

Contact :

Brulhart Dominique
12, rue Lissignol
1201 Geneva
Switzerland

Phone : (41 22) 738 34 38

E-Mail : brulhart@cuilima.unige.ch

Intuition++ Tutorial

This is the first release of I++ I wrote in one week, so be indulgent.
The goal was to create classes for Windows and Screens that could be

more easy to create, don’t need initialisation and cleaning from the
user and provide a way of handling events and messages easily.

So I created 12 classes shortly described below. A list of all methods
are given in file ‘Ipp_Reference_Guide’.

The general way of using I++ is proach of XView programming, and may
seem different of normal Intuition, Exec and Graphics using. This is

one approach, but it’s be pleasant to program with.

In fact, if you know Intuition and C++, you know I++. Here are explained
only methods that are not standard in Intuition.

I

Intuition ++

Tutorial

Description of all classes:

1) The

CFont class, which only opens a font and keep a
pointer to it so it can be used by windows and screens.

2) The CRastPortHdl class, which only handles a RastPort
the user pass to its constructor or to a method which
turn handling on. So, a window or a screen which possess
a valid RastPort can handle it trough this class.
No initialisation, creation, etc.. of RastPort is made
by it.

3) The CWindow class, which manages a NewWindow and TagItem
and a Window pointer. An instance of CWindow remembers
all its parameters between close() and open().
This class control window opening, closing, sizing,
positioning, changing its flags, etc...

4) The GfxWindow class, which inherits class CWindow and
class CRastPortHdl. This is a complete graphic window
encapsulation.

5) The IMessage and IEvent classes, which only encapsulates
IntuiMessage and a defines what I think an event is.

II

6) The MsgWindow class, which is the heart of event
handling. It derives class CWindow for general window
control and implement the following not standard methods:

- linkIevent(class, code, qualifier, object, callback)

links an event to the window, so when it
receives a message corresponding to the event,
the desired callback is executed. For Gadget
pass GADGETUP/DOWN for class, NULL for code,
qualifier if you want, the address of the Gadget
for object and a pointer to the function you
to be executed when the Gadget is clicked for
callback.
For other types of message pass the desired
class, code, qualifier, object that you normally
test with Intuition.

The callback must be declared like that:

void mycallback(IMessage& message)
{

....
}

so you can watch to message which bring you
there.
See examples for further explanation.

- rmIevents()

removes all events linked to the window.

- getImsg(message)

standard GetMsg()

- waitImsg(message)

standard WaitMsg() + GetMsg()

- clearImsg()

clears UserPort message queue

III

- filterImsg(message)

tries to handle the passed message with the
list of events for the current window.
Return the message only if no events could
have been matched and callback executed.

- softcontrol(message)

takes control of program execution and handle
message flow by executing appropriate callback
This method returns only if a message could not
have been handled.

- hardcontrol()

takes control of program execution, execute the
appropriate callback for message it receives.
Warning : hardcontrol() never returns, unap-
prpriate messages are ignored.

7) The MGWindow class, which simply inherits GfxWindow
and MsgWindow. This is a complete window handling.

IV

8) The Waiter class, to which you can link as many window
you want. The Waiter waits for messages concerning one
of the windows you linked to it, and dispatch them to
the right one.
Non standard methods:

- linkwindow(window)

links a window to it.

- rmwindow(window);

removes a specified window from it.

- rmwindows();

removes all window linked to it.

- softcontrol(messagenothandled);
- hardcontrol();

take control of program execution like MsgWindow
does , but for multiple window application.

V

9) The CScreen class, which handles screen like CWindow does
for windows. You can link as many window you want to a
CScreen object so when a screen is closed, all its linked
windows are closed. When it’s reopened all windows that
was opened reopen.
Non standard methods (no comment):

- linkwindow(window)
- rmwindow(window)
- rmwindows()
- openallwindows()
- closeallwindows()

10) The GScreen class, which inherits CScreen and CRastPortHdl
is an encapsulation of a complete graphic screen.

11) The WScreen class, which inherits CScreen and Waiter. This
screen control totally the program execution, the windows
linked to it, ... everything.

12) The WGScreen class, which inherits WScreen and GScreen.
A complete graphic, event handling screen.

VI

