
ALTER TABLE Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlAlterC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlAlterX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daSQLAlterS"}

Modifies the design of a table after it has been created with the CREATE TABLE statement.

Note The Microsoft Jet database engine doesn't support the use of ALTER TABLE, or any of the
data definition language (DDL) statements, with non-Microsoft Jet databases. Use the DAO Create
methods instead.

Syntax
ALTER TABLE table {ADD {COLUMN field type[(size)] [NOT NULL] [CONSTRAINT index] |

CONSTRAINT multifieldindex} |
DROP {COLUMN field I CONSTRAINT indexname} }

The ALTER TABLE statement has these parts:

Part Description
table The name of the table to be altered.
field The name of the field to be added to or deleted from

table.
type The data type of field.
size The field size in characters (Text and Binary fields only).
index The index for field. See the CONSTRAINT clause topic

for more information on how to construct this index.
multifieldindex The definition of a multiple-field index to be added to

table. See the CONSTRAINT clause topic for more
information on how to construct this clause.

indexname The name of the multiple-field index to be removed.

Remarks
Using the ALTER TABLE statement, you can alter an existing table in several ways. You can:

· Use ADD COLUMN to add a new field to the table. You specify the field name, data type, and (for
Text and Binary fields) an optional size. For example, the following statement adds a 25-character
Text field called Notes to the Employees table:
ALTER TABLE Employees ADD COLUMN Notes TEXT(25)
You can also define an index on that field. For more information on single-field indexes, see the
CONSTRAINT clause topic.
If you specify NOT NULL for a field, then new records are required to have valid data in that field.

· Use ADD CONSTRAINT to add a multiple-field index. For more information on multiple-field
indexes, see the CONSTRAINT clause topic.

· Use DROP COLUMN to delete a field. You specify only the name of the field.
· Use DROP CONSTRAINT to delete a multiple-field index. You specify only the index name

following the CONSTRAINT reserved word.

Notes
· You can't add or delete more than one field or index at a time.
· You can use the CREATE INDEX statement to add a single- or multiple-field index to a table, and

you can use ALTER TABLE or the DROP statement to delete an index created with ALTER TABLE
or CREATE INDEX.

· You can use NOT NULL on a single field, or within a named CONSTRAINT clause that applies to
either a single field or to a multiple-field named CONSTRAINT. However, you can apply the NOT

NULL restriction only once to a field, or a run-time error occurs.

CONSTRAINT Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlConstraintC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlCreateTableX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLConstraintS"}

A constraint is similar to an index, although it can also be used to establish a relationship with another
table.

You use the CONSTRAINT clause in ALTER TABLE and CREATE TABLE statements to create or
delete constraints. There are two types of CONSTRAINT clauses: one for creating a constraint on a
single field and one for creating a constraint on more than one field.

Note The Microsoft Jet database engine doesn't support the use of CONSTRAINT, or any of the
data definition language (DDL) statements, with non-Microsoft Jet databases. Use the DAO Create
methods instead.

Syntax
Single-field constraint:

CONSTRAINT name {PRIMARY KEY | UNIQUE | NOT NULL |
REFERENCES foreigntable [(foreignfield1, foreignfield2)]}

Multiple-field constraint:

CONSTRAINT name
{PRIMARY KEY (primary1[, primary2 [, ...]]) |
UNIQUE (unique1[, unique2 [, ...]]) |
NOT NULL (notnull1[, notnull2 [, ...]]) |
FOREIGN KEY (ref1[, ref2 [, ...]]) REFERENCES foreigntable [(foreignfield1 [, foreignfield2 [, ...]])]}

The CONSTRAINT clause has these parts:

Part Description

name The name of the constraint to be created.
primary1, primary2 The name of the field or fields to be

designated the primary key.
unique1, unique2 The name of the field or fields to be

designated as a unique key.
notnull1, notnull2 The name of the field or fields that are

restricted to non-Null values.
ref1, ref2 The name of a foreign key field or fields that

refer to fields in another table.
foreigntable The name of the foreign table containing the

field or fields specified by foreignfield.
foreignfield1,
foreignfield2

The name of the field or fields in foreigntable
specified by ref1, ref2. You can omit this
clause if the referenced field is the primary
key of foreigntable.

Remarks
You use the syntax for a single-field constraint in the field-definition clause of an ALTER TABLE or
CREATE TABLE statement immediately following the specification of the field's data type.

You use the syntax for a multiple-field constraint whenever you use the reserved word CONSTRAINT
outside a field-definition clause in an ALTER TABLE or CREATE TABLE statement.

Using CONSTRAINT, you can designate a field as one of the following types of constraints:

· You can use the UNIQUE reserved word to designate a field as a unique key. This means that no
two records in the table can have the same value in this field. You can constrain any field or list of
fields as unique. If a multiple-field constraint is designated as a unique key, the combined values of
all fields in the index must be unique, even if two or more records have the same value in just one
of the fields.

· You can use the PRIMARY KEY reserved words to designate one field or set of fields in a table as
a primary key. All values in the primary key must be unique and not Null, and there can be only
one primary key for a table.
Note Don't set a PRIMARY KEY constraint on a table that already has a primary key; if you do,
an error occurs.

· You can use the FOREIGN KEY reserved words to designate a field as a foreign key. If the foreign
table's primary key consists of more than one field, you must use a multiple-field constraint
definition, listing all of the referencing fields, the name of the foreign table, and the names of the
referenced fields in the foreign table in the same order that the referencing fields are listed. If the
referenced field or fields are the foreign table's primary key, you don't have to specify the
referenced fields ¾ by default, the database engine behaves as if the foreign table's primary key is
the referenced fields.

CREATE INDEX Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlCreateIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlCreateIndexX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLCreateIndexS"}

Creates a new index on an existing table.

Note For non-Microsoft Jet databases, the Microsoft Jet database engine doesn't support the use
of CREATE INDEX (except to create a pseudo index on an ODBC linked table) or any of the data
definition language (DDL) statements. Use the DAO Create methods instead. For more information,
see the Remarks section.

Syntax
CREATE [UNIQUE] INDEX index

ON table (field [ASC|DESC][, field [ASC|DESC], ...])
[WITH { PRIMARY | DISALLOW NULL | IGNORE NULL }]

The CREATE INDEX statement has these parts:

Part Description
index The name of the index to be created.
table The name of the existing table that will contain the

index.
field The name of the field or fields to be indexed. To create

a single-field index, list the field name in parentheses
following the table name. To create a multiple-field
index, list the name of each field to be included in the
index. To create descending indexes, use the DESC
reserved word; otherwise, indexes are assumed to be
ascending.

Remarks
To prohibit duplicate values in the indexed field or fields of different records, use the UNIQUE
reserved word.

In the optional WITH clause, you can enforce data validation rules. You can:

· Prohibit Null entries in the indexed field or fields of new records by using the DISALLOW NULL
option.

· Prevent records with Null values in the indexed field or fields from being included in the index by
using the IGNORE NULL option.

· Designate the indexed field or fields as the primary key by using the PRIMARY reserved word. This
implies that the key is unique, so you can omit the UNIQUE reserved word.

You can use CREATE INDEX to create a pseudo index on a linked table in an ODBC data source,
such as SQL Server, that does not already have an index. You don't need permission or access to the
remote server to create a pseudo index, and the remote database is unaware of and unaffected by
the pseudo index. You use the same syntax for both linked and native tables. This can be especially
useful to create an index on a table that would ordinarily be read-only due to lack of an index.

You can also use the ALTER TABLE statement to add a single- or multiple-field index to a table, and
you can use the ALTER TABLE statement or the DROP statement to remove an index created with
ALTER TABLE or CREATE INDEX.

Note Don't use the PRIMARY reserved word when you create a new index on a table that already
has a primary key; if you do, an error occurs.

CREATE TABLE Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlCreateTableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlCreateTableX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLCreateTableS"}

Creates a new table.

Note The Microsoft Jet database engine doesn't support the use of CREATE TABLE, or any of the
DDL statements, with non-Microsoft Jet database engine databases. Use the DAO Create methods
instead.

Syntax
CREATE TABLE table (field1 type [(size)] [NOT NULL] [index1] [, field2 type [(size)] [NOT NULL]

[index2] [, ...]] [, CONSTRAINT multifieldindex [, ...]])
The CREATE TABLE statement has these parts:

Part Description
table The name of the table to be created.
field1, field2 The name of field or fields to be created in the new

table. You must create at least one field.
type The data type of field in the new table.
size The field size in characters (Text and Binary fields only).
index1, index2 A CONSTRAINT clause defining a single-field index.

See the CONSTRAINT clause topic for more
information on how to create this index.

multifieldindex A CONSTRAINT clause defining a multiple-field index.
See the CONSTRAINT clause topic for more
information on how to create this index.

Remarks
Use the CREATE TABLE statement to define a new table and its fields and field constraints. If NOT
NULL is specified for a field, then new records are required to have valid data in that field.

A CONSTRAINT clause establishes various restrictions on a field, and can be used to establish the
primary key. You can also use the CREATE INDEX statement to create a primary key or additional
indexes on existing tables.

You can use NOT NULL on a single field, or within a named CONSTRAINT clause that applies to
either a single field or to a multiple-field named CONSTRAINT. However, you can apply the NOT
NULL restriction only once to a field, or a run-time error occurs.

DROP Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlDropC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlDropX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daSQLDropS"}

Deletes an existing table from a database or deletes an existing index from a table.

Note The Microsoft Jet database engine doesn't support the use of DROP, or any of the DDL
statements, with non-Microsoft Jet databases. Use the DAO Delete method instead.

Syntax
DROP {TABLE table | INDEX index ON table}
The DROP statement has these parts:

Part Description
table The name of the table to be deleted or the table from

which an index is to be deleted.
index The name of the index to be deleted from table.

Remarks
You must close the table before you can delete it or remove an index from it.

You can also use ALTER TABLE to delete an index from a table.

You can use CREATE TABLE to create a table and CREATE INDEX or ALTER TABLE to create an
index. To modify a table, use ALTER TABLE.

SELECT Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlSelectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlSelectX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlSELECTS"}

Instructs the Microsoft Jet database engine to return information from the database as a set of
records.

Syntax
SELECT [predicate] { * | table.* | [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}

FROM tableexpression [, ...] [IN externaldatabase]
[WHERE...]
[GROUP BY...]
[HAVING...]
[ORDER BY...]
[WITH OWNERACCESS OPTION]

The SELECT statement has these parts:

Part Description
predicate One of the following predicates: ALL, DISTINCT,

DISTINCTROW, or TOP. You use the predicate to
restrict the number of records returned. If none is
specified, the default is ALL.

* Specifies that all fields from the specified table or
tables are selected.

table The name of the table containing the fields from
which records are selected.

field1, field2 The names of the fields containing the data you want
to retrieve. If you include more than one field, they
are retrieved in the order listed.

alias1, alias2 The names to use as column headers instead of the
original column names in table.

tableexpression The name of the table or tables containing the data
you want to retrieve.

externaldatabase The name of the database containing the tables in
tableexpression if they are not in the current
database.

Remarks
To perform this operation, the Microsoft Jet database engine searches the specified table or tables,
extracts the chosen columns, selects rows that meet the criterion, and sorts or groups the resulting
rows into the order specified.

SELECT statements don't change data in the database.

SELECT is usually the first word in an SQL statement. Most SQL statements are either SELECT or
SELECT...INTO statements.

The minimum syntax for a SELECT statement is:

SELECT fields FROM table

You can use an asterisk (*) to select all fields in a table. The following example selects all of the fields
in the Employees table:
SELECT * FROM Employees;

If a field name is included in more than one table in the FROM clause, precede it with the table name
and the . (dot) operator. In the following example, the Department field is in both the Employees table
and the Supervisors table. The SQL statement selects departments from the Employees table and
supervisor names from the Supervisors table:
SELECT Employees.Department, Supervisors.SupvName
FROM Employees INNER JOIN Supervisors
WHERE Employees.Department = Supervisors.Department;
When a Recordset object is created, the Microsoft Jet database engine uses the table's field name
as the Field object name in the Recordset object. If you want a different field name or a name isn't
implied by the expression used to generate the field, use the AS reserved word. The following
example uses the title Birth to name the returned Field object in the resulting Recordset object:
SELECT BirthDate
AS Birth FROM Employees;
Whenever you use aggregate functions or queries that return ambiguous or duplicate Field object
names, you must use the AS clause to provide an alternate name for the Field object. The following
example uses the title HeadCount to name the returned Field object in the resulting Recordset
object:
SELECT COUNT(EmployeeID)
AS HeadCount FROM Employees;
You can use the other clauses in a SELECT statement to further restrict and organize your returned
data. For more information, see the Help topic for the clause you're using.

FROM Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlFromC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daSQLFromX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlFROMS"}

Specifies the tables or queries that contain the fields listed in the SELECT statement.

Syntax
SELECT fieldlist

FROM tableexpression [IN externaldatabase]
A SELECT statement containing a FROM clause has these parts:

Part Description
fieldlist The name of the field or fields to be retrieved along

with any field-name aliases, SQL aggregate
functions, selection predicates (ALL, DISTINCT,
DISTINCTROW, or TOP), or other SELECT
statement options.

tableexpression An expression that identifies one or more tables from
which data is retrieved. The expression can be a
single table name, a saved query name, or a
compound resulting from an INNER JOIN, LEFT
JOIN, or RIGHT JOIN.

externaldatabase The full path of an external database containing all
the tables in tableexpression.

Remarks
FROM is required and follows any SELECT statement.

The order of the table names in tableexpression isn't important.

For improved performance and ease of use, it's recommended that you use a linked table instead of
an IN clause to retrieve data from an external database.

The following example shows how you can retrieve data from the Employees table:
SELECT LastName, FirstName
FROM Employees;

IN Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlInC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlInX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daSQLINS"}

Identifies tables in any external database to which the Microsoft Jet database engine can connect,
such as a dBASE or Paradox database or an external Microsoft Jet database.

Syntax
To identify a destination table:

[SELECT | INSERT] INTO destination IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

To identify a source table:

FROM tableexpression IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

A SELECT statement containing an IN clause has these parts:

Part Description
destination The name of the external table into which data is

inserted.
tableexpression The name of the table or tables from which data is

retrieved. This argument can be a single table name, a
saved query, or a compound resulting from an INNER
JOIN, LEFT JOIN, or RIGHT JOIN.

path The full path for the directory or file containing table.
type The name of the database type used to create table if

a database isn't a Microsoft Jet database (for example,
dBASE III, dBASE IV, Paradox 3.x, or Paradox 4.x).

Remarks
You can use IN to connect to only one external database at a time.

In some cases, the path argument refers to the directory containing the database files. For example,
when working with dBASE, FoxPro, or Paradox database tables, the path argument specifies the
directory containing .dbf or .db files. The table file name is derived from the destination or
tableexpression argument.

To specify a non-Microsoft Jet database, append a semicolon (;) to the name, and enclose it in single
(' ') or double (" ") quotation marks. For example, either 'dBASE IV;' or "dBASE IV;" is acceptable.

You can also use the DATABASE reserved word to specify the external database. For example, the
following lines specify the same table:
... FROM Table IN "" [dBASE IV; DATABASE=C:\DBASE\DATA\SALES;];
... FROM Table IN "C:\DBASE\DATA\SALES" "dBASE IV;"
Notes
· For improved performance and ease of use, use a linked table instead of IN.
· You can also use the IN reserved word as a comparison operator in an expression. For more

information, see the In operator.

WHERE Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlWhereC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlWhereX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlWHERES"}

Specifies which records from the tables listed in the FROM clause are affected by a SELECT,
UPDATE, or DELETE statement.

Syntax
SELECT fieldlist

FROM tableexpression
WHERE criteria

A SELECT statement containing a WHERE clause has these parts:

Part Description
fieldlist The name of the field or fields to be retrieved along

with any field-name aliases, selection predicates (ALL,
DISTINCT, DISTINCTROW, or TOP), or other SELECT
statement options.

tableexpression The name of the table or tables from which data is
retrieved.

criteria An expression that records must satisfy to be included
in the query results.

Remarks
The Microsoft Jet database engine selects the records that meet the conditions listed in the WHERE
clause. If you don't specify a WHERE clause, your query returns all rows from the table. If you specify
more than one table in your query and you haven't included a WHERE clause or a JOIN clause, your
query generates a Cartesian product of the tables.

WHERE is optional, but when included, follows FROM. For example, you can select all employees in
the sales department (WHERE Dept = 'Sales') or all customers between the ages of 18 and 30
(WHERE Age Between 18 And 30).

If you don't use a JOIN clause to perform SQL join operations on multiple tables, the resulting
Recordset object won't be updatable.

WHERE is similar to HAVING. WHERE determines which records are selected. Similarly, once
records are grouped with GROUP BY, HAVING determines which records are displayed.

Use the WHERE clause to eliminate records you don't want grouped by a GROUP BY clause.

Use various expressions to determine which records the SQL statement returns. For example, the
following SQL statement selects all employees whose salaries are more than $21,000:
SELECT LastName, Salary
FROM Employees
WHERE Salary > 21000;
A WHERE clause can contain up to 40 expressions linked by logical operators, such as And and Or.
When you enter a field name that contains a space or punctuation, surround the name with brackets
([]). For example, a customer information table might include information about specific customers :
SELECT [Customer’s Favorite Restarant]
When you specify the criteria argument, date literals must be in U.S. format, even if you're not using
the U.S. version of the Microsoft Jet database engine. For example, May 10, 1996, is written 10/5/96
in the United Kingdom and 5/10/96 in the United States. Be sure to enclose your date literals with the
number sign (#) as shown in the following examples.

To find records dated May 10, 1996 in a United Kingdom database, you must use the following SQL
statement:
SELECT *
FROM Orders
WHERE ShippedDate = #5/10/96#;
You can also use the DateValue function which is aware of the international settings established by
Microsoft Windows. For example, use this code for the United States:
SELECT *
FROM Orders
WHERE ShippedDate = DateValue('5/10/96');
And use this code for the United Kingdom:
SELECT *
FROM Orders
WHERE ShippedDate = DateValue('10/5/96');
Note If the column referenced in the criteria string is of type GUID, the criteria expression uses a
slightly different syntax:
WHERE ReplicaID = {GUID {12345678-90AB-CDEF-1234-567890ABCDEF}}
Be sure to include the nested braces and hyphens as shown.

GROUP BY Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlGroupByC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlGroupByX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlGROUPBYS"}

Combines records with identical values in the specified field list into a single record. A summary value
is created for each record if you include an SQL aggregate function, such as Sum or Count, in the
SELECT statement.

Syntax
SELECT fieldlist

FROM table
WHERE criteria
[GROUP BY groupfieldlist]

A SELECT statement containing a GROUP BY clause has these parts:

Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

criteria Selection criteria. If the statement includes a WHERE
clause, the Microsoft Jet database engine groups
values after applying the WHERE conditions to the
records.

groupfieldlist The names of up to 10 fields used to group records.
The order of the field names in groupfieldlist determines
the grouping levels from the highest to the lowest level
of grouping.

Remarks
GROUP BY is optional.

Summary values are omitted if there is no SQL aggregate function in the SELECT statement.

Null values in GROUP BY fields are grouped and aren't omitted. However, Null values aren't
evaluated in any SQL aggregate function.

Use the WHERE clause to exclude rows you don't want grouped, and use the HAVING clause to filter
records after they've been grouped.

Unless it contains Memo or OLE Object data, a field in the GROUP BY field list can refer to any field
in any table listed in the FROM clause, even if the field isn't included in the SELECT statement,
provided the SELECT statement includes at least one SQL aggregate function. The Microsoft Jet
database engine can't group on Memo or OLE Object fields.

All fields in the SELECT field list must either be included in the GROUP BY clause or be included as
arguments to an SQL aggregate function.

HAVING Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlHavingC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlHavingX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLHAVINGS"}

Specifies which grouped records are displayed in a SELECT statement with a GROUP BY clause.
After GROUP BY combines records, HAVING displays any records grouped by the GROUP BY
clause that satisfy the conditions of the HAVING clause.

Syntax
SELECT fieldlist

FROM table
WHERE selectcriteria
GROUP BY groupfieldlist
[HAVING groupcriteria]

A SELECT statement containing a HAVING clause has these parts:

Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

selectcriteria Selection criteria. If the statement includes a WHERE
clause, the Microsoft Jet database engine groups
values after applying the WHERE conditions to the
records.

groupfieldlist The names of up to 10 fields used to group records.
The order of the field names in groupfieldlist determines
the grouping levels from the highest to the lowest level
of grouping.

groupcriteria An expression that determines which grouped records
to display.

Remarks
HAVING is optional.

HAVING is similar to WHERE, which determines which records are selected. After records are
grouped with GROUP BY, HAVING determines which records are displayed:
SELECT CategoryID,
Sum(UnitsInStock)
FROM Products
GROUP BY CategoryID
HAVING Sum(UnitsInStock) > 100 And Like "BOS*";
A HAVING clause can contain up to 40 expressions linked by logical operators, such as And and Or.

ORDER BY Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlOrderByC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlOrderByX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlORDERBYS"}

Sorts a query's resulting records on a specified field or fields in ascending or descending order.

Syntax
SELECT fieldlist

FROM table
WHERE selectcriteria
[ORDER BY field1 [ASC | DESC][, field2 [ASC | DESC]][, ...]]]

A SELECT statement containing an ORDER BY clause has these parts:

Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

selectcriteria Selection criteria. If the statement includes a WHERE
clause, the Microsoft Jet database engine orders values
after applying the WHERE conditions to the records.

field1, field2 The names of the fields on which to sort records.

Remarks
ORDER BY is optional. However, if you want your data displayed in sorted order, then you must use
ORDER BY.

The default sort order is ascending (A to Z, 0 to 9). Both of the following examples sort employee
names in last name order:
SELECT LastName, FirstName
FROM Employees
ORDER BY LastName;
SELECT LastName, FirstName
FROM Employees
ORDER BY LastName ASC;
To sort in descending order (Z to A, 9 to 0), add the DESC reserved word to the end of each field you
want to sort in descending order. The following example selects salaries and sorts them in
descending order:
SELECT LastName, Salary
FROM Employees
ORDER BY Salary DESC, LastName;
If you specify a field containing Memo or OLE Object data in the ORDER BY clause, an error occurs.
The Microsoft Jet database engine doesn't sort on fields of these types.

ORDER BY is usually the last item in an SQL statement.

You can include additional fields in the ORDER BY clause. Records are sorted first by the first field
listed after ORDER BY. Records that have equal values in that field are then sorted by the value in the
second field listed, and so on.

ALL, DISTINCT, DISTINCTROW, TOP Predicates
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlAllDistinctC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlAllDistinctX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlALLDISTINCTS"}

Specifies records selected with SQL queries.

Syntax
SELECT [ALL | DISTINCT | DISTINCTROW | [TOP n [PERCENT]]]

FROM table
A SELECT statement containing these predicates has the following parts:

Part Description
ALL Assumed if you don't include one of the predicates. The

Microsoft Jet database engine selects all of the records that
meet the conditions in the SQL statement. The following two
examples are equivalent and return all records from the
Employees table:
SELECT ALL *
FROM Employees
ORDER BY EmployeeID;
SELECT *
FROM Employees
ORDER BY EmployeeID;

DISTINCT Omits records that contain duplicate data in the selected
fields. To be included in the results of the query, the values
for each field listed in the SELECT statement must be
unique. For example, several employees listed in an
Employees table may have the same last name. If two
records contain Smith in the LastName field, the following
SQL statement returns only one record that contains Smith:
SELECT DISTINCT
LastName
FROM Employees;
If you omit DISTINCT, this query returns both Smith records.
If the SELECT clause contains more than one field, the
combination of values from all fields must be unique for a
given record to be included in the results.
The output of a query that uses DISTINCT isn't updatable
and doesn't reflect subsequent changes made by other
users.

DISTINCTROW Omits data based on entire duplicate records, not just
duplicate fields. For example, you could create a query that
joins the Customers and Orders tables on the CustomerID
field. The Customers table contains no duplicate CustomerID
fields, but the Orders table does because each customer can
have many orders. The following SQL statement shows how
you can use DISTINCTROW to produce a list of companies
that have at least one order but without any details about
those orders:
SELECT DISTINCTROW CompanyName
FROM Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

ORDER BY CompanyName;
If you omit DISTINCTROW, this query produces multiple
rows for each company that has more than one order.
DISTINCTROW has an effect only when you select fields
from some, but not all, of the tables used in the query.
DISTINCTROW is ignored if your query includes only one
table, or if you output fields from all tables.

TOP n [PERCENT] Returns a certain number of records that fall at the top or the
bottom of a range specified by an ORDER BY clause.
Suppose you want the names of the top 25 students from the
class of 1994:
SELECT TOP 25
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage DESC;
If you don't include the ORDER BY clause, the query will
return an arbitrary set of 25 records from the Students table
that satisfy the WHERE clause.
The TOP predicate doesn't choose between equal values. In
the preceding example, if the twenty-fifth and twenty-sixth
highest grade point averages are the same, the query will
return 26 records.
You can also use the PERCENT reserved word to return a
certain percentage of records that fall at the top or the
bottom of a range specified by an ORDER BY clause.
Suppose that, instead of the top 25 students, you want the
bottom 10 percent of the class:
SELECT TOP 10 PERCENT
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage ASC;
The ASC predicate specifies a return of bottom values. The
value that follows TOP must be an unsigned Integer.
TOP doesn't affect whether or not the query is updatable.

table The name of the table from which records are retrieved.

DELETE Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlDeleteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlDELETES"}

Creates a delete query that removes records from one or more of the tables listed in the FROM
clause that satisfy the WHERE clause.

Syntax
DELETE [table.*]

FROM table
WHERE criteria

The DELETE statement has these parts:

Part Description
table The optional name of the table from which records are

deleted.
table The name of the table from which records are deleted.
criteria An expression that determines which records to delete.

Remarks
DELETE is especially useful when you want to delete many records.

To drop an entire table from the database, you can use the Execute method with a DROP statement.
If you delete the table, however, the structure is lost. In contrast, when you use DELETE, only the
data is deleted; the table structure and all of the table properties, such as field attributes and indexes,
remain intact.

You can use DELETE to remove records from tables that are in a one-to-many relationship with other
tables. Cascade delete operations cause the records in tables that are on the many side of the
relationship to be deleted when the corresponding record in the one side of the relationship is deleted
in the query. For example, in the relationship between the Customers and Orders tables, the
Customers table is on the one side and the Orders table is on the many side of the relationship.
Deleting a record from Customers results in the corresponding Orders records being deleted if the
cascade delete option is specified.

A delete query deletes entire records, not just data in specific fields. If you want to delete values in a
specific field, create an update query that changes the values to Null.
Important
· After you remove records using a delete query, you can't undo the operation. If you want to know

which records were deleted, first examine the results of a select query that uses the same criteria,
and then run the delete query.

· Maintain backup copies of your data at all times. If you delete the wrong records, you can retrieve
them from your backup copies.

INNER JOIN Operation
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlInnerJoinC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlInnerJoinX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlInnerJoinS"}

Combines records from two tables whenever there are matching values in a common field.

Syntax
FROM table1 INNER JOIN table2 ON table1.field1 compopr table2.field2
The INNER JOIN operation has these parts:

Part Description
table1, table2 The names of the tables from which records are

combined.
field1, field2 The names of the fields that are joined. If they aren't

numeric, the fields must be of the same data type and
contain the same kind of data, but they don't have to
have the same name.

compopr Any relational comparison operator: "=," "<," ">," "<=,"
">=," or "<>."

Remarks
You can use an INNER JOIN operation in any FROM clause. This is the most common type of join.
Inner joins combine records from two tables whenever there are matching values in a field common to
both tables.

You can use INNER JOIN with the Departments and Employees tables to select all the employees in
each department. In contrast, to select all departments (even if some have no employees assigned to
them) or all employees (even if some aren't assigned to a department), you can use a LEFT JOIN or
RIGHT JOIN operation to create an outer join.

If you try to join fields containing Memo or OLE Object data, an error occurs.

You can join any two numeric fields of like types. For example, you can join on AutoNumber and Long
fields because they are like types. However, you cannot join Single and Double types of fields.

The following example shows how you could join the Categories and Products tables on the
CategoryID field:
SELECT CategoryName, ProductName
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID;
In the preceding example, CategoryID is the joined field, but it isn't included in the query output
because it isn't included in the SELECT statement. To include the joined field, include the field name
in the SELECT statement ¾ in this case, Categories.CategoryID.

You can also link several ON clauses in a JOIN statement, using the following syntax:

SELECT fields
FROM table1 INNER JOIN table2
ON table1.field1 compopr table2.field1 AND
ON table1.field2 compopr table2.field2) OR
ON table1.field3 compopr table2.field3)];

You can also nest JOIN statements using the following syntax:

SELECT fields
FROM table1 INNER JOIN

(table2 INNER JOIN [(]table3
[INNER JOIN [(]tablex [INNER JOIN ...)]
ON table3.field3 compopr tablex.fieldx)]
ON table2.field2 compopr table3.field3)
ON table1.field1 compopr table2.field2;

A LEFT JOIN or a RIGHT JOIN may be nested inside an INNER JOIN, but an INNER JOIN may not
be nested inside a LEFT JOIN or a RIGHT JOIN.

INSERT INTO Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlInsertIntoC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlInsertIntoX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlINSERTINTOS"}

Adds a record or multiple records to a table. This is referred to as an append query.

Syntax
Multiple-record append query:

INSERT INTO target [IN externaldatabase] [(field1[, field2[, ...]])]
SELECT [source.]field1[, field2[, ...]
FROM tableexpression

Single-record append query:

INSERT INTO target [(field1[, field2[, ...]])]
VALUES (value1[, value2[, ...])

The INSERT INTO statement has these parts:

Part Description
target The name of the table or query to append records

to.
externaldatabase The path to an external database. For a description

of the path, see the IN clause.
source The name of the table or query to copy records

from.
field1, field2 Names of the fields to append data to, if following a

target argument, or the names of fields to obtain
data from, if following a source argument.

tableexpression The name of the table or tables from which records
are inserted. This argument can be a single table
name or a compound resulting from an INNER
JOIN, LEFT JOIN, or RIGHT JOIN operation or a
saved query.

value1, value2 The values to insert into the specific fields of the
new record. Each value is inserted into the field that
corresponds to the value's position in the list: value1
is inserted into field1 of the new record, value2 into
field2, and so on. You must separate values with a
comma, and enclose text fields in quotation marks
(' ').

Remarks
You can use the INSERT INTO statement to add a single record to a table using the single-record
append query syntax as shown above. In this case, your code specifies the name and value for each
field of the record. You must specify each of the fields of the record that a value is to be assigned to
and a value for that field. When you don't specify each field, the default value or Null is inserted for
missing columns. Records are added to the end of the table.

You can also use INSERT INTO to append a set of records from another table or query by using the
SELECT ... FROM clause as shown above in the multiple-record append query syntax. In this case,
the SELECT clause specifies the fields to append to the specified target table.

The source or target table may specify a table or a query. If a query is specified, the Microsoft Jet
database engine appends records to any and all tables specified by the query.

INSERT INTO is optional but when included, precedes the SELECT statement.

If your destination table contains a primary key, make sure you append unique, non-Null values to the
primary key field or fields; if you don't, the Microsoft Jet database engine won't append the records.

If you append records to a table with an AutoNumber field and you want to renumber the appended
records, don't include the AutoNumber field in your query. Do include the AutoNumber field in the
query if you want to retain the original values from the field.

Use the IN clause to append records to a table in another database.

To create a new table, use the SELECT... INTO statement instead to create a make-table query.

To find out which records will be appended before you run the append query, first execute and view
the results of a select query that uses the same selection criteria.

An append query copies records from one or more tables to another. The tables that contain the
records you append aren't affected by the append query.

Instead of appending existing records from another table, you can specify the value for each field in a
single new record using the VALUES clause. If you omit the field list, the VALUES clause must
include a value for every field in the table; otherwise, the INSERT operation will fail. Use an additional
INSERT INTO statement with a VALUES clause for each additional record you want to create.

LEFT JOIN, RIGHT JOIN Operations
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlLeftRightJoinC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlLeftRightJoinX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlLeftRightJoinS"}

Combines source-table records when used in any FROM clause.

Syntax
FROM table1 [LEFT | RIGHT] JOIN table2

ON table1.field1 compopr table2.field2
The LEFT JOIN and RIGHT JOIN operations have these parts:

Part Description
table1, table2 The names of the tables from which records are

combined.
field1, field2 The names of the fields that are joined. The fields must

be of the same data type and contain the same kind of
data, but they don't need to have the same name.

compopr Any relational comparison operator: "=," "<," ">," "<=,"
">=," or "<>."

Remarks
Use a LEFT JOIN operation to create a left outer join. Left outer joins include all of the records from
the first (left) of two tables, even if there are no matching values for records in the second (right) table.

Use a RIGHT JOIN operation to create a right outer join. Right outer joins include all of the records
from the second (right) of two tables, even if there are no matching values for records in the first (left)
table.

For example, you could use LEFT JOIN with the Departments (left) and Employees (right) tables to
select all departments, including those that have no employees assigned to them. To select all
employees, including those who aren't assigned to a department, you would use RIGHT JOIN.

The following example shows how you could join the Categories and Products tables on the
CategoryID field. The query produces a list of all categories, including those that contain no products:
SELECT CategoryName,
ProductName
FROM Categories LEFT JOIN Products
ON Categories.CategoryID = Products.CategoryID;
In this example, CategoryID is the joined field, but it isn't included in the query results because it isn't
included in the SELECT statement. To include the joined field, enter the field name in the SELECT
statement ¾ in this case, Categories.CategoryID.

Notes
· To create a query that includes only records in which the data in the joined fields is the same, use

an INNER JOIN operation.
· A LEFT JOIN or a RIGHT JOIN can be nested inside an INNER JOIN, but an INNER JOIN cannot

be nested inside a LEFT JOIN or a RIGHT JOIN. See the discussion of nesting in the INNER JOIN
topic to see how to nest joins within other joins.

· You can link multiple ON clauses. See the discussion of clause linking in the INNER JOIN topic to
see how this is done.

· If you try to join fields containing Memo or OLE Object data, an error occurs.

PARAMETERS Declaration
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlParametersC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlParametersX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlPARAMETERSS"}

Declares the name and data type of each parameter in a parameter query.

Syntax
PARAMETERS name datatype [, name datatype [, ...]]
The PARAMETERS declaration has these parts:

Part Description
name The name of the parameter. Assigned to the Name

property of the Parameter object and used to identify
this parameter in the Parameters collection. You can
use name as a string that is displayed in a dialog box
while your application runs the query. Use brackets ([])
to enclose text that contains spaces or punctuation. For
example, [Low price] and [Begin report with which
month?] are valid name arguments.

datatype One of the primary Microsoft Jet SQL data types or their
synonyms.

Remarks
For queries that you run regularly, you can use a PARAMETERS declaration to create a parameter
query. A parameter query can help automate the process of changing query criteria. With a parameter
query, your code will need to provide the parameters each time the query is run.

The PARAMETERS declaration is optional but when included precedes any other statement,
including SELECT.

If the declaration includes more than one parameter, separate them with commas. The following
example includes two parameters:
PARAMETERS [Low price] Currency, [Beginning date] DateTime;
You can use name but not datatype in a WHERE or HAVING clause. The following example expects
two parameters to be provided and then applies the criteria to records in the Orders table:
PARAMETERS [Low price] Currency,
[Beginning date] DateTime;
SELECT OrderID, OrderAmount
FROM Orders
WHERE OrderAmount > [Low price]
AND OrderDate >= [Beginning date];

PROCEDURE Clause
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlProcedureC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlProcedureX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlPROCEDURES"}

Defines a name and optional parameters for a query.

Syntax
PROCEDURE name [param1 datatype[, param2 datatype[, ...]]
The PROCEDURE clause has these parts:

Part Description
name A name for the procedure. It must follow standard

naming conventions.
param1,
param2

One or more field names or parameters. For example:
PROCEDURE Sales_By_Country [Beginning
Date] DateTime, [Ending Date] DateTime;
For more information on parameters, see
PARAMETERS.

datatype One of the primary Microsoft Jet SQL data types or their
synonyms.

Remarks
An SQL procedure consists of a PROCEDURE clause (which specifies the name of the procedure),
an optional list of parameter definitions, and a single SQL statement. For example, the procedure
Get_Part_Number might run a query that retrieves a specified part number.

Notes
· If the clause includes more than one field definition (that is, param-datatype pairs), separate them

with commas.
· The PROCEDURE clause must be followed by an SQL statement (for example, a SELECT or

UPDATE statement).

SELECT...INTO Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlSelectIntoC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlSelectIntoX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlSelectIntoS"}

Creates a make-table query.

Syntax
SELECT field1[, field2[, ...]] INTO newtable [IN externaldatabase]

FROM source
The SELECT...INTO statement has these parts:

Part Description
field1, field2 The name of the fields to be copied into the new table.
newtable The name of the table to be created. It must conform to

standard naming conventions. If newtable is the same
as the name of an existing table, a trappable error
occurs.

externaldataba
se

The path to an external database. For a description of
the path, see the IN clause.

source The name of the existing table from which records are
selected. This can be single or multiple tables or a
query.

Remarks
You can use make-table queries to archive records, make backup copies of your tables, or make
copies to export to another database or to use as a basis for reports that display data for a particular
time period. For example, you could produce a Monthly Sales by Region report by running the same
make-table query each month.

Notes
· You may want to define a primary key for the new table. When you create the table, the fields in the

new table inherit the data type and field size of each field in the query's underlying tables, but no
other field or table properties are transferred.

· To add data to an existing table, use the INSERT INTO statement instead to create an append
query.

· To find out which records will be selected before you run the make-table query, first examine the
results of a SELECT statement that uses the same selection criteria.

SQL Subqueries
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlSubqueriesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlSubqueriesX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlSubqueriesS"}

A subquery is a SELECT statement nested inside a SELECT, SELECT...INTO, INSERT...INTO,
DELETE, or UPDATE statement or inside another subquery.

Syntax
You can use three forms of syntax to create a subquery:

comparison [ANY | ALL | SOME] (sqlstatement)
expression [NOT] IN (sqlstatement)
[NOT] EXISTS (sqlstatement)
A subquery has these parts:

Part Description
comparison An expression and a comparison operator that

compares the expression with the results of the
subquery.

expression An expression for which the result set of the subquery
is searched.

 sqlstatement A SELECT statement, following the same format and
rules as any other SELECT statement. It must be
enclosed in parentheses.

Remarks
You can use a subquery instead of an expression in the field list of a SELECT statement or in a
WHERE or HAVING clause. In a subquery, you use a SELECT statement to provide a set of one or
more specific values to evaluate in the WHERE or HAVING clause expression.

Use the ANY or SOME predicate, which are synonymous, to retrieve records in the main query that
satisfy the comparison with any records retrieved in the subquery. The following example returns all
products whose unit price is greater than that of any product sold at a discount of 25 percent or more:
SELECT * FROM Products
WHERE UnitPrice > ANY
(SELECT UnitPrice FROM OrderDetails
WHERE Discount >= .25);
Use the ALL predicate to retrieve only those records in the main query that satisfy the comparison
with all records retrieved in the subquery. If you changed ANY to ALL in the previous example, the
query would return only those products whose unit price is greater than that of all products sold at a
discount of 25 percent or more. This is much more restrictive.

Use the IN predicate to retrieve only those records in the main query for which some record in the
subquery contains an equal value. The following example returns all products with a discount of 25
percent or more:
SELECT * FROM Products
WHERE ProductID IN
(SELECT ProductID FROM OrderDetails
WHERE Discount >= .25);
Conversely, you can use NOT IN to retrieve only those records in the main query for which no record
in the subquery contains an equal value.

Use the EXISTS predicate (with the optional NOT reserved word) in true/false comparisons to

determine whether the subquery returns any records.

You can also use table name aliases in a subquery to refer to tables listed in a FROM clause outside
the subquery. The following example returns the names of employees whose salaries are equal to or
greater than the average salary of all employees having the same job title. The Employees table is
given the alias "T1":
SELECT LastName,
FirstName, Title, Salary
FROM Employees AS T1
WHERE Salary >=
(SELECT Avg(Salary)
FROM Employees
WHERE T1.Title = Employees.Title) Order by Title;
In the preceding example, the AS reserved word is optional.

Some subqueries are allowed in crosstab queries ¾ specifically, as predicates (those in the WHERE
clause). Subqueries as output (those in the SELECT list) are not allowed in crosstab queries.

TRANSFORM Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlTransformC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlTransformX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlTransformS"}

Creates a crosstab query.

Syntax
TRANSFORM aggfunction

selectstatement
PIVOT pivotfield [IN (value1[, value2[, ...]])]

The TRANSFORM statement has these parts:

Part Description
aggfunction An SQL aggregate function that operates on the

selected data.
selectstatemen
t

A SELECT statement.

pivotfield The field or expression you want to use to create
column headings in the query's result set.

value1, value2 Fixed values used to create column headings.

Remarks
When you summarize data using a crosstab query, you select values from specified fields or
expressions as column headings so you can view data in a more compact format than with a select
query.

TRANSFORM is optional but when included is the first statement in an SQL string. It precedes a
SELECT statement that specifies the fields used as row headings and a GROUP BY clause that
specifies row grouping. Optionally, you can include other clauses, such as WHERE, that specify
additional selection or sorting criteria. You can also use subqueries as predicates ¾ specifically, those
in the WHERE clause ¾ in a crosstab query.

The values returned in pivotfield are used as column headings in the query's result set. For example,
pivoting the sales figures on the month of the sale in a crosstab query would create 12 columns. You
can restrict pivotfield to create headings from fixed values (value1, value2) listed in the optional IN
clause. You can also include fixed values for which no data exists to create additional columns.

UNION Operation
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlUnionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlUnionX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlUNIONS"}

Creates a union query, which combines the results of two or more independent queries or tables.

Syntax
[TABLE] query1 UNION [ALL] [TABLE] query2 [UNION [ALL] [TABLE] queryn [...]]
The UNION operation has these parts:

Part Description
query1-n A SELECT statement, the name of a stored query, or

the name of a stored table preceded by the TABLE
keyword.

Remarks
You can merge the results of two or more queries, tables, and SELECT statements, in any
combination, in a single UNION operation. The following example merges an existing table named
New Accounts and a SELECT statement:
TABLE [New Accounts] UNION ALL
SELECT *
FROM Customers
WHERE OrderAmount > 1000;
By default, no duplicate records are returned when you use a UNION operation; however, you can
include the ALL predicate to ensure that all records are returned. This also makes the query run
faster.

All queries in a UNION operation must request the same number of fields; however, the fields don't
have to be of the same size or data type.

Use aliases only in the first SELECT statement because they are ignored in any others. In the
ORDER BY clause, refer to fields by what they are called in the first SELECT statement.

Notes
· You can use a GROUP BY or HAVING clause in each query argument to group the returned data.
· You can use an ORDER BY clause at the end of the last query argument to display the returned

data in a specified order.

UPDATE Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlUpdateX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlUPDATES"}

Creates an update query that changes values in fields in a specified table based on specified criteria.

Syntax
UPDATE table

SET newvalue
WHERE criteria;

The UPDATE statement has these parts:

Part Description
table The name of the table containing the data you want to

modify.
newvalue An expression that determines the value to be inserted

into a particular field in the updated records.
criteria An expression that determines which records will be

updated. Only records that satisfy the expression are
updated.

Remarks
UPDATE is especially useful when you want to change many records or when the records that you
want to change are in multiple tables.

You can change several fields at the same time. The following example increases the Order Amount
values by 10 percent and the Freight values by 3 percent for shippers in the United Kingdom:
UPDATE Orders
SET OrderAmount = OrderAmount * 1.1,
Freight = Freight * 1.03
WHERE ShipCountry = 'UK';
Important
· UPDATE doesn't generate a result set. Also, after you update records using an update query, you

can't undo the operation. If you want to know which records were updated, first examine the results
of a select query that uses the same criteria, and then run the update query.

· Maintain backup copies of your data at all times. If you update the wrong records, you can retrieve
them from your backup copies.

WITH OWNERACCESS OPTION Declaration
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlWithOwnerAccessOptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlWithOwnerAccessOptionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlWITHOWNERACCESSOptionS"}

In a multiuser environment with a secure workgroup, use this declaration with a query to give the user
who runs the query the same permissions as the query's owner.

Syntax
sqlstatement

WITH OWNERACCESS OPTION

Remarks
The WITH OWNERACCESS OPTION declaration is optional.

The following example enables the user to view salary information (even if the user doesn't otherwise
have permission to view the Payroll table), provided that the query's owner does have that
permission:
SELECT LastName,
FirstName, Salary
FROM Employees
ORDER BY LastName
WITH OWNERACCESS OPTION;
If a user is otherwise prevented from creating or adding to a table, you can use WITH
OWNERACCESS OPTION to enable the user to run a make-table or append query.

If you want to enforce workgroup security settings and users' permissions, don't include the WITH
OWNERACCESS OPTION declaration.

This option requires you to have access to the System.mdw file associated with the database. It's
really useful only in secured multiuser implementations.

SQL Aggregate Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxAggregateFunctionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daidxAggregateFunctionsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxAggregateFunctionsS"}

Using the SQL aggregate functions, you can determine various statistics on sets of values. You can
use these functions in a query and aggregate expressions in the SQL property of a QueryDef object
or when creating a Recordset object based on an SQL query.

Avg Function
Count Function
Min, Max Functions
StDev, StDevP Functions
Sum Function
Var, VarP Functions

Avg Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlAvgC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlAvgX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlAvgS"}

Calculates the arithmetic mean of a set of values contained in a specified field on a query.

Syntax
Avg(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to average or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The average calculated by Avg is the arithmetic mean (the sum of the values divided by the number
of values). You could use Avg, for example, to calculate average freight cost.

The Avg function doesn't include any Null fields in the calculation.

You can use Avg in a query expression and in the SQL property of a QueryDef object or when
creating a Recordset object based on an SQL query.

Count Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlCountS"}

Calculates the number of records returned by a query.

Syntax
Count(expr)
The expr placeholder represents a string expression identifying the field that contains the data you
want to count or an expression that performs a calculation using the data in the field. Operands in
expr can include the name of a table field or function (which can be either intrinsic or user-defined but
not other SQL aggregate functions). You can count any kind of data, including text.

Remarks
You can use Count to count the number of records in an underlying query. For example, you could
use Count to count the number of orders shipped to a particular country.

Although expr can perform a calculation on a field, Count simply tallies the number of records. It
doesn't matter what values are stored in the records.

The Count function doesn't count records that have Null fields unless expr is the asterisk (*) wildcard
character. If you use an asterisk, Count calculates the total number of records, including those that
contain Null fields. Count(*) is considerably faster than Count([Column Name]). Don't enclose the
asterisk in quotation marks (' '). The following example calculates the number of records in the Orders
table:
SELECT Count(*)
AS TotalOrders FROM Orders;
If expr identifies multiple fields, the Count function counts a record only if at least one of the fields is
not Null. If all of the specified fields are Null, the record isn't counted. Separate the field names with
an ampersand (&). The following example shows how you can limit the count to records in which
either ShippedDate or Freight isn't Null:
SELECT
Count('ShippedDate & Freight')
AS [Not Null] FROM Orders;
You can use Count in a query expression. You can also use this expression in the SQL property of a
QueryDef object or when creating a Recordset object based on an SQL query.

First, Last Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlFirstLastC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlFirstLastX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlFirstLastS"}

Return a field value from the first or last record in the result set returned by a query.

Syntax
First(expr)
Last(expr)
The expr placeholder represents a string expression identifying the field that contains the data you
want to use or an expression that performs a calculation using the data in that field. Operands in expr
can include the name of a table field, a constant, or a function (which can be either intrinsic or user-
defined but not one of the other SQL aggregate functions).

Remarks
The First and Last functions are analogous to the MoveFirst and MoveLast methods of a DAO
Recordset object. They simply return the value of a specified field in the first or last record,
respectively, of the result set returned by a query. Because records are usually returned in no
particular order (unless the query includes an ORDER BY clause), the records returned by these
functions will be arbitrary.

Min, Max Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlMinMaxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlMinMaxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlMinMaxS"}

Return the minimum or maximum of a set of values contained in a specified field on a query.

Syntax
Min(expr)
Max(expr)
The expr placeholder represents a string expression identifying the field that contains the data you
want to evaluate or an expression that performs a calculation using the data in that field. Operands in
expr can include the name of a table field, a constant, or a function (which can be either intrinsic or
user-defined but not one of the other SQL aggregate functions).

Remarks
You can use Min and Max to determine the smallest and largest values in a field based on the
specified aggregation, or grouping. For example, you could use these functions to return the lowest
and highest freight cost. If there is no aggregation specified, then the entire table is used.

You can use Min and Max in a query expression and in the SQL property of a QueryDef object or
when creating a Recordset object based on an SQL query.

StDev, StDevP Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlStDevPC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlStDevPX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlStDevPS"}

Return estimates of the standard deviation for a population or a population sample represented as a
set of values contained in a specified field on a query.

Syntax
StDev(expr)
StDevP(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to evaluate or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The StDevP function evaluates a population, and the StDev function evaluates a population sample.

If the underlying query contains fewer than two records (or no records, for the StDevP function),
these functions return a Null value (which indicates that a standard deviation can't be calculated).

You can use the StDev and StDevP functions in a query expression. You can also use this
expression in the SQL property of a QueryDef object or when creating a Recordset object based on
an SQL query.

Sum Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlSumC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlSumX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlSumS"}

Returns the sum of a set of values contained in a specified field on a query.

Syntax
Sum(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to add or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The Sum function totals the values in a field. For example, you could use the Sum function to
determine the total cost of freight charges.

The Sum function ignores records that contain Null fields. The following example shows how you can
calculate the sum of the products of UnitPrice and Quantity fields:
SELECT
Sum(UnitPrice * Quantity)
AS [Total Revenue] FROM [Order Details];
You can use the Sum function in a query expression. You can also use this expression in the SQL
property of a QueryDef object or when creating a Recordset based on an SQL query.

Var, VarP Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlVarPC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlVarPX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlVarPS"}

Return estimates of the variance for a population or a population sample represented as a set of
values contained in a specified field on a query.

Syntax
Var(expr)
VarP(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to evaluate or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The VarP function evaluates a population, and the Var function evaluates a population sample.

If the underlying query contains fewer than two records, the Var and VarP functions return a Null
value, which indicates that a variance can't be calculated.

You can use the Var and VarP functions in a query expression or in an SQL statement.

Calculating Fields in SQL Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlCalculatingFieldsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlCalculatingFieldsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLCalculatingFieldsS"}

You can use the string expression argument in an SQL aggregate function to perform a calculation on
values in a field. For example, you could calculate a percentage (such as a surcharge or sales tax) by
multiplying a field value by a fraction.

The following table provides examples of calculations on fields from the Orders and Order Details
tables in the Northwind.mdb database.

Calculation Example
Add a number to a field Freight + 5
Subtract a number from a field Freight - 5
Multiply a field by a number UnitPrice * 2
Divide a field by a number Freight / 2
Add one field to another UnitsInStock + UnitsOnOrder
Subtract one field from another ReorderLevel - UnitsInStock
The following example calculates the average discount amount of all orders in the Northwind.mdb
database. It multiplies the values in the UnitPrice and Discount fields to determine the discount
amount of each order and then calculates the average. You can use this expression in an SQL
statement in Visual Basic code:
SELECT Avg(UnitPrice * Discount) AS [Average Discount] FROM [Order
Details];

Between...And Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlBETWEENC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlBetweenX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlBetweenS"}

Determines whether the value of an expression falls within a specified range of values. You can use
this operator within SQL statements.

Syntax
expr [Not] Between value1 And value2
The Between...And operator syntax has these parts:

Part Description
expr Expression identifying the field that contains the data

you want to evaluate.
value1, value2 Expressions against which you want to evaluate expr.

Remarks
If the value of expr is between value1 and value2 (inclusive), the Between...And operator returns
True; otherwise, it returns False. You can include the Not logical operator to evaluate the opposite
condition (that is, whether expr lies outside the range defined by value1 and value2).

You might use Between...And to determine whether the value of a field falls within a specified
numeric range. The following example determines whether an order was shipped to a location within
a range of postal codes. If the postal code is between 98101 and 98199, the IIf function returns
"Local". Otherwise, it returns "Nonlocal".
SELECT IIf(PostalCode Between 98101 And 98199, "Local", "Nonlocal")
FROM Publishers
If expr, value1, or value2 is Null, Between...And returns a Null value.

Because wildcard characters, such as *, are treated as literals, you cannot use them with the
Between...And operator. For example, you cannot use 980* and 989* to find all postal codes that
start with 980 to 989. Instead, you have two alternatives for accomplishing this. You can add an
expression to the query that takes the left three characters of the text field and use Between...And on
those characters. Or you can pad the high and low values with extra characters ¾ in this case, 98000
to 98999, or 98000 to 98999 – 9999 if using extended postal codes. (You must omit the – 0000 from
the low values because otherwise 98000 is dropped if some postal codes have extended sections
and others do not.)

Comparison of Microsoft Jet Database Engine SQL and ANSI SQL
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlJetVANSIC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daSQLJetVANSIX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLJetVANSIS"}

Microsoft Jet database engine SQL is generally ANSI-89 Level 1 compliant. However, certain ANSI
SQL features aren't implemented in Microsoft Jet SQL. Conversely, Microsoft Jet SQL includes
reserved words and features not supported in ANSI SQL.

Major Differences
· Microsoft Jet SQL and ANSI SQL each have different reserved words and data types. For more

information, see Microsoft Jet Database Engine SQL Reserved Words and Equivalent ANSI SQL
Data Types.

· Different rules apply to the Between...And construct, which has the following syntax:
expr1 [NOT] Between value1 And value2

In Microsoft Jet SQL, value1 can be greater than value2; in ANSI SQL, value1 must be equal to or
less than value2.

· Different wildcard characters are used with the Like operator.

Matching character
Microsoft Jet
SQL ANSI SQL

Any single character ? _ (underscore)
Zero or more
characters

* %

· Microsoft Jet SQL is generally less restrictive. For example, it permits grouping and ordering on
expressions.

· Microsoft Jet SQL supports more powerful expressions.

Enhanced Features of Microsoft Jet SQL
Microsoft Jet SQL provides the following enhanced features:

· The TRANSFORM statement, which provides support for crosstab queries
· Additional aggregate functions, such as StDev and VarP
· The PARAMETERS declaration for defining parameter queries

ANSI SQL Features Not Supported in Microsoft Jet SQL
Microsoft Jet SQL doesn't support the following ANSI SQL features:

· Security statements, such as COMMIT, GRANT, and LOCK.
· DISTINCT aggregate function references. For example, Microsoft Jet SQL doesn't allow

SUM(DISTINCT columnname).
· The LIMIT TO nn ROWS clause used to limit the number of rows returned by a query. You can use

only the WHERE clause to limit the scope of a query.

Equivalent ANSI SQL Data Types
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlEquivalentDataTypesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlEquivalentDataTypesX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlEquivalentDataTypesS"}

The following table lists ANSI SQL data types and the equivalent Microsoft Jet database engine SQL
data types and their valid synonyms.

ANSI SQL
data type

Microsoft Jet
SQL data type Synonym

BIT, BIT VARYING BINARY (See
Notes)

VARBINARY

Not supported BIT (See Notes) BOOLEAN, LOGICAL,
LOGICAL1, YESNO

Not supported BYTE INTEGER1
Not supported COUNTER AUTOINCREMENT
Not supported CURRENCY MONEY
DATE, TIME,
TIMESTAMP

DATETIME DATE, TIME,
TIMESTAMP

Not supported GUID
DECIMAL Not supported
REAL SINGLE FLOAT4,

IEEESINGLE, REAL
DOUBLE
PRECISION,
FLOAT

DOUBLE FLOAT, FLOAT8,
IEEEDOUBLE,
NUMBER, NUMERIC

SMALLINT SHORT INTEGER2,
SMALLINT

INTEGER LONG INT, INTEGER,
INTEGER4

INTERVAL Not supported
Not supported LONGBINARY GENERAL,

OLEOBJECT
Not supported LONGTEXT LONGCHAR, MEMO,

NOTE
CHARACTER,
CHARACTER
VARYING

TEXT ALPHANUMERIC,
CHAR, CHARACTER,
STRING, VARCHAR

Not supported VALUE (See Notes)

Notes
· The ANSI SQL BIT data type doesn't correspond to the Microsoft Jet SQL BIT data type, but it

corresponds to the BINARY data type instead. There is no ANSI SQL equivalent for the Microsoft
Jet SQL BIT data type.

· The VALUE reserved word doesn't represent a data type defined by the Microsoft Jet database
engine.

In Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlInOperC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlInOperX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlInOperS"}

Determines whether the value of an expression is equal to any of several values in a specified list.

Syntax
expr [Not] In(value1, value2, . . .)

Remarks
The In operator syntax has these parts:

Part Description
expr Expression identifying the field that contains the data

you want to evaluate.
value1, value2 Expression or list of expressions against which you

want to evaluate expr.

If expr is found in the list of values, the In operator returns True; otherwise, it returns False. You can
include the Not logical operator to evaluate the opposite condition (that is, whether expr is not in the
list of values).

For example, you can use In to determine which orders are shipped to a set of specified regions:
SELECT *
FROM Orders
WHERE ShipRegion In ('Avon','Glos','Som')

Like Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlLikeC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dasqlLikeX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dasqlLikeS"}

Compares a string expression to a pattern in an SQL expression.

Syntax
expression Like "pattern"
The Like operator syntax has these parts:

Part Description
expression SQL expression used in a WHERE clause.
pattern String or character string literal against which

expression is compared.

Remarks
You can use the Like operator to find values in a field that match the pattern you specify. For pattern,
you can specify the complete value (for example, Like "Smith"), or you can use wildcard
characters to find a range of values (for example, Like "Sm*").
In an expression, you can use the Like operator to compare a field value to a string expression. For
example, if you enter Like "C*" in an SQL query, the query returns all field values beginning with
the letter C. In a parameter query, you can prompt the user for a pattern to search for.

The following example returns data that begins with the letter P followed by any letter between A and
F and three digits:
Like "P[A-F]###"
The following table shows how you can use Like to test expressions for different patterns.

Kind of match Pattern Match (returns True) No match (returns False)
Multiple characters a*a aa, aBa, aBBBa aBC

ab abc, AABB, Xab aZb, bac
Special character a[*]a a*a aaa
Multiple characters ab* abcdefg, abc cab, aab
Single character a?a aaa, a3a, aBa aBBBa
Single digit a#a a0a, a1a, a2a aaa, a10a
Range of characters [a-z] f, p, j 2, &
Outside a range [!a-z] 9, &, % b, a
Not a digit [!0-9] A, a, &, ~ 0, 1, 9
Combined a[!b-m]# An9, az0, a99 abc, aj0

Microsoft Jet Database Engine SQL Data Types
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlJetDataTypesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daSQLJetDataTypesX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daSQLJetDataTypesS"}

The Microsoft Jet database engine SQL data types consist of 13 primary data types defined by the
Microsoft Jet database engine and several valid synonyms recognized for these data types.

The following table lists the primary data types. The synonyms are identified in Microsoft Jet
Database Engine SQL Reserved Words.

Data type Storage size Description
BINARY 1 byte per

character
Any type of data may be stored in a
field of this type. No translation of the
data (for example, to text) is made.
How the data is input in a binary field
dictates how it will appear as output.

BIT 1 byte Yes and No values and fields that
contain only one of two values.

BYTE 1 byte An integer value between 0 and 255.
COUNTER 4 bytes A number automatically incremented

by the Microsoft Jet database engine
whenever a new record is added to a
table. In the Microsoft Jet database
engine, the data type for this value is
Long.

CURRENCY 8 bytes A scaled integer between
– 922,337,203,685,477.5808 and
922,337,203,685,477.5807.

DATETIME
(See DOUBLE)

8 bytes A date or time value between the years
100 and 9999.

GUID 128 bits A unique identification number used
with remote procedure calls.

SINGLE 4 bytes A single-precision floating-point value
with a range of – 3.402823E38 to
– 1.401298E-45 for negative values,
1.401298E-45 to 3.402823E38 for
positive values, and 0.

DOUBLE 8 bytes A double-precision floating-point value
with a range of
– 1.79769313486232E308 to
– 4.94065645841247E-324 for
negative values, 4.94065645841247E-
324 to 1.79769313486232E308 for
positive values, and 0.

SHORT 2 bytes A short integer between – 32,768 and
32,767.

LONG 4 bytes A long integer between
– 2,147,483,648 and 2,147,483,647.

LONGTEXT 1 byte per
character

Zero to a maximum of 1.2 gigabytes.

LONGBINARY As required Zero to a maximum of 1.2 gigabytes.
Used for OLE objects.

TEXT 1 byte per
character

Zero to 255 characters.

Note You can also use the VALUE reserved word in SQL statements.

Microsoft Jet Database Engine SQL Reserved Words
{ewc HLP95EN.dll, DYNALINK, "See Also":"daSQLJetSQLReservedWordsC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daSQLJetSQLReservedWordsS "}
{button A,JI(`',`daidxSqlA')} {button B,JI(`',`daidxSqlB_C')} {button C,JI(`',`daidxSqlB_C')} {button D,JI(`',`daidxSqlD')} {button
E,JI(`',`daidxSqlE_H')} {button F,JI(`',`daidxSqlE_H')} {button G,JI(`',`daidxSqlE_H')} {button H,JI(`',`daidxSqlE_H')} {button
I,JI(`',`daidxSqlI')} {button J,JI(`',`daidxSqlJ_M')} {button K,JI(`',`daidxSqlJ_M')} {button L,JI(`',`daidxSqlJ_M')} {button
M,JI(`',`daidxSqlJ_M')} {button N,JI(`',`daidxSqlN_P')} {button O,JI(`',`daidxSqlN_P')} {button P,JI(`',`daidxSqlN_P')} {button
Q,JI(`',`daidxSqlQ_S')} {button R,JI(`',`daidxSqlQ_S')} {button S,JI(`',`daidxSqlQ_S')} {button T,JI(`',`daidxSqlT_Z')} {button
U,JI(`',`daidxSqlT_Z')} {button V,JI(`',`daidxSqlT_Z')} {button W,JI(`',`daidxSqlT_Z')} {button X,JI(`',`daidxSqlT_Z')} {button
Y,JI(`',`daidxSqlT_Z')} {button Z,JI(`',`daidxSqlT_Z')}

The following list includes all words reserved by the Microsoft Jet database engine for use in SQL
statements. The words in the list that aren't in all uppercase letters are also reserved by other
applications. Consequently, the individual Help topics for these words provide general descriptions
that don't focus on SQL usage.

Note Words followed by an asterisk (*) are reserved but currently have no meaning in the context
of a Microsoft Jet SQL statement (for example, Level and TableID).

A
ADD
ALL
Alphanumeric ¾ See TEXT
ALTER
And

ANY
AS
ASC
AUTOINCREMENT ¾ See COUNTER
Avg

B-C
Between
BINARY
BIT
BOOLEAN ¾ See BIT
BY
BYTE
CHAR, CHARACTER ¾ See TEXT

COLUMN
CONSTRAINT
Count
COUNTER
CREATE
CURRENCY

D
DATABASE
DATE ¾ See DATETIME
DATETIME
DELETE
DESC

DISALLOW
DISTINCT
DISTINCTROW
DOUBLE
DROP

E-H
Eqv
EXISTS
FLOAT, FLOAT8 ¾ See DOUBLE
FLOAT4 ¾ See SINGLE
FOREIGN

FROM
GENERAL ¾ See LONGBINARY
GROUP
GUID
HAVING

I
IEEEDOUBLE ¾ See DOUBLE
IEEESINGLE ¾ See SINGLE
IGNORE
Imp
In
IN
INDEX

INNER
INSERT
INT, INTEGER, INTEGER4 ¾ See
LONG
INTEGER1 ¾ See BYTE
INTEGER2 ¾ See SHORT
INTO
Is

J-M
JOIN
KEY
LEFT
Level*
Like
LOGICAL, LOGICAL1 ¾ See BIT
LONG

LONGBINARY
LONGTEXT
Max
MEMO ¾ See LONGTEXT
Min
Mod
MONEY ¾ See CURRENCY

N-P
Not
NULL
NUMBER ¾ See DOUBLE
NUMERIC ¾ See DOUBLE
OLEOBJECT ¾ See LONGBINARY
ON
OPTION
Or

ORDER
Outer*
OWNERACCESS
PARAMETERS
PERCENT
PIVOT
PRIMARY
PROCEDURE

Q-S
REAL ¾ See SINGLE
REFERENCES
RIGHT
SELECT
SET
SHORT
SINGLE

SMALLINT ¾ See SHORT
SOME
StDev
StDevP
STRING ¾ See TEXT
Sum

T-Z
TABLE
TableID*

VALUE
VALUES

TEXT
TIME ¾ See DATETIME
TIMESTAMP ¾ See DATETIME
TOP
TRANSFORM
UNION
UNIQUE
UPDATE

Var
VARBINARY ¾ See BINARY
VARCHAR ¾ See TEXT
VarP
WHERE
WITH
Xor
YESNO ¾ See BIT

SQL Expressions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlExpressionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlExpressionsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlExpressionsS"}

An SQL expression is a string that makes up all or part of an SQL statement. For example, the
FindFirst method on a Recordset object uses an SQL expression consisting of the selection criteria
found in an SQL WHERE clause.

The Microsoft Jet database engine uses the Visual Basic for Applications (or VBA) expression service
to perform simple arithmetic and function evaluation. All of the operators used in Microsoft Jet SQL
expressions (except Between, In, and Like) are defined by the VBA expression service. In addition,
the VBA expression service offers over 100 VBA functions that you can use in SQL expressions. For
example, you can use these VBA functions to compose an SQL query in the Microsoft Access query
Design view, and you can also use these functions in an SQL query in the DAO OpenRecordset
method in Microsoft Visual C++, Microsoft Visual Basic, and Microsoft Excel code.

Using Wildcard Characters in String Comparisons
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasqlUsingWildcardC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dasqlUsingWildcardX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasqlUsingWildcardS"}

Built-in pattern matching provides a versatile tool for making string comparisons. The following table
shows the wildcard characters you can use with the Like operator and the number of digits or strings
they match.

Character(s)
in pattern Matches in expression
? Any single character
* Zero or more characters
Any single digit (0 – 9)
[charlist] Any single character in charlist
[!charlist] Any single character not in charlist

You can use a group of one or more characters (charlist) enclosed in brackets ([]) to match any single
character in expression, and charlist can include almost any characters in the ANSI character set,
including digits. In fact, you can use the special characters opening bracket ([), question mark (?),
number sign (#), and asterisk (*) to match themselves directly only if enclosed in brackets. You can't
use the closing bracket (]) within a group to match itself, but you can use it outside a group as an
individual character.

In addition to a simple list of characters enclosed in brackets, charlist can specify a range of
characters by using a hyphen (-) to separate the upper and lower bounds of the range. For example,
using [A-Z] in pattern results in a match if the corresponding character position in expression contains
any of the uppercase letters in the range A through Z. You can include multiple ranges within the
brackets without delimiting the ranges. For example, [a-zA-Z0-9] matches any alphanumeric
character.

Other important rules for pattern matching include the following:

· An exclamation mark (!) at the beginning of charlist means that a match is made if any character
except those in charlist are found in expression. When used outside brackets, the exclamation
mark matches itself.

· You can use the hyphen (-) either at the beginning (after an exclamation mark if one is used) or at
the end of charlist to match itself. In any other location, the hyphen identifies a range of ANSI
characters.

· When you specify a range of characters, the characters must appear in ascending sort order (A-Z
or 0-100). [A-Z] is a valid pattern, but [Z-A] isn't.

· The character sequence [] is ignored; it's considered to be a zero-length string ("").

ALTER TABLE Statement Example

This example adds a Salary field with a data type of Currency to the Employees table.
Sub AlterTableX1()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Add the Salary field to the Employees table
' and make it a Currency data type.
dbs.Execute "ALTER TABLE Employees " _

& "ADD COLUMN Salary CURRENCY;"

dbs.Close

End Sub
This example removes the Salary field from the Employees table.
Sub AlterTableX2()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Delete the Salary field from the Employees table.
dbs.Execute "ALTER TABLE Employees " _

& "DROP COLUMN Salary;"

dbs.Close

End Sub
This example adds a foreign key to the Orders table. The foreign key is based on the EmployeeID
field and refers to the EmployeeID field of the Employees table. In this example, you don't have to list
the EmployeeID field after the Employees table in the REFERENCES clause because EmployeeID is
the primary key of the Employees table.
Sub AlterTableX3()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Add a foreign key to the Orders table.
dbs.Execute "ALTER TABLE Orders " _

& "ADD CONSTRAINT OrdersRelationship " _
& "FOREIGN KEY (EmployeeID) " _
& "REFERENCES Employees (EmployeeID);"

dbs.Close

End Sub
This example removes the foreign key from the Orders table.
Sub AlterTableX4()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Remove the OrdersRelationship foreign key from
' the Orders table.
dbs.Execute "ALTER TABLE Orders " _

& "DROP CONSTRAINT OrdersRelationship;"

dbs.Close

End Sub

CREATE INDEX Statement Example

This example creates an index consisting of the fields Home Phone and Extension in the Employees
table.
Sub CreateIndexX1()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create the NewIndex index on the Employees table.
dbs.Execute "CREATE INDEX NewIndex ON Employees " _

& "(HomePhone, Extension);"

dbs.Close

End Sub
This example creates an index on the Customers table using the CustomerID field. No two records
can have the same data in the CustomerID field, and no Null values are allowed.
Sub CreateIndexX2()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a unique index, CustID, on the
' CustomerID field.
dbs.Execute "CREATE UNIQUE INDEX CustID " _

& "ON Customers (CustomerID) " _
& "WITH DISALLOW NULL;"

dbs.Close

End Sub

CREATE TABLE Statement, CONSTRAINT Clause Example

This example creates a new table called ThisTable with two Text fields.
Sub CreateTableX1()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a table with two text fields.
dbs.Execute "CREATE TABLE ThisTable " _

& "(FirstName TEXT, LastName TEXT);"

dbs.Close

End Sub
This example creates a new table called MyTable with two Text fields, a Date/Time field, and a unique
index made up of all three fields.
Sub CreateTableX2()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a table with three fields and a unique
' index made up of all three fields.
dbs.Execute "CREATE TABLE MyTable " _

& "(FirstName TEXT, LastName TEXT, " _
& "DateOfBirth DATETIME, " _
& "CONSTRAINT MyTableConstraint UNIQUE " _
& "(FirstName, LastName, DateOfBirth));"

dbs.Close

End Sub
This example creates a new table with two Text fields and an Integer field. The SSN field is the
primary key.
Sub CreateTableX3()

 Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a table with three fields and a primary
' key.
dbs.Execute "CREATE TABLE NewTable " _

& "(FirstName TEXT, LastName TEXT, " _

& "SSN INTEGER CONSTRAINT MyFieldConstraint " _
& "PRIMARY KEY);"

dbs.Close

End Sub

DROP Statement Example

The following example assumes the existence of a hypothetical NewIndex index on the Employees
table in the Northwind database.

This example deletes the index MyIndex from the Employees table.
Sub DropX1()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Delete NewIndex from the Employees table.
dbs.Execute "DROP INDEX NewIndex ON Employees;"

dbs.Close

End Sub
This example deletes the Employees table from the database.
Sub DropX2()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Delete the Employees table.
dbs.Execute "DROP TABLE Employees;"

dbs.Close

End Sub

SELECT Statement, FROM Clause Example

Some of the following examples assume the existence of a hypothetical Salary field in an Employees
table. Note that this field does not actually exist in the Northwind database Employees table.

This example creates a dynaset-type Recordset based on an SQL statement that selects the
LastName and FirstName fields of all records in the Employees table. It calls the EnumFields
procedure, which prints the contents of a Recordset object to the Debug window.
Sub SelectX1()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select the last name and first name values of all
' records in the Employees table.
Set rst = dbs.OpenRecordset("SELECT LastName, " _

& "FirstName FROM Employees;")

' Populate the recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset.
EnumFields rst,12

dbs.Close

End Sub
This example counts the number of records that have an entry in the PostalCode field and names the
returned field Tally.
Sub SelectX2()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Count the number of records with a PostalCode
' value and return the total in the Tally field.
Set rst = dbs.OpenRecordset("SELECT Count " _

& "(PostalCode) AS Tally FROM Customers;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of
' the Recordset. Specify field width = 12.
EnumFields rst, 12

dbs.Close

End Sub
This example shows the number of employees and the average and maximum salaries.
Sub SelectX3()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Count the number of employees, calculate the
' average salary, and return the highest salary.
Set rst = dbs.OpenRecordset("SELECT Count (*) " _

& "AS TotalEmployees, Avg(Salary) " _
& "AS AverageSalary, Max(Salary) " _
& "AS MaximumSalary FROM Employees;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of
' the Recordset. Pass the Recordset object and
' desired field width.
EnumFields rst, 17

dbs.Close

End Sub
The Sub procedure EnumFields is passed a Recordset object from the calling procedure. The
procedure then formats and prints the fields of the Recordset to the Debug window. The intFldLen
variable is the desired printed field width. Some fields may be truncated.
Sub EnumFields(rst As Recordset, intFldLen As Integer)

Dim lngRecords As Long, lngFields As Long
Dim lngRecCount As Long, lngFldCount As Long
Dim strTitle As String, strTemp As String

' Set the lngRecords variable to the number of
' records in the Recordset.
lngRecords = rst.RecordCount
' Set the lngFields variable to the number of
' fields in the Recordset.
lngFields = rst.Fields.Count

Debug.Print "There are " & lngRecords _
& " records containing " & lngFields _
& " fields in the recordset."

Debug.Print

' Form a string to print the column heading.
strTitle = "Record "
For lngFldCount = 0 To lngFields - 1

strTitle = strTitle _
& Left(rst.Fields(lngFldCount).Name _

& Space(intFldLen), intFldLen)
Next lngFldCount

' Print the column heading.
Debug.Print strTitle
Debug.Print

' Loop through the Recordset; print the record
' number and field values.
rst.MoveFirst
For lngRecCount = 0 To lngRecords - 1

Debug.Print Right(Space(6) & _
Str(lngRecCount), 6) & " ";

For lngFldCount = 0 To lngFields - 1
' Check for Null values.
If IsNull(rst.Fields(lngFldCount)) Then

strTemp = "<null>"
Else

' Set strTemp to the field contents.
Select Case _

rst.Fields(lngFldCount).Type
Case 11

strTemp = ""
Case dbText, dbMemo

strTemp = _
rst.Fields(lngFldCount)

Case Else
strTemp = _

str(rst.Fields(lngFldCount))
End Select

End If
Debug.Print Left(strTemp _

& Space(intFldLen), intFldLen);
Next lngFldCount
Debug.Print
rst.MoveNext

Next lngRecCount

End Sub

IN Clause Example

The following table shows how you can use the IN clause to retrieve data from an external database.
In each example, assume the hypothetical Customers table is stored in an external database.

External
database SQL statement
Microsoft Jet
database

SELECT CustomerID
FROM Customers
IN OtherDB.mdb
WHERE CustomerID Like "A*";

dBASE III or IV.
To retrieve data
from a dBASE III
table, substitute
"dBASE III;" for
"dBASE IV;".

SELECT CustomerID
FROM Customer
IN "C:\DBASE\DATA\SALES" "dBASE IV;"
WHERE CustomerID Like "A*";

dBASE III or IV
using Database
syntax.

SELECT CustomerID
FROM Customer
IN "" [dBASE IV; Database=C:\DBASE\DATA\
SALES;]
WHERE CustomerID Like "A*";

Paradox 3.x or
4.x.
To retrieve data
from a Paradox
version 3.x table,
substitute
"Paradox 3.x;" for
"Paradox 4.x;".

SELECT CustomerID
FROM Customer
IN "C:\PARADOX\DATA\SALES" "Paradox
4.x;"
WHERE CustomerID Like "A*";

Paradox 3.x or
4.x using
Database syntax.

SELECT CustomerID
FROM Customer
IN "" [Paradox 4.x;Database=C:\PARADOX\
DATA\SALES;]
WHERE CustomerID Like "A*";

A Microsoft Excel
worksheet

SELECT CustomerID, CompanyName
FROM [Customers$]
IN "c:\documents\xldata.xls" "EXCEL
5.0;"
WHERE CustomerID Like "A*"
ORDER BY CustomerID;

A named range
in a worksheet

SELECT CustomerID, CompanyName
FROM CustomersRange
IN "c:\documents\xldata.xls" "EXCEL
5.0;"
WHERE CustomerID Like "A*"
ORDER BY CustomerID;

In Operator Example

The following example uses the Orders table in the Northwind.mdb database to create a query that
includes all orders shipped to Lancashire and Essex and the dates shipped.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub InX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select records from the Orders table that
' have a ShipRegion value of Lancashire or Essex.
Set rst = dbs.OpenRecordset("SELECT " _

& "CustomerID, ShippedDate FROM Orders " _
& "WHERE ShipRegion In " _
& "('Lancashire','Essex');")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of
' the Recordset.
EnumFields rst, 12

dbs.Close

End Sub

WHERE Clause Example

The following example assumes the existence of a hypothetical Salary field in an Employees table.
Note that this field does not actually exist in the Northwind database Employees table.

This example selects the LastName and FirstName fields of each record in which the last name is
King.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub WhereX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select records from the Employees table where the
' last name is King.
Set rst = dbs.OpenRecordset("SELECT LastName, " _

& "FirstName FROM Employees " _
& "WHERE LastName = 'King';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset.
EnumFields rst, 12

dbs.Close

End Sub

GROUP BY Clause Example

This example creates a list of unique job titles and the number of employees with each title.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub GroupByX1()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' For each title, count the number of employees
' with that title.
Set rst = dbs.OpenRecordset("SELECT Title, " _

& "Count([Title]) AS Tally " _
& "FROM Employees GROUP BY Title;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 25

dbs.Close

End Sub
For each unique job title, this example calculates the number of employees in Washington who have
that title.
Sub GroupByX2()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' For each title, count the number of employees
' with that title. Only include employees in the
' Washington region.
Set rst = dbs.OpenRecordset("SELECT Title, " _

& "Count(Title) AS Tally " _
& "FROM Employees WHERE Region = 'WA' " _
& "GROUP BY Title;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.

EnumFields rst, 25

dbs.Close

End Sub

HAVING Clause Example

This example selects the job titles assigned to more than one employee in the Washington region.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub HavingX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select the job titles assigned to more than one
' employee in the Washington region.
Set rst = dbs.OpenRecordset("SELECT Title, " _

& "Count(Title) as Total FROM Employees " _
& "WHERE Region = 'WA' " _
& "GROUP BY Title HAVING Count(Title) > 1;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print recordset contents.
EnumFields rst, 25

dbs.Close

End Sub

ORDER BY Clause Example

The SQL statement shown in the following example uses the ORDER BY clause to sort records by
last name in descending order (Z-A).

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub OrderByX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select the last name and first name values from
' the Employees table, and sort them in descending
' order.
Set rst = dbs.OpenRecordset("SELECT LastName, " _

& "FirstName FROM Employees " _
& "ORDER BY LastName DESC;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print recordset contents.
EnumFields rst, 12

dbs.Close

End Sub

ALL, DISTINCT, DISTINCTROW, TOP Predicates Example

This example creates a query that joins the Customers and Orders tables on the CustomerID field.
The Customers table contains no duplicate CustomerID fields, but the Orders table does because
each customer can have many orders. Using DISTINCTROW produces a list of companies that have
at least one order but without any details about those orders.
Sub AllDistinctX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Join the Customers and Orders tables on the
' CustomerID field. Select a list of companies
' that have at least one order.
Set rst = dbs.OpenRecordset("SELECT DISTINCTROW " _

& "CompanyName FROM Customers " _
& "INNER JOIN Orders " _
& "ON Customers.CustomerID = " _
& "Orders.CustomerID " _
& "ORDER BY CompanyName;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 25

dbs.Close

End Sub

DELETE Statement Example

This example deletes all records for employees whose title is Trainee. When the FROM clause
includes only one table, you don't have to list the table name in the DELETE statement.
Sub DeleteX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Delete employee records where title is Trainee.
dbs.Execute "DELETE * FROM " _

& "Employees WHERE Title = 'Trainee';"

dbs.Close

End Sub

INNER JOIN Operation Example

This example creates two equi-joins: one between the Order Details and Orders tables and another
between the Orders and Employees tables. This is necessary because the Employees table doesn't
contain sales data, and the Order Details table doesn't contain employee data. The query produces a
list of employees and their total sales.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub InnerJoinX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a join between the Order Details and
' Orders tables and another between the Orders and
' Employees tables. Get a list of employees and
' their total sales.
Set rst = dbs.OpenRecordset("SELECT DISTINCTROW " _

& "Sum(UnitPrice * Quantity) AS Sales, " _
& "(FirstName & Chr(32) & LastName) AS Name " _
& "FROM Employees INNER JOIN(Orders " _
& "INNER JOIN [Order Details] " _
& "ON [Order Details].OrderID = " _
& "Orders.OrderID) " _
& "ON Orders.EmployeeID = " _
& "Employees.EmployeeID " _
& "GROUP BY (FirstName & Chr(32) & LastName);")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 20

dbs.Close

End Sub

INSERT INTO Statement Example

This example selects all records in a hypothetical New Customers table and adds them to the
Customers table. When individual columns are not designated, the SELECT table column names
must match exactly those in the INSERT INTO table.
Sub InsertIntoX1()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select all records in the New Customers table
' and add them to the Customers table.
dbs.Execute " INSERT INTO Customers " _

& "SELECT * " _
& "FROM [New Customers];"

dbs.Close

End Sub
This example creates a new record in the Employees table.

Sub InsertIntoX2()

Dim dbs As Database

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Create a new record in the Employees table. The
' first name is Harry, the last name is Washington,
' and the job title is Trainee.
dbs.Execute " INSERT INTO Employees " _

& "(FirstName,LastName, Title) VALUES " _
& "('Harry', 'Washington', 'Trainee');"

dbs.Close

End Sub

LEFT JOIN, RIGHT JOIN Operations Example

This example assumes the existence of hypothetical Department Name and Department ID fields in
an Employees table. Note that these fields do not actually exist in the Northwind database Employees
table.

This example selects all departments, including those without employees.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub LeftRightJoinX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select all departments, including those
' without employees.
Set rst = dbs.OpenRecordset _

("SELECT [Department Name], " _
& "FirstName & Chr(32) & LastName AS Name " _
& "FROM Departments LEFT JOIN Employees " _
& "ON Departments.[Department ID] = " _
& "Employees.[Department ID] " _
& "ORDER BY [Department Name];")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 20

dbs.Close

End Sub

PARAMETERS Declaration Example

This example requires the user to provide a job title and then uses that job title as the criteria for the
query.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub ParametersX()

Dim dbs As Database, qdf As QueryDef
Dim rst As Recordset
Dim strSql As String, strParm As String
Dim strMessage As String
Dim intCommand As Integer

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("NorthWind.mdb")

' Define the parameters clause.
strParm = "PARAMETERS [Employee Title] TEXT; "

' Define an SQL statement with the parameters
' clause.
strSql = strParm & "SELECT LastName, FirstName, " _

& "EmployeeID " _
& "FROM Employees " _
& "WHERE Title =[Employee Title];"

' Create a QueryDef object based on the
' SQL statement.
Set qdf = dbs.CreateQueryDef _

("Find Employees", strSql)

Do While True
strMessage = "Find Employees by Job " _

& "title:" & Chr(13) _
& " Choose Job Title:" & Chr(13) _
& " 1 - Sales Manager" & Chr(13) _
& " 2 - Sales Representative" & Chr(13) _
& " 3 - Inside Sales Coordinator"

intCommand = Val(InputBox(strMessage))

Select Case intCommand
Case 1

qdf("Employee Title") = _
"Sales Manager"

Case 2
qdf("Employee Title") = _

"Sales Representative"
Case 3

qdf("Employee Title") = _
"Inside Sales Coordinator"

Case Else
Exit Do

End Select

' Create a temporary snapshot-type Recordset.
Set rst = qdf.OpenRecordset(dbOpenSnapshot)
' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.

EnumFields rst, 12
Loop

' Delete the QueryDef because this is a
' demonstration.
dbs.QueryDefs.Delete "Find Employees"

dbs.Close

End Sub

PROCEDURE Clause Example

This example names the query CategoryList.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub ProcedureX()

Dim dbs As Database, rst As Recordset
Dim qdf As QueryDef, strSql As String

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

strSql = "PROCEDURE CategoryList; " _
& "SELECT DISTINCTROW CategoryName, " _
& "CategoryID FROM Categories " _
& "ORDER BY CategoryName;"

' Create a named QueryDef based on the SQL
' statement.
Set qdf = dbs.CreateQueryDef("NewQry", strSql)

' Create a temporary snapshot-type Recordset.
Set rst = qdf.OpenRecordset(dbOpenSnapshot)
' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 15

' Delete the QueryDef because this is a
' demonstration.
dbs.QueryDefs.Delete "NewQry"

dbs.Close

End Sub

SELECT...INTO Statement Example

This example selects all records in the Employees table and copies them into a new table named
Emp Backup.
Sub SelectIntoX()

Dim dbs As Database
Dim qdf As QueryDef

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Select all records in the Employees table
' and copy them into a new table, Emp Backup.
dbs.Execute "SELECT Employees.* INTO " _

& "[Emp Backup] FROM Employees;"

' Delete the table because this is a demonstration.
dbs.Execute "DROP TABLE [Emp Backup];"

dbs.Close

End Sub

TRANSFORM Statement Example

This example uses the SQL TRANSFORM clause to create a crosstab query showing the number of
orders taken by each employee for each calendar quarter of 1994. The SQLTRANSFORMOutput
function is required for this procedure to run.
Sub TransformX1()

Dim dbs As Database
Dim strSQL As String
Dim qdfTRANSFORM As QueryDef

strSQL = "PARAMETERS prmYear SHORT; TRANSFORM " _
& "Count(OrderID) " _
& "SELECT FirstName & "" "" & LastName AS " _
& "FullName FROM Employees INNER JOIN Orders " _
& "ON Employees.EmployeeID = " _
& "Orders.EmployeeID WHERE DatePart " _
& "(""yyyy"", OrderDate) = [prmYear] "

 strSQL = strSQL & "GROUP BY FirstName & " _

& """ "" & LastName " _
& "ORDER BY FirstName & "" "" & LastName " _
& "PIVOT DatePart(""q"", OrderDate)"

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

Set qdfTRANSFORM = dbs.CreateQueryDef _
("", strSQL)

SQLTRANSFORMOutput qdfTRANSFORM, 1994

dbs.Close

End Sub
This example uses the SQL TRANSFORM clause to create a slightly more complex crosstab query
showing the total dollar amount of orders taken by each employee for each calendar quarter of 1994.
The SQLTRANSFORMOutput function is required for this procedure to run.
Sub TransformX2()

Dim dbs As Database
Dim strSQL As String
Dim qdfTRANSFORM As QueryDef

strSQL = "PARAMETERS prmYear SHORT; TRANSFORM " _
& "Sum(Subtotal) SELECT FirstName & "" """ _
& "& LastName AS FullName " _
& "FROM Employees INNER JOIN " _
& "(Orders INNER JOIN [Order Subtotals] " _
& "ON Orders.OrderID = " _
& "[Order Subtotals].OrderID) " _
& "ON Employees.EmployeeID = " _
& "Orders.EmployeeID WHERE DatePart" _

& "(""yyyy"", OrderDate) = [prmYear] "

 strSQL = strSQL & "GROUP BY FirstName & "" """ _

& "& LastName " _
& "ORDER BY FirstName & "" "" & LastName " _
& "PIVOT DatePart(""q"",OrderDate)"

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

Set qdfTRANSFORM = dbs.CreateQueryDef _
("", strSQL)

SQLTRANSFORMOutput qdfTRANSFORM, 1994

dbs.Close

End Sub

Function SQLTRANSFORMOutput(qdfTemp As QueryDef, _
intYear As Integer)

Dim rstTRANSFORM As Recordset
Dim fldLoop As Field
Dim booFirst As Boolean

qdfTemp.PARAMETERS!prmYear = intYear
Set rstTRANSFORM = qdfTemp.OpenRecordset()

Debug.Print qdfTemp.SQL
Debug.Print
Debug.Print , , "Quarter"

With rstTRANSFORM
booFirst = True
For Each fldLoop In .Fields

If booFirst = True Then
Debug.Print fldLoop.Name
Debug.Print , ;
booFirst = False

Else
Debug.Print , fldLoop.Name;

End If
Next fldLoop
Debug.Print

Do While Not .EOF
booFirst = True
For Each fldLoop In .Fields

If booFirst = True Then
Debug.Print fldLoop
Debug.Print , ;
booFirst = False

Else
Debug.Print , fldLoop;

End If

Next fldLoop
Debug.Print
.MoveNext

Loop
End With

End Function

UPDATE Statement Example

This example changes values in the ReportsTo field to 5 for all employee records that currently have
ReportsTo values of 2.
Sub UpdateX()

Dim dbs As Database
Dim qdf As QueryDef

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Change values in the ReportsTo field to 5 for all
' employee records that currently have ReportsTo
' values of 2.
dbs.Execute "UPDATE Employees " _

& "SET ReportsTo = 5 " _
& "WHERE ReportsTo = 2;"

dbs.Close

End Sub

UNION Operation Example

This example retrieves the names and cities of all suppliers and customers in Brazil.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub UnionX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Retrieve the names and cities of all suppliers
' and customers in Brazil.
Set rst = dbs.OpenRecordset("SELECT CompanyName," _

& " City FROM Suppliers" _
& " WHERE Country = 'Brazil' UNION" _
& " SELECT CompanyName, City FROM Customers" _
& " WHERE Country = 'Brazil';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 12

dbs.Close

End Sub

SQL Subqueries Example

This example lists the name and contact of every customer who placed an order in the second
quarter of 1995.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub SubQueryX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' List the name and contact of every customer
' who placed an order in the second quarter of
' 1995.
Set rst = dbs.OpenRecordset("SELECT ContactName," _

& " CompanyName, ContactTitle, Phone" _
& " FROM Customers" _
& " WHERE CustomerID" _
& " IN (SELECT CustomerID FROM Orders" _
& " WHERE OrderDate Between #04/1/95#" _
& " And #07/1/95#);")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 25

dbs.Close

End Sub

Avg Function Example

This example uses the Orders table to calculate the average freight charges for orders with freight
charges over $100.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub AvgX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Calculate the average freight charges for orders
' with freight charges over $100.
Set rst = dbs.OpenRecordset("SELECT Avg(Freight)" _

& " AS [Average Freight]" _
& " FROM Orders WHERE Freight > 100;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 25

dbs.Close

End Sub

Count Function Example

This example uses the Orders table to calculate the number of orders shipped to the United Kingdom.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub CountX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Calculate the number of orders shipped
' to the United Kingdom.
Set rst = dbs.OpenRecordset("SELECT" _

& " Count (ShipCountry)" _
& " AS [UK Orders] FROM Orders" _
& " WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 25

dbs.Close

End Sub

First, Last Functions Example

This example uses the Employees table to return the values from the LastName field of the first and
last records returned from the table.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub FirstLastX1()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Return the values from the LastName field of the
' first and last records returned from the table.
Set rst = dbs.OpenRecordset("SELECT " _

& "First(LastName) as First, " _
& "Last(LastName) as Last FROM Employees;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 12

dbs.Close

End Sub
The next example compares using the First and Last functions with simply using the Min and Max
functions to find the earliest and latest birth dates of Employees.
Sub FirstLastX2()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Find the earliest and latest birth dates of
' Employees.
Set rst = dbs.OpenRecordset("SELECT " _

& "First(BirthDate) as FirstBD, " _
& "Last(BirthDate) as LastBD FROM Employees;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 12

Debug.Print

' Find the earliest and latest birth dates of
' Employees.
Set rst = dbs.OpenRecordset("SELECT " _

& "Min(BirthDate) as MinBD," _
& "Max(BirthDate) as MaxBD FROM Employees;")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 12

dbs.Close

End Sub

Min, Max Functions Example

This example uses the Orders table to return the lowest and highest freight charges for orders
shipped to the United Kingdom.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub MinMaxX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Return the lowest and highest freight charges for
' orders shipped to the United Kingdom.
Set rst = dbs.OpenRecordset("SELECT " _

& "Min(Freight) AS [Low Freight], " _
& "Max(Freight)AS [High Freight] " _
& "FROM Orders WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 12

dbs.Close

End Sub

StDev, StDevP Functions Example

This example uses the Orders table to estimate the standard deviation of the freight charges for
orders shipped to the United Kingdom.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub StDevX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Calculate the standard deviation of the freight
' charges for orders shipped to the United Kingdom.
Set rst = dbs.OpenRecordset("SELECT " _

& "StDev(Freight) " _
& "AS [Freight Deviation] FROM Orders " _
& "WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 15

Debug.Print

Set rst = dbs.OpenRecordset("SELECT " _
& "StDevP(Freight) " _
& "AS [Freight DevP] FROM Orders " _
& "WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 15

dbs.Close

End Sub

Sum Function Example

This example uses the Orders table to calculate the total sales for orders shipped to the United
Kingdom.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub SumX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Calculate the total sales for orders shipped to
' the United Kingdom.
Set rst = dbs.OpenRecordset("SELECT" _

& " Sum(UnitPrice*Quantity)" _
& " AS [Total UK Sales] FROM Orders" _
& " INNER JOIN [Order Details] ON" _
& " Orders.OrderID = [Order Details].OrderID" _
& " WHERE (ShipCountry = 'UK');")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 15

dbs.Close

End Sub

Var, VarP Functions Example

This example uses the Orders table to estimate the variance of freight costs for orders shipped to the
United Kingdom.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub VarX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Calculate the variance of freight costs for
' orders shipped to the United Kingdom.
Set rst = dbs.OpenRecordset("SELECT " _

& "Var(Freight) " _
& "AS [UK Freight Variance] " _
& "FROM Orders WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 20

Debug.Print

Set rst = dbs.OpenRecordset("SELECT " _
& "VarP(Freight) " _
& "AS [UK Freight VarianceP] " _
& "FROM Orders WHERE ShipCountry = 'UK';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 20

dbs.Close

End Sub

Like Operator Example

This example returns a list of employees whose names begin with the letters A through D.

This example calls the EnumFields procedure, which you can find in the SELECT statement example.
Sub LikeX()

Dim dbs As Database, rst As Recordset

' Modify this line to include the path to Northwind
' on your computer.
Set dbs = OpenDatabase("Northwind.mdb")

' Return a list of employees whose names begin with
' the letters A through D.
Set rst = dbs.OpenRecordset("SELECT LastName," _

& " FirstName FROM Employees" _
& " WHERE LastName Like '[A-D]*';")

' Populate the Recordset.
rst.MoveLast

' Call EnumFields to print the contents of the
' Recordset. Pass the Recordset object and desired
' field width.
EnumFields rst, 15

dbs.Close

End Sub

Customizing Windows Registry Settings for Data Access Objects
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dahowCustomizingDataAccessC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dahowCustomizingDataAccessS"}

If your application cannot work correctly with the default functionality of the Microsoft Jet database
engine, you may have to change the settings in the Windows Registry to suit your needs. The
Windows Registry can also be used to tune the operation of the installable ISAM and ODBC driver. If
your application can't accept the default behavior of the drivers, which is loaded from the shadow
settings, you must create an entry in the Windows Registry for your Microsoft Jet client application
and override the default settings to get the appropriate behavior from your application.

Note You should not directly modify settings in the ISAM Formats subfolder. If you need to make
any modifications to these settings, use the setup program provided with the drivers to ensure that
these changes are correctly made.

To register Jet database engine settings for your application, create a Jet portion in your application's
registry tree to manage the settings for the Jet database engine. Then, add any values you want to
specify to the registry tree. If you have supplied any values in the Engines subfolder, Microsoft Jet
loads those settings when the application starts. Any values not entered in your client application's
registry tree are loaded from shadow settings.

For example, to register Jet database engine settings for an application named "Soccer.exe" you
would create a client registry tree similar to the following:
HKEY_LOCAL_MACHINE\SOFTWARE\MyApps\Soccer\Jet\3.5\Engines

In the registry tree, you could override the default settings for the Jet database engine ISAM by
setting the PageTimeout to a lower value (the default value is 5, or 500 milliseconds). By setting
PageTimeout to 1, your application will invalidate data in the internal cache in 100 milliseconds. To
register this new setting for your application, set the HKEY_LOCAL_MACHINE\SOFTWARE\MyApps\
Soccer\Jet\3.5\Engines\PageTimeout value to 1. When you start the application, the Jet database
engine instance associated with Soccer.exe is configured with all settings in
HKEY_LOCAL_MACHINE\SOFTWARE\MyApps\Soccer\Jet\3.5\Engines. Any settings not indicated in
your client's registry tree will be loaded from the Jet database engine shadow settings for the client
machine. For example, if the client application registry folder HKEY_LOCAL_MACHINE\SOFTWARE\
MyApps\Soccer\Jet\3.5\Engines\Jet 3.5 contains only one entry that sets the value of PageTimeout to
1, only that setting will be changed from the default values found in HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Jet\3.5 during application initialization.

You can also edit the Windows Registry to specify:

· Settings used for interaction with Microsoft FoxPro, Paradox, and dBASE databases. See
Initializing the Paradox Database Driver, Initializing the Microsoft FoxPro Database Driver, and
Initializing the dBASE Database Driver.

· Settings used by Microsoft ODBC for interaction with SQL databases. See Initializing the Microsoft
ODBC Database Driver.

· Settings that affect how the Jet database engine reads and saves data. See Initializing the
Microsoft Jet Engine Database Driver.

Initializing the dBASE Database Driver
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dahowChangingdBASEC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dahowChangingdBASES"}

When you install the dBASE database driver, the Setup program writes a set of default values to the
Windows Registry in the Engines and ISAM Formats subkeys. You should not modify these settings
directly; use the setup program for your application to add, remove, or change these settings. The
following sections describe initialization and ISAM Format settings for the dBASE database driver.

dBASE Initialization Settings
The Jet\3.5\Engines\Xbase folder includes initialization settings for the Msxbse35.dll driver, used for
access to external dBASE data sources. Typical settings for the entries in this folder are shown in the
following example.
win32=<pathname>\MSXBSE35.dll
NetworkAccess=On
PageTimeout=600
INFPath=C:\DBASE\SYSTEM
CollatingSequence=ASCII
DataCodePage=OEM
Deleted=On
Century=Off
Date=MDY
Mark=47
Exact=Off

The Microsoft Jet database engine uses the Xbase folder entries as follows.

Entry Description
win32 The location of Msxbse.dll. The full pathname is

determined at the time of installation. Values are
of type String for Windows 95 and Windows NT
4.0, and of type REG_SZ for Windows NT 3.51.

NetworkAccess A binary indicator for file locking preference. If
NetworkAccess is set to 00, tables are opened
for exclusive access, regardless of the settings of
the OpenDatabase and OpenRecordset
methods' exclusive argument. The default value
is 01. Values are of type Binary for Windows 95
and Windows NT 4.0, and of type REG_BINARY
for Windows NT 3.51.

PageTimeout The length of time between when data is placed
in an internal cache and when it is invalidated.
The value is specified in 100 millisecond units.
The default is 600 units or 60 seconds. Values
are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

INFPath The full path to the .inf file directory. The
Microsoft Jet database engine first looks for
an .inf file in the directory containing the table. If
the .inf file isn't in the database directory, it looks
in the INFPath. If there is no INFPath, it uses
whatever index files (.cdx or .mdx) it finds in the
database directory. Values are of type String for

Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.
This entry is not written by the installation
procedure.

CollatingSequence The collating sequence for all dBASE tables
created or opened using Microsoft Jet. Possible
values are ASCII and International. The default is
ASCII. Values are of type String for Windows 95
and Windows NT 4.0, and of type REG_SZ for
Windows NT 3.51.

DataCodePage An indicator of how text pages are stored.
Possible settings are:
• OEM OemToAnsi and AnsiToOem
conversions done.
• ANSI OemToAnsi and AnsiToOem
conversions not done.
The default is OEM. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Deleted A binary indicator that determines how records
marked for deletion are handled by the Microsoft
Jet database engine. A value of 01 corresponds
to the dBASE command SET DELETED ON and
indicates never to retrieve or position on a
deleted record. A value of 00 corresponds to the
dBASE command SET DELETED OFF and
indicates to treat a deleted record like any other
record. The default is 00. Values are of type
Binary for Windows 95 and Windows NT 4.0, and
of type REG_BINARY for Windows NT 3.51.

Century A binary indicator for formatting the century
component of dates in cases where date-to-
string functions are used in index expressions. A
value of 01 corresponds to the dBASE command
SET CENTURY ON and a value of 00
corresponds to the dBASE command SET
CENTURY OFF. The default is 00. Values are of
type Binary for Windows 95 and Windows NT
4.0, and of type REG_BINARY for Windows NT
3.51.

Date The date formatting style to use in cases where
date-to-string functions are used in index
expressions. The possible settings for this entry,
which corresponds to the dBASE SET DATE
command, are American, ANSI, British, French,
DMY, German, Italian, Japan, MDY, USA, and
YMD. The default is MDY. Values are of type
String for Windows 95 and Windows NT 4.0, and
of type REG_SZ for Windows NT 3.51.

Mark The decimal value of the ASCII character used to
separate date parts. The default depends on the
Date setting as follows:
• "/" (American, MDY)

• "." (ANSI)
• "/" (British, French, DMY)
• "." (German)
• "-" (Italian)
• "/" (Japan, YMD)
• "-" (USA)
A value of 0 specifies that the system should use
the separator usually associated with the
selected date format.
The default is 0. Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

Exact A binary indicator for string comparisons. A value
of 01 corresponds to the dBASE command SET
EXACT ON. A value of 00 corresponds to the
dBASE command SET EXACT OFF. The default
is 00. Values are of type Binary for Windows 95
and Windows NT 4.0, and of type REG_BINARY
for Windows NT 3.51.

dBASE ISAM Formats
The Jet\3.5\ISAM Formats\dBASE III folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95 and
Windows NT 4.0
Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String dBASE III (*.dbf)
ImportFilter REG_SZ String dBASE III (*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String dBASE Index (*.ndx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will not
change data in the
external file.

ResultTextLink REG_SZ String Create a table in the
current database that is
linked to the external file.
Changing data in the
current database will
change data in the
external file.

ResultTextExport REG_SZ String Export data from the
current database into a
dBASE III file. This

process will overwrite the
data if exported to an
existing file.

'

The Jet\3.5\ISAM Formats\dBASE IV folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String dBASE IV (*.dbf)
ImportFilter REG_SZ String dBASE IV (*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String dBASE Index (*.ndx;

*.mdx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in the
external file.

ResultTextLink REG_SZ String Create a table in the
current database that
is linked to the external
file. Changing data in
the current database
will change data in the
external file.

ResultTextExport REG_SZ String Export data from the
current database into a
dBASE IV file. This
process will overwrite
the data if exported to
an existing file.

The Jet\3.5\ISAM Formats\dBASE 5.x folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String dBASE 5 (*.dbf)
ImportFilter REG_SZ String dBASE 5 (*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0

IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String dBASE Index (*.ndx;

*.mdx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in the
external file.

ResultTextLink REG_SZ String Create a table in the
current database that
is linked to the
external file. Changing
data in the current
database will change
data in the external
file.

ResultTextExport REG_SZ String Export data from the
current database into
a dBASE 5 file. This
process will overwrite
the data if exported to
an existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Lotus Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingLotusC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingLotusS "}

When you install the Lotus database driver, the Setup program writes a set of default values to the
Windows Registry in the Engines and ISAM Formats subkeys. You should not modify these settings
directly; use the setup program for your application to add, remove, or change these settings. The
following sections describe initialization and ISAM Format settings for the Lotus database driver.

Lotus Initialization Settings
The Jet\3.5\Engines\Lotus folder includes initialization settings for the Msltus35.dll driver, used for
external access to Lotus spreadsheets. Typical settings for the entries under this heading are shown
in the following example.
win32=<pathname>\MSLTUS35.dll
TypeGuessRows=8
ImportMixedTypes=Text
AppendBlankRows=4
FirstRowHasNames=Yes

The Microsoft Jet database engine uses the Lotus folder entries as follows.

Entry Description
win32 The location of Msltus35.dll. The full pathname is

determined at the time of installation. Values are
of type String for Windows 95 and Windows NT
4.0, and of type REG_SZ for Windows NT 3.51.

TypeGuessRows The number of rows to be checked for the data
type. The data type is determined based on the
most frequently found data type in the selection.
If there is a tie, the data type is determined in the
following order: Number, Currency, Date, Text,
Long Text. If data is encountered that does not
match the data type guessed for the column, it is
returned as a Null value. On import, if a column
has mixed data types, the entire column will be
converted according to the ImportMixedTypes
setting.
The default number of rows to be checked is 8.
Values are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

ImportMixedTypes Can be set to MajorityType or Text. If set to
MajorityType, columns of mixed data types will
be cast to the predominate data type on import. If
set to Text, columns of mixed data types will be
cast to Text on import. The default is Text. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

AppendBlankRows The number of blank rows to be appended to the
end of a WK1 worksheet before new data is
added. For example, if AppendBlankRows is set
to 4, Microsoft Jet will append 4 blank rows to

the end of the worksheet before appending rows
that contain data. Integer values for this setting
can range from 0 to 16; the default is 0 (no
additional rows appended). Values are of type
DWORD for Windows 95 and Windows NT 4.0,
and of type REG_DWORD for Windows NT 3.51.

FirstRowHasName
s

A binary value that indicates whether the first row
of the table contains column names. A value of
01 indicates that, during import, column names
are taken from the first row. A value of 00
indicates no column names in the first row;
column names appear as F1, F2, F3, and so on.
The default is 01. Values are of type Binary for
Windows 95 and Windows NT 4.0, and of type
REG_BINARY for Windows NT 3.51.

Lotus ISAM Formats
The Jet\3.5\ISAM Formats\Lotus WK1 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Lotus
ExportFilter REG_SZ String Lotus 1-2-3 WK1

(*.wk1)
ImportFilter REG_SZ String Lotus 1-2-3

(*.wk*;*.wj*)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in
the external file.

ResultTextExport REG_SZ String Export data from the
current database
into a Lotus 1-2-3
Version 2 file. This
process will
overwrite the data if
exported to an
existing file.

The Jet\3.5\ISAM Formats\Lotus WK3 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Lotus
ExportFilter REG_SZ String Lotus 1-2-3 WK3

(*.wk3)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextExport REG_SZ String Export data from

the current
database into a
Lotus 1-2-3 Version
3 file. This process
will overwrite the
data if exported to
an existing file.

The Jet\3.5\ISAM Formats\Lotus WK4 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Lotus
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Microsoft Excel Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingExcelC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingExcelS "}

When you install the Microsoft Excel database driver, the Setup program writes a set of default values
to the Windows Registry in the Engines and ISAM Formats subkeys. You should not modify these
settings directly; use the setup program for your application to add, remove, or change these settings.
The following sections describe initialization and ISAM Format settings for the Microsoft Excel
database driver.

Microsoft Excel Initialization Settings
The Jet\3.5\Engines\Excel folder includes initialization settings for the Msexcl35.dll driver, used for
external access to Microsoft Excel worksheets. Typical settings for the entries in this folder are shown
in the following example.
win32=<pathname>\MSEXCL35.dll
TypeGuessRows=8
ImportMixedTypes=Text
AppendBlankRows=4
FirstRowHasNames=Yes

The Microsoft Jet database engine uses the Excel folder entries as follows.

Entry Description
win32 The location of Msexcl35.dll. The full pathname

is determined at the time of installation. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

TypeGuessRows The number of rows to be checked for the data
type. The data type is determined given the
maximum number of kinds of data found. If
there is a tie, the data type is determined in the
following order: Number, Currency, Date, Text,
Boolean. If data is encountered that does not
match the data type guessed for the column, it
is returned as a Null value. On import, if a
column has mixed data types, the entire
column will be cast according to the
ImportMixedTypes setting.
The default number of rows to be checked is 8.
Values are of type DWORD for Windows 95
and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

ImportMixedTypes Can be set to MajorityType or Text. If set to
MajorityType, columns of mixed data types will
be cast to the predominate data type on import.
If set to Text, columns of mixed data types will
be cast to Text on import. The default is Text.
Values are of type String for Windows 95 and
Windows NT 4.0, and of type REG_SZ for
Windows NT 3.51.

AppendBlankRows The number of blank rows to be appended to
the end of a Version 3.5 or Version 4.0

worksheet before new data is added. For
example, if AppendBlankRows is set to 4,
Microsoft Jet will append 4 blank rows to the
end of the worksheet before appending rows
that contain data. Integer values for this setting
can range from 0 to 16; the default is 0 (no
additional rows appended). Values are of type
DWORD for Windows 95 and Windows NT 4.0,
and of type REG_DWORD for Windows NT
3.51.

FirstRowHasNames

A binary value that indicates whether the first
row of the table contains column names. A
value of 01 indicates that, during import,
column names are taken from the first row. A
value of 00 indicates no column names in the
first row; column names appear as F1, F2, F3,
and so on. The default is 01. Values are of type
Binary for Windows 95 and Windows NT 4.0,
and of type REG_BINARY for Windows NT
3.51.

Microsoft Excel ISAM Formats
The Jet\3.5\ISAM Formats\Excel 3.0 folder contains the following entries.

Entry name Windows NT
Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Excel
ExportFilter REG_SZ String Microsoft Excel 3

(*.xls)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextExport REG_SZ String Export data from

the current
database into a
Microsoft Excel 3.0
file. This process
will overwrite the
data if exported to
an existing file.

The Jet\3.5\ISAM Formats\Excel 4.0 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows
NT 4.0 Type

Value

Engine REG_SZ String Excel
ExportFilter REG_SZ String Microsoft Excel 4

(*.xls)
CanLink REG_BINARY Binary 01

OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextExport REG_SZ String Export data from the

current database into
a Microsoft Excel 4.0
file. This process will
overwrite the data if
exported to an
existing file.

The Jet\3.5\ISAM Formats\Excel 5.0 folder contains the following entries, which apply to Microsoft
Excel versions 5.0 and 7.0.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Excel
ExportFilter REG_SZ String Microsoft Excel 5-7

(*.xls)
ImportFilter REG_SZ String Microsoft Excel

(*.xls)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in
the external file.

ResultTextLink REG_SZ String Create a table in the
current database
that is linked to the
external file.
Changing data in the
current database will
change data in the
external file.

ResultTextExport REG_SZ String Export data from the
current database
into a Microsoft
Excel 5.0 file. This
process will
overwrite the data if
exported to an

existing file.

The Jet\3.5\ISAM Formats\Excel 8.0 folder contains the following entries, which apply to Microsoft
Excel 97.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Excel
ExportFilter REG_SZ String Microsoft Excel 97
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 1
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 01
ResultTextExport REG_SZ String Export data from the

current database
into a Microsoft
Excel 97 file. This
process will
overwrite the data if
exported to an
existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Microsoft FoxPro Database Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingFoxProC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingFoxProS "}

When you install the Microsoft FoxPro database driver, the Setup program writes a set of default
values to the Windows Registry in the Engines and ISAM Formats subkeys. You should not modify
these settings directly; use the setup program for your application to add, remove, or change these
settings. The following sections describe initialization and ISAM Format settings for the Microsoft
FoxPro database driver.

Microsoft FoxPro Initialization Settings
The Jet\3.5\Engines\Xbase folder includes initialization settings for the Msxbse35.dll driver, used for
access to external FoxPro data sources. Typical settings for the entries in this folder are shown in the
following example.
win32=<pathname>\MSXBSE35.dll
NetworkAccess=On
PageTimeout=600
INFPath=C:\DBASE\SYSTEM
CollatingSequence=ASCII
DataCodePage=OEM
Deleted=Off
Century=Off
Date=MDY
Mark=47
Exact=Off

The Microsoft Jet database engine uses the Xbase folder entries as follows.

Entry Description
win32 The location of Msxbse35.dll. The full pathname

is determined at the time of installation. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

NetworkAccess A binary indicator for file locking preference. If
NetworkAccess is set to 00, tables are opened
for exclusive access, regardless of the settings of
the OpenDatabase and OpenRecordset
methods' exclusive argument. The default value
is 01. Values are of type Binary for Windows 95
and Windows NT 4.0, and of type REG_BINARY
for Windows NT 3.51.

PageTimeout The length of time between when data is placed
in an internal cache and when it is invalidated.
The value is specified in 100 millisecond units.
The default is 600 units or 60 seconds. Values
are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

INFPath The full path to the .inf file directory. The
Microsoft Jet database engine first looks for
an .inf file in the directory containing the table. If
the .inf file isn't in the database directory, it looks
in the INFPath. If there is no INFPath, it uses

whatever index files (.cdx or .mdx) it finds in the
database directory. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.
This entry is not written by the installation
procedure.

CollatingSequence The collating sequence for all Microsoft FoxPro
tables created or opened using Microsoft Jet.
Possible values are ASCII and International. The
default is ASCII. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

DataCodePage An indicator of how text pages are stored.
Possible settings are:
• OEM
OemToAnsi and AnsiToOem conversions done.
• ANSI
OemToAnsi and AnsiToOem conversions not
done.
The default is OEM. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Deleted A binary indicator that determines how records
marked for deletion are handled by the Microsoft
Jet database engine. A value of 01 corresponds
to the Microsoft FoxPro command SET
DELETED ON and indicates never to retrieve or
position on a deleted record. A value of 00
corresponds to the Microsoft FoxPro command
SET DELETED OFF and indicates to treat a
deleted record like any other record. The default
is 00. Values are of type Binary for Windows 95
and Windows NT 4.0, and of type REG_BINARY
for Windows NT 3.51.

Century A binary indicator for formatting the century
component of dates in cases where date-to-
string functions are used in index expressions. A
value of 01 corresponds to the Microsoft FoxPro
command SET CENTURY ON and a value of 00
corresponds to the Microsoft FoxPro command
SET CENTURY OFF. The default is 00. Values
are of type Binary for Windows 95 and Windows
NT 4.0, and of type REG_BINARY for Windows
NT 3.51.

Date The date formatting style to use in cases where
date-to-string functions are used in index
expressions. The possible settings for this entry,
which corresponds to the Microsoft FoxPro SET
DATE command, are American, ANSI, British,
French, DMY, German, Italian, Japan, MDY,
USA, and YMD. The default is MDY. Values are
of type String for Windows 95 and Windows NT
4.0, and of type REG_SZ for Windows NT 3.51.

Mark The decimal value of the ASCII character used to
separate date parts. The default depends on the
Date setting as follows:
• "/" (American, MDY)
• "." (ANSI)
• "/" (British, French, DMY)
• "." (German)
• "-" (Italian)
• "/" (Japan, YMD)
• "-" (USA)
A value of 0 specifies that the system should use
the separator usually associated with the
selected date format.
The default is 0. Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

Exact A binary indicator for string comparisons. A value
of 01 corresponds to the Microsoft FoxPro
command SET EXACT ON. A value of 00
corresponds to the Microsoft FoxPro command
SET EXACT OFF. The default is 00. Values are
of type Binary for Windows 95 and Windows NT
4.0, and of type REG_BINARY for Windows NT
3.51.

FoxPro ISAM Formats
The Jet\3.5\ISAM Formats\FoxPro 2.0 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String Microsoft FoxPro 2.0

(*.dbf)
ImportFilter REG_SZ String Microsoft FoxPro

(*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String FoxPro Index (*.idx;

*.cdx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in
the external file.

ResultTextLink REG_SZ String Create a table in the

current database that
is linked to the
external file.
Changing data in the
current database will
change data in the
external file.

ResultTextExport REG_SZ String Export data from the
current database into
a Microsoft FoxPro
2.0 file. This process
will overwrite the data
if exported to an
existing file.

The Jet\3.5\ISAM Formats\FoxPro 2.5 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows
95 and
Windows
NT 4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String Microsoft FoxPro 2.5

(*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String FoxPro Index (*.idx;

*.cdx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from the

current database into
a Microsoft FoxPro 2.5
file. This process will
overwrite the data if
exported to an existing
file.

The Jet\3.5\ISAM Formats\FoxPro 2.6 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String Microsoft FoxPro 2.6

(*.dbf)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
IndexFilter REG_SZ String FoxPro Index (*.idx;

*.cdx)
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from the

current database into
a Microsoft FoxPro
2.6 file. This process
will overwrite the data
if exported to an
existing file.

The Jet\3.5\ISAM Formats\FoxPro 3.0 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String Microsoft FoxPro 3.0

(*.dbf)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 01
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from the

current database into
a Microsoft FoxPro
3.0 file. This process
will overwrite the data
if exported to an
existing file.

The Jet\3.5\ISAM Formats\FoxPro DBC folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows
95 and
Windows
NT 4.0
Type

Value

Engine REG_SZ String Xbase
ExportFilter REG_SZ String Microsoft FoxPro 3.0 (*.dbc)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the external

file into the current database.
Changing data in the current
database will not change data
in the external file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Microsoft Jet 2.x Database Engine Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingJetISAMC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingJetISAMS "}

When you install the Microsoft Jet 2.x Engine database driver, the Setup program writes a set of
default values to the Windows Registry in the Engines and ISAM Formats subkeys. You must use the
Registry Editor to add, remove, or change these settings. The following sections describe initialization
and ISAM Format settings for the Jet Engine database driver.

Note The installation procedure writes only one setting (win32) to the Jet\3.5\Engines\Jet 2.x folder;
this is the only valid setting in this folder.

Microsoft Jet Engine Initialization Settings
The Jet\3.5\Engines\Jet 2.x folder contains a single initialization setting for the Microsoft Jet database
engine.

win32=<pathname>\MSRD2X35.dll

The Microsoft Jet database engine uses the following entry to determine the path to the database
engine driver.

Entry Description
win32 Location of the database engine driver (.dll).

The pathname is determined at the time of
installation. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Additional initialization settings for the Microsoft Jet database engine are contained in the Jet\3.5\
Engines\Jet 2.x\ISAM folder. Before you can add any of the following values to the registry, you must
create the ISAM folder under the Jet\3.5\Engines\Jet 2.x folder.

To create the new folder, open the Jet\3.5\Engines\Jet 2.x folder in the Registry Editor and click Add
Key on the Edit menu. In the Key Name: edit box, type ISAM and click OK. The Registry Editor
creates a new folder below the Jet\3.5\Engines\Jet 2.x folder.

Note If you are using Windows NT, the Add Key dialog box also contains an edit box for the registry
key class; you can leave this setting blank.

Typical initialization settings for the entries in the Jet\3.5\Engines\Jet 2.x\ISAM folder are shown in the
following example.
PageTimeout=5
LockedPageTimeout=5
CursorTimeout=5
LockRetry=20
CommitLockRetry=20
MaxBufferSize=512
ReadAheadPages=16
IdleFrequency=10

The following entries are used to configure the Microsoft Jet database engine.

Entry Description
PageTimeout The length of time between when data that is

not read-locked is placed in an internal cache
and when it's invalidated, expressed in 100
millisecond units. The default is 5 units (or 0.5

seconds). Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

LockedPageTimeout The length of time between when data that is
read-locked is placed in an internal cache and
when it's invalidated, expressed in 100
millisecond units. The default is 5 units (or 0.5
seconds). Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

CursorTimeout The length of time a reference to a page will
remain on that page, expressed in 100
millisecond units. The default is 5 units (or 0.5
seconds). This setting applies only to
databases created with version 1.x of the
Microsoft Jet database engine. Values are of
type DWORD for Windows 95 and Windows
NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

LockRetry The number of times to repeat attempts to
access a locked page before returning a lock
conflict message. The default is 20 times;
LockRetry is related to CommitLockRetry,
which is described below. Values are of type
DWORD for Windows 95 and Windows NT
4.0, and of type REG_DWORD for Windows
NT 3.51.

CommitLockRetry The number of times the Microsoft Jet
database engine attempts to acquire a lock on
data to commit changes to that data. If the
Microsoft Jet database engine cannot acquire
a commit lock, changes to the data will be
unsuccessful.
The number of attempts the Microsoft Jet
database engine makes to get a commit lock
is directly related to the LockRetry value. For
each attempt made to acquire a commit lock,
the Microsoft Jet database engine will make
as many attempts as specified by the
LockRetry value to acquire a lock. For
example, if CommitLockRetry is set to 20 and
LockRetry is set to 20, the Microsoft Jet
database engine will try to acquire a commit
lock as many as 20 times; for each of those
attempts, the Microsoft Jet database engine
will try to acquire a lock as many as 20 times,
for a total of 400 attempts.
The default value for CommitLockRetry is 20.
Values are of type DWORD for Windows 95
and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

MaxBufferSize The size of the database engine internal
cache, measured in kilobytes (K).
MaxBufferSize must be a whole number value

between 9 and 4096, inclusive. The default is
512. Values are of type DWORD for Windows
95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

ReadAheadPages The number of pages to read ahead when
performing sequential scans. The default is
16. Values are of type DWORD for Windows
95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

IdleFrequency The amount of time, in 100 millisecond units,
that Microsoft Jet will wait before releasing a
read lock. The default is 10 units or one
second. Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

Microsoft Jet Engine ISAM Formats
The Jet\3.5\ISAM Formats\Jet 2.x folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows
95 and
Windows
NT 4.0 Type

Value

Engine REG_SZ String Jet 2.x
OneTablePerFile REG_BINARY Binary 00
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
IsamType REG_DWORD DWORD 0

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Microsoft Jet 3.5 Database Engine
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingJetEngine30C "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingJetEngine30S "}

The following sections describe initialization settings for the Microsoft Jet 3.5 database engine. These
registry settings must be added by the user or by your application; the Microsoft Jet 3.5 setup
program does not write default values to the \HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\3.5\
Engines\Jet 3.5 folder.

Microsoft Jet Engine Initialization Settings
The Jet\3.5\Engines\Jet 3.5 folder contains initialization settings for the Microsoft Jet database
engine. Before you can add any of the following values to the registry, you must create the Jet folder
under the Jet\3.5\Engines folder.

To create the new folder, open the Jet\3.5\Engines folder in the Registry Editor and click Add Key on
the Edit menu. In the Key Name: edit box, type Jet and click OK. The Registry Editor creates a new
folder below the Jet\3.5\Engines folder.

Note If you are using Windows NT, the Add Key dialog box also contains an edit box for the registry
key class; you can leave this setting blank.

Typical settings for the entries in the Jet\3.5\Engines\Jet 3.5 folder are shown in the following
example.
PageTimeout=5000
LockRetry=20
MaxBufferSize=
Threads=3
UserCommitSync=Yes
ImplicitCommitSync=No
ExclusiveAsyncDelay=2000
SharedAsyncDelay=0
SystemDB=<pathname>\System.mdb

The Microsoft Jet database engine uses the following entries.

Entry Description
PageTimeout The length of time between when data that is

not read-locked is placed in an internal cache
and when it's invalidated, expressed in
milliseconds. The default is 5000 milliseconds
or 5 seconds. Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

LockRetry The number of times to repeat attempts to
access a locked page before returning a lock
conflict message. The default is 20. Values are
of type DWORD for Windows 95 and Windows
NT 4.0, and of type REG_DWORD for Windows
NT 3.51.

MaxBufferSize The size of the database engine internal cache,
measured in kilobytes (K). MaxBufferSize must
be an integer value greater than or equal to
512. The default is based on the following
formula:
((TotalRAM in MB - 12 MB) / 4) +

512 KB
For example, on a system with 32 MB of RAM,
the default buffer size is ((32 MB - 12 MB) / 4) +
512 KB or 5632 KB. To set the value to the
default, set the registry key to
MaxBufferSize=
Values are of type DWORD for Windows 95
and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

Threads The number of background threads available to
the Jet database engine. The default is 3.
Values are of type DWORD for Windows 95
and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

UserCommitSync Specifies whether the system waits for a
commit to finish. A value of Yes instructs the
system to wait; a value of No instructs the
system to perform the commit asynchronously.
The default is Yes. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

ImplicitCommitSync Specifies whether the system waits for a
commit to finish. A value of No instructs the
system to proceed without waiting for the
commit to finish; a value of Yes instructs the
system to wait for the commit to finish. The
default is No. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

ExclusiveAsyncDela
y

Specifies the length of time, in milliseconds, to
defer an asynchronous flush of an exclusive
database. The default value is 2000 or 2
seconds. Values are of type DWORD for
Windows 95 and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.

SharedAsyncDelay Specifies the length of time, in milliseconds, to
defer an asynchronous flush of a shared
database. The default value is 0. Values are of
type DWORD for Windows 95 and Windows NT
4.0, and of type REG_DWORD for Windows NT
3.51.

SystemDB Specifies the full pathname and filename of the
system database. The default is the appropriate
pathname followed by the filename
System.mdb. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

CompactByPKey Specifies that when you compact tables they
are copied in primary-key order, if a primary key
exists on the table. If no primary key exists on a
table, the tables are copied in base-table order.
A value of 0 indicates that tables should be
compacted in base-table order; a non-zero

value indicates that tables should be
compacted in primary-key order, if a primary
key exists. The default value is non-zero.
Values are of type DWORD for Windows 95
and Windows NT 4.0, and of type
REG_DWORD for Windows NT 3.51.
Note: This setting only applies to compacting
databases created with the Microsoft Jet
database engine version 3.0 or later; when you
compact databases created with the Microsoft
Jet database engine version 2.x, the data is
always copied in the order of the base table.

Microsoft Jet Engine ISAM Formats
The Jet\3.5\ISAM Formats folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Jet 3.5
ExportFilter REG_SZ String Microsoft Access

(*.mdb)
ImportFilter REG_SZ String Microsoft Access

(*.mdb)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 00
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the
current database.
Changing data in the
current database will
not change data in
the external file.

ResultTextLink REG_SZ String Create a table in the
current database that
is linked to the
external file.
Changing data in the
current database will
change data in the
external file.

ResultTextExport REG_SZ String Export data from the
current database into
a Microsoft Access
database. This
process will overwrite
the data if exported
to an existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Configuring the Microsoft Jet Database Engine for ODBC Access
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingMicrosoftODBCC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingMicrosoftODBCS "}

The following sections describe Windows registry settings settings for the Microsoft Jet database
engine for connection to an ODBC database. These registry settings must be added by the user or by
your application; the ODBC Driver Setup program does not write default values to the \
HKEY_LOCAL_MACHINE\Software\Microsoft\Access\7.0\Jet\3.5\Engines\ODBC folder.

Initialization Settings for Jet-connected ODBC Databases
The \HKEY_LOCAL_MACHINE\Software\Microsoft\Access\7.0\Jet\3.5\Engines\ODBC folder contains
initialization settings for the Microsoft Jet database engine. Before you can add any of the following
values to the registry, you must create the ODBC folder under the Jet\3.5\Engines folder.

To create the new folder, open the Jet\3.5\Engines folder in the Registry Editor and click Add Key on
the Edit menu. In the Key Name: edit box, type ODBC and click OK. The Registry Editor creates a
new folder below the Jet\3.5\Engines folder.

Note If you are using Windows NT, the Add Key dialog box also contains an edit box for the registry
key class; you can leave this setting blank.

Typical settings for the entries in the Jet\3.5\Engines\ODBC folder are shown in the following
example.
LoginTimeout=20
QueryTimeout=60
ConnectionTimeout=600
AsyncRetryInterval=500
AttachCaseSensitive=0
AttachableObjects='TABLE','VIEW','SYSTEM TABLE','ALIAS','SYNONYM'
SnapshotOnly=0
TraceSQLMode=0
TraceODBCAPI=0
DisableAsync=0
JetTryAuth=1
PreparedInsert=0
PreparedUpdate=0
FastRequery=0

The Jet database engine uses the ODBC entries as follows.

Entry Description
LoginTimeout The number of seconds a login attempt can

continue before timing out. The default is 20
(values are of type REG_DWORD).

QueryTimeout The number of seconds a query can run (total
processing time) before timing out. The default is
60 (values are of type REG_DWORD).

ConnectionTimeout The number of seconds a cached connection can
remain idle before timing out. The default is 600
(values are of type REG_DWORD).

AsyncRetryInterval The number of milliseconds between polls to
determine if the server is done processing a query.
This entry is used for asynchronous processing
only. The default is 500 (values are of type
REG_DWORD).

AttachCaseSensitive An indicator of whether to match table names
exactly when linking. Values are 0 (link the first
table matching the specified name, regardless of
case) and 1 (link a table only if the name matches
exactly). The default is 0 (values are of type
REG_DWORD).

AttachableObjects A list of server object types to which linking will be
allowed. The default is: 'TABLE', 'VIEW', 'SYSTEM
TABLE', 'ALIAS', 'SYNONYM' (values are of type
REG_SZ).

SnapshotOnly An indicator of whether Recordset objects are
forced to be of snapshot type. Values are 0 (allow
dynasets) and 1 (force snapshots only). The
default is 0 (values are of type REG_DWORD).

TraceSQLMode An indicator of whether the Jet database engine
will trace SQL statements sent to an ODBC data
source in SQLOUT.txt. Values are 0 (no) and 1
(yes). The default is 0 (values are of type
REG_DWORD). This entry is interchangeable with
SQLTraceMode.

TraceODBCAPI An indicator of whether to trace ODBC API calls in
ODBCAPI.txt. Values are 0 (no) and 1 (yes). The
default is 0 (values are of type REG_DWORD).

DisableAsync An indicator of whether to force synchronous query
execution. Values are 0 (use asynchronous query
execution if possible) and 1 (force synchronous
query execution). The default is 1 (values are of
type REG_DWORD).

JetTryAuth An indicator of whether to try using the Microsoft
Access user name and password to log in to the
server before prompting. Values are 0 (no) and 1
(yes). The default is 1 (values are of type
REG_DWORD).

PreparedInsert An indicator of whether to use a prepared INSERT
statement that inserts data in all columns. Values
are 0 (use a custom INSERT statement that inserts
only non-Null values) and 1 (use a prepared
INSERT statement). The default is 0 (values are of
type REG_DWORD).
Using prepared INSERT statements can cause
Nulls to overwrite server defaults and can cause
triggers to execute on columns that weren't
inserted explicitly.

PreparedUpdate An indicator of whether to use a prepared UPDATE
statement that updates data in all columns. Values
are 0 (use a custom UPDATE statement that sets
only columns that have changed) and 1 (use a
prepared UPDATE statement). The default is 0
(values are of type REG_DWORD).
Using prepared UPDATE statements can cause
triggers to execute on unchanged columns.

FastRequery An indicator of whether to use a prepared SELECT
statement for parameterized queries. Values are 0

(no) and 1 (yes). The default is 0 (values are of
type REG_DWORD).

Initializing the Paradox Database Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingParadoxC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingParadoxS "}

When you install the Paradox database driver, the Setup program writes a set of default values to the
Windows Registry in the Engines and ISAM Formats subkeys. You should not modify these settings
directly (unless necessary); use the setup program for your application to add, remove, or change
these settings. The following sections describe initialization and ISAM Format settings for the Paradox
database driver.

Paradox Initialization Settings
The Jet\3.5\Engines\Paradox folder includes initialization settings for the Mspdox35.dll driver, used for
access to external Paradox data. Typical settings for the entries in this folder are shown in the
following example.
win32=<pathname>\MSPDOX35.dll
PageTimeout=600
CollatingSequence=ASCII
DataCodePage=OEM
ParadoxUserName=Kimberly
ParadoxNetPath=P:\PDOXDB
ParadoxNetStyle=4.X

The Microsoft Jet database engine uses the Paradox folder entries as follows.

Entry Description
win32 The location of Mspdox35.dll. The full pathname

is determined at the time of installation. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

PageTimeout The length of time between when data is placed
in an internal cache and when it is invalidated.
The value is specified in 100 millisecond units.
The default is 600 units or 60 seconds. Values
are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

CollatingSequence The collating sequence for all Paradox tables
created or opened using Microsoft Jet. Possible
values are ASCII, International, Norwegian-
Danish, and Swedish-Finnish. The
CollatingSequence entry must match the
collating sequence used when the Paradox table
was built. The default is ASCII. Values are of
type String for Windows 95 and Windows NT 4.0,
and of type REG_SZ for Windows NT 3.51.

DataCodePage An indicator of how text pages are stored.
Possible settings are:
• OEM
OemToAnsi and AnsiToOem conversions done.
• ANSI
OemToAnsi and AnsiToOem conversions not
done.

The default is OEM. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

ParadoxUserName The name to be displayed by Paradox if a table
is locked by the Paradox ISAM and an
interactive user accessing the data from Paradox
(rather than the ISAM) attempts to place an
incompatible lock. This entry isn’t added if the
computer isn't on a network. Values are of type
String for Windows 95 and Windows NT 4.0, and
of type REG_SZ for Windows NT 3.51.
Note: If you indicate a ParadoxUserName, you
must also specify a ParadoxNetPath and a
ParadoxNetStyle or you’ll receive an error when
trying to access external Paradox data. Also, if
you’re accessing a Paradox database in multi-
user mode over the network, you’ll have to add
or modify this registry entry manually.

ParadoxNetPath The full path to the directory containing the
PARADOX.NET file (for Paradox 3.x) or the
PDOXUSRS.NET file (for Paradox 4.x). This
entry isn’t added if the computer isn’t on a
network. Usually, you need to change the initial
setting (added by the Setup program), which is a
best guess at where the file might be. The full
ParadoxNetPath (including the drive letter) must
be consistent for all users sharing a particular
database (directory). Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.
Note: If you indicate a ParadoxNetPath, you
must also specify a ParadoxUserName and a
ParadoxNetStyle or you’ll receive an error when
trying to access external Paradox data. Also, if
you’re accessing a Paradox database in multi-
user mode over the network, you’ll have to add
or modify this registry entry manually.

ParadoxNetStyle The network access style to use when accessing
Paradox data. Possible values are:
• 3.x
• 4.x
(Note that Paradox 3.x users can’t set this to 4.x
or the driver will use the wrong locking method.
Paradox 5.0 users must use the 4.x
ParadoxNetStyle setting to ensure proper locking
behavior.)
This entry isn’t added if the computer isn’t on a
network. This entry should correspond to
whatever version of Paradox the users in the
group are using. It must be consistent for all
users sharing a particular database (directory).
The default is 4.x. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Note: If you indicate a ParadoxNetStyle, you
must also specify a ParadoxUserName and a
ParadoxNetPath or you’ll receive an error when
trying to access external Paradox data.

Paradox ISAM Formats
The Jet\3.5\ISAM Formats\Paradox 3.x folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Paradox
ExportFilter REG_SZ String Paradox 3 (*.db)
ImportFilter REG_SZ String Paradox (*.db)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from the

external file into the current
database. Changing data in
the current database will
not change data in the
external file.

ResultTextLink REG_SZ String Create a table in the current
database that is linked to
the external file. Changing
data in the current database
will change data in the
external file.

ResultTextExport REG_SZ String Export data from the current
database into a Paradox 3
file. This process will
overwrite the data if
exported to an existing file.

The Jet\3.5\ISAM Formats\Paradox 4.x folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Paradox
ExportFilter REG_SZ String Paradox 4 (*.db)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from the

current database into
a Paradox 4 file. This

process will overwrite
the data if exported to
an existing file.

The Jet\3.5\ISAM Formats\Paradox 5.x folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and
Windows NT
4.0 Type

Value

Engine REG_SZ String Paradox
ExportFilter REG_SZ String Paradox 5 (*.db)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from the

current database into a
Paradox 5 file. This
process will overwrite
the data if exported to
an existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Text Data Source Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingTextC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingTextS "}

When you install the Text Data Source database driver, the Setup program writes a set of default
values to the Windows Registry in the Engines and ISAM Formats subkeys. You should not modify
these settings directly; use the setup program for your application to add, remove, or change these
settings. The following sections describe initialization and ISAM Format settings for the Text Data
Source database driver.

Text Data Source Initialization Settings
The Jet\3.5\Engines\Text folder includes initialization settings for the Mstext35.dll driver, used for
external access to text data files. Typical settings for the entries in this folder are shown in the
following example.
win32=<pathname>\MSTEXT35.dll
MaxScanRows=25
FirstRowHasNames=False
CharacterSet=OEM
Format=TabDelimited
Extensions=none,asc,csv,tab,txt
ExportCurrencySymbols=Yes

The Microsoft Jet database engine uses the Text folder entries as follows.

Entry Description
win32 The location of Mstext35.dll. The full pathname

is determined at the time of installation. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

MaxScanRows The number of rows to be scanned when
guessing the column types. If set to 0, the entire
file will be searched. The default is 25. Values
are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

FirstRowHas Names A binary value that indicates whether the first
row of the table contains column names. A
value of 01 indicates that, during import, column
names are taken from the first row. A value of
00 indicates no column names in the first row.
The default is 01. Values are of type Binary for
Windows 95 and Windows NT 4.0, and of type
REG_BINARY for Windows NT 3.51.

CharacterSet An indicator of how text pages are stored.
Possible settings are:
• OEM
OemToAnsi and AnsiToOem conversions done.
• ANSI
OemToAnsi and AnsiToOem conversions not
done.
The default is OEM. Values are of type String
for Windows 95 and Windows NT 4.0, and of

type REG_SZ for Windows NT 3.51.
Format Can be any of the following: TabDelimited,

CSVDelimited, Delimited (<single character >).
The single-character delimiter in the Delimited
format can be any single character except a
double quotation mark ("). The default is
CSVDelimited. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Extensions The extension of whatever files are to be
browsed when looking for text-based data. The
default is txt, csv, tab, asc. Values are of type
String for Windows 95 and Windows NT 4.0,
and of type REG_SZ for Windows NT 3.51.

ExportCurrencySymbols A binary value that indicates whether the
appropriate currency symbol is included when
currency fields are exported. A value of 01
indicates that the symbol is included. A value of
00 indicates that only the numeric data is
exported. The default is 01. Values are of type
Binary for Windows 95 and Windows NT 4.0,
and of type REG_BINARY for Windows NT
3.51.

Text Data Source ISAM Formats
The Jet\3.5\ISAM Formats\Text folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Text
ExportFilter REG_SZ String Text Files (*.txt;

*.csv; *.tab; *.asc)
ImportFilter REG_SZ String Text Files (*.txt;

*.csv; *.tab; *.asc)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 2
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from

the external file into
the current
database.
Changing data in
the current
database will not
change data in the
external file.

ResultTextLink REG_SZ String Create a table in
the current
database that is

linked to the
external file.
Changing data in
the current
database will
change data in the
external file.

ResultTextExport REG_SZ String Export data from
the current
database into a text
file. This process
will overwrite the
data if exported to
an existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Customizing the Schema.ini File
To read, import, or export text data, you need to create a Schema.ini file in addition to including the
Text ISAM information in the .ini file. Schema.ini contains the specifics of a text data source: how the
text file is formatted, how it is read at import time, and the default export format for files. The following
examples show the layout for a fixed-width file, Filename.txt.
[Filename.txt]
ColNameHeader=False
Format=FixedLength
MaxScanRows=25
CharacterSet=OEM
Col1=columnname Char Width 24
Col2=columnname2 Date Width 9
Col3=columnname7 Float Width 10
Col4=columnname8 Integer Width 10
Col5=columnname9 LongChar Width 10

Similarly, the format for a delimited file is specified as:
[Delimit.txt]
ColNameHeader=True
Format=Delimited(!)
MaxScanRows=0
CharacterSet=OEM
Col1=username char width 50
Col2=dateofbirth Date width 9

If you are exporting data into a delimited text file, specify the format for that file as well.
[Export: My Special Export]
ColNameHeader=True
Format=TabDelimited
MaxScanRows=25
CharacterSet=OEM
DateTimeFormat=mm.dd.yy.hh.mm.ss
CurrencySymbol=Dm
CurrencyPosFormat=0
CurrencyDigits=2
CurrencyNegFormat=0

CurrencyThousandSymbol=,
CurrencyDecimalSymbol=.
DecimalSymbol=,
NumberDigits=2
NumberLeadingZeros=0

The My Special Export example refers to a specific export option; you can specify any variation of
export options at connect time. This last example also corresponds to a data source name (DSN) that
can be optionally passed at connect time. All three format sections can be included in the same .ini
file.

The Jet database engine uses the Schema.ini entries as follows.

Entry Description
ColNameHeader Can be set to either True (indicating that the

first record of data specifies the column
names) or False.

Format Can be set to one of the following values:
TabDelimited, CSVDelimited,
Delimited(<single character delimiter), or
FixedLength. The delimiter specified for the
Delimited file format can be any single
character except a double quotation mark (").

MaxScanRows Indicates the number of rows to be scanned
when guessing the column data types. If this
is set to 0, the entire file is searched.

CharacterSet Can be set to OEM or ANSI, indicating
whether the source file is written using an
OEM or ANSI code page.

DateTimeFormat Can be set to a format string indicating dates
and times. This entry should be specified if all
date/time fields in the import/export are
handled with the same format. All of the Jet
database engine formats except AM and PM
are supported. In the absence of a format
string, the Windows Control Panel short date
picture and time options are used.

CurrencySymbol Indicates the currency symbol to be used for
currency values in the text file. Examples
include the dollar sign ($) and Dm. If this
entry is absent, the default value in the
Windows Control Panel is used.

CurrencyPosFormat Can be set to any of the following values:
1. Currency symbol prefix with no separation

($1)
1. Currency symbol suffix with no separation

(1$)
2. Currency symbol prefix with one character

separation ($ 1)
3. Currency symbol suffix with one character

separation (1 $)
If this entry is absent, the default value in the
Windows Control Panel is used.

CurrencyDigits Specifies the number of digits used for the

fractional part of a currency amount. If this
entry is absent, the default value in the
Windows Control Panel is used.

CurrencyNegFormat Can be one of the following values:
1. ($1)
1. –$1
2. $–1
3. $1–
4. (1$)
5. –1$
6. 1–$
7. 1$–
8. –1 $
9. –$ 1
10. 1 $–
11. $ 1–
12. $ –1
13. 1– $
14. ($ 1)
15. (1 $)
The dollar sign is shown for purposes of this
example, but it should be replaced with the
appropriate CurrencySymbol value in the
actual program. If this entry is absent, the
default value in the Windows Control Panel is
used.

CurrencyThousandSymbol Indicates the single-character symbol to be
used for separating currency values in the
text file by thousands. If this entry is absent,
the default value in the Windows Control
Panel is used.

CurrencyDecimalSymbol Can be set to any single character that is
used to separate the whole from the
fractional part of a currency amount. If this
entry is absent, the default value in the
Windows Control Panel is used.

DecimalSymbol Can be set to any single character that is
used to separate the integer from the
fractional part of a number. If this entry is
absent, the default value in the Windows
Control Panel is used.

NumberDigits Indicates the number of decimal digits in the
fractional portion of a number. If this entry is
absent, the default value in the Windows
Control Panel is used.

NumberLeadingZeros Specifies whether a decimal value less than 1
and greater than –1 should contain leading
zeros; this value can either be False (no
leading zeros) or True.

Col1, Col2, ... Lists the columns in the text file to be read.

The format of this entry should be:
Coln=columnName type [Width #]
columnName: Column names with embedded
spaces should be enclosed in quotation
marks.
type: Can be Bit, Byte, Short, Long, Currency,
Single, Double, DateTime, Text, or Memo.
In addition, the following ODBC Text Driver
types are supported:
Char (same as Text)
Float (same as Double)
Integer (same as Short)
LongChar (same as Memo)
Date date format

Initializing the HTML (Internet) Source Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingHTMLC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingHTMLS "}

When you install the HTML database driver, the Setup program writes a set of default values to the
Windows Registry in the Engines and ISAM Formats subkeys. You should not modify these settings
directly; use the setup program for your application to add, remove, or change these settings. The
following sections describe initialization and ISAM Format settings for the HTML Data Source
database driver.

HTML Data Source Initialization Settings
The Jet\3.5\Engines\Text folder includes initialization settings for the Mstext35.dll driver, used for
external access to tables stored within HTML files. Typical settings for the entries in this folder are
shown in the following example.
win32=<pathname>\MSTEXT35.dll
MaxScanRows=25
FirstRowHasNames=False
CharacterSet=OEM
Format=TabDelimited
Extensions=none,asc,csv,tab,txt
ExportCurrencySymbols=Yes

The Microsoft Jet database engine uses the Text folder entries as follows.

Entry Description
win32 The location of Mstext35.dll. The full pathname

is determined at the time of installation. Values
are of type String for Windows 95 and Windows
NT 4.0, and of type REG_SZ for Windows NT
3.51.

MaxScanRows The number of rows to be scanned when
guessing the column types. If set to 0, the entire
file will be searched. The default is 25. Values
are of type DWORD for Windows 95 and
Windows NT 4.0, and of type REG_DWORD for
Windows NT 3.51.

FirstRowHas Names A binary value that indicates whether the first
row of the table contains column names. A
value of 01 indicates that, during import, column
names are taken from the first row. A value of
00 indicates no column names in the first row.
The default is 01. Values are of type Binary for
Windows 95 and Windows NT 4.0, and of type
REG_BINARY for Windows NT 3.51.

CharacterSet An indicator of how text pages are stored.
Possible settings are:
• OEM
OemToAnsi and AnsiToOem conversions done.
• ANSI
OemToAnsi and AnsiToOem conversions not
done.
The default is OEM. Values are of type String
for Windows 95 and Windows NT 4.0, and of

type REG_SZ for Windows NT 3.51.
Format Can be any of the following: TabDelimited,

CSVDelimited, Delimited (<single character >).
The single-character delimiter in the Delimited
format can be any single character except a
double quotation mark ("). The default is
CSVDelimited. Values are of type String for
Windows 95 and Windows NT 4.0, and of type
REG_SZ for Windows NT 3.51.

Extensions The extension of whatever files are to be
browsed when looking for text-based data. The
default is txt, csv, tab, asc. Values are of type
String for Windows 95 and Windows NT 4.0,
and of type REG_SZ for Windows NT 3.51.

ExportCurrencySymbols A binary value that indicates whether the
appropriate currency symbol is included when
currency fields are exported. A value of 01
indicates that the symbol is included. A value of
00 indicates that only the numeric data is
exported. The default is 01. Values are of type
Binary for Windows 95 and Windows NT 4.0,
and of type REG_BINARY for Windows NT
3.51.

HTML Import ISAM Formats
The Jet\3.5\ISAM Formats\HTML Import folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Text
ImportFilter REG_SZ String HTML Files (*.ht*)
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 2
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextImport REG_SZ String Import data from

the external file into
the current
database.
Changing data in
the current
database will not
change data in the
external file.

ResultTextLink REG_SZ String Create a table in
the current
database that is
linked to the
external file.
Changing data in
the current

database will
change data in the
external file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

HTML Export ISAM Formats
The Jet\3.5\ISAM Formats\HTML Export folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Text
ExportFilter REG_SZ String HTML Files (*.htm)
CanLink REG_BINARY Binary 00
OneTablePerFile REG_BINARY Binary 01
IsamType REG_DWORD DWORD 2
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00
ResultTextExport REG_SZ String Export data from

the current
database into a text
file. This process
will overwrite the
data if exported to
an existing file.

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

Initializing the Microsoft Exchange Data Source Driver
{ewc HLP95EN.dll, DYNALINK, "See Also":"dahowChangingHTMLC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"dahowChangingHTMLS "}

When you install the Microsoft Exchange Data Source driver, the Setup program writes a set of
default values to the Windows Registry in the Engines and ISAM Formats subkeys. You should not
modify these settings directly; use the setup program for your application to add, remove, or change
these settings. The following sections describe initialization and ISAM Format settings for the
Microsoft Exchange Data Source driver.

Microsoft Exchange Data Source Initialization Settings
The Jet\3.5\Engines\Exchange folder includes initialization settings for the Msexch35.dll driver, used
for external access to Microsoft Exchange folders. The only entry in this folder is.
win32=<pathname>\MSEXCH35.dll

The Microsoft Jet database engine uses this Exchange folder to indicate the location of Msexch35.dll.
The full pathname is determined at the time of installation. Values are of type String for Windows 95
and Windows NT 4.0, and of type REG_SZ for Windows NT 3.51.

Microsoft Exchange ISAM Formats
The Jet\3.5\ISAM Formats\Exchange 4.0 folder contains the following entries.

Entry name Windows NT
3.51 Type

Windows 95
and Windows
NT 4.0 Type

Value

Engine REG_SZ String Exchange
CanLink REG_BINARY Binary 01
OneTablePerFile REG_BINARY Binary 00
IsamType REG_DWORD DWORD 0
IndexDialog REG_BINARY Binary 00
CreateDBOnExport REG_BINARY Binary 00

Note When you change Windows Registry settings, you must exit and then restart the database
engine for the new settings to take effect.

IN

The IN keyword is used in these contexts:

In Operator

IN Clause

SQL Subqueries

TRANSFORM Statement

ON

The ON keyword is used in these contexts:

INNER JOIN Operation

LEFT JOIN, RIGHT JOIN Operations

ALL

The ALL keyword is used in these contexts:

ALL, DISTINCT, DISTINCTROW, TOP Predicates

SQL Subqueries

UNION Operation

ASC/DESC

The ASC and DESC keywords are used in these contexts:

CREATE INDEX Statement

ORDER BY Clause

BY

The BY keyword is used in these contexts:

GROUP BY Clause

ORDER BY Clause

CREATE

The CREATE keyword is used in these contexts:

CREATE INDEX Statement

CREATE TABLE Statement

DROP

The DROP keyword is used in these contexts:

ALTER TABLE Statement

DROP Statement

INDEX

The INDEX keyword is used in these contexts:

CREATE INDEX Statement

DROP Statement

INTO

The INTO keyword is used in these contexts:

INSERT INTO Statement

SELECT ... INTO Statement

JOIN

The JOIN keyword is used in these contexts:

INNER JOIN Operation

LEFT JOIN, RIGHT JOIN Operations

SELECT

The SELECT keyword is used in these contexts:

SELECT Statement

SELECT ... INTO Statement

TABLE

The TABLE keyword is used in these contexts:

ALTER TABLE Statement

CREATE INDEX Statement

CREATE TABLE Statement

DROP Statement

UNION Operation

WITH

The WITH keyword is used in these contexts:

CREATE INDEX Statement

WITH OWNERACCESS OPTION Declaration

