
CAPTION captiontext

The CAPTION statement defines the title for a dialog box. The title appears in the box's caption bar (if
it has one).

The default caption is empty.

Parameter

captiontext
Specifies a character string enclosed in double quotation marks.

Example

The following example demonstrates the use of the CAPTION statement:

CAPTION "Error!"

CHARACTERISTICS Statement
CHARACTERISTICS dword

The CHARACTERISTICS statement allows the developer to specify information about a resource that
can be used by tools that read and write resource-definition files. The specified dword value appears
with the resource in the compiled .RES file. However, the value is not stored in the executable file and
has no significance to Windows.

The CHARACTERISTICS statement appears before the BEGIN in an ACCELERATORS, DIALOG,
MENU, RCDATA, or STRINGTABLE resource definition. The specified value applies only to that
resource.

Parameter

dword
A user-defined doubleword value.

See Also

Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

CHECKBOX Control
CHECKBOX text, id, x, y, width, height [, style [, extended-style]]

The CHECKBOX statement creates a check box control. The control is a small rectangle (check box)
that has the specified text displayed next to it (typically, to the right). When the user selects the control,
the control highlights the rectangle and sends a message to its parent window. The CHECKBOX
statement, which can only be used in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Parameters

text
Specifies text that is displayed to the right of the control.

style
Specifies the control styles. This value can be a combination of the button class style
BS_CHECKBOX and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_CHECKBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a check-box control that is labeled "Italic":

CHECKBOX "Italic", 3, 10, 10, 40, 10

See Also

AUTOCHECKBOX, AUTO3STATE, STATE3, GetDialogBaseUnits

CLASS Statement
CLASS class

The CLASS statement defines the class of the dialog box. The CLASS statement appears in the
optional section before a DIALOG statement's BEGIN keyword. If no class is given, the Windows
standard dialog class is used.

Parameters

class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks, that identifies
the class of the dialog box. If the window procedure for the class does not process a message sent
to it, it must call the DefDlgProc function to ensure that all messages are handled properly for the
dialog box. A private class can use DefDlgProc as the default window procedure. The class must be
registered with the cbWndExtra member of the WNDCLASS structure set to DLGWINDOWEXTRA.

Comments

The CLASS statement should only be used with special cases, since it overrides the normal
processing of a dialog box. The CLASS statement converts a dialog box to a window of the specified
class; depending on the class, this could give undesirable results. Do not use the redefined control-
class names with this statement.

Example

The following example demonstrates the use of the CLASS statement:

CLASS "myclass"

See Also

DIALOG, DefDlgProc

COMBOBOX Control
COMBOBOX text, id, x, y, width, height [, style [, extended-style]]

The COMBOBOX statement creates a combination box control (a combo box). A combo box consists
of either a static text box or an edit box combined with a list box. The list box can be displayed at all
times or pulled down by the user. If the combo box contains a static text box, the text box always
displays the selection (if any) in the list box portion of the combo box. If it uses an edit box, the user
can type in the desired selection; the list box highlights the first item (if any) that matches what the user
has entered in the edit box. The user can then select the item highlighted in the list box to complete the
choice. In addition, the combo box can be owner-drawn and of fixed or variable height.

Parameters

style
Specifies the control styles. This value can be a combination of the COMBOBOX class styles and
any of the following styles: WS_TABSTOP, WS_GROUP, WS_VSCROLL, and WS_DISABLED.
If you do not specify a style, the default style is CBS_SIMPLE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a combo-box control with a vertical scroll bar:

COMBOBOX 777, 10, 10, 50, 54, CBS_SIMPLE | WS_VSCROLL | WS_TABSTOP

CONTROL: General Control
CONTROL text, id, class, style, x, y, width, height [, extended-style]

This statement defines a user-defined control window.

Parameters

class
Specifies a redefined name, character string, a 16-bit unsigned integer value that defines the class.
This can be any one of the control classes; for a list of the control classes, see the first list following
this description. If the value is a redefined name supplied by the application, it must be a string
enclosed in double quotation marks.

style
Specifies a redefined name or integer value that specifies the style of the given control. The exact
meaning of style depends on the class value. the sections following this description show the control
classes and corresponding styles.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

The six possible control classes are described in the following sections.

The Button Control Class
A button control is a small rectangular child window that represents a "button" that the user can turn on
or off by clicking it with the mouse. Button controls can be used alone or in groups, and can either be
labeled or appear without text. Button controls typically change appearance when the user clicks them.

A button can have only one of the following styles, with the exception of BS_LEFTTEXTBS, which can
be combined with check boxes and radio buttons.

BS_3STATE
Creates a button that is the same as a check box, except that the box can be grayed (dimmed) as
well as checked. The grayed state is used to show that the state of the check box is not determined.

BS_AUTO3STATE
Creates a button that is the same as a three-state check box, except that the box changes its state
when the user selects it. The state cycles through checked, grayed, and normal.

BS_AUTOCHECKBOX
Creates a button that is the same as a check box, except that an X appears in the check box when
the user selects the box; the X disappears (is cleared) the next time the user selects the box.

BS_AUTORADIOBUTTON
Creates a button that is the same as a radio button, except that when the user selects it, the button
automatically highlights itself and clears (removes the selection from) any other buttons in the same
group.

BS_CHECKBOX
Creates a small square that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style).

BS_DEFPUSHBUTTON
Creates a button that has a heavy black border. The user can select this button by pressing the
ENTER key. This style is useful for enabling the user to quickly select the most likely option (the
default option).

BS_GROUPBOX
Creates a rectangle in which other controls can be grouped. Any text associated with this style is

displayed in the rectangle's upper-left corner.
BS_LEFTTEXT

Places text on the left side of the radio button or check box when combined with a radio button or
check box style.

BS_OWNERDRAW
Creates an owner-drawn button. The owner window receives a WM_MEASUREITEM message
when the button is created, and it receives a WM_DRAWITEM message when a visual aspect of the
button has changed. The BS_OWNERDRAW style cannot be combined with any other button styles.

BS_PUSHBUTTON
Creates a push button that posts a WM_COMMAND message to the owner window when the user
selects the button.

BS_RADIOBUTTON
Creates a small circle that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually used in groups of related but mutually exclusive
choices.

The Combobox Control Class
Combo-box controls consist of a selection field similar to an edit control plus a list box. The list box may
be displayed at all times or may be dropped down when the user selects a "pop box" next to the
selection field.

Depending on the style of the combo box, the user can or cannot edit the contents of the selection
field. If the list box is visible, typing characters into the selection box will cause the first list-box entry
that matches the characters typed to be highlighted. Conversely, selecting an item in the list box
displays the selected text in the selection field. Combo-box control styles are described below.

CBS_SIMPLE
Displays the list box at all times. The current selection in the list box is displayed in the edit control.

CBS_DROPDOWN
Similar to CBS_SIMPLE except that the list box is not displayed unless the user selects an icon next
to the selection field.

CBS_DROPDOWNLIST
Similar to CBS_DROPDOWN except that the edit control is replaced by a static text item which
displays the current selection in the list box.

CBS_OWNERDRAWFIXED
Specifies a fixed-height owner-draw combo box. The owner of the list box is responsible for drawing
its contents; the items in the list box are all the same height.

CBS_OWNERDRAWVARIABLE
Specifies a variable-height owner-draw combo box. The owner of the list box is responsible for
drawing its contents; the items in the list box can have different heights.

CBS_AUTOHSCROLL
Scrolls the text in the edit control to the right when the user types a character at the end of the line. If
this style is not set, only text that fits within the rectangular boundary is allowed.

CBS_SORT
Sorts strings entered into the list box.

CBS_HASSTRINGS
Specifies an owner-draw combo box that contains items consisting of strings. The combo box
maintains the memory and pointers for the strings so that the application can use the LB_GETTEXT
message to retrieve the text for a particular item.

CBS_OEMCONVERT
Converts text entered in the combo box edit control from the ANSI character set to the OEM
character set and then back to ANSI. This ensures proper character conversion when the application

calls the CharToOem function to convert an ANSI string in the combo box to OEM characters. This
style is most useful for combo boxes that contain filenames and applies only to combo boxes
created with the CBS_SIMPLE or CBS_DROPDOWN styles.

The Edit Control Class
An edit control is a rectangular child window in which the user can enter text from the keyboard. The
user selects the control, and gives it the input focus, by clicking the mouse inside it or pressing the TAB
key. The user can enter text when the control displays a flashing insertion point. The mouse can be
used to move the cursor and select characters to be replaced, or to position the cursor for inserting
characters. The BACKSPACE key can be used to delete characters.

Edit controls use the fixed-pitch font and display Unicode characters. They expand tab characters into
as many space characters as are required to move the cursor to the next tab stop. Tab stops are
assumed to be at every eighth character position. Edit control styles are described below.

ES_LEFT
Justifies the text to the left.

ES_CENTER
Centers the text. This style is valid in multiline edit controls only.

ES_RIGHT
Justifies the text to the right. This style is valid in multiline edit controls only.

ES_LOWERCASE
Converts all characters to lowercase as they are typed into the edit control.

ES_UPPERCASE
Converts all characters to uppercase as they are typed into the edit control.

ES_PASSWORD
Displays all characters as an asterisk (*) as they are typed into the edit control. An application can
use the EM_SETPASSWORDCHAR message to change the character that is displayed.

ES_MULTILINE
Multiple-line edit control. (The default is single-line.) Shows as many lines of text as possible. The
following four styles specify options for horizontal and vertical scrolling.
ES_AUTOVSCROLL specified

Shows as many lines as possible and scrolls vertically when the user presses the ENTER key.
(This is actually the carriage-return character, which the edit control expands to a
carriage-return/line-feed combination.)

ES_AUTOVSCROLL not specified
Shows as many lines as possible and beeps if the user presses ENTER when no more lines can
be displayed.

ES_AUTOHSCROLL specified
Scrolls horizontally when the insertion point goes past the right edge of the control. To start a new
line, press the ENTER key.

ES_AUTOHSCROLL not specified
Wraps words to the beginning of the next line when necessary. A new line is also started if the
user presses ENTER. If the window size changes, the word wrap position changes, and the text
is redisplayed.

Multiple-line edit controls can have scroll bars. An edit control with scroll bars processes its own
scroll-bar messages. Edit controls without scroll bars scroll as described above, and process any
scroll messages sent by the parent window.

ES_AUTOVSCROLL
Scrolls text automatically up one page when the user presses the ENTER key on the last line.

ES_AUTOHSCROLL
Scrolls text automatically to the right by 10 characters when the user types a character at the end of

the line. When the user presses the ENTER key, the control scrolls all text back to position 0.
ES_NOHIDESEL

Overrides the default action, in which an edit control hides the selection when the control loses the
input focus. Inverts the selection instead.

ES_OEMCONVERT
Converts text entered in the edit control from the ANSI character set to the OEM character set and
then back to ANSI. This ensures proper character conversion when the application calls the
CharToOem function to convert an ANSI string in the edit control to OEM characters. This style is
most useful for edit controls that contain filenames.

The Listbox Control Class
Listbox controls consist of a list of character strings. The control is used whenever an application needs
to present a list of names, such as filenames, that the user can view and select. The user can select a
string by pointing to the string with the mouse and clicking a mouse button. When a string is selected, it
is highlighted and a notification message is passed to the parent window. A scroll bar can be used with
a listbox control to scroll lists that are too long or too wide for the control window. Listbox control styles
are described below.

LBS_STANDARD
Strings in the list box are sorted alphabetically and the parent window receives an input message
whenever the user clicks or double-clicks a string. The list box contains borders on all sides.

LBS_DISABLENOSCROLL
Shows a disabled vertical scroll bar for the list box when the box does not contain enough items to
scroll. If this style is not specified, the scroll bar is hidden when the list box does not contain enough
items.

LBS_EXTENDEDSEL
The user can select multiple items using the mouse with the SHIFT and/or the CONTROL key or
special key combinations.

LBS_HASSTRINGS
An owner-draw list box contains items consisting of strings. The list box maintains the memory and
pointers for the strings so the application can use the LB_GETTEXT message to retrieve the text for
a particular item.

LBS_NOTIFY
The parent receives an input message whenever the user clicks or double-clicks a string.

LBS_MULTIPLESEL
The string selection is toggled each time the user clicks or double-clicks the string. Any number of
strings can be selected.

LBS_MULTICOLUMN
The list box contains multiple columns. The list box can be scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the width of the columns.

LBS_NOINTEGRALHEIGHT
The size of the list box is exactly the size specified by the application when it created the list box.
Normally, Windows sizes a list box so that the list box does not display partial items.

LBS_SORT
The strings in the list box are sorted alphabetically.

LBS_NOREDRAW
The list-box display is not updated when changes are made. This style can be changed at any time
by sending a WM_SETREDRAW message.

LBS_OWNERDRAWFIXED
The owner of the list box is responsible for drawing its contents; the items in the list box are all the
same height.

LBS_OWNERDRAWVARIABLE

The owner of the list box is responsible for drawing its contents; the items in the list box are variable
in height.

LBS_USETABSTOPS
The list box is able to recognize and expand tab characters when drawing its strings. The default tab
positions are set at every 32 dialog units. (A dialog unit is a horizontal or vertical distance. One
horizontal dialog unit is equal to 1/4 of the current dialog base width unit. The dialog base units are
computed from the height and width of the current system font. The GetDialogBaseUnits function
returns the size of the dialog base units in pixels.)

LBS_WANTKEYBOARDINPUT
The owner of the list box receives WM_VKEYTOITEM or WM_CHARTOITEM messages whenever
the user presses a key when the list box has input focus. This allows an application to perform
special processing on the keyboard input.

The Scrollbar Control Class
A scroll-bar control is a rectangle that contains a scroll thumb and has direction arrows at both ends.
The scroll bar sends a notification message to its parent whenever the user clicks the mouse in the
control. The parent is responsible for updating the thumb position, if necessary. Scroll-bar controls
have the same appearance and function as the scroll bars used in ordinary windows. But unlike
scroll bars, scroll-bar controls can be positioned anywhere within a window and used whenever
needed to provide scrolling input for a window. Scroll bar control styles are described below.

SBS_VERT
Vertical scroll bar. If neither SBS_RIGHTALIGN nor SBS_LEFTALIGN is specified, the scroll bar
has the height, width, and position given in the CreateWindow function.

SBS_RIGHTALIGN
Used with SBS_VERT. The right edge of the scroll bar is aligned with the right edge of the
rectangle specified by the x, y, width, and height values given in the CreateWindow function. The
scroll bar has the default width for system scroll bars.

SBS_LEFTALIGN
Used with SBS_VERT. The left edge of the scroll bar is aligned with the left edge of the rectangle
specified by the x, y, width, and height values given in the CreateWindow function. The scroll bar
has the default width for system scroll bars.

SBS_HORZ
Horizontal scroll bar. If neither SBS_BOTTOMALIGN nor SBS_TOPALIGN is specified, the scroll
bar has the height, width, and position given in the CreateWindow function.

SBS_TOPALIGN
Used with SBS_HORZ. The top edge of the scroll bar is aligned with the top edge of the rectangle
specified by the x, y, width, and height values given in the CreateWindow function. The scroll bar
has the default height for system scroll bars.

SBS_BOTTOMALIGN
Used with SBS_HORZ. The bottom edge of the scroll bar is aligned with the bottom edge of the
rectangle specified by the x, y, width, and height values given in the CreateWindow function. The
scroll bar has the default height for system scroll bars.

SBS_SIZEBOX
Size box. If neither SBS_SIZEBOXBOTTOMRIGHTALIGN nor SBS_SIZEBOXTOPLEFTALIGN is
specified, the size box has the height, width, and position given in the CreateWindow function.

SBS_SIZEBOXTOPLEFTALIGN
Used with SBS_SIZEBOX. The top-left corner of the size box is aligned with the top-left corner of
the rectangle specified by the x, y, width, and height values given in the CreateWindow
function. The size box has the default size for system size boxes.

SBS_SIZEBOXBOTTOMRIGHTALIGN
Used with SBS_SIZEBOX. The bottom-right corner of the size box is aligned with the bottom-right

corner of the rectangle specified by the x, y, width, and height values given in the CreateWindow
function. The size box has the default size for system size boxes.

The Static Control Class
Static controls are simple text fields, boxes, and rectangles that can be used to label, box, or separate
other controls. Static controls take no input and provide no output. Static control styles are described
below.

SS_LEFT
A simple rectangle displaying the given text flush left. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_CENTER
A simple rectangle displaying the given text centered. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_RIGHT
A simple rectangle displaying the given text flush right. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_LEFTNOWORDWRAP
A simple rectangle displaying the given text flush left. Tabs are expanded, but words are not
wrapped. Text that extends past the end of a line is clipped.

SS_SIMPLE
A simple rectangle with a single line of text flush left. The line of text cannot be shortened or altered
in any way. (The control's parent window or dialog box must not process the WM_CTLCOLOR
message.)

SS_NOPREFIX
Removes any (&) characters and underlines the next character in the string. Unless this style is
specified, Windows will interpret any (&) characters in the control's text to be accelerator prefix
characters. If a static control is to contain text where this feature is not wanted, SS_NOPREFIX
may be added. This STATIC-control style may be included with any of the defined STATIC controls.
You can combine SS_NOPREFIX with other styles by using the bitwise OR operator. This is most
often used when filenames or other strings that may contain an (&) need to be displayed in a
static control in a dialog box.

SS_ICON
An icon displayed in the dialog box. The given text is the name of an icon (not a filename) defined
elsewhere in the resource file. For the ICON statement, the width and height parameters in the
CreateWindow function are ignored; the icon automatically sizes itself.

SS_BLACKRECT
A rectangle filled with the color used to draw window frames. This color is black in the default
Windows color scheme.

SS_GRAYRECT
A rectangle filled with the color used to fill the screen background. This color is gray in the default
Windows color scheme.

SS_WHITERECT
A rectangle filled with the color used to fill window backgrounds. This color is white in the default
Windows color scheme.

SS_BLACKFRAME
Box with a frame drawn with the same color as window frames. This color is black in the default
Windows color scheme.

SS_GRAYFRAME

Box with a frame drawn with the same color as the screen background (desktop). This color is gray
in the default Windows color scheme.

SS_WHITEFRAME
Box with a frame drawn with the same color as window backgrounds. This color is white in the
default Windows color scheme.

SS_USERITEM
User-defined item.

CTEXT Control
CTEXT text, id, x, y, width, height [, style [, extended-style]]

The CTEXT statement creates a centered-text control. The control is a simple rectangle displaying the
given text centered in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line. The CTEXT
statement, which you can use only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Parameters

text
Specifies text that is centered in the rectangular area of the control.

style
Specifies the control styles. This value can be any combination of the following styles: SS_CENTER,
WS_TABSTOP, and WS_GROUP.
If you do not specify a style, the default style is SS_CENTER and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a centered-text control that is labeled "filename":

CTEXT "filename", 101, 10, 10, 100, 100

See Also

CONTROL, DIALOG, LTEXT, RTEXT

CURSOR Resource
nameID CURSOR [load-mem] filename

The CURSOR statement specifies a bitmap that defines the shape of the cursor on the display screen.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or non-
quoted string.

Comments

Icon and cursor resources can contain more than one image. If the resource is marked with the
PRELOAD option, Windows loads all images in the resource when the application executes.

Example

The following example specifies two cursor resources; one by name (cursor1) and the other by number
(2):

cursor1 CURSOR bullseye.cur
2 CURSOR "d:\\cursor\\arrow.cur"

DEFPUSHBUTTON Control
DEFPUSHBUTTON text, id, x, y, width, height [, style [, extended-style]]

The DEFPUSHBUTTON statement creates a default push-button control. The control is a small
rectangle with a bold outline that represents the default response for the user. The given text is
displayed inside the button. The control highlights the button in the usual way when the user clicks the
mouse in it and sends a message to its parent window.

Parameters

text
Specifies text that is centered in the rectangular area of the control.

style
Specifies the control styles. This value can be a combination of the following styles:
BS_DEFPUSHBUTTON, WS_TABSTOP, WS_GROUP, and WS_DISABLED.
If you do not specify a style, the default style is BS_DEFPUSHBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a default push-button control that is labeled "Cancel":

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50

See Also

PUSHBUTTON, RADIOBUTTON

DIALOG Resource
nameID DIALOG [load-mem] x, y, width, height
[optional-statements]
BEGIN
 control-statement
 . . .
END

The DIALOG statement defines a window that an application can use to create dialog boxes. The
statement defines the position and dimensions of the dialog box on the screen as well as the dialog
box style.

nameID
Identifies the dialog box. This is either a unique name or a unique 16-bit unsigned integer value in
the range 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

option-statements
Specifies options for the dialog box. This can be zero or more of the following statements:
CAPTION "text"

Specifies the caption of the dialog box if it has a title bar. See CAPTION for more information.
CHARACTERISTICS dword

Specifies a user-defined double-word value for use by resource tools. This value is not used by
Windows. For more information, see CHARACTERISTICS.

CLASS class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks, that identifies
the class of the dialog box. See CLASS for more information.

LANGUAGE language,sublanguage
Specifies the language of the dialog box. See LANGUAGE for more information.

STYLE styles
Specifies the styles of the dialog box. See STYLE for more information.

EXSTYLE=extended-styles
Specifies the extended styles of the dialog box. See EXSTYLE for more information.

VERSION dword
Specifies a user-defined doubleword value. This statement is intended for use by additional
resource tools and is not used by Windows. For more information, see VERSION.

For more information on the x, y, width, and height parameters, see "Common Statement Parameters".

Comments

The GetDialogBaseUnits function returns the dialog base units in pixels. The exact meaning of the
coordinates depends on the style defined by the STYLE option statement. For child-style dialog boxes,
the coordinates are relative to the origin of the parent window, unless the dialog box has the style
DS_ABSALIGN; in that case, the coordinates are relative to the origin of the display screen.

Do not use the WS_CHILD style with a modal dialog box. The DialogBox function always disables the
parent/owner of the newly created dialog box. When a parent window is disabled, its child windows are
implicitly disabled. Since the parent window of the child-style dialog box is disabled, the child-style
dialog box is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its upper-left corner are relative
to the screen origin instead of to the upper-left corner of the parent window. You would typically use this
style when you wanted the dialog box to start in a specific part of the display no matter where the
parent window may be on the screen.

The name DIALOG can also be used as the class-name parameter to the CreateWindow function to
create a window with dialog box attributes.

Example

The following demonstrates the usage of the DIALOG statement:

#include <windows.h>

ErrorDialog DIALOG 10, 10, 300, 110
STYLE WS_POPUP|WS_BORDER
CAPTION "Error!"
BEGIN
 CTEXT "Select One:", 1, 10, 10, 280, 12
 PUSHBUTTON "&Retry", 2, 75, 30, 60, 12
 PUSHBUTTON "&Abort", 3, 75, 50, 60, 12
 PUSHBUTTON "&Ignore", 4, 75, 80, 60, 12
END

See Also

CONTROL, CreateDialog, CreateWindow, DialogBox, GetDialogBaseUnits
Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

DIALOGEX Resource

The DIALOGEX resource is an extension of the DIALOG resource. In addition to the functionality
offered by DIALOG, DIALOGEX allows for the following:

· Help IDs on the dialog itself as well as on controls within the dialog.
· Use of the EXSTYLE statement for the dialog itself as well as on controls within the dialog.
· Font weight and italic settings for the font to be used in the dialog.
· Control-specific data for controls within the dialog.
· Use of the BEDIT, IEDIT, and HEDIT predefined system class names.

Syntax

nameID DIALOGEX [load-mem] x, y, width, height [, helpID]
[optional-statements]
BEGIN
 control-statement
 . . .
END

Parameters

nameID
Identifies the dialog box. This is either a unique name or a unique 16-bit unsigned integer value in
the range 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

x
Specifies the location on the screen of the left side of the dialog, in dialog units.

y
Specifies the location on the screen of the top of the dialog, in dialog units.

width
Specifies the width of the dialog, in dialog units.

height
Specifies the height of the dialog, in dialog units.

helpID
Specifies a numeric expression indicating the ID used to identify the dialog during WM_HELP
processing.

optional-statements
Specifies options for the dialog box. This can be zero or more of the following statements:
CAPTION "text"

Specifies the caption of the dialog box if it has a title bar. See CAPTION for more information.
CHARACTERISTICS DWORD

Specifies a user-defined DWORD value for use by resource tools. This value is not used by
Windows. For more information see CHARACTERISTICS

CLASS class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks ("), that
identifies the class of the dialog box. See CLASS for more information.

EXSTYLE=extended-styles

Specifies the extended styles of the dialog box. See EXSTYLE for more information.
FONT pointsize, typeface, weight, italic

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name defined in the

[FONTS] section of WIN.INI. This parameter must be enclosed in double quotation marks (").
weight

Specifies a numeric expression for the font weight (explicit FW_* values defined in WINGDI.H
can be used by adding an include to the RC file: #include "WINGDI.H")
italic

Indicates whether the font should be italic or not. Specify either TRUE or FALSE for the italic
value.

LANGUAGE language, sublanguage
Specifies the language of the dialog box. See LANGUAGE for more information.

MENU menuname
Specifies the menu to use. This value is either the name of the menu or the integer identifier.

STYLE styles
Specifies the styles of the dialog box. See STYLE for more information.

VERSION DWORD
Specifies a user-defined DWORD value. This statement is intended for use by additional resource
tools and is not used by Windows. For more information, see VERSION

The DIALOGEX body is marked with a BEGIN statement at the beginning of the body and an END
statement at the end of the body. The body is made up of any number of control statements. There are
four families of control statements: generic, static, button, and edit. While each of these families uses a
different syntax for defining specific features of its controls, they all share a common syntax for defining
the position, size, extended styles, help identification number, and control-specific data. That common
syntax is:

(controlType), x, y, cx, cy [, [exStyle] [, helpID]
 [BEGIN
 data-element-1 [,
 data-element-2 [,
 ...]]
 END]

(controlType)
Family-specific definition ¾ described below.
x

Specifies the location in the dialog of the left side of the control, in dialog units.
y

Specifies the location in the dialog of the top of the control, in dialog units.
cx

Specifies the width of the control, in dialog units.
cy

Specifies the height of the control, in dialog units.
exStyle

Specifies any number of extended window styles (explicit WS_EX_* style values defined in
winuser.h can be used by adding an include to the RC file: #include "winuser.h")

helpID
Specifies a numeric expression indicating the ID used to identify the control during WM_HELP
processing.

controlData
Marked by a nested BEGIN and END, specifies the control-specific data for the control. When a
dialog is created, and a control in that dialog which has control-specific data is created, a pointer
to that data is passed into the control's window procedure via the lParam to the WM_CREATE
message for that control.

Following is the family-specific syntax of the (controlType):

Generic control:

CONTROL controlText, id, className, style

controlText
Specifies the window text for the control. For more information, see Common Statement
Parameters.

id
Specifies the control identifier. For more information, see Common Statement Parameters.

className
Specifies the name of the class. This may be either a string enclosed in double quotation marks
(") or one of the following predefined system classes: BUTTON, STATIC, EDIT, LISTBOX,
SCROLLBAR, or COMBOBOX.

style
Specifies the window styles (explicit WS_*, BS_*, SS_*, ES_*, LBS_*, SBS_*, and CBS_* style
values defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H")

Static control:

staticClass controlText, id

staticClass {LTEXT | RTEXT | CTEXT}

controlText
Specifies the window text for the control. For more information, see "Common Statement
Parameters".

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Button control:

buttonClass controlText, id

buttonClass {AUTO3STATE | AUTOCHECKBOX | AUTORADIOBUTTON | CHECKBOX | PUSHBOX |
PUSHBUTTON | RADIOBUTTON | STATE3 | USERBUTTON}

controlText
Specifies the window text for the control. For more information, see "Common Statement
Parameters".

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Edit control:

editClass id

editClass {EDITTEXT | BEDIT | HEDIT | IEDIT}

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Arithmetic and Boolean Operations

Valid operations that may be contained in any of the numeric expressions in the statements of
DIALOGEX are:

· Add ('+')
· Subtract ('-')
· Unary minus ('-')
· Unary NOT ('~')
· AND ('&')
· OR ('|')

See Also

CONTROL, CreateDialog, CreateWindow, DialogBox, GetDialogBaseUnits, Multiline Statements,
ACCELERATORS, CHARACTERISTICS, LANGUAGE, MENU, RCDATA, STRINGTABLE, VERSION

EDITTEXT Control
EDITTEXT text, id, x, y, width, height [, style [, extended-style]]

The EDITTEXT statement defines an EDIT control belonging to the EDIT class. It creates a rectangular
region in which the user can type and edit text. The control displays a cursor when the user clicks the
mouse in it. The user can then use the keyboard to enter text or edit the existing text. Editing keys
include the BACKSPACE and DELETE keys. The user can also use the mouse to select characters to
be deleted or to select the place to insert new characters.

Parameters

style
Specifies the control styles. This value can be a combination of the edit class styles and the
following styles: WS_TABSTOP, WS_GROUP, WS_VSCROLL, WS_HSCROLL, and
WS_DISABLED.
If you do not specify a style, the default style is ES_LEFT, WS_BORDER, and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

The following example demonstrates the use of the EDITTEXT statement:

EDITTEXT 3, 10, 10, 100, 10

EXSTYLE Statement
EXSTYLE extended-style

The EXSTYLE command allows you to designate a dialog box with the WS_EX_style styles. In a
resource definition, the EXSTYLE statement is placed with the optional statements before the BEGIN
keyword. It can also be placed with the load-mem parameters in a DIALOG statement as follows:

name DIALOG [load-mem] EXSTYLE=extended-style x, y, ...

For controls, extended styles are specified after the style option in any control definition, as follows:

control text, id, x, y, width, height, [style[, extended-style]]

Parameters

extended-style
The WS_EX_style style for the dialog box or control.

See also

ACCELERATORS, CONTROL, DIALOG, MENU, POPUP, RCDATA, STRINGTABLE, User-Defined
Resouce

FONT Resource
nameID FONT [load-mem] filename

The FONT resource-definition statement specifies a file that contains a font.

For a font resource, nameID must be a number; it cannot be a name.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or non-
quoted string.

Example

The following example specifies a single font resource:

5 FONT CMROMAN.FNT

See also

FONT Statement

FONT Statement
FONT pointsize, typeface

The FONT statement defines the font with which Windows will draw text in the dialog box. The font
must have been previously loaded, either from the WIN.INI file or by calling the LoadResource
function.

Parameters

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name defined in the [fonts]
section of WIN.INI. This parameter must be enclosed in double quotes.

Example

The following example demonstrates the use of the FONT statement:

FONT 12, "MS Sans Serif"

See Also

DIALOG, FONT Resource, LoadResource

GROUPBOX Control
GROUPBOX text, id, x, y, width, height [, style [, extended-style]]

The GROUPBOX statement creates a group box control. The control is a rectangle that groups other
controls together. The controls are grouped by drawing a border around them and displaying the given
text in the upper-left corner. The GROUPBOX statement, which you can use only in a DIALOG
statement, defines the text, identifier, dimensions, and attributes of a control window.

When the style contains WS_TABSTOP or the text specifies an accelerator, tabbing or pressing the
accelerator key moves the focus to the first control within the group.

Parameters

style
Specifies the control styles. This value can be a combination of the button class style
BS_GROUPBOX and the WS_TABSTOP and WS_DISABLED styles.
If you do not specify a style, the default style is BS_GROUPBOX.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a group-box control that is labeled Options:

GROUPBOX "Options", 101, 10, 10, 100, 100

See Also

DIALOG

ICON Resource
nameID ICON [load-mem] filename

The ICON resource-definition statement specifies a bitmap that defines the shape of the icon to be
used for a given application.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or non-
quoted string.

Comments

Icon and cursor resources can contain more than one image. If the resource is marked as PRELOAD,
Windows loads all images in the resource when the application executes.

Example

The following example specifies two icon resources:

desk1 ICON desk.ico
11 ICON DISCARDABLE custom.ico

ICON Control
ICON text, id, x, y, [width, height, style [, extended-style]]

The ICON statement creates an icon control. This control is an icon displayed in a dialog box. The
ICON control statement, which you can use only in a DIALOG statement, defines the icon-resource
identifier, icon-control identifier, position, and attributes of a control.

Parameters

text
Specifies the name of an icon (not a filename) defined elsewhere in the resource file.

width
This value is ignored and should be set to zero.

height
This value is ignored and should be set to zero.

style
Specifies the control style. This parameter is optional. The only value that can be specified is the
SS_ICON style. This is the default style whether this parameter is specified or not.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates an icon control whose icon identifier is 901 and whose name is "myicon":

ICON "myicon" 901, 30, 30

See Also

DIALOG, ICON Resource

LANGUAGE Statement
LANGUAGE language, sublanguage

The LANGUAGE statement sets the language for all resources up to the next LANGUAGE statement
or to the end of the file. When the LANGUAGE statement appears before the BEGIN in an
ACCELERATORS, DIALOG, MENU, RCDATA, or STRINGTABLE resource definition, the specified
language applies only to that resource.

Parameters

language
Language identifier. Must be one of the constants from WINNLS.H

sublanguage
Sublanguage identifier. Must be one of the constants from WINNLS.H

See Also

Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

LISTBOX Control
LISTBOX text, id, x, y, width, height [, style [, extended-style]]

The LISTBOX statement creates commonly used controls for a dialog box or window. The control is a
rectangle containing a list of strings (such as filenames) from which the user can select. The LISTBOX
statement, which can only be used in a DIALOG or WINDOW statement, defines the identifier,
dimensions, and attributes of a control window.

Parameters

style
Specifies the control styles. This value can be a combination of the list-box class styles and any of
the following styles: WS_BORDER and WS_VSCROLL.
If you do not specify a style, the default style is LBS_NOTIFY and WS_BORDER.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a list-box control whose identifier is 101:

LISTBOX 101, 10, 10, 100, 100

See Also

COMBOBOX, DIALOG

LTEXT Control
LTEXT text, id, x, y, width, height [, style [, extended-style]]

The LTEXT statement creates a left-aligned text control. The control is a simple rectangle displaying
the given text left-aligned in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line. The LTEXT
statement, which can be used only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Parameters

style
Specifies the control styles. This value can be any combination of the BS_RADIOBUTTON style and
the following styles: SS_LEFT, WS_TABSTOP, and WS_GROUP.
If you do not specify a style, the default style is SS_LEFT and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

This example creates a left-aligned text control that is labeled "Filename":

LTEXT "Filename", 101, 10, 10, 100, 100

See Also
CONTROL, DIALOG, CTEXT, RTEXT

MENU Resource
menuID MENU [load-mem]
[optional-statements]
BEGIN
 item-definitions
 . . .
END

The MENU statement defines the contents of a menu resource. A menu resource is a collection of
information that defines the appearance and function of an application menu. A menu is a special input
tool that lets a user select commands from a list of command names.

Parameters

menuID
Identifies the menu. This value is either a unique string or a unique 16-bit unsigned integer value in
the range of 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

optional-statements
Zero or more of the following statements:
Statement Decription
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language ,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

Example

Following is an example of a complete MENU statement:

sample MENU
BEGIN
 MENUITEM "&Soup", 100
 MENUITEM "S&alad", 101
 POPUP "&Entree"
 BEGIN
 MENUITEM "&Fish", 200
 MENUITEM "&Chicken", 201, CHECKED
 POPUP "&Beef"
 BEGIN
 MENUITEM "&Steak", 301
 MENUITEM "&Prime Rib", 302
 END
 END
 MENUITEM "&Dessert", 103
END

See Also

MENUITEM, POPUP
Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

MENU Statement
MENU menuname

The MENU statement defines the dialog box's menu. If no statement is given, the dialog box has no
menu.

Parameter

menuname
Specifies the menu to use. This value is either the name of the menu or the integer identifier of the
menu.

Example

The following example demonstrates the use of the MENU dialog statement:

MENU errmenu

MENUEX Resource

The MENUEX resource is an extension of the MENU resource. In addition to the functionality offered
by MENU, MENUEX allows for the following:

· Help IDs on popup menus.
· IDs on popup menus.
· Use of the menu type and state flags created for Windows 95 (MFT_* type flags and MFS_* state

flags).

Syntax

menuID MENUEX
BEGIN
 [{[MENUITEM itemText [, [id] [, [type] [, state]]]] |
 [POPUP itemText [, [id] [, [type] [, [state] [, helpID]]]]
 BEGIN
 popupBody
 END]} ...]
END

Parameters

MENUITEM statement
Defines a normal menu item
itemText

Specifies the string containing the text for the menu item. For more information, see MENUITEM.
id

Specifies a numeric expression indicating the ID of the menu item.
type

Specifies a numeric expression indicating the type of the menu item (explicit MFT_* type values
defined in WINUSER.H can be used by adding an include to the RC file: #include "WINUSER.H")

state
Specifies a numeric expression indicating the state of the menu item (explicit MFS_* state values
defined in WINUSER.H can be used by adding an include to the RC file: #include "WINUSER.H")

POPUP statement
Defines a menu item which has another menu (a submenu) associated with it.
itemText

Specifies a string containing the text for the menu item.
id

Specifies a numeric expression indicating the ID of the menu item.
type

Specifies a numeric expression indicating the type of the menu item (explicit MFT_* type values
defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H").

state
Specifies a numeric expression indicating the state of the menu item (explicit MFS_* state values
defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H").

helpID
Specifies a numeric expression indicating the ID used to identify the menu during WM_HELP

processing.

popupBody
Contain any combination of the MENUITEM and POPUP statements described above.

Remarks

Valid arithmetic and Boolean operations that may be contained in any of the numeric expressions in the
statements of MENUEX are:

· Add ('+')
· Subtract ('-')
· Unary minus ('-')
· Unary NOT ('~')
· AND ('&')
· OR ('|')

See Also

MENU, MENUITEM, POPUP
Multiline Statements
ACCELERATORS, CHARACTERISTICS, DIALOG, LANGUAGE, RCDATA,
STRINGTABLE,VERSION

MENUITEM Statement
MENUITEM text, result, [optionlist]
MENUITEM SEPARATOR

The MENUITEM statement defines a menu item.

Parameters

text
Specifies the name of the menu item.
The string can contain the escape characters \t and \a. The \t character inserts a tab in the string
and is used to align text in columns. Tab characters should be used only in pop-up menus, not in
menu bars. (For information on pop-up menus, see the POPUP statement.) The \a character aligns
all text that follows it flush right to the menu bar or pop-up menu.

result
Specifies the result generated when the user selects the menu item. This parameter takes an integer
value. Menu-item results are always integers; when the user clicks the menu-item name, the result
is sent to the window that owns the menu.

optionlist
Specifies the appearance of the menu item. This optional parameter takes one or more redefined
menu options, separated by commas or spaces. The menu options are as follows:
CHECKED

Item has a check mark next to it.
GRAYED

Item name is initially inactive and appears on the menu in gray or a lightened shade of the menu-
text color.

HELP
Identifies a help item.

INACTIVE
Item name is displayed but it cannot be selected.

MENUBARBREAK
Same as MF_MENUBREAK except that for pop-up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK
Places the menu item on a new line for static menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.

SEPARATOR
The MENUITEM SEPARATOR form of the MENUITEM statement creates an inactive menu item
that serves as a dividing bar between two active menu items in a pop-up menu.

Example

The following example demonstrates the use of the MENUITEM and MENUITEM SEPARATOR
statements:

MENUITEM "&Roman", 206, CHECKED, GRAYED
MENUITEM SEPARATOR
MENUITEM "&Blackletter", 301

See Also

MENU, POPUP

MESSAGETABLE Resource
nameID MESSAGETABLE filename

The MESSAGETABLE resource-deinition statement defines the ID and file of an application's
message table resource. Message tables are special string resources used in event logging and with
the FormatMessage API. The file contains a binary message table generated by the Message
Compiler. The Message Compiler also generates a resource script file that contains the
MESSAGETABLE statements you need to include the message table resources in the compiled
resource file. Use the #include directive to include this resource script into your main resource script.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or non-
quoted string.

See Also

STRINGTABLE Resource , Message Compiler

POPUP Resource
POPUP text, [optionlist]

BEGIN
 item-definitions
 .
 .
 .
END

The POPUP statement marks the beginning of the definition of a pop-up menu. A pop-up menu (which
is also known as a drop-down menu) is a special menu item that displays a sublist of menu items when
it is selected.

Parameters

text
Specifies the name of the pop-up menu. This string must be enclosed in double quotation marks.

optionlist
Specifies one or more redefined menu options that specify the appearance of the menu item. The
menu options follow:
CHECKED

Item has a check mark next to it. This option is not valid for a top-level pop-up menu.
GRAYED

Item name is initially inactive and appears on the menu in gray or a lightened shade of the menu-
text color.

INACTIVE
Item name is displayed but it cannot be selected.

MENUBARBREAK
Same as MF_MENUBREAK except that for pop-up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK
Places the menu item on a new line for static menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.

Example

The following example demonstrates the use of the POPUP statement:

chem MENU
BEGIN
 POPUP "&Elements"
 BEGIN
 MENUITEM "&Oxygen", 200
 MENUITEM "&Carbon", 201, CHECKED
 MENUITEM "&Hydrogen", 202
 MENUITEM SEPARATOR
 MENUITEM "&Sulfur", 203
 MENUITEM "Ch&lorine", 204
 END
 POPUP "&Compounds"
 BEGIN
 POPUP "&Sugars"
 BEGIN
 MENUITEM "&Glucose", 301
 MENUITEM "&Sucrose", 302, CHECKED
 MENUITEM "&Lactose", 303, MENUBREAK
 MENUITEM "&Fructose", 304
 END
 POPUP "&Acids"
 BEGIN
 "&Hydrochloric", 401
 "&Sulfuric", 402
 END
 END
END

See Also

MENU, MENUITEM

PUSHBOX Control
PUSHBOX text, id, x, y, width, height [, style [, extended-style]]

The PUSHBOX statement creates a push-box control. Identical to a PUSHBUTTON, except that it
does not display a button face or frame; only the text appears.

Parameters

style
Specifies styles for the pushbox, which can be a combination of the BS_PUSHBOX style and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style is BS_PUSHBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

See Also

PUSHBUTTON

PUSHBUTTON Control
PUSHBUTTON text, id, x, y, width, height [, style [, extended-style]]

The PUSHBUTTON statement creates a push-button control. The control is a round-cornered
rectangle containing the given text. The text is centered in the control. The control sends a message to
its parent whenever the user chooses the control.

Parameters

style
Specifies styles for the pushbutton, which can be a combination of the BS_PUSHBUTTON style and
the following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style is BS_PUSHBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

The following example demonstrates the use of the PUSHBUTTON statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10

See Also

GetDialogBaseUnits

RADIOBUTTON Control
RADIOBUTTON text, id, x, y, width, height [, style [, extended-style]]

The RADIOBUTTON statement creates a radio-button control. The control is a small circle that has the
given text displayed next to it, typically to its right. The control highlights the circle and sends a
message to its parent window when the user selects the button. The control removes the highlight and
sends a message when the button is next selected.

Parameters

style
Specifies styles for the radio button, which can be a combination of BUTTON-class styles and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for RADIOBUTTON is BS_RADIOBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

The following example demonstrates the use of the RADIOBUTTON statement:

RADIOBUTTON "Italic", 100, 10, 10, 40, 10

See Also

GetDialogBaseUnits

RCDATA Resource
nameID RCDATA [load-mem]
[optional-statements]
BEGIN
 raw-data
 . . .
END

The RCDATA statement defines a raw data resource for an application. Raw data resources permit the
inclusion of binary data directly in the executable file.

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value that identifies the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

optional-statements
Zero or more of the following statements:
Statement Decription
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language ,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

raw-data
Specifies raw data consisting of one or more integers or strings of characters. Integers can be
specified in decimal, octal, or hexadecimal format. RC does not automatically append a terminating
null character to a string. The string is a sequence of the specified ANSI (byte) characters unless
explicitly qualified as a wide-character string with the L prefix. Strings in all resources other than
RCDATA and user-defined resources are Unicode strings.
The block of data begins on a DWORD boundary and RC performs no padding or alignment of data
within the raw-data block. It is the programmer's responsibility to ensure the proper alignment of
data within the block.

Example

The following example demonstrates the use of the RCDATA statement:

resname RCDATA
BEGIN
 L"Here is a Unicode string\0", /* A Unicode string. Note: explicitly
 null-terminated */
 1024, /* int */
 0x029a, /* hex int */
 0o733, /* octal int */
 "\07" /* octal byte */
END

See Also

Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

RTEXT Control
RTEXT text, id, x, y, width, height [, style [, extended-style]]

The RTEXT statement creates a right-aligned text control. The control is a simple rectangle displaying
the given text right-aligned in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the beginning of the next line.

Parameters

style
Specifies styles for the text control, which can be any combination of the following: WS_TABSTOP
and WS_GROUP.
The default style for RTEXT is SS_RIGHT and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

The following example demonstrates the use of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10

See Also

CONTROL, CTEXT, DIALOG, LTEXT

SCROLLBAR Control
SCROLLBAR text, id, x, y, width, height [, style [, extended-style]]

The SCROLLBAR statement creates a scroll-bar control. The control is a rectangle that contains a
scroll box and has direction arrows at both ends. The scroll-bar control sends a notification message to
its parent whenever the user clicks the mouse in the control. The parent is responsible for updating the
scroll-box position. Scroll-bar controls can be positioned anywhere in a window and used whenever
needed to provide scrolling input.

Parameters

style
Specifies a combination (or none) of the following styles: WS_TABSTOP, WS_GROUP, and
WS_DISABLED.
In addition to these styles, the style parameter may contain a combination (or none) of the
SCROLLBAR-class styles. The default style for SCROLLBAR is SBS_HORZ.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

Example

The following example demonstrates the use of the SCROLLBAR statement:

SCROLLBAR 999, 25, 30, 10, 100

STATE3 Control
STATE3 text, id, x, y, width, height [, style [, extended-style]]

The STATE3 statement defines a 3-state check box control. The control is identical to a CHECKBOX,
except that it has three states: checked, unchecked, and disabled (grayed).

Parameters

text
Specifies text that is displayed to the right of the control.

style
Specifies the control styles. This value can be a combination of the button class style BS_3STATE
and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_3STATE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
"Common Statement Parameters".

See Also

AUTOCHECKBOX, CHECKBOX, CONTROL

STRINGTABLE Resource
STRINGTABLE [load-mem]
[optional-statements]
BEGIN
 stringID string
 . . .
END

The STRINGTABLE statement defines one or more string resources for an application. String
resources are simply null-terminated Unicode strings that can be loaded when needed from the
executable file, using the LoadString function.

Parameter

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

optional-statements
Zero or more of the following statements:
Statement Decription
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language ,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

stringID
Specifies an unsigned 16-bit integer that identifies the resource.

string
Specifies one or more strings, enclosed in double quotation marks. The string must be no longer
than 255 characters and must occupy a single line in the source file. To add a carriage return to the
string, use this character sequence: \012. For example, "Line one\012Line two" would define a string
that would be displayed as follows:
Line one
Line two

Comments

Grouping strings in separate sections allows all related strings to be read in at one time and discarded
together. When possible, an application should make the table movable and discardable. RC allocates
16 strings per section and uses the identifier value to determine which section is to contain the string.
Strings with the same upper-12 bits in their identifiers are placed in the same section.

Example

The following example demonstrates the use of the STRINGTABLE statement:

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN
 IDS_HELLO, "Hello"
 IDS_GOODBYE, "Goodbye"
END

See Also

Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

STYLE Statement
STYLE style

The STYLE statement defines the window style of the dialog box. The window style specifies whether
the box is a pop-up or a child window. The default style has the following attributes: WS_POPUP,
WS_BORDER, and WS_SYSMENU.

Parameter

style
Specifies the window style. This parameter takes an integer value or redefined name. The following
lists the redefined styles:
DS_LOCALEDIT

Specifies that edit controls in the dialog box will use memory in the application's data section. By
default, all edit controls in dialog boxes use memory outside the application's data section. This
feature can be suppressed by adding the DS_LOCALEDIT flag to the STYLE command for the
dialog box. If this flag is not used, EM_GETHANDLE and EM_SETHANDLE messages must not
be used since the storage for the control is not in the application's data section. This feature does
not affect edit controls created outside of dialog boxes.

DS_MODALFRAME
Creates a dialog box with a modal dialog box frame that can be combined with a title bar and
System menu by specifying the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG
Suppresses WM_ENTERIDLE messages that Windows would otherwise send to the owner of the
dialog box while the dialog box is displayed.

DS_SYSMODAL
Creates a system-modal dialog box.

WS_BORDER
Creates a window that has a border.

WS_CAPTION
Creates a window that has a title bar (implies the WS_BORDER style).

WS_CHILD
Creates a child window. It cannot be used with the WS_POPUP style.

WS_CHILDWINDOW
Creates a child window that has the WS_CHILD style.

WS_CLIPCHILDREN
Excludes the area occupied by child windows when drawing within the parent window. Used when
creating the parent window.

WS_CLIPSIBLINGS
Clips child windows relative to each other; that is, when a particular child window receives a
WM_PAINT message, this style clips all other top-level child windows out of the region of the child
window to be updated. (If the WS_CLIPSIBLINGS style is not given and child windows overlap, it
is possible, when drawing in the client area of a child window, to draw in the client area of a
neighboring child window.) For use with the WS_CHILD style only.

WS_DISABLED
Creates a window that is initially disabled.

WS_DLGFRAME
Creates a window with a modal dialog box frame but no title.

WS_GROUP
Specifies the first control of a group of controls in which the user can move from one control to the

next by using the arrow keys. All controls defined with the WS_GROUP style after the first control
belong to the same group. The next control with the WS_GROUP style ends the style group and
starts the next group (that is, one group ends where the next begins). This style is valid only for
controls.

WS_HSCROLL
Creates a window that has a horizontal scroll bar.

WS_ICONIC
Creates a window that is initially iconic. For use with the WS_OVERLAPPED style only.

WS_MAXIMIZE
Creates a window of maximum size.

WS_MAXIMIZEBOX
Creates a window that has a Maximize box.

WS_MINIMIZE
Creates a window of minimum size.

WS_MINIMIZEBOX
Creates a window that has a Minimize box.

WS_OVERLAPPED
Creates an overlapped window. An overlapped window has a caption and a border.

WS_OVERLAPPEDWINDOW
Creates an overlapped window having the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_POPUP
Creates a pop-up window. It cannot be used with the WS_CHILD style.

WS_POPUPWINDOW
Creates a pop-up window that has the WS_POPUP, WS_BORDER, and WS_SYSMENU styles.
The WS_CAPTION style must be combined with the WS_POPUPWINDOW style to make the
System menu visible.

WS_SIZEBOX
Creates a window that has a size box. Used only for windows with a title bar or with vertical and
horizontal scroll bars.

WS_SYSMENU
Creates a window that has a System-menu box in its title bar. Used only for windows with title
bars. If used with a child window, this style creates a Close box instead of a System-menu box.

WS_TABSTOP
Specifies one of any number of controls through which the user can move by using the TAB key.
The TAB key moves the user to the next control specified by the WS_TABSTOP style. This style
is valid only for controls.

WS_THICKFRAME
Creates a window with a thick frame that can be used to size the window.

WS_VISIBLE
Creates a window that is initially visible. This applies to overlapping and pop-up windows. For
overlapping windows, the y parameter is used as a parameter for the ShowWindow function.

WS_VSCROLL
Creates a window that has a vertical scroll bar.

Comments

If the redefined names are used, you must include WINDOWS.H.

User-Defined Resource
nameID typeID [load-mem] filename

The filename specifies the name of a file containing the binary data of the resource. The contents of
the file are included as the resource. RC does not interpret the binary data in any way. It is the
programmer's responsibility to ensure that the data is properly aligned for the target machine
architecture.

A user-defined resource can also be defined completely in the resource script using the syntax:

nameID typeID [load-mem]
BEGIN
 raw-data
END

A user-defined resource statement specifies a resource that contains application-specific data. The
data can have any format and can be defined either as the content of a given file (if the filename
parameter is given) or as a series of numbers and strings (if the raw-data block is given).

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer that identifies the resource.

typeID
Specifies either a unique name or a 16-bit unsigned integer that identifies the resource type. If a
number is given, it must be greater than 255. The numbers 1 through 255 are reserved for existing
and future redefined resource types.

load-mem
Specifies loading and memory attributes for the resource. For more information, see "Common
Resource Attributes".

filename
Specifies the name of the file that contains the resource data. The parameter must be a valid
filename; it must be a full path if the file is not in the current working directory.

raw-data
Specifies raw data consisting of one or more integers or strings of characters. Integers can be
specified in decimal, octal, or hexadecimal format. RC does not automatically append a terminating
null character to a string. The string is a sequence of the specified ANSI (byte) characters unless
explicitly qualified as a wide-character string with the L prefix. Strings in all resources other than
RCDATA and user-defined resources are Unicode strings.
The block of data begins on a DWORD boundary and RC performs no padding or alignment of data
within the raw-data block. It is the programmer's responsibility to ensure the proper alignment of
data within the block.

Example

The following example shows several user-defined statements:

array MYRES data.res
14 300 custom.res
18 MYRES2
BEGIN
 "Here is a data string\0", /* A string. Note: explicitly
 null-terminated */
 1024, /* int */
 0x029a, /* hex int */
 0o733, /* octal int */
 "\07" /* octal byte */
END

VERSION Statement
VERSION dword

The VERSION statement allows the developer to specify version information about a resource that can
be used by tools that read and write resource files. The specified dword value appears with the
resource in the compiled .RES file. However, the value is not stored in the executable file and has no
significance to Windows.

The VERSION statement appears before the BEGIN in an ACCELERATORS, DIALOG, MENU,
RCDATA, or STRINGTABLE resource definition. The specified value applies only to that resource.

Parameter

dword
A user-defined doubleword value.

See Also

Multiline Statements
CHARACTERISTICS, LANGUAGE, VERSION
ACCELERATORS, DIALOG, MENU, RCDATA, STRINGTABLE

VERSIONINFO Resource
versionID VERSIONINFO fixed-info
BEGIN
 block-statement
 . . .
END

The VERSIONINFO statement creates a version-information resource. The resource contains such
information about the file as its version number, its intended operating system, and its original filename.
The resource is intended to be used with the File Installation library functions.

Parameters

versionID
Specifies the version-information resource identifier. This value must be 1.

fixed-info
Specifies the version information, such as the file version and the intended operating system. This
parameter consists of the following statements:
FILEVERSION version

Specifies the binary version number for the file. The version consists of two 32-bit integers,
defined by four 16-bit integers. For example, FILEVERSION 3,10,0,61 is translated into two
doublewords: 0x0003000a and 0x0000003d, in that order. Therefore, if version is defined by the
doublewords dw1 and dw2, they need to appear in the FILEVERSION statement as follows:
HIWORD(dw1), LOWORD(dw1), HIWORD(dw2), LOWORD(dw2).

PRODUCTVERSION version
Specifies the binary version number for the product with which the file is distributed. The version
parameter is two 32-bit integers, defined by four 16-bit integers. For more information about
version, see the FILEVERSION description.

FILEFLAGSMASK fileflagsmask
Specifies which bits in the FILEFLAGS statement are valid. If a bit is set, the corresponding bit in
FILEFLAGS is valid.

FILEFLAGS fileflags
Specifies the Boolean attributes of the file. The fileflags parameter must be the combination of all
the file flags that are valid at compile time. For Windows 3.1, this value is 0x3f.

FILEOS fileos
Specifies the operating system for which this file was designed. The fileos parameter can be one
of the operating system values given in the Comments section.

FILETYPE filetype
Specifies the general type of file. The filetype parameter can be one of the file type values listed
in the Comments section.

FILESUBTYPE subtype
Specifies the function of the file. The subtype parameter is zero unless the type parameter in the
FILETYPE statement is VFT_DRV, VFT_FONT, or VFT_VXD. For a list of file subtype values,
see the Comments section.

block-statement
Specifies one or more version-information blocks. A block can contain string information or
variable information.

Comments

To use the constants specified with the VERSIONINFO statement, the WINVER.H file (included in

WINDOWS.H) must be included in the resource-definition file.

The following list describes the parameters used in the VERSIONINFO statement:

Parameter

fileflags
Specifies a combination of the following values:
VS_FF_DEBUG

File contains debugging information or is compiled with debugging features enabled.
VS_FF_INFOINFERRED

File contains a dynamically created version-information resource. Some of the blocks for the
resource may be empty or incorrect. This value is not intended to be used in version-information
resources created by using the VERSIONINFO statement.

VS_FF_PATCHED
File has been modified and is not identical to the original shipping file of the same version
number.

VS_FF_PRERELEASE
File is a development version, not a commercially released product.

VS_FF_PRIVATEBUILD
File was not built using standard release procedures. If this value is given, the StringFileInfo
block must contain a PrivateBuild string.

VS_FF_SPECIALBUILD
File was built by the original company using standard release procedures but is a variation of the
standard file of the same version number. If this value is given, the StringFileInfo block must
contain a SpecialBuild string.

fileos
Specifies one of the following values:
Value Description
VOS_UNKNOWN Operating system for which the file was

designed is unknown to Windows.
VOS_DOS File was designed for MS-DOS.
VOS_NT File was designed for Windows NT.
VOS_WINDOWS16 File was designed for Windows version 3.0

or later.
VOS_WINDOWS32 File was designed for 32-bit Windows.
VOS_DOS_WINDOWS1
6

File was designed for Windows version 3.0
or later running with MS-DOS.

VOS_DOS_WINDOWS3
2

File was designed for 32-bit Windows
running with MS-DOS.

VOS_NT_WINDOWS32 File was designed for 32-bit Windows
running with Windows NT.

The values 0x00002L, 0x00003L, 0x20000L and 0x30000L are reserved.

filetype
Specifies one of the following values:
Value Description
VFT_UNKNOWN File type is unknown to Windows.
VFT_APP File contains an application.
VFT_DLL File contains a dynamic-link library (DLL).
VFT_DRV File contains a device driver. If the dwFileType

member is VFT_DRV, the dwFileSubtype member
contains a more specific description of the driver.

VFT_FONT File contains a font. If the dwFileType member is
VFT_FONT, the dwFileSubtype member contains
a more specific description of the font.

VFT_VXD File contains a virtual device.
VFT_STATIC_LIB File contains a static-link library.

All other values are reserved for use by Microsoft.
subtype

Specifies additional information about the file type.
If the FILETYPE statement specifies VFT_DRV, this parameter can be one of the following values:
Value Description
VFT2_UNKNOWN Driver type is unknown to Windows.
VFT2_DRV_COMM File contains a communications driver.
VFT2_DRV_PRINTER File contains a printer driver.
VFT2_DRV_KEYBOARD File contains a keyboard driver.
VFT2_DRV_LANGUAGE File contains a language driver.
VFT2_DRV_DISPLAY File contains a display driver.
VFT2_DRV_MOUSE File contains a mouse driver.
VFT2_DRV_NETWORK File contains a network driver.
VFT2_DRV_SYSTEM File contains a system driver.
VFT2_DRV_INSTALLAB
LE

File contains an installable driver.

VFT2_DRV_SOUND File contains a sound driver.

If the FILETYPE statement specifies VFT_FONT, this parameter can be one of the following values:
Value Description
VFT2_UNKNOWN Font type is unknown to Windows.
VFT2_FONT_RASTER File contains a raster font.
VFT2_FONT_VECTOR File contains a vector font.
VFT2_FONT_TRUETYPE File contains a TrueType font.

If the FILETYPE statement specifies VFT_VXD, this parameter must be the virtual-device identifier
included in the virtual-device control block.
All subtype values not listed here are reserved for use by Microsoft.

langID
Specifies one of the following language codes:
Code Language Code Language
0x0401 Arabic 0x0417 Rhaeto-Romanic
0x0402 Bulgarian 0x0418 Romanian
0x0403 Catalan 0x0419 Russian
0x0404 Traditional Chinese 0x041A Croato-Serbian (Latin)
0x0405 Czech 0x041B Slovak
0x0406 Danish 0x041C Albanian
0x0407 German 0x041D Swedish
0x0408 Greek 0x041E Thai
0x0409 U.S. English 0x041F Turkish

0x040A Castilian Spanish 0x0420 Urdu
0x040B Finnish 0x0421 Bahasa
0x040C French 0x0804 Simplified Chinese
0x040D Hebrew 0x0807 Swiss German
0x040E Hungarian 0x0809 U.K. English
0x040F Icelandic 0x080A Mexican Spanish
0x0410 Italian 0x080C Belgian French
0x0411 Japanese 0x0810 Swiss Italian
0x0412 Korean 0x0813 Belgian Dutch
0x0413 Dutch 0x0814 Norwegian - Nynorsk
0x0414 Norwegian - Bokml 0x0816 Portuguese
0x0415 Polish 0x081A Serbo-Croatian (Cyrillic)
0x0416 Brazilian Portuguese 0x0C0C Canadian French
0x0417 Rhaeto-Romanic 0x100C Swiss French

charsetID
Specifies one of the following character-set identifiers:
Identifier Character Set
0 7-bit ASCII
932 Windows, Japan (Shift - JIS X-0208)
949 Windows, Korea (Shift - KSC 5601)
950 Windows, Taiwan (GB5)
1200 Unicode
1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic
1252 Windows, Multilingual
1253 Windows, Greek
1254 Windows, Turkish
1255 Windows, Hebrew
1256 Windows, Arabic

string-name
Specifies one of the following redefined names:
Comments

Specifies additional information that should be displayed for diagnostic purposes.
CompanyName

Specifies the company that produced the file¾for example, "Microsoft Corporation" or
"Standard Microsystems Corporation, Inc.". This string is required.

FileDescription
Specifies a file description to be presented to users. This string may be displayed in a list box
when the user is choosing files to install¾for example, "Keyboard Driver for AT-Style
Keyboards" or "Microsoft Word for Windows". This string is required.

FileVersion
Specifies the version number of the file¾for example, "3.10" or "5.00.RC2". This string is
required.

InternalName
Specifies the internal name of the file, if one exists¾for example, a module name if the file is a

dynamic-link library. If the file has no internal name, this string should be the original filename,
without extension. This string is required.

LegalCopyright
Specifies all copyright notices that apply to the file. This should include the full text of all notices,
legal symbols, copyright dates, and so on¾for example, "Copyright© Microsoft Corporation
1990-1992". This string is optional.

LegalTrademarks
Specifies all trademarks and registered trademarks that apply to the file. This should include the
full text of all notices, legal symbols, trademark numbers, and so on¾for example, "Windows™ is
a trademark of Microsoft® Corporation". This string is optional.

OriginalFilename
Specifies the original name of the file, not including a path. This information enables an
application to determine whether a file has been renamed by a user. The format of the name
depends on the file system for which the file was created. This string is required.

PrivateBuild
Specifies information about a private version of the file¾for example, "Built by TESTER1 on \
TESTBED". This string should be present only if the VS_FF_PRIVATEBUILD flag is set in the
dwFileFlags member of the VS_FIXEDFILEINFO structure of the root block.

ProductName
Specifies the name of the product with which the file is distributed¾for example, "Microsoft
Windows". This string is required.

ProductVersion
Specifies the version of the product with which the file is distributed¾for example, "3.10" or
"5.00.RC2". This string is required.

SpecialBuild
Specifies how this version of the file differs from the standard version¾for example, "Private
build for TESTER1 solving mouse problems on M250 and M250E computers". This string
should be present only if the VS_FF_SPECIALBUILD flag is set in the dwFileFlags member of
the VS_FIXEDFILEINFO structure in the root block.

A string information block has the following form:

BLOCK "StringFileInfo"
BEGIN
 BLOCK "lang-charset"
 BEGIN
 VALUE "string-name", "value"
 . . .
 END
END

Following are the parameters in the StringFileInfo block:

lang-charset
Specifies a language and character-set identifier pair. It is a hexadecimal string consisting of the
concatenation of the language and character-set identifiers listed earlier in this section.

string-name
Specifies the name of a value in the block and can be one of the redefined names listed earlier in
this section.

value
Specifies, as a character string, the value of the corresponding string name. More than one VALUE
statement can be given.

A variable information block has the following form:

BLOCK "VarFileInfo"
BEGIN
 VALUE "Translation",
 langID, charsetID
 . . .
END

Following are the parameters in the variable information block:

langID
Specifies one of the language identifiers listed earlier in this section.

charsetID
Specifies one of the character-set identifiers listed earlier in this section. More than one identifier
pair can be given, but each pair must be separated from the preceding pair with a comma.

Preprocessing Reference
The syntax and semantics for the RC preprocessor is the same as for the preprocessor in a C
compiler. Single-line comments begin with two forward slashes (//) and run to the end of the line. Block
comments begin with an opening delimiter (/*) and run to a closing delimiter (*/). Comments do not
nest.

You use the #define directive to define symbols for your resource identifiers in a header file. You
include this header both in the resource script and your application source code. Similarly, the values
for attributes and styles are defined by including the C header files for Windows.

You can also define macros. The standard C preprocessing operators (#, ##) can be used in a macro
definition. For detailed information on preprocessing and defining macros, see your C compiler
documentation.

Directi
ve

Description

#define Defines a specified name by assigning it a given value.
#elif Marks an optional clause of a conditional-compilation block.
#else Marks the last optional clause of a conditional-compilation block.
#endif Marks the end of a conditional-compilation block.
#if Conditionally compiles the script if a specified expression is true.
#ifdef Conditionally compiles the script if a specified name is defined.
#ifndef Conditionally compiles the script if a specified name is not

defined.
#includ
e

Copies the contents of a file into the resource-definition file.

#undef Removes the definition of the specified name.

#define
#define name value

The #define directive assigns the given value to the specified name. All subsequent occurrences of the
name are replaced by the value.

Parameters

name
Specifies the name to be defined. This value is any combination of letters, digits, and punctuation.

value
Specifies any integer, character string, or line of text.

Example

This example assigns values to the names "NONZERO" and "USERCLASS":

#define NONZERO 1
#define USERCLASS "MyControlClass"

See Also

#ifdef, #ifndef, #undef

#elif
#elif constant-expression

The #elif directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The directive controls conditional compilation of the resource file by checking
the specified constant expression. If the constant expression is nonzero, #elif directs the compiler to
continue processing statements up to the next #endif, #else, or #elif directive and then skip to the
statement after #endif. If the constant expression is zero, #elif directs the compiler to skip to the next
#endif, #else, or #elif directive. You can use any number of #elif directives in a conditional block.

Parameter

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and relational operators.

Example

In this example, #elif directs the compiler to process the second BITMAP statement only if the value
assigned to the name "Version" is less than 7. The #elif directive itself is processed only if Version is
greater than or equal to 3.

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
#endif

See Also

#else, #endif, #if, #ifdef, #ifndef

#else
#else

The #else directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The #else directive must be the last directive before the #endif directive.

This directive has no arguments.

Example

This example compiles the second BITMAP statement only if the name "DEBUG" is not defined:

#ifdef DEBUG
 BITMAP 1 errbox.bmp
#else
 BITMAP 1 userbox.bmp
#endif

See Also

#elif, #endif, #if, #ifdef, #ifndef

#endif
#endif

The #endif directive marks the end of a conditional-compilation block defined by a #ifdef directive.
One #endif is required for each #if, #ifdef, or #ifndef directive.

This directive has no arguments.

See Also

#elif, #else, #if, #ifdef, #ifndef

#if
#if constant-expression

The #if directive controls conditional compilation of the resource file by checking the specified constant
expression. If the constant expression is nonzero, #if directs the compiler to continue processing
statements up to the next #endif, #else, or #elif directive and then skip to the statement after the
#endif directive. If the constant expression is zero, #if directs the compiler to skip to the next #endif,
#else, or #elif directive.

Parameter

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and relational operators.

Example

This example compiles the BITMAP statement only if the value assigned to the name "Version" is less
than 3:

#if Version < 3
BITMAP 1 errbox.bmp
#endif

See Also

#elif, #else, #endif, #ifdef, #ifndef

#ifdef
#ifdef name

The #ifdef directive controls conditional compilation of the resource file by checking the specified
name. If the name has been defined by using a #define directive or by using the -d command-line
option with the Resource Compiler, #ifdef directs the compiler to continue with the statement
immediately after the #ifdef directive. If the name has not been defined, #ifdef directs the compiler to
skip all statements up to the next #endif directive.

Parameter

name
Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Debug" is defined:

#ifdef Debug
BITMAP 1 errbox.bmp
#endif

See Also

#define, #endif, #if, #ifndef, #undef

#ifndef
#ifndef name

The #ifndef directive controls conditional compilation of the resource file by checking the specified
name. If the name has not been defined or if its definition has been removed by using the #undef
directive, #ifndef directs the compiler to continue processing statements up to the next #endif, #else,
or #elif directive and then skip to the statement after the #endif directive. If the name is defined,
#ifndef directs the compiler to skip to the next #endif, #else, or #elif directive.

Parameter

name
Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Optimize" is not defined:

#ifndef Optimize
BITMAP 1 errbox.bmp
#endif

See Also

#elif, #else, #endif, #if, #ifdef, #undef

#include
#include (filename)

The #include directive causes Resource Compiler to process the file specified in the filename
parameter. This file should be a header file that defines the constants used in the resource-definition
file.

Parameter

filename
Specifies the name of the file to be included. If the file is in the current directory, the string must be
enclosed in double quotation marks; if the file is in the directory specified by the INCLUDE
environment variable, the string must be enclosed in less-than and greater-than characters (<>). You
must give a full path enclosed in double quotation marks if the file is not in the current directory or in
the directory specified by the INCLUDE environment variable.

Example

This example processes the header files WINDOWS.H and HEADERS\MYDEFS.H while compiling the
resource-definition file:

#include <windows.h>
#include "headers\mydefs.h"

See Also

#define

#undef
#undef name

The #undef directive removes the current definition of the specified name. All subsequent occurrences
of the name are processed without replacement.

Parameter

name
Specifies the name to be removed. This value is any combination of letters, digits, and punctuation.

Example

This example removes the definitions for the names "nonzero" and "USERCLASS":

#undef nonzero
#undef USERCLASS

See Also

#define

RC Diagnostic Messages

The Help topics available under the alphabetic buttons at the top of the Help window contain
descriptions of diagnostic messages produced by Microsoft Resource Compiler (RC) for Windows NT.
Many of these messages appear when RC is not able to compile resources properly. The descriptions
clarify the cause of each message.

A capital V in parentheses (V) at the beginning of a message description indicates that the message is
displayed only if RC is run with the /V (verbose) option. These messages are generally informative and
do not necessarily indicate errors.

RC Diagnostic Messages

- A -
Accelerator Type required (ASCII or VIRTKEY)
The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

RC Diagnostic Messages

- B -
BEGIN expected in Accelerator Table
An ACCELERATORS statement was not followed by the BEGIN keyword.

BEGIN expected in Dialog
A DIALOG statement was not followed by the BEGIN keyword.

BEGIN expected in menu
A MENU statement was not followed by the BEGIN keyword.

BEGIN expected in RCData
An RCDATA statement was not followed by the BEGIN keyword.

BEGIN expected in String Table
A STRINGTABLE statement was not followed by the BEGIN keyword.

BEGIN expected in VERSIONINFO resource
A VERSIONINFO statement was not followed by the BEGIN keyword.

Bitmap file resource-file is not in version-number format.
Use Microsoft Image Editor (IMAGEDIT.EXE) to convert old resource files to the current format.

RC Diagnostic Messages

- C -
Cannot Re-use String Constants
You are using the same value twice in a STRINGTABLE statement. Make sure that you have not
mixed overlapping decimal and hexadecimal values.

Control Character out of range [A - Z]
A control character in the ACCELERATORS statement is invalid. The character following the caret (^)
must be in the range A through Z.

Could not open in-file-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the file
exists and that you typed the filename correctly.

Couldn't open resource-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the file
exists and that you typed the filename correctly.

Creating resource-name
(V) Microsoft Windows Resource Compiler (RC) is creating a new binary resource (.RES) file.

RC Diagnostic Messages

- E -
Empty menus not allowed
An END keyword appears before any menu items are defined in the MENU statement. Empty menus
are not permitted by Microsoft Windows Resource Compiler (RC). Make sure that you do not have any
opening quotation marks within the MENU statement.

END expected in Dialog
The END keyword must appear at the end of a DIALOG statement. Make sure that there are no
opening quotation marks left from the preceding statement.

END expected in menu
The END keyword must appear at the end of a MENU statement. Make sure that there are no
mismatched BEGIN and END statements.

Error Creating resource-name
Microsoft Windows Resource Compiler (RC) could not create the specified binary resource (.RES) file.
Make sure that it is not being created on a read-only drive. Use the -V option to find out whether the file
is being created.

Expected Comma in Accelerator Table
Microsoft Windows Resource Compiler (RC) requires a comma between the event and idvalue
parameters in the ACCELERATORS statement.

Expected control class name
The class parameter of a CONTROL statement in the DIALOG statement must be one of the following
control types: BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR, STATIC, or user-defined.
Make sure that the class is spelled correctly.

Expected font face name
The typeface parameter of the FONT statement in the DIALOG statement must be a character string
enclosed in double quotation marks. This parameter specifies the name of a font.

Expected ID value for Menuitem
The MENU statement must contain a MENUITEM statement, which has either an integer or a symbolic
constant in the MenuID parameter.

Expected Menu String
Each MENUITEM and POPUP statement must contain a text parameter. This parameter is a string
enclosed in double quotation marks that specifies the name of the menu item or pop-up menu. A
MENUITEM SEPARATOR statement requires no quoted string.

Expected numeric command value
Microsoft Windows Resource Compiler (RC) was expecting a numeric idvalue parameter in the
ACCELERATORS statement. Make sure that you have used a #define constant to specify the value
and that the constant used is spelled correctly.

Expected numeric constant in string table
A numeric constant, defined in a #define statement, must immediately follow the BEGIN keyword in a
STRINGTABLE statement.

Expected numeric point size
The pointsize parameter of the FONT statement in the DIALOG statement must be an integer point-
size value.

Expected Numerical Dialog constant
A DIALOG statement requires integer values for the x, y, width, and height parameters. Make sure that
these values, which are included after the DIALOG keyword, are not negative.

Expected String in STRINGTABLE
A string is expected after each numeric stringid parameter in a STRINGTABLE statement.

Expected String or Constant Accelerator command
Microsoft Windows Resource Compiler (RC) was not able to determine which key was being set up for
the accelerator. The event parameter in the ACCELERATORS statement might be invalid.

Expected VALUE, BLOCK, or END keyword.
The VERSIONINFO structure requires a VALUE, BLOCK, or END keyword.

Expecting number for ID
A number is expected for the id parameter of a CONTROL statement in the DIALOG statement. Make
sure that you have a number or a #define statement for the control identifier.

Expecting quoted string for key
The key string following the BLOCK or VALUE keyword should be enclosed in double quotation marks.

Expecting quoted string in dialog class
The class parameter of the CLASS statement in the DIALOG statement must be an integer or a string
enclosed in double quotation marks.

Expecting quoted string in dialog title
The captiontext parameter of the CAPTION statement in the DIALOG statement must be a character
string, enclosed in double quotation marks.

RC Diagnostic Messages

- F -
File not found: filename
The file specified in the rc command was not found. Make sure that the file has not been moved to
another directory and that the filename or path is typed correctly.

Font names must be ordinals
The pointsize parameter in the FONT statement must be an integer, not a string.

RC Diagnostic Messages

- I -
Invalid Accelerator
An event parameter in the ACCELERATORS statement was not recognized or was more than two
characters long.

Invalid Accelerator Type (ASCII or VIRTKEY)
The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

Invalid control character
A control character in the ACCELERATORS statement is invalid. A valid control character consists of a
caret (^) followed by a single letter.

Invalid Control type
The CONTROL statement in a DIALOG statement must be one of the following: AUTO3STATE,
AUTOCHECKBOX, AUTORADIOBUTTON, CHECKBOX, COMBOBOX, CONTROL, CTEXT,
DEFPUSHBUTTON, EDITTEXT, GROUPBOX, ICON, LISTBOX, LTEXT, PUSHBOX, PUSHBUTTON,
RADIOBUTTON, RTEXT, SCROLLBAR, STATE3.

Invalid directive in preprocessed RC file
The specified filename has an embedded newline character.

Invalid .EXE file

The executable (.EXE) file is invalid. Make sure that the linker created it correctly and that the file
exists.

Invalid switch, option
An option used was invalid. For a list of the command-line options, use the RC /? command.

Invalid switch, too many -D switches
Too many /D options were specified. To define a large number of symbols, use the #include directive
to include a file of definitions.

Invalid type
The resource type was not among the types defined in the include file.

Invalid usage. Use RC -? for Help
Make sure that you have at least one filename to work with. For a list of the command-line options, use
the RC /? command.

I/O error reading file.
Read failed. Since this is a generic routine, no specific filename is supplied.

I/O error seeking in file
Seeking in file failed. Since this is a generic routine, no specific filename is supplied.

I/O error writing file.
Write failed. Since this is a generic routine, no specific filename is supplied.

RC Diagnostic Messages

- N -
No resource binary filename specified.
The /FO option was used, but no binary resource (.RES) file was specified.

RC Diagnostic Messages

- O -
Old DIB in resource-name. Pass it through IMAGEDIT.
The resource file specified is not compatible with Win32. Make sure you have read and saved this file
using the latest version of Microsoft Image Editor (IMAGEDIT.EXE).

Out of heap memory
There was not enough memory.

Out of memory, needed n bytes
Microsoft Windows Resource Compiler (RC) was not able to allocate the specified amount of memory.

RC Diagnostic Messages

- R -
Redefinition of Button Type
The specified button styles conflict with or modify the style specified by the control keyword. This is a
warning only and may be ignored.

The following common method of declaring an automatic radio button generates this warning:

RADIOBUTTON "&Italic", MYRB_ITALIC, 10, 10, 30, 12, BS_AUTORADIOBUTTON

To avoid the warning, use the control statement appropriate for the type of button that you want to
define. In this example, the corrected statement is:

AUTORADIOBUTTON "&Italic", MYRB_ITALIC, 10, 10, 30, 12

RC: Invalid switch: option
An option used was invalid. For a list of the command-line options, use the RC /? command.

RC terminated by user
A CTRL+C key combination was pressed, exiting Microsoft Windows Resource Compiler (RC).

RC terminating after preprocessor errors
For information about preprocessor errors, see the documentation for the preprocessor.

Resource file resource-name is not in version-number format.

Make sure your icons and cursors have been read and saved using the latest version of Microsoft
Image Editor (IMAGEDIT.EXE).

RC Diagnostic Messages

- T -
Text string or ordinal expected in Control
The text parameter of a CONTROL statement in the DIALOG statement must be either a text string or
an ordinal reference to the type of control that is expected. If using an ordinal, make sure that you have
a #define statement for the control.

RC Diagnostic Messages

- U -
Unable to create destination
Microsoft Windows Resource Compiler (RC) was not able to create the destination file. Make sure that
there is enough disk space.

Unbalanced Parentheses
Make sure that you have closed every opening parenthesis in the DIALOG statement.

Unexpected value in RCData
The values for the raw-data parameter in the RCDATA statement must be integers or strings,
separated by commas. Make sure that you did not leave out a comma or a quotation mark around a
string.

Unexpected value in value data
A statement contained information with a format or size different from the expected value for that
parameter.

Unknown DIB header format
The device-independent bitmap (DIB) header is not a BITMAPCOREHEADER or
BITMAPINFOHEADER structure.

Unknown Menu SubType
The item-definitions parameter of the MENU statement can contain only MENUITEM and POPUP

statements.

Unrecognized VERSIONINFO field; BEGIN or comma expected
The format of the information following a VERSIONINFO statement is incorrect.

RC Diagnostic Messages

- V -
Version WORDs separated by commas expected
Values in an information block for a VERSIONINFO statement should be separated by commas.

RC Diagnostic Messages

- W -
Warning: ASCII character not equivalent to virtual key code
An invalid virtual-key code exists in the ACCELERATORS statement. The ASCII values for some
characters such as *, ^, or & are not equivalent to the virtual-key codes for the corresponding keys. In
the case of the asterisk [*], the virtual-key code is equivalent to the ASCII value for 8, the numeric
character on the same key. Therefore, the statement VIRTKEY '* ' is invalid.

Warning: SHIFT or CONTROL used without VIRTKEY
The ALT, SHIFT, and CONTROL options apply only to virtual keys in the ACCELERATORS statement.
Make sure that the VIRTKEY option is used with one of these other options.

Writing resource type image lang:language size:size
(V) Microsoft Windows Resource Compiler (RC) is writing the specified resource. The type is the
resource type. It may be a number or a string. The image can be a number or a string. The language is
the national language of the resource. The size is the decimal size of the resource in bytes.

Resource Compiler Outline

Resource Compiler
Including Resources in an Application
Creating a Resource-Definition File

Preprocessing Directives
Single-Line Statements
Multiline Statements
Sample Resource-Definition File

Using RC (The RC Command Line)
Defining Names for the Preprocessor
Renaming the Compiled Resource File
Searching for Files
Displaying Progress Messages

Resource-Definition Statements
Common Statement Parameters
Common Resource Attributes

Statement Reference
Preprocessing Reference
RC Diagnostic Messages

Resource Compiler Statements

Common Statement Parameters
Common Resource Attributes
ACCELERATORS Resource
AUTO3STATE Control
AUTOCHECKBOX Control
AUTORADIOBUTTON Control
BITMAP Resource
CAPTION Statement
CHARACTERISTICS Statement
CHECKBOX Control
CLASS Statement
COMBOBOX Control
CONTROL: General Control
CTEXT Control
CURSOR Resource
DEFPUSHBUTTON Control
DIALOG Resource
DIALOGEX Resource
EDITTEXT Control
EXSTYLE Statement
FONT Resource
FONT Statement
GROUPBOX Control
ICON Resource
ICON Control
LANGUAGE Statement
LISTBOX Control
LTEXT Control
MENU Resource
MENU Statement
MENUEX Resource
MENUITEM Statement
MESSAGETABLE Resource
POPUP Resource
PUSHBOX Control
PUSHBUTTON Control
RADIOBUTTON Control
RCDATA
RTEXT Control
SCROLLBAR Control
STATE3 Control
STRINGTABLE Resource
STYLE Statement
User-Defined Resource
VERSION Statement
VERSIONINFO Resource

