
Bago Game

This is a Windows 3.0 implementation of one of my favorite games, Big Boggle from Parker 
Brothers.    Pick a topic below if you need help:

Rules of the Game
Installing and running this program
Commands
Technical Discussion
What doesn't work in this version
Author's remarks and address



Rules of the Game

The object is to make as many words as possible by following a continuous path through 
adjacent letters in the rack.    (Diagonal counts as adjacent.)    The path need not be straight, 
but each letter in the path can only be used once.    Only words of 4 or more letters may be 
used.    If one can form several words by the addition of suffixes, all the words will score.    For
instance, if you find "RATE,"    "RATES," and "RATED" in the rack, you may include them all in 
your list.    Each round is usually 3 minutes long.
 

This rack contains BEER, BEERS, COIN, DARE, DARES, DATE, DATER, DATES, DEAR, DEER, 
DOER, DOES, DOSE, PIER, PIERS, RATE, RATED, RATES, RATS, READ, READS, REED, REEDS, 
REIN, RESET, RESETS, RISE, RISER, ROSE, SEAR, SEARED, SEAT, SEATS, SEED, SEEDS, SEER, 
SETS, SOON, STAR, STARS, STEER, STEERS, TARS, TEAR, TEARS, TEES, TERSE, and probably 
many more words.

At the end of the round, word duplications between players are crossed out and do not 
score.    The remaining words are scored as follows:

 Letters: 4        5        6        7        8+
Points: 1        2        3        5      11



Installing and Running this program

This program requires Microsoft Windows version 3.0 or later.

There are 3 files used for the game: BAGO.EXE, the main program; BAGO.DIC, a dictionary of 
words in ASCII format; and BAGO.HLP, the help file you are now reading.      Copy all 3 files to a
directory, then run BAGO.EXE.    You'll probably want to create a program item for BAGO, using
the program manager.

To start a round,    click on the hourglass window.

Next, just start typing any words you find (see the rules), following each by a return.    The 
words will appear on your list.

If you are using a mouse, you may click on the letter cubes directly.    If you accidentally click
the wrong letter, just click on it again, and it will be unselected.

 The enter button can be used to end your words.

At the end of the round, BAGO disqualifies duplicate and illegal words between your list and 
its own with the following codes:
                

(space) Computer also found this word
" You listed this word more than once.
< Your word is less than 4 letters.
? Your word does not appear in the rack.    Check again.
- This is not a word.

The remaining words are scored as described under Rules of the game.

If you win the game, BAGO will put up a congratulations window.    Click on the window (or 
type any key)    to make it go away.

Note: use the  button if you wish to end the round immediately.



Commands

Game Dictionary
New Game Load
End Round Save
Statistics Show
Clear Statistics Edit
Load Rack Optimize
Save Rack Cull Infrequent
Set Rack Reset Frequencies
Quit

Options Help
Difficulty Reference Card
Sound Index
Game Duration About...
Timed Game
Learn Words
Computer Plays
Rotatable Cubes



New Game

Click on the hourglass to start a new game.    Or select New Game under the Game menu 
popup.    Typing ^N will do the same thing.



End Round

Click on the stop sign to stop the current round and score it.    Use this if you want to stop 
before the timer runs out.    This is also the only way of ending a round if the Timed Game 
option is disabled.    The End Round selection under the Game menu popup does the same 
thing.    ^E will end the round, too.



Statistics

Displays the number of games played and a running score.    If you have played a game, a 
suggestion is given as to what level of difficulty would be challenging to you.    This 
suggestion will be pretty wild unless the difficulty is already set near your playing level, and 
you have played several games.



Clear Statistics

Clears the running score and number of games played.



Load Rack

Loads a Rack from a file.    The first 25 alphabetic characters in the file will be loaded into the
rack, starting with the top row, left to right.    Case is ignored.    For example, the following 
two files contain equivalent data:

File 1:
ABCDE
FGHIJ
KLMNO
PQRST
UVWXY

File 2:
Abcde-FGHI, jklmn. OPQRSTUVWXYZILOVENURIA

This command is a good way to input Boggle racks that appeared in real life games.    You 
can also input a file saved by the Save Rack command.

Note that this loads a rack for use on the next New Game command; you will not see the 
new rack until you start the next game.



Save Rack

Saves the rack being displayed into a file.    Your list of words, and the computer's list of 
words, if any, is also saved.    This file is suitable for input to Load Rack. 



Set Rack

Will prompt for a rack number.    The next time New Game is selected, that rack number will 
be used.    This is useful if you want to compare your results with a friend's, or replay a 
certain rack in the future.    Note: the rack number of a game, if any, is displayed on the title 
bar.



Quit

Quits the program.    Your options are saved in BAGO.INI, and will be in effect the next time 
you play.,



Difficulty

Sets the level of difficulty when competing against the computer.    The racks remain the 
same, but the computer can be set to play less aggressively.    Here are some sample 
settings for a dictionary size of 500, and game length of 3 minutes:

Smartness =      5 Beginners
Smartness =    30 Challenging for established players
Smartness = 100 Computer virtually invincible



Sound

If you find the end-of-round bells annoying, you can use this command to turn them off.



Game Duration

The length of a round an be set from 30 to 600 seconds.    Note that you can also use the 
Timed Game option to turn off the timer completely.



Timed Game

The default is to have a timed game, but you can turn off the timer, allowing yourself as 
much time as you want for each round.



Learn Words

If this mode is selected, the computer will learn new words from you as you play.

When you put a word on your list that is not in the dictionary, the computer will ask you 
whether the new word should be added to the dictionary.    BAGO will try to strip any suffixes 
that it thinks are on the word, and sometimes fails.    For instance, if your word was 'WATER,' 
BAGO might try to add a root word of 'WATE'.    Answer NO to when prompted if a bogus word
is created.

Note that BAGO does not automatically know what suffixes are proper for the word, so you 
will have to use the dictionary    edit command with the VIRGIN button to manually pick 
appropriate suffixes.    Also, remember that only the dictionary in memory is affected; you 
need to do a dictionary save to add the new words learned to disk.



Computer Plays

If this is disabled, you will play a solitaire game.    Otherwise, BAGO plays against you.



Rotatable Cubes

If this option is enabled, the cubes will appear just like they do    in a real game: upright, 
upside-down, and turned 90 degrees either way.    This is a good if you are training for the 
real game, as it strengthens your pattern recognition.



Load

Reloads the dictionary from the file BAGO.DIC.    The current dictionary in memory, if any, is 
replaced.



Save

Saves the dictionary in memory to the file BAGO.DIC.



Show

A leftover from debugging which will probably disappear in the future.    This command 
writes the entire dictionary into the computer play window, in alphabetical order.    To clear 
out the window, disable Computer Play, then enable it again.



Edit

This advanced command allows you to edit the dictionary.    This is fun, but most players will 
not need to do this.    The fields that appear in the dialog box are as follows:

Root word:
Enter the word you wish to work with.    If the word is not already in the dictionary, 
BAGO asks if you wish to add it.

OK
Use this to confirm your choice of root word.

Exit
This exits dictionary editing mode.

DELETE
Deletes the root word (and all of its suffixes) from the dictionary.    Good for getting rid
of accidentally entered bogus words.

Prev
Moves to the word directly before the currently displayed word, in alphabetical order.

Next
Moves to the next word, in alphabetical order.

Virgin
Moves to a word in the dictionary that has never been examined.    This is a quick way
to get to all the words that need your help with suffix assignment.

Frequency:
Displays the count of how often the word (and its forms) came up in actual play.    If a 
new value is typed, this is entered into the dictionary.

Which of the following are words?
BAGO knows some primitive syntactical rules for adding suffixes to a root word, but 
often fails, as English is a language of exceptions.    Check off only the boxes which 
are legitimate words.

Remember that any changes you make only affect the dictionary in memory; you must save 
the dictionary to disk to make the changes permanent.



Optimize

Bago maintains a count of how many times a word is used.    Obviously, a word such as 
"TIRE" will be found much more frequently than "WALLAROO".    Optimizing helps the 
program to look at commonly used    words first.
                
The words most commonly found are placed near the top of the dictionary's binary tree.    
This improves the Bago's speed at finding words when competing against a human player.
                
Words which have the same usage frequency are added to the tree in such a fashion that 
the tree will be approximately balanced.    This will minimize the search path for any given 
word, improving processing of a human player's words, and dictionary editing.    The 
balancing of the tree also makes it unlikely that the recursive processing routines will 
overflow the stack from deep levels of recursion.

In cases of a huge dictionary that has a lot of words with the same frequency, the optimize 
function might recurse very deeply and overflow the system stack.    This will manifest itself 
as the program hanging or going nuts.    An inelegant but effective workaround is to break 
the BAGO.DIC file into several pieces using any text editor, then optimize each of the pieces 
individually.    Finally the optimized pieces can be concatenated into one file, and that file 
optimized.



Cull Infrequent

Bago keeps a count of how often a dictionary word was found in actual play.    When the 
dictionary becomes too large, you can use the Cull command to eliminate infrequently 
occurring words.    Specify the minimum frequency required for words to keep.    For example,
to eliminate all words that did not appear in play 3 or more times, specify 3 as the minimum 
frequency.

Note that this command takes BAGO.DIC (on disk) as input, not the dictionary in memory.    
Because of this, you can Cull a dictionary (or several concatenated dictionaries) which is too 
large to fit in memory.    Results are written to BAGO.NEW, which you can copy back to 
BAGO.DIC when you are satisfied.



Reset Freqencies

Resets all the word count frequencies to zero.    Use this if you want to start over and have 
BAGO collect word frequencies from ground zero.    See the technical discussion for a 
description of word frequencies.    Remember to do a save dictionary to make the new 
frequencies permanent.



Reference Card

Displays a quick reference card showing the scoring values, and the word disqualification 
codes used by BAGO.    For most players, this is all that will ever be needed.



About...

Shows copyright notice and version number.



Index...

This menu pick brings up the help system which you are now using.



Technical Discussion

The Dictionary
The dictionary file, BAGO.DIC, is in ASCII format for your convenience.    Each line of the 
dictionary consists of a root word, its frequency, and some flags indicating valid suffixes.    
BAGO appends suffixes on the fly, so that the entry for "MATE" will encompass "MATES," 
"MATING," "MATED," and so forth.

You can manually create a dictionary with any text editor if you wish.    The format is fairly 
liberal.    Just make sure that there is only one word per line, and that words are no longer 
than 10 characters.    You do not need to include frequency and suffix information - BAGO will
assume default values.    In general, however, the dictionary edit command should be used 
from within BAGO.

Word frequencies keep track of which words are most common.    Each time you or the BAGO
finds a particular word in a rack, that word's frequency is incremented.    It soon becomes 
clear that some words such as "NOTE" will be much more common than words such as 
"WALLAROO".    The uncommon words can be culled out of the dictionary to free up space, 
without much penalty to the BAGO's playing ability.

When BAGO starts up, it loads the entire dictionary (or as much as will fit) into a data 
structure in memory.    Subsequent operations to the dictionary, such as adding new words, 
only affect the data structure in memory.    If you quit without saving the dictionary, any 
changes made during the game will be lost.

The dictionary, as shipped, contains several hundred words with acceptable suffixes already 
defined.    It was derived heuristically from the playing pattern of essentially only one person 
(H. Geo. Wrekshun).    Certainly there must be a better set of words.    If you find one, I'd be 
grateful if you sent it to me at my address.

Word Search Algorithm
BAGO uses a recursive algorithm to look at all possible words in the rack.    There are many 
possible words - on the order of 0.25 * 25! (factorial), so the search is aborted on paths that 
are clearly dead ends.    The algorithm is overkill; a 386 computer has time to exhaustively 
search a large (100,000) list of words during a typical game.    BAGO was written to use a 
very small dictionary (a few hundred words) and still play well.

BAGO is subject to the same time limitations as you are; if the timer runs out, BAGO will stop
searching for words.    I think you will find the computer to be a formidable opponent, 
especially if the game timer is set to a very short period of time.    I have never seen a 
normally played game where BAGO did not have enough time to exhaustively search its 
entire dictionary.    With a dictionary size of 800 words, the computer usually finds about 50 
words before I even find one.    However, a human has a huge vocabulary, and can still win 
by finding long, obscure words that BAGO does not have in its dictionary.



Things which do not work yet

The rack was designed for VGA appearance, and looks ugly on any monitor without square 
pixels.    Turning off the rotatable cubes option may help.

Pictorals are only displayed in 16 colors for generality.    They do not look very good on 
anything except color VGA.

A combination of mouse pick on cubes and keyboard input confuses BAGO.    Please use only 
one mode for any given word.    Experienced players tend to find that the keyboard is faster.

Optimizing a dictionary that is over about 500 words, and alphabetized, causes recursion 
500 levels deep, killing the program.    Split your large dictionaries into pieces which are 
small, optimize the small pieces separately, then concatenate the optimized pieces and run 
a final optimize.    If the dictionary is not alphabetized, this problem will generally not occur.



Author's remarks and address

I most heartily release BAGO (including the source code) as freeware; that is, you may copy 
it freely or even modify it, as long as you don't charge anyone for the game or its 
derivatives.    If you should make your own version, I request, but do not require, that you 
credit "H. G. Wrekshun" for the original program.    Please post BAGO on bulletin boards and 
give it to your friends; I'll get better feedback as more people play it.

To get the source,    send me a disk and self-addressed mailer with enough postage to get 
back to you.    My development environment is the SDK with QuickC 2.5 / C 5.1.    If any of 
you out there want to port BAGO to MacIntosh, X-Windows, or something else, I'd be very 
interested in your results.

While I think most of the bugs have been ironed out of this game, I make no guarantees that
this program will function as expected, or even reasonably.    Run at your own risk!

If you can generate a dictionary which plays the game better than the one I've included, I'd 
love to have a copy of it.

I'm also looking for suggestions on improving the game, or its documentation.

If you find a rack with a huge number of words, please save it into a file and send it to me.    
(A printed copy of the file will be cheaper to send than a floppy disk.)    The record at this 
time is about 125 words.    Send me mail; I love mail.    I'll be very grateful for your 
responses.

Best Regards: Hugh.

H.G. Wrekshun
430 Morse Ave
Sunnyvale, CA    94086-4331

also ryoung@pollux.hp.com

p.s. As much as I like this program, it's still basically playing with yourself.    The real Boggle 
game, played against    human competitors, is much more fun.    Try it sometime!



H. G. Wrekshun
430 Morse Ave
Sunnyvale CA    94086-4331
USA

also ryoung@pollux.hp.com



An undocumented option you can find if you are clever.



Virgin words in the dictionary are those which have never been manually examined, and 
thus have no suffix information.


