

Appearance Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAuto3DACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAuto3DActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAuto3DActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAuto3DActiveXControlsS"}

Returns or sets the paint style of controls on an MDIForm or Form object at design time. Read-only
at run time.

Syntax
object.Appearance
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The Appearance property settings are:

Setting Description
0 Flat. Paints controls and forms without visual effects.
1 (Default) 3D. Paints controls with three-dimensional

effects.

Remarks
If set to 1 at design time, the Appearance property draws controls with three-dimensional effects. If
the form's BorderStyle property is set to Fixed Double (vbFixedDouble, or 3), the caption and
border of the form are also painted with three-dimensional effects. Setting the Appearance property
to 1 also causes the form and its controls to have their BackColor property set to the color selected
for Button Face in the Color option of the operating system's Control Panel.

Setting the Appearance property to 1 for an MDIForm object affects only the MDI parent form. To
have three-dimensional effects on MDI child forms, you must set each child form's Appearance
property to 1.

BackColor, ForeColor Properties (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackColorActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBackColorActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBackColorActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackColorActiveXControlsS"}

· BackColor — returns or sets the background color of an object.
· ForeColor — returns or sets the foreground color used to display text and graphics in an object.

Syntax
object.BackColor [= color]
object.ForeColor [= color]

The BackColor and ForeColor property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
color A value or constant that determines the background

or foreground colors of an object, as described in
Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.
The settings for color are:

Setting Description
Normal RGB colors Colors specified by using the Color palette or by

using the RGB or QBColor functions in code.
System default
colors

Colors specified by system color constants listed in
the Visual Basic (VB) object library in the Object
Browser. The Windows operating environment
substitutes the user's choices as specified in the
Control Panel settings.

For all forms and controls, the default settings at design time are:

· BackColor — set to the system default color specified by the constant vbWindowBackground.
· ForeColor — set to the system default color specified by the constant vbWindowText.

Remarks
In the Label, and Shape, controls, the BackColor property is ignored if the BackStyle property
setting is 0 (Transparent).

If you set the BackColor property on a Form object or a PictureBox control, all text and graphics,
including the persistent graphics, are erased. Setting the ForeColor property doesn't affect graphics
or print output already drawn. On all other controls, the screen color changes immediately.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in
this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each represented by a
number between 0 and 255 (&HFF). If the high byte isn't 0, Visual Basic uses the system colors, as
defined in the user's Control Panel settings and by constants listed in the Visual Basic (VB) object
library in the Object Browser.

To display text in the Windows operating environment, both the text and background colors must be

solid. If the text or background colors you've selected aren't displayed, one of the selected colors may
be dithered — that is, comprised of up to three different-colored pixels. If you choose a dithered color
for either the text or background, the nearest solid color will be substituted.

Note The Animation control displays only two types of AVI files, either uncompressed or
compressed in RLE8 format. AVI files compressed with RLE8 display only 8-bit colors. The BackColor
property for the Animation control is "rounded" to the closest 8-bit color in the standard palette.

BorderStyle Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproBorderStyleActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStyleActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBorderStyleActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStyleActiveXControlsS"}

Returns or sets the border style for an object. For the Form object and the TextBox control, read-only
at run time.

Syntax
object.BorderStyle = [value]

The BorderStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that determines the border style,

as described in Settings.

Settings
The BorderStyle property settings for a Form object are:

Constant Setting Description
vbBSNone 0 None (no border or border-related

elements).
VbFixedSingle 1 Fixed Single. Can include Control-

menu box, title bar, Maximize
button, and Minimize button.
Resizable only using Maximize and
Minimize buttons.

VbSizable 2 (Default) Sizable. Resizable using
any of the optional border elements
listed for setting 1.

VbFixedDouble 3 Fixed Dialog. Can include Control-
menu box and title bar; can't include
Maximize or Minimize buttons. Not
resizable.

VbFixedToolWindow 4 Fixed ToolWindow. Under Windows
3.x and Windows NT 3.51 and
earlier, behaves like Fixed Single.
Does not display Maximize or
Minimize buttons. Not resizable.
Under Windows 95, displays the
Close button and displays the title
bar text in a reduced font size. The
form does not appear in the
Windows 95 task bar.

VbSizableToolWindow 5 Sizable ToolWindow. Under
Windows 3.x and Windows NT 3.51
and earlier, behaves like Sizable.
Does not display Maximize or
Minimize buttons. Resizable. Under
Windows 95, displays the Close

button and displays the title bar text
in a reduced font size. The form
does not appear in the Windows 95
task bar.

The BorderStyle property settings for MS Flex Grid, Image, Label, OLE container, PictureBox,
Frame, and TextBox controls are:

Setting Description
0 (Default for Image and Label controls) None.
1 (Default for MS Flex Grid, PictureBox, TextBox, and OLE

container controls) Fixed Single.

The BorderStyle property settings for Line and Shape controls are:

Constant Setting Description
vbTransparent 0 Transparent
vbBSSolid 1 (Default) Solid. The border is

centered on the edge of the shape.
vbBSDash 2 Dash
vbBSDot 3 Dot
vbBSDashDot 4 Dash-dot
vbBSDashDotDot 5 Dash-dot-dot
vbBSInsideSolid 6 Inside solid. The outer edge of the

border is the outer edge of the
shape.

Remarks
For a form, the BorderStyle property determines key characteristics that visually identify a form as
either a general-purpose window or a dialog box. Setting 3 (Fixed Dialog) is useful for standard dialog
boxes. Settings 4 (Fixed ToolWindow) and 5 (Sizable ToolWindow) are useful for creating toolbox-
style windows.

MDI child forms set to 2 (Sizable) are displayed within the MDI form in a default size defined by the
Windows operating environment at run time. For any other setting, the form is displayed in the size
specified at design time.

Changing the setting of the BorderStyle property of a Form object may change the settings of the
MinButton, MaxButton, and ShowInTaskbar properties. When BorderStyle is set to 1 (Fixed
Single) or 2 (Sizable), the MinButton, MaxButton, and ShowInTaskbar properties are automatically
set to True. When BorderStyle is set to 0 (None), 3 (Fixed Dialog), 4 (Fixed ToolWindow), or 5
(Sizable ToolWindow), the MinButton, MaxButton, and ShowInTaskbar properties are automatically
set to False.

Note If a form with a menu is set to 3 (Fixed Dialog), it is displayed with a setting 1 (Fixed Single)
border instead.
At run time, a form is either modal or modeless, which you specify using the Show method.

BorderStyle Constants (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbidxBorderStyleConstantsACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}

Constant Value Description
ccNone 0 (Default) No border or border-related

elements.
ccFixedSingle 1 (Default for ListView control) Fixed

single. There is a single line border
around the control.

Note The cc prefix refers to the custom controls. The prefixes for the constants change with the
specific control or group of controls. However, the description remains the same unless indicated.

Caption Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCaptionActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCaptionActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCaptionActiveXControlsS"}

· Form — determines the text displayed in the Form or MDIForm object's title bar . When the form is
minimized, this text is displayed below the form's icon.

· Control — determines the text displayed in or next to a control.
· MenuLine object — determines the text displayed for a Menu control or an object in the

MenuItems collection.

For a Menu control, Caption is normally read/write at run time. But Caption is read-only for menus
that are exposed or supplied by Visual Basic to add-ins, such as the MenuLine object.

Syntax
object.Caption [= string]

The Caption property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list. If object is omitted, the form
associated with the active form moduleis assumed to
be object.

string A string expression that evaluates to the text
displayed as the caption.

Remarks
When you create a new object, its default caption is the default Name property setting. This default
caption includes the object name and an integer, such as Command1 or Form1. For a more
descriptive label, set the Caption property.

You can use the Caption property to assign an access key to a control. In the caption, include an
ampersand (&) immediately preceding the character you want to designate as an access key. The
character is underlined. Press the ALT key plus the underlined character to move the focus to that
control. To include an ampersand in a caption without creating an access key, include two
ampersands (&&). A single ampersand is displayed in the caption and no characters are underlined.

A Label control’s caption size is unlimited. For forms and all other controls that have captions, the
limit is 255 characters.

To display the caption for a form, set the BorderStyle property to either Fixed Single (1 or
vbFixedSingle), Sizable (2 or vbSizable), or Fixed Double (3 or vbFixedDouble). A caption too long
for the form's title bar is clipped. When an MDI child form is maximized within an MDIForm object, the
child form's caption is included in the parent form's caption.

Tip For a label, set the AutoSize property to True to automatically resize the control to fit its
caption.

Change Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtChangeACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtChangeActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtChangeActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtChangeActiveXControlsS"}

Indicates the contents of a control have changed. How and when this event occurs varies with the
control:

· ComboBox — changes the text in the text box portion of the control. Occurs only if the Style
property is set to 0 (Dropdown Combo) or 1 (Simple Combo) and the user changes the text or you
change the Text property setting through code.

· DirListBox — changes the selected directory. Occurs when the user double-clicks a new directory
or when you change the Path property setting through code.

· DriveListBox — changes the selected drive. Occurs when the user selects a new drive or when
you change the Drive property setting through code.

· HScrollBar and VScrollBar (horizontal and vertical scroll bars) — move the scroll box portion of
the scroll bar. Occurs when the user scrolls or when you change the Value property setting through
code.

· Label — changes the contents of the Label. Occurs when a DDE link updates data or when you
change the Caption property setting through code.

· PictureBox — changes the contents of the PictureBox. Occurs when a DDE link updates data or
when you change the Picture property setting through code.

· TextBox — changes the contents of the text box. Occurs when a DDE link updates data, when a
user changes the text, or when you change the Text property setting through code.

Syntax
Private Sub object_Change([index As Integer])
The Change event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array

Remarks
The Change event procedure can synchronize or coordinate data display among controls. For
example, you can use a scroll bar's Change event procedure to update the scroll bar's Value property
setting in a TextBox control. Or you can use a Change event procedure to display data and formulas
in a work area and results in another area.

Change event procedures are also useful for updating properties in file-system controls (DirListBox,
DriveListBox, and FileListBox). For example, you can update the Path property setting for a
DirListBox control to reflect a change in a DriveListBox control's Drive property setting.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:
· If possible, avoid writing a Change event procedure for a control that alters that control's contents.

If you do write such a procedure, be sure to set a flag that prevents further changes while the
current change is in progress.

· Avoid creating two or more controls whose Change event procedures affect each other, for

example, two TextBox controls that update each other during their Change events.
· Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar controls.

Clear Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearObjectACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodX;vbmthClearObjectsActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthClearObjectsActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearObjectsActiveXControlsS"}

Removes all objects in a collection.

Syntax
object.Clear
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
To remove only one object from a collection, use the Remove method.

Clear Method (ActiveX Controls) Example
This example adds six Panel objects to a StatusBar control, creating a total of seven Panel objects.
A click on the form clears all Panel objects when their number reaches seven. If the number of Panel
objects is less than seven, each click on the form will add a new Panel object to the control until the
number seven is once again reached. To try the example, place a StatusBar control on a form and
paste the code into the Declarations section. Run the example and click on the form to clear all Panel
objects and subsequently add Panel objects.
Private Sub Form_Load()

Dim pnlX As Panel ' Declare object variable for Panel objects.
Dim I As Integer

' Add 6 Panel objects to the single default Panel object,
' making 7 Panel objects.
For I = 1 to 6

Set pnlX = StatusBar1.Panels.Add
Next I

End Sub

Private Sub Form_Click()
' If the Count of the collection is 7, then clear the collection.
' Otherwise, add one Panel and use the collection's Count property
' to set its Style.
If StatusBar1.Panels.Count = 7 Then

StatusBar1.Panels.Clear
Else

Dim pnlX As Panel
Set pnlX = StatusBar1.Panels.Add(, , "simple", 0)
' The Style property is enumerated from 0 to 6. Use the Panels
' Count property -1 to set the Style property for the new Panel.
' Display all panels regardless of form width.
pnlX.minwidth = TextWidth("simple")
pnlX.AutoSize = sbrSpring
pnlX.Style = Statusbar1.Panels.Count - 1

End If
End Sub

Click Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtClickACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtClickActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtClickActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtClickActiveXControlsS"}

Occurs when the user presses and then releases a mouse button over an object. It can also occur
when the value of a control is changed.

For a Form object, this event occurs when the user clicks either a blank area or a disabled control.
For a control, this event occurs when the user:

· Clicks a control with the left or right mouse button. With a CheckBox, CommandButton, Listbox,
or OptionButton control, the Click event occurs only when the user clicks the left mouse button.

· Selects an item in a ComboBox or ListBox control, either by pressing the arrow keys or by
clicking the mouse button.

· Presses the SPACEBAR when a CommandButton, OptionButton, or CheckBox control has the
focus.

· Presses ENTER when a form has a CommandButton control with its Default property set to True.
· Presses ESC when a form has a Cancel button — a CommandButton control with its Cancel

property set to True.
· Presses an access key for a control. For example, if the caption of a CommandButton control is

"&Go", pressing ALT+G triggers the event.

You can also trigger the Click event in code by:

· Setting a CommandButton control's Value property to True.
· Setting an OptionButton control's Value property to True.
· Changing a CheckBox control's Value property setting.

Syntax
Private Sub Form_Click()
Private Sub object_Click([index As Integer])
The Click event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Typically, you attach a Click event procedure to a CommandButton control, Menu object, or
PictureBox control to carry out commands and command-like actions. For the other applicable
controls, use this event to trigger actions in response to a change in the control.

You can use a control's Value property to test the state of the control from code. Clicking a control
generates MouseDown and MouseUp events in addition to the Click event. The order in which these
three events occur varies from control to control. For example, for ListBox and CommandButton
controls, the events occur in this order: MouseDown, Click, MouseUp. But for FileListBox, Label, or
PictureBox controls, the events occur in this order: MouseDown, MouseUp, and Click. When you're
attaching event procedures for these related events, be sure that their actions don't conflict. If the
order of events is important in your application, test the control to determine the event order.

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DlbClick event will never trigger, because the Click event is the
first event to trigger between the two. As a result, the mouse click is intercepted by the Click event, so
the DblClick event doesn't occur.

Clipboard Object Constants (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxClipboardConstantsACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbCFLink &HBF00 DDE conversation information
vbCFRTF &HBF01 Rich Text Format (.rtf file)
vbCFText 1 Text (.txt file)
vbCFBitmap 2 Bitmap (.bmp file)
vbCFMetafile 3 Metafile (.wmf file)
vbCFDIB 8 Device-independent bitmap
vbCFPalette 9 Color palette

Count Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCountActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCountActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCountActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCountActiveXControlsS"}

Returns the number of objects in a collection.

Syntax
object.Count
The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks
You can use this property with a For...Next statement to carry out an operation on the forms or
controls in a collection. For example, the following code moves all controls on a form 0.5 inches to the
right (ScaleMode property setting is 1 or vbTwips):
For I = 0 To Form1.Controls.Count - 1

Form1.Controls(I).Left = Form1.Controls(I).Left + 720
Next I
You can also use this kind of structure to quickly enable or disable all controls on a form.

When used with the If TypeOf statement, you can cycle through all controls and change, for example,
the Enabled property setting of only the text boxes or the BackColor property setting of only the
option buttons.

Enabled Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproEnabledActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEnabledActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEnabledActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnabledActiveXControlsS"}

Returns or sets a value that determines whether a form or control can respond to user-generated
events.

Syntax
object.Enabled [= boolean]

The Enabled property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list. If object is omitted, the form
associated with the active form module is assumed to
be object.

boolean A Boolean expression that specifies whether object
can respond to user-generated events.

Settings
The settings for boolean are:

Setting Description
True (Default) Allows object to respond to events.
False Prevents object from responding to events.

Remarks
The Enabled property allows forms and controls to be enabled or disabled at run time. For example,
you can disable objects that don't apply to the current state of the application. You can also disable a
control used purely for display purposes, such as a text box that provides read-only information.

Disabling a Timer control by setting Enabled to False cancels the countdown set up by the control's
Interval property.

For a Menu control, Enabled is normally read/write at run time. But Enabled is read-only for menu
items that are exposed or supplied by Visual Basic to add-ins, such as the Add-In Manager command
on the Add-Ins menu.

DataObject Object (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDataObjectACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbobjDataObjectActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDataObjectActiveXControlsP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDataObjectActiveXControlsM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDataObjectActiveXControlsE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataObjectActiveXControlsS"}

The DataObject object is a container for data being transferred from an component source to an
component target. The data is stored in the format defined by the method using the DataObject
object.

Syntax
DataObject

Remarks
The DataObject, which mirrors the IDataObject interface, allows OLE drag and drop and clipboard
operations to be implemented.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

DataObjectFiles Collection (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataObjectFilesACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbcolDataObjectFilesActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vamthItem;vbcolDataObjectFilesActiveXControlsP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vamthAdd;vbcolDataObjectFilesActiveXControlsM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataObjectFilesActiveXControlsE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataObjectFilesActiveXControlsS"}

A collection whose elements represent a list of all filenames used by a DataObject object (such as
the names of files that a user drags to or from the Windows File Explorer.)

Syntax
object.DataObjectFiles(index)
The DataObjectFiles collection syntax has these parts:

Part Description
object An object expression that evaluates to a DataObject

object.
index An integer with a range from 0 to

DataObjectFiles.Count - 1.

Remarks
Note This collection is used by the Files property only when the data in the DataObject object is in
the vbCFFiles format.
The DataObjectFiles collection is used by the Files property to store filenames in a DataObject
object. It includes the Remove, Add, and Clear methods which allow you to manipulate its contents.

DataSource Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataSourceActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataSourceActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataSourceActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataSourceActiveXControlsS"}

Sets a value that specifies the Data control through which the current control is bound to a database.
Not available at run time.

Remarks
To bind a control to a field in a database at run time, you must specify a Data control in the
DataSource property at design time using the Properties window.

To complete the connection with a field in the Recordset managed by the Data control, you must also
provide the name of a Field object in the DataField property. Unlike the DataField property, the
DataSource property setting isn't available at run time.

Data Type
String

DblClick Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"formDblClickSee;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDblClickActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"formDblClickActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDblClickActiveXControlsS"}

Occurs when the user presses and releases a mouse button and then presses and releases it again
over an object.

For a form, the DblClick event occurs when the user double-clicks a disabled control or a blank area
of a form. For a control, it occurs when the user:

· Double-clicks a control with the left mouse button.
· Double-clicks an item in a ComboBox control whose Style property is set to 1 (Simple) or in a

FileListBox, ListBox, DBCombo, or DBList control.

Syntax
Private Sub Form_DblClick ()
Private Sub object_DblClick (index As Integer)
Part Description
object An object expression that evaluates to an object in the Applies

To list.
index Identifies the control if it's in a control array.

Remarks
The argument Index uniquely identifies a control if it's in a control array. You can use a DblClick event
procedure for an implied action, such as double-clicking an icon to open a window or document. You
can also use this type of procedure to carry out multiple steps with a single action, such as double-
clicking to select an item in a list box and to close the dialog box.

To produce such shortcut effects in Visual Basic, you can use a DblClick event procedure for a list box
or file list box in tandem with a default button — a CommandButton control with its Default property
set to True. As part of the DblClick event procedure for the list box, you simply call the default button's
Click event.

For those objects that receive Mouse events, the events occur in this order: MouseDown, MouseUp,
Click, DblClick, and MouseUp.

If DblClick doesn't occur within the system's double-click time limit, the object recognizes another
Click event. The double-click time limit may vary because the user can set the double-click speed in
the Control Panel. When you're attaching procedures for these related events, be sure that their
actions don't conflict. Controls that don't receive DblClick events may receive two clicks instead of a
DblClick.

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DlbClick event will never trigger.

DblClick Event (ActiveX Controls) Example
This example displays a selected list item in a TextBox control when either a CommandButton
control is clicked or a list item is double-clicked. To try this example, paste the code into the
Declarations section of a Form object that contains a ListBox control, a TextBox control, and a
CommandButton control. Then run the example and click the CommandButton control or double-
click an item in the ListBox control.
Private Sub Form_Load ()

List1.AddItem "John" ' Add list box entries.
List1.AddItem "Paul"
List1.AddItem "George"
List1.AddItem "Ringo"

End Sub

Private Sub List1_DblClick ()
Command1.Value = True ' Trigger Click event.

End Sub

Private Sub Command1_Click ()
Text1.Text = List1.Text ' Display selection.

End Sub

Drag-and-Drop Constants (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbidxDragandDropConstantsACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}

DragOver Event
Constant Value Description
vbEnter 0 Source control dragged into target
vbLeave 1 Source control dragged out of target
vbOver 2 Source control dragged from one

position in target to another

Drag Method (Controls)
Constant Value Description
vbCancel 0 Cancel drag operation
vbBeginDrag 1 Begin dragging control
vbEndDrag 2 Drop control

DragMode Property
Constant Value Description
vbManual 0 Manual
vbAutomatic 1 Automatic

FetchVerbs Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFetchVerbsACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthFetchVerbsActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthFetchVerbsActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFetchVerbsActiveXControlsS"}

Updates the list of verbs an object supports.

Syntax
object.FetchVerbs
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
You can read the updated list of verbs using the ObjectVerbs property.

Files Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFilesMethodACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthFilesMethodActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthFilesMethodActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFilesMethodActiveXControlsS"}

Returns a collection of filenames used by the vbCFFiles format (a DataObjectFiles collection) which
in turn contains a list of all filenames used by a DataObject object; for example, the names of files
that a user drags to or from the Windows File Explorer.

Syntax
object.Files(index)
The Files collection syntax has these parts:

Part Description
object An object expression that evaluates to a DataObject

object.
index An integer which is an index to an array of filenames.

Remarks
The Files collection is filled with filenames only when the DataObject object contains data of type
vbCFFiles. The DataObject object can contain several different types of data. You can iterate
through the collection to retrieve the list of file names.

The Files collection can be filled to allow Visual Basic applications to act as a drag source for a list of
files.

Property Pages Dialog Box (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgPropertyPagesDialogACTIVEXCONTROLSC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgPropertyPagesDialogActiveXControlsS"}

Allows you to change a control's properties at design time.

Dialog Box Options
Tabs Visual Basic creates a tabbed dialog box that acts like form by writing code to handle

updating property values when a user changes values in the control.
You can add Property Pages to your project using the Add Property Pages command on the
Project menu.

OK Adds the Property Pages and closes the Property Pages dialog box.
Apply Adds the Property Page without closing the dialog box.

No fonts exist (Error 24574) (Common Dialog Control)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgNoFontsExistError24574CommonDialogControlC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgNoFontsExistError24574CommonDialogControlS"}

Before displaying the Choose Font dialog box, you must set one of the following flags:

· ScreenFonts
· PrinterFonts
· Both

Font Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontActiveXControlsS"}

Returns a Font object.

Syntax
object.Font
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the Font property of an object to identify a specific Font object whose properties you want to
use. For example, the following code changes the Bold property setting of a Font object identified by
the Font property of a TextBox object:
txtFirstName.Font.Bold = True

FontName Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontNameActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontNameActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontNameActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontNameActiveXControlsS"}

Returns or sets the font used to display text in a control or in a run-time drawing or printing operation.

Note The FontName property is included for use with the CommonDialog control and for
compatibility with earlier versions of Visual Basic. For additional functionality, use the new Font object
properties (not available for the CommonDialog control).

Syntax
object.FontName [= font]

The FontName property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
font A string expression specifying the font name to use.

Remarks
The default for this property is determined by the system. Fonts available with Visual Basic vary
depending on your system configuration, display devices, and printing devices. Font-related
properties can be set only to values for which fonts exist.

In general, you should change FontName before setting size and style attributes with the FontSize,
FontBold, FontItalic, FontStrikethru, and FontUnderline properties.

Note At run time, you can get information on fonts available to the system through the FontCount
and Fonts properties.

FontSize Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontSizeActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontSizeActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontSizeActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontSizeActiveXControlsS"}

Returns or sets the size of the font to be used for text displayed in a control or in a run-time drawing
or printing operation.

Note The FontSize property is included for use with the CommonDialog control and for
compatibility with earlier versions of Visual Basic. For additional functionality, use the new Font object
properties (not available for the CommonDialog control).

Syntax
object.FontSize [= points]

The FontSize property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
points A numeric expression specifying the font size to use,

in points.

Remarks
Use this property to format text in the font size you want. The default is determined by the system. To
change the default, specify the size of the font in points.

The maximum value for FontSize is 2160 points.

Note Fonts available with Visual Basic vary depending on your system configuration, display
devices, and printing devices. Font-related properties can be set only to values for which fonts exist.
In general, you should change the FontName property before you set size and style attributes with
the FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties. However, when
you set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize
property, then set the FontName property, and then set the size again with the FontSize property.
The Microsoft Windows operating environment uses a different font for TrueType fonts that are
smaller than 8 points.

GetData Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetDataActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataActiveXControlsS"}

Returns a graphic from the Clipboard object. Doesn't support named arguments.

Syntax
object.GetData (format)
The GetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format Optional. A constant or value that specifies the

Clipboard graphics format, as described in Settings.
Parentheses must enclose the constant or value. If
format is 0 or omitted, GetData automatically uses
the appropriate format.

Settings
The settings for format are:

Constant Value Description
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 metafile (.wmf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

If no graphic on the Clipboard object matches the expected format, nothing is returned. If only a color
palette is present on the Clipboard object, a minimum size (1 x 1) DIB is created.

GetFormat Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFormatActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFormatActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetFormatActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFormatActiveXControlsS;vbmthGetFormatS"}

Returns an integer indicating whether an item on the Clipboard object matches a specified format.
Doesn't support named argument.

Syntax
object.GetFormat (format)
The GetFormat method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format Required. A value or constant that specifies the

Clipboard object format, as described in Settings.
Parentheses must enclose the constant or value.

Settings
The settings for format are:

Constant Value Description
vbCFLink &HBF00 DDE conversation information
vbCFText 1 Text
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 Metafile (.wmf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The GetFormat method returns True if an item on the Clipboard object matches the specified
format. Otherwise, it returns False.

For vbCFDIB and vbCFBitmap formats, whatever color palette is on the Clipboard is used when the
graphic is displayed.

HideSelection Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHideSelectionActiveXC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionActiveXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHideSelectionActiveXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionActiveXS"}

Returns a value that determines whether selected text appears highlighted when a control loses the
focus.

Syntax
object.HideSelection
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The HideSelection property return values are:

Value Description
True (Default) Selected text doesn't appear highlighted

when the control loses the focus.
False Selected text appears highlighted when the control

loses the focus.

Remarks
You can use this property to indicate which text is highlighted while another form or a dialog box has
the focus — for example, in a spell-checking routine.

hWnd Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbprohWndActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbprohWndActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbprohWndActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbprohWndActiveXControlsS"}

Returns a handle to a form or control.

Note This property is not supported for the OLE container control.

Syntax
object.hWnd
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

Note Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Item Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthItemMethodActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthItemMethodActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthItemMethodActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthItemMethodActiveXControlsS"}

Returns a specific member of a Collection object either by position or by key.

Syntax
object.Item(index)

The Item property syntax has the following object qualifier and part:

Part Description
object Required. An object expression that evaluates to an object

in the Applies To list.
index Required. An expression that specifies the position of a

member of the collection. If a numeric expression, index
must be a number from 1 to the value of the collection's
Count property. If a string expression, index must
correspond to the key argument specified when the
member referred to was added to the collection.

Remarks
If the value provided as index doesn’t match any existing member of the collection, an error occurs.

Item is the default property for a collection. Therefore, the following lines of code are equivalent:
Print MyCollection(1)
Print MyCollection.Item(1)

Key Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproKeyActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproKeyActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyActiveXControlsS"}

Returns or sets a string that uniquely identifies a member in a collection.

Syntax
object.Key [= string]
The Key property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A unique string identifying a member in a collection.

Remarks
If the string is not unique, an error will occur.

You can set the Key property when you use the Add method to add an object to a collection.

The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, refer to objects in a collection using the Key property.

In addition, you can use the Key property to make your Visual Basic project "self-documenting" by
assigning meaningful names to the objects in a collection.

KeyDown, KeyUp Events (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyDownActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyDownActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtKeyDownActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyDownActiveXControlsS"}

Occur when the user presses (KeyDown) or releases (KeyUp) a key while an object has the focus.
(To interpret ANSI characters, use the KeyPress event.)

Syntax
Private Sub Form_KeyDown(keycode As Integer, shift As Integer)
Private Sub object_KeyDown([index As Integer,]keycode As Integer, shift As Integer)
Private Sub Form_KeyUp(keycode As Integer, shift As Integer)
Private Sub object_KeyUp([index As Integer,]keycode As Integer, shift As Integer)
The KeyDown and KeyUp event syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.
keycode A key code, such as vbKeyF1 (the F1 key) or vbKeyHome

(the HOME key). To specify key codes, use the constants in the
Visual Basic (VB) object library in the Object Browser.

shift An integer that corresponds to the state of the SHIFT, CTRL, and
ALT keys at the time of the event. The shift argument is a bit
field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These
bits correspond to the values 1, 2, and 4, respectively. Some,
all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL and
ALT are pressed, the value of shift is 6.

Remarks
For both events, the object with the focus receives all keystrokes. A form can have the focus only if it
has no visible and enabled controls. Although the KeyDown and KeyUp events can apply to most
keys, they're most often used for:

· Extended character keys such as function keys.
· Navigation keys.
· Combinations of keys with standard keyboard modifiers.
· Distinguishing between the numeric keypad and regular number keys.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing and
releasing of a key.

KeyDown and KeyUp aren't invoked for:

· The ENTER key if the form has a CommandButton control with the Default property set to True.
· The ESC key if the form has a CommandButton control with the Cancel property set to True.
· The TAB key.

KeyDown and KeyUp interpret the uppercase and lowercase of each character by means of two
arguments: keycode, which indicates the physical key (thus returning A and a as the same key) and
shift, which indicates the state of shift+key and therefore returns either A or a.

If you need to test for the shift argument, you can use the shift constants which define the bits within
the argument. The constants have the following values:

Constant Value Description
vbShiftMask 1 SHIFT key bit mask.
VbCtrlMask 2 CTRL key bit mask.
VbAltMask 4 ALT key bit mask.

The constants act as bit masks that you can use to test for any combination of keys.

You test for a condition by first assigning each result to a temporary integer variable and then
comparing shift to a bit mask. Use the And operator with the shift argument to test whether the
condition is greater than 0, indicating that the modifier was pressed, as in this example:
ShiftDown = (Shift And vbShiftMask) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If ShiftDown And CtrlDown Then
Note If the KeyPreview property is set to True, a form receives these events before controls on the
form receive the events. Use the KeyPreview property to create global keyboard-handling routines.

KeyPress Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyPressActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyPressActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtKeyPressActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyPressActiveXControlsS"}

Occurs when the user presses and releases an ANSI key.

Syntax
Private Sub Form_KeyPress(keyascii As Integer)
Private Sub object_KeyPress([index As Integer,]keyascii As Integer)
The KeyPress event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.
keyascii An integer that returns a standard numeric ANSI keycode.

Keyascii is passed by reference; changing it sends a different
character to the object. Changing keyascii to 0 cancels the
keystroke so the object receives no character.

Remarks
The object with the focus receives the event. A form can receive the event only if it has no visible and
enabled controls or if the KeyPreview property is set to True. A KeyPress event can involve any
printable keyboard character, the CTRL key combined with a character from the standard alphabet or
one of a few special characters, and the ENTER or BACKSPACE key. A KeyPress event procedure is
useful for intercepting keystrokes entered in a TextBox or ComboBox control. It enables you to
immediately test keystrokes for validity or to format characters as they're typed. Changing the value of
the keyascii argument changes the character displayed.

You can convert the keyascii argument into a character by using the expression:
Chr(KeyAscii)
You can then perform string operations and translate the character back to an ANSI number that the
control can interpret by using the expression:
KeyAscii = Asc(char)
Use KeyDown and KeyUp event procedures to handle any keystroke not recognized by KeyPress,
such as function keys, editing keys, navigation keys, and any combinations of these with keyboard
modifiers. Unlike the KeyDown and KeyUp events, KeyPress doesn't indicate the physical state of the
keyboard; instead, it passes a character.

KeyPress interprets the uppercase and lowercase of each character as separate key codes and,
therefore, as two separate characters. KeyDown and KeyUp interpret the uppercase and lowercase of
each character by means of two arguments: keycode, which indicates the physical key (thus returning
A and a as the same key), and shift, which indicates the state of shift+key and therefore returns either
A or a.

If the KeyPreview property is set to True, a form receives the event before controls on the form
receive the event. Use the KeyPreview property to create global keyboard-handling routines.

Note The ANSI number for the keyboard combination of CTRL+@ is 0. Because Visual Basic
recognizes a keyascii value of 0 as a zero-length string (""), avoid using CTRL+@ in your applications.

MouseDown, MouseUp Events (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseDownActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseDownActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseDownActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseDownActiveXControlsS"}

Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.

Syntax
Private Sub Form_MouseDown(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseDown(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object_MouseDown([index As Integer,]button As Integer, shift As Integer, x As

Single, y As Single)
Private Sub Form_MouseUp(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseUp(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object _MouseUp([index As Integer,]button As Integer, shift As Integer, x As Single, y

As Single)
The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object Returns an object expression that evaluates to an object in the

Applies To list.
index Returns an integer that uniquely identifies a control if it's in a

control array.
button Returns an integer that identifies the button that was pressed

(MouseDown) or released (MouseUp) to cause the event. The
button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2).
These bits correspond to the values 1, 2, and 4, respectively.
Only one of the bits is set, indicating the button that caused the
event.

shift Returns an integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the button
argument is pressed or released. A bit is set if the key is down.
The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and
the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of
these keys. Some, all, or none of the bits can be set, indicating
that some, all, or none of the keys are pressed. For example, if
both CTRL and ALT were pressed, the value of shift would be 6.

x, y Returns a number that specifies the current location of the
mouse pointer. The x and y values are always expressed in
terms of the coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties of the
object.

Remarks
Use a MouseDown or MouseUp event procedure to specify actions that will occur when a given
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events enable you to distinguish between the left, right, and middle mouse buttons. You can
also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

The following applies to both Click and DblClick events:

· If a mouse button is pressed while the pointer is over a form or control, that object "captures" the
mouse and receives all mouse events up to and including the last MouseUp event. This implies
that the x, y mouse-pointer coordinates returned by a mouse event may not always be in the
internal area of the object that receives them.

· If mouse buttons are pressed in succession, the object that captures the mouse after the first press
receives all mouse events until all buttons are released.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic
(VB) object library in the Object Browser to define the bits within the argument:

Constant (Button) Value Description
vbLeftButton 1 Left button is pressed
vbRightButton 2 Right button is pressed
vbMiddleButton 4 Middle button is pressed

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having
to figure out the unique bit field value for each combination.

Note You can use a MouseMove event procedure to respond to an event caused by moving the
mouse. The button argument for MouseDown and MouseUp differs from the button argument used for
MouseMove. For MouseDown and MouseUp, the button argument indicates exactly one button per
event, whereas for MouseMove, it indicates the current state of all buttons.

MouseIcon Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMouseIconActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseIconActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMouseIconActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseIconActiveXControlsS"}

Returns or sets a custom mouse icon.

Syntax
object.MouseIcon = LoadPicture(pathname)
object.MouseIcon [= picture]
The MouseIcon property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
pathname A string expression specifying the path and filename of

the file containing the custom icon.
picture The Picture property of a Form object, PictureBox

control, or Image control.

Remarks
The MouseIcon property provides a custom icon that is used when the MousePointer property is set
to 99.

Although Visual Basic does not create or support color cursor (.cur) files (such as those that ship with
Windows NT), you can use the MouseIcon property to load either cursor or icon files. Color cursor
files such as those shipped with Windows NT 3.51, are displayed in black and white. To display a
color cursor, use a color icon file (.ico). The MouseIcon property provides your program with easy
access to custom cursors of any size, with any desired hot spot location. Visual Basic does not load
animated cursor (.ani) files, even though 32-bit versions of Windows support these cursors.

MouseMove Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseMoveActiveXControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseMoveActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseMoveActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseMoveActiveXControlsS"}

Occurs when the user moves the mouse.

Syntax
Private Sub Form_MouseMove(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseMove(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object_MouseMove([index As Integer,] button As Integer, shift As Integer, x As

Single, y As Single)
The MouseMove event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.
button An integer that corresponds to the state of the mouse buttons

in which a bit is set if the button is down. The button argument
is a bit field with bits corresponding to the left button (bit 0),
right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. It indicates
the complete state of the mouse buttons; some, all, or none of
these three bits can be set, indicating that some, all, or none of
the buttons are pressed.

shift An integer that corresponds to the state of the SHIFT, CTRL, and
ALT keys. A bit is set if the key is down. The shift argument is a
bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These
bits correspond to the values 1, 2, and 4, respectively. The shift
argument indicates the state of these keys. Some, all, or none
of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y A number that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of
the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Remarks
The MouseMove event is generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic
(VB) object library in the Object Browser to define the bits within the argument:

Constant (Button) Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.

vbMiddleButton 4 Middle button is pressed.

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having
to figure out the unique bit field value for each combination.

You test for a condition by first assigning each result to a temporary integer variable and then
comparing the button or shift arguments to a bit mask. Use the And operator with each argument to
test if the condition is greater than zero, indicating the key or button is pressed, as in this example:
LeftDown = (Button And vbLeftButton) > 0
CtrlDown = (Shift And vbCtrlMask) > 0
Then, in a procedure, you can test for any combination of conditions, as in this example:
If LeftDown And CtrlDown Then
Note You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.
The button argument for MouseMove differs from the button argument for MouseDown and MouseUp.
For MouseMove, the button argument indicates the current state of all buttons; a single MouseMove
event can indicate that some, all, or no buttons are pressed. For MouseDown and MouseUp, the
button argument indicates exactly one button per event.
Any time you move a window inside a MouseMove event, it can cause a cascading event.
MouseMove events are generated when the window moves underneath the pointer. A MouseMove
event can be generated even if the mouse is perfectly stationary.

MousePointer Constants (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbidxMousePointerConstantsWindowsCommonControls;vbproBooksOnlineJumpTopic"}

Constant Value Description
ccDefault 0 (Default) Shape determined by the object.
ccArrow 1 Arrow.
ccCross 2 Cross (cross-hair pointer).
ccIbeam 3 I Beam.
ccIcon 4 Icon (small square within a square).
ccSize 5 Size (four-pointed arrow pointing north,

south, east, and west).
ccSizeNESW 6 Size NE SW (double arrow pointing

northeast and southwest).
ccSizeNS 7 Size N S (double arrow pointing north and

south).
ccSizeNWSE 8 Size NW, SE.
ccSizeEW 9 Size E W (double arrow pointing east and

west).
ccUpArrow 10 Up Arrow.
ccHourglass 11 Hourglass (wait).
ccNoDrop 12 No Drop.
ccArrowHourglass 13 Arrow and hourglass.
cc ArrowQuestion 14 Arrow and question mark.
ccSizeAll 15 Size all.
ccCustom 99 Custom icon specified by the MouseIcon

property.

Note The cc prefix refers to the custom controls. Prefixes for the constants change with the specific
control or group of controls. However, the description remains the same unless indicated.

MousePointer Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMousePointerActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMousePointerActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerActiveXControlsS"}

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is over a
particular part of an object at run time.

Syntax
object.MousePointer [= value]

The MousePointer property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the type of mouse pointer

displayed, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbDefault 0 (Default) Shape determined by the

object.
VbArrow 1 Arrow.
VbCrosshair 2 Cross (crosshair pointer).
VbIbeam 3 I beam.
VbIconPointer 4 Icon (small square within a square).
VbSizePointer 5 Size (four-pointed arrow pointing north,

south, east, and west).
VbSizeNESW 6 Size NE SW (double arrow pointing

northeast and southwest).
VbSizeNS 7 Size N S (double arrow pointing north

and south).
VbSizeNWSE 8 Size NW SE (double arrow pointing

northwest and southeast).
VbSizeWE 9 Size W E (double arrow pointing west

and east).
VbUpArrow 10 Up Arrow.
VbHourglass 11 Hourglass (wait).
VbNoDrop 12 No Drop.
VbArrowHourglass 13 Arrow and hourglass. (Only available in

32-bit Visual Basic.)
vbArrowQuestion 14 Arrow and question mark. (Only available

in 32-bit Visual Basic.)
vbSizeAll 15 Size all. (Only available in 32-bit Visual

Basic.)
vbCustom 99 Custom icon specified by the MouseIcon

property.

Remarks
You can use this property when you want to indicate changes in functionality as the mouse pointer
passes over controls on a form or dialog box. The Hourglass setting (11) is useful for indicating that
the user should wait for a process or operation to finish.

Note If your application calls DoEvents, the MousePointer property may temporarily change when
over a custom control.

Key Code Constants (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstKeyCodeConstantsActiveXControlsC;vbproBooksOnlineJumpTopic"}

Key Codes
Constant Value Description
vbKeyLButton &H1 Left mouse button
vbKeyRButton &H2 Right mouse button
vbKeyCancel &H3 CANCEL key
vbKeyMButton &H4 Middle mouse button
vbKeyBack &H8 BACKSPACE key
vbKeyTab &H9 TAB key
vbKeyClear &HC CLEAR key
vbKeyReturn &HD ENTER key
vbKeyShift &H10 SHIFT key
vbKeyControl &H11 CTRL key
vbKeyMenu &H12 MENU key
vbKeyPause &H13 PAUSE key
vbKeyCapital &H14 CAPS LOCK key
vbKeyEscape &H1B ESC key
vbKeySpace &H20 SPACEBAR key
vbKeyPageUp &H21 PAGE UP key
vbKeyPageDown &H22 PAGE DOWN key
vbKeyEnd &H23 END key
vbKeyHome &H24 HOME key
vbKeyLeft &H25 LEFT ARROW key
vbKeyUp &H26 UP ARROW key
vbKeyRight &H27 RIGHT ARROW key
vbKeyDown &H28 DOWN ARROW key
vbKeySelect &H29 SELECT key
vbKeyPrint &H2A PRINT SCREEN key
vbKeyExecute &H2B EXECUTE key
vbKeySnapshot &H2C SNAPSHOT key
vbKeyInsert &H2D INS key
vbKeyDelete &H2E DEL key
vbKeyHelp &H2F HELP key
vbKeyNumlock &H90 NUM LOCK key

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A' Through 'Z'
Constant Value Description
vbKeyA 65 A key
vbKeyB 66 B key
vbKeyC 67 C key
vbKeyD 68 D key
vbKeyE 69 E key

vbKeyF 70 F key
vbKeyG 71 G key
vbKeyH 72 H key
vbKeyI 73 I key
vbKeyJ 74 J key
vbKeyK 75 K key
vbKeyL 76 L key
vbKeyM 77 M key
vbKeyN 78 N key
vbKeyO 79 O key
vbKeyP 80 P key
vbKeyQ 81 Q key
vbKeyR 82 R key
vbKeyS 83 S key
vbKeyT 84 T key
vbKeyU 85 U key
vbKeyV 86 V key
vbKeyW 87 W key
vbKeyX 88 X key
vbKeyY 89 Y key
vbKeyZ 90 Z key

Key0 Through Key9 Are the Same as Their ASCII Equivalents: '0' Through '9
Constant Value Description
vbKey0 48 0 key
vbKey1 49 1 key
vbKey2 50 2 key
vbKey3 51 3 key
vbKey4 52 4 key
vbKey5 53 5 key
vbKey6 54 6 key
vbKey7 55 7 key
vbKey8 56 8 key
vbKey9 57 9 key

Keys on the Numeric Keypad
Constant Value Description
vbKeyNumpad0 &H60 0 key
vbKeyNumpad1 &H61 1 key
vbKeyNumpad2 &H62 2 key
vbKeyNumpad3 &H63 3 key
vbKeyNumpad4 &H64 4 key
vbKeyNumpad5 &H65 5 key
vbKeyNumpad6 &H66 6 key
vbKeyNumpad7 &H67 7 key

vbKeyNumpad8 &H68 8 key
vbKeyNumpad9 &H69 9 key
vbKeyMultiply &H6A MULTIPLICATION SIGN (*) key
vbKeyAdd &H6B PLUS SIGN (+) key
vbKeySeparator &H6C ENTER (keypad) key
vbKeySubtract &H6D MINUS SIGN (-) key
vbKeyDecimal &H6E DECIMAL POINT(.) key
vbKeyDivide &H6F DIVISION SIGN (/) key

Function Keys
Constant Value Description
vbKeyF1 &H70 F1 key
vbKeyF2 &H71 F2 key
vbKeyF3 &H72 F3 key
vbKeyF4 &H73 F4 key
vbKeyF5 &H74 F5 key
vbKeyF6 &H75 F6 key
vbKeyF7 &H76 F7 key
vbKeyF8 &H77 F8 key
vbKeyF9 &H78 F9 key
vbKeyF10 &H79 F10 key
vbKeyF11 &H7A F11 key
vbKeyF12 &H7B F12 key
vbKeyF13 &H7C F13 key
vbKeyF14 &H7D F14 key
vbKeyF15 &H7E F15 key
vbKeyF16 &H7F F16 key

Max, Min Properties (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaxMinPropertiesActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMaxMinPropertiesActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMaxMinPropertiesActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxMinPropertiesActiveXControlsS"}

· Max — returns or sets a scroll bar position's maximum Value property setting when the scroll box
is in its bottom or rightmost position. For the ProgressBar control, it returns or sets its maximum
value.

· Min — returns or sets a scroll bar position's minimum Value property setting when the scroll box is
in its top or leftmost position. For the ProgressBar control, it returns or sets its minimum value.

Syntax
object.Max [= value]
object.Min [= value]

The Max and Min property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying the maximum or

minimum Value property setting, as described in
Settings.

Settings
For each property, you can specify an integer between -32,768 and 32,767, inclusive. The default
settings are:

· Max — 32,767.
· Min — 0.

Remarks
The Microsoft Windows operating environment automatically sets ranges for scroll bars proportional
to the contents of forms, ComboBox controls, and ListBox controls. For a scroll bar (HScrollBar or
VScrollBar) control, however, you must specify these ranges. Use Max and Min to set a range
appropriate to how the scroll bar control is used — for example, as an input device or as an indicator
of speed or quantity.

Typically, you set Max and Min at design time. You can also set them in code at run time if the
scrolling range must change dynamically — for example, when adding records to a database that can
be scrolled through. You set the maximum and minimum scrolling increments for a scroll bar control
with the LargeChange and SmallChange properties.

Note If Max is set to less than Min, the maximum value is set at the leftmost or topmost position of
a horizontal or vertical scroll bar, respectively. The Max property of a ProgressBar control must
always be greater than its Min property, and its Min property must always be greater than or equal to
0.

The Max and Min properties define the range of the control. The ProgressBar control’s Min property
is 0 and its Max property is 100 by default, representing the percentage duration of the operation.

OLECompleteDrag Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLECompleteDragEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLECompleteDragEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLECompleteDragEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLECompleteDragEventActiveXControlsS"}

Occurs when a source component is dropped onto a target component, informing the source
component that a drag action was either performed or canceled.

Syntax
Private Sub object_CompleteDrag([effect As Long])
The CompleteDrag event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
effect A long integer set by the source object identifying the action

that has been performed, thus allowing the source to take
appropriate action if the component was moved (such as the
source deleting data if it is moved from one component to
another). The possible values are listed in Settings.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data, or the

drop operation was cancelled.
vbDropEffectCopy 1 Drop results in a copy of data from the

source to the target. The original data is
unaltered by the drag operation.

vbDropEffectMove 2 Drop results in a link to the original data
being created between drag source and
drop target.

Remarks
The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation. This event
informs the source component of the action that was performed when the object was dropped onto
the target component. The target sets this value through the effect parameter of the OLEDragDrop
event. Based on this, the source can then determine the appropriate action it needs to take. For
example, if the object was moved into the target (vbDropEffectMove), the source needs to delete the
object from itself after the move.

If OLEDragMode is set to Automatic, then Visual Basic handles the default behavior. The event still
occurs, however, allowing the user to add to or change the behavior.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDrag Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthOLEDragMethodActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthOLEDragMethodActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthOLEDragMethodActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthOLEDragMethodActiveXControlsS"}

Causes a component to initiate an OLE drag/drop operation.

Syntax
object.OLEDrag
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
When the OLEDrag method is called, the component’s OLEStartDrag event occurs, allowing it to
supply data to a target component.

Text Property (ActiveX Controls) Example
This example populates a TreeView control with the titles of files in a ListBox control. When an item
in the TreeView control is clicked, the Text property is displayed in a Label on the form. To try the
example, place TreeView, Label, and ListBox controls on a form and paste the code into the form's
Declarations section. Run the example and click on any item to see its Text property.
Private Sub Form_Load()

Dim nodX As Node ' Declare an object variable for the Node.
Dim i As Integer ' Declare a variable for use as a counter.

' Add one Node to the TreeView control, and call it the first node
Set nodX = TreeView1.Nodes.Add()
nodX.Text = "First Node"

'Populate the ListBox
List1.AddItem "Node1" ' Add each item to list.
List1.AddItem "Node2"
List1.AddItem "Node3"
List1.AddItem "Node4"
List1.AddItem "Node5"
List1.AddItem "Node6"
List1.AddItem "Node7"

' Add child nodes to the first Node object. Use the
' ListBox to populate the control.
For i = 0 To List1.ListCount - 1

Set nodX = TreeView1.Nodes.Add(1, tvwChild)
nodX.Text = List1.List(i)

Next i
Treeview1.Nodes(1).Selected = True
nodX.EnsureVisible ' Make sure the node is visible.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Display the clicked Node object's Text property.
Label1.Caption = Node.Text

End Sub

OLEDragDrop Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragDropEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragDropEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragDropEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragDropEventActiveXControlsS"}

Occurs when a source component is dropped onto a target component when the source component
determines that a drop can occur.

Note This event occurs only if OLEDropMode is set to 1 (Manual).

Syntax
Private Sub object_OLEDragDrop(data As DataObject, effect As Long, button As Integer, shift As
Integer, x As Single, y As Single)
The OLEDragDrop event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To

list.
data A DataObject object containing formats that the source will

provide and, in addition, possibly the data for those formats. If no
data is contained in the DataObject, it is provided when the
control calls the GetData method. The SetData and Clear
methods cannot be used here.

effect A long integer set by the target component identifying the action
that has been performed (if any), thus allowing the source to take
appropriate action if the component was moved (such as the
source deleting the data). The possible values are listed in
Settings.

button An integer which acts as a bit field corresponding to the state of a
mouse button when it is depressed. The left button is bit 0, the
right button is bit 1, and the middle button is bit 2. These bits
correspond to the values 1, 2, and 4, respectively. It indicates the
state of the mouse buttons; some, all, or none of these three bits
can be set, indicating that some, all, or none of the buttons are
depressed.

shift An integer which acts as a bit field corresponding to the state of
the SHIFT, CTRL, and ALT keys when they are depressed. The SHIFT
key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These
bits correspond to the values 1, 2, and 4, respectively. The shift
parameter indicates the state of these keys; some, all, or none of
the bits can be set, indicating that some, all, or none of the keys
are depressed. For example, if both the CTRL and ALT keys were
depressed, the value of shift would be 6.

x,y A number which specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the
coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy of data from
the source to the target. The
original data is unaltered by the
drag operation.

vbDropEffectMove 2 Drop results in data being moved
from drag source to drop source.
The drag source should remove the
data from itself after the move.

Remarks
The source ActiveX component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. Presently, only three of the 32 bits in
the effect parameter are used. In future versions of Visual Basic, however, these other bits may be
used. Therefore, as a precaution against future problems, drag sources and drop targets should mask
these values appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-
If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDragMode Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEDragModePropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragModePropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragModePropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragModePropertyActiveXControlsS"}

Returns or sets whether the component or the programmer handles an OLE drag/drop operation.

Syntax
object.OLEDragMode = mode

The OLEDragMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode An integer which specifies the method with which an

component handles OLE drag/drop operations, as
described in Settings.

Settings
The settings for mode are:

Constant Value Description
vbOLEDragManual 0 (Default) Manual. The programmer

handles all OLE drag/drop
operations.

vbOLEDragAutomatic 1 Automatic. The component handles
all OLE drag/drop operations.

Remarks
When OLEDragMode is set to Manual, you must call the OLEDrag method to start dragging, which
then triggers the OLEStartDrag event.

When OLEDragMode is set to Automatic, the source component fills the DataObject object with the
data it contains and sets the effects parameter before initiating the OLEStartDrag event (as well as
the OLESetData and other source-level OLE drag/drop events) when the user attempts to drag out of
the control. This gives you control over the drag/drop operation and allows you to intercede by adding
other formats, or by overriding or disabling the automatic data and formats using the Clear or
SetData methods.

If the source’s OLEDragMode property is set to Automatic, and no data is loaded in the
OLEStartDrag event, or aftereffects is set to 0, then the OLE drag/drop operation does not occur.

Note If the DragMode property of a control is set to Automatic, the setting of OLEDragMode is
ignored, because regular Visual Basic drag and drop events take precedence.

OLEDragOver Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragOverEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragOverEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragOverEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragOverEventActiveXControlsS"}

Occurs when one component is dragged over another.

Syntax
Private Sub object_OLEDragOver(data As DataObject, effect As Long, button As Integer, shift As
Integer, x As Single, y As Single, state As Integer)
The OLEDragOver event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object containing formats that the source will

provide and, in addition, possibly the data for those formats. If
no data is contained in the DataObject, it is provided when
the control calls the GetData method. The SetData and Clear
methods cannot be used here.

effect A long integer initially set by the source object identifying all
effects it supports. This parameter must be correctly set by
the target component during this event. The value of effect is
determined by logically Or'ing together all active effects (as
listed in Settings). The target component should check these
effects and other parameters to determine which actions are
appropriate for it, and then set this parameter to one of the
allowable effects (as specified by the source) to specify which
actions will be performed if the user drops the selection on
the component. The possible values are listed in Settings.

button An integer which acts as a bit field corresponding to the state
of a mouse button when it is depressed. The left button is bit
0, the right button is bit 1, and the middle button is bit 2.
These bits correspond to the values 1, 2, and 4, respectively.
It indicates the state of the mouse buttons; some, all, or none
of these three bits can be set, indicating that some, all, or
none of the buttons are depressed.

shift An integer which acts as a bit field corresponding to the state
of the SHIFT, CTRL, and ALT keys when they are depressed.
The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is
bit 2. These bits correspond to the values 1, 2, and 4,
respectively. The shift parameter indicates the state of these
keys; some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are depressed. For example, if
both the CTRL and ALT keys are depressed, the value of shift
would be 6.

x,y A number that specifies the current horizontal (x) and vertical
(y) position of the mouse pointer within the target form or
control. The x and y values are always expressed in terms of
the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

state An integer that corresponds to the transition state of the

control being dragged in relation to a target form or control.
The possible values are listed in Settings.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the

data.
vbDropEffectCopy 1 Drop results in a copy of data

from the source to the target.
The original data is unaltered
by the drag operation.

vbDropEffectMove 2 Drop results in data being
moved from drag source to
drop source. The drag source
should remove the data from
itself after the move.

vbDropEffectScroll -2147483648
(&H80000000)

Scrolling is occuring or about
to occur in the target
component. This value is used
in conjunction with the other
values. Note Use only if you
are performing your own
scrolling in the target
component.

The settings for state are:

Constant Value Description
vbEnter 0 Source component is being dragged within the range

of a target.
vbLeave 1 Source component is being dragged out of the range

of a target.
vbOver 2 Source component has moved from one position in

the target to another.

Remarks
Note If the state parameter is vbLeave, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.

The source component should always mask values from the effect parameter to ensure compatibility
with future implementations of ActiveX components. Presently, only three of the 32 bits in the effect
parameter are used. In future versions of Visual Basic, however, these other bits may be used.
Therefore, as a precaution against future problems, drag sources and drop targets should mask these
values appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-

If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.
Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDropMode Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEDropModePropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropModePropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDropModePropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropModePropertyActiveXControlsS"}

Returns or sets how a target component handles drop operations.

Syntax
object.OLEDropMode [= mode]

The OLEDropMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode An enumerated integer which specifies the method

which a component handles OLE drag/drop
operations, as described in Settings.

Settings
The settings for mode are:

Constant Value Description
vbOLEDropNone 0 (Default) None. The target component

does not accept OLE drops and
displays the No Drop cursor.

vbOLEDropManual 1 Manual. The target component
triggers the OLE drop events,
allowing the programmer to handle
the OLE drop operation in code.

vbOLEDropAutomatic 2 Automatic. The target component
automatically accepts OLE drops if
the DataObject object contains data
in a format it recognizes. No mouse or
OLE drag/drop events on the target
will occur when OLEDropMode is set
to vbOLEDropAutomatic.

Remarks
Note The target component inspects what is being dragged over it in order to determine which
events to trigger; the OLE drag/drop events, or the Visual Basic drag/drop events. There is no
collision of components or confusion about which events are fired, since only one type of object can
be dragged at a time.

OLEGiveFeedback Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEGiveFeedbackEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEGiveFeedbackEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEGiveFeedbackEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEGiveFeedbackEventActiveXControlsS"}

Occurs after every OLEDragOver event. OLEGiveFeedback allows the source component to provide
visual feedback to the user, such as changing the mouse cursor to indicate what will happen if the
user drops the object, or provide visual feedback on the selection (in the source component) to
indicate what will happen.

Syntax
Private Sub object_OLEGiveFeedback(effect As Long, defaultcursors As Boolean)
The OLEGiveFeedback event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
effect A long integer set by the target component in the

OLEDragOver event specifying the action to be performed if
the user drops the selection on it. This allows the source to
take the appropriate action (such as giving visual feedback).
The possible values are listed in Settings.

defaultcursors A boolean value which determines whether Visual Basic
uses the default mouse cursor proved by the component, or
uses a user-defined mouse cursor.
True (default) = use default mouse cursor.
False = do not use default cursor. Mouse cursor must be set
with the MousePointer property of the Screen object.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the

data.
vbDropEffectCopy 1 Drop results in a copy of data

from the source to the target.
The original data is unaltered
by the drag operation.

vbDropEffectMove 2 Drop results in data being
moved from drag source to
drop source. The drag source
should remove the data from
itself after the move.

vbDropEffectScroll -2147483648
(&H80000000)

Scrolling is occuring or about
to occur in the target
component. This value is used
in conjunction with the other
values. Note Use only if you
are performing your own
scrolling in the target

component.

Remarks
If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set to True,
then Visual Basic automatically sets the mouse cursor to the default cursor provided by the
component.

The source component should always mask values from the effect parameter to ensure compatibility
with future implementations of components. Presently, only three of the 32 bits in the effect parameter
are used. In future versions of Visual Basic, however, these other bits may be used. Therefore, as a
precaution against future problems, drag sources and drop targets should mask these values
appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-
If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLESetData Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLESetDataEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLESetDataEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLESetDataEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLESetDataEventActiveXControlsS"}

Occurs on an source component when a target component performs the GetData method on the
source’s DataObject object, but the data for the specified format has not yet been loaded.

Syntax
Private Sub object_OLESetData(data As DataObject, dataformat As Integer)
The OLESetData event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object in which to place the requested data.

The component calls the SetData method to load the
requested format.

dataformat An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the DataObject object.

Remarks
In certain cases, you may wish to defer loading data into the DataObject object of a source
component to save time, especially if the source component supports many formats. This event
allows the source to respond to only one request for a given format of data. When this event is called,
the source should check the format parameter to determine what needs to be loaded and then
perform the SetData method on the DataObject object to load the data which is then passed back to
the target component.

OLEStartDrag Event (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEStartDragEventActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEStartDragEventActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEStartDragEventActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEStartDragEventActiveXControlsS"}

Occurs when a component's OLEDrag method is performed, or when a component initiates an OLE
drag/drop operation when the OLEDragMode property is set to Automatic.

This event specifies the data formats and drop effects that the source component supports. It can also
be used to insert data into the DataObject object.

Syntax
Private Sub object_StartDrag(data As DataObject, allowedeffects As Long)
The StartDrag event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object containing formats that the source will

provide and, optionally, the data for those formats. If no data
is contained in the DataObject, it is provided when the
control calls the GetData method. The programmer should
provide the values for this parameter in this event. The
SetData and Clear methods cannot be used here.

allowedeffects A long integer containing the effects that the source
component supports. The possible values are listed in
Settings. The programmer should provide the values for this
parameter in this event.

Settings
The settings for allowedeffects are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data.
vbDropEffectCopy 1 Drop results in a copy of data from the

source to the target. The original data is
unaltered by the drag operation.

vbDropEffectMove 2 Drop results in data being moved from
drag source to drop source. The drag
source should remove the data from
itself after the move.

Remarks
The source component should logically Or together the supported values and places the result in the
allowedeffects parameter. The target component can use this value to determine the appropriate
action (and what the appropriate user feedback should be).

The StartDrag event also occurs if the component’s OLEDragMode property is set to Automatic.
This allows you to add formats and data to the DataObject object after the component has done so.
You can also override the default behavior of the component by clearing the DataObject object (using
the Clear method) and then adding your data and formats.

You may wish to defer putting data into the DataObject object until the target component requests it.

This allows the source component to save time by not loading multiple data formats. When the target
performs the GetData method on the DataObject, the source’s OLESetData event will occur if the
requested data is not contained in the DataObject. At this point, the data can be loaded into the
DataObject, which will in turn provide the data to the target.

If the user does not load any formats into the DataObject, then the drag/drop operation is canceled.

SetData Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetDataMethodActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthSetDataMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetDataMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetDataMethodS"}

Inserts data into a DataObject object using the specified data format.

Syntax
object.SetData [data], [format]
The SetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
data Optional A variant containing the data to be passed to

the DataObject object.
format Optional. A constant or value that specifies the format

of the data being passed, as described in Settings.

Settings
The settings for format are:

Constant Value Description
vbCFText 1 Text (.txt files)
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 Metafile (.wmf files)
vbCFEMetafile 14 Enhanced metafile (.emf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette
vbCFFiles 15 List of files
vbCFRTF -16639 Rich text format (.rtf files)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The data argument is optional. This allows you to set several different formats that the source
component can support without having to load the data separately for each format. Multiple formats
are set by calling SetData several times, each time using a different format. If you wish to start fresh,
use the Clear method to clear all data and format information from the DataObject.
The format argument is also optional, but either the data or format argument must be specified. If data
is specified, but not format, then Visual Basic will try to determine the format of the data. If it is
unsuccessful, then an error is generated. When the target requests the data, and a format was
specified, but no data was provided, the source’s OLESetData event occurs, and the source can then
provide the requested data type.

It's possible for the GetData and SetData methods to use data formats other than those listed in
Settings, including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. However, there are a few caveats:

· The SetData method requires the data to be in the form of a byte array when it does not recognize
the data format specified.

· The GetData method always returns data in a byte array when it is in a format that it doesn't

recognize, although Visual Basic can transparently convert this returned byte array into other data
types, such as strings.

· The byte array returned by GetData will be larger than the actual data when running on some
operating systems, with arbitrary bytes at the end of the array. The reason for this is that Visual
Basic does not know the data's format, and knows only the amount of memory that the operating
system has allocated for the data. This allocation of memory is often larger than is actually required
for the data. Therefore, there may be extraneous bytes near the end of the allocated memory
segment. As a result, you must use appropriate functions to interpret the returned data in a
meaningful way (such as truncating a string at a particular length with the Left function if the data is
in a text format).

Picture Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPictureActiveXControlsC;vbproPictureC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproPictureActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPictureActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPictureActiveXControlsS"}

Returns or sets a graphic to be displayed in a control. For the OLE container control, not available at
design time and read-only at run time.

Syntax
object.Picture [= picture]

The Picture property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
picture A string expression specifying a file containing a

graphic, as described in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default) No picture.
(Bitmap, icon,
metafile)

Specifies a graphic. You can load the graphic from
the Properties window at design time. At run time,
you can also set this property using the LoadPicture
function on a bitmap, icon, or metafile.

Remarks
At design time, you can transfer a graphic with the Clipboard using the Copy, Cut, and Paste
commands on the Edit menu. At run time, you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard constants vbCFBitmap, vbCFMetafile, and
vbCFDIB, which are listed in the Visual Basic (VB) object library in the Object Browser.

When setting the Picture property at design time, the graphic is saved and loaded with the form. If
you create an executable file, the file contains the image. When you load a graphic at run time, the
graphic isn't saved with the application. Use the SavePicture statement to save a graphic from a form
or picture box into a file.

Note At run time, the Picture property can be set to any other object's DragIcon, Icon, Image, or
Picture property, or you can assign it the graphic returned by the LoadPicture function. The
exception to this is the Picture property of the ListImages object, which is a read-only property.

SelLength, SelStart, SelText Properties (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthS"}

· SelLength — returns or sets the number of characters selected.
· SelStart — returns or sets the starting point of text selected; indicates the position of the insertion

point if no text is selected.
· SelText — returns or sets the string containing the currently selected text; consists of a zero-length

string ("") if no characters are selected.

These properties aren't available at design time.

Syntax
object.SelLength [= number]
object.SelStart [= index]
object.SelText [= value]

The SelLength, SelStart, and SelText property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the number of

characters selected. For SelLength and SelStart, the
valid range of settings is 0 to text length — the total
number of characters in the edit area of a ComboBox
or TextBox control.

index A numeric expression specifying the starting point of
the selected text, as described in Settings.

value A string expression containing the selected text.

Remarks
Use these properties for tasks such as setting the insertion point, establishing an insertion range,
selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, these
properties are useful for copy, cut, and paste operations.

When working with these properties:

· Setting SelLength less than 0 causes a run-time error.
· Setting SelStart greater than the text length sets the property to the existing text length; changing

SelStart changes the selection to an insertion point and sets SelLength to 0.
· Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new

string.

ShowTips Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTooltipsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTooltipsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTooltipsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTooltipsS"}

Returns a value that determines whether ToolTips are displayed for an object.

Syntax
object.ShowTips [= value]

The ShowTips property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A Boolean expression specifying whether ToolTips

are displayed, as described in Settings.

Settings
The settings for value are:

Setting Description
True (Default) Each object in the control may display an

associated string, which is the setting of the
ToolTipText property, in a small rectangle below the
object. This ToolTip appears when the user's cursor
hovers over the object at run time for about one
second.

False An object will not display a ToolTip at run time
.

Remarks
At design time you can set the ShowTips property on the General tab in the control's Property Pages
dialog box.

Text Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTextActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTextActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextActiveXControlsS"}

Returns or sets the text contained in an object.

Syntax
object.Text [= string]
The Text property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying the text appearing in

the object.

Value Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproValueActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproValueActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproValueActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproValueActiveXControlsS"}

Returns or sets the value of an object.

Syntax
object.Value [= integer]
The Value property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
integer For a Slider control, a long integer that specifies the

current position of the slider. For the ProgressBar
control, an integer that specifies the value of the
ProgressBar control. For other controls, see
Settings below.

Settings
For the Button object, the settings for integer are:

Constant Value Description
tbrUnPressed 0 (Default). The button is not

currently pressed or checked.
tbrPressed 1 The button is currently pressed

or checked.

Remarks
· Slider control—returns or sets the current position of the slider. Value is always between the

values for the Max and Min properties, inclusive, for a Slider control.
· ProgressBar control—returns or sets a value indicating an operation's approximate progress

toward completion. Incrementing the Value property doesn't change the appearance of the

ProgressBar control by the exact value of the Value property. Value is always in the range
between the values for the Max and Min properties, inclusive. Not available at design time.

Value Property (ActiveX Controls) Example
This example uses the Value property to determine which icon from an associated ImageList control
is displayed on the Toolbar control. To try the example, place a Toolbar control on a form and paste
the code into the form's Declarations section. Then run the example.
Private Sub Toolbar1_ButtonClick(ByVal Button As Button)

' Use the Key value to determine which button has been clicked.
Select Case Button.Key

Case "Done" ' A check button.
If Button.Value = vbUnchecked Then

' The button is unchecked.
Button.Value = vbChecked ' Check the button.
' Assuming there is a ListImage object with
' key "down."
Button.Image = "down"

Else ' Uncheck the button
Button.Value = vbUnchecked
' Assuming there is a ListImage object with
' key " up."
Button.Image = "up"

End If

' More Cases are possible.
End Select

End Sub

RemoteHost Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproInetRemoteHostC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproInetRemoteHostX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproInetRemoteHostA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproInetRemoteHostS"}

Returns or sets the remote machine to which a control sends or receives data. You can either provide
a host name, for example, "FTP://ftp.microsoft.com," or an IP address string in dotted format, such as
"100.0.1.1".

Syntax
object.RemoteHost = string

The RemoteHost property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To

list.
string The name or address of the remote computer.

Data Type
String

Remarks
When this property is specified, the URL property is updated to show the new value. Also, if the host
portion of the URL is updated, this property is also updated to reflect the new value.

The RemoteHost property can also be changed when invoking the OpenURL or Execute methods.

At run time, changing this value has no effect until the next connection.

RemotePort Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproInetRemotePortC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproInetRemotePortX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproInetRemotePortA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproInetRemotePortS"}

Returns or sets the remote port number to connect to.

Syntax
object.RemotePort = port

The RemotePort property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To

list.
port The port to connect to. The default value of this property is 80.

Data Type
Long

Remarks
When you set the Protocol property, the RemotePort property is set automatically to the appropriate
default port for each protocol. Default port numbers are shown in the table below:

Port Description
80 HTTP, commonly used for WorldWideWeb connections.
21 FTP.

hDC Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHDCPropertyActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHDCPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHDCPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHDCPropertyActiveXControlsS"}

Returns a handle provided by the Microsoft Windows operating environment to the device context of
an object.

Syntax
object.hDC
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
This property is a Windows operating environment device context handle. The Windows operating
environment manages the system display by assigning a device context for the Printer object and for
each form and PictureBox control in your application. You can use the hDC property to refer to the
handle for an object's device context. This provides a value to pass to Windows API calls.

With a CommonDialog control, this property returns a device context for the printer selected in the
Print dialog box when the cdlReturnDC flag is set or an information context when the cdlReturnIC
flag is set.

Note The value of the hDC property can change while a program is running, so don't store the
value in a variable; instead, use the hDC property each time you need it.
The AutoRedraw property can cause the hDC property setting to change. If AutoRedraw is set to
True for a form or PictureBox container, hDC acts as a handle to the device context of the persistent
graphic (equivalent to the Image property). When AutoRedraw is False, hDC is the actual hDC
value of the Form window or the PictureBox container. The hDC property setting may change while
the program is running regardless of the AutoRedraw setting.

Height, Width Properties (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHeightWidthPropertiesActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproHeightWidthPropertiesActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHeightWidthPropertiesActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeightWidthPropertiesActiveXControlsS"}

Return or set the dimensions of an object or the width of the Columns object of a DBGrid control. For
the Printer and Screen objects, not available at design time.

Syntax
object.Height [= number]
object.Width [= number]

The Height and Width property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the dimensions of

an object, as described in Settings.

Settings
Measurements are calculated as follows:

· Form — the external height and width of the form, including the borders and title bar.
· Control — measured from the center of the control's border so that controls with different border

widths align correctly. These properties use the scale units of a control's container.
· Printer object — the physical dimensions of the paper set up for the printing device; not available

at design time. If set at run time, values in these properties are used instead of the setting of the
PaperSize property.

· Screen object — the height and width of the screen; not available at design time and read-only at
run time.

· Picture object — the height and width of the picture in HiMetric units.

Remarks
For Form, Printer, and Screen objects, these properties are always measured in twips. For a form or
control, the values for these properties change as the object is sized by the user or by your code.
Maximum limits of these properties for all objects are system-dependent.

If you set the Height and Width properties for a printer driver that doesn't allow these properties to be
set, no error occurs and the size of the paper remains as it was. If you set Height and Width for a
printer driver that allows only certain values to be specified, no error occurs and the property is set to
whatever the driver allows. For example, you could set Height to 150 and the driver would set it to
144.

Use the Height, Width, Left, and Top properties for operations or calculations based on an object's
total area, such as sizing or moving the object. Use the ScaleLeft, ScaleTop, ScaleHeight, and
ScaleWidth properties for operations or calculations based on an object's internal area, such as
drawing or moving objects within another object.

Note The Height property can't be changed for the DriveListBox control or for the ComboBox
control, whose Style property setting is 0 (Dropdown Combo) or 2 (Dropdown List).

For the Columns object of the DBGrid control, Width is specified in the unit of measure of the object
that contains the DBGrid. The default value for Width is the value of the DefColWidth property of
DBGrid.

For the Picture object, use the ScaleX and ScaleY methods to convert HiMetric units into the scale
you need.

Index Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexPropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyActiveXControlsS"}

Returns or sets the number that uniquely identifies an object in a collection.

Syntax
object.Index
The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks
The Index property is set by default to the order of the creation of objects in a collection. The index for
the first object in a collection will always be one.

The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, it may be more useful to refer to objects in a collection by using the Key property.

Left, Top Properties (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLeftTopPropertiesActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproLeftTopPropertiesActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproLeftTopPropertiesActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftTopPropertiesActiveXControlsS"}

· Left — returns or sets the distance between the internal left edge of an object and the left edge of
its container.

· Top — returns or sets the distance between the internal top edge of an object and the top edge of
its container.

· For the Panel object only, this is a read-only property.

Syntax
object.Left [= value]
object.Top [= value]

The Left and Top property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying distance.

Remarks
For a form, the Left and Top properties are always expressed in twips; for a control, they are
measured in units depending on the coordinate system of its container. The values for these
properties change as the object is moved by the user or by code. For the CommonDialog and Timer
controls, these properties aren't available at run time.

For either property, you can specify a single-precision number.

Use the Left, Top, Height, and Width properties for operations based on an object's external
dimensions, such as moving or resizing. Use the ScaleLeft, ScaleTop, ScaleHeight, and
ScaleWidth properties for operations based on an object's internal dimensions, such as drawing or
moving objects that are contained within the object. The scale-related properties apply only to
PictureBox controls and Form and Printer objects.

Remove Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodActiveXControlsS"}

Removes a specific member from a collection.

Syntax
object.Remove index
The Remove method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer or string that uniquely identifies the object

within the collection. Use an integer to specify the
value of the Index property; use a string to specify
the value of the Key property.

Remarks
To remove all the members of a collection, use the Clear method.

Tag Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTagPropertyActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTagPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTagPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTagPropertyActiveXControlsS"}

Returns or sets an expression that stores any extra data needed for your program. Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can use this property to
identify objects.

Syntax
object.Tag [= expression]

The Tag property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
expression A string expression identifying the object. The

default is a zero-length string ("").

Remarks
You can use this property to assign an identification string to an object without affecting any of its
other property settings or causing side effects. The Tag property is useful when you need to check the
identity of a control or MDIForm object that is passed as a variable to a procedure.

Tip When you create a new instance of a form, assign a unique value to the Tag property.
Note The Tag property is of type Variant for ActiveX control collections such as Toolbar Button
objects, TreeView Node objects, ListView ListItem and ColumnHeader objects, ImageList
ListImage objects, TabStrip Tab objects, and StatusBar Panel objects. This is a powerful language
feature that enables you to pass, for example, objects (such as a selected Node) as a Tag.

Visible Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproVisiblePropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproVisiblePropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproVisiblePropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVisiblePropertyActiveXControlsS"}

Returns or sets a value indicating whether an object is visible or hidden.

Syntax
object.Visible [= boolean]

The Visible property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the object

is visible or hidden.

Settings
The settings for boolean are:

Setting Description
True (Default) Object is visible.
False Object is hidden.

Remarks
To hide an object at startup, set the Visible property to False at design time. Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

Note Using the Show or Hide method on a form is the same as setting the form's Visible property
in code to True or False, respectively.

Object Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectPropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproObjectPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproObjectPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectPropertyActiveXControlsS"}

Returns the object and/or a setting of an object's method or property.

Syntax
object.Object[.property | .method]
The Object property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
property Property that the object supports.
method Method that the object supports.

Remarks
Use this property to specify an object you want to use in an Automation task.

You use the object returned by the Object property in an Automation task by using the properties and
methods of that object. For information on which properties and methods an object supports, see the
documentation for the application that created the object.

Property Pages (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPropertyPagesActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyPagesActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPropertyPagesActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyPagesActiveXControlsS"}

To get Help for the properties contained in a control's Property Page dialog box, click the button
below corresponding to the control in which you are interested.Then click the property name to get
Help for that property.

{button ,JI(`',`propAnimation')}
 Animation control

{button ,JI(`',`propMMMCI')}
 Multimedia MCI control

{button ,JI(`',`propCommonDialog')}
 CommonDialog control

{button ,JI(`',`propPicclip')}
 PictureClip control

{button ,JI(`',`propDBCombo')}
 DBCombo control

{button ,JI(`',`propProgressBar')}
 ProgressBar control

{button ,JI(`',`propDBList')}
 DBList control

{button ,JI(`',`propRTFBox')}
 RichTextBox control

{button ,JI(`',`propImageList')}
 ImageList control

{button ,JI(`',`propSlider')}
 Slider control

{button ,JI(`',`propListView')}
 ListView control

{button ,JI(`',`propSSTab')}
 SSTab control

{button ,JI(`',`propMAPIMessages')}
 MAPIMessages control

{button ,JI(`',`propStatusBar')}
 StatusBar control

{button ,JI(`',`propMAPISession')}
 MAPISession control

{button ,JI(`',`propTabStrip')}
 TabStrip control

{button ,JI(`',`propMasked')}
 MaskedEdit control

{button ,JI(`',`propToolBar')}
 ToolBar control

{button ,JI(`',`propMSChart')}
 MSChart control

{button ,JI(`',`propTreeView')}
 TreeView control

{button ,JI(`',`propMSComm')}
 MSComm control

{button ,JI(`',`propUpDown')}
 UpDown control

{button ,JI(`',`propMSFlexGrid')}
 MSFlexGrid control

{button ,JI(`',`propWinSock')}
 Winsock control

Property Pages
Animation control

AutoPlay AutoPlay
BackStyle BackStyle
Center Center
OLEDropMode OLEDropMode

Common Dialog control

CancelError CancelError
Color Color
Copies Copies

DefaultExt DefaultExt
DialogTitle DialogTitle
FileName FileName
Filter Filter
FilterIndex FilterIndex
Flags Flags
FontName FontName
FontSize FontSize
FromPage FromPage
HelpCommand HelpCommand
HelpContext HelpContext
HelpFile HelpFile
HelpKey HelpKey
InitDir InitDir
Max Max
MaxFileSize MaxFileSize
Min Min
PrinterDefault PrinterDefault
ToPage ToPage

DBCombo control

Appearance Appearance
Enabled Enabled
IntegralHeight IntegralHeight
Locked Locked
MatchEntry MatchEntry
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
Style Style

DBList control

Appearance Appearance
Enabled Enabled
IntegralHeight IntegralHeight
Locked Locked
MatchEntry MatchEntry
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode

ImageList control

Height Height
Image Image

Image Count Image Count
Index Index
Key Key
Tag Tag
UseMaskColor UseMaskColor
Width Width

ListView control

Alignment Alignment
Appearance Appearance
Arrange Arrange
BorderStyle BorderStyle
Enabled Enabled pro
HideColumnHeaders HideColumnHeaders
HideSelection HideSelection
ImageList ImageList
Index Index
Key Key
LabelEdit LabelEdit
LabelWrap LabelWrap
MousePointer MousePointer
MultiSelect MultiSelect
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
Sorted Sorted
SortKey SortKey
SortOrder SortOrder
Tag Tag
Text Text
View View
Width Width

MAPIMessages control

AddressCaption AddressCaption
AddressEditFieldCount AddressEditFieldCount
AddressLabel AddressLabel
AddressModifiable AddressModifiable
AddressResolveUI AddressResolveUI
FetchMsgType FetchMsgType
FetchSorted FetchSorted
FetchUnreadOnly FetchUnreadOnly

MAPISession control

DownloadMail DownloadMail

LogonUI LogonUI
NewSession NewSession
Password Password
UserName UserName

MaskedEdit control

AllowPrompt AllowPrompt
AutoTab AutoTab
BorderStyle BorderStyle
ClipMode ClipMode
Enabled Enabled
Format Format
HideSelection HideSelection
Mask Mask
MaxLength MaxLength
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
PromptChar PromptChar
PromptInclude PromptInclude

MSChart control

2D 2D
3D 3D
Alignment Alignment
Automatic scaling Automatic scaling
Axis Axis
Color Color
Exclude series Exclude series
Font style Font style
Font Font
Hide series Hide series
Major divisions Major divisions
Maximum Maximum
Mean Mean
Minimum Minimum
Minor divisions Minor divisions
Orientation Orientation
Pattern color Pattern color
Pattern Pattern
Plot on 2nd Y axis Plot on 2nd Y axis
Property Name Property Name
Regression Regression
Series in rows Series in rows
Series type Series type

Series Series
Series Series
Shadow Shadow
Show legend Show legend
Show markers Show markers
Show markers Show markers
Show scale Show scale
Size Size
Stack series Stack series
Standard deviation Standard deviation
Strikeout Strikeout
Style Style
Style Style
Style Style
Style Style
Style Style
Text Text
Underline Underline
Width Width
Width Width
Width Width
Width Width
Width Width

MSComm control

CommPort CommPort
DTREnable DTREnable
EOFEnable EOFEnable
Handshaking Handshaking
InBufferSize InBufferSize
InputLen InputLen
NullDiscard NullDiscard
OutBufferSize OutBufferSize
ParityReplace ParityReplace
Rthreshold RThreshold
RTSEnable RTSEnable
Settings Settings
Sthreshold SThreshold

MSFlexGrid control

AllowBigSelection AllowBigSelection
AllowUserResizing AllowUserResizing
Cols Cols
FillStyle FillStyle

FixedCols FixedCols
FixedRows FixedRows
FocusRect FocusRect
Font Font
Format Format
GridLines GridLines
GridLinesFixed GridLinesFixed
HighLight HighLight
MergeCells MergeCells
MousePointer MousePointer
PictureType PictureType
RowHeightMin RowHeightMin
Rows Rows
ScrollBars ScrollBars
SelectionMode SelectionMode
TextStyle TextStyle
TextStyleFixed TextStyleFixed
WordWrap WordWrap

Multimedia MCI control

AutoEnable AutoEnable
BackEnabled BackEnabled
BackVisible BackVisible
BorderStyle BorderStyle
DeviceType DeviceType
EjectEnabled EjectEnabled
EjectVisible EjectVisible
Enabled Enabled
FileName FileName
Frames Frames
MousePointer MousePointer
NextEnabled NextEnabled
NextVisible NextVisible
OLEDropMode OLEDropMode
Orientation Orientation
PauseEnabled PauseEnabled
PauseVisible PauseVisible
PlayEnabled PlayEnabled
PlayVisible PlayVisible
PrevEnabled PrevEnabled
PrevVisible PrevVisible
RecordEnabled RecordEnabled
RecordMode RecordMode
RecordVisible RecordVisible

Shareable Shareable
Silent Silent
StepEnabled StepEnabled
StepVisible StepVisible
StopEnabled StopEnabled
StopVisible StopVisible
UpdateInterval UpdateInterval

PictureClip control

Cols Cols
Rows Rows

ProgressBar control

Appearance Appearance
BorderStyle BorderStyle
Enabled Enabled
Max Max
Min Min
MousePointer MousePointer
OLEDropMode OLEDropMode

RichTextBox control

Appearance Appearance
AutoVerbMenu AutoVerbMenu
BorderStyle BorderStyle
BulletIndent BulletIndent
DisableNoScroll DisableNoScroll
Enabled Enabled
FileName [load from] FileName [load from]
HideSelection HideSelection
Locked Locked
MaxLength MaxLength
MousePointer MousePointer
MultiLine MultiLine
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
RightMargin RightMargin
ScrollBars ScrollBars

Slider control

Enabled Enabled
LargeChange LargeChange
Max Max
Min Min

MousePointer MousePointer
OLEDropMode OLEDropMode
Orientation Orientation
SelectRange SelectRange
SelLength SelLength
SelStart SelStart
SmallChange SmallChange
TickFrequency TickFrequency
TickStyle TickStyle

SSTab control

Current Tab CurrentTab
Enabled Enabled
MousePointer MousePointer
OLEDropMode OLEDropMode
Orientation Orientation
ShowFocusRect ShowFocusRect
Style Style
Tab Count Tab Count
TabCaption TabCaption
TabHeight TabHeight
TabMaxWidth TabMaxWidth
TabsPerRow TabsPerRow
WordWrap WordWrap

StatusBar control

Actual Width Actual Width
Alignment Alignment
AutoSize AutoSize
Bevel Bevel
Enabled Enabled
Index Index
Key Key
Minimum Width Minimum Width
MousePointer MousePointer
OLEDropMode OLEDropMode
Picture Picture
ShowTips ShowTips
SimpleText SimpleText
Style Style
Tag Tag
Text Text
ToolTipText ToolTipText

TabStrip control

Caption Caption
Enabled Enabled
Image Image
ImageList ImageList
Index Index
Key Key
MousePointer MousePointer
MultiRow MultiRow
OLEDropMode OLEDropMode
ShowTips ShowTips
Style Style
TabFixedHeight TabFixedHeight
TabFixedWidth TabFixedWidth
TabWidthStyle TabWidthStyle
Tag Tag
ToolTipText ToolTipText

TreeView control

Appearance Appearance
BorderStyle BorderStyle
Enabled Enabled
HideSelection HideSelection
ImageList ImageList
Indentation Indentation
LabelEdit LabelEdit
LineStyle LineStyle
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
PathSeparator PathSeparator
Sorted Sorted
Style Style

ToolBar control

AllowCustomize AllowCustomize
Appearance Appearance
BorderStyle BorderStyle
ButtonHeight ButtonHeight
ButtonWidth ButtonWidth
Caption Caption
Description Description
Enabled Enabled
HelpContextID HelpContextID

HelpFile HelpFile
Image Image
ImageList ImageList
Index Index
Key Key
MixedState MixedState
MousePointer MousePointer
OLEDropMode OLEDropMode
ShowTips ShowTips
Style Style
Tag Tag
ToolTipText ToolTipText
Value Value
Visible Visible
Width Width
Wrappable Wrappable

UpDown control

Alignment Alignment
AutoBuddy AutoBuddy
BuddyControl BuddyControl
BuddyProperty BuddyProperty
Increment Increment
Max Max
Min Min
OLEDropMode OLEDropMode
Orientation Orientation
SyncBuddy SyncBuddy
Value Value
Wrap Wrap

Winsock control

LocalPort LocalPort
Protocol Protocol
RemoteHost RemoteHost
RemotePort RemotePort

RightToLeft Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRightToLeftPropertyActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRightToLeftPropertyActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRightToLeftPropertyActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRightToLeftPropertyActiveXControlsS"}

Returns a boolean value that indicates the text display direction and controls the visual appearance
on a bidirectional system.

Syntax
object.RightToLeft
The RightToLeft property syntax has this part:

Part Description
object An object expression that evaluates to an object in the

Applies To list.

Settings
The possible boolean return values from the RightToLeft property are:

Setting Description
True The control is running on a bi-directional platform, such as

Arabic Windows95 or Hebrew Windows95, and text is
running from right to left. The control should modify its
behavior, such as putting vertical scroll bars at the left side
of a text or list box, putting labels to the right of text boxes,
etc.

False The control should act as though it was running on a non-
bidirectional platform, such as English Windows95, and text
is running from left to right. If the container does not
implement this ambient property, this will be the default
value.

Refresh Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRefreshMethodActiveXControlsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthRefreshMethodActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRefreshMethodActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRefreshMethodActiveXControlsS"}

Forces a complete repaint of a form or control.

Syntax
object.Refresh
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the Refresh method when you want to:

· Completely display one form while another form loads.
· Update the contents of a file-system list box, such as a FileListBox control.
· Update the data structures of a Data control.

Refresh can't be used on MDI forms , but can be used on MDI child forms. You can't use Refresh on
Menu or Timer controls.

Generally, painting a form or control is handled automatically while no events are occurring. However,
there may be situations where you want the form or control updated immediately. For example, if you
use a file list box, a directory list box, or a drive list box to show the current status of the directory
structure, you can use Refresh to update the list whenever a change is made to the directory
structure.

You can use the Refresh method on a Data control to open or reopen the database (if the
DatabaseName, ReadOnly, Exclusive, or Connect property settings have changed) and rebuild the
dynaset in the control's Recordset property.

