Routine

Routine

COLLABORATORS
TITLE :
Routine
ACTION NAME DATE SIGNATURE
WRITTEN BY March 3, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Routine iii

Contents

1 Routine 1
1.1 Routine Descriptions Guide L 1
1.2 distribution L e e e e |
1.3 recommend L. e e 1
1.4 techsupp o o o 2
1.5 TOUtINeS e e e 2
1.6 checkkey L e 3
1.7 doorio 4
1.8 getvalue e e e 5
1.9 randomo 6
1.10 checkdoor L 7
L.11 closestuff o . L e 7
112 getkey o o e 8
A3 @etStr . . o o e e 9
114 getusertime o o e e e e e e e e e e e 11
1.15 getworkdir L. e e 12
1.16 hotkey o e 13
LAT7 InpUt . . . o o e e e e e e 14
118 LINeinput L o o e e e 15
1.19 loadsystemdata L. e e e 16
L20 pl oo e e 17
1.21 setvalue o o e e e 18
1.22 showfile L e 18
L23 USertime e e e e e e e 19
1.24 xmodemdownload e 20
1.25 zmodemdownload L e e 21
1.26 tdhotkey e 22
L.27 Prompt. o o e e e e e e e e e 23
L1.28 hitreturn o o o e e e e e e e e e 24
1.29 commas e e e 24

Routine iv
1.30 debug L e e 26
131 10g . o o o 27
132 yn o e e 28
133 ampm e 29
1.34 finduserslot L e 30
1.35 TockedoutteXt o L e e e e e e 31
1.36 changes L e e e e 32

Routine 1/33

Chapter 1

Routine

1.1 Routine Descriptions Guide

Routine.DESC file for DOOR.LIB

Designed, compiled, and copyright 1993 by
Rick Rumer, aka The Technician

Distribution Notes
Recommendations

Library Functions

History of Changes to DOOR.LIB

Support and Assistance

1.2 distribution

I grant the right to use this code in any Tempest BBS application,

for whatever reason, to any individual willing to use it. The author
of Tempest BBS, Tim Hatzenbeler, may use any or all parts of this code
as he sees fit. I grant permission for this to be released to the

general public 1if he decides he wishes to.
If for some reason, Fred Fish decides that this code should be
released to the public, he is ALSO granted permission, even though

this Linktime-Library is Tempest BBS specific.

1.3 recommend

Due to the size of the documentation, it is HIGHLY recommended that
you print out the Routine.DESC file for off-line reference. The pages
have been designed to fit on a standard 60 line page, and should print

Routine 2/33

out fine on any printer. I have tried to make it one command per
page, but several commands didn’t fit, so you’ll find the EXAMPLE code
on the following page. I Do NOT recommend trying to print this

.GUIDE file.

Note that ©pl() and CloseStuff() have been ALTERED from their
original functions! They still perform the minimal duty they did, but
now are more powerful!

1.4 techsupp

If vyou want commands added, or you find a bug, PLEASE call:

< |< >= NiteFall II BBS!
I\ A\
/ X\ > > Featuring the BEST of the Public Domain!
_/ _/ / (Amiga, MACintosh, IBM/Clones)
VS
/ __/ / 2400 - 19.200 Baud USR DUAL-STD MODEM!
/ /\) (300-1200 Message Bases Only)
<) / (515) 277-1320 (Des Moines, IA)
/ AN (
/ \ <> \ SUPPORTING THE NEW MNP-5 MODEMS!
//N\/ /==\ _
/] \ | 654 Megs! 24 hrs, 7 days a week
NN TN [[
[[[Tempest BBS software support site!
[[|
[N\ [N A CALL NOW!!!! Access first call!
1.5 routines
AMPM
LockedOutText
CheckDoor
LOG
CheckKey
pl
CloseStuff
prompt

commas

Routine

3/33

1.6 checkkey

NAME

Random

DEBUG

SetValue
DOORIO
ShowFile
FindUserSlot
TDHOTKEY
getkey
UserTime
GetStr
XmodemDownload
GetUserTime

yn

GetValue
ZmodemDownload
GetWorkDir
HitReturn
hotkey

input
LineInput

LoadSystemData

int CheckKey ()

SYNOPSIS

#include <stdio.h>

ret

CheckKey ()

int ret; return code

USE

DOOR only

Routine 4/33

DESCRIPTION

Check to see if user hit a key while in a loop, and if they did,
set a flag. (Does NOT wait for input, only checks to see if a key was
pressed during some other operation, and then is queued up....)

Added (VERSION 1.0)
RETURNS

A return value of 0 indicates all went well, and no key was
pressed. A return of 1 indicates that there was indeed a character
pressed (Such as an abort key). This routine currently does NOT
return the actual key that was pressed.

EXAMPLE

#include <stdio.h>
int IO;
void main (void)

{

int x;
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/

{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
for (x=0;x<900; x++) /+ A simple loop counts 0->900 =/
{
I0=CheckKey () ; /* The actual checking *x/
1if (! I0) /+ 1if (I0!=0) do this, else go onx/

{

/+ User pressed a key, so Jjump somewhere, or print

something */
pl("You pressed a key!!! Aborting everything!\r\n");
pl("Counter was at : %d\r\n",x); /* Note NEW pl() usage! =/
CloseStuff (); /* We aborted it all */
}
} /* else continue with loop x/
pl("You didn’t press any key, so I went on and on...\r\n");

CloseStuff();
}

1.7 doorio
NAME USE : DOOR only
int DOORIO () ;

SYNOPSIS

Not callable by users - STRICTLY for internal use!

Routine

5/33

DESCRIPTION
This routine serves two purposes. First it checks for a lost
carrier, or anything else that would signify that the door should be
abruptly closed. NO actual closing is done here, but the EXIT_FLAG
variable is set appropriately (to a "1").
Second, it processes the incoming/outgoing "messages" between

Tempest BBS and your DOOR program. This is the main link between
Tempest and your DOOR. Without this routine, you cannot use any of
the commands in here. This section will be automagically added to
every door program.
Added (VERSION 1.0)
RETURNS
If this returns a 0, a "LOSS CARRIER" or similar event has occured,
and the EXIT_FLAG is set for the door to process. Usually this is
done with
#define DROP 1f (EXIT_FLAG) CloseStuff();
SEE ALSO

CheckDoor ()

1.8 getvalue

NAME USE : DOOR only
int GetValue (int x);
SYNOPSIS

#include <stdio.h>

status = GetValue (x)
int status; return value
int x; function to retrieve

0 = ANSI status
DESCRIPTION

This function retrieves current values set in the BBS itself. the
only current option is the User’s current choice of ANSI, on or off.

Added (VERSION 1.0)
RETURNS

A 0 indicates the user is NOT using ANSI, and any color or ANSI
positioning codes sent will be stripped out by the BBS.

EXAMPLE

Routine 6/33

#include <stdio.h>
void main (void)
{
int AnsiColor;
char ANSI[20];

if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <«

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
AnsiColor=GetValue (0);
if (AnsiColor) /* If AnsiColor==0, it’s off */

{
strcpy (ANSI, "OFF") ;

else

{
strcpy (ANSI, "ON"); /+ Send’em all the ANSI you want =/

}
pl("You have ANSI : %s\r\n",ANSI);
CloseStuff();
}

SEE ALSO

SetValue ()

1.9 random

NAME USE : DOOR only
int Random(int x);

SYNOPSIS
#include <stdio.h>

RndNum = Random (range) ;

int RndNum; /* A random number between 0 and x */
int range; /* The highest possible number you want x/
DESCRIPTION

This function 1s ©passed an integer value greater than 0, and the
routine will return and integer value in the range of 0 to range.
This 1s a _seed generated random number, based on the VBLANK signal,
for the best possible random numbers.

Added (VERSION 1.0)

Routine 7/33

RETURNS

A random integer value between 0 and range.
EXAMPLE
#include <stdio.h>

void main (void)

{

int x=10; /* Select range: 0-10 */

int RndNum;

if (!DoorStart (argv[1l]) || argc <2) /» REQUIRED! Door locks without it! <
*/

{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
RndNum = Random (x) ;
pl ("Random number was : %d\r\n",RndNum) ;

CloseStuff();
}

1.10 checkdoor

NAME USE : DOOR only
void CheckDoor (void);

SYNOPSIS
Not callable by users - STRICTLY for internal use!

DESCRIPTION

Checks for validity of a door, as a part of DoorStart();
Added (VERSION 1.0)
RETURNS

None. (Alters pointers)

1.11 closestuff

NAME USE : DOOR only
void CloseStuff (void);

SYNOPSIS

Routine 8/33

#include <stdio.h>
CloseStuff();
DESCRIPTION
Closes down the door. All open msgs that have not been replied to

are taken care of, then the port deleted. After all housekeeping is
finished, the door will exit with exit (0);

NOTE: This routine did NOT use to exit, but would let the door
run. As of DOOR.LIB V1.0, this has been CHANGED, so that it WILL
exit! This potentially avoids having lost tasks running.

Added (VERSION 1.0)
RETURNS

None.
EXAMPLE

#include <stdio.h>
void main (void)
{
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

/* You would usually do something here.... */

CloseStuff (); /* Close the door =*/

}

1.12 getkey
NAME USE : DOOR only
void getkey(char stringl[]);

SYNOPSIS

#include <stdio.h>

getkey (char stringl[]);

char string[255]; / * The key pressed */
DESCRIPTION
This function 1is identical to hotkey (), with one exception. This
routine does NOT filter out the cursor keys. This would be best used
in a Full Screen Editor type function. (Which is what it was added

for)

Routine

9/33
Added (VERSION 1.0)
RETURNS
The key(s) pressed by the user. An input style function.

EXAMPLE

#include <stdio.h>

void main (void)

{char SomeChar[5], EndResult[255];
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <

*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <«

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
pl("Please enter something.... Anything!\r\n");
for (x=0;x<=100; x++) /+ Scan up to 100 times =/

{
getkey (SomeChar) ;

if (SomeChar[0]==13) break; /* Aborted by pressing RETURN */
if (SomeChar([0]=="Y') break; /% Aborted by pressing "Y" */
if (SomeChar[0]=='N’) break; /+ Aborted by pressing "N" */
strcat (EndResult, SomeChar) ;

}

if (EndResult [0]="\0" || EndResult[0]=13) /* NULL or RETURN =/
{
pl ("You typed NOTHING!\r\n");

else

{

pl("You typed : %s\r\n",EndResult);

}
CloseStuff (); /* Close the door =*/
}

SEE ALSO

hotkey (), TDHOTKEY (), input (), LineInput (), prompt ()

1.13 getstr

NAME USE : DOOR only
void GetStr (char string[],int opt);

SYNOPSTIS
#include <stdio.h>

GetStr (string, What)

Routine 10/33
char string[255]; variable to hold the retrieved data
int What; What data to retrieve from the BBS
DESCRIPTION
Retrieves wvarious data from the BBS structures located in RAM,
depending on the value of the What wvariable.
Table of various values What can be
0 - The path the BBS was loaded with.
1 - The path to the accounts data file.
2 — The path to the catalog files are kept.
3 - The path to the temporary directory.
4 - The path to the Text directory.
5 - The path to the Describe directory.
6 — The path to the Voting Dir.
7 - The path where the optional files are kept.
8 — The path where the Modules are kept.
9 - The path where the new user answers are kept.
10 - The path where sysop uploads are kept.
11 - The path where the aborted uploads are kept. (Resume dir)
12 - The path where uploads are kept when they’re
being uploaded. (work dir)
13 - The path where doors may be kept.
14 - The path where your log files are kept at.
15 - Get a full date & time string
16 - Get the current date
17 - Get the current time
18 - Get the system name of the bbs
19 - The Baud of the online caller.
Added (VERSION 1.0)
RETURNS
None. Variable Pointer string is altered.
EXAMPLE
#include <stdio.h>
void main (void)
{
int What=0;
char string[255];
if (!DoorStart (argv[l]) || argc <2) /% REQUIRED! Door locks without it! <
*/

{

}
pl

printf ("Sorry.

n");

exit (0

("OK. .

)i

In the door now....\r\n");
GetStr (string,What); /* Get the BBS path, usually Tempest: or BBS:
pl ("The BBS path is : %s\r\n",string);

I am a DOOR program for Tempest BBS,

*/

NOT an executable!\ <«

Routine 11/33

What+=1; /* What = What + 1, ie now it’s 1 */
GetStr (string,what);

pl ("Your accounts.data file is at : %s\r\n",string);
What+=1; /* What = What + 1, ie now it’s 2 */
GetStr (string, what);

pl ("Your catalog files are in : %s\r\n",string);

CloseStuff () ; /* Close the door =*/

1.14 getusertime

NAME USE : DOOR only
void GetUserTime (char stringl]);

SYNOPSIS

#include <stdio.h>

void GetUserTime (char stringl[]);
char string[255]; /* number of minutes left in "char" format »*/
DESCRIPTION

This function will enable you to display the minutes that a user
has remaining online in a string format. To convert this to a number
for mathematical purposes, simply reference the example below.

Added (VERSION 1.0)

RETURNS

The minutes remaining online for the user.
EXAMPLE

#include <stdio.h>
void main (void)
{
char string[255];
int HowMuch;

if (!DoorStart (argv[1l]) || argc <2) /% REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ ¢

n");
exit (0);
}
Pl ("OK.. In the door now....\r\n");
GetUserTime (string); /* Get the time left online *x/

pl ("Warning! Only %s Minutes left online!\r\n",string);
HowMuch=atoi (string) ;
if (HowMuch < 15)

{

Routine

12/33

if (HowMuch < 10)
{
if (HowMuch < 5)

{
if (HowMuch <= 1)

pl("EXIT IMMEDIATELY! YOU ARE OUT OF TIME!!\r\n"); goto Continue;

}
else pl ("FIVE MINUTE WARNING!\r\n"); goto Continue;

}
else pl("TEN MINUTE WARNING!\r\n"); goto Continue;

}
else Pl ("FIFTEEN MINUTE WARNING!\r\n"); goto Continue;
pl("You’ve got plenty of time left! Have fun!\r\n");
Continue:
/+ Your other stuff here.... then check again, etc... */
CloseStuff();
}

SEE ALSO

UserTime ()

1.15 getworkdir

NAME USE : DOOR only
void GetWorkDir (char stringl]);
SYNOPSIS

#include <stdio.h>

volid GetWorkDir (char stringl]);
char string[255]; /* Path to #7?.Data files */
DESCRIPTION
This command tells you where the #?7.data files can be found. If
you use the normal setup, this will be "Tempest:Setup/". This command

is here Dbecause it is can be somewhere else if the SYSOP chose to do
that. The files located in that directory are currently

BAUD.data Keys.data
Bulletins.data MESSAGES.data
Color.data Modem.data
CONFIG.data PRESETS.data
Custom.data Protocol.data
Doors.data Questions.data
ExtraPaths.data Reserved.data
FILES.data RunTime.data

Internal.data

Added (VERSION 1.0)

Routine 13/33

RETURNS
None. Alters pointer to show complete path to the #?.Data files.
EXAMPLE

#include <stdio.h>
void main (void)

{

char string[255];

if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

GetWorkDir (string) ;

pl ("The path to your #?.Data files is : %s\r\n",string);
CloseStuff () ; /* Close the door =*/

}

1.16 hotkey

NAME USE : DOOR only
void hotkey (char stringl[]);
SYNOPSIS

#include <stdio.h>

void hotkey (char stringl[]);
char string[5]; /+ Key Pressed by user =/
DESCRIPTION

This waits until 1 key has been pressed. It does not count control
characters, nor cursor keys.

Added (VERSION 1.0)
RETURNS
None. Alters pointer to contain the key pressed. (RETURN=13 or ’\n’)
EXAMPLE
#include <stdio.h>

void main (void)

{

Routine 14 /33

char string[255];

if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
hotkey (string); /+ Wait for an inputted character */
pl("The key you pressed was : %$s\r\n",string);
CloseStuff () ; /* Close the door =*/

}
SEE ALSO

TDHOTKEY (), input (), LineInput (), getkey()

1.17 input

NAME USE : DOOR only
void input (char string[],int len);

SYNOPSIS
#include <stdio.h>

void input (char string[],int len);

int len; /* Number of allowed characters */
char string[255]; /+ The string entered */
DESCRIPTION

This command accepts input from the user until either the user hits
return, or they enter the maximum number of characters allowed. 1if
they reach the maximum, it stops accepting input, and waits for a
RETURN press.

Added (VERSION 1.0)
RETURNS
None. Alters pointer to show user’s input.
EXAMPLE
#include <stdio.h>
void main (void)

{
char string[255];

Routine 15/33

if (!DoorStart (argv[1l]) || argc <2) /x REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

pl("You have 15 characters to describe yourself in.\r\n");
input (string, 15);

pl("You typed : $s\r\n",string);

CloseStuff (); /* Close the door =*/

1.18 lineinput

NAME USE : DOOR only
void LinelInput (char stringl[],char string2[],int 1len);
SYNOPSIS
#include <stdio.h>

void LineInput (char stringl[],char string2[],int len);

int len; /* Number of allowed characters */
char stringl[255]; /+ The original string entered */
char string2[255]; /* The new string entered */
DESCRIPTION
This command 1is identical to the input () command, except that the

user 1s allowed to edit a default, or perhaps a previous string. The
stringl will be printed first, then the cursor is placed at the end of
the string for input/editing. The completed and edited string is in

string2.
Added (VERSION 1.0)
RETURNS
None. Alters pointer to show user’s input.

EXAMPLE

#include <stdio.h>

void main (void)

{char stringl[255],string2[255];

if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/

Routine

16 /33

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

pl("You have 15 characters to describe yourself in.\r\n");
input (stringl, 15);
pl("You typed : %s\r\n",stringl);

pl("I’11 let you edit it in case you made a mistake.\r\n");

input (stringl, string2,15);
pl ("NOW the string is %s\r\n",string2);
CloseStuff (); /* Close the door =/

1.19 loadsystemdata

NAME USE : DOOR only
void LoadSystemData (void) ;

SYNOPSIS
#include <stdio.h>
void LoadSystemData (void) ;

DESCRIPTION

This is identical to the SYSOP hitting F7 when the bbs is idle.

It

will load up all the #7?.data files into the BBS structures, Using any

new settings that may have been altered since the BBS was run.
Added (VERSION 1.0)
RETURNS
None.
EXAMPLE

#include <stdio.h>
#include <DOS.h>

void main(int argc, char xargvl[]);
{
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/

{

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");
DeleteFile ("BBS:Setup/Message.DATA") ;
/+ redefine message areas here */

Routine 17 /33

LoadSystemData () ;

pl ("Message base changed, as you requested!\r\n");
CloseStuff (); /* Close the door =*/

}

120 pl

NAME USE : DOOR only
void pl(char stringl[]);
SYNOPSIS

#include <stdio.h>

void pl (char xformat, argl, arg2...arg8);
char xformat; /+ The formatted string to send */
DESCRIPTION

This command has been rewritten to allow new paramters. Don’t let

the command line fool vyou, it’s not hard to use! It’s also 100%
compatible with any door written for Tempest. Just now has more
options. If you are familiar with the printf() function, this
now operates the SAME. You may use UP TO 8 arguments, anything after
that will Dbe ignored. (The same limits apply to printf() and

sprintf () as well, so there shouldn’t be any problems with this.)
Added (VERSION 1.0)
RETURNS
None.
EXAMPLE

#include <stdio.h>
void main (int argc, char xargv([])
{
char string[255];
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

/* Example of NO formatting */
pl("You have 15 characters to describe yourself in.\r\n");
input (string, 15);

/+ Example of formatting with 1 argument «/
pl("You said : %s\r\n",string);
CloseStuff (); /* Close the door =*/

Routine 18/33

1.21 setvalue

NAME USE : DOOR only
void SetValue (int x,int vy);

SYNOPSIS
#include <stdio.h>

vold SetValue (int x,int vy);

int x; /* Value */
int vy; /* Command */
DESCRIPTION

This allows you to alter the BBS priority, or turn ANSI on or off.
You may want to turn ANSI on for cursor positioning codes, or some
other reason.

Added (VERSION 1.0)
EXAMPLE

#include <stdio.h>
void main (int argc, char xargv([])
{
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
SetValue (1,-5); /* Set BBS priority to -5 */
pl("BBS Priority changed to -5.\r\n");
SetvValue (0,1); /* Set ANSI to ON */
pl("?[36mA?[34mN? [33mS?[32mI ?[35mis ?[31lmnow ?[37mON?[Om\r\n");
SetvValue (0,0); /* Set ANSI to OFF */
Pl ("ANSI is now OFF\r\n");
CloseStuff(); /* Close the door , and return the BBS
priority back to normal, automatically =/
}
SEE ALSO

GetValue ()

1.22 showfile

Routine 19/33

NAME USE : DOOR only

void ShowFile(char stringl[]);

SYNOPSIS
#include <stdio.h>

void ShowFile(char stringl[]);

char string[255]; /+* Path & Filename to view x/

DESCRIPTION

The file will be shown (if found) and ANSI will be displayed, and
any "~" commands within that file will be executed as normal. This
DOES include other doors, etc. HOWEVER, running a DOOR _FROM_ a DOOR
WILL crash the system! The message ports are designed for only one
door to be open at a time per Tempest Node!

Added (VERSION 1.0)

EXAMPLE

#include <stdio.h>
void main (int argc, char xargv([])
{
char Filename[255];
if (!DoorStart (argv[1l]) || argc <2)
x/

/* REQUIRED! Door locks without it! <«

{
printf ("Sorry.
n");

exit (0);

}
strcpy (Filename, "BBS:text/logoff.txt");
ShowFile (Filename) ; /* Display the logoff.txt file to user =/
CloseStuff();

}

I am a DOOR program for Tempest BBS, NOT an executable!\ <

1.23 usertime

NAME USE : DOOR only

void UserTime (int Xx);
SYNOPSIS
#include <stdio.h>

void UserTime (int x);

int x; /* the amount of time to add/subtract «/

Routine 20/33

DESCRIPTION

Either adds or subtracts online time for the user. If the number
(x) 1s negative, it will subtract time, if positive, it will add time.

Added (VERSION 1.0)
EXAMPLE
#include <stdio.h>
void main (int argc, char xargv([])

{

int Time;

Time=15;
if (!DoorStart (argv[l]) || argc <2) /% REQUIRED! Door locks without it! <
*/

{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ ¢

n");
exit (0);
}
UserTime (Time) ; /* Adds 15 minutes to their current time */
Time = Time * -1; /+ Convert to a negative number */
UserTime (Time) ; /* Subtracts 15 minutes from their time */

CloseStuff();

SEE ALSO

GetUserTime ()

1.24 xmodemdownload

NAME USE : DOOR only
void XmodemDownload (char stringl[]);

SYNOPSIS

#include <stdio.h>

void XmodemDownload (char stringl[]);
char string[255]; /x Filename to d/1 */
DESCRIPTION

This allows wusers to d/1 something your door created, or made
available to them. Obviously this function uses X-Modem protocol, and

it can only do one file at a time. This is here for compatibility
only, and 1if at ALL possible, vyour door should be using Zmodem
instead! This protocol is the SLOWEST available! If called from

LOCAL/VIEW mode, this command will fail, and quietly abort, without
error or complications.

Routine 21/33

Added (VERSION 1.0)
EXAMPLE

#include <stdio.h>
void main (int argc, char *argv([])
{ /+ d/1 my Startup-sequence */
if (!DoorStart (argv[l]) || argc <2) /x REQUIRED! Door locks without it! <
*/

{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}

XmodemDownload ("S:Startup—Sequence") ;
CloseStuff();
}

SEE ALSO

zmodemDownload ()

1.25 zmodemdownload
NAME USE : DOOR only
void ZmodemDownload (char stringl[]);

SYNOPSIS

#include <stdio.h>

voild ZmodemDownload (char stringl[]);
char string[255]; /* Filename to d/1 */
DESCRIPTION

This allows wusers to d/1 something your door created, or made
available to them. This protocol is the FASTEST currently available!
If called from LOCAL/VIEW mode, this command will fail, and quietly
abort, without error or complications. This protocol can ALSO handle
batch sending, should the need arise.

Added (VERSION 1.0)
EXAMPLE

#include <stdio.h>
void main (int argc, char *argv([])
{ /+ d/1 my Startup-sequence */
if (!DoorStart (argv[l]) || argc <2) /x REQUIRED! Door locks without it! <

*/

Routine 22 /33

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\
n");
exit (0);

}
ZmodemDownload ("S:Startup—-Sequence") ; /+ Example of multiple files =/

ZmodemDownload ("S:User—-Startup");
ZmodemDownload ("S:Shell—-Startup");
CloseStuff();

SEE ALSO

XmodemDownload

1.26 tdhotkey

NAME USE : DOOR only
int TDHOTKEY (char str[], char des|[])

SYNOPSIS
#include <stdio.h>

stat = TDHOTKEY (char str[], char des[])

int stat; /* Dummy variable, always 0 */

char str[255]; /+ string to print */

char des[255]; /+ string to record answer in x/

DESCRIPTION

This 1s identical to Tim’s hotkey () routine, with ONE exception.
In addition to getting a character from the keyboard, it also outputs
a string first. That way you don’t have to do a pl(string) and then a
hotkey(string) kinda thing. Makes it more compact. This routine was

NOT part of the initial package, and was added by me (The Technician).

Added (VERSION 1.0)
EXAMPLE

#include <stdio.h>
void main (int argc, char xargv([])
{
char string[255];
/+ Wait for an inputted character */
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\
n");
exit (0);
}
TDHOTKEY ("What’s it gonna be? [Y/n] ",string);
pl ("The key you pressed was : $s\r\n",string);

Routine 23/33

CloseStuff (); /* Close the door =/
}

SEE ALSO

getkey (), hotkey (), input (), LineInput ()

1.27 prompt

USE : DOOR only

NAME
int prompt (char str[], char des[], int len)
SYNOPSIS
#include <stdio.h>
int prompt (char str[], char des[], int len)
char str[255]; /* string to print */
char des[255]; /* string to get */
int len; /* Maximum length allowed */
DESCRIPTION
This 1s the same as input, but displays a string first. You are

NOT allowed to edit the string, as it id for information purposes

only!

Added (VERSION 1.0)

EXAMPLE

#include <stdio.h>
void main (int argc, char *argv([])
{
char print[255];
char input[255];
int len=0;

if (!DoorStart (argv[1l]) || argc <2) /x REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <
n");
exit (0);

}

strcpy (print, "Input something, please");
len=35;

prompt (print, input, len);

pl ("you entered, %s\r\n", input);
CloseStuff();

SEE ALSO

Routine

24 /33

getkey (), input (), LineInput (), HOTKEY, hotkey ()

1.28 hitreturn

NAME USE : DOOR only
volid HitReturn (int CR_LF);
SYNOPSIS
#include <stdio.h>
void HitReturn (int CR_LF);
int CR_LF; /* Number of \r\n to send */
DESCRIPTION

This 1s a quick way to display some information (Prior to this

call) and have the BBS wait for them to read it. The
carriage-returns/linefeeds ("\r\n") will be sent BEFORE the "Press
[RETURN]" prompt, so you can correctly space out your data. This

routine does not return any values.
Added (VERSION 1.1)
EXAMPLE
#include <stdio.h>

void main (int argc, char *argv([])

{

if (!DoorStart (argv[l]) || argc <2) /* REQUIRED! Door locks without it!

*/
{

<_>

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\

n");
exit (0);
}
pl("Ya can’t do that, stupid user!");
HitReturn(2);
CloseStuff();
}

OUTPUT

Ya Can’t do that, stupid user!

Press [RETURN]

1.29 commas

Routine

25/33
NAME USE : DOOR or CLI
char *commas (long number, char buffer([])
SYNOPSIS
#include <stdio.h>
char xcommas (long number, char buffer([])
long number; /% Number to insert commas in =/
char buffer([]; /+ buffer pointer */
DESCRIPTION
This small <routine ([C] Jabba Development) takes a long number,
and inserts "," (Comma) characters in every third place, so to make
the number much more readable. Dbuffer[] is the return string pointer,
and will contain, after the call, the long number with commas properly
inserted. Please note! 1) The char buff[] used below is defined in
the door code itself, and MUST be declared in YOUR program as "extern
char buff[255]" 1 2) You <can ONLY have ONE call to the commas
routine PER pl statement!
This is illegal:
pl ("UL %$s DL : %s\r\n", commas (ulbytes,buff), commas (dlbytes,buff));
The CORRECT way to do the above:
pl("UL : $%s ", commas (ulbytes,buff)); /* (NOTICE _NO_ \r\n!) =x/
pl("DL : %$s\r\n", commas (dlbytes,buff));
Added (VERSION 1.2)
EXAMPLE
#include <stdio.h>
void main (int argc, char *argv([])
{
long number=12345678L;
extern char buff[255];
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <

*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <
n");
exit (0);
}
pl ("Before: number=%1d \r\n",number);
pl("After : number=%s \r\n",commas (number,buff));
CloseStuff();
}

Routine 26/33

1.30 debug

NAME USE : DOOR only
void DEBUG (fmt,al,a2,a3,a4,ab5,a6,a’,a8)

SYNOPSIS
#include <stdio.h>

void DEBUG (fmt,al,a2,a3,ad,ab,a6,a’,a8)

char xfmt; /+ Formatting parameters */
DESCRIPTION
This 1s similar to the pl() function, except thet instead of

writing to the screen, this writes to the BBS:LOGS/DE_BUG.LOG. It
automatically reads YOUR path, so it is NOT hardcoded to the above

path. (Consider it an example...) This is useful if you’re having a
bug in a door that is hard to track down... You can still let the
users use the door, and print out variable wvalues, etc, to the
DE_BUG.LOG, for later in-depth examination. In this manner you can
test doors as you write them. The format is identical to theat of
pl() and printf(). The same 1limit applies though, no more than 8

variables per DEBUG() call!
Added (VERSION 1.2)
EXAMPLE

#include <stdio.h>

void main (int argc, char xargvl[]); /+ Prorotype of main () =*/

extern int EXIT_FLAG; /* For below */

#define DROP if (EXIT_FLAG) CloseStuff(); /* For the DROP routine =/

void main (int argc, char *argv([])
{
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

DEBUG("This is a test of the emergency broadcast ");

DEBUG ("System. \r\n If this had been a real emergency,");
DEBUG ("Then I would have crashed!\r\n");

pl ("Wrote to the file, and am exiting now!\r\n\r\n");
CloseStuff () ; // Now contains the exit routine.....

SEE ALSO

pl(), LOG()

Routine 27 /33

1.31 log
NAME USE : DOOR only
void LOG (fmt,al,a2,a3,ad4,ab,a6,a’,al)
SYNOPSIS
#include <stdio.h>
void LOG (fmt,al,a2,a3,ad,ab,a6,a’,al)
char xfmt; /+ Formatting parameters */
DESCRIPTION
This 1s similar to the pl() function, except thet instead of
writing to the screen, this writes to the BBS:LOGS/.LOG. It
automatically reads YOUR path, so it is NOT hardcoded to the above
path. (Consider it an example...) This is IDENTICAL to the DEBUG()
routine, except for the file it writes to. The format is identical to

theat of pl() and printf(). The same limit applies though, no more
than 8 variables per LOG() call!

Added (VERSION 1.2)
EXAMPLE

#include <stdio.h>

void main (int argc, char =xargvl[]); /+ Prorotype of main() =/

extern int EXIT_FLAG; /+ For below =*/

#define DROP if (EXIT_FLAG) CloseStuff(); /* For the DROP routine x/

void main (int argc, char xargv([])
{
if (!DoorStart (argv[l]) || argc <2) /% REQUIRED! Door locks without it! <
*/
{
printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

LOG("I decided to write this info into\r\n");
LOG ("The SYSOP’s log, just to record it permanently, and to\r\n");

LOG ("Catch his/her full attention...... \r\n");
pl ("Wrote to the file, and am exiting now!\r\n\r\n");
CloseStuff(); // Now contains the exit routine.....
}

SEE ALSO

pl(), DEBUG()

Routine 28/33
1.32 yn
NAME USE : DOOR only
void yn(fmt,al,a2,a3,ad4,ab,a6,a’,ald)
SYNOPSIS
#include <stdio.h>
void yn(fmt,al,a2,a3,ad4,ab,a6,a’,ald)
char xfmt; /+ Formatting parameters */
DESCRIPTION
This 1s wvariation on a few routines. It will print out a string
first (Optional, as it checks for a null string), then requires a "Y"
or "N" input. A Cariage return is NOT acceptable. It uses the hotkey
command, so hitting return is not neccessary. It accepts both upper

and lowercase.
Added (VERSION 1.3)
EXAMPLE
#include <stdio.h>

void main (int argc, char xargv([]); /% Prototype of main() =/
extern int EXIT_FLAG; /* For below =*/

#define DROP if (EXIT_FLAG) CloseStuff(); /* For the DROP routine =/

void main(int argc, char xargv([])
{
int uhg=16;
long erp=123456789;
char stupid[255];
strcpy (stupid, "Stupid text for testing!");

if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it!

*/
{

<_>

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ <

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

if (yn ("uhg=%d, erp=%1d, and stupid is %s\r\nDo you like cottage cheese ? <

[Y/N] ",uhg,erp, stupid))
pl("Yeah? I like it too!\r\n"); /+ They answered YES, YN()
1%/
else

returned a ¢«

pl("I don’t blame you! It looks funny!\r\n"); /* Answered NO! YN()

returned a 0 */
HitReturn(2);
pl ("exiting now!\r\n\r\n");

H

Routine 29/33
CloseStuff(); // Now contains the exit routine.....
}
1.33 ampm
NAME USE DOOR or CLT
void AMPM (char time[255], char ampm[5])
SYNOPSIS
#include <stdio.h>
void AMPM (char time[255], char ampm[5])
char time[255]; /* The time to convert (23:13) «/
char ampm[5]; /* string that contains " am" or " pm" x/
DESCRIPTION
This takes a time string, and converts it from military tim to
normal time. For instructions on how to get this time from a LONG
value, see the example below. Both time AND ampm will be modified, so
if vyou need to use the original data later in your program, then you
must save it off before calling the routine. An example of this is
also seen in the below example.
Added (VERSION 1.4)
EXAMPLE
#include <stdio.h>
void main(int argc, char xargv([]); /* Prototype of main() =/
extern int EXIT_FLAG; /* For below =*/
#define DROP if (EXIT_FLAG) CloseStuff(); /* For the DROP routine =x/
void main (int argc, char xargv([])
{
char string[255],
backup[255],
ampm[5];
/+* This is the format for the CURRENT time on YOUR Amiga */
GetStr (string,17); /* Get AMIGA time =*/
/+ This would be the format for getting the time a user was last on! x/
// strcpy (string, ctime (&§Last [x].Time_Last));
// strmid(string,time, 12,5);
if (!DoorStart (argv[l]) || argc <2) /x REQUIRED! Door locks without it! <

*/
{
printf ("Sorry.

n");
exit (0);
}
pl("OK.. In the door now.

I am a DOOR program for Tempest BBS,

..ooA\r\n");

NOT an executable!\ <

Routine

30/33

strcpy (backup, string); /x Make a copy of the data for later use =/

AMPM (string, ampm) ;
pl ("before: %s, after: %s%s\r\n",backup, string, ampm) ;

HitReturn (2);

pl ("exiting now!\r\n\r\n");
CloseStuff(); // Now contains the exit routine.....

1.34 finduserslot
NAME USE : DOOR only
int FindUserSlot (char Handle[])
SYNOPSIS
#include <stdio.h>

int FindUserSlot (char Handle[])

char Handle[255]; /* Users handle to search for =/
DESCRIPTION
This function serves two purposes. The first thing it does is

search the Accounts.INX file for a specific users name, which is
passed to it through the Handle[] wvariable. The second, is to verify
that a user exists. A return code of -1 means either the Accounts.INX
file couldn’t Dbe found, or that it couldn’t be opened. A returncode
of 0 indicates the handle/user doesn’t exist. Any other returncode
ABOVE 0O indicates that the user DOES exist, and the number returned is
their slot number. If you wish to use the number returned for a
Seek () command, then you must subtract 1 from the returned value.

Added (VERSION 1.5)
EXAMPLE
#include <stdio.h>

void main (int argc, char xargv[]); /+ Prototype of main () */
extern int EXIT_FLAG; /* For below */

#define DROP 1if (EXIT_FLAG) CloseStuff(); /* For the DROP routine =*/

void main (int argc, char xargv([])
{
char name[255];
int hmm=0;

if (!DoorStart (argv[l]) || argc <2) /+ REQUIRED! Door locks without it!

*/
{

(_)

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\ ¢

n");
exit (0);
}

Routine

31/33
pl("OK.. In the door now....\r\n");
strcpy (name, "The Technician"); /* Let’s look for ME x/
hmm=FindUserSlot (name) ;
if (hmm==-1) pl("Your Accounts.INX file is missing or corrupt!\r\n");
if (hmm==0) pl("I’ve never called your BBS!\r\n");
if (hmm>0) pl("I am User # %d on your BBS!\r\n",hmm);
HitReturn (2);
pl ("exiting now!\r\n\r\n");
CloseStuff (); // Now contains the exit routine.....
}
1.35 lockedouttext
NAME USE : DOOR only
LockedOutText (char Text[], int Which)
SYNOPSIS
#include <stdio.h>
LockedOutText (char Text[], int Which)
char Text[255]; /* Name/Password to check */
int Which; /+ Do name or password check */
DESCRIPTION
This function serves two purposes. To pick which option to use,
you must define the Which variable before the call. If you want to
search the NAMES.OPT file, pass a "1" to the Which variable. If you
wish to search the PASSWORDS.OPT file, pass it a "2". 1In either case,
the return values are as follows:
-1 = Error opening the file
0 = No match found
1 = Found a match
Added (VERSION 1.5)
EXAMPLE
#include <stdio.h>
void main (int argc, char xargv[]); /% Prototype of main() =*/
extern int EXIT_FLAG; /* For below =*/
#define DROP if (EXIT_FLAG) CloseStuff(); /* For the DROP routine =x/
void main (int argc, char xargv([])
{
char text[255];
int hmm=0;
if (!DoorStart (argv[1l]) || argc <2) /+ REQUIRED! Door locks without it! <

*/

Routine

32/33

printf ("Sorry. I am a DOOR program for Tempest BBS, NOT an executable!\

n");
exit (0);
}
pl("OK.. In the door now....\r\n");

strcpy (text, "The Technician");

hmm=LockedOutText (text,1);

if (hmm==-1) pl("Your NAMES.OPT file is missing or corrupt!\r\n");
if (hmm==0) pl("I'm not locked out of your BBS!\r\n");

if (hmm==1) pl("Uh oh! I am Locked out! Aaaack!\r\n");

strcpy (text, "PASSWORD") ;

hmm=LockedOutText (text, 2);

if (hmm==-1) pl("Your PASSWORDS.OPT file is missing or corrupt!\r\n");
if (hmm==0) pl("the password PASSWORD isn’t locked out\r\n");

if (hmm==1) pl ("PASSWORD cannot be used on this BBS!\r\n");

HitReturn (2);

pl ("exiting now!\r\n\r\n");

CloseStuff (); // Now contains the exit routine.....

1.36 changes

This section is organized from the most recent changes to the oldest.

New

DOOR.LIB V1.5 ADDITIONS:

to this version are new USE parameters. Some of the routines

used in here do not make actual calls to DOOR functions, so they could

be

used 1in CLI programs/utilities as well. Since only I have the

sourcecode, and you wouldn’t know for sure, I have made up a new field
in this document, called USE. 1In this area I will define if it can be
used from the CLI, as a DOOR, or both.

Added the LockedOutText () and FindUserSlot () routines. These are

pretty self descriptive, so I won’t go into detail There.
LockedOutText () deserves a slight explanation. It can search the
NAMES.OPT _OR_ the PASSWORDS.OPT file. These are VERY powerful

commands, and we can thank "The Skeleton" for these quick & dirty

hacks! They are fast, and useful to almost everyone, myself included!

I also edited EVERY commandin this document, making sure the
example code was perfect. I discovered upon reading through it, that
most of the «code was incomplete. As of now, ALL code given as

examples 1is 100% compatible and compilable as a stand alone DOOR
program. (Given that you’re using SAS/C 5.1b or better!) If you find
an example that isn’t so, please let me know so it can be corrected...

DOOR.LIB V1.4 ADDITIONS:

Added The Skeleton’s AMPM() military time converter routine. This
version was NOT released.

DOOR.LIB V1.3 ADDITIONS:

Added the YN () routine. This version was NOT released !

Routine 33/33

DOOR.LIB V1.2 ADDITIONS:

Added routine Commas (). This really WAS included in 1.0, but T
forgot to document it’s use. SORRY!

Added routine DEBUG() for use with debugging door code you write!

Added routine LOG() for writing to the Sysop’s LOG file. You can
place warnings, error results, etc here, so the sysop is sure to see
it.

DOOR.LIB V1.1 ADDITIONS:

Added routine "HitReturn(CR_LF)" for printing CR_LF number of
carriage returns/linefeeds, then following it with a "Press RETURN"
style prompt. I use this in 99% of my personal code, so it was added

here for the convenience of others as well.

	Routine
	Routine Descriptions Guide
	distribution
	recommend
	techsupp
	routines
	checkkey
	doorio
	getvalue
	random
	checkdoor
	closestuff
	getkey
	getstr
	getusertime
	getworkdir
	hotkey
	input
	lineinput
	loadsystemdata
	pl
	setvalue
	showfile
	usertime
	xmodemdownload
	zmodemdownload
	tdhotkey
	prompt
	hitreturn
	commas
	debug
	log
	yn
	ampm
	finduserslot
	lockedouttext
	changes

