
Table of Contents:

DOC1: GM4's New Sync
DOC2: GM4 now Multithreaded !!
DOC3: GM4's DDE Server
DOC4: GM4 Data Structure
DOC5: Sorting Browse Columns
DOC6: GM4's Licensing
DOC7: SQL Rehosting 101
DOC8: The SQL Query Tab
DOC9: GM4's dBASE Parser
DOC10: GM4's DataStream
DOC11: GM4's Word Links

DOC1: GM4's New Sync

This article describes the new GoldMine 4.0 low-level synchronization method and
its sync transaction log. The GoldMine 4.0 synchronization is very simple because
all changes of all fields from all tables are tracked in the exact same way.

There is a sync transaction log table (a TLog table) for all tables in the GoldMine
directory named GMTLog, and a TLog table named ContTLog for all tables in a contact
set directory. Records in GoldMine 4.0 are uniquely identified by a RecID (what
used to be TransNo). When new records are created, they are assigned a RecID which
is guaranteed to be unique, even across multiple GoldMine systems. The RecID field
is always the last field in a table, and the index on the RecID field is always the
last tag of the table's indexes. Entries in the TLog tables are uniquely identified
by the RecID and FieldName, thereby tracking updates of each field in each record
of each table in GoldMine.

The transaction log record (the TLog record) consists of four fields; The LogStamp
field contains a compressed value of the current date and time, down to the
millisecond. The Action field contains one of following three values; "N" -- a new
record has been created, "D" -- the record has been deleted, and "U" -- a field has
been updated. The FRecID field contains the record's RecID, prefixed by the TableID
+ 33. The last Field, FieldName contains the updated field's name, or "zzNew" for
new records which have never been synced, or "zsNew" for new records which have
been synced at least once. FieldName contains "zzzDel" for deleted record.

When a field is changed, GoldMine first searches for the record's transaction log
record (the TLog record) with a "zzNew" entry in FieldName. If this record is
found, it means that the record has never been synced since it was created, so
there is no reason to track the changes of each field individually. When the record
is first synced, the "zzNew" TLog entry is changed to "zsNew" to indicate that the
record has been synced. From that point on, the record's field changes are tracked
individually by creating a separate TLog record for each changed field in the
record. Since most changes of new records are made shortly after the record has
been created, this mechanism greatly minimizes the number of TLog entries per
record.

DOC2: GM4 now Multithreaded !!

GoldMine 4.0 uses Win32 threads to execute background processes, allowing for much
better performance and responsiveness to the user. All GoldMine background
processes are centrally controlled from the new Process Monitor window.

GoldMine 3.2 and prior versions multitask using "cooperative" multitasking methods.
This means that while "background" processes like Automated Processes and Global
Replace are running in GoldMine 3.2, the two processes are actually running in the
same thread, cooperatively yielding to each other and sharing the same database
cursors. 90% of all Windows applications work this way.

The "cooperative" multitasking method presents two performance problems; first, the
two processes have to save their cursors state prior to yielding control, and
restoring the cursors after receiving control back. Second, since the User
Interface (the UI) and all "background" processes execute in the same primary
thread, the Win32 operating system cannot identify the UI code and make it more
responsive to the user.

GoldMine 4.0 now runs its processes in their own threads, using their own private
cursors. This offers three major performance gains. When the user interacts with
GoldMine while background processes are running, the Win32 operating system will
immediately reduce the priority of the background processes and schedule high-
priority CPU time to the UI thread to make it very responsive to the user. As the
user pauses their clicking and typing, Win32 schedules more CPU time for the
threads running the background processes. Windows does a great job at this.

Since each GoldMine 4.0 threaded background process uses its own cursors, there is
no longer a need to save and restore the state of the cursors, which allows the
processes to execute faster. In addition, when running GoldMine 4.0 on a
multiprocessor Windows NT 4.0 system, the NT operating system balances the GoldMine
4.0 multithreaded processes very effectively to utilize the computer's
multiprocessors to their fullest.

All GoldMine 4.0 background processes can be monitored from the new "Process
Monitor" window, a.k.a. ProcMon. Background processes include Automated Processes,
Global Replace, Synchronization, Mail Merge, Reports, Auto Get/Send Email, Building
Groups, Group Scheduling, Global Delete, Importing and Exporting data.

GoldMine 4.0 can run dozens of background processes simultaneously. You can even
run multiple instances of the same process, like multiple Automated Processes
scans, Global Replace on multiple filtered sets and building multiple groups, all
at the same time. The GoldSync and GoldMine synchronization status is also recorded
in ProcMon.

One of the more interesting multiprocessing tests involves direct Internet IP to IP
synchronization where both sides have two processes running, a listener and a
caller. When both callers call together, both listeners on each machine will answer
and perform two independent and simultaneous syncs. During the sync, each of the 4
tasks (2 callers and 2 listeners) perform 2 simultaneous actions of creating the
transfer set for the caller while downloading the set sent by the caller, all and
all 8 simultaneous threads, 4 on each system. Starting additional processes like an
Automate Processes scan and a group Mail Merge during the sync should hardly effect
the performance of active synchronization processes.

And one final performance note; Creating a sync transfer set of 1500 contact1
records from REX (my NT4 server) takes about 40 seconds to create, 80 seconds to
upload the 200K file over the Internet, and another 60 seconds to be retrieved by
the remote GoldMine. This 3 minute, 1500 record Internet sync is about 3 times
faster than GoldMine 3.2 syncs. Normal daily syncs of 300 records should take about
a minute. Incidentally, the new Internet IP to IP direct synchronization method is
the absolute fastest way to synchronize GoldMine data (and it has been the most
robust sync method throughout alpha testing). Finally, any standard GoldMine sync
process can be started to periodically sync with a "home" GoldSync system. This
allows remote users to set up automatic background synchronization throughout the
day.

DOC3: GM4's DDE Server

This documents describes the new DDE features available in GoldMine 4.0's DDE
server.

The GoldMine 4.0 DDE server is syntactically compatible with GoldMine 3.2 and prior
versions. There are some differences however, which may require existing GoldMine
DDE code to be updated. Since SQL databases are strict about their field names,
there are a few field names which have changed between GM32 and GM4, most notably
is the USER field which is now named USERID. The index offsets into SETORDER have
also been changed to accommodate the new indexes in GoldMine 4.0. A listing of
field name changes, index offsets and tables IDs is posted in a separate document.
Converting GM32 DDE code to GM4 should be relatively simple.

DDE WORKAREAS:
===============
Internally, the GoldMine 4.0 DDE server behaves slightly differently than GoldMine
3.2 and prior versions. The DDE low-level commands (OPEN / APPEND / REPLACE /
CLOSE, etc...) now open up their own independent thread-safe database cursors. This
speeds up the DDE access since the table state no longer has to be saved and
restored during each low-level DDE call (as it does in GM32). This feature also
allows for opening the same table multiple times, allowing multiple independent
navigational cursors on the same table. In addition, all GoldMine tables are now
supported by the low-level DDE commands, not just the primary tables as with GM32.
All updates to all tables will synchronize.

Opening private DDE cursors has one drawback compared to GM32. If an OPENed file is
not CLOSEed, the allocated cursor is not released, causing a significant resource
leak. This can also cause "Table is Busy" errors when the table needs to be opened
exclusively (during re-indexing, for example). On SQL tables, the unclosed cursors
will keep the connection needlessly active, which is very undesirable on SQL
servers.

Since not all developers write bug-free code, when a developer does not CLOSE an
OPENed cursor, GoldMine will try to automatically close all opened DDE cursors when
the last DDE conversation is terminated. However, if the client application which
opened the cursor crashes without closing the cursor or terminating the
conversation, the cursor will be left open. When GoldMine terminates, it will again
scan all DDE allocated cursors and close any of which are left open. During beta,
you will see a "DEBUG: Shutdown: 1 DB_Table still active!!!!!" message when GM4
terminates and cursors are remained open.

When opening multiple cursors of the SAME table, a conflict can arise when the two
workareas of the same table try to evaluate a dBASE expression (using macros or

Expr). Since macro expressions are evaluated against the current state of Contact1
in the Record window, or whichever table the expression is aliasing, the
evaluations are performed against the cursors of the Record window and not the
workarea cursor. You can, however, evaluate an expression against the state of the
workarea's cursor by passing a valid expression into the READ command.

The FILTER & RANGE Commands:
==========================
GoldMine 4.0 includes two powerful new low-level DDE command, FILTER and RANGE. The
FILTER command takes the workarea as param 1 and an xBase filter expression as
param2. The FILTER command works just like the dBASE/Clipper filter commands do, in
the way in which it filters in only the records evaluating to a TRUE condition.
Different filters can be applied for each workarea. To cancel the filter, call
FILTER with an empty string.

The FILTER command can be very useful on smaller tables, or on table ranges, but it
could be very slow on large tables. One way to manually achieve ranged filters is
by SEEKing to the first record and then applying the filter. For example, the
following code fragment loops through all history records of the current contact
having the word "SALE" in the reference field:

OPEN(conthist)
SEEK(wa, sTheAccNo, index)
FILTER(wa, " 'SALE' $ conthist->ref' ")
DO WHILE(READ(wa, accountno) = sTheAccNo)
 // do your thing...
CLOSE(wa)

In addition to the FILTER command, the RANGE command limits a cursor obtained by
OPEN to a range of records ordered by an index. Using a ranged cursor, a simple go
TOP, SKIP while not EOF loop can fetch all the ranged records. Another advantage of
the RANGE command is that it issues a single optimized SQL query to fetch the
records, resulting in the fastest data retrieval from SQL databases. The RANGE
command uses the following syntax:

RANGE(workarea, min, max, indextag)

The following two examples show how to limit the contact1 cursor to all contacts in
the 90xxx zip code, and how to limit a ContSupp cursor to the profile records of a
given contact:

RANGE(waC1, "90000", "90999", ContZip)
RANGE(waCS, sC1AccNo+'P', sC1AccNo+'P', ContSupp)

To cancel a range, call RANGE with empty strings for min, max, and tag, like

RANGE(wa, "", "", "")

A new range can be issued without canceling the old range since GoldMine will
cancel the current range before applying a new range. You can apply a FILTER to a
range. You should NOT use the MOVE SEEK function with a range. Following is an
example that uses FILTER and RANGE to fetch all tech support calls from the
contact's history. This code fragment demonstrates the fastest possible way to
retrieve the data, both from dBASE and SQL databases:

OPEN(ContHist)
RANGE(wa, sAccNo, sAccNo, ContHist)
FILTER(wa, "left(conthist->actvcode,2) = 'TS' ")
MOVE(wa TOP)

DO WHILE NOT EOF
 // do your thing....
 MOVE(wa, SKIP)
CLOSE(wa)

DDE MONITOR:
============
Have you ever wanted to see how your DDE commands are received by GoldMine, and
what GoldMine's results are? Well... you can now monitor all GoldMine's DDE
conversations, their input commands and output results, directly on the new Process
Monitor. In addition, ProcMon's log section lists your DDE commands in the same
order in which they are sent by your program.

To turn DDE Monitor on, send in a [DDEMonitor] command. To turn it off, send a
[DDEMonitor(0)] command. For example, using the DDEReq32 utility, send the
following commands:

 [DDEMontor]
 &Contact1
 [FormCreateFile("100123","d:\test",5)]

The FormCreateFile command will build a merge file, showing two processes in the
Process Monitor, one for the DDE Monitor and one showing the mail merge status
(please substitute the 100123 FormNo with a FormNo value from your FormsFld file).

UPDATING SYNC LOGS VIA DDE
=========================
GoldMine 4.0 allows developers to open and manipulate the GoldMine tables directly,
using a wide variety of development tools. When GoldMine data is updated
externally, the external application can send an UpdateSyncLog DDE command to
update GoldMine's sync logs to reflect the changes made externally. The
UpdateSyncLog command uses the following syntax:

 UpdateSyncLog(Table, RecID, FieldName, Action)

The 'Table' parameter is the Table name (like "Contact1") or the TableID. The
'RecID' parameter is the RecID of the updated record. It is imperative that the
correct RecID is passed, and that it is exactly 15 characters long. The 'FieldName'
parameter is the field name which has been changed. This parameter is only relevant
when the Action parameter is 'U'. It is ignored when Action is 'N' or 'D'. The
'Action' parameter should be 'N' when a new record has been appended, 'D' when a
record has been deleted, or 'U' when a field in a record has been updated.

The possible return values from UpdateSyncLog are as follows:

 0 - Error
 1 - New TLog entry created
 2 - New TLog entry updated
 4 - Field TLog entry created
 8 - Field TLog entry updated
 16 - Deleted record TLog entry created

When updating multiple fields of the same record, UpdateSyncLog must be called for
each modified field. However, if the first call returns 1 or 2, it is not necessary
to call UpdateSyncLog for the rest of the modified fields. The following example
updates the sync TLog to indicate that the Key1 field of the record identified by a
"^%J9$0%&X;$Z)XD" RECID has been changed:

 [UpdateSyncLog("contact1", "^%J9$0%&X;$Z)XD", "Key1", "U")]

The GoldMine 4.0 synchronization internals, RecIDs and TLogs will be covered in
detail in documents to follow.

DOC4: GM4 Data Structure

This document details the GoldMine 4.0 tables and indexes, and the field name
changes between GoldMine 3.x/2.x and GoldMine 4.0.

The field definitions are now stored in a table named DATADICT.DBF. This used to be
SPDBFS.DBF in GoldMine 3.x/2.x. You should not modify the DATADICT file.

The following table lists all GoldMine 4.0 database tables.
The TID code represents the table ID in the TableID field of the TLogs.

 ID TID Table Name
=== === ========= ===============
 0 ! LookUp LookUp
 1 " Cal Calendar
 2 # Forms Forms
 3 $ GMTLog Primary TLogs
 4 % ContTLog Contact Files TLogs
 5 & Contact1 Contact1
 6 ' Contact2 Contact2
 7 (ContSupp Contact Supp
 8) ContHist Contact History
 9 * ContGrps Contact Groups
 10 + Filters Filters
 11 , DataDict Data Dictionary
 12 - SpFiles Database Directory
 13 . Users Users
 14 / PerPhone Rolodex
 15 0 ContUDef User Defined Fields
 16 1 Resource Resource
 17 2 ImpExp Import/Export/Purge
 18 3 InfoMine InfoCenter
 19 4 ScriptsW Scripts
 20 5 Report32 Reports
 21 6 Fields Fields
 22 7 Tracks Tracks
 23 8 FormsFld Forms Field
 24 9 UserLog User Logs
 25 : Reports Reports (Crystals)
 26 ; MailBox MailBox
 27 < ErrorLog Error Logs
 28 = SyncLog Sync Logs
 29 > SyncProc Sync Processes
 30 ? SyncSite Sync Sites
 31 @ SyncTask Sync Tasks
 32 A SyncLock Sync Lock File
 33 B OpMgr Opportunity Manager
 34 C LeadDbfs Leads Directory
 35 D LeadFile Leads Analysis File

The following table lists the indexes used by GoldMine 4.0. The TAG ID is the
offset number into the DDE SETORDER and RANGE commands.

Tag
ID Table Index Index Key
=== ======= ========== ======================
 0 LookUp LOOKUP fieldName+entry
 1 LookUp LKURECID recId
 2 Cal CAL rectype+userId+onDate+onTime
 3 Cal CALCONT accountNo+rectype+onDate+onTime
 4 Cal CALDATE userId+onDate+onTime
 5 Cal CALPROB rectype+userId
 6 Cal CALALARM alarmFlag+userId+alarmDate+alarmTime
 7 Cal CALRLINK lopRecId
 8 Cal CALRECID recId
 9 Forms FORMS recType+userId
 10 Forms FRMRECID recId
 11 GMTLog GTLOGDAT tableId+syncStamp
 12 GMTLog GTLOGTRN tableId+fRecId+fieldName
 13 ContTLog CTLOGDAT tableId+syncStamp
 14 ContTLog CTLOGTRN tableId+fRecId+fieldName
 15 Contact1 CONTACC accountNo
 16 Contact1 CONTCOMP company+accountNo
 17 Contact1 CONTNAME contact+accountNo
 18 Contact1 CONTZIP zip+accountNo
 19 Contact1 CONTCITY city+accountNo
 20 Contact1 CONTkey1 key1+accountNo
 21 Contact1 CONTkey2 key2+accountNo
 22 Contact1 CONTkey3 key3+accountNo
 23 Contact1 CONTkey4 key4+accountNo
 24 Contact1 CONTkey5 key5+accountNo
 25 Contact1 CONTLAST lastName+accountNo
 26 Contact1 CONTPHON phone1+accountNo
 27 Contact1 CN1RECID recId
 28 Contact2 CONTACT2 accountNo
 29 Contact2 CN2RECID recId
 30 ContSupp CONTSUPP accountNo+recType+contact
 31 ContSupp CONTSPFD recType+contact+contSupRef
 32 ContSupp CNSRECID recId
 33 ContHist CONTHIST accountNo+onDate
 34 ContHist CONTHUSR userId+sRecType+onDate
 35 ContHist CNHRLINK lopRecId
 36 ContHist CNHRECID recId
 37 ContGrps GROUPNO userId+code
 38 ContGrps GROUPACC accountNo+userId
 39 ContGrps GRPRECID recId
 40 Filters FILTERS recType+userId+name
 41 Filters FLTRECID recId
 42 DataDict DATADICT dbfName+field_name
 43 SpFiles SPFILES DirPath
 44 SpFiles SFLCODE DirCode
 45 SpFiles SFLRECID recId
 46 Users USERS userName
 47 Users USERGRUP userGroup
 48 Users USRRECID recId
 49 PerPhone PERPHONE recType+userId+contact
 50 PerPhone PPHRECID recId
 51 ContUDef CONTUDEF dbfName+field_name

 52 ContUDef CNURECID recId
 53 Resource RESOURCE name
 54 Resource RSCRECID recId
 55 ImpExp IMPEXP recType+number+entryDesc
 56 ImpExp IMPRECID recId
 57 InfoMine INFOMINE recType+tsection+topic
 58 InfoMine INFOSORT sortKey
 59 InfoMine INFOTRAN recType+recId
 60 InfoMine INFRECID recId
 61 ScriptsW SCRIPTSW recType+questNo+ansNo
 62 ScriptsW SCRPcode recType+ansNo
 63 ScriptsW SRTRECID recId
 64 Report32 REPORT32 recType+userId+repDesc
 65 Report32 REPRECID recId
 66 Fields FIELDS recType+viewId+fldPos+col+row
 67 Fields FLDRECID recId
 68 Tracks TRACKS recType+trackNo+eventNo
 69 Tracks TRKCODE recType+eventNo
 70 Tracks TRKRECID recId
 71 FormsFld FORMSFLD formNo+recType+Label
 72 FormsFld FFMRECID recId
 73 UserLog USERLOG userId+login
 74 UserLog ULGRECID recId
 75 Reports REPORTS recType+userId+repDesc
 76 Reports R16RECID recId
 77 MailBox MBOXLINK LinkRecId
 78 MailBox MBOXUSER userId+folder
 79 MailBox MBXRECID recId
 80 ErrorLog ERRORLOG onDate
 81 ErrorLog ERRRECID recId
 82 SyncLog SLCATG category+ldate+ltime
 83 SyncLog SLSITE category+siteId+ldate+ltime
 84 SyncLog SLMACHID category+machineId+processId+ldate+ltime
 85 SyncLog SLRECID recId
 86 SyncProc SPMACHID machineId+processId
 87 SyncProc SPRECID recId
 88 SyncSite SSID siteId+siteName
 89 SyncSite SSSECT sSection+siteId
 90 SyncSite SSQ recType+nextSync
 91 SyncSite SSRECID recId
 92 SyncTask STID siteId
 93 SyncTask STWRING wanRing
 94 SyncTask STRECID recId
 95 OpMgr OPMGR recType+userId+stage
 96 OpMgr OPID opId+recType
 97 OpMgr OPRECID recId
 98 LeadDbfs LDDESC fileDesc
 99 LeadDbfs LDRECID recId
 100 LeadFile LFSOURCE recType+source
 101 LeadFile LFSORT recType+sort
 102 LeadFile LFRECID recId

The following table lists all field name changes between GoldMine 3.x/2.x and
GoldMine 4.0:

NEW FIELD OLD FIELD
========= =========
// all tables

"UserID" "User"
"LastTime" "LastTime".to24hr
"CreateAt" "CreateAt".to24hr
"RecID" "TransNo"

// lookup
"FieldName" "FieldName"+"Status"
"Entry" "Desc"

// cal
"OnDate" "Date"
"OnTime" "Time"

// conthist
"SRecType" left("RecType",1)
"OnTime" if(RecType[0] == 'A', Secs2Time(RecType[1]*10*60), LastTime.to24hr)

// contgrps
"RecID" left("AccountNo" 8)

// filters
"RecType" "F"
"QExpr" "FilterExp"

// tracks
"TriggerTyp" "Trigger"

// infomine
"TSection" "Section"

// fields
"FldPos" "Position"

// forms
"FormDesc" "Desc"

// impexp
"EntryDesc" "Desc"
"FilterExpr" "Filter"

// report32
"RepDesc" "Desc"

// Resources
"ResDesc" "Desc"

// users
"UserGroup" "Group"
"USecurity" security fields

// mailbox
Cal and ContHist Internet email records
are moved to the MailBox table

DOC5: Sorting Browse Columns

This documents describe the new browse sorting feature available in GoldMine 4.0.

GoldMine 4.0 allows users to sort the records in browse windows by clicking on
their column titles. When the header of the sort columns is depressed, that column
is sorted by Ascending order. When the column header appears raised, the column is
sorted by Descending order. The painting here will be cleared up in a future build.

Sorting columns works only on those columns which show a single field from the
database. Columns where GoldMine has to derive the displayed result cannot be
sorted since there's no (practical) way to convert all that logic to SQL. For
example, in the Groups browse window, the members column shows a value which is
compressed into the group header record, and thus cannot be used for issuing an SQL
query.

When GoldMine 4.0 sorts by a column, it sends an SQL query for the ordered the
range of records. The column sorting feature was originally available only for SQL
databases, since issuing SQL queries against dBASE files is relatively slow. SQL
on large dBASE files is particularly slow since BDE reads the entire table locally,
and then performs the SQL on it. In addition, the BDE SQL simulation onto dBASE is
very inefficient. It just can't rival the optimizers of true SQL database.

In contrast, sorting browse columns on large SQL databases is unbelievably fast, as
the optimized ranged SQL query is performed very quickly by the server. On a
500,000 record history record, sorting the 2500 history records of Ron Harris by
USER takes about 2 seconds on MS SQL Server. Please do not try this on a dBASE file
as it will take a very long time, even if you have enough disk space locally.
Sorting columns of dBASE files should only be performed on small tables (less than
1MB).

Sorting columns (both on dBASE and SQL) actually creates a dead SQL query, which is
a snapshot of how the data looked like when the query was generated (i.e., when the
user clicked on the sort column header). Under dBASE, BDE actually creates a
temporary dBASE file in the TEMP directory to store the rows of the dead query. If
you sort your Pending tab, and someone schedules an activity for you, that new
activity will *not* be visible to you until you issue a new query (i.e., sort on
another column), or exit and re-enter that contact's Pending tab to restore a live
query. Live queries which are used throughout GM4 fetch data in real-time.

Issuing SQL queries from the new 'SQL Query' tab on the Query window against large
dBASE files is bound by the same limitations as sorting columns. Simply put, any
SQL query against large dBASE files will perform very slowly, even when the SQL
query is optimized. Complex JOIN queries on dBASE will perform even slower. Here
too, issuing optimized SQL queries against SQL databases will perform very well. A
separate document will cover the new SQL Query tab in detail.

And a final note about SQL performance. Don't get your hopes up about stellar
performance on SQL databases. Sorting columns is amongst the few areas where GM4
performs faster on SQL databases than on dBASE. Most of GM4's operations are faster
on dBASE files, especially when the total GoldMine data occupies less than 1GB of
disk space.

DOC6: GM4's Licensing

The GoldMine 4.0 product family offers the utmost in licensing flexibility for both
small businesses and large enterprises. GoldMine 4.0 is sold to an organization
with one serial number license, the Enterprise License. The organization can then
create sub-licenses for each of its remote offices, and for each remote user,

changing the licensing configurations as required over time. The single
distributed Enterprise License serves as the authentication mechanism for easy and
secure synchronization across the entire organization.

Imagine a company, ABC Corp. with its headquarters in New York, with a networked
office of 30 users. ABC also has offices in Boston and Seattle with 10 users each.
All 50 people in the organization have their own notebooks and will sync from time
to time.

ABC would purchase a 50 user GoldMine 4.0 license and a 50 user GoldSync 4.0
license. These licenses would be installed once, on the headquarters' network, and
serve as the seed Enterprise License. Using the License Manager in GoldMine 4.0,
ABC will create 2 Site Licenses of 10 users each, one for Seattle and one for
Boston. These sub-licenses will be installed on the networks in those cities, and
serve as Site Licenses of the original Enterprise License. From the Enterprise
License, or any of the Site Licenses, ABC can then create sub-licenses for each of
the remote users' notebooks, the Undocked License. All these licenses throughout
the organization share the SAME GoldMine serial number.

This flexible Enterprise Licensing hierarchy not only simplify GoldMine's
licensing, but it also provides the Enterprise and Site Licenses with the ability
to control the security and content of each of their remote Undocked users!

A GoldMine 4.0 license looks like this: C-0050-12345678. The first character
denotes the license or sub-license type. The first set of numbers denote the
license count, 50 users in this case. The last set of numbers denote the serial
number itself, 12345678. The Site license for the Boston office would be S-0010-
12345678-BOSTON. The Undocked sub-license for user JON would be U-0001-12345678-
JON. The GoldMine 4.0 License Manager shows all the remote sites controlled by the
current license. The License Manager of the GoldMine system running in ABC's
headquarters in New York will show entries similar to:

C - 0050 - 12345678
S - 0010 - 12345678 - BOSTON
S - 0010 - 12345678 - SEATLE
U - 0001 - 12345678 - JON
U - 0001 - 12345678 - JANE

The License Manager of the Site License in Boston will show:

S - 0010 - 12345678 - BOSTON
U - 0001 - 12345678 - MARK
U - 0001 - 12345678 - MARY

The first character of the license denotes the license type. Following are the
Enterprise License types available from GoldMine Software. An Enterprise license
must only be installed on the organization's primary network.

E-xxxx GoldMine dBASE/SQL/GoldSync, xxxx users and xxxx GoldSync sites.
C-xxxx GoldMine dBASE/SQL, xxxx users.
D-xxxx GoldMine dBASE, xxxx users.
G-xxxx GoldSync, xxxx sites.

Following are sub-license types, created by the Enterprise License for remote sites
and remote users of the organization:

U-0001 GoldMine, Undocked user.
S-xxxx GoldMine, xxxx users.
Y-xxxx GoldSync, xxxx sites.

The database license type (SQL and/or dBASE) of all sub-licenses is inherited from
the Enterprise License. If the Enterprise License is for dBASE only, all sub-
licenses will also be dBASE only. The Enterprise License Authentication Seed is
also inherited by all sub-licenses to assure that all the organization's sub-
licenses are authenticated before synchronization.

Creating a new sub-license is easy. From the License Manager, select either 'New
Site' or 'Undocked User'. These option will produces the sub-licenses to use when
installing GoldMine on the remote site networks and undocked notebooks. When
installing GoldMine on each of the remote computers, enter the appropriate sub-
license number produced for each remote site by the Enterprise License. It is
important to create and install the sub-licenses correctly, as they control the
security of the organization-wide synchronization.

Increasing ("bumping") the Enterprise License is also easy. From the License
Manager, select 'New License" and enter a new GoldMine or GoldSync serial number.
That's it. Site Licenses and Undocked Licenses cannot be bumped, only the
Enterprise License can. Converting a dBASE license to an SQL license requires a
GoldMine c/s SQL license with the same license count (or smaller) as the current
dBASE license. The current "D" type license will be converted to a "C" license with
the original s/n and the c/s license count. Remote sites wishing to take advantage
of the new c/s license will have to re-enter their site licensing information.
GoldMine Software offers a discount for SQL licenses used to convert existing dBASE
licenses.

The license file, LICENSE.DBF, must exist only in the GoldMine "root" directory of
each GoldMine installation. If the LICENSE.DBF file is deleted, GoldMine will
prompt the user for a license number when they next log in. It is important NOT to
delete and re-create the master Enterprise License file, since a new Enterprise
License file creates a new authentication seed which will be incompatible with all
the existing sub-licenses currently using the authentication seed from the original
Enterprise License file.

During the GoldMine 4.0 installation, GoldMine looks for a special self-extracting
EXE to run before completing the installation. This self-extracting EXE can be used
to install specific pre-prepared data for each remote site, allowing an
organization to completely customize the installation for each remote site, while
still using the standard GoldMine installation.

GoldMine 4.0 truly sets a new standard in enterprise licensing, synchronization and
security. With the new synchronization capabilities of GoldSync 4.0, the Territory
Realignment feature to shuffle territories of remotes sales people, and the new
flexible security system, distributed organizations gain significant control and
flexibility over how their corporate data is replicated and protected.

DOC7: SQL Rehosting 101

This document covers the basic procedures required to re-host GoldMine 4.0 data on
SQL client/server databases.

First, a brief overview of GoldMine's directory structures. GoldMine stores its
database files in two or more directories. The contact files, with their associated
history and profiles reside in their own directory, so that GoldMine can use
multiple contact files. The 'GoldMine database' files contain data which is not

contact specific, like the InfoCenter, Forms, Filters, etc., are stored in the
GMFiles directory, and identified by the GoldDir= entry in the GM.INI file.

In GoldMine 4.0, there is another directory, named the "root" directory, where the
license file, reports and other non-data files are stored. This directory defaults
to the "GoldMine directory" when GoldMine is installed. On a network installation,
all users must use the same root directory, which must be on the network file
server (not the SQL server). A SysDir= entry in the GM.INI file indicates the root
directory.

On SQL servers, the data files are not stored in a file directory, but on server
databases who's location is unknown to GoldMine. GoldMine identifies these SQL
databases using their database alias, as defined using the BDE Configuration
utility. The 'GoldMine database' and 'Default contact database' comboboxes on the
Preferences Login tab list all database aliases visible to GoldMine.

On SQL databases, GoldMine can use the same SQL database to store both the GoldMine
files, and one set of contact files. In fact, for companies using one primary
contact database (like GoldMine Software is) this is preferred, as the SQL DBA
(database administrator) has only one GoldMine database to maintain, and querying
one databases is simpler than joining tables from two databases.

USER NAMES and LOG-ON ACCOUNTS
==============================
To log onto an SQL databases, GoldMine has to travel through three layers of user
accounts in order to access its tables. These are the SQL log-on user account, the
SQL tables owner name, and the GoldMine user name.

GoldMine's default SQL database log-on account is taken from the USER NAME
specified in the BDE configuration database alias. MS SQL Server and other servers
require that each user account which accesses the GoldMine tables be granted
permission. On MS SQL use the Object | Permissions option from the Microsoft SQL
Enterprise Manager.

The "table owner" name refers to the user name who created the tables, that is, the
SQL user account which was logged on when GoldMine created (or rebuilt!) the
databases. In general, all access to tables must be in form <owner>.<table name>,
like JON.CONTACT1. If the logged-on user is also the owner, then the <owner>
portion need not be specified. However, for users other than the owner, GoldMine
must send the queries with owner.tablename aliases. The GoldMine SQL alias is
formatted as:

 DRIVER: BDE_ALIAS: OWNER: for example, MSSQL: GM4DB: JON:

When new databases are created via Tools | Create Databases, the appropriate alias
is saved in the Contact Files profile. On the SQL Query tab, your SQL commands must
include the table's owner prefix, for example:

 SELECT * from JON.CONTACT1

For installation where all GoldMine users use the same SQL log-on account in the
BDE Configuration (which simplifies this considerably), you can manually drop the
OWNER portion from the alias, from the Contact File properties dialog. GoldMine
will then log-on all SQL users as the single-account table owner, so SQL commands
need not include the owner name. The following would then be a valid SQL:

 SELECT * from CONTACT1

Creating a single SQL log-on account, like GOLDMINE, will considerably simply
creating user accounts and granting access on the SQL server, and will not require
the OWNER prefixes on SQL commands. It is also recommended that the SQL tables
owner be named GOLDMINE, so access to the data from external applications would be
more intuitive. A developer can write:

 SELECT company, contact from GOLDMINE.CONTACT1

CREATING SQL DATABASES:
=======================
To re-host the GoldMine data onto any SQL server, first create a new database on
the SQL server (see details below) and then set up an alias in the BDE
Configuration to refer to this new database. To re-host the GoldMine data, select
Tools | Create Databases and follow the Wizard.

Creating SQL databases is very different on each vendor's SQL server. Following are
brief guidelines to setting up Microsoft SQL Server 6.5, Oracle 7.x, InterBase 4.x
and ODBC databases. This section assumes that you have already installed and
connected to your SQL server.

MICROSOFT SQL SERVER:
=====================
Open up the Microsoft SQL Enterprise Manager and log on. The supervisor
username/password is sa/password (you should add yourself as a user via Manage |
Logins). To create a database, you must first create a new device at least twice
the size of your GoldMine data (highlight the "Database Devices" folder, right
click and select New Device...). Then create a new database on this device
(highlight the "Databases" folder, right click and select New Database...). Name
your new database GM4 or GoldMine, and place it in the newly created device. Go
back to Manage | Logins and "Permit" yourself (and others) onto the GoldMine
database and the master database. Make sure that the GoldMine database is your
default device (for now). Under the "Databases" folder, highlight the GoldMine
database, right click and select Edit... Under Permissions make sure you have all
permissions. Under options, check 'Select into bulk copy' and 'Truncate Log at
checkpoint'. Close down the SQL Enterprise Manager.

To set up an alias for this MS SQL database in BDE (which all applications can
use), open the BDE Configuration utility and add a new MS SQL alias. For now, enter
only the following properties:

Database Name: GM4 (the database name)
Server Name: NT4 (the NT server name)
User Name: JON (the owner of the database)
TDS Packet size: 4096

INTERBASE
=========
Open up the InterBase Server Manager and log on. The supervisor username/password
is sysdba/masterkey (you should add yourself as a user via Task|User Security and
then logout and log-on as yourself). To create a database, select Task |
Interactive SQL, then File | Create Database and enter its filename. To create a
local database enter the path like c:\gm4.gdb. To create it on an NT server, enter
the UNC path like \\NT4\GM4\gm4.gdb. You now have an InterBase database that YOU
own. You can GRANT access to others using InterBase Interactive SQL application
(ISQL). Close down the InterBase Server Manager and interactive windows.

To set up an alias for this InterBase database in BDE (which all applications can
use), open the BDE Configuration utility and add a new InterBase alias. For now,
only enter the following two properties:

Server Name: \\NT4\GM4\GMCF.GDB (the database path)
User Name: JON (the owner of the database)

InterBase does not support the OWNER.TABLE concept. Although the InterBase
documentation states that it can be done, we cannot send a SELECT * from
JON.CONTACT1 command to InterBase, not even from the InterBase Interactive SQL. The
InterBase owner may be at the database level, and not at the table level.

Using the InterBase Server Manager you can create new user accounts. You can have
all GoldMine users use one login account, or each user can have their own account.
Each workstation can define the default SQL login user in the BDE InterBase alias
setting from the BDE Configuration Utility. A default database password can be set
in the Preferences Login tab. GoldMine will prompt the user for a the SQL
login/password if the defaults do not provide access.

The advantage of using a single SQL login account is that a DBA can easily set the
access and privileges to all users at once. Using multiple accounts requires the
DBA to GRANT appropriate rights for each user.

ORACLE:
=======
Open up the Oracle7 Navigator and log on. The supervisor username/password is
system/manager or po7/po7 (you should add yourself as a user under the Database
folder, highlight the User folder, right click and select New...). It's very
difficult to create a new database under Oracle, so use the pre-installed database.
To set up an alias to the Oracle database, open up the SQL*Net Easy Configuration
and select 'Add new alias'. Enter an alias name like ORA_GM4 and select TCP/IP as
the protocol. For Local Oracle, your TCP/IP Host Name is 127.0.0.1. Leave the
Database Instance as ORCL. Go back to Oracle7 Navigator and create a new database
connection under Database Connections. Enter the Oracle alias name you gave above,
and enter your username and password. Make sure that you can connect to the
database by clicking on it. Close down Oracle7 Navigator.

To set up an alias for the Oracle database in BDE (which all applications can use),
open the BDE Configuration utility and add a new ORACLE alias. For now, enter only
the following properties:

Server Name: Ora_GM4 (the Oracle database alias)
User Name: JON (the owner of the database)
Net Protocol: TNS

ODBC:
=====
Configure your ODBC drivers from the Windows Control Panel ODBC 32-bit appellate.

To set up an alias for ANY ODBC database in BDE (which all applications can use),
open the BDE Configuration utility and add a new ODBC alias. For now, enter only
the following properties:

Database Name: <blank> (leave it blank)
User Name: JON (the owner of the database)
ODBC DSN: GM4_MSSQL (the ODBC Data Source Name)

DOC8: The SQL Query Tab

This document covers GoldMine 4.0's new SQL Query tab, which allows users to send
native SQL queries directly to the SQL databases, and display the resulting records
linked to their appropriate contacts. SQL queries can be extremely useful, not only
to query and view related data, but also to dump the contents of any GoldMine
table, like a database browser would. The SQL Query tool is one of the most
powerful new features in GoldMine 4.0.

SQL (Structured Query Language) is a database language which is understood by all
Client/Server SQL databases. While each SQL server uses its own dialect of SQL,
they are all compatible with the base SQL-92 standard.

SQL queries are instructions sent to the SQL database to return data. The SQL
SELECT command is used to query the data, and although it only employees 10 or so
keywords, the SELECT commands can process some extremely complex queries.

GoldMine's SQL Query tool is very powerful, especially on SQL databases. It allows
users to enter simple and complex SQL queries, and have the results automatically
linked to the appropriate contact records. Users can enter SQL queries on-the-fly,
or save queries for later execution. You can send SQL queries against ANY GoldMine
table (see examples below).

SQL queries can be executed fast or slow, depending on the composition of the query
in relation to the requested data and available indexes. Tuning SQL queries is part
art, part science, and different SQL servers might optimize the same SQL query
quite differently. There are many developers out there who's primary job function
is to develop optimized SQL queries. Your local bookstore has many books covering
SQL, one of the best for beginners is the LAN Times "Guide to SQL". The BDE and
InterBase documentation also offer help files on SQL commands. BDE also includes
some innovative SQL concepts beyond the standard SQL-92, which allow for powerful
cross backend queries.

SQL queries on large dBASE tables can be very (very!) slow, since the SQL is
actually emulated on a temporary dBASE file which is reconstructed on the local
client machine. On the other hand, SQL servers' claim to fame is that they can
execute fine tuned queries very fast, even on databases with millions of records.

Following are a few examples of SQL queries, all of which can be executed from
GoldMine's SQL Query tool. Examples 2 and 3 demonstrate how to JOIN (relate) the
parent contact1 file to its child records in CONTACT2, CAL, CONTHIST and CONTSUPP.
Example 4 shows an SQL query on non-contact data.

Example 1: Contacts in L.A.:

 SELECT * FROM CONTACT1
 WHERE Phone1 LIKE "(310)%"

Example 2: Contacts with Internet email addresses:

 SELECT c.contact, s.contsupref, c.phone1, c.city
 FROM contact1 c, contsupp s
 WHERE s.rectype = 'P' and s.contact = "Internet Address"
 and c.accountno = s.accountno

Example 3: Contacts with purchases of over $1,000

 SELECT c.company, h.ondate, h.duration, h.ref
 FROM contact1 c, conthist h
 WHERE h.srectype = 'S' and substring(h.duration from 4 for 1) <> ""
 and c.accountno = h.accountno

Example 4: All your saved SQL queries

 SELECT name, userexp
 FROM filters
 WHERE rectype = 'Q' and userid = "JON"

For SQL commands on dBASE files, GoldMine selects one directory to be the default
directory for the tables aliased in the SQL. If any of the CONT* files is selected
in the FROM clause, that contact files directory is the default, otherwise, the
GoldMine directory is the default directory. You cannot have unaliased tables from
both directories in the same query, but you can qualify the table names with their
dBASE path. The following SQL query against dBASE files in two directories is
perfectly legal. It joins the CONTACT1 and CAL tables to list all of JON's
activities, shown with the contact name and the state in which they are at:

 SELECT c1.contact, c1.state, ca.ondate, ca.ref
 FROM 'c:\gm4\common\contact1' c1, 'c:\gm4\cal' ca
 WHERE c1.accountno = ca.accountno AND ca.userid = "JON"

DOC9: GM4's dBASE Parser

Over two year ago, when we chose BDE as GoldMine's future database engine, a huge
problem prevented us from getting started. BDE does not offer a dBASE parser to
evaluate dBASE expressions. But GoldMine's existing data has dBASE expressions in
it, in tables like FIELDS, FILTERS, EXPORT and others.

Guy volunteered to take on the arduous task of writing a full-blown fully optimized
dBASE parser. Skepticism disappeared a few months later when his parser plugged
right in without a hitch. Since then, we have been optimizing the new GoldMine 4.0
dBASE parser, and we have some good news for you.

A GoldMine 4.0 dBASE expression is no longer limited to 256 bytes. The expression
is no longer limited to 32 components or levels, it can be as complex as you wish.
All CodeBase expression functions are supported.

GoldMine 4.0 now includes a dBASE Expression Tester for you to test dBASE
expressions. To activate the tester, press Ctrl-Shift-D when viewing the Record
window.

Filter expressions function equally well on dBASE or SQL tables. On SQL, the dBASE
filter is evaluated on the client side, not the server side. Filters which access
only CONTACT1 fields have been optimized to run up to 5 times faster on GoldMine
4.0 as compared to GoldMine 3.2.

The GoldMine 4.0 dBASE parser also offers some welcomed new functions, including
AT, RAT, PADR, WDATE and a few others. There is also support for a RANDOM and
SEQUENCE expressions.

Following is a summary of the new functions:

ALLTRIM(<string>)
trims spaces from the right and left ends of the string.

AT(<string1>,<string2>)
returns the first position of <string1> in <string2>.

COUNTER(<name>, <inc>, <start>, <action>)
COUNTER works similarly to the SEQUENCE function. The key difference is that
COUNTER stores the count value between GoldMine sessions, and is shared by all
GoldMine users. The SEQUENCE counter is local to the operation, and its count is
lost at the end of the operation. Since the COUNTER function updates a database
counter, it is much slower than SEQUENCE which updates a memory counter.

COUNTER returns a sequence of consecutive numbers each time the expression is
evaluated. The counter <name> must be unique and up to 10 character long. Each
evaluation of the function increments the counter by the <inc> value. The <start>
and <action> parameters are optional. When <action> is 1, the <start> value is used
to reset the counter. The counter is deleted when <action> is 2.

GoldMine can track and unlimited number of counters, each with a unique name. The
counter values are stored in the LOOKUP table. Counters can be used anywhere dBASE
expressions are allowed, including F2 lookups. The following F2 entries can be
placed in the Incoming Call Reference F2 to number each type of call.

 ~"T"+str(counter("ITech",1))
 ~"S"+str(counter("ISale",1))

LEN(<string>) returns the length of a string
LENGTH(<string>) same as LEN()

PAD(<string>, <length>, <mode>)
PAD(<string>, <length>, <fill>, <mode>)
PADL(<string>, <length>, <fill>)
PADR(<string>, <length>, <fill>)
returns <string> padded to <length> with the <fill> character. <fill> is optional
and defaults to a space. PADR pads the string to the right while PADL pads from the
left. For PAD, <mode> can be 0 for right pad (the default), 1 for centered and 2
for left pad.

RANDOM(<range>)
returns a random number. <range> can be any number between 1 and 32,761. The
returned random number will range between zero and <range>, not including the range
limit. For example, RANDOM(10) returns a number between 0 and 9. The <range>
parameter defaults to 32,761 if not specified. Random numbers up to 2 billion can
be achieved using the expression random(32761) * random(32761).

RAT(<string>,string>)
returns the last position of <string1> in <string2>.

SEQUENCE(<start>, <inc>)

returns a sequence of consecutive numbers each time the expression is evaluated.
When the expression is first evaluated, the <start> parameter initializes the
counter. Each subsequent evaluation of the function increments the counter by the
<inc> value.

To generate numbers in a specific range (100-200, 3-9, etc...) the following
expression can be used:
sequenceStart + SEQUENCE(0,1) % sequenceLength. The sequence length should include
the actual number of numbers in the range. for example:

100-200: 100 + SEQUENCE(0,1)%101
3 - 9: 3 + SEQUENCE(0,1)%7

SEQUENCE can be called anywhere an expression can be entered. For example, Global
Replace can be used to number filtered contact records. The SEQUENCE(1,1)
expression in a Field View shows a real-time indication of how many times the
Record window was updated. The sequence count is local to each operation. In a
global replace, the count is initialized on the first record and killed on the
last. On the Record window (as a field) the count is initialized when the window is
created, incremented for every paint, for the life of the window.

STR(<value>,<length>,<fill char>)
STR(<value>,<length>,<decimals>,<fill char>)
returns the numeric <value> formatted as a string. All parameters except <value>
are optional. The <length> parameter pad the number to the left with spaces, or the
with <fill char> if specified.

WDATE(<date>, <format>)
returns the <date> formatted in variety of ways, based on the optional parameter
<format>.

<format>
0 mmm dd, yy Jan 22, 97
1 ddd, mmm dd, yy Thu, Jan 22, 97
2 mmm dd Jan 22
3 Long date style Thursday, Jan 22, 1997

The Long date style format 3 is taken from the Windows Regional Settings.

Examples:
WDATE(DATE(), 3) => Thursday, Jan 22, 1997
WDATE(Cal->OnDate) => May 3, 96

DOC10: GM4's DataStream

The GoldMine 4.0 DDE server has gained a very powerful new DDE command, DataStream.

DataStream returns the data of ordered records from any GoldMine table using the
most efficient method possible. The caller can specify the fields and expressions
to return, as well as the range of records to return. An optional filter can also
be applied to the data set.

The DataStream method allows for many useful applications. One such group of
applications which will probably appear soon are applications which publish the

contents of GoldMine data on the Internet by merging HTML templates with the data
returned by GoldMine's DataStream. Web pages can be created to display GoldMine
data requested by a visitor. Based on the visitor's selections, a company could
dynamically present a variety of HTML pages, from the addresses of its dealers in a
particular city, to financial numbers stored in Contact2, to the seating
availability of upcoming conferences. With a fast Internet connection and a strong
SQL server, the GoldMine client could simultaneously respond to dozens of requests.

RECORD SELECTION
=================
The DataStream command consists of 4 sub-commands, each taking different
parameters. Following are the sub-commands, in the order in which they must be
called:

 [DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm,
sRDlm)]
 [DataStream("query", sSQL, sFDlm, sRDlm)]
 [DataStream("fetch", nRecords, iHandle)]
 [DataStream("close", iHandle)]

The "range" OR "query" sub-commands must be called first to request the data. The
"range" and "query" sub-commands return an integer handle, iHandle, which must be
passed to the "fetch" and "close" sub-commands. You must use "range" OR "query",
not both.

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm,
sRDlm)]
The "range" sub-command returns a range of records based on an index. The sTable,
sTag, sTopLimit and sBotLimit parameters determine the range of records to scan,
similar to the DDE SETRANGE command. The sFields parameter specifies the requested
fields and expression to return (refer to a section below detailing the sFields
string format). The other "range" parameters are optional.

[DataStream("query", sSQL, sFDlm, sRDlm)]
The "query" sub-command sends the sSQL query for evaluation on the server. The SQL
query can join multiple tables and return any number of fields. The optional
sFilter parameter can specify a boolean dBASE filter expression to apply to the
data set (even on SQL tables), similar to the DDE SETFILTER command. The optional
sFSep and sRSep parameters can override the return packet's default field and
record delimiters of CR and LF.

[DataStream("fetch", nRecords, iHandle)]
The "fetch" command returns a single packet string containing the requested data
from all records processed by the current "fetch" command, as specified by the
second nRecords parameter. iHandle must be the value returned from "range" or
"query". The "fetch" command can be issued multiple times, with positive and
negative values, to scroll down or up the cursor. Please refer to the section below
detailing the packet format.

[DataStream("close", iHandle)]
The "close" command MUST be called when the operation is complete. Unclosed data
streams will leak memory and leave the database connections needlessly open.
Passing an iHandle of 0 closes all open DataStream objects (of all DDE
conversations!).

FIELD SELECTION
==============
The sField parameter passed to the "range" sub-command should consist of the field
names and dBASE expressions to evaluate against each record in the data set. Each

field must be terminated with the semicolon ; character. dBASE expressions must be
prefixed with the ampersand & character and terminated with a semicolon. For
example, the following commands requests the first 100 cities from the Lookup file,
including the city name and record number (RecID under SQL):

 [DataStream("range", "lookup", "lookup", "CITY", "CITYZ", "Entry; &RecNo();")]
 [DataStream("fetch", 100, iHandle)]
 [DataStream("close", iHandle)]

The following commands request the first 10 profiles of the current contact record,
followed by a request for the next 50:

 [DataStream("range","contsupp","contspfd", sAccNo+"P", sAccNo+"P",
"Contact;ContSupRef;")]
 [DataStream("fetch", 10, iHandle)]
 [DataStream("fetch", 50, iHandle)]
 [DataStream("close", iHandle)]

RETURN PACKET
==============
The "fetch" command returns a single packet string containing the data from all
requested records. The packet includes a header record, followed by one record for
each record evaluated by "fetch". Within each record in the packet, the fields are
separated by a Field Delimiter, the carriage return character by default (13 or
0x0D). The records in the packet are separated by the Record Delimiter, the line
feed character by default (10 or 0x0A). These delimiters are convenient when the
requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the "range"
and "query" commands. The characters 1 and 2 would probably make good delimiters
for packets with notes.

The City Lookup example from above might return a packet of data similar to:

 3000-0004
 Boston|23
 London|393
 Los Angles|633
 New York|29

The packet header record consists of two sections. The first byte can be 0, 3 or 4.
Zero indicates that more records are available, which could be fetched with another
"fetch" command. A value of 3 indicates the end-of-file (EOF), and 4 indicates the
beginning-of-file (BOF). The number following the dash indicates the total number
of data records contained in the packet.

Packets should be designed to be 8K to 32K in size. It takes DataStream about as
much time to read 3 records as it does to read 30. For best performance, adjust the
number to records requested by the "fetch" command to return 8K to 32K packets.

PERFORMANCE
=============
DataStream is the absolute fastest way to read data from GoldMine tables! Used
correctly, GoldMine's DataStream will return the data faster than most development
environments would directly. Consider for the following advantages DataStream
offers:

1. DataStream issues a single, most efficient SQL query or dBASE seek to retrieve
the records from the back-end database to the local client. On SQL databases,

requests of a few hundred records could be sent from the server to the client with
a single network transaction, greatly minimizing network traffic.

2. All fields and expressions are parsed initially by the "range" and "query"
commands, and then quickly evaluated against each record in the "fetch" command.
Other DDE methods (and development environments) require that each field be parsed
and evaluated each time its data is read. This makes a big difference when reading
hundreds or thousands of records.

3. Only 3 DDE calls are required to read all the data. Using traditional record-by-
record querying would require one DDE call for each field of each record (reading
10 fields from 50 records would require 500 DDE calls).

4. All the work to gather and format the data is done in C++, the fastest way to
fly. The caller needs only to parse the resulting packet string.

The "range" and "query" commands execute equally fast on SQL databases. The "range"
command executes must faster on dBASE tables than the "query" command does.

The following DataStream command returns all e-mail addresses in the current
contact file. On my P133, DDEReq32 returns 312 records in under 1 second flat!

 [DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET
B","ContSupRef;")]
 [DataStream("fetch", 999, 1)]
 [DataStream("close", 1)]

To return only the e-mail addresses of people at GoldMine Software, add a filter to
the "range" command:

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET AZ",
"ContSupRef;AccountNo;&Recno();", "'@goldminesw.com' $ lower(ContSupRef)")]

The following DataStream returns all entries from all F2 lookups. The fields are
delimited with a comma, and the records with the default LF. My P133 picks up all
847 lookup records (in a single 23K packet) from an MS SQL table in just 1.8
seconds. Dave's server will probably do a lot better on a good day.

 [DataStream("range", "lookup", "lookup", "A", "Z","FieldName;Entry;","",",")]
 [DataStream("fetch", 2000, 1)]
 [DataStream("close", 1)]

The following DataStream returns the exact packet as the one above, but using an
SQL query:

[DataStream("query", "select fieldname, entry from lookup where fieldname > 'A'
order by fieldname, entry", "",",")]

DOC11: GM4's Word Links

GoldMine 4.0's Word links are now installed on-the-fly, when the user merges their
first form. GoldMine 4.0 installs with about 20 template merge forms, which can be
customized by each user.

GM4Setup.exe installs all standard merge forms to the \GoldMine\Templates
directory. When the user opens the Merge Forms window for the first time, they can
launch any of the public merge documents available.

The Microsoft document templates are installed for user public, without an AppID or
DDE command. When the user launches a .DOC or a .DOT (or an .XLS), GoldMine looks
for the word.document.8 entry in the Registry, and then for the word.document.6
entry if the first entry is not found. GoldMine then verifies that the Word link is
installed by looking for a 4.6 or 4.8 entry under the Software\Microsoft\Word\
GMLinkVersion section of the Registry. If it's not there, GoldMine will ask the
user if it's ok to install the Word link.

When the user tries to modify a default template, GoldMine copies that template to
the user's template directory (i.e., \GoldMine\Templates\UserName) and creates a
new record in the FORMS table under the current user name, with the default
template's properties. The user now has a copy of the original template for them to
customize.

To simplify specifying directories, GoldMine looks for the template filename under
the \GoldMine\Templates directories, so the complete path of the templates need not
be specified. The public templates have no path since they are stored under the \
Templates directory, and user's customized templates will default to UserName\
docname. GoldMine first checks for the document in its absolute path if a drive
letter or UNC is provided, then under the \Templates directory, then under \
Templates\UserName, and finally under the GoldMine root directory.

