
Corel SCRIPT programming statements and function index

& operator
+ operator
- operator
* operator
/ operator
\ operator
^ operator
< operator
> operator
<> operator
= operator
<= (or =<) operator
>= (or =>) operator
<< (Shift Left) operator    
>> (Shift Right) operator

ABS function
ACOS function
ADDFOL statement
ADDITEM function
ADDRESBMP statement
AND operator
ANGLECONVERT function
Arithmetic Operators
ASC function



ASIN function
Assignment Operator
ATAN function

BEEP statement
BEGIN DIALOG...END DIALOG statements
BEGINWAITCURSOR statement
BITMAPBUTTON statement
Bitwise Operators
BUILDDATE function
BUILDTIME function

CALL statement
CANCELBUTTON statement
CBOL function
CCUR function
CDAT function
CDBL function
CHECKBOX statement
CHR function
CINT function
CLNG function
CLOSE statement
CLOSEDIALOG function
COMBOBOX statement
Concatenation Operators
CONST statement
COPY statement and function
COS function
CSNG function
CSTR function

DDCOMBOBOX statement
DDLISTBOX statement
DEC function
DECLARE statement
DECLARE...LIB statement
DEFINE statement
DIALOG statement
DIM statement
DO...LOOP statements

ENABLE function
END statement
ENDWAITCURSOR statement
EOF function
EQV operator
EXIT statement
EXP function



FAIL statement
FILEATTR function
FILEDATE function
FILEMODE function
FILEPOS function
FILESIZE function
FINDFIRSTFOLDER, FINDNEXTFOLDER functions
FIX function
FOR...NEXT statements
FORMATDATE function
FORMATTIME function
FREEFILE function
FROMCENTIMETERS function
FROMCICEROS function
FROMDIDOTS function
FROMINCHES function
FROMPICAS function
FROMPOINTS function
FUNCTION...END FUNCTION statements

GETAPPHANDLE function
GETBITMAPHEIGHT function
GETBITMAPWIDTH function
GETCOLOR statement and function
GETCOMMANDLINE function
GETCURRDATE function
GETCURRFOLDER function
GETDATEINFO function
GETFILEBOX function
GETFOLDER function
GETFONT statement and function
GETHEIGHT function
GETHELPINDEX function
GETHELPPATH function
GETID function
GETIMAGE function
GETID function
GETINCREMENT function
GETITEM function
GETITEMCOUNT function
GETLEFTPOSITION function
GETMAXRANGE function
GETMINRANGE function
GETPRECISION function
GETPROCESSINFO function
GETSCRIPTFOLDER function
GETSELECT function
GETSTYLE function



GETTEMPFOLDER function
GETTEXT function
GETTICK function
GETTIMEINFO function
GETTIMER function
GETTOPPOSITION function
GETTYPE function
GETVALUE function
GETVERSION function
GETWIDTH function
GETWINHANDLE function
GLOBAL statement
GOSUB...RETURN statements
GOTO statement
GROUPBOX statement

HELPBUTTON statement
HEX function
HSLIDER statement

IF...THEN...ELSE...ENDIF statements
IMAGE statement
IMAGELISTBOX statement
IMP operator
INCLUDE statement
INPUT statement
INPUT function
INPUTBOX function
INSTR function
INT function

KILL statement

LBOUND function
LCASE function
LEFT function
LEN function
LENGTHCONVERT function
LET statement
LINE INPUT statement
LISTBOX statement
LN function
LOF function
LOG function
Logical Operators
LTRIM function

MESSAGE statement
MESSAGEBOX function



MID function and statement
MKFOLDER statement and function
MOD
MOVE function

NOT operator

OKBUTTON statement
ON ERROR statement
OPEN...APPEND statement
OPEN...INPUT statement
OPEN...OUTPUT statement
OPTIONBUTTON statement
OPTIONGROUP statement
OR operator

PRINT statement
PROGRESS statement
PUSHBUTTON statement

RANDOMIZE function
REDIM statement
REGISTRYQUERY function
Relational Operators
REM statement
REMOVEITEM function
RENAME statement and function
RESET function
RIGHT function
RMFOLDER statement and function
RND function
RTRIM function

SEEK statement
SELECT CASE statements
SETARRAY function
SETBITMAPOFFSET function
SETCURRDATE statement
SETCURRFOLDER statement
SETDOUBLEMODE function
SETEMPTY statement
SETHELPINDEX function
SETHELPPATH function
SETIMAGE function
SETINCREMENT function
SETMAXRANGE function
SETMINRANGE function
SETPRECISION function
SETSELECT function



SETSTYLE function
SETTEXT function
SETTHREESTATE function
SETTICK function
SETTIMER function
SETVALUE function
SETVISIBLE function
SGN function
SIN function
SPACE function
SPINCONTROL statement
SQR function
STARTPROCESS statement and function
STATIC statement
STATUS statement
STEP function
STOP statement
STR function
SUB...END statements

TAN function
TEXT statement
TEXTBOX statement
TOCENTIMETERS function
TOCICEROS function
TODIDOTS function
TOINCHES function
TOPICAS function
TOPOINTS function

UBOUND function
UCASE function
Unary Operators
UNDEF statement

VAL function
VSLIDER statement

WAIT FOR statement
WAIT UNTIL statement
WHILE...WEND statements
WITH...END WITH statements
WITHOBJECT...END WITHOBJECT statements
WRITE statement

XOR operator





Variables
Variables are used to store information in a script. A variable is a value place holder whose name points to an 
address in the computer's memory where its value is stored. Variable addresses can only hold one value at a 
time, but during script execution that value can change if you assign another value to the variable, or when you 
pass the variable to an instruction that can modify its value. Once a script terminates, a variable, and the value 
it is holding, is lost.
Types of data variables can hold
Variables can hold different types of data. For example, a variable might hold a string or a number. Corel SCRIPT 
supports nine different variable types: seven numeric types (including a Boolean type and date type), a string 
type and a variant type. A variable's data type determines the type of data a variable can hold. For more 
information about data types, see Corel SCRIPT data type summary.
Assigning values to variables
The simplest way to assign a value to a variable is to use the  = operator as shown in the following example:
fox = 1987
car = "Ford"
The first statement assigns the numeric value 1987 to the variable fox. The second statement assigns the string 
Ford to car. 
Declaring variables
A variable must be first declared before you can use it in a script. The above example which assigns values to 
variables also declares a variable at the same time. This type of variable declaration is called implicit and you 
can find out more about it by seeing Implicitly declaring and assigning values to a variable.
Your second option to declare variables is to use the DIM, GLOBAL or STATIC statements. Using these 
statements explicitly declare a variable and specify the type of data the variable can hold. For more information, 
see Explicitly declaring and assigning values to a variable. For information about data types, see Corel SCRIPT 
data type summary. 

{button ,AL(`all_vars;dim;using_constants;Variables_names;;',0,"Defaultoverview",)} Related Topics



Variable names    
Variable names can be made up of any combination of letters in the alphabet, both lowercase and uppercase, 
the numbers 0 through 9, and the underscore character (_). Other rules for variable names follow:

Variable names are not case sensitive. For example, the variable ABC is the same as abc, Abc, aBC, and 
so on.

The initial character must be a letter, or the underscore character, and can be followed by any combination
of letters, numbers, and the underscore character. Variable names cannot include spaces. The following are all 
acceptable variable names:

x, X123, Corel_6, TheVariable, a1B2, This_is_a_variable, ThisIsAVariable
The maximum length of a variable's name is 256 characters. 
A variable cannot have the same name as a Corel SCRIPT statement, function, or operator. See Reserved 

Words for a complete listing of words that can't be used as a variable name.
All variable names must be unique in a script procedure. See Variable availability for more information.
You should use meaningful variable names, and have the names reflect the data that is being stored. For 

example, if you have a variable that stores a document's page size, you can name the variable Page_Size.
Declaring variables
You have two options to create a variable and assign a value to it. The simplest way is to insert a variable name 
in a script and specify a value for it, as shown in the following example:
fox = 1987
car = "Ford"
The first statement assigns the numeric value 1987 to the variable fox. The second statement assigns the string 
Ford to car. This type of variable declaration is called implicit and you can find out more about it by seeing 
Implicitly declaring and assigning values to a variable.
Your second option to declare variables is to use the DIM, STATIC or GLOBAL statements. Using these 
statements explicitly declare a variable and is considered better programming practice. For more information, 
see Explicitly declaring and assigning values to a variable.

{button ,AL(`all_vars;dim;using_constants;;;',0,"Defaultoverview",)} Related Topics



Variable availability
Corel SCRIPT scripts are comprised of three types of procedures:

main section of a script 
user-defined functions (more than one can exist)

 user-defined subroutines (more than one can exist)
The availability of a variable is dependent on the procedure the script is executing. The following explains the 
levels of variable availability in Corel SCRIPT:

Global variables are available anywhere in a running script, but they and their values cease to exist 
when the script stops running. Global variables are created in the main section of a script and cannot be created 
within a subroutine or a function. However, they can be used in the execution of any subroutine or function. Use the
GLOBAL statement to create global variables.

 Local variables are available in the procedure in which they are declared. If declared in a subroutine or 
function, a local variable ceases to exist after the procedure finishes execution and is re-created the next time the 
subroutine or function is called. 

Static variables are declared and assigned values inside a subroutine, or a user-defined function, and are
only available while the script executes that subroutine or user-defined function. In contrast to local variables, static
variables retain their values after a subroutine, or a function, terminates. The retained value can be used by the 
script the next time the subroutine or function is called. See STATIC for more information.

Note
You can have variables with the same name in a script, but they cannot exist in the same script procedure 

(main section, functions, subroutines). For example, you can have a variable called ABC in a function and in the 
main section of a script, but you cannot have two ABC variables in the main section of a script. 

Your function and subroutine procedures should be self-contained. A variable required only within a 
procedure should be either a local or a static variable. Following this custom can make your procedures more 
modular, enabling you to copy them to other scripts with limited customization. You should avoid using global 
variables.

It is a generally accepted programming convention to put variable declaration statements at the beginning
of a script's main section, subroutines, or functions.

{button ,AL(`all_vars;static;dim;global;Script_procedures;',0,"Defaultoverview",)} Related Topics



Explicitly declaring and assigning values to a variable
You can use the Corel SCRIPT DIM, GLOBAL or STATIC statements to explicitly declare a variable. By explicitly 
declaring a variable, you are allocating storage space for it in the computer's memory and setting the type of 
data it can hold. See Corel SCRIPT data type summary for information about Corel SCRIPT data types.
The following Corel SCRIPT statements declare four variables (A, B, C, and D):
DIM A%            'declares A as an integer
DIM B$            'declares B as a string
DIM C AS INTEGER  'declares C as an integer
DIM D AS STRING   'declares D as a string

Though C and D are not declared with type-declaration characters, you can still refer to them as C% and D$ in a 
script. Type declaration characters are optional, but using them is good practice because it makes your scripts 
easier to read and debug. The variables A% and B$ can also be referred to as A and B, respectively. 
Note

Formally declaring variables can make your scripts, especially long and complicated scripts, easier to read 
and modify. It is a generally accepted programming convention to put declaration statements at the beginning of a 
procedure. 

Once a variable has been created, its type cannot change. However, you can convert a variable to another 
type by creating another variable. See the following statements for more information: CBOL, CCUR, CDAT, CDBL, 
CINT, CLNG, CSNG, and CSTR. 

Explicitly declared variables that aren't assigned a value hold initial values. See Corel SCRIPT data type 
summary for each data type's initial value.

During a script run, the availability of a variable to a script changes.    See Variable availability for more 
details.

You can assign values to variables without using the LET statement. The two following lines both assign 5 
to abc%: 
LET abc% = 5
abc% = 5

{button ,AL(`all_vars;dim;Assigning_values_to_date_variables;;;;',0,"Defaultoverview",)} Related 
Topics



Implicitly declaring and assigning values to a variable
If you use variables that have not been declared with the Corel SCRIPT DIM, GLOBAL or STATIC statements, 
you're using implicitly declared variables. You can implicitly declare variables with or without specifying their 
data type. See Corel SCRIPT data type summary for information about Corel SCRIPT data types.
Implicitly declaring a variable with a specified data type
By assigning a value to an undeclared variable and using a type-declaration character, you can declare a 
variable's data type. In the following example, the variable B is assigned A's value by using the assignment 
operator (=). The variable B is also declared as a long data type by using a type-declaration character.
DIM A%  'declares A as an integer
A = 3   'assigns the value of A to 3
B& = A  'declares B as a long with A's value

In the following example, B is implicitly declared as an integer and holds the value 10, although A multiplied by 
C equals 10.8. The variable B takes the value 10, because it is implicitly declared as an integer and the precision
in the expression A * C is lowered after the expression is calculated.
DIM A%       'declares A as an integer
DIM C!       'declares C as a single
A = 3        'assigns the value of 3 to A
C = 3.6      'assigns the value of 3.6 to C
B% = A * C   'B is declared as an integer

Implicitly declaring a variable without specifying a data type
You can also implicitly declare a variable by assigning a value to it without using a type-declaration character. 
For example,
abc = -400444.4            'assigns a number
def = "This is a string"   'assigns a string
Variables declared in this manner are set to the Corel SCRIPT variant data type. Since variants can hold any 
other Corel SCRIPT data type as a subtype, the variable abc is a variant of subtype double. The variable def is a 
variant of subtype string. For more information, see Variants. 
If you assign a numeric value to an undeclared variable using previously declared variables or constants, Corel 
SCRIPT implicitly declares the variable as a variant. The variant takes on subtype of the data type of the 
expression on the right side of the equals sign. The following example illustrates this situation:
DIM A%   'declares A as an integer
DIM C!   'declares C as a single
A = 3    'assigns the value of 3 to A
C = 3.6  'assigns the value of 3.6 to C
E = A * C
In the above example, A is declared as an integer and is set to 3. The variable C is declared as a single and is set
to 3.6. The last line implicitly declares the variable E and assigns it the product of A and C. Since the value with 
the highest precision on the right side of the equal sign is single, E is declared a variant of the type single. To see
the summary of the levels of precision in Corel SCRIPT, see Corel SCRIPT data type summary. 
Note

Any implicitly declared variable is local to the procedure it was declared in. See Variable availability for 
more details.

There is no need to explicitly declare a variable as a variant, unless you want to format your script for 
better readability.

Once a variable has been created, its type cannot change. However, you can convert a variable to another 
type by creating another variable. See the following statements for more information: CBOL, CCUR, CDAT, CDBL, 
CINT, CLNG, CSNG, and CSTR. 

Using variants instead of explicitly declared data types can slow down the execution of a program because 
of all the data types, variants use the most memory. See Corel SCRIPT data type summary for more information.

Explicitly declaring variables can make your scripts, especially long and complicated scripts, easier to read 
and modify. 

{button ,AL(`all_vars;dim;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT data type summary
A variable's data type determines the type of data a variable can hold. Corel SCRIPT supports the data types 
listed in the following table. Each data type has a type declaration character (where applicable), storage space, 
range, and initial value noted. 

Data Type Chara
cter

Byte 
Storag

e

Range Initial Value

String $ 4 + 1
per 

character

0 to 4 billion characters
(approximate) 

 ""

Boolean 1 TRUE (-1) or FALSE (0) FALSE
Integer % 2 -32,768 to 32,767 

(whole numbers)
0

Long & 4 -2,147,483,648 to 
2,147,483,647 
(whole numbers)

0

Single ! 4 Negative Values:
-3.402823E38 to -
1.401298E-45
Positive Values:
1.401298E-45 to 
3.402823E38 

0

Double # 8 Negative Values:
-
1.79763913486232E30
8 to
-4.94065645841247E-
324
Positive Values:
4.94065645841247E-
324 to
1.79763913486232E30
8

0

Date 8 1 to 2958465 (as a 
serial number)
31/12/1899 
00:00:00.0000 to 
31/12/9999 
23:59:59.9999 (as a 
date value)
(dd/mm/yyyy 
hh:mm:ss.ssss)

1 (as a serial 
number)
31/12/1899 
00:00:00.0000 
(as a date)

Currency @ 8 -
922,337,203,685,477.5
808 to
922,337,203,685,477.5
807 

0.0000

Variant
(numeric 
type) 

10 -
922,337,203,685,477.5
808 to
922,337,203,685,477.5
807 

EMPTY (0)

Variant
(string type)

10 + 1
per 

charact
er

0 to 4 billion characters
(approximate)

EMPTY ("")

Note
The data types are listed in order of precision from the lowest to the highest.
Boolean, Date, and Variant data types don't use type declaration characters, but can still be explicitly 

declared using the DIM statement: 



DIM x AS BOOLEAN
DIM y AS DATE 
DIM z AS VARIANT
Instead of the DIM statement, you can also use the GLOBAL or STATIC statements to declare a variable.

{button ,AL(`all_vars;dim;vars_convert;;;;',0,"Defaultoverview",)} Related Topics



Boolean data type
Boolean data types are explicitly declared using the 
BOOLEAN keyword and do not use a type declaration 
character. Booleans, which are numeric variables, can only 
equal TRUE (-1) or FALSE (0). If you set a Boolean variable to 
anything but -1 or 0, the Boolean variable interprets the 
value as TRUE and resets to -1. Booleans are used to test 
conditional expressions such as those used with 
IF...THEN...ELSE...ENDIF. Of the eight numeric variables in 
Corel SCRIPT, Booleans are of the lowest precision.



Integer data type
Integer data types are explicitly declared using the % type 
declaration character or the INTEGER keyword. Integers, 
which are numeric variables, range in value from -32,768 to 
32,767 and are whole numbers only. Of the eight numeric 
variables in Corel SCRIPT, integers are of the second-lowest 
precision.



Long data type
Long data types are explicitly declared using the & type 
declaration character or the LONG keyword. Longs, which 
are numeric variables, range in value from -2,147,483,648 to
2,147,483,647, and are whole numbers only. Of the eight 
numeric variables in Corel SCRIPT, longs are of the third-
lowest precision.



Single data type
Single data types are explicitly declared using the ! type 
declaration character or the SINGLE keyword. Singles, which
are numeric variables, range in value from -3.402823E38 to -
1.401298E-45 for negative numbers and 1.401298E-45 to 
3.402823E38 for positive numbers. Of the eight numeric 
variables in Corel SCRIPT, singles are of the fourth-highest 
precision.



Double data type
Double data types are explicitly declared using the # type 
declaration character, or the DOUBLE keyword. Doubles, 
which are numeric variables, range in value from -
1.79763913486232E308 to -4.94065645841247E-324 for 
negative numbers and 4.94065645841247E-324 to 
1.79763913486232E308 for positive numbers. Of the eight 
numeric variables in Corel SCRIPT, doubles are of the third-
highest precision.
When a double variable type is used with a relational 
operator, it is temporarily recast as a single variable type. 



Currency data type
Currency data types are explicitly declared using the @ type 
declaration character or the CURRENCY keyword. Currency 
variables range in value from -922,337,203,685,477.5808 to 
922,337,203,685,477.5807. Of the eight numeric variables in
Corel SCRIPT, currency variables are of the second-highest 
precision. In cases where exactness is important, such as 
calculations involving finance, money, and fixed-points, you 
should use currency variables.



Date data type
Date data types are explicitly declared using the DATE 
keyword and do not use a type declaration character. Date 
variables hold date and time values that range from 1 to 
2958465 (as a serial number) or 31/12/1899 00:00:00.0000 
to 31/12/9999 23:59:59.9999 (as a date value). You can use 
dates outside this range, but they are not supported by Corel
SCRIPT and may lead to errors. A serial value of 1 is equal to 
1 day or a 24-hour period.
See Using date and time for more information about Corel 
SCRIPT and dates.



String data type
String data types are explicitly declared using the $ type 
declaration character or the STRING keyword. Strings can 
hold 0 to 32,765 characters. Characters include letters, 
numbers, punctuation, and spaces. Strings can use any of 
the 256 ANSI characters for Windows applications (code 0 to 
255).
See the Corel SCRIPT Character Map for more information.



Variant data type
Implicitly declaring a variable sets its type to Variant. You 
can also explicitly declare a variant using the VARIANT 
keyword. Variants can contain any other type of Corel SCRIPT
data, but do so in a less efficient manner than actually 
declaring a specific data type. Since variants use more 
storage space than other data types, it is advisable to 
explicitly declare a variables type. This can help speed up 
long or recursive scripts. See Variants for more information.



Corel SCRIPT type declarations 
Data Type Name Chara

cter
INTEGER %
LONG &
SINGLE !
DOUBLE #
CURRENCY @
STRING $
BOOLEAN None
DATE None
VARIANT None

Corel SCRIPT naming convention
The following rules should be kept in mind when naming variables, constants, functions, subroutines, 
parameters, and arrays:

Names can be made up from any combination of letters in the alphabet (both lowercase and uppercase), 
the numbers 0 through 9, and the underscore character (_). The initial character must be a letter or the underscore 
character, and can be followed by any combination of letters, numbers, and the underscore character. The following
are all valid names:

x, X123, Corel_6, TheFunction, a1B2, This_is_a_SUB, ThisIsAConstant, My_2_ARRAY
Names are not case sensitive. For example, the name ABC is the same as abc, Abc, aBC, and so on.
The maximum length of a name is 256 characters. 
All names must be unique in a script file. See Reserved Words for a complete listing of words that can't be 

used as a name.
 Names cannot include spaces. 



Variants
Corel SCRIPT variables take on the variant data type if they're implicitly declared; that is, not declared using the 
DIM, GLOBAL or STATIC statements, or a type-declaration character. The variant data type can contain, or 
hold, all other Corel SCRIPT data types. The Corel SCRIPT data types, when used with variants, are called data 
subtypes. For information on the other data types in Corel SCRIPT, see the Corel SCRIPT data type summary.
The subtype that a variant uses depends on the precision of the expression used to set the variable's value. The 
highest precision data type used in the expression assigning a value to a variant becomes the variant's data 
subtype. For example, in the following script statements, X is declared as an integer and Y is declared as a long.  
The last line creates a variant variable Z of subtype long, since the highest precision in the numeric expression 
of X + Y is long. 
DIM X%   
DIM Y&   
X = 2    
Y = 40000  
Z = X + Y
A variant's subtype does not change unless an expression using a higher precision is used to set the variant's 
numeric value. If the above example was continued, and the following statements are executed, the variant 
variable's subtype would be reset to a single.
W! = 1.1 ' w is set as a Single
Z = Z + W
The first line creates the variable W of single type. The second line adds W to Z, changing its precision and 
subtype from long to single. 
If you assign a whole number to an undeclared variable, or a fractional number to an undeclared variable, the 
resulting variant is set to long type or double type, respectively. For example,
A = 3     'sets A as variant of type long
B = 3.3   'sets B as variant of type double
For more information about how variants are used in numeric expressions, see Precision in expressions using 
mixed data types. 
Empty variant types
In addition to the variants holding all other Corel SCRIPT data types, they can also hold the Empty subtype. A 
variant uses the Empty subtype if the variant is explicitly declared using the VARIANT data type name, or by 
using the SETEMPTY statement. An Empty variant contains no valid data in both a numeric and string context.
Note

You can determine a variant's subtype by using the GETTYPE function.
Using variants instead of explicitly declared data types can slow down the execution of a program because 

of all the data types, variants use the most memory. See Corel SCRIPT data type summary for more information.
Since Corel SCRIPT, by default, sets implicitly declared variables to the variant type, there is no need to 

explicitly declare a variable as a variant, unless you want to format your script for better readability.
Once a variable has been created, its type cannot change. However, you can convert a variable to another 

type by creating another variable. See the following statements for more information: CBOL, CCUR, CDAT, CDBL, 
CINT, CLNG, CSNG, and CSTR. 

Any implicitly declared variable is local to the procedure it was declared in. See Variable availability for 
more details.

Explicitly declaring variables can make your scripts, especially long and complicated scripts, easier to read 
and modify. 

{button ,AL(`setempty;gettype;all_vars;dim;gettype;precision_expressions;;;',0,"Defaultoverview",)
} Related Topics



Strings
In Corel SCRIPT, a string is the only data type that is not numeric; that is, a string is a series of characters that is 
treated as a unit of information. Strings are explicitly declared using the $ suffix or the data type name STRING. 
Strings must be enclosed in double quotation marks, and can hold up to 32,765 characters including lower and 
uppercase letters, numbers, and punctuation marks. Strings can use any of the 256 ANSI characters for Windows
applications (code 0 to 255).
The following example declares the string variable stringVar$:
stringVar$ = "This is a sample string."
Special Characters
Punctuation and certain character codes for items such as tabs and hard returns cannot be directly entered 
within a string's double quotation marks. The CHR function is often used to add these special characters. For 
example, to add double quotation marks to a string variable, use character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use this function to add a return and a line feed within a string, with character 13 and 10, 
respectively:
s$ = "String 1" + CHR(13) + "String 2"
MESSAGE s$
The result will be the two strings on separate lines, as displayed in the message box.

See the Corel SCRIPT character map or CHR for more information about using special characters in strings.

{button ,AL(`cs_strings_fns;using_variables;corel_script_data_type_summary;;;',0,"Defaultoverview",
)} Related Topics



Constants
A constant is a data item that does not change for the duration of a script run. Using a constant instead of a 
variable ensures that you don't accidentally change a value. 
The two following script statements each create a constant (NATURAL_LOG and PI):
CONST NATURAL_LOG# = 2.71828182845 'creates a constant for the base of the natural logarithm
GLOBAL CONST PI# = 3.14 'creates a global constant for pi
By giving your declared constants meaningful names, you can also make your scripts easier to read and debug. 
Constant availability
Corel SCRIPT scripts are comprised of three types of procedures:

main section of a script 
user-defined functions (more than one can exist)

 user-defined subroutines (more than one can exist)
The availability of a constant is dependent on the procedure the script is executing. The following explains the 
levels of constant availability in Corel SCRIPT:

Global constants are available anywhere in a running script, but they and their values cease to exist 
when the script stops running. Global constants are created in the main section of a script and cannot be created 
within a subroutine or a function. However, they can be used in the execution of any subroutine or function. 

 Local constants are available in the procedure in which they are declared. If declared in a subroutine or 
a function, a local constant ceases to exist after the procedure finishes execution and is re-created the next time 
the subroutine or function is called. 

Note
You can have constants with the same name in a script, but they cannot exist in the same script procedure.

For example, you can have a constant called ABC in a function and in the main section of a script, but you cannot 
have two ABC constants in the main section of a script. 

Your function and subroutines procedures should be self-contained. A constant required only within a 
procedure should be a local constant. Following this advice can make your procedures more modular, enabling you 
to copy them to other scripts with limited customization.

It is a generally accepted programming convention to put constant declaration statements at the 
beginning of a script's main section, subroutines, or functions.

{button ,AL(`using_variables;const;DEFINE;;;;',0,"Defaultoverview",)} Related Topics



Operators
An operator is a symbol or word that performs a function on one or more expressions. Operators compare 
expressions, link words together, and perform mathematical functions. 
Corel SCRIPT supports the following operators:

Arithmetic
Assignment
Bitwise
Concatenation
Logical
Relational
Unary

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Operator precedence in Corel SCRIPT
In Corel SCRIPT, expressions with more than one operator are evaluated by a predetermined order of execution, 
known as operator precedence. Operations with a higher precedence are followed by operations with a lower 
precedence. Operators with the same precedence are evaluated left to right.
Operations within parentheses are evaluated before operations outside of parentheses. Operators and 
expressions nested with parentheses are evaluated from the innermost to the outermost. 
The following table lists the order of precedence from the highest to the lowest:
The following table shows operator precedence, which is applied to expressions with two or more operators.
Order Operator
1 parentheses ( )
2 unary +, unary - , NOT
3 exponentiation (^)
4 multiplication (*), division (/)
5 integer division (\\)
6 modulus (MOD) 
7 addition (+), subtraction (-)
8 shift left (<<), shift right (>>)
9 concatenation + , &
10 relational operators ( =, <>, >, <, =>, >=, <=, =< ) 
11 AND
12 OR
13 XOR
14 EQV
15 IMP

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Expressions
Variables and constants are joined by operators to form expressions. Expressions often compute values that 
determine how control statements direct script execution. There are two main types of expressions in Corel 
SCRIPT: numeric and string.
Numeric expression
A numeric expression is a combination of numeric constants or variables, or a combination of the two joined by a
operator.    A numeric operator is a word or symbol that operates on numeric data. Given that x equals 3, the 
following examples are valid numeric expressions.
5 
Numeric constant.
X
Variable containing a numeric value.
x * 5
Expression that uses an arithmetic operator to multiply x and 5.
+5
Unary plus constant.
-(x + 10)
Unary minus expression (negate the result of x plus 10).
String expression
A string expression is a combination of the two concatenated by the plus operator (+), or a combination of the 
two separated by the minus operator (-), or compared by a relational operator such as > (greater than).    String 
constants and strings variables must be enclosed in double quotation marks. The following examples are valid 
string expressions (notice the space after Joe and before Jr.).
"John Doe"
String constant
z = "Joe " & " Doe"
String expression assigned to variable z (z equals "Joe Doe").
x = z & ", Jr."
String expression assigned to variable x (x equals "Joe Doe, Jr").
Note

You can use scientific notation to express numbers. For example, 123.45E3 equals 123,450.

{button ,AL(`using_strings;variants;Using_Variables;Using_constants;Using_operators;Using_arrays;'
,0,"Defaultoverview",)} Related Topics



Numeric expression
In Corel SCRIPT, a numeric expression is a combination of numbers, variables, constants, functions, and 

operators that return a number. 
String expression

In Corel SCRIPT, a string expression is a combination of literals, string variables, string constants, and 
string operators that return a string. 



Precision in expressions using mixed data types
A variable's data type determines the type of data a variable can hold. Each data type has a level of precision 
associated with it. The following is a list of all the Corel SCRIPT data types in order from the lowest to the highest
level of precision:
String
Boolean
Integer
Long
Single
Double
Date
Currency
Variant 
In operations of mixed data types, all data types are temporarily converted to the data type with the highest 
level of precision. For example,
DIM A%   'declares A as an integer
DIM C!   'declares C as a single
A = 3    'assigns the value of 3 to A
C = 3.6  'assigns the value of 3.6 to C
E = A * C
In the above example, A is declared an integer and is set to 3. The variable C is declared a single and is set to 
3.6. The last line implicitly declares the variable E and assigns it the product of A and C. Since the value with the
highest level of precision on the right side of the equal sign is a single, E is declared a variant of the    subtype 
single. 
The following are exceptions to the rule of highest precision:

Concatenation operator (&) 
Since the concatenation operator & is a string-only operator, data is converted to strings before the 
concatenation occurs. For example, if you concatenate a string and a number, the number is converted to a 
string. 
x  =  "A" & 1
x equals the string "A1"

Division operator (/) 
The division operator is a fractional operator meaning that all non-fractional data type operands are temporarily 
converted to the double data type.
DIM A%   'declares A as an integer
DIM C&   'declares C as a long
A = 3    'assigns the value of 3 to A
C = 12   'assigns the value of 12 to C
E = C / A
In the above example, A is declared as an integer and is set to 3. The variable C is declared as a long data and is
set to 12. The last line implicitly declares the variable E and assigns it the result of C divided by A. Since both A 
and C are temporarily converted to the double data type, E is declared a variant of the subtype double. 

Non-fractional operators 
Integer division (\), right shift (>>), and left shift (<<) are non-fractional operators. All non-whole number 
operands that use these operators are temporarily converted to a long data type before the operation is 
executed.

Relational operators 
Relational operators ( >, <, >=, <=, <> and = ) are used to compare two operands (numeric or string 
expressions). However, relational operators can only return a Boolean result  TRUE (-1) or FALSE (0). Click 

 for more information about relational operators.
Variants 
Certain operations may promote a variant's subtype to a higher type. Corel SCRIPT attempts to promote a 
subtype to prevent an overflow error from occurring. Overflow errors occur when a variable is assigned a value 



outside of its data type range. For example, if a variant of subtype integer is assigned the value 33,333, Corel 
SCRIPT attempts to promote the subtype to a long. The following table lists the data subtypes Corel SCRIPT can 
promote.
Original subtype Promoted subtype level
String Overflow error (no subtype promotion)
Boolean Overflow error (no subtype promotion)
Integer Long
Long Double
Single Double
Double Overflow error (no subtype promotion)
Date Overflow error (no subtype promotion)
Currency Overflow error (no subtype promotion)
See Corel SCRIPT data type summary for more information about a data type's valid value range.
Note

In expressions, a whole number is treated as a Long while a fractional number is treated as a Double. To 
treat a whole number as an Integer, use the data type character %. For example, 123%. To treat a fractional 
number as a Single, use the data type character !. For example, 123.45!. 

You can also treat a fractional number as Currency by using the data type character @. For example, 
123.45@.

{button ,AL(`variants;Variable_availability;Explicitly_declaring;Implicitly_declaring;cs_expressions;;',
0,"Defaultoverview",)} Related Topics



Arrays
An array is a variable type containing a group of values of the same data type in an ordered list format. For 
example, the following Corel SCRIPT statements declare and assign values to the string array color:
DIM color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
To use an array, you must address a specific element of the array. For example, to use the fourth string in the 
array mentioned above, you would use the variable color$(4). 
Arrays are useful in defining control values in Corel SCRIPT dialog list boxes and with the FOR...NEXT 
statements.
In the following example, the FOR...NEXT loop is used to assign the numbers 1 through 50 to the corresponding
elements of an integer array:
DIM numberArray%(50)
FOR i% = 1 TO 50

numberArray%(i%) = i%
NEXT i%

Note
Arrays are created with the DIM (for "dimension") statement.
Arrays can only hold one data type. Click 

 for more information about data types.
See Multi-dimensional arrays to create arrays of more than one dimension.
You can change the number of elements in an array by using the REDIM statement.
You can only assign values to existing array elements. The following example will cause an error:
DIM A$(10)       'creates a string array of 10 elements
A$(11)="string value"       'attempts to assign a value to A's eleventh array element

{button ,AL(`REDIM;listbox_example;FOR_NEXT;DIM;LBOUND;UBOUND;multi_dimensional_arrays;',0,
"Defaultoverview",)} Related Topics



Multi-dimensional arrays
For multi-dimensional arrays
DIM array_name{%|&|!|#|@|$} (l_bound TO u_bound, l_bound TO u_bound, ...)
DIM array_name(l_bound TO u_bound, l_bound TO u_bound, ...) AS type

Corel SCRIPT also features multi-dimensional arrays to create tables with more than one column. 
Syntax Definition
array_name{%|&|!|#|@|$} Specifies the name of the array and follows the Corel SCRIPT naming convention. A

type-declaration character must follow the name in the case of an array.
array_name Specifies the name of the array and follows the Corel SCRIPT naming convention.
u_bound The upper bound of the array, expressed as an integer. If you do not use a TO 

clause to specify the number of array elements, the default (1 TO u_bound) is 
used. 

l_bound The lower bound of the array, expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO u_bound) is 
used.

type Declares the variable's or array's type with a type declaration name.

{button ,AL(`using_arrays;dim;lbound;ubound;;',0,"Defaultoverview",)} Related Topics



Example for multi-dimensional arrays
The three following examples create 6-by-6 arrays containing 36 elements:
DIM array1$(6, 6)
DIM array2!(-2 TO 3, 2 TO 7)
DIM arr%(0 TO 5, 0 TO 5)  
The last example shows how you can use multi-dimensional arrays. If you were to display arr% as a table, it 
would look like this:

The cells represent array elements and the numbers represent the array index numbers or subscripts. For 
example, the cell (5, 3) represents arr%(5, 3) which represents two integer variables. 
The following example creates Pascal's Triangle in a message dialog box using a multi-dimensional array and the 
FOR...NEXT loop. (Pascal's Triangle is a triangle array of integers in which each number is the sum of the 
numbers above it in the preceding row. The apex of the triangle is 1.)

DECLARE FUNCTION factorial%(a%) 'create an integer formula
DIM arr%(0 TO 5, 0 TO 5)  'this is a 6 by 6 array

FOR i% = 0 TO 5
FOR j% = 0 TO 5

arr(i, j) = factorial(i) / (factorial(j)*factorial(i-j))
NEXT j

NEXT i
'
FOR i% = 0 TO 5

FOR j% = 0 TO 5
IF j <= i THEN mess$ = mess$ + CHR(9) + CSTR(arr(i, j))

NEXT j
mess$ = mess$ + CHR(13)

NEXT i
MESSAGE mess$
'
FUNCTION factorial%(a%)

temp% = 1
IF a > 0 THEN

FOR lop% = 1 TO a
temp% = temp% * lop

NEXT lop
END IF
factorial = temp

END FUNCTION

{button ,AL(`example_dim;dim;ubound;lbound;;using_variables;using_arrays;',0,"Defaultoverview",)
} Related Topics



Script procedures
A simple Corel SCRIPT script executes in a linear manner:    each statement is executed on a line-by-line basis up 
to the last script statement. If you have a group of instructions that will be repeated in a script, create a user-
defined procedure (function or subroutine) for those instructions. The instructions are written once in the script, 
and can be called from different places within the script. If the instructions are changed, the changes take effect 
everywhere. Using these user-defined procedures can make your scripts easier to change and debug.
Corel SCRIPT scripts are comprised of three types of procedures:

main section of a script (one per script)
user-defined functions (optional and more than one can exist)

 user-defined subroutines (optional and more than one can exist)
Functions and subroutines are groups of Corel SCRIPT statements that are executed when the procedure is called
by another Corel SCRIPT statement. Both types of procedures are useful in cases where a group of instructions 
will be repeated. The instructions are written once in the script, and can be called from different places within 
the script or with different parameters. You can have more than one of each type of procedure in a script.
Although, user-defined subroutines and functions are both Corel SCRIPT procedures that execute instructions, 
functions can also be used to return values to a script that can be either assigned to a variable or compared with
other expressions. 
Note

Your function and subroutines procedures should be self-contained; a variable is only required within a 
procedure should be a local or static variable. This will make your procedures more modular, enabling you to copy 
them to other scripts with limited customization.

You can also use the GOSUB statement to create a simple subroutine.

{button ,AL(`function_end_function;sub_end_sub;goto;gosub_return;const;global;call;Variable_avail
ability;Using_functions_subroutines;Executing_script_files;declare;',0,"Defaultoverview",)} Related 
Topics



User-defined functions
User-defined functions can have zero or more parameters which receive values from a function calling 
statement. Functions can also be used to return a value. Function names follow the Corel SCRIPT naming 
convention. The following rules apply to functions:

Functions begin with the word FUNCTION and end with END FUNCTION.
Functions do not execute unless called.
Calling statements consist of a function name, which can be followed by zero or more parameter values 

that pass to the function. If there are no parameters, empty parentheses must follow the function name. Optionally,
you can use the CALL to call a user-defined function.

The number of parameters in a calling statement must match the number of function parameters.
Functions can be defined anywhere in a script except inside another procedure.
Functions can be called from a procedure, or a function can call itself (functions are recursive).
Global variables can be used in any script user-defined procedure. Local variables are only available in the 

user-defined subroutine they are declared in. See Variable availability for    more information about using variables 
in user-defined subroutines.

Functions can include line labels, or line numbers which are not available outside the subroutine. For more 
information about line labels and line numbers, see the GOTO statement.

{button ,AL(`Passing_parameters;;;;;',0,"Defaultoverview",)} Related Topics



User-defined subroutines
User-defined subroutines can have zero or more parameters, which receive a value from a subroutine calling 
statement. A subroutine cannot return a value. Subroutine names follow the Corel SCRIPT naming convention. 
The following rules apply to subroutines:

Subroutines begin with the word SUB and end with END SUB.
Subroutines cannot execute unless called. 
Calling statements consist of a subroutine name, which can be followed by zero or more parameter values 

that are passed to the subroutine. Optionally, you can use the CALL statement to call a user-defined subroutine.
The number of parameters in a calling statement must match the number of subroutine parameters.
A subroutine can be defined anywhere in a script, except inside another procedure.
Subroutines can be called from a procedure, or a subroutine can call itself (recursive).
Subroutines can include line labels, or line numbers which are not available outside the subroutine. For 

more information about line labels and line numbers, see the GOTO statement.
Global variables can be used in any script user-defined procedure. Local variables are only available in the 

user-defined subroutine they are declared in. See Variable availability for    more information about using variables 
in user-defined subroutines.

You can also use the GOSUB statement to create a simple subroutine that doesn't use parameters.

{button ,AL(`Passing_parameters;;;;;',0,"Defaultoverview",)} Related Topics



Flow control statements
Corel SCRIPT scripts generally execute in a linear manner; that is, in the order in which the script instructions are
listed. Flow control statements allow you to dictate how a script can be executed. Using flow controls can make 
your scripts more flexible and efficient. Two of the most important types of flow control statements in Corel 
SCRIPT are conditional statements and looping statements.
Conditional statements
Conditional statements execute other script statements, or a block of statements, when an expression meets a 
condition of TRUE or FALSE, or when a variable matches a constant. Conditional statements are useful when you 
want to provide a user with a list of options. Corel SCRIPT includes the following conditional statement 
constructs:
IF...THEN...ELSE...ENDIF
ON ERROR
SELECT CASE
Looping statements
Corel SCRIPT looping statements execute script instructions or blocks of script instructions a specified number of 
times, until an expression is TRUE, or while an expression is TRUE. Corel SCRIPT supports the following standard 
BASIC looping constructs:
DO...LOOP
FOR...NEXT
WHILE...WEND
Other flow control statements
You can use flow control statements to

Repeat statements while, or until, an expression meets a condition of TRUE or FALSE.
Repeat statements a specific number of times. 
Go to a different line in the script.
Terminate a script's execution.
Direct script execution to a Corel application.

{button ,AL(`cs_flows;using_operators;using_variables;;;',0,"Defaultoverview",)} Related Topics



Comments
You can use comments in a script to describe how the script works. If you plan on sharing your scripts with other 
users, include comments in the script to explain your techniques. Comments also help if you have to modify a 
script weeks after it is written.
To include a comment in a script, use the REM (for "remark") statement. The comment must stand alone on the 
line, and the REM must be at the beginning of the comment (spaces and tabs are ignored at the beginning of a 
line).
To include a comment on a line that also contains a script instruction, type an apostrophe (') after the instruction 
and type the comment after the apostrophe. The script compiler will ignore any characters to the right of an 
apostrophe, until it reaches the end of the line. The following example shows comments on every script line:
REM   The next 2 lines contains a comment
BEEP  'Sounds a computer beep
' This is the same as REM statement
To have a script description appear in your Corel application's status bar when a menu item or toolbar button 
assigned to the script is highlighted, make sure that the first line of the script contains a comment. For example,
REM Customization script
If the first line of the script is not the description, a default description will be used. Keep the description brief so 
that it fits on the status bar. When you save a recording, Corel SCRIPT adds two description lines at the top of the
script for you. (Not all Corel applications support recording commands.) If a script's first line, second line, or both 
are REM statements, the comments are also displayed in a Corel application's Run Script dialog box if the script 
is specified. 

{button ,AL(`REM;Formatting_a_script;;;;',0,"Defaultoverview",)} Related Topics



Using date and time
Corel SCRIPT provides statements, commands, and functions to manipulate dates and time. Dates are one of 
Corel SCRIPT's variable types. They are explicitly declared using the DATE keyword. Date variables hold date and
time values that range from 1 to 2958465 (as a serial number) or 31/12/1899 00:00:00.0000 to 31/12/9999 
23:59:59.9999 (as a date value). You can use dates outside this range, but they are not supported by Corel 
SCRIPT and can lead to errors in script execution.
Serial numbers represent both date and time values. Numbers to the left of the decimal represent days, and 
numbers to the right of the decimal represent time. If you omit decimal numbers, time is set to 12:00:00 A.M.
The following table shows examples of serial numbers using whole and decimal numbers to represent dates and 
time:
Serial number Date and time represented
1 December 31, 1899, 12:00:00 A.M.
2 January 1, 1900, 12:00:00 A.M.
2.25 January 1, 1900, 6:00:00 A.M.
16229.2292 June 6, 1944, 5:30:00 A.M.
23337.4375 November 22, 1963, 10:30 A.M.
25882.6701 November 10, 1970, 4:04:57 P.M.
35064.9999 December 31, 1995    11:59:59 P.M.
35065 January 1, 1996, 12:00:00 A.M.
35065.5 January 1, 1996, 12:00:00 P.M.

The following table shows the decimal value for the hours of the day:
Decimal serial number Hour of the day represented
.0 12 A.M.
.125 3 A.M.
.25 6 A.M.
.375 9 A.M.
.5 12 P.M.
.625 3 P.M.
.75 6 P.M.
0.875 9 P.M.
Each hour is approximately equal to .041666
Note

Formatting used to display dates and time is set in the Windows Control Panel. In Windows 95, see 
Regional settings for formatting information; in Windows NT, see International settings.

{button ,AL(`cs_date_time;Corel_SCRIPT_data_type_summary;;;;',0,"Defaultoverview",)} Related 
Topics



Assigning values to date variables
You have two options to assign a date and a time to a date variable. One option is to use the serial number. For 
example:
DIM myDateVar AS DATE
myDateVar = 35065.75
MESSAGE myDateVar 
In the above example, myDateVar is set to January 1, 1996, 6:00 P.M., as shown in the following message box:

The second option is to use a string to assign a date and a time to a date variable. The following examples all set
myDateVar to January 1, 1996, 6:00 P.M.: gargoyle
myDateVar = "01/01/96 18:00"
myDateVar = "January 1 1996 6:00 PM"
myDateVar = "1 January 96 6:00 PM"
myDateVar = "01-01-96 18:00"
The Corel SCRIPT date variable uses predefined logic to determine how to convert strings into dates. In 
ambiguous cases, for example, when a portion of a string could be a day, a month, or a year, Corel SCRIPT refers
to the system's date settings to determine how to convert the string. 
Note

Formatting used to display dates and time is set in the Windows Control Panel. In Windows 95, see 
Regional settings for formatting information; in Windows NT, see International settings.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics





Toolbars dialog box
You have complete control over your toolbars. With simple mouse actions, you can dock, undock, resize, and 
move your toolbars anywhere on the screen.
The Toolbars dialog box enables you to controls which toolbars are displayed on the screen at any given 
moment.

{button ,AL(`cs_custom_ov_cs;;;;;',0,"Defaultoverview",)} Related Topics



Displays the available toolbars. Enable the checkbox next to a toolbar to activate it. Click the toolbar's name tag 
to rename it.



Creates a new toolbar. Click Customize to add buttons to the new toolbar.



Deletes a custom toolbar, or resets a built-in toolbar.



Opens the Customize dialog box, where you can change the configuration of your toolbar buttons.



Click this button to change the size of the buttons on the toolbar and whether the popup window describing the 
function of the button displays when you rest the mouse pointer over it.



Drag the bar to change the size of the button.



Drag the bar to change the size of border around the toolbar.



Enable this option to display titles on floating toolbars.





Displays the system information for the chosen category.



Opens the System Info dialog box where you can get information about your system, display,    printing, Corel 
EXEs & DLLs and system DLLs.



Displays the disk space available on the drive where the program is installed. 



Displays the name of the registered user and the serial number.



Displays copyright information.



Displays the version of the product currently installed. 



Displays the name of the product.



Double-click to open the credits window. To exit the credits and return to your program, click the ESC button.



Provides a list of system information categories. Click one of the following:
System Displays information about your computer For example, Windows version or 

processor.
Display Displays information about your monitor. For example, driver,or driver 

version.
Printing Displays information about installed printers.
Corel EXEs and 
DLLs

Displays information all of the Corel EXEs and DLLs.

System DLLs: Displays all of the system DLLs.

Saves all system information as SYSINFO.TXT. Once it's saved, a message box appears informing you of the 
location of the saved file.
Double-click to open the credits window. To exit the credits and return to your program, click the ESC button.



Double-click to open the credits window. To exit the credits and return to your program, click the ESC button.



Displays information about the contents of the file.



Using the Corel SCRIPT online Help
If you want to learn how to record and playback your actions with a Corel application, see the Reference topic in 
your application's online Help. You can also learn how to save your recordings as scripts (sometimes called 
macros) and find out how to assign scripts to keystrokes, menus, and toolbar buttons.
This online Help can provide all the information you need if you're ready to go beyond the features noted above. 
This information is intended for both novice and experienced script or macro writers and programmers. The 
information is broken into the following categories:
Corel SCRIPT Basics
This section provides an overview of what Corel SCRIPT is and how you can use it. It also provides information 
regarding the syntax and documentation conventions used in Corel SCRIPT. 
Corel SCRIPT Concepts
This section introduces Corel SCRIPT programming language concepts. You should view this section if you are 
new to script writing. If you're an script writer or programmer, you may want to skip to the next section.
Corel SCRIPT application commands and functions &
Corel SCRIPT programming statements and functions
These two sections explain the syntax and purpose of all Corel SCRIPT application commands and programming 
statements.
Corel SCRIPT Editor
Explains the features of the Corel SCRIPT Editor and how it can be used to quickly create and edit your scripts. 
This section also explains about creating and editing custom dialog boxes.
Custom dialog boxes
This section explains how to use custom dialog boxes in your scripts.
How to
Provides procedural information for using the Corel SCRIPT Editor and creating and editing custom dialog boxes.
Advanced Corel SCRIPT features
Describes the advanced features available in Corel SCRIPT to develop and use DLLs and executables. This 
section is aimed at experienced Windows programmers and third-party developers.
Reference
Provides reference information such as error codes, warning messages, character map and a glossary.
Note

*Corel DRAW 6 doesn't support recording commands and actions but you can write scripts for it.

{button ,AL(`Documentation_syntax_conventions;online_program_cs;online_application_cs;;;',0,"Def
aultoverview",)} Related Topics



What's new in Corel SCRIPT 7.0
This topic outlines the changes to Corel SCRIPT since the release version 6 which was included with CorelDRAW 
6, Corel PHOTO-PAINT 6, CorelFLOW 3, and CorelCAD 1. Click the  buttons to find out more about the changes.
Corel SCRIPT Editor changes

The Corel SCRIPT Editor and the Corel SCRIPT Dialog Editor have been combined into one application, 
making it even easier to include custom dialog boxes in your scripts. 

Corel SCRIPT commands, functions and statements can be continued over multiple lines by using two 
backslashes (\\).

In addition to line labels, Corel SCRIPT has added support for line numbers. 
Scripts can now be assigned in the Corel SCRIPT Editor to a menu command, a shortcut key, or a toolbar 

button.
The Corel SCRIPT Editor now uses color coding to make the script syntax easier to read and understand.
Each line in a script can now hold 1,024 characters (including spaces). In Corel SCRIPT 6, each line could 

only hold 255 characters.
You can terminate a script's execution by pressing CTRL+BREAK. 
Corel SCRIPT now supports application commands and functions for the Corel SCRIPT Editor. This means 

that you can now create scripts to create and modify other scripts.
Scripts can be compiled into executable programs.

Modified Corel SCRIPT programming statements and functions
The DECLARE statement does not have to precede a FUNCTION or SUB statement.
The EXIT statement can now also be used with the SELECT CASE and WHILE...WEND structure.
The syntax for the PRINT and WRITE statements has changed.
The syntax for the GETFILEBOX statement has changed.

New Corel SCRIPT programming statements and functions
You can create dynamic dialog boxes in Corel SCRIPT. For a list of functions to use with the dynamic dialog 

boxes, click 
.

Six new dialog controls for custom dialog boxes have been added to Corel SCRIPT: bitmap button, progress 
indicator, horizontal and vertical slider, and status control. 

Four operators added to Corel SCRIPT: EQV and IMP operators (bitwise and logical), and    << (Shift Left) 
and    >> (Shift Right) bitwise operators.

New Corel SCRIPT data type: VARIANT.
Three new Corel SCRIPT predefined dialog boxes have been added.

New Corel SCRIPT statements and functions summary
ADDFOL
ADDRESBMP
BEGINWAITCURSOR
BITMAPBUTTON
BUILDDATE
BUILDTIME
DEFINE
ENDWAITCURSOR
FORMATDATE
FORMATTIME
GETCOLOR
GETCOMMANDLINE
GETCURRDATE
GETCURRFOLDER
GETDATEINFO
GETFOLDER
GETFONT
GETPROCESSINFO
GETSCRIPTFOLDER
GETTEMPFOLDER
GETTIMEINFO
GETTYPE
GETVERSION
GOSUB
RETURN
HSLIDER
INCLUDE
PROGRESS



REDIM
REGISTRYQUERY
SETCURRDATE
SETCURRFOLDER 
SETEMPTY
STATUS
STARTPROCESS
UNDEF
VSLIDER

Deleted Corel SCRIPT statements and functions
The CURRFOLDER statement has been replaced with the GETCURRFOLDER and SETCURRFOLDER 

statements. 
The CURRDATE statement has been replaced with the GETCURRDATE and SETCURRDATE statements. 







 New (File menu)
Opens a new untitled script window. 



 Open (File menu)
Opens the Run Script dialog box which is used to open a saved script file. The default folder and drive are shown,
but you can open a script file in any drive or folder. 



Close (File menu) 

If a script window is active:

Closes the active script window. If your changes have not been saved, you are prompted to save before exiting.
If a dialog window is active:

Closes the active dialog window.



 Save (File menu)
If a script window is active:

Saves the script in the active window. If the script window is untitled, the Save As dialog box appears.
If a dialog window is active:

Saves the script in the window that launched the active dialog window. If the script has never been saved, the 
Save As dialog box appears.



 Save As (File menu)
If a script window is active:

Saves the script in the active window for the first time, or saves the script in the active window with a new name.
If a dialog window is active:

Saves the script in the window that launched the active dialog window for the first time or with a new name.



 Save All (File menu)
Saves all open scripts in the Corel SCRIPT Editor.



 Export Dialog (File menu)
Closes all open script windows and dialog windows, and the Corel SCRIPT Editor. If you have not saved your 
scripts, you are prompted to save before exiting.



 Print (File menu)
Opens the Print dialog box, which is used to print and set printing options. If the lines in your script are long, use 
the Print Setup command to set your printer to landscape orientation before printing a script.



 Print Setup (File menu)
Opens the Print Setup dialog box, which allows you to choose the printer and printer options.



 Print Direct (File menu)
Prints a copy of the active script using the current print settings. If the lines in your script are long, use the Print 
Setup command to set your printer to landscape orientation before printing a script.



 Make EXE (File menu)
Creates a Corel SCRIPT executable from a script. An executable is an application that runs without opening or 
starting the Corel SCRIPT Editor, or any other Corel application. Click  for more information.



 Make DLL (File menu)
Creates a Windows dynamic link library (DLL) from a script. DLLs contain a library of functions that can be loaded
by Corel SCRIPT or other applications at run time. Click  for more information.



 Make CAO (File menu)
Creates a Corel Add-on (CAO) file from a script. Corel Add-ons are programs that add custom features to Corel 
applications. Third-party software developers are making Add-ons commercially available to meet the specialized
needs of Corel users. Click  for more information.



 Make CSB (File menu)
Creates a Corel SCRIPT Binary (CSB) file from a script. Unlike script files, binary files are compiled into machine 
language and don't have to be re-compiled each time they are run. Click  for more information.



Recently Opened Files (File menu)

Opens a recently opened Corel SCRIPT script file.



Exit (File menu)

Closes all open script and dialog windows, and the Corel SCRIPT Editor. If you have not saved your scripts, you 
are prompted to save before exiting.





 Undo (Edit menu)
Reverses actions performed during the current session. Use Undo after making a change you do not want 
implemented. Immediately after choosing Undo, the Redo command becomes available, allowing you to restore 
changes reversed by the Undo command.



 Redo (Edit menu)
Restores changes reversed by the Undo command. Redo becomes available immediately after you choose the 
Undo command. 



 Cut (Edit menu)
If a script window is active:

Cuts selected text from a script and places it on the Clipboard.
If a dialog window is active:

Cuts the selected dialog box, controls, or both from a dialog window and places them on the Clipboard as Corel 
SCRIPT statements.
Note

You can cut dialog control statements from a script and paste them into a dialog window.



 Copy (Edit menu)
If a script window is active:

Copies selected text from a script and places it on the Clipboard.
If a dialog window is active:

Copies the selected dialog box, controls, or both from a dialog window and places them on the Clipboard as Corel
SCRIPT statements.
Note

You can copy dialog control statements from a script and paste them into a dialog window.



 Paste (Edit menu)
If a script window is active:

Pastes text from the Clipboard at the insertion point. If you've selected text in a script, it is overwritten with the 
Clipboard contents.
If a dialog window is active:

Pastes Corel SCRIPT dialog control statements into the dialog box in the active dialog window from the Clipboard.
A pasted control retains the original's label, identifier, size, and position attributes. 
Note

If you try to paste Clipboard contents into a dialog window that contains invalid dialog definition 
statements, you are prompted to either ignore the statement that contains the invalid dialog definition statement, 
or create a new dialog box.



 Delete (Edit menu)
If a script window is active:

Deletes selected text from a script. If no further action has been performed, you can restore deleted text using 
the Undo command. Instead of deleting text, you can cut it. Cutting text transfers it to the Clipboard.
If a dialog window is active:

Deletes selected controls. If no further action has been performed, you can restore a deleted object using the 
Undo command. Instead of deleting a control, you can cut it. Cutting a control transfers it to the Clipboard as a 
Corel SCRIPT statement.



 Duplicate (Edit menu)
Adds a copy of selected control(s) to the active dialog box. By default, the copy is placed on top of the original, 
and offset down and to the right by 3 dialog units. 
Note

The copied control(s) takes on the default control label and identifier. If you copied the control, the 
original's label and identifier are also copied.



 Attributes (Edit menu)
Opens the Attributes dialog box for the selected dialog box, controls, or both. You can edit labels, identifiers, 
dialog and control size, and position attributes from the Attributes dialog box. 



 Select All (Edit menu)
If a script window is active:

Selects all the text in the active script window. 
If a dialog window is active:

Selects the dialog box in the active dialog window and every control in the dialog. The last control selected has a
dotted line border.



 Comment (Edit menu)
Places a REM statement at the beginning of a selected line in a script. Script lines beginning with REM 
statements are ignored during script execution. 
Note

You can use this feature during debugging sessions to convert script syntax into remarks so they will be 
ignored during script execution.

Use the UnComment command to remove REM statements from selected lines in a script.



 UnComment (Edit menu)    
Removes REM statements from selected lines in a script.



 Cancel (Edit menu)
Cancels an editing action in a dialog window, such as moving a control. It also unselects all selected controls 
including the dialog box.



 Clear Output (Edit menu)
Clears the Compiler Output Window in a script window of all information.





 Find (Search menu)
Searches for specified text from the insertion point. You can set the search direction, match the case, and match 
entire words.



 Replace (Search menu)
Searches for and replaces specified text from the insertion point. You can set the search direction, match the 
case, and match entire words.



 Go To Line (Search menu)
Opens a dialog box that lets you choose the line to go to in a script. The status bar displays the line where the 
insertion point rests.



 Next Error (Search menu)
Sends the insertion point to the next line in a script containing an error. The line where the insertion point is sent 
has the  symbol displayed in its left margin. 
Before running this command, the Compiler Output window must display at least one error message and the 
insertion point must be in the script window. 



 Previous Error (Search menu)
Sends the insertion point to the previous line in a script containing an error. The line where the insertion point is 
sent has the  symbol displayed in its left margin. 
Before running this command, the Compiler Output window must display at least one error message and the 
insertion point must be in the script window. 



 Go To Error (Search menu)
Sends the insertion point to the line containing the error. The insertion point must first be placed in an error line 
in the Compiler Output window. This command is also available with a right-mouse click.





 Watch Window (View menu)
Opens and closes the Watch window. The Watch window monitors the value of specified variables in a script 
during a debugging session. The Watch window can be resized by clicking on a border and dragging.



 Compiler Output Window (View menu)
Opens and closes the compiler output window. Before a script is run, it is compiled into an executable program. If
errors during compilation occur, they are displayed in the Compiler Output window. The window updates each 
time a script is played or checked for syntax errors. The Compiler Output window can be resized by clicking on a 
border and dragging.



 ToolBars (View menu)
Displays or hides toolbars, creates new toolbars, resets them to their original settings, adds or removes buttons 
and changes the button size.



 Status Bar (View menu)
Toggles to display or the status bar found at the bottom of the Corel SCRIPT Editor. The status bar displays:

menu messages
the coordinates of the mouse pointer in a dialog box
status of NUM lock and CAPS lock
the location of the insertion point in a script window in terms of lines and columns



 Properties Bar (View menu)
Toggles the display of the Properties Bar in a dialog window. The Properties Bar displays attribute information 
about a selected control and can be used to edit dialog boxes and control attributes.



 Controls List (View menu)
Toggles the display of the Controls List in a dialog window. The Controls List displays the order of the controls in a
dialog box and can be used to re-order controls.





 Run (Debug menu) 
Runs the script in the active script window in debug mode. Script execution stops at breakpoints, or when the 
end of the script is reached. Running a script in debug mode is noticeably slower than running a script with the 
Execute command.
If you're running a new script that has not yet been saved, you may be prompted to save before execution 
begins depending on your Corel SCRIPT Editor settings. See the How to section of the Corel Script help file for 
more information on automatically saving scripts before executing them.



 Restart (Debug menu)    
Stops and restarts script execution from the beginning. Variables are reset to their initial values. You can only use
this command when you've paused script execution by stepping or using breakpoints. 



 Reset (Debug menu)    
Ends script execution and resets variables to their initial values. You can only use this command when you've 
paused script execution by stepping or using breakpoints. 



 Step Into (Debug menu) 
Executes a script line-by-line. The Step Into command also steps into functions and subroutines to execute lin-by-
line. 
Note

The line with the 
 symbol in its left margin is the next line to execute.



 Step Over (Debug menu)    
Executes a script line-by-line. The Step Over command executes an entire procedure (a function or a subroutine) 
without stepping into the procedure's code.
Note

The line with the 
 symbol in its left margin is the next line to execute.



 Step Out (Debug menu) 
Executes the remaining lines in a function or subroutine, and returns and stops at the line after the procedure 
call. 
Note

The line with the 
 symbol in its left margin is the next line to execute.



 Run to Cursor (Debug menu) 
Runs the script in the active script window to the position of the insertion point. Since the insertion point acts as 
a breakpoint, using the Run to Cursor command is similar to using a breakpoint.



 Execute (Debug menu) 
Runs the script in the active script window. The Execute command ignores all debugging information including 
script breakpoints during script execution. To debug a script, click Debug, Run. Running a script in debug mode is
noticeably slower than running a script with the Execute command.

If you are running a new script that has not yet been saved, you may be prompted to save before execution 
begins, depending on your Corel SCRIPT Editor settings. See the How to section of the Corel Script help file for 
more information on automatically saving scripts before executing them.



 Toggle Breakpoint (Debug menu)    
Sets a breakpoint on the line the insertion point is placed on. Choose the command again to clear the 
breakpoint. Script execution stops at a breakpoint, and you can have more than one breakpoint in a script. 
Note

A line with a breakpoint has the 
 symbol in its left margin.



 Clear All Breakpoints (Debug menu)    
Clears all breakpoints in a script. Script execution stops at a breakpoint, and you can have more than one 
breakpoint in a script.
Note

A line with a breakpoint has the 
 symbol in its left margin.



 Check Syntax (Debug menu)    
Checks for syntax errors in a script. Common syntax errors include misspelling commands, missing operators, 
and missing punctuation. If errors are found, error messages appear in the Compiler Output window. 
Double-click an error message's line number in the Compiler Output window to send the insertion point to the 
line containing the error. The line with the error has the  symbol in its left margin after double-clicking.





 QuickWatch (Debug menu) 
Opens the QuickWatch dialog box to monitor the value of a variable in the script. If the cursor is planted in a 
word when this command is issued, the word is place in the QuickWatch dialog box's Variable box. You can also 
use the QuickWatch window to add watches in the Watch Window. This option is only available when you're 
debugging (for example, stepping) a script. 



 Remove Watch (Watch menu)
Removes the selected variable(s) from the Watch window.



 Remove All Watches (Watch menu)
Removes all variable(s) from the Watch window.



 Add Watch (Watch menu)
Adds a new variable to the Watch window. To use this command, plant the cursor the variable you want to add to
the Watch window.





 Dialog (Tools menu)
If your insertion point is in a dialog box definition, this command sends the script dialog box to a dialog window 
where the dialog statements can be edited. If the insertion point is not in a dialog box definition, a dialog window
also opens, containing an empty dialog box that can be edited. The BEGIN DIALOG and END DIALOG 
statements are also inserted into the active script.
As you edit the dialog box, the script that launched the dialog window reflects the changes you make to the 
dialog box. For example, if you add a check box to the dialog box, a CHECKBOX statement is added to the 
script.



 Test Dialog (Tools menu)
Sets the dialog box in the active dialog window to test mode. In test mode, you can confirm whether a dialog box
meets your requirements and functions properly. It is easier to test a dialog within the Corel SCRIPT Editor than 
to make it part of a script and test it by running a script. You cannot edit a dialog box in test mode. Press ESC to 
exit test mode. Pressing any push button or the Close Dialog button ( ) also exits test mode. 



 Grid Settings (Tools menu)
Opens the Grid Settings dialog box, where you can set the following options for all dialog windows:

Snap to Grid
Grid spacing
Grid display

Note
Grid measurements are expressed in dialog units.
To show the grid, enable Show Grid in the same dialog box.



 Customize (Tools menu)
Opens the Customize dialog box. This dialog box lets you customize Corel SCRIPT Editor's toolbars, menu 
commands, and shortcut key assignments.



 Options (Tools menu)
Opens a dialog box that modifies Corel SCRIPT Editor settings for script windows, colors, fonts, and INCLUDE files.



 Corel Application Launcher 
Launches installed Corel applications. You can also change the applications available on this button and add non-
Corel applications to it.





 Cascade (Window menu)    
Layers script windows so each title bar is visible. To activate a script window, click the title bar. Minimized 
windows are arranged at the bottom of the Corel SCRIPT Editor window. 



 Tile Horizontally (Window menu)      
Arranges the script and dialog windows horizontally in equal sizes to fit in the Corel SCRIPT Editor. Minimized 
windows are arranged at the bottom of the Corel SCRIPT Editor window.



 Tile Vertically (Window menu)
Arranges the script and dialog windows horizontally in equal sizes to fit in the Corel SCRIPT Editor. Minimized 
windows are arranged at the bottom of the Corel SCRIPT Editor window.



 Close All (Window menu)
Closes all script and dialog windows. If your changes have not been saved, a confirmation message appears.



 Arrange Icons (Window menu)
Arranges minimized script and dialog windows in the bottom-left corner of the Corel SCRIPT Editor.



 Always on Top (Window menu)    
Keeps the Corel SCRIPT Editor visible, even when another application is active. This is useful when you are 
debugging a script. Choose the command again to disable the setting.



Open document windows (Window menu)

Opens and activates script and dialog windows. The windows are listed in the order in which they were opened.





 Help Topics (Help menu) 
Opens the Corel SCRIPT Help Contents screen. From this screen, you can choose the type of Help you want. 
When you are in Help, click the Contents button to take you back to the opening screen. 



 What's This? command (Help menu)
Changes the cursor to the What's This cursor. Click this command, then click on an available menu command or 
another item on the screen to find out what it does.



 About Corel SCRIPT Editor (Help menu)    
Displays a dialog box with information about the version of Corel SCRIPT Editor you are running. Click the System
Info button to open the System Info dialog box, which displays information about your system settings.





 Selector (Control menu)

Sets the mouse pointer to the Selector state. In the Selector state, the mouse pointer appears as  and is used 
to select, resize, and drag and drop dialog controls. You can also select, move, and resize dialog boxes when in 
the Selector state. 

In the Control state, the mouse pointer appears as  and is used to create dialog controls. As soon as you 
create a tool, the mouse pointer resets to the Selector state. You can only set the mouse pointer to a Control 
state by clicking any of the dialog controls in the Control tool bar, or any control in the Control menu. The mouse 
pointer can only appear in a Control state when it is positioned over an active dialog box in a dialog window.



 Text (Control menu)
Sets the mouse pointer to the Control state so you can insert a Text control. In the Control state, the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Text Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Text Box control. In the Control state, the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



OK Button (Control menu)
Sets the mouse pointer to the Control state to insert an OK Button control. In the Control state, the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Cancel Button (Control menu)
Sets the mouse pointer to the Control state so you can insert a Cancel Button control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Push Button (Control menu)
Sets the mouse pointer to the Control state so you can insert a Push Button control. In the Control state the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Bitmap Button (Control menu)
Sets the mouse pointer to the Control state so you can insert a Bitmap Button control. In the Control state the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Option Button (Control menu)
Sets the mouse pointer to the Control state so you can insert an Option Button control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Check Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Check Box control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 List Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a List Box control. In the Control state, the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Drop-down List Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Drop-down List Box control. In the Control state, 
the mouse pointer appears as . You can insert a control by clicking or clicking and dragging in a dialog box.



 Combo Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Combo Box control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Drop-down Combo Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Drop-down Combo Box control. In the Control 
state, the mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog 
box.



 Group Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Group Box control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Spin Control (Control menu)
Sets the mouse pointer to the Control state so you can insert a Spin control. In the Control state, the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Horizontal Slider (Control menu)
Sets the mouse pointer to the Control state so you can insert a horizontal slider control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Vertical Slider (Control menu)
Sets the mouse pointer to the Control state so you can insert a vertical slider control. In the Control state, the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Progress Indicator (Control menu)
Sets the mouse pointer to the Control state so you can insert a Progress Indicator control. In the Control state, 
the mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Image List Box (Control menu)
Sets the mouse pointer to the Control state so you can insert a Image List Box control. In the Control state the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Image (Control menu)
Sets the mouse pointer to the Control state so you can insert a Image control. In the Control state the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Help Button (Control menu)
Sets the mouse pointer to the Control state so you can insert a Help button control. In the Control state the 
mouse pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



 Status control (Control menu)
Sets the mouse pointer to the Control state so you can insert a status control. In the Control state the mouse 
pointer appears as . You can insert a control by clicking, or by clicking and dragging in a dialog box.



Corel SCRIPT custom dialog box

Click Edit, Attributes to change the custom dialog box's properties.





 Align Control, Left (Layout menu)
Aligns selected controls along their left edge. More than one control must be selected to activate this command.
Note

The last control you select maintains its position; all other selected controls move to align with this control.



 Align Control, Right (Layout menu)
Aligns selected controls along their right edge. More than one control must be selected to activate this 
command.
Note

The last control you select maintains its position; all other selected controls move to align with this control.



 Align Control, Top (Layout menu)
Aligns selected controls along their top edge. More than one control must be selected to activate this command.
Note

The last control you select maintains its position; all other selected controls move to align with this control.



 Align Control, Bottom (Layout menu)
Aligns selected controls along their bottom edge. More than one control must be selected to activate this 
command.
Note

The last control you select maintains its position; all other selected controls move to align with this control.



 Distribute, Horizontal (Layout menu)
Spaces selected controls evenly across a dialog box. The selected controls are spaced evenly between the 
leftmost and rightmost borders of the selected controls.
Note 

More than two controls must be selected for this command to be active.



 Distribute, Vertical (Layout menu)
Spaces selected controls evenly down a dialog box. The selected controls are spaced evenly between the 
topmost and bottommost borders of the selected controls.
Note 

More than two controls must be selected for this command to be active.



 Center in Dialog, Horizontal (Layout menu)
Centers selected control(s) horizontally in a dialog box. The controls are centered horizontally based on the 
leftmost and rightmost borders of the selected controls.



 Center in Dialog, Vertical (Layout menu)
Centers selected control(s) vertically in a dialog box. The controls are centered vertically based on the topmost 
and bottommost borders of the selected controls.



 Make Same Size, Width (Layout menu)
Resizes selected controls to make them the same width. The last control you select maintains its width; all other 
selected controls resize to this control.



 Make Same Size, Height (Layout menu)
Resizes selected controls to make them the same height. The last control you select maintains its height; all 
other selected controls resize to this control.



 Make Same Size, Both (Layout menu)
Resizes selected controls to make them the same width and height. The last control you select maintains its 
width and height; all other selected controls resize to this control.



 Size to Content (Layout menu)
Resizes a control(s) to fit its label.
Note 

You can use this command on option buttons, check boxes, push buttons, and text.



 Snap to Grid (Layout menu)
Toggles to enable or disable Snap to Grid in all the dialog windows. If you are moving and resizing controls in a 
dialog box using the mouse, enabling Snap to Grid can help to accurately align and position objects along a grid. 
It also allows you to draw precisely-sized objects. 
Note

Snap to Grid can be enabled without showing the grid.







Displays a description for the selected Corel SCRIPT script. The description is stored in a script's first two lines as 
remark (REM) statements.





Dialog and Control Attributes dialog box
The following attributes for dialog boxes and controls can be edited in this dialog box:

Width (in dialog units)
Height (in dialog units)
X (left border position)
Y (top border position)
Center Dialog option
Value
Text
Comment 
Dynamic dialog box setting

The attributes become parameters when the dialog and the controls are saved as Corel SCRIPT statements. For 
reference information about a dialog control's attributes, click Related Topics.
Note

If you specify a text attribute with a string it must be enclosed with quotes. If you specify a text attribute 
with a variable, do not use quotes. For example, a check box has a text attribute. If you wanted to set it to DOG, 
you could either type the string "DOG" into the check box's text attribute box or create a string variable, assign it 
DOG, and type the string variable's name into the check box's text attribute box.

If the Center Dialog option is enabled when a dialog box is selected, the X and Y number boxes are grayed 
and cannot be edited. By default, a new dialog has the Center Dialog check box enabled.

You can select more than one control and open the Attributes dialog box. In this case, the title bar of the 
Attributes box displays "Multiple Selection Attributes", and allows you to edit all the selected controls at once. 

For example, if you select a check box and option button, you can set them both to have the same height and 
width. In some multiple selection cases, attribute options may be grayed and not available to edit.

To get information on an option in a dialog box, click 
, then click the option.

{button ,AL(`corel_script_dialog_control;corel_script_dialog_control_dynamic;;;;',0,"Defaultoverview"
,)} Related Topics



Provides a space for you to enter the width of the selected dialog box or control(s) in dialog units.



Provides a space for you to enter the height of the selected dialog box or control(s) in dialog units.



Provides a space for you to enter the distance in dialog units from the inside of the dialog box's left border to the
left side of the selected control(s). 
For dialog boxes, provides a space for you to enter the distance in dialog units from the dialog box's left border 
to the left side of the monitor's display area.



Provides a space for you to enter the distance in dialog units from the bottom of the dialog box's title bar to the 
top of the selected control(s).
For dialog boxes, provides a space for you to enter the distance in dialog units from the dialog box's top border 
to the top side of the monitor's display area. 



Centers the dialog box on the monitor during a script run. Ignores the entries in the X and Y boxes when enabled.



Provides a space for you to set a dialog box or dialog control(s) attribute. The attribute is dependent on the 
control(s) selected, or if a dialog box is selected. Click the Help button in this dialog box for a list of attributes.



Provides a space for you to set a dialog box or dialog control(s) attribute. The attribute is dependent on the 
control(s) selected, or if a dialog box is selected. Click the Help button in this dialog box for a list of attributes.



Provides a space for you to enter a comment (remark) for the selected dialog box or dialog control(s). The 
comment appears in the script to the right of the statement and is preceded by an apostrophe.



Provides a space for you to set a dialog box or dialog control(s) attribute. The attribute is dependent on the 
control(s) selected, or if a dialog box is selected. Click the Help button in this dialog box for a list of attributes.



Set this option to make your custom dialog box dynamic. As a dynamic dialog box, its content can change based 
on user input.





Go To dialog box
Specifies the line to move the insertion point to in the active script window. To get information on an option in a 
dialog box, click , then click the option.



Specifies the line to move the insertion point to in the active script window.





QuickWatch dialog box
The QuickWatch dialog box can be used to help you to debug your scripts in the following ways:

Monitor the value of a variable in the script. As you step through a script, the value in the QuickWatch 
window changes as the variable changes.

Add variables to the Watch window.
Change the value of a variable being watched.
Show the data subtype of a variant being watched. You can also change the variant's subtype using this 

dialog box. Click 
 for more information about variants.
Note

To get information about an option in a dialog box, click 
, then click the option.



Displays the variable or expression to watch.



Displays the current value of the specified variable or expression. You can change a variable's value during script
debugging by typing a value.



Adds the specified variable or expression to the Watch window. Also opens the Watch window, if it is closed.



Specifies the data type of the variable being watched.



Changes the value of the specified variable using the value in the Value box.



Click to change the data subtype of a variant being watched. Before clicking, select a subtype from the list box. 
Click  for more information about variants.



Displays the data subtype when a variant is being watched. Click  for more information about variants.





Options dialog box
The Options dialog box modifies the Corel SCRIPT Editor settings for script windows, colors, fonts, compiling, and 
files.
Editor tab:
Sets tab and autosave options in the Corel SCRIPT Editor.
Colors tab: 
Sets text and background display colors in the Corel SCRIPT Editor.
Font tab:
Sets display and print fonts in the Corel SCRIPT Editor.
Folders tab:
Sets the folders that are searched for INCLUDE files during a script compile. See the INCLUDE statement for 
more information.
Environment tab:
Sets whether to require explicit declaration of all variables. For more information about explicit declaration, click
.    
Note

To get information on an option in a dialog box, click 
, then click the option.





Enable to require explicit declaration of all variables. For more information about explicit declaration, click .



Enter a value to test the GETCOMMANDLINE function.





Specifies the tab spacing to use in scripts. Tabs can help you to format a script so it is easier to read and debug.



Specifies whether scripts should be saved before they are executed or run.



Specifies whether a new script line has the same number of tabs at its left side as the previous line after the 
ENTER key is pressed.





Enable to display color codes in script. Color codes help to differentiate the different items in a script. The items 
are listed in the Set Text Color For list box.



List the available text colors for the text items specified in the Set Colors For list box.



List the available background colors for the text items specified in the Set Colors For list box.



List the text items to set color attributes for.



Displays a color sample of the selected item in the Set Colors For list box.



Resets the text item specified in the Set Colors For dialog box to its original Corel SCRIPT Editor color.



Resets all text items in the Set Colors For dialog box to their original Corel SCRIPT Editor colors.





Displays the name of the font used in script windows.



Displays the point size of the font used in script windows.



Displays a sample of the font used in script windows.



Resets the font used in script windows to the original Corel SCRIPT Editor setting.



Opens a dialog box to change the font properties used in script windows.





Lists the folders to search for INCLUDE files. The folders are searched in the order in which they are listed. See 
the INCLUDE statement for more information.



Removes selected folders from the folder search list.



Opens a dialog box used to add folders to the folder search list.



Specifies the type of folders displayed in the folder search list. Currently, you can only display folders that 
contain script files (.CSC). See the INCLUDE statement for more information.



Specifies a folder to add to the folders list. Drive information should also be included.



Opens a dialog box used to select folders for the folders list.



Grid Setting dialog box
The Grid Setting dialog box sets options to help you to accurately align, size, and position controls.
Show Grid
Displays a series of dotted horizontal and vertical lines. Working with the grid on makes it easier to accurately 
align and position controls. 
The dots appear where the lines intersect. The Horizontal and Vertical number boxes set the line spacing.
Snap to Grid
Enabling Snap to Grid forces the mouse pointer to stay on the underlying grid when you insert, move, and resize 
controls.
Snap to Grid can be enabled without showing the grid.
Note

To get information on an option in a dialog box, click 
, then click the option.



Displays a series of dotted horizontal and vertical lines. Working with the grid on makes it easier to accurately 
align and position controls. The setting is applied to all dialog windows. 
The dots appear where the lines    intersect. The Horizontal and Vertical number boxes set the line spacing.



Enabling Snap to Grid forces the mouse pointer to stay on the underlying grid when you insert, move, and resize 
controls. The setting is applied to all dialog windows.
You can enable Snap to Grid without showing the grid.



Provides a space for you to enter the grid's horizontal line spacing in dialog units.



Provides a space for you to enter the grid's vertical line spacing in dialog units.





Opens detailed online Help for this dialog box.



Closes this dialog box without saving any changes you have made.



Closes this dialog box and saves any changes you have made.



Applies the changes made to the tab sheet.





Provides a space for you to enter the distance in dialog units from the inside of the dialog box's left border to the
left side of the selected control.



Provides a space for you to enter the distance in dialog units from the bottom of the dialog box's title bar to the 
top of the selected control.



Provides a space for you to enter the width of the selected dialog control in dialog units.



Provides a space for you to enter the height of the selected dialog control in dialog units.



Provides a space for you to select the dialog control's tab order number. The lowest number you can enter is 1.



 #Specifies a string variable that identifies the selected dynamic dialog control.





Displays the dialog controls in the dialog box in their tab order.



Moves the selected control up one position in the dialog tab order.



Moves the selected control down one position in the dialog tab order.







This is a Corel SCRIPT script or dialog window. Script windows are used to edit scripts while dialog windows are 
used to edit custom dialog boxes for Corel SCRIPT.



This window displays a Corel SCRIPT script. The window is called the script window.



Provides a space to type the name of a variable to add to the Watch Window. Press Enter to add the variable to 
the Watch Window.



Adds the variable in the Watch box to the Watch window.



Removes the selected variable(s) from the Watch window.



This window displays the current value for each monitored variable and the procedure where the variable is 
located. The window is called the Watch window.



This window displays the current value for each monitored variable and the procedure where the variable is 
located. The window is called the Watch window.
Type a variable name in the text box to add the variable to the Watch box. Select a variable in the Watch box and
click the button to remove it.



This window displays errors after a script has been run or checked for syntax errors. The window is called the 
Compiler Output window.



This is the dialog window. The dialog box displayed in the dialog window is a graphical representation of Corel 
SCRIPT statements. Working in this window is similar to using a drawing or painting application: dialog controls 
are graphic objects which can be inserted, moved, resized, and aligned in a dialog box. 



Reduces the Corel SCRIPT Editor or a script or dialog window to an icon.



Enlarges the Corel SCRIPT Editor to fit the screen or Restores the Corel SCRIPT Editor or a script or dialog window
to it previous size and location.



Closes a script or dialog window. 



Reduces the Corel SCRIPT Editor or a script or dialog window to an icon.



Enlarges the Corel SCRIPT Editor to fit the screen or Restores the Corel SCRIPT Editor or a script or dialog window
to it previous size and location.



Closes a script or dialog window. 



Drag the title bar to move the window. Double click the title bar to maximize the window.



status bar whats this



This is the Status bar which provides a variety of functions. It displays items:
mouse pointer coordinates in dialog units when positioned over a dialog box in a dialog window.
status bar messages when the mouse pointer is not positioned over a dialog box.
Corel SCRIPT Editor status information such as NUM and CAP lock settings. You can also change the status 

by clicking on these settings.
The Status bar can be customized and can be displayed at the top or the bottom of the Corel SCRIPT Editor or 
can be hidden. Right-click on the Status bar to change its settings.



ANGLECONVERT function
ANGLECONVERT(x, y, z)

Converts a number from one angle measurement to another.

Syntax Definition
x Any number from 1 to 5 that indicates the unit of measurement from which to 

convert.
1 = degrees
2 = radians
3 = gradients
4 = Corel PHOTO-PAINT degrees (tenths of a degree)
5 = CorelDRAW degrees (millionths of a degree)

y Any number from 1 to 5 that indicates the unit of measurement to convert to.
1 = degrees
2 = radians
3 = gradients
4 = Corel PHOTO-PAINT degrees (tenths of a degree)
5 = CorelDRAW degrees (millionths of a degree)

z Any numeric expression specifying the value to be converted.
Example
x_rads = ANGLECONVERT(1, 2, 90)
The above example converts 90 degrees to radians. The variable x_rads equals 1.57142857142932.

{button ,AL(`include;cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMCENTIMETERS function
FROMCENTIMETERS(x)

Converts a numeric value from centimeters to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMCENTIMETERS(8), FROMCENTIMETERS(-5), FROMCENTIMETERS(0), 
FROMCENTIMETERS(2.5), FROMCENTIMETERS(0.75)
This CorelDRAW command would create a rectangle 7.5 by 8 centimeters. The rectangle's top left corner 
coordinate is -5, 8 centimeters relative to the center of the page, and the corners are 0.75 centimeters in 
diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMCICEROS function
FROMCICEROS(x)

Converts a numeric value from ciceros to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMCICEROS(18), FROMCICEROS(-12), FROMCICEROS(8), FROMCICEROS(6), 
FROMCICEROS(1.5)
This CorelDRAW command would create a rectangle 18 by 10 ciceros. The rectangle's top left corner coordinate 
is -12, 18 ciceros relative to the center of the page, and the corners are 1.5 ciceros in diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMDIDOTS function
FROMDIDOTS(x)

Converts a numeric value from didots to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMDIDOTS(50), FROMDIDOTS(-70), FROMDIDOTS(0), FROMDIDOTS(30), FROMDIDOTS(20)
This CorelDRAW command would create a rectangle 100 by 50 didots. The rectangle's top left coordinate is -70, 
50 didots relative to the center of the page, and the corners are 20 didots in diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMINCHES function
FROMINCHES(x)

Converts a numeric value from inches to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMINCHES(3), FROMINCHES(-2), FROMINCHES(0), FROMINCHES(1), FROMINCHES(0.25)
This CorelDRAW command would create a rectangle 3 by 3 inches. The rectangle's top left coordinate is -2, 3 
inches relative to the center of the page, and the corners are 0.25 inches in diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMPICAS function
FROMPICAS(x)

Converts a numeric value from picas to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMPICAS(18), FROMPICAS(-12), FROMPICAS(8), FROMPICAS(6), FROMPICAS(2)
This CorelDRAW command would create a rectangle 18 by 10 picas. The rectangle’s top left coordinate is -12, 18 
picas relative to the center of the page, and the corners are 2 picas in diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



FROMPOINTS function
FROMPOINTS(x)

Converts a numeric value from points to tenths of a micron.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.CreateRectangle FROMPOINTS(210), FROMPOINTS(-140), FROMPOINTS(90), FROMPOINTS(70), 
FROMPOINTS(1.75)
This CorelDRAW command would create a rectangle 210 by 140 points. The rectangle’s top left corner coordinate
is -140, 210 points relative to the center of the page, and the corners are 1.75 points in diameter. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



LENGTHCONVERT function
LENGTHCONVERT(x, y, z)

Converts a number from one length measurement to another.

Syntax Definition
x Any number from 1 to 7 that indicates the unit of measurement from which to 

convert.
1 inches
2 centimeters
3 points
4 Ciceros
5 didots
6 picas
7 CorelDRAW and VENTURA units (tenths of a micron)

y Any number from 1 to 7 that indicates the unit of measurement to convert to:
1 inches
2 centimeters
3 points
4 Ciceros
5 didots
6 picas
7 CorelDRAW and VENTURA units (tenths of a micron)

z Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
x_microns = LENGTHCONVERT(1, 7, 1)
The above example converts one inch to tenths of a micron. The variable x_microns equals 254,000.

{button ,AL(`include;cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TOCENTIMETERS function
TOCENTIMETERS(x)

Converts a numeric value from tenths of a micron to centimeters.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xCM = TOCENTIMETERS (x)
yCM = TOCENTIMETERS (y)
In this CorelDRAW example, xCM and yCM are set to the X and Y coordinates of the selected object in 
centimeters. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TOCICEROS function
TOCICEROS(x)

Converts a numeric value from tenths of a micron to ciceros.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xCiceros = TOCICEROS (x)
yCiceros = TOCICEROS (y)
In this CorelDRAW example, xCiceros and yCiceros are set to the X and Y coordinates of the selected object in 
ciceros. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TODIDOTS function
TODIDOTS(x)

Converts a numeric value from tenths of a micron to didots.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xDidots = TODIDOTS (x)
yDidots = TODIDOTS (y)
In this CorelDRAW example, xDidots and yDidots are set to the X and Y coordinates of the selected object in 
didots. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TOINCHES function
TOINCHES(x)

Converts a numeric value from tenths of a micron to inches.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xInch = TOINCHES (x)
yInch = TOINCHES (y)
In this CorelDRAW example, xInch and yInch are set to the X and Y coordinates of the selected object in inches. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TOPICAS function
TOPICAS(x)

Converts a numeric value from tenths of a micron to picas.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xPica = TOPICAS (x)
yPica = TOPICAS (y)
In this CorelDRAW example, xPica and yPica are set to the X and Y coordinates of the selected object in picas. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



TOPOINTS function
TOPOINTS(x)

Converts a numeric value from tenths of a micron to points.

Syntax Definition
x Any numeric expression specifying the value to be converted.
Note

Tenths of a micron are used as the basic unit of measurement in Corel applications such as CorelDRAW and
Corel VENTURA.

Example
.GetPosition (x,y)
xPoint = TOPOINTS (x)
yPoint = TOPOINTS (y)
In this CorelDRAW example, xPoint and yPoint are set to the X and Y coordinates of the selected object in 
points. 

{button ,AL(`cs_converts;;;;;',0,"Defaultoverview",)} Related Topics



GETCOLOR statement and function
Statement syntax
GETCOLOR Red, Green, Blue

Function syntax
ReturnValue = GETCOLOR (Red, Green, Blue)

Displays a standard Windows Color dialog box and returns color setting values from the RGB color model (Red, 
Green, Blue). 

Syntax Definition
Red Specifies the numeric variable that is passed the Red setting of the selected color 

(0 - 255). You can also use this variable to set an initial value.
Green Specifies the numeric variable that is passed the Green setting of the selected 

color (0 - 255). You can also use this variable to set an initial value.
Blue Specifies the numeric variable that is passed the Blue setting of the selected color 

(0 - 255). You can also use this variable to set an initial value.
ReturnValue Specifies a numeric variable that is passed a value corresponding to whether the 

CANCEL button was clicked on the Color dialog box: FALSE (0), if the CANCEL 
button was clicked; otherwise TRUE (-1). If the CANCEL button is pressed, the 
value of the three other variables don't change.

Example
GETCOLOR MyRed%, MyGreen%, MyBlue%
The above example displays the following dialog box and returns the RGB color settings for the selected color to 
the numeric variables MyRed, MyGreen, and MyBlue.

{button ,AL(`cs_ui_statements;;;;;',0,"Defaultoverview",)} Related Topics



GETFILEBOX function
GETFILEBOX(Filter, Title, Type, DefFile, DefExt, DefFol, BtnName)

This function displays a standard Windows File Open or File Save As dialog box. Both dialog boxes allow users to 
choose a file from the file system. The GETFILEBOX function returns the selected filename and its full path, or 
an empty string if the user chooses Cancel. The GETFILEBOX statement by itself does not open or save a file; it 
only returns a string corresponding to the selected file.

Syntax Definition
Filter String expression specifying the filters to use in the dialog box. For the Open 

dialog box, the filters are listed in the Files of Type list box. For the Save As dialog 
box, the filters are listed in the Save as Type list box. 
Filters are specified in two parts. The first part is the text that appears in the list 
box, and the second part is the actual filter extension. The parts are separated by 
the | character (do not use spaces before or after the | characters). To separate 
multiple filters, use the | character. See the example below for more information.

Title String expression specifying the title to display in the dialog box. If not specified, 
"Open" is displayed for an Open dialog box and "Save As" is displayed for a Save 
As dialog box.

Type Numeric expression specifying the type of dialog box to display:
0 File Open dialog box (default if omitted)
1 File Save dialog box

DefFile String expression specifying the text to display in the File name text box of the 
dialog box. If not specified, the text box is empty.

DefExt String expression specifying the default extension to append to a File name if the 
user omits the extension.

DefFol String expression specifying the default folder used by the dialog box. If not 
specified, or the specified folder does not exist, the current folder is used.

BtnName String expression specifying a button name to override the Open or Save button in
the dialog box. If not specified, the button's name remains unchanged.

Example
SETCURRFOLDER = "c:\COREL50\DRAW\samples" 'set the current folder 
Filename$=GETFILEBOX("Included Scripts|*.csc|All Files|*.*", "Scripts included...", 
0,"animals")

Displays the following Open dialog box:

{button ,AL(`cs_ui_statements;chfolder;;;;',0,"Defaultoverview",)} Related Topics





GETFOLDER function
GETFOLDER (InitFolder)

This function displays a Windows Choose Folder dialog box. The Choose Folder dialog box returns the folder and 
path a user chooses as a string. 

Syntax Definition
InitFolder String expression specifying the default path and folder to display in the dialog 

box. If not specified, the active folder is used.
Note

If the CANCEL button is clicked, an empty string is returned.

Example
NewFolder$ = GETFOLDER("D:\Corel60")
SETCURRFOLDER = NewFolder$
The above example displays the following dialog box:

The selected folder is passed to the string variable NewFolder. The SETCURRFOLDER statement sets the 
current folder to the folder name passed to NewFolder.

{button ,AL(`cs_ui_statements;chfolder;currfolder;;;',0,"Defaultoverview",)} Related Topics



GETFONT statement and function
Statement syntax
GETFONT FaceName, PointSize, Weight, Italic, Underline, StrikeOut, Red, Green, Blue 

Function syntax
ReturnValue = GETFONT (FaceName, PointSize, Weight, Italic, Underline, StrikeOut, Red, Green, 
Blue)

Displays a standard Windows Font dialog box and returns the selected font settings.

Syntax Definition
FaceName Specifies a string variable that is passed the name of the selected font. You can 

also use this variable to set an initial value.
PointSize Specifies a numeric variable that is passed the font size in points. You can also use

this variable to set an initial value. This parameter uses non-fractional values
Weight Specifies a numeric variable that is passed the font's weight setting (number of 

inked pixels per 1000 pixels). Common values and their corresponding names 
include:
100 Thin
200 Extra Light, Ultra Light
300 Light
400 Normal, Regular
500 Medium
600 Semi Bold, Demi Bold
700 Bold
800 Extra Bold, Ultra Bold
900 Black, Heavy
Most Windows fonts only use two weight settings: 400 (Normal) and 700 (Bold).

Italic Specifies a numeric variable that is passed the font's italic setting: TRUE (-1) if this
setting is enabled; FALSE (0) otherwise.

Underline Specifies a numeric variable that is passed the font's underline setting: TRUE (-1) 
if this setting is enabled; FALSE (0) otherwise.

StrikeOut Specifies a numeric variable that is passed the font's strike out setting: TRUE (-1) if
this setting is enabled; FALSE (0) otherwise.

Red Specifies the numeric variable that is passed the Red (RGB color model) setting of 
the selected font's color (0 - 255). You can also use this variable to set an initial 
value.

Green Specifies the numeric variable that is passed the Green (RGB color model) setting 
of the selected font's color (0 - 255). You can also use this variable to set an initial 
value. 

Blue Specifies the numeric variable that is passed the Blue (RGB color model) setting of
the selected font's color (0 - 255). You can also use this variable to set an initial 
value.

ReturnValue Specifies a numeric variable that is passed a value corresponding to whether the 
CANCEL button was clicked on the Font dialog box: FALSE (0) if the CANCEL button 
was clicked; otherwise TRUE (-1). If the CANCEL button is pressed, the value of the
other variables don't change.

Example
GETFONT FN, PS, Wt, Italic, UL, SO, R, G, B
The above example displays the following dialog box and returns the font settings the variables specified.



{button ,AL(`cs_ui_statements;;;;;',0,"Defaultoverview",)} Related Topics



INPUTBOX function
INPUTBOX(prompt$)

Displays a simple dialog box where you can enter a string that is returned to a script. The dialog box has OK and 
Cancel buttons. If the Cancel button is chosen, an empty string is returned.

Syntax Definition
prompt$ String expression that appears in the dialog box above the edit box.

Example
MyString$ = INPUTBOX("Please type in a string")

User input is returned to the variable MyString$.

{button ,AL(`cs_ui_statements;textbox;text;;;',0,"Defaultoverview",)} Related Topics



MESSAGE statement
Message anyVariable

Displays a dialog box that contains a specified message and an OK button. This statement doesn't return any 
value to a running script, but can provide the script user with information during script execution.

Syntax Definition
anyVariable Any numeric or string expression to display in the message box. Numbers and 

dates are displayed as their string representations.

Example
x$="Hello." + CHR(13)   'CHR(13) is a return character
MESSAGE x$ + "What a nice day."

Note
See the Corel SCRIPT character map for a list of character codes.

{button ,AL(`cs_ui_statements;textbox;text;chr;;',0,"Defaultoverview",)} Related Topics



MESSAGEBOX function
MESSAGEBOX(prompt, title, option)

Displays a message box with a specified message and user-specified buttons and icons. MESSAGEBOX returns a 
value representing the button that was used to close it to the script.

Syntax Definition
prompt String expression to display in the box.
title String expression to display in the message box caption.
option A numeric expression representing the type of buttons to include in the box and an

icon (if any) to appear beside the message. The option value is set using the OR 
(or +) operator for multiple buttons (see example):
Button Type:
0 OK only (used by default if a button is not specified)
1 OK/Cancel
2 Abort/Retry/Ignore
3 Yes/No/Cancel
4 Yes/No
5 Retry/Cancel
Icon Type (click hot spot for an example):
0 No icon 
16 Stop
32 Question
48 Exclamation
64 Information 

Returns Button pressed 
1 OK
2 Cancel
3 Abort
4 Retry
5 Ignore
6 Yes
7 No

Example
retval% = MESSAGEBOX("This dialog displays three buttons", "MESSAGEBOX Example", 3 OR 48)

Note
Pressing the Close Dialog button (

) is the same as pressing the Cancel button; both return 2.

{button ,AL(`cs_ui_statements;textbox;text;;;',0,"Defaultoverview",)} Related Topics













To assign a Corel SCRIPT script to a shortcut key
From your Corel application or from the Corel SCRIPT Editor:
1. Click Tools, Customize.
2. Click Keyboard.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder. 

The Application Scripts folder contains scripts that send instructions to the Corel application you are 
customizing. The General Scripts folder contains scripts that are not application specific. 
Based on a typical Corel installation, application scripts reside in the C:\COREL\CorelSuite\application\
SCRIPTS folder, where CorelSuite refers to the Corel products installed and application refers to the Corel 
application's folder. For example, CorelDRAW 7 scripts may reside in C:\COREL\DRAW70\DRAW\SCRIPTS 
folder and Corel VENTURA 7 scripts may reside in the C:\COREL\VENTURA7\VENTURA\SCRIPTS folder. 
General scripts normally reside in the C:\COREL\CorelSuite\SCRIPTS folder.

4. Click the script.
5. Click the Press new shortcut key box.
6. Press the keyboard combination you want to assign to the command. To make a correction, press the 

Backspace key.
You can have up to four layers of keystrokes. For example, the key combination CTRL+ALT+1,2,3,4 is 
accomplished by holding down the CTRL and ALT keys, then pressing the 1,2,3, and 4 keys in succession.

Note
You can also assign a Corel SCRIPT Binaries to a shortcut key by using the above procedure.
To have accelerator conflicts resolved automatically, enable Go to conflict on assign.

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics



To assign a Corel SCRIPT script to a menu
From your Corel application or from the Corel SCRIPT Editor:
1. Click Tools, Customize.
2. Click Menu.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder. 

The Application Scripts folder contains scripts that send instructions to the Corel application you are 
customizing. The General Scripts folder contains scripts that are not application specific. 
Based on a typical Corel installation, application scripts reside in the C:\COREL\CorelSuite\application\
SCRIPTS folder, where CorelSuite refers to the Corel products installed and application refers to the Corel 
application's folder. For example, CorelDRAW 7 scripts may reside in C:\COREL\DRAW70\DRAW\SCRIPTS 
folder and Corel VENTURA 7 scripts may reside in the C:\COREL\VENTURA7\VENTURA\SCRIPTS folder. 
General scripts normally reside in the C:\COREL\CorelSuite\SCRIPTS folder.

4. Click the script.
5. In the Menu box, click the menu or sub-menu where you want to add the command.
6. Click Add.
Tip

You can also assign a Corel SCRIPT Binaries to a menu by using the above procedure.
Use the Separator button to add organizational lines to your menus.

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics



To assign a Corel SCRIPT script to a toolbar button
From your Corel application or from the Corel SCRIPT Editor:
1. Activate the toolbar you want to edit.
2. Click Tools, Customize.
3. In the Commands box, double-click the Application Scripts folder or the General Scripts folder. 

The Application Scripts folder contains scripts that send instructions to the Corel application you are 
customizing. The General Scripts folder contains scripts that are not application specific. 
Based on a typical Corel installation, application scripts reside in the C:\COREL\CorelSuite\application\
SCRIPTS folder, where CorelSuite refers to the Corel products installed and application refers to the Corel 
application's folder. For example, CorelDRAW 7 scripts may reside in C:\COREL\DRAW70\DRAW\SCRIPTS 
folder and Corel VENTURA 7 scripts may reside in the C:\COREL\VENTURA7\VENTURA\SCRIPTS folder. 
General scripts normally reside in the C:\COREL\CorelSuite\SCRIPTS folder.

4. Click the script.
5. Drag the appropriate command button to the toolbar. Right-click to cancel the movement.
Tip

You can also assign a Corel SCRIPT Binaries to a toolbar button by using the above procedure.
If a script's first line, second line, or both are REM statements, they are displayed in the Description text 

box. 

{button ,AL(`cs_custom;;;;;',0,"Defaultoverview",)} Related Topics





To assign an shortcut key to a command
1. Click Tools, Customize.
2. Click Keyboard.
3. In the Commands box, double-click the command category folder containing the command you want to 

customize.
4. Click the command.
5. Click the Press new shortcut key box.
6. Press the keyboard combination that you want to assign to the command. If you need to make a correction, 

press the Backspace key.
You can have up to four layers of keystrokes. For example, the key combination CTRL+ALT+1,2,3,4 is 

accomplished by holding down the CTRL and ALT keys, then pressing the 1,2,3, and 4 keys in succession.
Tip

To automatically resolve shortcut conflicts, enable the Go to conflict on assign option.

{button ,AL(`cs_key_proc;;;;;',0,"Defaultoverview",)} Related Topics



To remove an shortcut key from a command
1. Click Tools, Customize.
2. Click Keyboard.
3. In the Commands box, double-click the command category folder containing the command you want to 

customize.
4. Click the command.
5. In the Current shortcut keys box, select the key combination you want to remove.
6. Click Delete.

{button ,AL(`cs_key_proc;;;;;',0,"Defaultoverview",)} Related Topics



To restore all keyboard assignments to their original settings
1. Click Tools, Customize.
2. Click Keyboard.
3. Click Reset All.

{button ,AL(`cs_key_proc;;;;;',0,"Defaultoverview",)} Related Topics



To save a set of customized keyboard assignments
1. Click Tools, Customize.
2. Click Keyboard.
3. Click Save As.
4. Choose the Shortcut File in which you want to save your assignments.

{button ,AL(`cs_key_proc;;;;;',0,"Defaultoverview",)} Related Topics



To load a set of customized keyboard assignments
1. Click Tools, Customize.
2. Click Keyboard.
3. Click Load.
4. Choose the Shortcut File you want to load.

{button ,AL(`cs_key_proc;;;;;',0,"Defaultoverview",)} Related Topics





To change the order of menus and menu commands
1. Click Tools, Customize.
2. Click Menu.
3. In the Menu box, click the menu or menu command you want to move. Double-click to open a menu or sub-

menu.
4. Click Move Up or Move Down.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics



To add a command to a menu
1. Click Tools, Customize.
2. Click Menu.
3. In the Commands box, double-click the command category folder containing the command you want to add.
4. Click the command.
5. In the Menu box, click the menu or sub-menu where you want to add the command.
6. Click Add.
Tip

Use the Separator button to add organizational lines to your menus.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics



To remove a menu or menu command
1. Click Tools, Customize.
2. Click Menu.
3. In the Menu box, click the menu or menu command you want to remove. Double-click to open a menu or sub-

menu.
4. Click Remove.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics



To rename a menu
1. Click Tools, Customize.
2. Click Menu.
3. In the Menu box, click the menu or menu command you want to rename. Double-click to open a menu or sub-

menu.
4. Click the command's name tag, and type the new name.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics



To change a menu command's shortcut key
1. Click Tools, Customize.
2. Click Menu.
3. In the Menu box, click the menu or menu command you want to rename. Double-click to open a menu or sub-

menu.
4. Click the command's name tag, and insert an ampersand (&) before the letter you want to use as an shortcut.
5. Remove all unnecessary ampersands.

{button ,AL(`cs_menu_proc;cs_key_proc;;;;',0,"Defaultoverview",)} Related Topics



To add a new menu
1. Click Tools, Customize.
2. Click Menu.
3. Click Add Menu.
4. Type a name for the new menu.
Tip

You can add a sub-menu to an existing menu by first double-clicking the existing menu.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics



To restore the original menu settings
1. Click Tools, Customize.
2. Click Menu.
3. Click Reset All.
Note

You will lose all changes to the menu settings.

{button ,AL(`cs_menu_proc;;;;;',0,"Defaultoverview",)} Related Topics





To move a toolbar
1. Click the border of the toolbar.
2. Drag it to its new location. 

Right-click to cancel the movement.
Tip

Double-click a toolbar’s title or border to automatically dock and undock it.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To resize a toolbar
1. Move the cursor to the edge of a floating toolbar.
2. Drag the edge until the toolbar is the correct size. 

Right-click to cancel the movement.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To activate and hide an existing toolbar
1. Click View, Toolbars.
2. Click the checkbox next to the toolbar you want to display or hide and click OK.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To create a custom toolbar
1. Click View, Toolbars.
2. Click New.
3. Type a name for the new toolbar.
4. Use the Customize command to add commands buttons to the new toolbar (See Related Topics).

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To add a button to a toolbar
1. Activate the toolbar you want to edit (See Related Topics).
2. Click View, Toolbars.
3. Click Customize.
4. In the Commands box, click the command category folder containing the command you want to add.
5. Drag the appropriate command button to the toolbar. Right-click to cancel the movement.
Tip

Click a button to see its description.
You can also hold down the CTRL and ALT keys and drag a button to copy it to another toolbar without 

opening the dialog box.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To remove a button from a toolbar
1. Activate the toolbar you want to edit (See Related Topics).
2. Click View, Toolbars.
3. Click Customize.
4. Drag the button off the toolbar. Right-click to cancel the movement.
Tip

You can also hold down the ALT key and drag a button off a toolbar to delete it without opening the dialog 
box.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To rename a toolbar
1. Click View, Toolbars.
2. Click the toolbar you want to rename.
3. Click the toolbar's name tag.
4. Type the new name.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To move a toolbar button
1. Activate the toolbar you want to edit (See Related Topics).
2. Click View, Toolbars.
3. Click Customize.
4. Drag the button to another toolbar, or to another spot on the same toolbar. Right-click to cancel the 

movement.
Tip

To add space between two toolbar buttons, drag the right-most button slightly further to the right.
You can also hold down the ALT key and drag a button to move it without opening the dialog box. To copy a

button hold down the ALT and CTRL keys.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To delete a custom toolbar
1. Click View, Toolbars.
2. Click the custom toolbar you want to delete.
3. Click Delete.
Note

You cannot delete a built-in toolbar.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics



To restore the original configuration of a built-in toolbar
1. Click View, Toolbars.
2. Click the built-in toolbar you want to reset.
3. Click Reset.

{button ,AL(`cs_toolbar_cs;;;;;',0,"Defaultoverview",)} Related Topics





To view or hide status bar
Click View, Status Bar.

A check mark beside the Status Bar menu command indicates the status bar is displayed.

{button ,AL(`cs_status_bar;;;;;',0,"Defaultoverview",)} Related Topics



To move the status bar to the top or bottom of the Corel SCRIPT Editor
1. Right-click the status bar and select Position.
2. Click Top or Bottom.
Tip

You can also move the status bar by double-clicking it.

{button ,AL(`cs_status_bar;;;;;',0,"Defaultoverview",)} Related Topics



To change what the status bar displays
1. Right-click the status bar and select Customize.
2. From the Command Categories list click Status Info.
3. Do the following:

To add a field of a status information, drag the field from the Buttons area of the Customize dialog box over the
Status bar
To remove a field of status information, drag it from the status bar on to the document window.

4. Click OK.

{button ,AL(`cs_status_bar;;;;;',0,"Defaultoverview",)} Related Topics



To change the height of the status bar
1. Right-click the status bar and select Size.
2. Click Single Height or Double Height.
Tip

You can also change the height of the status bar by dragging the top or bottom border.

{button ,AL(`cs_status_bar;;;;;',0,"Defaultoverview",)} Related Topics



To reset the status bar to its original configuration
Right-click the status bar and select Reset Status Bar.

{button ,AL(`cs_status_bar;;;;;',0,"Defaultoverview",)} Related Topics



Customize, Keyboard
Changes the built-in keyboard assignments for accessing menu commands. You can create several sets of 
keyboard assignments to use for different types of projects, saving and loading sets as they are needed.

{button ,AL(`cs_custom_ov_cs;;;;;',0,"Defaultoverview",)} Related Topics



Displays the available commands. Double-click a command category to open it.



Gives a short description of    the selected command.



Shows the new keyboard combination that you want to assign to the command. If you need to make a correction,
press the Backspace key.
You can have up to four layers of keystrokes. For example, the key combination CTRL+ALT+1,2,3,4 is 
accomplished by holding down the CTRL and ALT keys, then pressing the 1, 2, 3, and 4 keys in succession.



Displays any commands assigned to the keyboard combination you typed. You cannot have the same 
combination for more than one command.



Automatically resolves conflicts by erasing the old keyboard assignment, and prompting you to assign a new 
combination to the old command.



Displays any existing shortcut keys for the current command.



The name of the current keyboard assignment set.



Assigns the new keyboard combination to the current command.



Deletes the selected shortcut keys.



Loads a new keyboard assignment table.



Saves the current keyboard assignment table.



Resets the keyboard assignments to their original configuration.



Customize, Menus
Enables you to add commands to existing menus, or add new menus to the menu bar. You can change the order 
of the menus and their commands to give you quick, easy access to the functions you use most.
Note
When you customize your menus, keep in mind that the help topics referring to those menus do not change.

{button ,AL(`cs_custom_ov_cs;;;;;',0,"Defaultoverview",)} Related Topics



Displays the available commands. Double-click a command category to open it.



Adds the selected command to the menu.



Removes the selected command from the menu.



Adds a separating line to a menu below the current selection.



Adds a new menu.



Moves the current menu or menu entry up.



Moves the current menu or menu entry down.



Lists the available menus. Click the name of the menu you want to add a command or other item to or from 
which you want to delete an item.



Displays the current menu structure for the selected menu. Double-click a menu or sub-menu to open it.



Gives a short description of    the selected command 



Resets the menu assignments to their original configuration.



Customize, Toolbars
Enables you to add and remove buttons and other controls on the toolbars as well as customize the information 
that appear in the Status Line. You can also create your own toolbars containing only the buttons and controls 
you use most often.

{button ,AL(`cs_custom_ov_cs;;;;;',0,"Defaultoverview",)} Related Topics



Displays the available command categories. Click a category to display its command buttons.



Displays the command buttons for the current command category. Click a button to see its description, or drag it 
to add it to any toolbar on the screen.



Gives a short description of any toolbar button you click.



Lists the available Corel SCRIPT Editor modes. Click the name of the mode you want to add buttons to or from 
which you want to remove buttons or other controls.



BUILDDATE function
BUILDDATE (Year, Month, Day) 

Assigns a date value to a date variable.

Syntax Definition
Year Numeric expression specifying the year to assign to a date variable.
Month Numeric expression specifying the month to assign to a date variable. Valid values

are from 1 to 12 inclusive.
Day Numeric expression specifying the day to assign to a date variable. Valid values 

are from 1 to 31 inclusive, depending on the Month setting.
Note

BUILDATE can only accept a date value between January 1, 1980 (date serial number 29221) and 
December 31, 2099 (date serial number 73050). If a date outside this range is specified, an error occurs.

Example
DIM BigDay AS DATE
BigDay = BUILDDATE(1996, 1, 14)
In the above example, the first line declares the date variable BigDay. This variable is then assigned the date 
January 14, 1996. 

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



BUILDTIME function
BUILDTIME (Hour, Minute, Second) 

Assigns a time value to a date variable.

Syntax Definition
Hour Numeric expression specifying the hour to assign to a date variable. This value is 

based on a 24-hour clock. For example, 5 PM equals 17. Valid values are from 0 to 
23 inclusive.

Minute Numeric expression specifying the minute to assign to a date variable. Valid values
are from 0 to 59 inclusive.

Second Numeric expression specifying the second to assign to a date variable. Valid 
values are from 0 to 59 inclusive.

Example
DIM BigDay AS DATE
BigDay = BUILDTIME(14, 30, 0)
In the above example, the first line declares the date variable BigDay. This variable is then assigned the time 
2:30 PM.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



FORMATDATE function
DateString = FORMATDATE (DateExp, FormatString )

Converts a date expression into a string with a specified format.

Syntax Definition
DateString Specifies the string variable that is assigned the formatted date.
DateExp Specifies the date expression to convert to a string.
FormatString Specifies a code, as a string, representing the format of the date. Formats are 

created by using and combining the following codes.

To format Use this format code (case-sensitive)
Days as 1-31 d
Days as 01-31 dd
Days as Sun-Sat ddd
Days as Sunday-Saturday dddd
Months as 1-12 M
Months as 01-12 MM
Months as Jan-Dec MMM 
Months as January-December MMMM 
Year as 6 in 1996 y
Year as 96 in 1996 yy
Year as 1996 yyy
Note

You can insert spaces and punctuation between date elements within the formatting string. See the 
example below.

Example
DIM TodayDate AS DATE
TodayDate = GETCURRDATE()
StringDate$ = FORMATDATE (TodayDate, "dddd, MMMM d, yyy")
MESSAGE StringDate
In the above example, the first line declares the date variable TodayDate. This variable is then assigned the 
current date with the GETCURRDATE function. The StringDate variable is then assigned today's date using the
formatting shown in the following example.

Saturday, September 16, 1995

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



FORMATTIME function
TimeString = FORMATTIME (TimeExp, FormatString )

Converts a time expression into a string with a specified format.

Syntax Definition
TimeString Specifies the string variable that is assigned the formatted time.
TimeExp Specifies the time expression to convert to a string.
FormatString Specifies a code, as a string, representing the format of the time. Formats are 

created by using and combining the following codes.

To format Use this format code (case-sensitive)
Hours as 1-12 (12-hour clock) h
Hours as 01-12 (12-hour clock) hh
Hours as 0-23 (24-hour clock) H
Hours as 00-23 (24-hour clock) HH
Minutes as 0-59 m
Minutes as 00-59 mm
Seconds as 0-59 s
Seconds as 00-59 ss
AM/PM as A or P t
AM/PM as AM or PM tt
Time as 4:36 pm h:mm pm
Note

You can insert spaces and punctuation between time elements within the formatting string. See the 
example below.

Example
DIM TimeNow AS DATE
TimeNow = GETCURRDATE()
StringTime = FORMATTIME (TimeNow, "HH:mm:ss tt")
MESSAGE StringTime
In the above example, the first line declares the date variable TodayDate. This variable is then assigned the 
current date and time with the GETCURRDATE function. The StringTime variable is then assigned the current 
time using the formatting shown in the following example.

13:46:25 PM

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



GETCURRDATE function
DateTime = GETCURRDATE ( )

Returns the system's current date and time.

Syntax Definition
DateTime Specifies the date variable that is assigned the current date and time. See 

Assigning values to date variables for more information.
Note

Formatting used to display dates and time is set in the Windows Control Panel. In Windows 95, see 
Regional settings for formatting information; in Windows NT, see International settings.

GETCURRDATE can return a date between January 1, 1980 (date serial number 29221) and December 31,
2099 (date serial number 73050).

In Corel SCRIPT version 7.0, the GETCURRDATE function and the SETCURRDATE statement replace the 
CURRDATE statement.

Example
DIM DT AS DATE
DT = GETCURRDATE()
MESSAGE DT
The above example displays the system date and time in a message box. You can also extract portions of the 
date and convert them to strings and numbers. The following continues the above example:

MyDateString$ = DT              ' create a string
MyDay% = VAL(LEFT(MyDateString$, 2)) ' extract the day as an integer
In the above example, the VAL and LEFT functions are used to extract an integer from the MyDateString string
variable (created by converting a date variable). The method you use to extract portions from a date string 
depend on your Windows date settings. You can also use the GETDATEINFO or the GETTIMEINFO function to 
extract information from a date variable.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



GETDATEINFO function
GETDATEINFO DateExp, Year, Month, Day, DayOfWeek 

Extracts the components of a date expression to numeric variables.

Syntax Definition
DateExp Specifies the date expression to extract components from.
Year Specifies the numeric variable that is assigned the year component from the 

specified date expression.
Month Specifies the numeric variable that is assigned the month component from the 

specified date expression.
Day Specifies the numeric variable that is assigned the day component from the 

specified date expression.
DayOfWeek Specifies the numeric variable that is assigned the day of week component from 

the specified date expression. Sunday corresponds to 1, Monday to 2, and so on.
Note

GETDATEINFO can only accept a date value between January 1, 1980 (date serial number 29221) and 
December 31, 2099 (date serial number 73050). If a date outside this range is specified, an error occurs.

Example
DIM TodayDate AS DATE
TodayDate = GETCURRDATE()
GETDATEINFO TodayDate, Y&, M&, D&, DW&
In the above example, the first line declares the date variable TodayDate. This variable is then assigned the 
current date with the GETCURRDATE function. The variables Y, M, D, and DW are then assigned their 
respective component of the date stored in TodayDate. If TodayDate was set to May 29, 1996, then Y=1996, 
M=5, D=29, and DW=4. 

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



GETTIMEINFO function
GETTIMEINFO TimeExp, Hour, Minute, Second 

Extracts the components of a time expression to numeric variables.

Syntax Definition
TimeExp Specifies the time expression to extract components from.
Hour Specifies the numeric variable that is assigned the hour component from the 

specified time expression. The number assigned is based on a 24-hour clock. For 
example, 16 is the numeric variable for 4pm.

Minute Specifies the numeric variable that is assigned the minute component from the 
specified time expression.

Second Specifies the numeric variable that is assigned the second component from the 
specified time expression.

Example
DIM TodayTime AS DATE
TodayTime = GETCURRDATE()
GETTIMEINFO TodayTime, H&, M&, S&
In the above example, the first line declares the date variable TodayTime. This variable is then assigned the 
current date and time with the GETCURRDATE function. The variables H, M, and S are then assigned their 
respective component of the time stored in TodayTime. If TodayTime was set to 5:37:16 PM, then H=17, 
M=37, S=16. 

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



SETCURRDATE statement
SETCURRDATE DT

Sets the system's date and time. If used improperly, this statement can cause problems in the system's Windows
settings.

Syntax Definition
DT Specifies a date expression that sets the system's date and time
Note

SETCURRDATE can assign a date between January 1, 1980 (date serial number 29221) and December 31,
2099 (date serial number 73050). 

Formatting used to display dates and time is set in the Windows Control Panel. In Windows 95, see 
Regional settings for formatting information; in Windows NT, see International settings.

In Corel SCRIPT version 7.0, the SETCURRDATE statement and the GETCURRDATE function replace the 
CURRDATE statement.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



Examples for SETCURRDATE    

To change the system date and time

The following example sets the system date to August 25, 1995, and the time to 12:00 A.M. A message box is 
used to display the date value of dateOnly.

DIM dateOnly AS DATE
dateOnly = 34936
SETCURRDATE dateOnly
MESSAGE dateOnly

The following example sets the system date to August 25, 1995, and the system time to 12:05.46 P.M. A 
message box is used to display the date value of dateAndTime.

DIM dateAndTime AS DATE
dateAndTime = 34936.504
CURRDATE = dateAndTime
MESSAGE dateAndTime

Using SETCURRDATE for file date stamping

The following example assigns the system date to the variable xDate. The third line sets the system date to 
February 26, 1994, and the fourth line opens a text file that is stamped with the new system date. The last line 
resets the system date to its original value.

DIM xDate AS DATE
xDate = GETCURRDATE    'assigns system date
SETCURRDATE "02/26/1994"   'sets the system date
OPEN "c:\log.txt" FOR OUTPUT AS 2
SETCURRDATE xDate
Note

Formatting used to display dates and time is set in the Windows Control Panel. In Windows 95, see 
Regional settings for formatting information; in Windows NT, see International settings.

{button ,AL(`mid;left;val;cs_date_time;;',0,"Defaultoverview",)} Related Topics



WAIT FOR statement
WAIT FOR x

Pauses script execution for a specified number of seconds.

Argument Definition
x A non-negative numeric expression specifying the number of seconds to pause 

script execution. 

Example
MESSAGE "Start"
WAIT FOR 3
MESSAGE "Done"
The above example displays a message box, once the message box is closed, script execution pauses for three 
seconds, and then displays another message box. 

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



WAIT UNTIL statement
WAIT UNTIL x

Pauses script execution until the system timer matches a specified date serial number.
You should consider using the WAIT UNTIL statement to run scripts in off-peak times. For example, if you have a
large print job, you could use a script to run it during the night.

Argument Definition
x Specifies the date and time when to resume execution. This parameter must be 

positive and greater than the system's current date.
Note

WAIT UNITL can be set to a date between January 1, 1980 (date serial number 29221) and December 31, 
2099 (date serial number 73050). If a date outside this range is specified, an error occurs.

Example
The following example pauses script execution until the system time matches 34936.25 (August 25, 1996, 6:00 
A.M.).
DIM offPeak AS DATE
offPeak = 34936.25
WAIT UNTIL offPeak
The following example pauses script execution until 3:00 A.M. regardless of the date:
DIM today, tonite  AS DATE
DIM daypart AS LONG
today = CURRDATE
daypart = INT(today)  'daypart is set to 12:00 A.M. today 
tonite = daypart + 1.125 'sets the date and time to 3 AM the next day 
WAIT UNTIL tonite
If you add a day and 3 hours (1.125) to datepart, tonite is set to 3 A.M. the next morning.

{button ,AL(`cs_date_time;;;;;',0,"Defaultoverview",)} Related Topics



BEGIN DIALOG...END DIALOG statements (for static dialog boxes)
BEGIN DIALOG Identifier Left, Top, Width, Height, Text 

[dialog control statements]
END DIALOG

A user-defined static dialog box must begin with the BEGIN DIALOG statement and close with the END DIALOG
statement. 
The BEGIN DIALOG statement is followed by a series of statements that define a dialog. The series of 
statements insert dialog controls in the dialog box. Except for remarks statements, the only statements that can 
appear between BEGIN DIALOG and END DIALOG are the dialog control statements. The END DIALOG 
statement closes the definition of the user-defined dialog. 
A user-defined static dialog can be changed by editing the statements between the BEGIN DIALOG and END 
DIALOG statements. An alternative to editing the statements is to use the dialog windows in the Corel SCRIPT 
Editor. Working in dialog windows is similar to using a drawing or painting application: dialog controls are graphic
objects which can be inserted, moved, resized, and aligned in a dialog box. 
The BEGIN DIALOG and END DIALOG statements on their own cannot display a dialog box and hold return 
values during a Corel SCRIPT script run. Use the DIALOG statement to display the dialog box.

Syntax Definition
Identifier Name assigned to the dialog box sequence.
Left Specifies the distance in dialog units from the dialog box's left border to the left 

side of the monitor's display area. If both Left and Top are omitted, the dialog box 
is centered on the screen.

Top Specifies the distance in dialog units from the dialog box's top border to the top 
side of the monitor's display area. If both Left and Top are omitted, the dialog box 
is centered on the screen.

Width Specifies the dialog box width in dialog units.
Height Specifies the dialog box height in dialog units. 
Text Label displayed in the dialog box's title bar.    
[dialog control statements] Specifies the script statements that define the dialog's controls. These 

statements are called a dialog box's definition statements.
Note

Dialog boxes are considered local to the procedure (main, or a user-defined subroutine or function) in 
which they are declared. However, if the dialog box uses global variables only, the dialog box can be called from 
any procedure in the script. Click 
 for more information about global variables and variable availability. 

{button ,AL(`corel_script_dialog_control;Returning_dialog_settings_and_choices;;',0,"Defaultovervie
w",)} Related Topics

{button ,AL(`BEGIN_END_DIALOG_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



BITMAPBUTTON statement (for static dialog boxes)
BITMAPBUTTON Left, Top, Width, Height, Array

This statement adds a bitmap button to a dialog box. Pressing a bitmap button closes a dialog box and assigns 
the settings within the dialog box. Unlike push buttons, bitmap buttons display specified pictures instead of text. 
Bitmap buttons are often used in cases where another dialog box opens when the button is pressed.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the bitmap button in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the bitmap button in dialog units.
Width Specifies the bitmap button width in dialog units.
Height Specifies the bitmap button height in dialog units.
Array Specifies a one-dimension string array containing a list of three Windows bitmaps 

(.BMP and .RLE files) and their paths. The button's state determines which bitmap 
in the array to reference and display: 
Array element 1 Normal state 
Array element 2 Depressed state
Array element 3 Focus state
If an array element entry is not available (for example, bad file name), the button 
is filled with black for the state corresponding to the unavailable element entry.
If the array does not have an element for index number 1, 2, or 3, the button is 
filled with black for the state corresponding to the missing element index number, 
along with buttons that follow it in the array. For example, if array element 2 is 
missing, the bitmap button is filled with black for both the depressed and focus 
state.
The array must be dimensioned before the dialog box definition in the script. The 
specified bitmaps are automatically scaled to fit within the button that has been 
specified.

Returns to dialog box Condition
an integer from 3 to n Pressing a bitmap button. Bitmap buttons and push buttons are numbered based 

on the order in which they are listed in a script, and not their placement within a 
dialog box. The first the push or bitmap button listed in a dialog box definition is 
set to 3. The second button is set to 4, and so on. The last push or bitmap button 
is equal to (2 + n) where n is the number of push and bitmap buttons. The values 
1, and 2 are reserved for the OK button and Cancel button, respectively.

Note
While editing a dialog box in the Corel SCRIPT Editor, a placeholder image is displayed in the dialog box.
In addition to pressing a bitmap button, dialog boxes can also be closed by pressing a Cancel button, a 

push button, an OK button, or the Close Dialog button (
). Dialog boxes are easier to use if they include an OK button and a Cancel button.

Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 
SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BITMAPBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



CANCELBUTTON statement (for static dialog boxes)
CANCELBUTTON Left, Top, Width, Height

This statement adds a Cancel button to a dialog box. Pressing a Cancel button closes a dialog box and discards 
the settings within it.

Syntax Definition
Left Specifies the distance in dialog units from the inside of the dialog box's left border 

to the left side of the Cancel button.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the Cancel button in dialog units.
Width Specifies the Cancel button width in dialog units.
Height Specifies the Cancel button height in dialog units. 

Returns to dialog box Condition
2 Pressing the Cancel button to close the dialog box.

Note
The Cancel button can't be assigned a shortcut key, but pressing the Close Dialog button (

) is the same as pressing the Cancel button; both return 2 to the dialog box. Only one Cancel button in a dialog box 
is suggested.

In addition to the Close Dialog button (
), dialog boxes can also be closed by pressing an OK button, a Bitmap button, or a Push button.

Dialog boxes are easier to use if they include an OK button and a Cancel button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`CANCELBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



CHECKBOX statement (for static dialog boxes)
CHECKBOX Left, Top, Width, Height, Text, Value 

This statement adds a check box to a dialog box. A check box is used to present users with non-exclusive 
choices. To present users with exclusive choices, use option buttons. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the check box in dialog units.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the check box in dialog units.
Width Specifies the check box and label width in dialog units.
Height Specifies the check box height in dialog units. 
Text Specifies the label displayed to the right of the check box. Placing an ampersand 

(&) before a character provides a keyboard shortcut to select the check box. 
Value Specifies the variable that holds the return value that corresponds to the state of 

the check box. Optionally, you can use Value to set the default state of the check 
box.

Returns and Defaults Condition
0 Check box is disabled, and empty.
1 Check box is enabled, and displays a check mark. 
2 Grayed check box. A check box filled with gray indicates that a multiple selection 

contains a mix of property values. For example, selecting text that uses different 
fonts returns a mixed value. 

Note
Users can cycle through the three check box states by clicking the check box itself, or by clicking its label. 
To make a dialog box easier to read and understand, put a group box with a label around related check 

boxes.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`CHECKBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



COMBOBOX statement (for static dialog boxes)
COMBOBOX Left, Top, Width, Height, Array, Value

This statement adds a combo box to a dialog box. As its name indicates, a combo box is a combination of boxes; 
in this case a combination of a text box and a list box. From a combo box, you can make a selection from a 
restricted set of items or enter your own selection in the text window. The advantage of a combo box over a list 
box is that you don't restrict a user to predefined items. A default selection can be provided in a combo box, and 
a string associated with a selection is returned to the script.
Each item in the list box portion of a combo box comes from a previously defined one-dimension array. The items
should be listed in a logical order such as alphabetical, ascending sort order for number values, or some other 
logical sort order that is appropriate for the items in the list. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the combo box in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the combo box in dialog units.
Width Specifies the combo box width in dialog units.
Height Specifies the combo box height in dialog units. 
Array Specifies a one-dimension array containing a string list. The array must be 

dimensioned before the dialog box in the script.
Value Value is a string variable that holds the return value that corresponds to the 

selected combo box entry or the user-entered text. Optionally, you can use Value 
to set the default selection in the combo box.

Returns and Defaults Condition
a string Returns a string that corresponds to the array element selected or the user-

entered text. 

Note
If the items can't vertically fit into the list box portion, the list box automatically takes on a vertical scroll 

bar. The scroll bar is placed on the right-side of the list box to the immediate left of the right border. Having the 
scroll bar placed within the list box cuts into the item display area, so you should ensure that each list box entry can
at least be recognized.

If you type text in the text box, the list box scrolls to the closest matching item in the list box portion of the
combo box. Choosing a list item from the list box replaces the text box contents with the list box selection.

Because a combo box doesn't have a label component, a text control should be used to identify the combo
box. The text control label can also be used to provide a shortcut to the combo box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`COMBOBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



DDCOMBOBOX statement (for static dialog boxes)
DDCOMBOBOX Left, Top, Width, Height, Array, Value

This statement adds a drop-down combo box to a dialog box. As its name indicates, a drop-down combo box is a 
combination drop-down list box and text box. The advantage of using a drop-down combo box over a regular 
combo box is that the control uses less space. In some cases, this might make the dialog easier to read. The 
drawback is that it adds another level of user interaction to a dialog box.
Each item in the list box portion of a drop-down combo box comes from a previously defined one-dimension 
array. The items should be listed in a logical order such as alphabetical, ascending sort for number values, or 
some other logical sort that is appropriate for the items in the list. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the drop-down combo box in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the drop-down combo box in dialog units.
Width Specifies the drop-down combo box width in dialog units.
Height Specifies the drop-down combo box height in dialog units when opened. 
Array Specifies a one-dimension array containing a string list. The array must be 

dimensioned before the dialog box in the script.
Value Value is a string variable that holds the return value that corresponds to the 

selected drop-down combo box entry or the user-entered text. Optionally, you can 
use Value to set the default selection in the drop-down combo box.

Returns and Defaults Condition
a string Returns a string that corresponds to the array element selected or the user-

entered text. 

Note
If you type text in the text box, the list box scrolls to the closest matching item in the list box portion of the

drop-down combo box. Choosing a list item from the list box replaces the text box contents with the list box 
selection.

Because a drop-down combo box doesn't have a label component, a text control should be used to identify 
the dialog control. The text control label can also be used to provide a shortcut to the drop-down combo box. A 
default selection can be provided in a drop-down combo box.

If the items can't vertically fit into the list box, the drop-down list box automatically takes on a vertical 
scroll bar. The scroll bar is placed on the right-side of the list box to the immediate left of the right border. Having 
the scroll bar placed within the list box cuts into the item display area, so you should ensure that each list box entry
can at least be recognized.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`DDCOMBOBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



DDLISTBOX statement (for static dialog boxes)
DDLISTBOX Left, Top, Width, Height, Array, Value

This statement adds a drop-down list box to a dialog box. A drop-down list box is like a list box, except to display 
the items and to make a choice, you must open the drop-down list box. Once a selection is made, the drop-down 
portion of the control closes.
The advantage of using a drop-down list box over a list box is that the control uses less space. In some cases, 
this might make the dialog easier to read. The drawback is that it adds another level of user interaction to a 
dialog box. Like the list box, the drop-down list box provides a user with a single choice from a restricted set of 
items. Each item in a drop-down list box comes from a previously defined one-dimension array. The items should 
be listed in a logical order such as alphabetical, ascending sort order for number values, or some other logical 
sort order that is appropriate for the items in the list. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the drop-down list box in dialog units.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the drop-down list box in dialog units.
Width Specifies the drop-down list box width in dialog units.
Height Specifies the drop-down list box height when opened in dialog units. 
Array Specifies a one-dimension array containing a string list. The array must be 

dimensioned before the dialog box in the script.
Value Value is a variable that holds the return value that corresponds to the selected 

drop-down list box entry. Optionally, you can use Value to set the default selection
in the drop-down list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected. 

Note
If the items can't vertically fit into the list box, the drop-down list box automatically takes on a vertical 

scroll bar. The scroll bar is placed on the right-side of the list box to the immediate left of the right border. Having 
the scroll bar placed within the list box cuts into the item display area, so you should ensure that each list box entry
can at least be recognized.

Because a drop-down list box doesn't have a label component, a text control should be used to identify the
drop-down list box. The text control label can also be used to provide a shortcut to the drop-down list box. A default 
selection can be provided in a drop-down list box and an integer associated with a selection is always returned to 
the script.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`DDLISTBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



DIALOG statement (for static dialog boxes)
ReturnValue = DIALOG(Identifier)

This statement initializes, or displays a custom static dialog box, using a dialog box definition established earlier 
in the script. Use the function syntax to return a value corresponding to the button that was clicked to close the 
dialog box.

Syntax Definition
ReturnValue The numeric variable assigned the return value corresponding to the button that 

was clicked to close the dialog box.
Identifier Name assigned to the dialog box definition. 

Returns Condition
1 Pressing the OK button to close the dialog box.
2 Pressing the CANCEL button to close the dialog box. Pressing the Close Dialog 

button ( ) is the same as pressing the Cancel button; both return 2.
an integer from 3 to n Pressing a push or bitmap button. Push buttons and bitmap buttons are numbered based
on the order in which they are listed in a script and not their placement within a dialog box. The first push or bitmap
button listed in a dialog box definition is set to 3. The second button is set to 4, and so on. The last push or bitmap 
button is equal to (2 + n) where n is the number of push and bitmap buttons. The values 1, and 2 are reserved for 
the OK button and Cancel button, respectively.

Note
Corel SCRIPT dialog boxes are modal; the running script cannot continue until the dialog box is closed.

{button ,AL(`corel_script_dialog_control;Returning_dialog_settings_and_choices;;;;',0,"Defaultovervi
ew",)} Related Topics

{button ,AL(`DIALOG_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



GROUPBOX statement (for static dialog boxes)
GROUPBOX Left, Top, Width, Height, Text

This statement adds a group box to a dialog box. A group box is a dialog control that doesn't return a value to a 
script, but is used to help arrange dialog controls to make the dialog box easier to understand. The group box is 
useful in physically grouping related check boxes and option buttons. The label component of the group box 
gives a user more information about a dialog. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the group box, in dialog units.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the group box, in dialog units.
Width Specifies the group box width, in dialog units.
Height Specifies the group box height, in dialog units. 
Text Specifies the label displayed at the top of the group box.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`GROUPBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



HELPBUTTON statement (for static dialog boxes)
HELPBUTTON Left, Top, Width, Height, Text, Value 

This statement adds a help button to a dialog box. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the help button, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the help button, in dialog units.
Width Specifies the Help button width in dialog units.
Height Specifies the Help button height in dialog units. 
Text A string or string variable that specifies the help file (and it's path) that the Help 

button opens. 
Value Specifies the topic WinHelp displays whenever the help button is clicked. The topic

is specified using a valid topic ID number. If a topic ID number is invalid and the 
help button is clicked, WinHelp opens an information dialog box notifying the user 
the topic is not available.

Note
The help button control is an advanced control that should be used by Windows programmers and 

Windows help file authors. For more information about creating and compiling Windows help files and context-
sensitive help, consult the Microsoft Windows SDK or the Microsoft Windows Help Author's Guide. 

Use a Windows Help Compiler to build a help file.
The help button is not a push button and does not close a dialog box. 

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`HELPBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



HSLIDER statement (for static dialog boxes)
HSLIDER Left, Top, Width, Height, Text, Value

This statement adds a horizontal slider control to a dialog box. The slider is used for setting and adjusting 
continuous numeric values. Some examples of appropriate uses for the slider include using it to adjust size, 
volume, or color intensity. 
The slider indicator is used to adjust the control's return value. You can change the slider indicator position by 
dragging it horizontally with the mouse. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the slider in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the slider in dialog units.
Width Specifies the slider width in dialog units.
Height Specifies the slider height in dialog units. 
Value Value is the variable that holds the return value that corresponds to the slider 

indicator's position. Optionally, you can use Value to set the slider's indicator 
position.

Returns and Defaults Condition
0 to 100 (an integer) Corresponds to the position of the slider indicator. The left-most position is equal 

to 0, the right-most position is equal to 100, and the center position is equal to 50.
A default value greater than 100 is set to 100, and a value less than 0 is set to 0.

Note
Static slider controls display a tick mark at 0 and at 100.
You can also move the slider indicator by clicking along the slider bar (20 units per click), or using the 

arrow keys (10 units per click) on the keyboard when the slider control has focus.
A text control should be used to identify the slider, because a slider doesn't have a label component. The 

text control label can be used to provide a shortcut to the slider.
You can use the VSLIDER statement to create a vertical slider.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`HSLIDER_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



IMAGE statement (for static dialog boxes)
IMAGE Left, Top, Width, Height, Value 

This statement adds an image box to a dialog box. The image control can display Windows bitmaps (.BMP 
and .RLE files). The bitmap image is automatically sized to fit the height and width you've specified. As a dialog 
control, an image control doesn't return a value to a script, but can be used to provide or convey visual 
information to a user.

Syntax Definition
Left Specifies the distance in dialog units from the inside of the dialog box's left border 

to the left side of the image box.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the image box.
Width Specifies the Image box width in dialog units. The selected image is scaled to fit in

the image box.
Height Specifies the Image box height in dialog units. The selected image is scaled to fit 

in the image box. 
Value A string or string variable that specifies the graphic (and its full path) to display in 

the image box.

Note
You can insert Windows bitmaps (.BMP and .RLE files) into an image control. 
While editing a dialog box in Corel SCRIPT Editor, a placeholder image is displayed in the dialog box.
Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 

SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`IMAGE_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



IMAGELISTBOX statement (for static dialog boxes)
IMAGELISTBOX Left, Top, Width, Height, Array, Value

Adds an image list box to a dialog box. The image list box is a dialog control used to preview and select Windows
bitmaps (.BMP and .RLE files). You can select an image from the list box by clicking it. Like the list box, the image
list box provides a user with a single choice from a restricted set of items. Each item in an image list box comes 
from a previously defined one-dimension array. Images displayed in an image list box are resized to fit 
horizontally.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the image list box in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the image list box in dialog units.
Width Specifies the image list box width in dialog units.
Height Specifies the image list box height in dialog units. 
Array Specifies a one-dimension array containing a string list of bitmap files (and their 

paths). The array must be dimensioned before the dialog box in the script. If a 
bitmap can't be found, it is filled with black in the image list box.

Value Value is a variable that holds the return value that corresponds to the selected 
image list box entry. Optionally, you can use Value to set the default selection in 
the image list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected. 

Note
Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 

SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`IMAGELISTBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



LISTBOX statement (for static dialog boxes)
LISTBOX Left, Top, Width, Height, Array, Value

This statement adds a list box to a dialog box. A list box provides a user with a single choice from a restricted set
of items and should be used instead of option buttons when there are more than six option items. Each item in a 
list box comes from a previously defined one-dimension array. The items should be listed in a logical order such 
as alphabetical, ascending sort for number values, or some other logical sort that is appropriate for the items in 
the list. 
If the items can't vertically fit into the list box, the list box automatically takes on a vertical scroll bar. The scroll 
bar is placed on the right-side of the list box to the immediate left of the right border. Having the scroll bar 
placed within the list box cuts into the item display area, so you should ensure that each list box entry can be 
recognized.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the list box, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the list box, in dialog units.
Width Specifies the list box width, in dialog units.
Height Specifies the list box height, in dialog units. 
Array Specifies the one-dimension array containing a string list. The array must be 

dimensioned before the dialog box in the script.
Value Value is a variable that holds the return value that corresponds to the selected list

box entry. Optionally, you can use Value to set the default selection in the list box.

Returns and Defaults Condition
an integer Returns an integer that corresponds to the array element selected. 

Note
Because a list box doesn't have a label component, a text control should be used to identify the list box. 

The text control label can also be used to provide a shortcut to the list box. A default selection can be provided in a 
list box, and an integer associated with a selection is always returned to the script.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`LISTBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



OKBUTTON statement (for static dialog boxes)
OKBUTTON Left, Top, Width, Height

This statement adds an OK button to a dialog box. Pressing an OK button closes a dialog box and assigns the 
settings within the dialog box.

Syntax Definition
Left Distance in dialog units from the inside of the dialog box's left border to the left 

side of the OK button.
Top Distance in dialog units from the bottom of the dialog box's title bar to the top of 

the OK button.
Width OK button width in dialog units.
Height OK button height in dialog units. 

Returns to dialog box Condition
1 Press the OK button to close the dialog box.

Note
The OK button can't be assigned a shortcut key, but pressing ENTER is the same as pressing the OK button

(unless a push button or the Cancel button has focus). Only one OK button in a dialog box is suggested.
In addition to pressing an OK button or pressing ENTER, dialog boxes can also be closed by pressing a 

Cancel button, a Bitmap button, a Push button, or the Close Dialog button (
).

Dialog boxes are easier to use if they include an OK button and a Cancel button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`OKBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



OPTIONBUTTON statement (for static dialog boxes)
OPTIONBUTTON Left, Top, Width, Height, Text

Adds an option button to a dialog box. Option buttons are used to present two or more mutually exclusive 
choices. Only one option button in a group can be selected, and selecting an option button in a group de-selects 
a previously selected button. One option button from a group always remains selected.
In a script, OPTIONBUTTON statements are grouped together without intervening statements (remarks 
excluded) and must be immediately preceded by an OPTIONGROUP statement. The selected option button is 
returned to the OPTIONGROUP variable Value.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the option button in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the option button in dialog units.
Width Specifies the option button and label width in dialog units.
Height Specifies the option button and label height in dialog units.
Text Specifies the label displayed to the right of the option button. Placing an 

ampersand (&) before a character provides a keyboard shortcut to selecting the 
option button. 

Note
Option buttons should be used to choose a property, or to set a value or an option. Consider using some 

type of list box when you have more than 6 choices. 
In dialog windows in the Corel SCRIPT Editor, option buttons are grouped as you create them. As you insert

option buttons, they will automatically be included in the same group until you enter another type of control. Once 
you enter another type of control, and then insert more option buttons, the options buttons will form another group 
with an OPTIONGROUP statement preceding the first option button.

To make a dialog box easier to read, put a group box around the option buttons and a label indicating the 
purpose of the option buttons. 

Option buttons are often called radio buttons, and are often confused with check boxes. Although they 
perform similar functions, option buttons allow only one option in a group of options while check boxes allow you 
multiple options.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`OPTIONBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



OPTIONGROUP statement (for static dialog boxes)
OPTIONGROUP Value

This statement marks the beginning of a series of OPTIONBUTTON statements in a script. The option button 
statements are positioned directly below the OPTIONGROUP statement without any intervening statements 
(remarks excluded). 

Syntax Definition
Value Specifies a numeric variable that is assigned the return value that corresponds to 

the selected option button within the group. It can also be used to set the default 
enabled button.

Returns and defaults Condition
an integer from 0 to n The integer that corresponds to the option button selected by the user. The first 

option button in an option group is identified as 0, the second option button is 
identified as 1, and so on. The last option button is identified as n. The order of the
option buttons is determined, not by their placement within the dialog box, but by 
the order in which they are listed in the script.

Note
The Corel SCRIPT Editor groups option buttons as you create them in dialog windows. As you insert option 

buttons, they will automatically be included in the same group until you enter another type of control. Once you 
enter another type of control, and then insert more option buttons, the options buttons will form another group with
an OPTIONGROUP statement preceding the first option button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`OPTIONGROUP_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



PROGRESS statement (for static dialog boxes)
PROGRESS Left, Top, Width, Height, Value

This statement adds a progress indicator to a dialog box. In a dynamic dialog box, the progress indicator visually 
displays the progress of an operation. A progress indicator in a static dialog box cannot be used to provide the 
user with any information. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the progress indicator in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the progress indicator in dialog units.
Width Specifies the progress indicator width in dialog units.
Height Specifies the progress indicator height in dialog units. 
Value Specifies a default complete value for the progress indicator as a percentage. 

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`PROGRESS_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



PUSHBUTTON statement (for static dialog boxes)
PUSHBUTTON Left, Top, Width, Height, Text

This statement adds a push button to a dialog box. Pressing a push button closes a dialog box and assigns the 
settings within the dialog box.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the push button in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the push button in dialog units.
Width Specifies the push button width in dialog units.
Height Specifies the push button height in dialog units. 
Text Label displayed on the push button. Placing an ampersand (&) before a character 

provides a keyboard shortcut to select a push button. 

Returns to dialog box Condition
an integer from 3 to n Pressing a push button. Push buttons and bitmap buttons are numbered based on 

the order in which they are listed in a script, and not their placement within a 
dialog box. The first push or bitmap button listed in a dialog box definition is set to
3. The second button is set to 4, and so on. The last push or bitmap button is 
equal to (2 + n) where n is the number of push and bitmap buttons. The values 1, 
and 2 are reserved for the OK button and Cancel button, respectively.

Note
Push buttons are often used to open another dialog box.
In addition to pressing a push button, dialog boxes can also be closed by pressing a Cancel button, a 

bitmap button, an OK button, or the Close Dialog button (
).

Dialog boxes are easier to use if they include an OK button and a Cancel button.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`PUSHBUTTON_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



SPINCONTROL statement (for static dialog boxes)
SPINCONTROL Left, Top, Width, Height, Value 

This statement adds a spin control to a dialog box. The spin control is used to change values in numeric entry 
text boxes by using the mouse or keyboard. The top arrow increases the value displayed, the bottom arrow 
decreases it. You can either click the arrow to change the value by a single increment, or hold the mouse button 
down on an arrow to cause the value to change continuously. You can also type directly into the text window 
portion. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the spin control in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the spin control in dialog units.
Width Specifies the spin control width in dialog units.
Height Specifies the spin control height in dialog units. 
Value Value is a variable that holds the return value that corresponds to the number in 

the spin control. Optionally, you can use Value to set the default value of the spin 
control. Value returns an integer that ranges from -32,768 to 32,767.

Returns and Defaults Condition
a numeric variable Returns a number that corresponds to the value selected, or entered, into the spin 

control.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`SPINCONTROL_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



STATUS statement (for static dialog boxes)
STATUS Text 

This statement adds a status bar to a dialog box. The status bar is a window at the bottom of a dialog box that 
displays specified status text. Unlike most dialog controls, the status control does not have size or position 
properties , it is always placed at the bottom of a dialog box. As the dialog box is resized in the Corel SCRIPT 
Editor, the status bar control is also automatically resized.

You can use the status bar control to make a dialog box easier to understand; it does not return a value to a script.

Syntax Definition
Text Specifies the text to display in the status bar, beginning in the left corner. 

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`STATUS_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



TEXT statement (for static dialog boxes)
TEXT Left, Top, Width, Height, Text

This statement adds a text label to a dialog box. Text controls in dialog boxes are used as labels and to provide 
user instructions. As labels, text controls do not return a value back to a running script.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the text in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the text in dialog units.
Width Specifies the text label bounding box width in dialog units.
Height Specifies the text label bounding box height in dialog units. 
Text Specifies the text label to display in dialog box. 

Note
Use sentence formatting for dialog text titles; the initial character of the sentence in uppercase. The 

sentence should end with a colon, not a period. For example, Choose a file: You should provide text labels for 
dialog controls that don't have a label component.

Controls that use labels such as push buttons and option buttons can have shortcut keys assigned to them 
by placing an ampersand (&) before a label character. When the script displays the dialog box, you can use a 
keyboard shortcut to select a control by pressing ALT and the underlined shortcut key (the character that follows the
ampersand). You can also use the text control to provide shortcut keys for controls that don't use labels. 

A text control must be associated with an unlabelled dialog control (available controls listed below) to provide 
a keyboard shortcut. To associate a text control with a dialog control, the text control statement in the Corel 
SCRIPT script must immediately precede the unlabelled control statement. Association is not based on a 
control's dialog location.
The following controls can be associated with a text control:

text box

list box

drop-down list box

combo box

drop-down combo box

spin control

image list box
See Changing focus in dialog boxes for more information about using shortcut keys in a custom dialog box.
You can insert a line break in text controls by using the CHR(13) function (as shown in the example). See 

the CHR function for more information about using special characters.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`TEXT_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



TEXTBOX statement (for static dialog boxes)
TEXTBOX Left, Top, Width, Height, Text

This statement adds a text box to a dynamic dialog box. The text box control receives user-inputted text which is
returned to the script as a string.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the text box in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the text box in dialog units.
Width Specifies the text box width in dialog units.
Height Specifies the text box height in dialog units. 
Text Specifies a string variable that is assigned the text the user enters in the text box. 

This variable can also be used to set the default text in the text box.

Returns and Defaults Condition
a string Corresponds to the text the user enters into the text box or the default text. 

Note
If you want a number returned to a script from a text box, use the VAL function to convert the text 

because a text box can only return strings. 
You can use standard window shortcut keys such as CTRL + X to cut text, CTRL + C to copy text, and CTRL 

+ V to paste text. Arrow keys can also be used in a text box to move the cursor.
Because a text box doesn't have a label component, a text control should be used to identify the text box 

control. The text control label can be used to provide a shortcut to the text box.
Pressing CTRL + ENTER in a text box inserts a line return character. Pressing ENTER or SHIFT + ENTER in 

the text box control is the same as pressing a push button, and closes the dialog box.
You can scroll through the text horizontally using the arrow keys. 

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`TEXTBOX_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes



VSLIDER statement (for static dialog boxes)
VSLIDER Left, Top, Width, Height, Value

This statement adds a vertical slider control to a dialog box. The slider is used for setting and adjusting 
continuous numeric values. Some examples of appropriate uses for the slider include using it to adjust size, 
volume, or color intensity. 
The slider indicator is used to adjust the control's return value. You can change the indicator position by dragging
it vertically with the mouse. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the slider in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the slider in dialog units.
Width Specifies the slider width in dialog units.
Height Specifies the slider height in dialog units. 
Value Value is a variable that holds the return value that corresponds to the slider 

indicator's position. Optionally, you can use Value to set the slider's indicator 
position.

Returns and Defaults Condition
0 to 100 (an integer) Corresponds to the position of the slider indicator. The left-most position is equal 

to 0, the right-most position is equal to 100, and the center position is equal to 50.
A default value greater than 100 is set to 100, and a value less than 0 is set to 0.

Note
Static slider controls displays a tick mark at 0 and at 100.
You can also move the slider indicator by clicking along the slider bar (20 units per click), or by using the 

arrow keys (10 units per click) on the keyboard when the slider control has focus.
Because a slider doesn't have a label component, a text control should be used to identify the slider. The 

text control label can be used to provide a shortcut to the slider.
You can use the HSLIDER statement to create a horizontal slider.

{button ,AL(`corel_script_dialog_control;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`VSLIDER_DYN;;;;;',1,"Defaultoverview",)} Syntax for dynamic dialog boxes





Dialog box definition statements
A dialog box definition consists of the 
BEGIN DIALOG and END DIALOG statements 
with control statements in between. The 
following list contains valid dialog box 
definition statements:

BEGIN DIALOG 
BITMAPBUTTON
CANCELBUTTON
CHECKBOX
COMBOBOX
DDCOMBOBOX
DDLISTBOX
END DIALOG 
GROUPBOX
HELPBUTTON
HSLIDER
IMAGE
IMAGELISTBOX
LISTBOX
OKBUTTON
OPTIONBUTTON
OPTIONGROUP
PROGRESS
PUSHBUTTON
SPINCONTROL
STATUS
TEXT
TEXTBOX
VSLIDER

You can include remark (REM) statements 
in a dialog box definition.



No related topics were found.



No procedure topics were found.





Specifies the name of the Dialog Event Handler subroutine 
(Example1) which corresponds to the subroutine specified 
in a BEGIN DIALOG statement.. The two required 
parameters are both passed by value (BYVAL). ControlID is
the variable that is passed a value corresponding to the 
dialog control that is generating a dialog event. Event is the 
variable that is passed a value corresponding to the dialog 
event that occurs in the dialog box.



Conditional statements to execute when the dynamic dialog 
box is initialized, or first displayed. Typical uses for the 
Dialog Initialization event include setting default text in text 
boxes, specifying arrays for list boxes, and check box and 
spin control attributes.



Conditional statements to execute when a control is clicked 
in the dynamic dialog box. Clicking a control is the most 
common type of event in a dynamic dialog box and generally
occurs whenever a push button is clicked or a selection is 
made in a check box, option button, or any type of list box. 



Conditional statements to execute when the checkbox (the 
first control in the dialog box definition) is clicked.



Conditional statements to execute when a control is clicked 
in the    dynamic dialog box. The nested conditional 
statements are executed if the check box (Control = 1) or 
option button (Control = 3)    have been clicked.



Specifies the name of the Dialog Event Handler subroutine 
(Example1). This subroutine sends script instructions to a 
dynamic dialog box when an event or changes occur in a 
dialog box. For example, clicking a checkbox is a dialog 
event that can be used to trigger a change in a dialog box 
such as enabling or hiding a control.



Specifies a string variable that identifies the dynamic dialog 
control. The period (.) before the identifier is required.



Specifies a check box setting in the dialog box. Any dynamic 
dialog functions that are executed before the DIALOG 
statement (which display the dialog box) set a dynamic 
dialog box's initial settings. However, it is better 
programming practice to place initialization statements in 
Dialog Event Handler subroutine in a Event = 0 condition.



BEGIN DIALOG...END DIALOG statements (for dynamic dialog boxes)
BEGIN DIALOG OBJECT Identifier Left, Top, Width, Height, Text, SUB Subname

[dialog control statements] 
END DIALOG

A user-defined dynamic dialog box must begin with the BEGIN DIALOG statement and close with the END 
DIALOG statement.
The BEGIN DIALOG statement is followed by a series of statements that define a dialog. The series of 
statements insert dialog controls into the dialog box. Except for remarks statements, the only statements that 
can appear between BEGIN DIALOG and END DIALOG are the dialog control statements. The END DIALOG 
statement closes the definition of the user-defined dialog. 
A user-defined dynamic dialog can be changed by editing the statements between the BEGIN DIALOG and END 
DIALOG statements. An alternative to editing the statements is to use the dialog windows in the Corel SCRIPT 
Editor. Working in dialog windows is similar to using a drawing or painting application: dialog controls are graphic
objects which can be inserted, moved, re-sized, and aligned in a dialog box. 
The BEGIN DIALOG and END DIALOG statements on their own cannot display a dialog box and hold return 
values during a Corel SCRIPT script run. Use the DIALOG statement to display the dialog box.

Syntax Definition
OBJECT Required script keyword.
Identifier Name assigned to the dialog box sequence.
Left Specifies the distance in dialog units from the dialog box's left border to the left 

side of the monitor's display area. If both Left and Top are omitted, the dialog box 
will be centered on the screen.

Top Specifies the distance in dialog units from the dialog box's top border to the top 
side of the monitor's display area. If both Left and Top are omitted, the dialog box 
will be centered on the screen.

Width Specifies the dialog box width in dialog units.
Height Specifies the dialog box height in dialog units. 
Text Specifies a string or a string variable that is used to set the text in the dialog box's

title bar.
SUB Script keyword that precedes the Subname parameter, if used. 
Subname Specifies the name of Dialog Event Handler subroutine. This subroutine sends 

instruction to a dialog box based on events which occur in the defined dialog box.
[dialog control statements] Specifies the script statements that define the dialog's controls. These 

statements are called a dialog box's definition statements.
Note

You can use the SETSTYLE function to specify whether to display an icon and buttons in the dialog box's 
title bar.

Dialog boxes are considered local to the procedure (main, or a user-defined subroutine or function) in 
which they are declared. However, if the dialog box uses global variables only, the dialog box can be called from 
any procedure in the script. Click 
 for more information about global variables and variable availability. 

{button ,AL(`corel_script_dialog_control_dynamic_dynamic;Returning_dialog_settings_and_choices;;',
0,"Defaultoverview",)} Related Topics

{button ,AL(`closedialog;move;getheight;getleftposition;gettopposition;getwidth;settext;gettext;se
tTIMER;getTIMER;',0,"Defaultoverview",)} Dynamic dialog functions

{button ,AL(`BEGIN_END_DIALOG;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



BITMAPBUTTON statement (for dynamic dialog boxes)
BITMAPBUTTON Left, Top, Width, Height, .Identifier

This statement add a bitmap button to a dynamic dialog box. Unlike the static version of this control, this 
statement does not close a dialog box when clicked. Bitmap buttons are often used to open another dialog box. 
For more information about using this dialog control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the bitmap button, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the bitmap button, in dialog units.
Width Specifies the bitmap button width, in dialog units.
Height Specifies the bitmap button height, in dialog units.
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Note

You can use the SETSTYLE function to change how bitmaps appear in a bitmap button.
Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 

SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;setarray;enable;;;',0,"Defaultoverview",)} Dynamic dialog functions

{button ,AL(`BITMAPBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



CANCELBUTTON statement (for dynamic dialog boxes)
CANCELBUTTON Left, Top, Width, Height, .Identifier

This statement adds a Cancel button to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance in dialog units from the inside of the dialog box's left border 

to the left side of the Cancel button.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the Cancel button, in dialog units.
Width Specifies the Cancel button width, in dialog units.
Height Specifies the Cancel button height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settext;gettext;enable;all_dyn_functions;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`CANCELBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



CHECKBOX statement (for dynamic dialog boxes)
CHECKBOX Left, Top, Width, Height, .Identifier, Text

This statement adds a check box to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic. 

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the check box, in dialog units.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the check box, in dialog units.
Width Specifies the check box and label width, in dialog units.
Height Specifies the check box height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Text Specifies a string or a string variable that is used to set the check box's initial text 

attribute. Placing an ampersand (&) before a character provides a keyboard 
shortcut to selecting the check box.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;setvalue;getvalue;setthreestate;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`CHECKBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



COMBOBOX statement (for dynamic dialog boxes)
COMBOBOX Left, Top, Width, Height, .Identifier

This statement adds a combo box to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the combo box, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the combo box, in dialog units.
Width Specifies the combo box width, in dialog units.
Height Specifies the combo box height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;lb_funs;setselect;getselect;setarray;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`COMBOBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



DDCOMBOBOX statement (for dynamic dialog boxes)
DDCOMBOBOX Left, Top, Width, Height, .Identifier

This statement adds a drop-down combo box to a dynamic dialog box. For overview information about using this 
dialog control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the drop-down combo box, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the drop-down combo box, in dialog units.
Width Specifies the drop-down combo box width, in dialog units.
Height Specifies the drop-down combo box height, in dialog units when opened. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;lb_funs;setselect;getselect;setarray;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`DDCOMBOBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



DDLISTBOX statement (for dynamic dialog boxes)
DDLISTBOX Left, Top, Width, Height, .Identifier

This statement adds a drop-down list box to a dynamic dialog box. For overview information about using this 
dialog control, see its static syntax topic. 

Syntax Definition
Left Specified the distance from the inside of the dialog box's left border to the left side

of the drop-down list box, in dialog units.
Top Specified the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the drop-down list box, in dialog units.
Width Specified the drop-down list box width, in dialog units.
Height Specified the drop-down list box height, in dialog units, when opened. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;lb_funs;setselect;getselect;setarray;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`DDLISTBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



DIALOG statement (for dynamic dialog boxes)
DIALOG Identifier

ReturnValue = DIALOG(Identifier)

This statement initializes, or displays a custom dynamic dialog box, using a dialog box definition established 
earlier in the script. Use the function syntax to return a value corresponding to the button that was clicked to 
close the dialog box.

Syntax Definition
ReturnValue The numeric variable that is assigned the return value corresponding to the button

that was clicked to close the dialog box.
Identifier The name assigned to the dialog box definition in the BEGIN DIALOG statement. 

Returns Condition
1 Pressing the OK button to close the dialog box.
2 Pressing the CANCEL button to close the dialog box. Pressing the Close Dialog 

button ( ) is the same as pressing the Cancel button; both return 2.
an integer >= 3 Triggering an event that uses the CLOSEDIALOG function.

Note
Since push buttons and bitmap buttons can't be used to close a dynamic dialog box, they do not return a 

numeric value to the DIALOG function.

{button ,AL(`corel_script_dialog_control_dynamic;Returning_dialog_settings_and_choices;;;;',0,"Defa
ultoverview",)} Related Topics

{button ,AL(`DIALOG;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



GROUPBOX statement (for dynamic dialog boxes)
GROUPBOX Left, Top, Width, Height, .Identifier, Text

This statement adds a group box to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the group box, in dialog units.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the group box, in dialog units.
Width Specifies the group box width, in dialog units.
Height Specifies the group box height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Text Specifies a string or a string variable that is used to set the group box's initial text 

attribute. 

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settext;gettext;enable;all_dyn_functions;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`GROUPBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



HELPBUTTON statement (for dynamic dialog boxes)
HELPBUTTON Left, Top, Width, Height, .Identifier

 This command adds a help button to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the help button, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the help button, in dialog units.
Width Specifies the Help button width, in dialog units.
Height Specifies the Help button height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;sethelppath;gethelppath;sethelpindex;gethelpindex;enable;',0,"Defa
ultoverview",)} Dynamic dialog functions

{button ,AL(`HELPBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



HSLIDER statement (for dynamic dialog boxes)
HSLIDER Left, Top, Width, Height, .Identifier

This statement adds a horizontal slider control to a dynamic dialog box. For overview information about using 
this dialog control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the slider, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the slider, in dialog units.
Width Specifies the slider width, in dialog units.
Height Specifies the slider height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settick;gettick;setincrement;getincrement;setvalue;getvalue;setmaxrange;getmaxran
ge;setminrange;getminrange;enable;all_dyn_functions;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`HSLIDER;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



IMAGE statement (for dynamic dialog boxes)
IMAGE Left, Top, Width, Height, .Identifier

This command adds an image box to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance in dialog units from the inside of the dialog box's left border 

to the left side of the image box.
Top Specifies the distance in dialog units from the bottom of the dialog box's title bar 

to the top of the image box.
Width Specifies the Image box width, in dialog units. Your selected image is scaled to fit 

in the image box.
Height Specifies the Image box height, in dialog units. Your selected image is scaled to fit 

in the image box. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Note

You can use the SETSTYLE function to change the properties of an image box. You can make the image 
box appear sunken or specify how a bitmap appears in an image control. 

You can use the SETBITMAPOFFSET function to specify a portion of a bitmap to display in the image box. 
Click 
 for an example.

Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 
SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;setimage;getimage;;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`IMAGE;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



IMAGELISTBOX statement (for dynamic dialog boxes)
IMAGELISTBOX Left, Top, Width, Height, .Identifier

Adds an image list box to a dynamic dialog box. For overview information about using this dialog control, see its 
static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the image list box, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the image list box, in dialog units.
Width Specifies the image list box width, in dialog units.
Height Specifies the image list box height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Note

Use the ADDRESBMP statement to embed bitmaps into an executable (.EXE) or DLL created with Corel 
SCRIPT, or a Corel SCRIPT Binary file (.CSB).

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;lb_funs;setselect;getselect;setarray;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`IMAGELISTBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



LISTBOX statement (for dynamic dialog boxes)
LISTBOX Left, Top, Width, Height, .Identifier

This statement adds a list box to a dynamic dialog box. For overview information about using this dialog control, 
see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the list box, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the list box, in dialog units.
Width Specifies the list box width, in dialog units.
Height Specifies the list box height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;lb_funs;setselect;getselect;setarray;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`LISTBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



OKBUTTON statement (for dynamic dialog boxes)
OKBUTTON Left, Top, Width, Height, .Identifier

This statement adds an OK button to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Distance in dialog units from the inside of the dialog box's left border to the left 

side of the OK button.
Top Distance in dialog units from the bottom of the dialog box's title bar to the top of 

the OK button.
Width OK button width, in dialog units.
Height OK button height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settext;gettext;enable;all_dyn_functions;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`OKBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



OPTIONBUTTON statement (for dynamic dialog boxes)
OPTIONBUTTON Left, Top, Width, Height, .Identifier, Text

Adds an option button to a dynamic dialog box. For overview information about using this dialog control, see its 
static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the option button, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the option button, in dialog units.
Width Specifies the option button and label width, in dialog units.
Height Specifies the option button and label height, in dialog units.
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Text Specifies a string or a string variable that is used to set the option button's label 

initial text attribute. Placing an ampersand (&) before a character provides a 
keyboard shortcut to selecting the option button.

Note
Unlike in static dialog boxes, you can also use the SETVALUE and GETVALUE functions to set and return 

option button values.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`enable;all_dyn_functions;settext;gettext;setvalue;getvalue;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`OPTIONBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



OPTIONGROUP statement (for dynamic dialog boxes)
OPTIONGROUP .Identifier

This statement marks the beginning of a series of OPTIONBUTTON statements in a script. The option button 
statements are positioned directly below the OPTIONGROUP statement, without any intervening statements 
(remarks excluded). 

Syntax Definition
Identifier Specifies a string variable that identifies the dynamic dialog box construct. The 

period (.) before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`setvalue;getvalue;',0,"Defaultoverview",)} Dynamic dialog functions

{button ,AL(`OPTIONGROUP;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



PROGRESS statement (for dynamic dialog boxes)
PROGRESS Left, Top, Width, Height, .Identifier

 This statement adds a progress indicator to a dialog box. In a dynamic dialog box, the progress indicator visually
displays the progress of an operation by filling a control gauge from left-to-right, approximating the relative 
progress of a long script operation. The progress indicator doesn't return a value to a script and is only used to 
provide information to a user.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the progress indicator, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the progress indicator, in dialog units.
Width Specifies the progress indicator width, in dialog units.
Height Specifies the progress indicator height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;setincrement;getincrement;setvalue;step;setmaxrange;getmaxrange
;setminrange;getminrange;',0,"Defaultoverview",)} Dynamic dialog functions

{button ,AL(`PROGRESS;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



PUSHBUTTON statement (for dynamic dialog boxes)
PUSHBUTTON Left, Top, Width, Height, .Identifier, Text

 This statement adds push button to a dynamic dialog box. Unlike the static version of this control, it does not 
close a dialog box when clicked. Push buttons are often used to open another dialog box. For other overview 
information about using this dialog control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the push button, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the push button, in dialog units.
Width Specifies the push button width, in dialog units.
Height Specifies the push button height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Text Specifies a string or a string variable that is used to set the initial text attribute for

the push button's label. 

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settext;gettext;enable;all_dyn_functions;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`PUSHBUTTON;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



SPINCONTROL statement (for dynamic dialog boxes)
SPINCONTROL Left, Top, Width, Height, .Identifier

This statement adds a spin control to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the spin control, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the spin control, in dialog units.
Width Specifies the spin control width, in dialog units.
Height Specifies the spin control height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;setincrement;setprecision;setvalue;getprecision;getvalue;setdouble
mode;setminrange;setmaxrange;getminrange;getmaxrange;enable;',0,"Defaultoverview",)} 
Dynamic dialog functions

{button ,AL(`SPINCONTROL;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



STATUS statement (for dynamic dialog boxes)
STATUS .Identifier 

This statement adds a status bar to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settext;gettext;setstyle;getstyle;',0,"Defaultoverview",)} Dynamic dialog functions

{button ,AL(`STATUS;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



TEXT statement (for dynamic dialog boxes)
TEXT Left, Top, Width, Height, .Identifier, Text

This statement adds a text label to a dynamic dialog box. For overview information about using this dialog 
control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the text, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the text, in dialog units.
Width Specifies the text label width, in dialog units.
Height Specifies the text label height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Text Specifies a string or a string variable that is used to set the text label's initial text 

attribute. 
Note

You can use the SETSTYLE function to change the properties of a text label. You can make the text label 
appear sunken, place a border around the text label, or align the text on the text label.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;settext;gettext;enable;;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`TEXT;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



TEXTBOX statement (for dynamic dialog boxes)
TEXTBOX Left, Top, Width, Height, .Identifier

This statement adds a text box to a dynamic dialog box. For overview information about using this dialog control,
see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the text box in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the text box in dialog units.
Width Specifies the text label bounding box width in dialog units.
Height Specifies the text label bounding box height in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.
Note

You can use the SETSTYLE function to specify how to display text in a filled single-line text box. Text can 
either scroll to the left or wrap to a new line in the text box.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`all_dyn_functions;settext;gettext;enable;;;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`TEXTBOX;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



VSLIDER statement (for dynamic dialog boxes)
VSLIDER Left, Top, Width, Height, .Identifier

This statement adds a vertical slider control to a dynamic dialog box. For overview information about using this 
dialog control, see its static syntax topic.

Syntax Definition
Left Specifies the distance from the inside of the dialog box's left border to the left side

of the slider, in dialog units.
Top Specifies the distance from the bottom of the dialog box's title bar to the top of 

the slider, in dialog units.
Width Specifies the slider width, in dialog units.
Height Specifies the slider height, in dialog units. 
Identifier Specifies a string variable that identifies the dynamic dialog control. The period (.) 

before the identifier is required.

{button ,AL(`corel_script_dialog_control_dynamic;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`settick;gettick;setincrement;getincrement;setvalue;getvalue;setmaxrange;getmaxran
ge;setminrange;getminrange;enable;all_dyn_functions;',0,"Defaultoverview",)} Dynamic dialog 
functions

{button ,AL(`VSLIDER;;;;;',1,"Defaultoverview",)} Syntax for static dialog boxes



ADDITEM function
DialogID.Identifier.ADDITEM Item, Index

This function adds an item to a Corel SCRIPT list box dialog control. However, this function does not alter an 
array used to provide a list of items in a list box. Click the Used with the following controls button below for 
a list of Corel SCRIPT list box controls.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the list box    

is used in. This parameter is optional if the function is used in a WITH...END 
WITH construct. If this parameter is used, the period (.) after the dialog box 
identifier is required.

Identifier Specifies a string variable that identifies the list box. This parameter is optional if 
the function is used in a WITH...END WITH construct. If this parameter is used, 
the period (.) after the identifier is required.

Item A string expression that specifies an item to add to a Corel SCRIPT list box.
Index A numeric expression that specifies the position of the item in the list box. This 

value ranges from 1 to the current number of items in the list + 1. If not specified, 
the item is added as the last item in the list box list.

Note
This function can only be used in a Dialog Event Handler subroutine.
Use the REMOVEITEM function to remove a list box item.

{button ,AL(`lb_funs;setarray;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;ddlistbox_dyn;ddcombobox_dyn;combobox_dyn;imagelistbox_dyn;;;;;',0,"D
efaultoverview",)} Used with the following controls



CLOSEDIALOG function
DialogID.CLOSEDIALOG Value

This function closes a dynamic dialog box.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Value A numeric expression that specifies how to close the dialog box. Setting Value to 
2 closes a dialog box and discards the settings (like pressing a Cancel button). 
Setting Value to anything but 2 closes the dialog box and assigns the settings 
within in it (like pressing an OK button). This value is also passed by DIALOG when
it is used as a function to display a dialog box. For example:
ReturnValue% = DIALOG (Dialog1)
If you set Value to 3 and use the above example, ReturnValue equals 3 if the 
CLOSEDIALOG function closes the dialog box. See Example 9 for more 
information.

Note
This function, when called, does not immediately close a dialog box; that is, the dialog box is closed only 

after the Dialog Event Handler subroutine has terminated.

{button ,AL(`okbutton_dyn;cancelbutton_dyn;begin_end_dialog_dyn;;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



ENABLE function
DialogID.Identifier.ENABLE Boolean

This function enables and disables a specified dynamic dialog box control. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Boolean Specifies whether to enable or disable the dynamic dialog box control. Set to TRUE
(-1) to enable the control; otherwise, set to FALSE (0) to disable the control.

Note
This function can only be used within the Dialog Event Handler subroutine. The dynamic dialog box that 

the control is used in must already be running to use this function.
By default, all controls are enabled until you use the ENABLE function to disable them.

{button ,AL(`dialog_dyn;;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMBOBOX_dyn;DDCOMBOB
OX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMAGELISTBOX_dyn;LISTBO
X_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSHBUTTON_dyn;SPINCONTROL_dyn;T
EXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} Used with the following controls



GETBITMAPHEIGHT function
ReturnValue = DialogID.Identifier.GETBITMAPHEIGHT ( )

Returns the height of a bitmap file used in an image box, in pixels.

Syntax Definition
ReturnValue The numeric variable that is assigned the height of a bitmap in an image box, in 

pixels. 
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the image box control. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

{button ,AL(`GETBITMAPHEIGHT;GETBITMAPWIDTH;SETBITMAPOFFSET;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`IMAGE_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETBITMAPWIDTH function
ReturnValue = DialogID.Identifier.GETBITMAPWIDTH ( )

Returns the width of a bitmap file used in an image box, in pixels.

Syntax Definition
ReturnValue The numeric variable that is assigned the width of a bitmap in an image box, in 

pixels. 
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the image box control. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

{button ,AL(`GETBITMAPHEIGHT;GETBITMAPWIDTH;SETBITMAPOFFSET;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`IMAGE_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETHEIGHT function
For dynamic dialog boxes:
ReturnValue = DialogID.GETHEIGHT ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETHEIGHT ( )

Returns a specified dynamic dialog box or control's height, in dialog units. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box, or control's height 

attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`move;gettopposition;getleftposition;getheight;getwidth;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



GETHELPINDEX function
ReturnValue = DialogID.Identifier.GETHELPINDEX ( )

Returns a specified dynamic dialog help button's topic ID number attribute. 

Syntax Definition
ReturnValue The numeric variable that is assigned the help button's topic ID number attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the help 

button is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the help button. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

{button ,AL(`gethelppath;sethelppath;gethelpindex;sethelpindex;;',0,"Defaultoverview",)} Related 
Topics

{button ,AL(`helpbutton_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETHELPPATH function
ReturnValue = DialogID.Identifier.GETHELPPATH ( )

Returns a specified dynamic dialog help button's corresponding help file and path. 

Syntax Definition
ReturnValue The string variable that is assigned the help button's help file and path attribute. 

The return value includes both the help file's filename and path.
DialogID Specifies a string variable that identifies the dynamic dialog box that the help 

button is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the help button. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

{button ,AL(`gethelppath;sethelppath;gethelpindex;sethelpindex;;',0,"Defaultoverview",)} Related 
Topics

{button ,AL(`helpbutton_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETID function
ReturnValue = DialogID.Identifier.GETID ( )

Returns a specified dynamic dialog box control's position in the dialog box's definition statements. The first listed
control is identified as 1, the second listed control is identified as 2, and so on. Although, OPTIONGROUP is not a 
control, it still uses a position value. This function is most useful in identifying the dialog control that generates a 
dialog event, especially in cases in which the order of the control's in a dialog box's definition under goes editing 
changes.

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box control's position in 

the dialog box definition. 
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`Dialog Event Handler subroutine syntax;',0,"Defaultoverview",)} Related Topics



GETIMAGE function
ReturnValue = DialogID.Identifier.GETIMAGE ( )

Returns a specified dynamic dialog image control's image filename and path. 

Syntax Description
ReturnValue The string variable that is assigned the return value corresponding to the dynamic 

dialog image control's image attribute. The return value includes the image's 
filename and path.

DialogID Specifies a string variable that identifies the dynamic dialog box that the image 
control is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog image control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`setimage;getimage;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`image_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETINCREMENT function
ReturnValue = DialogID.Identifier.GETINCREMENT ( )

Returns a specified dynamic dialog increment value. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box control's increment 

attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`getincrement;setincrement;step;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



GETITEM function
ReturnString = DialogID.Identifier.GETITEM (Index)

Returns the item name of a specified dynamic dialog list box's item index number. Click the Used with the 
following controls button below for a list of Corel SCRIPT list box controls.

Syntax Definition
ReturnString The string variable that is assigned an item name corresponding to a specified 

dynamic dialog list box's item index number.
DialogID Specifies a string variable that identifies the dynamic dialog box that the list box    

is used in. This parameter is optional if the function is used in a WITH...END 
WITH construct. If this parameter is used, the period (.) after the dialog box 
identifier is required.

Identifier Specifies a string variable that identifies the list box. This parameter is optional if 
the function is used in a WITH...END WITH construct. If this parameter is used, 
the period (.) after the identifier is required.

Index A numeric expression that specifies the position of the item in the list box. This 
value ranges from 1 to the current number of items in the list. The first item is 1, 
the second item is 2, and so on. 

Note
This function can only be used in a Dialog Event Handler subroutine.
Use the GETITEMCOUNT function for the number of items in a list box.

{button ,AL(`lb_funs;setarray;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;ddlistbox_dyn;ddcombobox_dyn;combobox_dyn;imagelistbox_dyn;;;;;',0,"D
efaultoverview",)} Used with the following controls



GETITEMCOUNT function
ReturnValue = DialogID.Identifier.GETITEMCOUNT ( )

Returns the number of items in a    specified dynamic dialog dynamic dialog list box control. Click the Used with 
the following controls button below for a list of Corel SCRIPT list box controls.

Syntax Definition
ReturnValue The numeric variable that is assigned the number of items in a    specified dynamic

dialog dynamic dialog list box control.
DialogID Specifies a string variable that identifies the dynamic dialog box that the list box    

is used in. This parameter is optional if the function is used in a WITH...END 
WITH construct. If this parameter is used, the period (.) after the dialog box 
identifier is required.

Identifier Specifies a string variable that identifies the list box. This parameter is optional if 
the function is used in a WITH...END WITH construct. If this parameter is used, 
the period (.) after the identifier is required.

Note
This function can only be used in a Dialog Event Handler subroutine.

{button ,AL(`lb_funs;setarray;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;ddlistbox_dyn;ddcombobox_dyn;combobox_dyn;imagelistbox_dyn;;;;;',0,"D
efaultoverview",)} Used with the following controls



GETLEFTPOSITION function
For dynamic dialog boxes:
ReturnValue = DialogID.GETLEFTPOSITION ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETLEFTPOSITION ( )

Returns a specified dynamic dialog box or control's horizontal distance, in dialog units. 

Syntax Definition
ReturnValue For dynamic dialog boxes, the numeric variable that is assigned the distance in 

dialog units from the dialog box's left border to the left side of the monitor's 
display area.
For dynamic dialog box controls, the numeric variable that is assigned the distance
in dialog units from the inside of the dialog box's left border to the left side of the 
control.

DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Note
This function returns -1 when used with a centered dialog box. See BEGIN DIALOG for more information 

about centering dialog boxes.

{button ,AL(`move;gettopposition;getleftposition;getheight;getwidth;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



GETMAXRANGE function
ReturnValue = DialogID.Identifier.GETMAXRANGE ( )

Returns a specified dynamic dialog box control's maximum value. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box control's maximum 

value attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`getmaxrange;getminrange;setmaxrange;setminrange;;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



GETMINRANGE function
ReturnValue = DialogID.Identifier.GETMINRANGE ( )

Returns a specified dynamic dialog box control's minimum value. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box control's minimum 

value attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`getmaxrange;getminrange;setmaxrange;setminrange;;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



GETPRECISION function
ReturnValue = DialogID.Identifier.GETPRECISION ( )

Returns the number of decimals used with a dynamic dialog spin control's value attribute.

Syntax Definition
ReturnValue The numeric variable that is assigned the number of decimals used to set a 

dynamic dialog spin control's value. Valid values range from 0 to 5, inclusive. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the spin 

control is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog spin control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`setprecision;setprecision;setdoublemode;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`spincontrol_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETSELECT function
ReturnValue = DialogID.Identifier.GETSELECT ( )

Returns a specified dynamic dialog box control's selection attribute. This function returns the selection in list 
boxes and combo list boxes.

Syntax Description
ReturnValue For list boxes, drop-down list boxes and image list boxes, a numeric variable that is

assigned the array element selected. 
For combo boxes and drop-down combo boxes, a string variable that is assigned 
the text attribute in the text box portion of the control.

DialogID Specifies a string variable that identifies the dynamic dialog box that the control is
used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`settext;setselect;gettext;getselect;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;combobox_dyn;ddlistbox_dyn;ddcombobox_dyn;imagelistbox_dyn;;;',0,"Def
aultoverview",)} Used with the following controls



GETSTYLE function
For dynamic dialog boxes:
ReturnValue = DialogID.GETSTYLE ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETSTYLE ( )

Returns a specified dynamic dialog box or control's style attributes. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box or control's style 

attributes. This function returns the following values:
Applies to dialog boxes and all dialog controls
1 Visible(default)
2 Invisible
Applies to slider, option button, check box, text, and image controls only
4 No border (default) 
8 Border (click  for an example)
Applies to list, drop-down list, combo, and drop-down combo boxes 

controls only
4 No sorting (default) 
8 Sorts items in list boxes
Applies to text and text box controls only
16 Left Aligned (default)
32 Right Aligned 
64 Centered    

Justification in a text box can only be enabled if the text wrapping style is 
enabled (1024).

Applies to dialog boxes only
16 No title bar options (default) 
32 Title bar options which include an icon, and minimize and maximize button
64 Same options as 32 as well as allowing user to resize dialog box. Click  for 

an example.
Applies to bitmap button and image controls only
16 Resize bitmap to fit control (default)
32 Center bitmap in control 
64 Position bitmap in upper-left corner of control 
Applies to horizontal slider and vertical slider controls only
16 For horizontal sliders, tick marks are placed below the slider and the slider 

indicator points down. For vertical sliders, tick marks are placed to the right 
of the slider and the slider indicator points right. This is the default setting

32 For horizontal sliders, tick marks are placed above the slider and the slider 
indicator points up. For vertical sliders, tick marks are placed to the left of 
the slider and the slider indicator points left. 

64 Tick marks are placed on both sides of the slider and the slider indicator is a 
rectangle.

Applies to text and image controls only
128 Not sunken (default)
256 Sunken (click  for an example) 
Applies to text box controls only
512 Text scrolls to the left when text box is filled (default)
1024 Text wraps when text box is filled 
Applies to text box controls only
2048 Text is entered as typed (default)
4096 Text is entered in uppercase characters
8192 Text is entered in lowercase characters
Applies to text box controls only
16384 Text is entered as typed (default)
32768 Text is entered password mode (all characters are entered as 

asterisks). 
Enabling password mode in a text box disables the text wrapping, 
justification, and text case styles.



DialogID Specifies a string variable that identifies the dynamic dialog box that the control is
used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Note
By default, all dynamic dialog box control's style is set to Visible (1) except Text controls which are set to 

Visible (1) and Left Aligned (16).
In cases where multiple attributes are returned, you can use the AND (bitwise) operator to determine 

specific attributes. The following example shows how to test if a return value variable includes the Sunken attribute:
IF 128 AND ReturnValue THEN sunkenTest$ = "Yes" ELSE sunkenTest$ = "No" 

128 is the Sunken attribute. The variable sunkenTest is assigned a string based on bitwise comparison. In this
example, sunkenTest is assigned "Yes" if ReturnValue has the Sunken attribute.

{button ,AL(`SETVISIBLE;setstyle;getstyle;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



GETTEXT function
For dynamic dialog boxes:
ReturnValue = DialogID.GETTEXT ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETTEXT ( )

Returns a specified dynamic dialog box or control's text or label attribute. 

Syntax Description
ReturnValue The string variable that is assigned the dynamic dialog box or control's text or 

label attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`settext;setselect;gettext;getselect;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BEGIN_END_DIALOG_dyn;CHECKBOX_dyn;GROUPBOX_dyn;OPTIONBUTTON_dyn;PUSHBU
TTON_dyn;TEXT_dyn;TEXTBOX_dyn;STATUS_dyn;;;;;;',0,"Defaultoverview",)} Used with the following 
controls



GETTICK function
ReturnValue = DialogID.Identifier.GETTICK ( )

Returns the interval of tick marks on a horizontal or vertical slider control. 

Syntax Description
ReturnValue A numeric variable that is assigned the interval of tick marks on a horizontal or 

vertical slider control. Assigning 0 as a return value indicates tick marks are not 
used except at the ends of the slider.

DialogID Specifies a string variable that identifies the dynamic dialog box that the control is
used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies a horizontal or vertical slider control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`settick;gettick;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`hslider;vslider;',0,"Defaultoverview",)} Used with the following controls



GETTIMER function
ReturnValue = DialogID.GETTIMER ( )

Returns a specified dynamic dialog box's timer value in milliseconds. A dialog box's timer begins to count down 
once the dialog box is initialized and can be used by the Dialog Event Handler subroutine to trigger a dialog 
event.

Syntax Definition
ReturnValue A numeric variable that is assigned a dialog box's timer setting in milliseconds. 

One second is equal to 1000 milliseconds, 10 seconds is equal to 10,000 
milliseconds, and one minute is equal to 60,000 milliseconds. 

DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

{button ,AL(`settimer;gettimer;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BEGIN_END_DIALOG_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



GETTOPPOSITION function
For dynamic dialog boxes:
ReturnValue = DialogID.GETTOPPOSITION ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETTOPPOSITION ( )

Returns a specified dynamic dialog box or control's vertical distance, in dialog units. 

Syntax Definition
ReturnValue For dynamic dialog boxes, the numeric variable that is assigned the distance in 

dialog units from the dialog box's top border to the top side of the monitor's 
display area.
For dynamic dialog box controls, the numeric variable that is assigned the distance
from the bottom of the dialog box's title bar to the top of the control.

DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

{button ,AL(`move;gettopposition;getleftposition;getheight;getwidth;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



GETVALUE function
ReturnValue = DialogID.Identifier.GETVALUE ( )

Returns a specified dynamic dialog box control's value. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box control's selection or

value    attribute. 
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Dialog controls Return values
CHECKBOX Check boxes return the following values:

0 Cleared
1 Displays a check mark 
2 Grayed checkbox. Filling a checkbox with gray indicates that a multiple 

selection contains a mix of property values. For example, selecting text that 
uses different fonts returns a mixed value. This value is only available when 
the specified checkbox is in Three State mode.

HSLIDER A horizontal slider's indicator returns a whole number value (Long) between 
SETMINRANGE and SETMAXRANGE, inclusive. If the SETMINRANGE function is
not used, the minimum value that can be returned is 0. If the SETMAXRANGE 
function is not used, the maximum value that can be returned is 100.

OPTIONBUTTON Option buttons return the following values:
0 Disabled
1 Enabled

OPTIONGROUP The OPTIONGROUP construct returns a whole number that corresponds to the 
option button selected by the user. The first option button in an option group is 
identified as 0, the second option button is identified as 1, and so on. The order of 
the option buttons is determined, not by their placement within the dialog box, but
by the order in which they are listed in the script. You cannot use the GETVALUE 
function with an OPTIONGROUP once the dialog box is running.

SPINCONTROL A spin control's value returns a number between SETMINRANGE and 
SETMAXRANGE, inclusive. If the SETMINRANGE function is not used, the 
minimum value that can be returned is -32,768. If the SETMAXRANGE function is 
not used, the maximum value that can be returned is 32,767.
A spin control can return a fractional number if the SETDOUBLEMODE function is 
enabled. If SETDOUBLEMODE is enabled, a spin control's value range can take on
the range of a Double data type.
If SETDOUBLEMODE is enabled, the number of decimal places that are used 
depends on the SETPRECISION function.

VSLIDER A vertical slider's indicator returns a whole number value (Long) between 
SETMINRANGE and SETMAXRANGE, inclusive. If the SETMINRANGE function is
not used, the minimum value that can be returned is 0. If the SETMAXRANGE 
function is not used, the maximum value that can be returned is 100.

{button ,AL(`setvalue;getvalue;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`CHECKBOX_dyn;HSLIDER_dyn;optiongroup_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;SP
INCONTROL_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} Used with the following controls



GETWIDTH function
For dynamic dialog boxes:
ReturnValue = DialogID.GETWIDTH ( )

For dynamic dialog box controls:
ReturnValue = DialogID.Identifier.GETWIDTH ( )

Returns a specified dynamic dialog box or control's width, in dialog units. 

Syntax Definition
ReturnValue The numeric variable that is assigned the dynamic dialog box or control's width 

attribute.
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Note

{button ,AL(`move;gettopposition;getleftposition;getheight;getwidth;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



MOVE function
For dynamic dialog boxes:
DialogID.MOVE Left, Top, Width, Height

For dynamic dialog box controls:
DialogID.Identifier.MOVE Left, Top, Width, Height

This function moves and resizes a dynamic dialog box, or the controls within a dynamic dialog box.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Left For dialog boxes, specifies the distance in dialog units from the dialog box's left 
border to the left side of the monitor's display area. For controls, specifies the 
distance in dialog units from the inside of the dialog box's left border to the left 
side of the control.

Top For dialog boxes, specifies the distance in dialog units from the dialog box's top 
border to the top side of the monitor's display area. For controls, specifies the 
distance from the bottom of the dialog box's title bar to the top of the check box, 
in dialog units.

Width Specifies the dialog box or control width in dialog units.
This is optional parameter, and if omitted, the Height parameter must also be 
omitted. Omitting this parameter leaves the dialog box or control size unchanged. 

Height Specifies the dialog box or control height in dialog units. 
This is optional parameter, and if omitted, the Width parameter must also be 
omitted. Omitting this parameter leaves the dialog box or control size unchanged. 

{button ,AL(`move;gettopposition;getleftposition;getheight;getwidth;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`begin_end_dialog_dyn;BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMB
OBOX_dyn;DDCOMBOBOX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMA
GE_dyn;IMAGELISTBOX_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSH
BUTTON_dyn;SPINCONTROL_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} 
Used with the following controls 



REMOVEITEM function
DialogID.Identifier.REMOVEITEM Index

This function removes an item from a Corel SCRIPT list box dialog control. However, this function does not alter 
an array used to provide a list of items in a list box. Click the Used with the following controls button below 
for a list of Corel SCRIPT list box controls.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the list box    

is used in. This parameter is optional if the function is used in a WITH...END 
WITH construct. If this parameter is used, the period (.) after the dialog box 
identifier is required.

Identifier Specifies a string variable that identifies the list box. This parameter is optional if 
the function is used in a WITH...END WITH construct. If this parameter is used, 
the period (.) after the identifier is required.

Index A numeric expression that specifies the position of the item in the list box to 
remove. This value ranges from 1 to the current number of items in the list. The 
first item is 1, the second item is 2, and so on.

Note
This function can only be used in a Dialog Event Handler subroutine.
Use the RESET function to remove all the items from a list box.
Use the ADDITEM function to add a list box item.

{button ,AL(`lb_funs;setarray;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;ddlistbox_dyn;ddcombobox_dyn;combobox_dyn;imagelistbox_dyn;;;;;',0,"D
efaultoverview",)} Used with the following controls



RESET function
DialogID.Identifier.RESET 

This function removes all the items from a Corel SCRIPT list box dialog control. However, this function does not 
alter an array used to provide a list of items in a list box. Click the Used with the following controls button 
below for a list of Corel SCRIPT list box controls.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the list box    

is used in. This parameter is optional if the function is used in a WITH...END 
WITH construct. If this parameter is used, the period (.) after the dialog box 
identifier is required.

Identifier Specifies a string variable that identifies the list box. This parameter is optional if 
the function is used in a WITH...END WITH construct. If this parameter is used, 
the period (.) after the identifier is required.

Note
This function can only be used in a Dialog Event Handler subroutine.
Use the REMOVEITEM function to only remove one item from a list box.
Use the ADDITEM function to add a list box item.

{button ,AL(`lb_funs;setarray;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;ddlistbox_dyn;ddcombobox_dyn;combobox_dyn;imagelistbox_dyn;;;;;',0,"D
efaultoverview",)} Used with the following controls



SETARRAY function
DialogID.Identifier.SETARRAY Array

Sets a specified dynamic dialog box control's array attribute. Arrays are used to create lists to display in list 
boxes and combo list boxes, or set a bitmap button's image properties.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Array Specifies a one-dimension array containing a string list of items that appears in 
the control. 
Arrays used with the IMAGELISTBOX or BITMAPBUTTON control must contain a 
string list of Windows' bitmaps (.BMP and .RLE files) and their paths. 
When using this function with a bitmap button control, only the first four array 
elements are used. Each array element corresponds to the bitmap button's state. 
The button's state determines which bitmap in the array to reference and display: 
Array element 1 Normal state 
Array element 2 Depressed state
Array element 3 Focus state
Array element 4 Disable state
If an array element entry is not available (for example, bad file name), the button 
is filled with black for the state corresponding to the unavailable element entry.
If the array does not have an element for index numbers 1, 2, 3, or 4, the button is
filled with black for the state corresponding to the missing element index number, 
along with buttons that follow it in the array. For example, if array element 2 is 
missing, the bitmap button is filled with black for the Depressed, Focus, and 
Disable states.

Note
You can also use the ADDITEM and REMOVEITEM functions to add and remove items from a list box 

control without altering the array used to provide the list of items in a list box.
When using this function with a bitmap button control and an error occurs, the bitmap button control is 

filled with black.

{button ,AL(`setselect;getselect;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;combobox_dyn;ddlistbox_dyn;ddcombobox_dyn;bitmapbutton_dyn;imagelis
tbox_dyn;;;',0,"Defaultoverview",)} Used with the following controls



SETBITMAPOFFSET function
DialogID.Identifier.SETBITMAPOFFSET Left, Top, Width, Height

Sets the portion of a bitmap to display in an image box. Using this function allows you to use one bitmap to 
display more than one item. See the example for more information. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the image box control. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

Left Specifies the horizontal position of the upper-left corner of the portion of the 
bitmap to display, in pixels.

Top Specifies the vertical position of the upper-left corner of the portion of the bitmap 
to display, in pixels.

Width Specifies the width of the portion of the bitmap to display, in pixels.
Height Specifies the height of the portion of the bitmap to display, in pixels. 
Note

By omitting the last two parameters and setting Left and Top to 0, the SETBITMAPOFFSET function 
resets the image box to display the entire bitmap.

{button ,AL(`GETBITMAPHEIGHT;GETBITMAPWIDTH;SETBITMAPOFFSET;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`IMAGE_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETDOUBLEMODE function
DialogID.Identifier.SETDOUBLEMODE Boolean

Sets the type of numeric data a dynamic dialog spin control can hold.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the spin 

control is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog spin control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Boolean Specifies whether a spin control can hold Long type data or Double type data. Set 
to TRUE (-1) to enable a specified spin control to hold Double type data. Set to 
FALSE (0) to enable a specified spin control to hold Long type data.
If this function is not used, by default, a spin control in a dynamic dialog box can 
only hold a Long value.

Note
When a spin control switches from Double type data to Long type data, current spin control decimal values 

are truncated. 
If SETDOUBLEMODE is enabled, the number of decimal places a spin control can use depends on the 

SETPRECISION function.

{button ,AL(`setprecision;getprecision;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`spincontrol_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETHELPINDEX function
DialogID.Identifier.SETHELPINDEX Value

Within a dynamic dialog box, this function sets the topic ID number associated with a specified help button.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the help 

button is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the help button. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

Value A numeric expression that specifies a valid topic ID number corresponding to the 
topic WinHelp displays whenever the help button is clicked. 

Note
If a topic ID number is invalid or not specified, and the help button is clicked, WinHelp opens an 

information dialog box notifying the user the topic is not available.

{button ,AL(`gethelppath;sethelppath;gethelpindex;sethelpindex;;',0,"Defaultoverview",)} Related 
Topics

{button ,AL(`helpbutton_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETHELPPATH function
DialogID.Identifier.SETHELPPATH Text

Within a dynamic dialog box, this function sets the Windows help file associated with a specified help button.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the help 

button is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the help button. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

Text A string expression that specifies a valid Windows help file. The string expression 
must include the help file's filename and path. 

Note
If the SETHELPPATH function is not used with a help button in a script, and the help button is clicked, 

Corel SCRIPT opens an information dialog box notifying the user that a help file has not been specified.

{button ,AL(`gethelppath;sethelppath;gethelpindex;sethelpindex;;',0,"Defaultoverview",)} Related 
Topics

{button ,AL(`helpbutton_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETIMAGE function
DialogID.Identifier.SETIMAGE Text

Sets a specified dynamic dialog image control's image attribute. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the image 

control is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog image control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Text A string expression that specifies a dynamic dialog image control's image 
attribute. The string expression must include the image's filename and path. 
Windows bitmaps (.BMP and .RLE files) are valid image files.

Note
If the image can't be found on the user's system, an X fills the image control.

{button ,AL(`setimage;getimage;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`image_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETINCREMENT function
DialogID.Identifier.SETINCREMENT Value

Sets a specified dynamic dialog increment value. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Value A numeric expression that specifies a dynamic dialog box control's increment 
value.

Dialog controls Value settings
HSLIDER A horizontal slider's increment value is set to a whole number. The default 

increment value is 10. 
A horizontal slider's increment value determines the amount the slider indicator 
moves when the user clicks along the slider bar, or presses the arrow keys on the 
keyboard when the slider control has focus. Note: Clicking along the slider moves 
the indicator twice the increment value.

PROGRESS A progress indicator's increment value is set to a whole number and determines 
the amount the completion gauge changes for each progress step. The default 
increment value is 10. For more information, see the STEP function.

SPINCONTROL A spin control's increment value determines the amount the control value changes
when the spin control arrows are clicked. The default increment value is 1. 
You can set a spin control's increment value to a fractional number if the 
SETDOUBLEMODE function is enabled. If SETDOUBLEMODE is enabled, the 
number of decimal places a spin control can use depends on the SETPRECISION 
function.

VSLIDER A vertical slider's increment value is set to a whole number. The default increment 
value is 10. 
A vertical slider's increment value determines the amount the slider indicator 
moves when the user clicks along the slider bar, or presses the arrow keys on the 
keyboard when the slider control has focus. 
Note: Clicking along the slider moves the indicator twice the increment value.

{button ,AL(`getincrement;setincrement;step;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



SETMAXRANGE function
DialogID.Identifier.SETMAXRANGE Long

Sets a specified dynamic dialog box control's maximum value. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Long A numeric expression that specifies a dynamic dialog box control's maximum 
value. This value must be greater than the control's minimum value. See 
SETMINRANGE for more information.

Note
By default, controls that use the SETMAXRANGE function have a default maximum value of 100, except 

the spin control, which is set to 32,767.
You can set a spin control's range value to a fractional number if the SETDOUBLEMODE function is 

enabled. If SETDOUBLEMODE is enabled, a spin control's value range can take on the range of a Double data type.
If SETDOUBLEMODE is enabled, the number of decimal places a spin control can use depends on the 
SETPRECISION function.

{button ,AL(`getmaxrange;getminrange;setmaxrange;setminrange;;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



SETMINRANGE function
DialogID.Identifier.SETMINRANGE Long

Sets a specified dynamic dialog box control's minimum value. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Long A numeric expression that specifies a dynamic dialog box control's minimum 
value. This value must be less than the control's maximum value. See 
SETMAXRANGE for more information.

Note
By default, controls that use the SETMINRANGE function have a default minimum value of 0, except the 

spin control, which is set to -32,768.
You can set a spin control's range value to a fractional number if the SETDOUBLEMODE function is 

enabled. If SETDOUBLEMODE is enabled, a spin control's value range can take on the range of a Double data type.
If SETDOUBLEMODE is enabled, the number of decimal places a spin control can use depends on the 
SETPRECISION function.

The minimum value for the progress bar must be greater than or equal to 0.

{button ,AL(`getmaxrange;getminrange;setmaxrange;setminrange;;',0,"Defaultoverview",)} 
Related Topics

{button ,AL(`hslider_dyn;progress_dyn;spincontrol_dyn;vslider_dyn;;',0,"Defaultoverview",)} Used 
with the following controls



SETPRECISION function
DialogID.Identifier.SETPRECISION Long

Set the number of decimals used with a dynamic dialog spin control's value attribute.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the spin 

control is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog spin control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Long A numeric expression that specifies the number of decimals to use to set a 
dynamic dialog spin control's value. Valid values range from 0 to 5, inclusive. The 
default value is 2. 

Note
If the specified spin control is not in double data type mode (SETDOUBLEMODE), the SETPRECISION 

function is ignored.
Reducing the number of decimals used in a spin control rounds the spin control's active value.

{button ,AL(`setprecision;setprecision;setdoublemode;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`spincontrol_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETSELECT function
DialogID.Identifier.SETSELECT Value

Sets a specified dynamic dialog box control's selection attribute. This function is often used to create a default 
selection in list boxes and combo list boxes.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Value For list boxes, drop-down list boxes, and image list boxes, a numeric expression 
that specifies an array element that corresponds to the list selection to select.
For combo boxes and drop-down combo boxes, a string expression that specifies 
the text attribute in the text box portion of the control. You can select an array 
element by using the following syntax:
Identifier.SETSELECT(array(x)) 
where x is an array element index number.
If you set the text attribute in a combo box's text box portion equal to a value in 
the list box portion, the value in the list box portion is also selected.

{button ,AL(`settext;setselect;gettext;getselect;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`listbox_dyn;combobox_dyn;ddlistbox_dyn;ddcombobox_dyn;imagelistbox_dyn;;;',0,"Def
aultoverview",)} Used with the following controls



SETSTYLE function
For dynamic dialog boxes:
DialogID.SETSTYLE Value

For dynamic dialog box controls:
DialogID.Identifier.SETSTYLE Value

Sets a specified dynamic dialog box or a control's attributes. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Value A numeric expression that specifies a dynamic dialog box or a control's style 
attributes.
Applies to dialog boxes and all dialog controls
1 Visible(default)
2 Invisible
Applies to slider, option button, check box, text, and image controls only
4 No border (default) 
8 Border (click  for an example)
Applies to list, drop-down list, combo, and drop-down combo boxes 
controls only
4 No sorting (default) 
8 Sorts items in list boxes
Applies to text and text box controls only
16 Left Aligned (default)
32 Right Aligned 
64 Centered    

Justification in a text box can only be enabled if the text wrapping style is 
enabled (1024).

Applies to dialog boxes only
16 No title bar options (default) 
32 Title bar options which include an icon, and minimize and maximize button
64 Same options as 32 as well as allowing user to resize dialog box. Click  for 

an example.
Applies to bitmap button and image controls only
16 Resize bitmap to fit control (default)
32 Center bitmap in control 
64 Position bitmap in upper-left corner of control 
Applies to horizontal slider and vertical slider controls only
16 For horizontal sliders, tick marks are placed below the slider and the slider 

indicator points down. For vertical sliders, tick marks are placed to the right 
of the slider and the slider indicator points right. This is the default setting

32 For horizontal sliders, tick marks are placed above the slider and the slider 
indicator points up. For vertical sliders, tick marks are placed to the left of 
the slider and the slider indicator points left. 

64 Tick marks are placed on both sides of the slider and the slider indicator is a 
rectangle.

Applies to text and image controls only
128 Not sunken (default)
256 Sunken (click  for an example) 
Applies to text box controls only
512 Text scrolls to the left when text box is filled (default)
1024 Text wraps when text box is filled 
Applies to text box controls only
2048 Text is entered as typed (default)
4096 Text is entered in uppercase characters



8192 Text is entered in lowercase characters
Applies to text box controls only
16384 Text is entered as typed (default)
32768 Text is entered password mode (all characters are entered as 

asterisks). 
Enabling password mode in a text box disables the text wrapping, 
justification, and text case styles.

Note
The Border, Sunken, and Title bar styles can only be applied outside the Dialog Event Handler subroutine; 

that is, before the Dialog statement which is used to display the dialog box. See the example for more information. 
You cannot use these styles once a dialog box is displayed.

You should also set the dialog box's title bar and resizing option outside of the Dialog Event Handler 
subroutine.

You can also use the SETVISIBLE function to hide and display dialog boxes and controls. 
To apply more than one style to a control use the OR operator. For example, to right align and place a 

border around a text control, use the SETSTYLE function in the following manner:
Text1.SETSTYLE 32 OR 8

{button ,AL(`SETVISIBLE;setstyle;getstyle;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMBOBOX_dyn;DDCOMBOB
OX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMAGE_dyn;IMAGELISTBOX
_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSHBUTTON_dyn;SPINCON
TROL_dyn;STATUS_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} Used with 
the following controls 



SETTEXT function
For dynamic dialog boxes:
DialogID.SETTEXT(Text)

For dynamic dialog box controls:
DialogID.Identifier.SETTEXT Text

Sets a specified dynamic dialog box or a control's text or label attribute. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Text A string expression that specifies a dynamic dialog box or control's text or label 
attribute.

{button ,AL(`settext;setselect;gettext;getselect;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BEGIN_END_DIALOG_dyn;CHECKBOX_dyn;GROUPBOX_dyn;OPTIONBUTTON_dyn;PUSHBU
TTON_dyn;TEXT_dyn;TEXTBOX_dyn;STATUS_dyn;;;;;;',0,"Defaultoverview",)} Used with the following 
controls



SETTHREESTATE function
DialogID.Identifier.SETTHREESTATE Boolean

Sets a checkbox in a dynamic dialog check box to two or three states.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Boolean Specifies whether a checkbox control can be set to two (Enabled and Disabled) or 
three states (Enabled, Disabled, and Mixed). Set to TRUE (-1) to enable three 
states. Set to FALSE (0) to enable two states. 

Note
By default a checkbox in a dynamic dialog box is set to three states.

{button ,AL(`getvalue;setvalue;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`checkbox_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETTICK function
DialogID.Identifier.SETTICK Value

Sets the interval of tick marks on a horizontal or vertical slider control. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Value A numeric expression that specifies the interval of tick marks on a slider control. 
For example, setting this parameter to 5, sets a tick mark every 5 units in the 
slider's range.

Note
If a slider control does not use the SETTICK function, tick marks are only placed at the ends of the slider. 
Setting SETTICK to 0 places tick marks at the ends of the slider only.

{button ,AL(`settick;gettick;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`hslider;vslider;',0,"Defaultoverview",)} Used with the following controls



SETTIMER function
DialogID.SETTIMER Value

Sets a specified dynamic dialog box's timer value in milliseconds. A dialog box's timer begins to count down once
the specified dialog box is initialized and can be used by the Dialog Event Handler subroutine to trigger a dialog 
event.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Value A numeric expression that specifies a dialog box's timer setting in milliseconds. 
One second is equal to 1000 milliseconds, 10 seconds is equal to 10,000 
milliseconds, and one minute is equal to 60,000 milliseconds. This numeric value 
must be equal to or greater than 0.
Setting this parameter to 0 disables the Time out event in the Dialog Event 
Handler subroutine. By default, the Time out event is disabled in dynamic dialog 
boxes.

Note
Click 

 for more information about using the timer.

{button ,AL(`settimer;gettimer;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BEGIN_END_DIALOG_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



SETVALUE function
DialogID.Identifier.SETVALUE Value

Sets a specified dynamic dialog box control value. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the control is

used in. This parameter is optional if the function is used in a WITH...END WITH 
construct. If this parameter is used, the period (.) after the dialog box identifier is 
required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Value A numeric expression that specifies a dynamic dialog box control's value.

Dialog controls Value settings
CHECKBOX Check boxes can be set to the following values:

0 Cleared
1 Displays a check mark 
2 Grayed checkbox. Filling a checkbox with gray indicates that a multiple 

selection contains a mix of property values. For example, selecting text that 
uses different fonts returns a mixed value. This value is only available when 
the specified checkbox is in Three State mode.

HSLIDER A horizontal slider's indicator can be set to a whole number value (Long) between 
SETMINRANGE and SETMAXRANGE, inclusive. If the SETMINRANGE function is
not used, then the default minimum value is set to 0. If the SETMAXRANGE 
function is not used, then the default maximum value is set to 100. The default 
value for a horizontal slider is 0 if the SETVALUE function is not used.

OPTIONBUTTON Option buttons can be set to the following values:
0 Disabled (default)
1 Enabled (only one option button in an option group can be enabled at once)
This value can be overridden by using the SETVALUE function with the option 
button's option group.

OPTIONGROUP Sets the option button to enable. The first option button in a group corresponds to 
0, the second button corresponds to 1, and so on. You cannot use the SETVALUE 
function with an OPTIONGROUP once the dialog box is running.

PROGRESS A progress indicator's completion gauge can be set to a whole number value 
(Long) between SETMINRANGE and SETMAXRANGE, inclusive. If the 
SETMINRANGE function is not used, the default minimum value is set to 0. If the 
SETMAXRANGE function is not used, the default maximum value is set to 100. 
The default value for a progress indicator is 0 if the SETVALUE function is not 
used.

SPINCONTROL A spin control's value can be set to a whole number value (Long) between 
SETMINRANGE and SETMAXRANGE, inclusive. If the SETMINRANGE function is
not used, the default minimum value is set to -32,768. If the SETMAXRANGE 
function is not used, the default maximum value is set to 32,767. 
You can set a spin control's value to a fractional number if the SETDOUBLEMODE 
function is enabled. If SETDOUBLEMODE is enabled, a spin control's value range 
can take on the range of a Double data type.
If SETDOUBLEMODE is enabled, the number of decimal places a spin control can 
use depends on the SETPRECISION function.
The default value for a spin control is 1 if the SETVALUE function is not used.

VSLIDER A vertical slider's indicator can be set to a whole number value (Long) between 
SETMINRANGE and SETMAXRANGE, inclusive. If the SETMINRANGE function is
not used, then the default minimum value is set to 0. If the SETMAXRANGE 
function is not used, then the default maximum value is set to 100. The default 
value for a vertical slider is 0 if the SETVALUE function is not used.



{button ,AL(`setvalue;getvalue;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`CHECKBOX_dyn;HSLIDER_dyn;optiongroup_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;SP
INCONTROL_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} Used with the following controls



SETVISIBLE function
For dynamic dialog boxes:
DialogID.SETVISIBLE Boolean

For dynamic dialog box controls:
DialogID.Identifier.SETVISIBLE Boolean

Displays or hides a specified dynamic dialog box or dynamic dialog box control.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box. This parameter is

optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the dialog box identifier is required.

Identifier Specifies a string variable that identifies the dynamic dialog box control. This 
parameter is optional if the function is used in a WITH...END WITH construct. If 
this parameter is used, the period (.) after the identifier is required.

Boolean Specifies whether to hide or display a dynamic dialog box or dynamic dialog box 
control. Set to TRUE (-1) to display; set to FALSE (0) to hide.

Note
You should consider using this function to hide a dialog box which opens a secondary dialog box. Once the 

secondary dialog box closes you can then display the first dialog box again. Click the example button for more 
information.

If a script hides a dialog box and has no way of redisplaying it, script execution is frozen. The only way to 
exit frozen script execution is to close the Corel SCRIPT session. To close the Corel SCRIPT session in Windows 95, 
press CTRL+ALT+DEL, select the Corel SCRIPT session, and click End Task. In Windows NT, press CTRL+ALT+DEL, 
click Task Manager, select the Corel SCRIPT session, and click End Task.

You can use the GETSTYLE function to return a dynamic dialog box's or control's visible setting.

{button ,AL(`setSTYLE;getSTYLE;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`BITMAPBUTTON_dyn;CANCELBUTTON_dyn;CHECKBOX_dyn;COMBOBOX_dyn;DDCOMBOB
OX_dyn;DDLISTBOX_dyn;GROUPBOX_dyn;HELPBUTTON_dyn;HSLIDER_dyn;IMAGE_dyn;IMAGELISTBOX
_dyn;LISTBOX_dyn;OKBUTTON_dyn;OPTIONBUTTON_dyn;PROGRESS_dyn;PUSHBUTTON_dyn;SPINCON
TROL_dyn;STATUS_dyn;TEXT_dyn;TEXTBOX_dyn;VSLIDER_dyn;;;;;;',0,"Defaultoverview",)} Used with 
the following controls 



STEP function
DialogID.Identifier.STEP

This function adds to a specified progress indicator's value, the value of it's increment setting 
(SETINCREMENT). Increasing a progress indicator's value fills the control's gauge from left to right. 

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the progress 

indicator is used in. This parameter is optional if the function is used in a 
WITH...END WITH construct. If this parameter is used, the period (.) after the 
dialog box identifier is required.

Identifier Specifies a string variable that identifies the progress indicator. This parameter is 
optional if the function is used in a WITH...END WITH construct. If this parameter
is used, the period (.) after the identifier is required.

Note
If a step causes a progress indicator to surpass its maximum value (SETMAXRANGE), the progress 

indicator value is reset to its minimum value (SETMINRANGE).

{button ,AL(`setincrement;getincrement;;;;',0,"Defaultoverview",)} Related Topics

{button ,AL(`progress_dyn;;;;;',0,"Defaultoverview",)} Used with the following controls



WITH...END WITH statements
WITH { DialogID.Identifier | DialogID | .Identifier }

[statements]
END WITH

The WITH...END WITH construct enables you to execute dynamic dialog box functions without having to refer 
to a dynamic dialog box or dynamic dialog box controls. For example, if you have to refer to the same dialog box 
for many function calls, using the WITH...END WITH construct means you only have to refer to the dialog box 
once.

Syntax Definition
DialogID Specifies a string variable that identifies the dynamic dialog box that the dynamic 

dialog box functions refer to. 
Identifier Specifies a string variable that identifies the dynamic dialog box control that the 

dynamic dialog box functions refer to. If this parameter is used, the period (.) 
before the identifier is required.

[statements] Series of script instructions to execute. Dynamic dialog box functions that don't 
use dialog or control identifiers refer to dynamic dialog box or dynamic dialog box 
controls specified in the preceding WITH statement.

Note
You can nest WITH...END WITH statements inside each other.

Example
The following three examples all perform the same actions:

'Example 1 (no WITH reference to dialog box or controls)
MyDialog.Checkbox1.SETTEXT "Hello"
MyDialog.CheckBox1.SETVALUE 1
MyDialog.Checkbox1.SETTHREESTATE 0

'Example 2 (WITH reference to dialog box)
WITH MyDialog

.Checkbox1.SETTEXT "Hello"

.CheckBox1.SETVALUE 1

.Checkbox1.SETTHREESTATE 0
END WITH

'Example 3 (WITH reference to dialog box and control)
WITH MyDialog.Checkbox1

.SETTEXT "Hello"

.SETVALUE 1

.SETTHREESTATE 0
END WITH

{button ,AL(`ole_cs;end;corel_script_programming_language;Executing_script_files;Corel_SCRIPT_ad
vanced_programming_features;;',0,"Defaultoverview",)} Related Topics



Error codes
If errors occur when you execute a script, an error message is displayed in the Compiler Output window. If you're 
using an error-handling routine, the Corel SCRIPT global variable ERRNUM is assigned a value based on the error. 
For more information about ERRNUM, see the ONERROR statement.

ERRNUM
Value

Error Message

1 Internal Error
2 Unrecoverable error
3 Variable is not initialized

50 Division by 0
51 Type mismatch
52 Out of memory
53 Overflow
54 Invalid array index
55 Invalid specification of array dimensions
56 Resume without error
57 Out of resources
58 Stack Overflow
59 RETURN without GOSUB

200 Invalid file number
201 Unable to open file
202 File handle out of range
203 Error writing to file
204 Error reading file
205 Invalid file position
206 Cannot close file

250 Unable to change folder
251 Unable to make folder
252 Unable to remove folder
253 Unable to delete file

300 Incorrect parameter count
301 Unable to get DLL entry point
302 Unable to execute function
303 Object not initialized through WITHOBJECT
304 Invalid parameter
305 Undefined parameter

350 Unable to initialize dialog
351 Invalid dialog
352 More than one instance
353 Event handler misuse

600 OLE Automation Error



601 Invalid number of parameters
602 Bad variable type
603 Object does not support this function
604 Object does not support named arguments
605 Value out of range
606 Invalid Parameter name
607 Argument Type mismatch
608 Unknown Interface
609 Unknown language
610 Unspecified parameter is not optional
611 Could not create object

800 to
999

User-defined errors numbers.

1000 + Corel application errors

Note
Not all Corel SCRIPT errors are trappable.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics



Trappable Error: 1
ERRNUM 1 indicates an internal error.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.



Trappable Error: 2
ERRNUM 2 indicates an unrecoverable error. In Corel SCRIPT 6, this error was called unknown.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.



Trappable Error: 3
ERRNUM 3 indicates an uninitialized variable. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may have misspelled a variable name.
You may not have initialized the variable.

Possible solutions:
Confirm the spelling of the variables in your script.
Confirm that all variables are initialized.



Trappable Error: 50
ERRNUM 50 indicates an attempt to divide by zero.
Possible causes:

You may have misspelled a variable being used as a denominator.
Possible solutions:

Ensure that all variables are spelled correctly.



Trappable Error: 51
ERRNUM 51 indicates a type mismatch.
Possible causes:

You may be using the wrong operator.
You may be mis-assigning a value to a variable.
You may have misspelled the variable name.

Possible solutions:
Ensure you are using the correct operators.
Confirm that all variables are spelled correctly.
Confirm that you are assigning values to the correct variables.



Trappable Error: 52
ERRNUM 52 indicates that the system is out of memory.
Possible causes: 

You may have an infinite loop in your script.
You may have an over-sized array.

Possible solutions:
Check the logic in your script, ensuring that infinite loops are removed.
Ensure that all arrays are assigned a reasonable size.



Trappable Error: 53
ERRNUM 53 indicates an overflow.
Possible causes:

You may have assigned an inappropriate value to a variable type, such as assigning a number greater than
32,767 to an integer.

Possible solutions:
Trace through the script's logic, ensuring that all values are appropriate.
Confirm your variable declarations to ensure than each variable is of the correct data type.



Trappable Error: 54
ERRNUM 54 indicates an invalid array index.
Possible causes:

You may have tried to assign a value to an array element that does not exist. Use the REDIM statement to 
re-dimension the array.

You may not have correctly initialized your index or your array.
Your logic might be incorrectly adding to your index.

Possible solutions:
Ensure that your array and index are initialized.
Check the logic in your script, confirming all modifications to the array index.



Trappable Error: 55
ERRNUM 55 indicates an invalid specification of array dimensions.
Possible causes:

The number of dimensions doesn't match the definition in the DIM statement. 
Invalid specification of an array dimension such as 7 to -3.
Invalid specification of the dimension in the LBOUND or UBOUND statement.

Possible solutions:
Correct the DIM, LBOUND, or UBOUND statement.



Trappable Error: 56
ERRNUM 56 indicates a RESUME    statement encountered without error occurring.
Possible causes:

Your script may have executed a RESUME statement outside of an active error-handling routine.
Possible solutions:

You should place a STOP, EXIT FUNCTION, or an EXIT SUB before an error-handling routine in a script to 
prevent it from being executed when no error has occurred.



Trappable Error: 57
ERRNUM 57 indicates an out-of-resource error.
Possible causes:

Too many Windows applications that are opened are resource intensive.
Possible solutions:

Close some applications. If the error persists, restart Windows.



Trappable Error: 58
ERRNUM 58 indicates the stack has reached an abnormal size. This error is a warning that can be ignored.
Possible causes:

Too many GOSUB calls
Too many function calls.

Possible solutions:
Check for a missing RETURN statement that should be used with a GOSUB statement.



Trappable Error: 59
ERRNUM 59 indicates the RETURN statement does not have a matching GOSUB statement. 
Possible causes:

Missing GOSUB statement.
Possible solutions:

Check the script logic.



Trappable Error: 200
ERRNUM 200 indicates an invalid file number.
Possible causes:

You may be assigning a file number outside the range of one to ten.
You may be referring to a file that is not open.

Possible solutions:
Confirm that your file numbers do not exceed ten. The FREEFILE function can help you find an unused file 

handle.



Trappable Error: 201
ERRNUM 201 indicates an inability to open a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted.
Confirm that the file is not already in use.



Trappable Error: 202
ERRNUM 202 indicates an out-of-range file handle. This error number is only available in Corel SCRIPT 6.0. See 
Error 200.
Possible causes:

You may be assigning a file number outside the range of one to ten.
Possible solutions:

Confirm that your file number is between one and ten. FREEFILE can help you find an unused file handle.



Trappable Error: 203
ERRNUM 203 indicates an error writing to a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted, and is not already in use.



Trappable Error: 204
ERRNUM 204 indicates an error reading a file.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted.
Confirm that the file is not already in use.



Trappable Error: 205
ERRNUM 205 indicates an invalid file position.
Possible causes: 

You are trying to access an area outside the file.
Possible solutions:

Use the LOF function to determine the file length, and access a position within that area.



Trappable Error: 206
ERRNUM 206 indicates a file cannot be closed.
Possible causes: 

File has not been opened.
File may no longer exist.

Possible solutions:
Check the logic in your script, confirming that the file has been opened, or that the file exists.



Trappable Error: 250
ERRNUM 250 indicates an error in changing files. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may be corrupted.
The file may not be of the correct file-type.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is both present and of the correct file-type.
Confirm that the file is not corrupted, and is not already in use.



Trappable Error: 251
ERRNUM 251 indicates an error in creating a folder. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may not have file-creation privileges.
The filename may already be present.

Possible solutions:
Confirm that you are allowed to create files.
Confirm that the file is not already in use.



Trappable Error: 252
ERRNUM 252 indicates an error in removing a folder. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may not be allowed to remove that file.
The file may not be present.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is present.
Confirm that the file is not already in use.



Trappable Error: 253
ERRNUM 253 indicates an error in deleting a file. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may not be allowed access to that file.
The file may not be present.
The file may already be in use.

Possible solutions:
Confirm that you are allowed to access the file.
Confirm that the file is present.
Confirm that the file is not already in use.



Trappable Error: 300
ERRNUM 300 indicates an incorrect parameter count. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may have omitted a parameter, or provided an unnecessary argument.
Possible solutions:

Confirm that your parameter count is correct throughout the script.



Trappable Error: 301
ERRNUM 301 indicates a problem in getting a Dynamic Linked Library entry point. This error number is only 
available in Corel SCRIPT 6.
Possible causes:

The DLL does not exist.
The function does not exist in the DLL.
You may have misspelled the function name, or the case may not match.

Possible solutions:
Check that the DLL exists, and that the function is applicable to that DLL.
Confirm the spelling and case of the function name.



Trappable Error: 302
ERRNUM 302 indicates an error in executing a function. 
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.



Trappable Error: 303
ERRNUM 303 indicates an object which hasn't been initialized through WITHOBJECT.
Possible causes:

The WITHOBJECT statement may have been by-passed by flow-control statements, such as GOTO.
Possible solutions:

Step through the flow of the script, to confirm execution of the WITHOBJECT statement.



Trappable Error: 304
ERRNUM 304 indicates an invalid parameter. This error number is only available in Corel SCRIPT 6.
Possible causes:

You may have used parameter that is out of range.
Possible solutions:

Confirm that the value of the parameters is in the acceptable range.
Confirm data type of the parameters.



Trappable Error: 305
ERRNUM 305 indicates an undefined parameter. 
Possible causes:

Corel SCRIPT programming statement may use a parameter that is out of range.
Possible solutions:

Confirm parameter value ranges.
Confirm the script logic in determining the parameter values.



Trappable Error: 350
ERRNUM 350 indicates an error in initializing a dialog.
Possible causes:

Your system resources may be low.
You may be low on hard disk space.

Possible solutions:
Free up system resources and hard disk space.



Trappable Error: 351
ERRNUM 351 indicates an invalid dialog. This error number is only available in Corel SCRIPT 6.
Possible causes:

Your dialog may contain invalid controls, such as an incorrectly placed button.
Possible solutions:

Confirm that the dialog controls are positioned within reasonable bounds.



Trappable Error: 352
ERRNUM 352 indicates that the script attempted to run more than one instance of a custom dialog box at the 
same time.
Possible causes:

A DIALOG statement called custom dialog box that was already open.
Possible solutions:

Check the logic in your script, confirming the location of the DIALOG statements.



Trappable Error: 353
ERRNUM 353 indicates that a Corel SCRIPT statement or function that can only be used in the dialog event 
handler subroutine, was used outside of it. Click  for more information.
Possible causes:

A missing or improperly defined subroutine.
Possible solutions:

Check the script logic.



Trappable Error: 600
ERRNUM 600 indicates an error in OLE automation.
Possible causes:

The application may have problems opening.
The object name may be incorrect.

Possible solutions:
Check the OLE automation errors.



Trappable Error: 601
ERRNUM 601 indicates an invalid number of parameters.
Possible causes:

The application is expecting a different number of parameters.
Possible solutions:

Check that all parameters are required, and that all required parameters are there.



Trappable Error: 602
ERRNUM 602 indicates a bad variable type.
Possible causes:

You have passed the function a parameter of an unknown variable type.
Possible solutions:

Confirm the variable's data type.



Trappable Error: 603
ERRNUM 603 indicates that the object doesn't support this function.
Possible causes: 

The object doesn't support this function.
Possible solutions:

Confirm that this function is supported by the object.



Trappable Error: 604
ERRNUM 604 indicates that the object doesn't support the named arguments.
Possible causes:

Some applications do not support named arguments.
Possible solutions:

Confirm that the arguments are suitable for the application.



Trappable Error: 605
ERRNUM 605 indicates a value out of the acceptable range.
Possible causes:

You may have passed a large value to an application which expected a smaller value.
Possible solutions:

Confirm that the value you are trying to pass to the application is within an acceptable range, and is of a 
suitable data type.



Trappable Error: 606
ERRNUM 606 indicates an invalid parameter name.
Possible causes:

You may have passed an incorrectly spelled named argument.
Possible solutions:

Confirm that all named arguments are recognized.



Trappable Error: 607
ERRNUM 607 indicates an argument type mismatch.
Possible causes:

You may have passed a variable which is not of the appropriate data type.
Possible solutions:

Confirm that the data type is appropriate.



Trappable Error: 608
ERRNUM 608 indicates an unknown interface.
Possible causes:

The object does not support OLE automation.
Possible solutions:

Change the object, if necessary.



Trappable Error: 609
ERRNUM 609 indicates an unknown language.
Possible causes:

The application is unable to recognize the international language of the functions.
Possible solutions:

Confirm that the language is compatible.



Trappable Error: 610
ERRNUM 610 indicates that a required parameter is missing.
Possible causes:

A required parameter is missing.
Possible solutions:

Confirm that all required parameters are present.



Trappable Error: 611
ERRNUM 611 indicates that an OLE Automation object could not be created.
Possible causes:

Error specifying the object name in the WITHOBJECT statement.
Possible solutions:

Check for a missing WITHOBJECT statement.
Check for a spelling mistake in a WITHOBJECT statement.



Check box example (static dialog)

' Check box example
BEGIN DIALOG Dialogbox1 122, 55, "CHECKBOX example"

CHECKBOX 5, 7, 60, 10, "&Bold", bold%
CHECKBOX 5, 20, 60, 10, "&Italic", ital%
OKBUTTON 72, 5, 40, 14
CANCELBUTTON 72, 23, 40, 14

END DIALOG
ret = DIALOG(Dialogbox1)

' If ret is 2, then Cancel button was chosen
IF ret = 2 THEN STOP

REM Displays a MESSAGE based on selections
IF bold=1 and ital=1 then 

MESSAGE "Bold on; Italic on"
ELSEIF bold=1 and ital=0 then 

MESSAGE "Bold on; Italic off"
ELSEIF bold=0 and ital=1 then 

MESSAGE "Bold off; Italic on"
ELSE

MESSAGE "Bold off; Italic off"
ENDIF

Displays the following dialog box until a OK or CANCEL selected.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



List box example (static dialog)

' List box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
index = 4
BEGIN DIALOG listboxdlg 144, 68, "LISTBOX example"

TEXT 4, 4, 90, 8, "&List:"
LISTBOX 4, 14, 90, 50, arr, index
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(listboxdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "You chose " + arr(index)

Displays the following dialog box shown and waits for the user to select an element in the list box and then 
choose OK.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Drop-down list box example (static dialog)

' Drop-down list box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
index% = 4'"green"
BEGIN DIALOG DDlistboxdlg 144, 68, "DDLISTBOX example"

TEXT 4, 4, 90, 8, "&List:"
DDLISTBOX 4, 14, 90, 50, arr, index
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(DDlistboxdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "You chose " + arr(index)

Displays the following dialog box shown and waits for the user to select an element in the drop-down list box and
then choose OK.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Drop-down combo box example (static dialog)

' Drop-down combo box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
combo = arr(2) 'initializes a choice in the combobox
BEGIN DIALOG ddcombodlg 144, 40, "DDCOMBOBOX example"

TEXT 4, 4, 90, 8, "&Combobox:"
DDCOMBOBOX 4, 14, 90, 62, arr, combo
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(ddcombodlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP

FOR i% = 1 TO 5

' If we are within the bounds of the array and
' find a match, then display a message.
IF combo = arr(i) THEN

MESSAGE "You chose " + combo
GOTO ENDFOR

ENDIF
NEXT i
REM If a match is found, this line will be skipped.
MESSAGE "You chose your own color: " + combo
ENDFOR:

Displays the dialog box until the user selects an item from the list or enters text into the text box and selects OK.
The selected item or text is returned in the variable combo.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Combo box example (static dialog)

' Combo box example
REM Create an array called arr
DIM arr$(5)
arr(1) = "black"
arr(2) = "red"
arr(3) = "white"
arr(4) = "blue"
arr(5) = "green"
combo = arr(2) 'initializes a choice in the combobox
BEGIN DIALOG combodlg 144, 80, "COMBOBOX example"

TEXT 4, 4, 90, 8, "&Combobox:"
COMBOBOX 4, 14, 90, 62, arr, combo
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(combodlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP

FOR i% = 1 TO 5

' If we are within the bounds of the array and
' find a match, then display a message.
IF combo = arr(i) THEN

MESSAGE "You chose " + combo
STOP

ENDIF
NEXT i
REM If a match is found, this line will be skipped.
MESSAGE "You chose your own color: " + combo

Displays the dialog box until the user selects an item from the list or enters text into the text box and selects OK.
The selected item or text is returned in the variable combo.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Text and text box example (static dialog)

' Text and text box example
text1 = "Corel Script Dept."+CHR(13)+CHR(10)+"1600 Carling Ave."+CHR(13)+CHR(10)+"Ottawa, 
Ontario"+CHR(13)+CHR(10)+"Canada K1Z 8R7"
label1 = "&Please enter your address:" + CHR(13) + "(CTRL+ENTER for line break)"
' Initialize dialog box variables
'index = 2
BEGIN DIALOG textdlg 153, 87, "TEXT and TEXTBOX example"

TEXT  4, 5, 100, 16, label1
TEXTBOX 4, 25, 90, 48, text1
OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
ret = DIALOG(textdlg)
' If Cancel is selected, stop the script
IF ret = 2 THEN STOP
MESSAGE "Your Address is: " + CHR(13) + text1

Displays the dialog box shown below. In the text box, use CTRL+ENTER for line breaks. The dialog box returns a 
message dialog box displaying the user entered address.

Note
If you want to insert a line break into the default text for a text box, use ANSI characters 10 and 13. See 

CHR for more information.
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Option button, option group, and group box example (static dialog)

' Option button, option group, and group box example
ogroup%=1
BEGIN DIALOG OptionDialog 154, 68, "Option buttons and groups example"

GROUPBOX 4, 4, 80, 60, "Group Box:"
OPTIONGROUP ogroup%

OPTIONBUTTON 20, 20, 30, 10, "&Zero"
OPTIONBUTTON 20, 30, 30, 10, "&One"
OPTIONBUTTON 20, 40, 30, 10, "&Two"

OKBUTTON 100, 4, 40, 14
CANCELBUTTON 100, 20, 40, 14

END DIALOG
return = DIALOG(Optiondialog)
' If return is 2, then Cancel button was chosen
IF return = 2 THEN STOP
SELECT CASE ogroup

CASE 0
' The Zero option button was selected
MESSAGE "You chose Zero"

CASE 1
' The One option button was selected
MESSAGE "You chose One"

CASE 2
' The Two option button was selected
MESSAGE "You chose Two"

END SELECT

Displays the dialog box shown below until the user selects one of the options buttons and OK. The response 
value is then returned in the variable ogroup%.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



OK, Cancel, Help, and Push button example (static dialog)

' Push button, OK button, Cancel button, and Help button example
BEGIN DIALOG Buttons1 55, 34, 236, 40, "BUTTON example"

OKBUTTON 21, 12, 40, 14
CANCELBUTTON 71, 12, 40, 14
PUSHBUTTON 121, 12, 40, 14, "&Push"
HELPBUTTON 171, 12, 40, 14, "C:\yourhelp\help.hlp", 104

END DIALOG
ret = DIALOG(Buttons1)
' If ret is 1, then OK button was chosen
IF ret = 1 THEN MESSAGE "OK button chosen"
' If ret is 2, then Cancel button was chosen
IF ret = 2 THEN 

MESSAGE "CANCEL button was chosen"
STOP

END IF
' If ret is 3, then Push button was chosen
IF ret = 3 THEN MESSAGE "Push button chosen"

Displays the dialog box shown below until the user selects either the OK button, Cancel Button, or the Push 
button. The help button opens a help file to a specified topic and does not assign a value to the ret variable

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Bitmap button, sliders, and status bar example (static dialog)
' Bitmap button, sliders, and status bar example

'Set array for the bitmap button
GLOBAL BitmapButton1Arr(3) as string
BitmapButton1Arr(1) = "C:\WINDOWS\NORMAL.bmp"
BitmapButton1Arr(2) = "C:\WINDOWS\DEPRESSED.bmp"
BitmapButton1Arr(3) = "C:\WINDOWS\FOCUS.bmp"

'Sets initial value for the vertical and horizontal slider
VSlider1Val% = 25
HSlider1Val% = 50

'Sets status bar text
Status1Txt$ = "This is the status bar text"

BEGIN DIALOG Script1 248, 108, "Bitmap button, sliders, and status bar example"
OKBUTTON  191, 74, 40, 14
CANCELBUTTON  145, 74, 40, 14
BITMAPBUTTON  11, 7, 112, 60, BitmapButton1Arr$
HSLIDER 10, 71, 117, 16, HSlider1Val%
VSLIDER 147, 4, 15, 55, VSlider1Val%
STATUS Status1Txt$
TEXT  15, 88, 23, 8, "0"
TEXT  165, 7, 23, 8, "0"
TEXT  165, 48, 23, 8, "100"
TEXT  111, 88, 13, 8, "100"

END DIALOG
ret = DIALOG(Script1)

' If ret is 1, then OK button was chosen
IF ret = 1 THEN 

MESSAGE "OK button chosen"
MESSAGE "Horizontal slider: " & HSlider1Val%
MESSAGE "Vertical slider: " & VSlider1Val%

ENDIF

' If ret is 2, then Cancel button was chosen
IF ret = 2 THEN 

MESSAGE "CANCEL button was chosen"
STOP

END IF

' If ret is 3, then Bitmap button was chosen
IF ret = 3 THEN 

MESSAGE "Bitmap button chosen"
MESSAGE "Horizontal slider: " & HSlider1Val%
MESSAGE "Vertical slider: " & VSlider1Val%

ENDIF
Displays the dialog box shown below until the user selects either the OK button, Cancel Button, or the bitmap 
button. If the OK or bitmap button is clicked, message boxes are displayed noting the slider values.

Note



You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Example of all dialog controls (static dialog)
' Example showing every dialog control used in Corel SCRIPT

'Set array for image list
DIM bmparray$(5)
bmpname = "d:\corel60\photopnt\plgbrush\footprnt.bmp"
bmparray(1) = "d:\corel60\photopnt\plgbrush\fuzzy.bmp"
bmparray(2) = "d:\corel60\photopnt\plgbrush\boxpanel.bmp"
bmparray(3) = "d:\corel60\photopnt\plgbrush\textart.bmp"
bmparray(4) = "d:\corel60\photopnt\plgbrush\treebare.bmp"
bmparray(5) = "d:\corel60\photopnt\plgbrush\saturn.bmp"

'Set array for list boxes
DIM color(8) as string
color(1) = "Red"
color(2) = "Blue"
color(3) = "Yellow"
color(4) = "Green"
color(5) = "Purple"
color(6) = "Brown"
color(7) = "White"
color(8) = "Black"

'Set array for the bitmap button
DIM BitmapButton1Arr(3) as string
BitmapButton1Arr(1) = "C:\WINDOWS\NORMAL.bmp"
BitmapButton1Arr(2) = "C:\WINDOWS\DEPRESSED.bmp"
BitmapButton1Arr(3) = "C:\WINDOWS\FOCUS.bmp"

'initial values for other dialog controls
text1 = "This is text"
help = "HELP!"
push1 = "Push button"
Progress1Val% = 33

'Sets initial value for the vertical and horizontal slider
VSlider1Val% = 25
HSlider1Val% = 50

'Sets status bar text
Status1Txt$ = "This is the status bar text"

'Dialog declaration
BEGIN DIALOG d1 300, 260, "ALL CONTROLS example"

OKBUTTON  250, 10, 45, 15
CANCELBUTTON  250, 31, 45, 15
HELPBUTTON  250, 53, 45, 15, help, HelpID%
PUSHBUTTON  250, 74, 45, 15, "Push"
TEXT  10, 10, 80, 9, "This is text"
TEXTBOX  10, 20, 75, 15, textbox1$
GROUPBOX  10, 40, 78, 49, "Group Box"
OPTIONGROUP group1%

OPTIONBUTTON  15, 50, 66, 15, "Option button 1"
OPTIONBUTTON  15, 65, 66, 15, "Option button 2"

GROUPBOX  95, 40, 75, 49, "Group Box"
CHECKBOX  100, 50, 65, 15, "Check box 1", binary1%
CHECKBOX  100, 65, 65, 15, "Check box 2", binary2%
TEXT  10, 92, 70, 15, "Listbox"
LISTBOX  10, 102, 78, 70, Color, listbox1%
TEXT  95, 92, 70, 10, "Combobox"
COMBOBOX  95, 102, 75, 70, Color, combobox1$ 
TEXT  10, 175, 70, 15, "Drop Down Listbox"
DDLISTBOX  10, 185, 78, 59, Color, ddlistbox1%
TEXT  95, 175, 75, 15, "Drop Down Combobox"
DDCOMBOBOX  95, 185, 75, 59, Color, ddcombobox1$
TEXT  95, 10, 80, 15, "Spin Control: "
SPINCONTROL  95, 20, 40, 15, spin1%
IMAGE  181, 102, 90, 38, Bmpname
GROUPBOX  175, 6, 70, 83, "Picture List"
IMAGELISTBOX  180, 17, 60, 66, bmparray, imglst%



TEXT  183, 92, 50, 8, "Image"
BITMAPBUTTON  182, 156, 90, 42, BitmapButton1Arr$
TEXT  185, 144, 50, 8, "Bitmap button"
VSLIDER 280, 98, 16, 105, VSlider1Val%
PROGRESS 186, 230, 100, 14, Progress1Val%
HSLIDER 178, 207, 114, 16, HSlider1Val%
STATUS Status1Txt$

END DIALOG

'Other dialog control defaults
textbox1 = "This is a textbox"
group1 = 1
binary1% = -1
binary2% = 1
binary3% = 0
Listbox1 = 2
Combobox1 = color(3)
DDListBox1 = 1
DDCombobox1 = color(5)
spin1 = 9
imglst = 2

TRYAGAIN:
ret = DIALOG(d1) 'displays dialog box
IF ret = 2 THEN STOP

IF ret = 3 THEN 
MESSAGE "You pressed a push button"
GOTO TRYAGAIN

ENDIF

IF ret = 4 THEN
MESSAGE "You pressed a bitmap button"
GOTO TRYAGAIN

ENDIF

IF ret = 1 THEN
'message box text
mess$ = "You entered " + CHR(34) + textbox1 + CHR(34) + " in the textbox"
mess = mess + CHR(13) + "You picked " + CSTR(spin1) + " in the spin box"
mess$ = mess + CHR(13) + "You selected Option Button #" + CSTR(group1 + 1)
mess = mess + CHR(13) + "You selected:"
if binary1<>0 then mess = mess + " Check Button #1"
if binary2<>0 then mess = mess + " Check Button #2"
mess = mess + CHR(13) + "You picked " + color(Listbox1) + " in the ListBox"
mess = mess + CHR(13) + "You entered " + Combobox1 + " in the ComboBox"
mess = mess + CHR(13) + "You entered " + DDCombobox1 + " in the DDComboBox"
mess = mess + CHR(13) + "You picked " + color(DDListbox1) + " in the DDListBox"
mess = mess + CHR(13) + "You picked " + bmparray(imglst) + " as your image"
mess = mess + CHR(13) + "You set the horizontal slider to " & HSlider1Val%
mess = mess + CHR(13) + "You set the vertical slider to " & VSlider1Val%
MESSAGE mess
ENDIF
Displays the following dialog box which holds every dialog control available in Corel SCRIPT. 



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Spin control example (static dialog)

' Spin control example
REM set default values
spin1% = 12
spin2% = 50
spin3% = 1

BEGIN DIALOG spindlg 170, 85, "SPINCONTROL example"
TEXT 10, 13, 55, 15, "&Font Size: "

SPINCONTROL 70, 10, 40, 15, spin1%
TEXT 10, 38, 55, 15, "Font &Spacing (%): "

SPINCONTROL 70, 35, 40, 15, spin2%
TEXT 10, 63, 55, 15, "&Para Spacing: "

SPINCONTROL 70, 60, 40, 15, spin3%
OKBUTTON 120, 10, 40, 15
CANCELBUTTON 120, 30, 40, 15

END DIALOG

return = DIALOG(spindlg)
IF return = 2 THEN STOP

MESSAGE "You chose a font size of: " + CSTR(spin1) 
MESSAGE "You chose a font spacing of: " + CSTR(spin2) + "%"
MESSAGE "You chose a para spacing of: " + CSTR(spin3) 

Displays the following dialog box and until you press the OK or Cancel button.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Image list box and Image example (static dialog)

' Image list box and Image example
DIM bmparray$(5)
bmpname = "C:\corel60\photopnt\plgbrush\pony.bmp"
bmparray(1) = "C:\corel60\photopnt\plgbrush\building.bmp"
bmparray(2) = "C:\corel60\photopnt\plgbrush\banana.bmp"
bmparray(3) = "C:\corel60\photopnt\plgbrush\textart.bmp"
bmparray(4) = "C:\corel60\photopnt\plgbrush\treebare.bmp"
bmparray(5) = "C:\corel60\photopnt\plgbrush\saturn.bmp"
BEGIN DIALOG D1 210, 120, "IMAGES"

OKBUTTON 150, 10, 50, 15
GROUPBOX 10, 10, 100, 100, "Image"
IMAGE 20, 20, 80, 80, Bmpname
GROUPBOX 120, 25, 80, 85, "Image List"

IMAGELISTBOX 130, 35, 60, 100, bmparray, imglst%
END DIALOG 
ret% = DIALOG(D1)
Displays the following dialog box and until you press the OK button.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all;;;;;',0,"Defaultoverview",)} Related Topics



Example 1: Dynamic dialog box 

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 160, 118, "International Sales", SUB Sales

OPTIONGROUP .OptionGroup1
OPTIONBUTTON  10, 10, 60, 10, .OptionButton1, "North America"
OPTIONBUTTON  100, 10, 48, 10, .OptionButton2, "Europe"

GROUPBOX  5, 3, 150, 20, .GroupBox1
CHECKBOX  10, 35, 50, 10, .CheckBox1, "Canada"
CHECKBOX  10, 55, 50, 10, .CheckBox2, "Mexico"
CHECKBOX  10, 75, 50, 10, .CheckBox3, "USA"
CHECKBOX  100, 35, 50, 10, .CheckBox4, "Ireland"
CHECKBOX  100, 55, 50, 10, .CheckBox5, "Italy"
CHECKBOX  100, 75, 50, 10, .CheckBox6, "Spain"
OKBUTTON  115, 100, 40, 14, .OK1
CANCELBUTTON  70, 100, 40, 14, .Cancel1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Sales(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set the value of the first 
'button and to disable three check boxes
IF Event=0 THEN  

Dialog1.OptionButton1.SETVALUE 1
Dialog1.CheckBox4.ENABLE FALSE
Dialog1.CheckBox5.ENABLE FALSE
Dialog1.CheckBox6.ENABLE FALSE

ENDIF

'Initialization condition to set the check boxes to 2-state
IF Event=0 THEN  

Dialog1.CheckBox1.SETTHREESTATE FALSE
Dialog1.CheckBox2.SETTHREESTATE FALSE
Dialog1.CheckBox3.SETTHREESTATE FALSE
Dialog1.CheckBox4.SETTHREESTATE FALSE
Dialog1.CheckBox5.SETTHREESTATE FALSE
Dialog1.CheckBox6.SETTHREESTATE FALSE

ENDIF

'Enabling Europe enables 3 check boxes and 
'disables the three others
IF ControlID=3 AND Event=2 THEN

Dialog1.CheckBox1.ENABLE FALSE
Dialog1.CheckBox2.ENABLE FALSE
Dialog1.CheckBox3.ENABLE FALSE
Dialog1.CheckBox4.ENABLE TRUE
Dialog1.CheckBox5.ENABLE TRUE
Dialog1.CheckBox6.ENABLE TRUE

ENDIF

'Enabling North America enables 3 check boxes and 
'disables the three others
IF ControlID=2 AND Event=2 THEN

Dialog1.CheckBox1.ENABLE TRUE
Dialog1.CheckBox2.ENABLE TRUE
Dialog1.CheckBox3.ENABLE TRUE
Dialog1.CheckBox4.ENABLE FALSE
Dialog1.CheckBox5.ENABLE FALSE
Dialog1.CheckBox6.ENABLE FALSE

ENDIF

END SUB
The above script displays the following dialog boxes depending on the selected option button. Selecting an 
option button disables a set of check boxes.



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 2: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 192, 78, "Help button example", SUB Buttons

HELPBUTTON  14, 21, 40, 14, .Help1
OKBUTTON  140, 21, 40, 14, .OK1
CANCELBUTTON  76, 21, 40, 14, .Cancel1
PUSHBUTTON  13, 51, 168, 14, .PushButton1, "Information about the Help button"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Buttons(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set the values for the option buttons
IF Event = 0 THEN

Dialog1.Help1.SETHELPPATH("C:\WINDOWS\DESKTOP\MACRO\SCRIPT65\SCEDIT.HLP")
Dialog1.Help1.SETHELPINDEX(1234567890)

ENDIF

'Displays message when push button pressed
IF ControlID = 4 AND Event = 2 THEN

MESSAGE "The Help button opens " & Dialog1.Help1.GETHELPPATH ()
MESSAGE "The topic " & Dialog1.Help1.GETHELPINDEX () & " is opened"

ENDIF

END SUB
The above script displays the following dialog box. Clicking the Help button opens a topic in the help file you're 
reading.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 3: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 194, 135, "Option buttons change styles", SUB Styles

TEXT  51, 38, 80, 11, .Text1, "Sample text"
GROUPBOX  2, 5, 192, 73, .GroupBox1, "Sample text style"
TEXT  16, 19, 30, 8, .Text4, "Align"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  4, 30, 43, 10, .OptionButton1, "Left"
OPTIONBUTTON  4, 44, 48, 10, .OptionButton2, "Center"
OPTIONBUTTON  4, 58, 48, 10, .OptionButton3, "Right"

TEXT  154, 20, 30, 8, .Text5, "Visible"
OPTIONGROUP .OptionGroup2

OPTIONBUTTON  144, 30, 30, 10, .OptionButton4, "Off"
OPTIONBUTTON  144, 44, 30, 10, .OptionButton5, "On"

PUSHBUTTON  68, 56, 55, 14, .PushButton1, "Style Message"
CANCELBUTTON  145, 89, 40, 14, .Cancel1
OKBUTTON  145, 107, 40, 14, .OK1
TEXT  8, 89, 125, 15, .Text2, "This is text with Border style applied"
TEXT  8, 107, 125, 15, .Text3, "This is text with Sunken style applied"

END DIALOG

'Border, sunken, and title bar styles are applied outside the dialog event
'handler, and before the DIALOG statement
Dialog1.Text2.SETSTYLE 8
Dialog1.Text3.SETSTYLE 256
Dialog1.SETSTYLE 32
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Styles(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set the values for the option buttons
IF Event=0 THEN  

Dialog1.OptionButton1.SETVALUE 1
Dialog1.OptionButton5.SETVALUE 1

ENDIF

'changes the alignment setting
IF Event = 2 THEN

IF Dialog1.OptionGroup1.GETVALUE() = 0 THEN
Dialog1.Text1.SETSTYLE 16

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 1 THEN
Dialog1.Text1.SETSTYLE 64

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 2 THEN
Dialog1.Text1.SETSTYLE 32

ENDIF
ENDIF

'changes the visible setting
IF Event = 2 THEN

IF Dialog1.OptionGroup2.GETVALUE() = 0 THEN
Dialog1.Text1.SETSTYLE 2

ELSEIF Dialog1.OptionGroup2.GETVALUE() = 1 THEN
Dialog1.Text1.SETSTYLE 1

ENDIF
ENDIF

'Displays message box of current settings
IF ControlID = 12 AND Event = 2 THEN

RV_Sample = Dialog1.Text1.GETSTYLE() 'retrieves settings

'the following lines test for the alignment settings
IF 64 AND RV_Sample THEN 

Align$ = "Center" 
ELSEIF 32 AND RV_Sample THEN 

Align$ = "Right"
ELSE

Align$ = "Left"
ENDIF

'the following lines test for the visible settings



IF 1 AND RV_Sample THEN 
Vis$ = "Visible" 

ELSE
Vis$ = "Invisible"

ENDIF

MESSAGE "The text is " & Align$ & " aligned" & CHR(13) & "and " & Vis$
ENDIF
END SUB
The above script displays the following dialog box. By selecting option buttons you change the style of the 
sample text.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 4: Dynamic dialog box

'Set arrays for the list boxes
GLOBAL country$(5)
country(1) = "United States"
country(2) = "Canada"
country(3) = "Mexico"
country(4) = "Brazil"
country(5) = "Chile"
GLOBAL color$(8)
color(1) = "black"
color(2) = "red"
color(3) = "white"
color(4) = "blue"
color(5) = "green"
color(6) = "yellow"
color(7) = "purple"
color(8) = "brown"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 221, 137, "United States", SUB TextCond

GROUPBOX  5, 9, 92, 66, .GroupBox1, "Specify dialog box title"
GROUPBOX  102, 9, 108, 105, .GroupBox2, "Specify push button text"
PUSHBUTTON  132, 22, 46, 14, .PushButton1, "black"
LISTBOX  14, 22, 72, 46, .ListBox1
DDLISTBOX  111, 40, 92, 68, .DDListBox2
PUSHBUTTON  4, 80, 92, 15, .PushButton2, "dialog box title"
PUSHBUTTON  4, 97, 92, 15, .PushButton3, "push button title"
OKBUTTON  168, 119, 40, 14, .OK1
CANCELBUTTON  121, 119, 40, 14, .Cancel1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB TextCond(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button values
IF Event=0 THEN  

Dialog1.ListBox1.SETARRAY Country$
Dialog1.DDListBox2.SETARRAY Color$
'specifies the initial color selection
Dialog1.DDListBox2.SETSELECT 1 
Dialog1.ListBox1.SETSELECT 1

ENDIF

'Country selection changes dialog box title
IF ControlID = 4 AND Event = 2 THEN

Country_Num = Dialog1.ListBox1.GETSELECT()
Dialog1.SETTEXT Country(Country_Num) 

ENDIF

'Color selection changes push button text
IF ControlID = 5 AND Event = 2 THEN

Color_Num = Dialog1.DDListBox2.GETSELECT()
Dialog1.PushButton1.SETTEXT Color(Color_Num) 

ENDIF

'Clicking push button displays dialog title text
IF ControlID = 6 AND Event = 2 THEN

MESSAGE Dialog1.GETTEXT () 
ENDIF

'Clicking push button displays push button text
IF ControlID = 7 AND Event = 2 THEN

MESSAGE Dialog1.PushButton1.GETTEXT () 
ENDIF

END SUB
The above script displays the following dialog box. By selecting a country from the list box you can change the 
dialog box title. By selecting a color from the drop-down list box you can change the text on the push button 
above the drop-down list box.



Clicking the other two push buttons open a message box displaying the dialog box title or the text on the color 
push button.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 5: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 221, 165, "Moving dialog boxes and controls", SUB Movement

OKBUTTON  91, 14, 40, 14, .OK1
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  55, 62, 48, 10, .OptionButton1, "Top-left"
OPTIONBUTTON  55, 78, 48, 10, .OptionButton2, "Top-right"
OPTIONBUTTON  55, 94, 48, 10, .OptionButton3, "Botton-left"
OPTIONBUTTON  55, 110, 50, 10, .OptionButton4, "Bottom-right"

OPTIONGROUP .OptionGroup2
OPTIONBUTTON  119, 62, 58, 10, .OptionButton5, "Top-left"
OPTIONBUTTON  119, 78, 58, 10, .OptionButton6, "Top-right"
OPTIONBUTTON  119, 94, 58, 10, .OptionButton7, "Botton-left"
OPTIONBUTTON  119, 110, 58, 10, .OptionButton8, "Bottom-right"

GROUPBOX  47, 51, 62, 75, .GroupBox2, "OK position"
GROUPBOX  113, 51, 70, 75, .GroupBox1, "Dialog box position"
PUSHBUTTON  46, 127, 138, 14, .PushButton1, "Display OK coordinates and size"
PUSHBUTTON  46, 36, 138, 14, .PushButton2, "Display dialog box coordinates and size"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Movement(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button values
IF Event=0 THEN  

Dialog1.OptionButton1.SETVALUE 0
Dialog1.OptionButton5.SETVALUE 0

ENDIF

'Moves the OK button based on an option button
IF Event=2 THEN

IF ControlID = 3 THEN Dialog1.OK1.MOVE 4, 4, 40, 14 
IF ControlID = 4 THEN Dialog1.OK1.MOVE 178, 4, 40, 14                  
IF ControlID = 5 THEN Dialog1.OK1.MOVE 4, 150, 40, 14
IF ControlID = 6 THEN Dialog1.OK1.MOVE 178, 150, 40, 14

ENDIF

'Moves the OK button based on an option button
IF Event=2 THEN

IF ControlID = 8 THEN Dialog1.MOVE 0, 0, 221, 165
IF ControlID = 9 THEN Dialog1.MOVE 455, 0, 221, 165
IF ControlID = 10 THEN Dialog1.MOVE 0, 275, 221, 165
IF ControlID = 11 THEN Dialog1.MOVE 455, 275, 221, 165

ENDIF

'Display OK coordinates and size
IF Event=2 AND ControlID = 14 THEN

MESSAGE "Left: " & Dialog1.OK1.GETLEFTPOSITION() & CHR(13) & "Top: "  & 
Dialog1.OK1.GETTOPPOSITION() & CHR(13) & "Width: "  & Dialog1.OK1.GETWIDTH() & CHR(13) & 
"Height: "  & Dialog1.OK1.GETHEIGHT()
ENDIF

'Display dialog box coordinates and size
IF Event=2 AND ControlID = 15 THEN

MESSAGE "Left: " & Dialog1.GETLEFTPOSITION() & CHR(13) & "Top: "  & 
Dialog1.GETTOPPOSITION() & CHR(13) & "Width: "  & Dialog1.GETWIDTH() & CHR(13) & "Height: "  & 
Dialog1.GETHEIGHT()
ENDIF

END SUB
The above script displays the following dialog box. By selecting an option button, you can either move the OK 
button's position in the dialog box or the dialog screen placement.



Clicking the other two push buttons open a message box displaying the dialog box or the OK button coordinates.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 6: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 170, 122, "Corel SCRIPT Dialog", SUB SPINS

TEXT  57, 6, 56, 8, .Text2, "Main spin control"
SPINCONTROL  57, 17, 52, 14, .SpinControl1
GROUPBOX  88, 48, 80, 40, .GroupBox2, "Main decimal places"
SPINCONTROL  112, 63, 31, 13, .SpinControl2
GROUPBOX  2, 48, 83, 40, .GroupBox1, "Double mode for Main"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  17, 60, 58, 10, .OptionButton1, "Enable"
OPTIONBUTTON  17, 74, 58, 10, .OptionButton2, "Disable"

OKBUTTON  126, 100, 40, 14, .OK1
PUSHBUTTON  3, 100, 119, 14, .PushButton1, "Main spin control settings"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB SPINS(BYVAL ControlID%, BYVAL Event%)
'Set initial Main spin control options
IF Event=0 THEN

Dialog1.OptionButton2.SETVALUE 1
Dialog1.SpinControl1.SETDOUBLEMODE FALSE
Dialog1.SpinControl1.SETVALUE 75
Dialog1.SpinControl1.SETPRECISION 0
Dialog1.SpinControl1.SETMINRANGE 5
Dialog1.SpinControl1.SETMAXRANGE 100
Dialog1.SpinControl1.SETINCREMENT 5

ENDIF

'Set initial decimal spin control options
IF Event=0 THEN

Dialog1.SpinControl2.SETVALUE 2
Dialog1.SpinControl2.SETDOUBLEMODE FALSE
Dialog1.SpinControl2.SETMINRANGE 0
Dialog1.SpinControl2.SETMAXRANGE 5
Dialog1.SpinControl2.ENABLE FALSE

ENDIF

'Enabling double mode
IF Event=2 AND ControlID=7 THEN

IF Dialog1.OptionButton1.GETVALUE() = 1 THEN
Dialog1.SpinControl2.ENABLE TRUE
Dialog1.SpinControl1.SETDOUBLEMODE TRUE
Dialog1.SpinControl1.SETPRECISION (Dialog1.SpinControl2.GETVALUE())
Dialog1.SpinControl1.SETINCREMENT 5.55

ENDIF
ENDIF

'Disabling double mode
IF Event=2 AND ControlID=8 THEN

IF Dialog1.OptionButton2.GETVALUE() = 1 THEN
Dialog1.SpinControl2.ENABLE FALSE
Dialog1.SpinControl1.SETDOUBLEMODE FALSE
Dialog1.SpinControl1.SETPRECISION 0
Dialog1.SpinControl1.SETINCREMENT 5

ENDIF
ENDIF

'Changing number of decimals
IF Event=1 AND ControlID=4 THEN

Dialog1.SpinControl1.SETPRECISION (Dialog1.SpinControl2.GETVALUE())
ENDIF

'Main spin control settings are displayed
IF Event=2 AND ControlID=10 THEN

MESSAGE "Minimum range: " & Dialog1.SpinControl1.GETMINRANGE()
MESSAGE "Maximum range: " & Dialog1.SpinControl1.GETMAXRANGE()
MESSAGE "Increment: " &  Dialog1.SpinControl1.GETINCREMENT()
MESSAGE "Decimal places: " &  Dialog1.SpinControl1.GETPRECISION()

ENDIF



END SUB
The above script displays the following dialog box. By enabling double mode for the Main spin control, you 
enable the decimal places spin control which sets the number of decimal places in the Main spin control.

Clicking the push button opens a message box displaying a summary of the Main spin control's settings.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 7: Dynamic dialog box

'Set arrays for the list boxes
GLOBAL bmps(6) as string
bmps(1) = "d:\corel60\photopnt\plgbrush\whirl.bmp"
bmps(2) = "d:\corel60\photopnt\plgbrush\pyramid.bmp"
bmps(3) = "d:\corel60\photopnt\plgbrush\weave.bmp"
bmps(4) = "d:\corel60\photopnt\plgbrush\saturn.bmp"
bmps(5) = "d:\corel60\photopnt\plgbrush\treebare.bmp"
bmps(6) = "d:\corel60\photopnt\plgbrush\squig.bmp"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 264, 135, "Image example", SUB IMAGESUB

PUSHBUTTON  6, 85, 180, 14, .PushButton1, "Display the file name and path of the active 
image"

IMAGE  4, 5, 75, 75, .Image1
COMBOBOX  83, 16, 179, 64, .ComboBox1
TEXT  85, 5, 53, 8, .Text1, "Image file name:"
OKBUTTON  219, 85, 40, 14, .OK1
GROUPBOX  6, 104, 254, 28, .GroupBox1, "Image display properties"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  15, 115, 58, 10, .OptionButton1, "Auto-resize"
OPTIONBUTTON  102, 115, 58, 10, .OptionButton2, "Center"
OPTIONBUTTON  178, 115, 65, 10, .OptionButton3, "Upper-left corner"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB IMAGESUB(BYVAL ControlID%, BYVAL Event%)
'initializes the dialog box
IF Event=0 THEN

Dialog1.ComboBox1.SETARRAY bmps$
Dialog1.Image1.SETIMAGE bmps$(1)
'specifies the initial selection
Dialog1.ComboBox1.SETSELECT bmps$(1) 

ENDIF

'if a file is selected in the combo box (event=2) or a file is
'typed in the text box portion (event=1), the image is updated
IF Event=2 OR Event=1 AND ControlID=4 THEN

Dialog1.Image1.SETIMAGE(Dialog1.ComboBox1.GETSELECT())
ENDIF

'Clicking push button displays image file name
IF Event=2 AND ControlID=1 THEN

MESSAGE Dialog1.Image1.GETIMAGE()
ENDIF

'changes the image display setting 
IF Event = 2 THEN

IF Dialog1.OptionGroup1.GETVALUE() = 0 THEN
Dialog1.Image1.SETSTYLE 16  'Auto-resize

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 1 THEN
Dialog1.Image1.SETSTYLE 32 'Center

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 2 THEN
Dialog1.Image1.SETSTYLE 64 'Upper-left corner

ENDIF
ENDIF
END SUB
The above script displays the following dialog box. By selecting a bitmap in the combo list box you change the 
bitmap displayed in the image box.



Clicking the push button opens a message box displaying the name of the image in the image box. Clicking the 
option buttons changes the image display properties.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 8: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 192, 54, "Corel SCRIPT Dialog", SUB TextEx

TEXTBOX  3, 3, 132, 13, .TextBox1
TEXT  7, 31, 125, 10, .Text2, "Text2"
GROUPBOX  3, 17, 132, 32, .GroupBox1, "Updated text based on above text box"
OKBUTTON  149, 34, 40, 14, .OK1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB TextEx(BYVAL ControlID%, BYVAL Event%)
'initializes the dialog box
IF Event=0 THEN

Dialog1.TextBox1.SETTEXT "Type text in this box"
Dialog1.Text2.SETTEXT "This text will replicate the text box text"

ENDIF

'controls what happens when text is typed
IF Event=1 THEN

Dialog1.Text2.SETTEXT(Dialog1.TextBox1.GETTEXT())
ENDIF

END SUB
The above script displays the following dialog box. By entering text in the text box you update the text displayed
in the group box.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 9: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 192, 54, "First dialog box", SUB Test1

OKBUTTON  105, 26, 65, 14, .OK1
CANCELBUTTON  21, 26, 65, 14, .Cancel1
PUSHBUTTON  21, 7, 150, 14, .PushButton1, "Close this dialog box and open another"

END DIALOG

'Specifies another dialog box
BEGIN DIALOG OBJECT Dialog2 144, 44, "Second dialog box"

OKBUTTON  40, 15, 65, 14, .OK2
END DIALOG

ReturnValue = DIALOG (Dialog1)

IF ReturnValue = 3 THEN
DIALOG Dialog2 'opens another dialog box

ENDIF

'Dialog Event Handler subroutine
SUB Test1(BYVAL ControlID%, BYVAL Event%)

'controls what happens when push button is clicked
IF Event=2 AND ControlID=3 THEN

Dialog1.CLOSEDIALOG 3 'closes the first dialog box
ENDIF

END SUB
The above script displays the following dialog box. Push buttons are often used to open a dialog box from an 
open dialog box. In this case, clicking the push button closes the dialog box (CLOSEDIALOG function) and opens
another dialog box (DIALOG Dialog2)

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 10: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 192, 84, "Slider example", SUB SliderSub

HSLIDER 45, 9, 102, 9, .HSlider1
TEXT  47, 19, 18, 8, .Text1, "0"
TEXT  135, 19, 25, 8, .Text2, "100"
GROUPBOX  61, 30, 70, 29, .GroupBox1, "Slider setting"
TEXT  89, 43, 15, 8, .Text3, "25"
PUSHBUTTON  11, 67, 125, 14, .PushButton1, "Click for slider increment value"
OKBUTTON  141, 67, 40, 14, .OK1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB SliderSub(BYVAL ControlID%, BYVAL Event%)

'Initialization condition to set slider values
IF Event=0 THEN
Dialog1.HSlider1.SETMINRANGE 0

Dialog1.HSlider1.SETMAXRANGE 100
Dialog1.HSlider1.SETINCREMENT 5
Dialog1.HSlider1.SETVALUE 25
Dialog1.HSlider1.SETTICK 20

ENDIF

'Following condition used when slider value changes
'Event 1 for changing slider using keyboard
'Event 2 for changing slider using mouse
IF Event=1 OR Event=2 AND ControlID=1 THEN

Dialog1.Text3.SETTEXT (Dialog1.HSlider1.GETVALUE ())
ENDIF

'Clicking push button for increment value
IF ControlID=6 AND Event=2 THEN

MESSAGE Dialog1.HSlider1.GETTICK ( )
ENDIF

END SUB
The above script displays the following dialog box. By moving the slider you change the value displayed in the 
group box.



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 11: Dynamic dialog box

'Set arrays for the list boxes
GLOBAL bmps(6) as string
bmps(1) = "d:\corel60\photopnt\plgbrush\whirl.bmp"
bmps(2) = "d:\corel60\photopnt\plgbrush\pyramid.bmp"
bmps(3) = "d:\corel60\photopnt\plgbrush\weave.bmp"
bmps(4) = "d:\corel60\photopnt\plgbrush\saturn.bmp"
bmps(5) = "d:\corel60\photopnt\plgbrush\treebare.bmp"
bmps(6) = "d:\corel60\photopnt\plgbrush\squig.bmp"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 264, 102, "Image example", SUB IMAGESUB

PUSHBUTTON  6, 85, 180, 14, .PushButton1, "Display the file name and path of the active 
image"

IMAGE  4, 5, 75, 75, .Image1
DDCOMBOBOX  83, 16, 179, 64, .DDComboBox1
TEXT  85, 5, 53, 8, .Text1, "Image file name:"
OKBUTTON  220, 85, 40, 14, .OK1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB IMAGESUB(BYVAL ControlID%, BYVAL Event%)
'initializes the dialog box
IF Event=0 THEN

Dialog1.DDComboBox1.SETARRAY bmps$
Dialog1.Image1.SETIMAGE bmps$(1)
'specifies the initial selection
Dialog1.DDComboBox1.SETSELECT bmps$(1) 

ENDIF

'if a file is selected in the combo box (event=2) or a file is
'typed in the text box portion (event=1), the image is updated
IF Event=2 OR Event=1 AND ControlID=4 THEN

Dialog1.Image1.SETIMAGE(Dialog1.DDComboBox1.GETSELECT())
ENDIF

'Clicking push button displays image file name
IF Event=2 AND ControlID=1 THEN

MESSAGE Dialog1.Image1.GETIMAGE()
ENDIF

END SUB
The above script displays the following dialog box. By selecting a bitmap in the drop-down list box you change 
the bitmap displayed in the image box.



Clicking the push button opens a message box displaying the name of the image in the image box.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 12: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 179, 65, "Corel SCRIPT Dialog", SUB TimerEx

TEXT  11, 3, 156, 11, .Text1, "Number of seconds before this dialog box closes:"
TEXT  82, 16, 10, 10, .Text2, "10" ' the number of seconds to count down
PUSHBUTTON  7, 29, 168, 14, .PushButton1, "Reset timer to 10 seconds"
PUSHBUTTON  7, 48, 168, 14, .PushButton2, "Pause timer and display counter interval"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB TimerEx(BYVAL ControlID%, BYVAL Event%)
'Initialize timer interval in milliseconds
IF Event=0 THEN

Dialog1.SETTIMER(1000) 'sets time interval to 1 second
ENDIF

'Timer event
IF Event=5 THEN

'Passes the number of seconds to CurrentTime 
CurrentTime = Dialog1.Text2.GETTEXT()
IF CurrentTime = 1 THEN Dialog1.CLOSEDIALOG 1
Dialog1.Text2.SETTEXT(CurrentTime-1) 'subtracts 1 from the counter

ENDIF

'Resets timer to 10 seconds
IF Event=2 AND ControlID= 3 THEN

Dialog1.Text2.SETTEXT "10"
ENDIF

'Pause timer and display counter interval
IF Event=2 AND ControlID= 4 THEN

MESSAGE Dialog1.GETTIMER()/1000
ENDIF

END SUB
The above script displays the following dialog box. The dialog box counts down from 10 seconds and closes when
it reaches 0.

Clicking the first push button resets the timer to 10 seconds. The second push button pauses the timer and 
opens a message box displaying timer interval.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 13: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 153, 83, "Vertical slider example", SUB SliderSub

VSLIDER 8, 8, 17, 66, .VSlider1
TEXT  26, 12, 18, 8, .Text1, "0"
TEXT  26, 63, 25, 8, .Text2, "100"
GROUPBOX  26, 26, 70, 29, .GroupBox1, "Slider setting"
TEXT  49, 39, 15, 8, .Text3, "25"
OKBUTTON  103, 36, 40, 14, .OK1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB SliderSub(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set slider values
IF Event=0 THEN

Dialog1.VSlider1.SETMINRANGE 0
Dialog1.VSlider1.SETMAXRANGE 100
Dialog1.VSlider1.SETINCREMENT 5
Dialog1.VSlider1.SETVALUE 25

ENDIF

'Following condition used when slider value changes
'Event 1 for changing slider using keyboard
'Event 2 for changing slider using mouse
IF Event=1 OR Event=2 AND ControlID=1 THEN

Dialog1.Text3.SETTEXT (Dialog1.VSlider1.GETVALUE ())
ENDIF

END SUB
The above script displays the following dialog box. By moving the slider you change the value displayed in the 
group box.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics





Example 14: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 179, 48, "Corel SCRIPT Dialog", SUB TimerEx

TEXT  11, 3, 156, 11, .Text1, "Number of seconds before this dialog box closes:"
TEXT  82, 16, 10, 10, .Text2, "10"
PROGRESS 10, 31, 160, 7, .Progress1

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB TimerEx(BYVAL ControlID%, BYVAL Event%)

'Initialize timer interval in milliseconds
IF Event=0 THEN

Dialog1.SETTIMER(1000)
ENDIF

'Initialize timer interval in milliseconds
IF Event=0 THEN

Dialog1.Progress1.SETMINRANGE 0
Dialog1.Progress1.SETMAXRANGE 200
Dialog1.Progress1.SETINCREMENT 20

ENDIF

'Timer event
IF Event=5 THEN

'Passes the number of seconds to CurrentTime 
CurrentTime = Dialog1.Text2.GETTEXT()
IF CurrentTime = 1 THEN Dialog1.CLOSEDIALOG 1
Dialog1.Text2.SETTEXT(CurrentTime-1) 'subtracts 1 from the counter
Dialog1.Progress1.STEP 

ENDIF

END SUB
The above script displays the following dialog box. The dialog box counts down from 10 seconds and the 
progress bar fills corresponding to the timer count down.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 15: Dynamic dialog box

'Set array for the image list box
GLOBAL bmps(6) as string
bmps(1) = "d:\corel60\photopnt\plgbrush\saturn.bmp"
bmps(2) = "d:\corel60\photopnt\plgbrush\treebare.bmp"
bmps(3) = "d:\corel60\photopnt\plgbrush\whirl.bmp"
bmps(4) = "d:\corel60\photopnt\plgbrush\pyramid.bmp"
bmps(5) = "d:\corel60\photopnt\plgbrush\weave.bmp"
bmps(6) = "d:\corel60\photopnt\plgbrush\squig.bmp"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 222, 206, "Image list box example", SUB Movement

OKBUTTON  172, 186, 40, 14, .OK1
GROUPBOX  152, 50, 60, 64, .GroupBox2, "List box size"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  161, 60, 48, 10, .OptionButton1, "Small"
OPTIONBUTTON  161, 78, 48, 10, .OptionButton2, "Medium"
OPTIONBUTTON  161, 96, 48, 10, .OptionButton3, "Large"

IMAGELISTBOX  37, 40, 73, 84, .ImageListBox1
TEXT  10, 189, 155, 11, .Text1, "File name of selected image"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Movement(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button values
IF Event=0 THEN  

Dialog1.OptionButton2.SETVALUE 1
Dialog1.ImageListBox1.SETARRAY bmps$

ENDIF

'Updates text when a image is selected
IF Event=2 AND ControlID=7 THEN

CurrentImage$=bmps$(Dialog1.ImageListBox1.GETSELECT())
Dialog1.Text1.SETTEXT CurrentImage$

ENDIF

'Changes the image list box to small size
IF Event=2 AND ControlID=4 THEN

Dialog1.ImageListBox1.MOVE 48, 29, 51, 117
ENDIF

'Changes the image list box to medium size
IF Event=2 AND ControlID=5 THEN

Dialog1.ImageListBox1.MOVE 37, 40, 73, 84
ENDIF

'Changes the image list box to large size
IF Event=2 AND ControlID=6 THEN

Dialog1.ImageListBox1.MOVE 12, 10, 121, 176
ENDIF

END SUB
The above script displays the following dialog box. By clicking an option button you can change the size of the 
image list box.



When a image is selected, the image's file name and path is updated in the text in the bottom-left-corner of the 
dialog box.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics





Example 16: Dynamic dialog box

'Set array for the bitmap button
GLOBAL bmps(4) as string
bmps(1) = "C:\WINDOWS\NORMAL.bmp"
bmps(2) = "C:\WINDOWS\DEPRESSED.bmp"
bmps(3) = "C:\WINDOWS\FOCUS.bmp"
bmps(4) = "C:\WINDOWS\DISABLED.bmp"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 168, 73, "Image list box example", SUB Movement

BITMAPBUTTON  8, 12, 61, 55, .BitmapButton1
OKBUTTON  97, 53, 40, 14, .OK1
GROUPBOX  83, 9, 73, 37, .GroupBox2, "Bitmap button state"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  88, 20, 48, 9, .OptionButton1, "Normal"
OPTIONBUTTON  88, 31, 48, 9, .OptionButton2, "Disabled"

TEXT  15, 2, 55, 8, .Text1, "Bitmap button"
END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB Movement(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button values
IF Event=0 THEN  

Dialog1.OptionButton1.SETVALUE 1
Dialog1.BitmapButton1.SETARRAY bmps$

ENDIF

'Displays a text box when bitmap button is clicked
IF Event=2 AND ControlID=1 THEN

MESSAGE "You pressed the bitmap button!"
ENDIF

'Enables the bitmap button
IF Event=2 AND ControlID=5 THEN

Dialog1.BitmapButton1.ENABLE TRUE
ENDIF

'Disables the bitmap button
IF Event=2 AND ControlID=6 THEN

Dialog1.BitmapButton1.ENABLE FALSE
ENDIF

END SUB
The above script displays the following dialog box. By clicking an option button you can enable and disable the 
bitmap button.



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 17: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 198, 79, "Corel SCRIPT", SUB CS_EX

CHECKBOX  6, 4, 100, 10, .CheckBox1, "Three state check box"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  7, 30, 60, 10, .OptionButton1, "Three state"
OPTIONBUTTON  7, 43, 48, 10, .OptionButton2, "Two state"

GROUPBOX  1, 19, 89, 40, .GroupBox1, "Check box state"
OKBUTTON  153, 43, 40, 14, .OK1
CANCELBUTTON  109, 43, 40, 14, .Cancel1
GROUPBOX  108, 4, 85, 30, .GroupBox2, "Check box return value"
TEXT  147, 18, 10, 8, .Text1, "2"
STATUS .Status1

END DIALOG
Dialog_Return_Value% = DIALOG (Dialog1)

'Pressing the OK button 
IF Dialog_Return_Value%=1 THEN 

MESSAGE "Closes this dialog box and saves any changes you have made." 
ENDIF

'Pressing the Cancel button 
IF Dialog_Return_Value%=2 THEN 

MESSAGE "Closes this dialog box without saving any changes you have made." 
ENDIF

GLOBAL Status_Counter%

'Dialog Event Handler subroutine
SUB CS_EX(BYVAL ControlID%, BYVAL Event%)
'Initialization condition for check box and option button
IF Event=0 THEN  

Dialog1.OptionButton1.SETVALUE 1
Dialog1.CheckBox1.SETVALUE 2

ENDIF

'Clicking the two state option button
IF Event=2 AND ControlID=4 THEN 

Dialog1.CheckBox1.SETTHREESTATE FALSE
Dialog1.CheckBox1.SETTEXT "Two state check box" 
'next two line set the text value to the checkbox value
CheckVal$ = Dialog1.CheckBox1.GETVALUE()
Dialog1.Text1.SETTEXT CheckVal$ 

ENDIF

'Clicking the two state option button
IF Event=2 AND ControlID=5 THEN 

Dialog1.CheckBox1.SETTHREESTATE TRUE
Dialog1.CheckBox1.SETTEXT "Two state check box" 
'next two line set the text value to the checkbox value
CheckVal$ = Dialog1.CheckBox1.GETVALUE()
Dialog1.Text1.SETTEXT CheckVal$ 

ENDIF

'Clicking the checkbox changes the text 
IF Event=2 AND ControlID=1 THEN 

CheckVal$ = Dialog1.CheckBox1.GETVALUE()
Dialog1.Text1.SETTEXT CheckVal$ 

ENDIF

'Clicking an option button changes status bar text
IF Event=2 AND (ControlID=3 OR ControlID=4) THEN 

Status_Counter% = 1 + Status_Counter% ' this is a counter
Dialog1.Status1.SETTEXT "You clicked the option buttons " & Status_Counter% & " times" 

ENDIF

END SUB
The above script displays the following dialog box. By clicking an option button you can make the check box 
have two or three states. The value the check box returns is updated in the group box as you click it.



Each time you click an option button the text in the status bar changes. When the dialog box is closed, a 
message box is displayed letting you know which button was used to close it.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 18: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 161, 288, "Corel SCRIPT dynamic dialog events", SUB CS_EX

GROUPBOX  6, 4, 147, 45, .GroupBox4, "Event 1: Change in content"
TEXTBOX  13, 15, 132, 13, .TextBox1
TEXT  13, 33, 132, 10, .Text4, "Text4"

GROUPBOX  5, 56, 147, 45, .GroupBox2, "Event 2: Clicking a control"
CHECKBOX  13, 69, 100, 10, .CheckBox1, "A three-state check box"
TEXT  13, 85, 7, 8, .Text3, "2"
TEXT  23, 85, 100, 8, .Text5, "Check box return value"

GROUPBOX  6, 106, 147, 59, .GroupBox5, "Event 3: Double-clicking an item"
LISTBOX  11, 116, 73, 47, .ListBox1
TEXT  90, 119, 50, 8, .Text7, "red"

GROUPBOX  6, 170, 147, 45, .GroupBox1, "Event 4: Change in focus"
TEXTBOX  13, 183, 132, 13, .TextBox2
TEXT  13, 200, 132, 8, .Text6, "Text6"

GROUPBOX  6, 221, 147, 45, .GroupBox3, "Event 5: Time Out"
TEXT  13, 236, 122, 11, .Text1, "Seconds before this dialog box closes:"
TEXT  67, 251, 10, 10, .Text2, "20"  ' the number of seconds to count down

OKBUTTON  112, 270, 40, 14, .OK1
CANCELBUTTON  63, 270, 40, 14, .Cancel1

END DIALOG

GLOBAL color$(8)
color(1) = "red"
color(2) = "black"
color(3) = "white"
color(4) = "blue"
color(5) = "green"
color(6) = "yellow"
color(7) = "purple"
color(8) = "brown"

Dialog_Return_Value% = DIALOG (Dialog1)

'Dialog Event Handler subroutine
SUB CS_EX(BYVAL ControlID%, BYVAL Event%)

'Dialog initialization event
IF Event=0 THEN

'Event 1 group box controls
Dialog1.TextBox1.SETTEXT "Type text in this box"
Dialog1.Text4.SETTEXT "This text will replicate the text box text"
'Event 2 group box controls
Dialog1.CheckBox1.SETVALUE 2
'Event 3 list box control
Dialog1.ListBox1.SETARRAY color$
Dialog1.ListBox1.SETSELECT 1
'Event 4 group box controls
Dialog1.TextBox2.SETTEXT "Type text in this box"
Dialog1.Text6.SETTEXT "Replicates text box after change in focus"
'Event 5 group box controls
Dialog1.SETTIMER(1000) 'sets time interval to 1 second

ENDIF

'Change in content event
IF Event=1 THEN

Dialog1.Text4.SETTEXT(Dialog1.TextBox1.GETTEXT())
ENDIF

'Clicking a control
IF Event=2 THEN

Dialog1.Text3.SETTEXT(Dialog1.CheckBox1.GETVALUE())
ENDIF



'Double-clicking a list box item 
IF Event=3 THEN

Dialog1.Text7.SETTEXT color$(Dialog1.ListBox1.GETSELECT())
ENDIF

'Change in content event
IF Event=4 THEN

Dialog1.Text6.SETTEXT(Dialog1.TextBox2.GETTEXT())
ENDIF

'Time out event
IF Event=5 THEN

'Passes the number of seconds to CurrentTime 
CurrentTime = Dialog1.Text2.GETTEXT()
IF CurrentTime = 1 THEN Dialog1.CLOSEDIALOG 1
Dialog1.Text2.SETTEXT(CurrentTime-1) 'subtracts 1 from the counter

ENDIF

END SUB
The above script provides an example of all 6 dynamic dialog box events as shown in the following dialog box. 

The Dialog Initialization event (0) sets the initial values for many of the dialog controls.
The Change in content event (1) is shown when text is entered in the top-most text box.
The Clicking a control event (2) is shown when check box is clicked.
The Double-clicking a list box item event (3) is shown when an item is double-clicked.
The Change in focus event (4) is shown after text is entered in the second text box and dialog box focus is 

sent to another control.
The Time out event (5) is shown with a count down before the dialog box is closed.

Note



You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 19: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 149, 96, "SETVISIBLE example", SUB HideDisplay

GROUPBOX  15, 14, 60, 45, .GroupBox1, "OK Button"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  23, 28, 45, 10, .OptionButton1, "Visible"
OPTIONBUTTON  23, 40, 45, 10, .OptionButton2, "Invisible"

OKBUTTON  93, 33, 40, 14, .OK1
PUSHBUTTON  14, 68, 122, 18, .PushButton1, "Display a secondary dialog box"

END DIALOG

'Specifies a secondary dialog box
BEGIN DIALOG Dialog2 110, 44, "Secondary dialog box"

OKBUTTON  35, 15, 40, 14
END DIALOG

DIALOG Dialog1 'Displays the first dialog box

'Dialog Event Handler subroutine
SUB HideDisplay(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button value
IF Event=0 THEN

Dialog1.OptionButton1.SETVALUE 1
ENDIF

'controls whether to display the OK button
IF Event=2 THEN 

IF ControlID=4 THEN
Dialog1.OK1.SETVISIBLE FALSE

ELSEIF ControlID=3 THEN
Dialog1.OK1.SETVISIBLE TRUE

ENDIF
ENDIF

'controls what happens when the push button is clicked
IF Event=2 AND ControlID=6 THEN 

Dialog1.SETVISIBLE FALSE 'hides main dialog box
DIALOG Dialog2 'displays secondary dialog box
Dialog1.SETVISIBLE TRUE 'redisplays main dialog box

ENDIF

END SUB
The above script displays the following dialog box. 

Clicking an option button hides or displays the OK button. Clicking the push button hides the dialog box and 
displays a secondary dialog box.



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 20: Dynamic dialog box

'Specifies the dynamic dialog box
'Sets the array for the list box
GLOBAL color$(2)
color(1) = "black"
color(2) = "white"

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 217, 136, "Modifying List box items", SUB ListItems

GROUPBOX  5, 2, 92, 105, .GroupBox1, "Color list box"
LISTBOX  14, 13, 72, 85, .ListBox1
GROUPBOX  102, 2, 108, 70, .GroupBox2, "Specify color to add to list box"
TEXT  108, 15, 50, 8, .Text1, "Color to add:"
TEXTBOX  108, 25, 95, 13, .TextBox1
TEXT  108, 40, 85, 8, .Text2, "Item position in list box:"
SPINCONTROL  108, 52, 25, 12, .SpinControl1
PUSHBUTTON  147, 51, 50, 15, .PushButton1, "Add item"
GROUPBOX  102, 75, 108, 32, .GroupBox3, "Remove item:"
SPINCONTROL  108, 87, 25, 12, .SpinControl2
PUSHBUTTON  147, 86, 50, 15, .PushButton2, "Remove item"
PUSHBUTTON  59, 115, 48, 15, .PushButton3, "Selected Item"
PUSHBUTTON  5, 115, 48, 15, .PushButton4, "Item Count"
PUSHBUTTON  113, 115, 48, 15, .PushButton5, "Empty List"
OKBUTTON  168, 115, 40, 14, .OK1

END DIALOG
DIALOG Dialog1 'displays the dialog box

'Dialog Event Handler subroutine
SUB ListItems(BYVAL ControlID%, BYVAL Event%)
'Initialization condition to set option button values
IF Event=0 THEN  

Dialog1.ListBox1.SETARRAY Color$
Dialog1.ListBox1.SETSELECT 1
'Set the add spin control range
Dialog1.SpinControl1.SETMINRANGE 1
Dialog1.SpinControl1.SETMAXRANGE 3
'Set the remove spin control range
Dialog1.SpinControl2.SETMINRANGE 1
Dialog1.SpinControl2.SETMAXRANGE 2

ENDIF

'Selected item push button (uses the GETID function)
IF ControlID = Dialog1.PushButton3.GETID ( ) AND Event = 2 THEN

Color_Num = Dialog1.ListBox1.GETSELECT()
MESSAGE Dialog1.ListBox1.GETITEM(Color_Num)

ENDIF

'Item Count push button (uses the GETID function)
IF ControlID = Dialog1.PushButton4.GETID ( ) AND Event = 2 THEN

MESSAGE Dialog1.ListBox1.GETITEMCOUNT()
ENDIF

'Empty List push button (uses the GETID function)
IF ControlID = Dialog1.PushButton5.GETID ( ) AND Event = 2 THEN

Dialog1.ListBox1.RESET 
'Set the spin control ranges

Dialog1.SpinControl1.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT() + 1)
Dialog1.SpinControl2.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT())
Dialog1.SpinControl1.SETMINRANGE 0
Dialog1.SpinControl2.SETMINRANGE 0

ENDIF

'Add item push button
IF ControlID = 8 AND Event = 2 THEN

Item_text=Dialog1.Textbox1.GETTEXT()
Item_num=Dialog1.SpinControl1.GETVALUE()
Dialog1.ListBox1.ADDITEM  Item_text, Item_num
'Set the spin control ranges
Dialog1.SpinControl1.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT() + 1)
Dialog1.SpinControl2.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT())



ENDIF

'Remove item push button
IF ControlID = 11 AND Event = 2 THEN

Delete_item=Dialog1.SpinControl2.GETVALUE()
Dialog1.ListBox1.REMOVEITEM Delete_item
'Set the spin control ranges
Dialog1.SpinControl1.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT() + 1)
Dialog1.SpinControl2.SETMAXRANGE (Dialog1.ListBox1.GETITEMCOUNT())
Dialog1.ListBox1.SETSELECT 1 'Selects the first list item

ENDIF

END SUB
The above script displays the following dialog box. 

This dialog box performs the following functions:
The Item Count button displays a message box noting the number of items in the list box.
The Selected Item button displays a message box noting the selected item in the list box.
The Empty List button removes all the items from the list box.
The Remove Item group box is used to remove an item from the list box. To remove an item, specify the 

item to remove in the spin control and click the Remove Item push button.
The Specify color to add to list box group box is used to add an item to the list box. To add an item, 

specify the item in the text box, specify its position in the spin control and click the Add Item push button.
Note

You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 
and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 21: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 210, 159, "Bitmap Offset example", SUB IMAGESUB

PUSHBUTTON  112, 90, 94, 14, .PushButton1, "Display image size"
IMAGE  4, 6, 100, 150, .Image1
OKBUTTON  166, 108, 40, 14, .OK1
GROUPBOX  112, 10, 94, 76, .GroupBox1, "Select image to display"
OPTIONGROUP .OptionGroup1

OPTIONBUTTON  119, 20, 58, 10, .OptionButton1, "Entire image"
OPTIONBUTTON  119, 32, 75, 10, .OptionButton2, "Upper-left corner"
OPTIONBUTTON  119, 44, 75, 10, .OptionButton3, "Upper-right corner"
OPTIONBUTTON  119, 56, 75, 10, .OptionButton4, "Lower-left corner"
OPTIONBUTTON  119, 68, 75, 10, .OptionButton5, "Lower-right corner"

END DIALOG
DIALOG Dialog1

'Dialog Event Handler subroutine
SUB IMAGESUB(BYVAL ControlID%, BYVAL Event%)
'initializes the dialog box
IF Event=0 THEN

'sets the bitmap (200 pixels by 200 pixels)
Dialog1.Image1.SETIMAGE "C:\windows\desktop\big_four.bmp" 

ENDIF

'Clicking push button displays image size in pixels
IF Event=2 AND ControlID=1 THEN

MESSAGE "Bitmap height: " & Dialog1.Image1.GETBITMAPHEIGHT()
MESSAGE "Bitmap width: " & Dialog1.Image1.GETBITMAPWIDTH()

ENDIF

'changes the image display setting
IF Event = 2 THEN

IF Dialog1.OptionGroup1.GETVALUE() = 0 THEN
Dialog1.Image1.SETBITMAPOFFSET 0, 0

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 1 THEN
Dialog1.Image1.SETBITMAPOFFSET 0, 0, 100, 100

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 2 THEN
Dialog1.Image1.SETBITMAPOFFSET 100, 0, 200, 100

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 3 THEN
Dialog1.Image1.SETBITMAPOFFSET 0, 100, 100, 200

ELSEIF Dialog1.OptionGroup1.GETVALUE() = 4 THEN
Dialog1.Image1.SETBITMAPOFFSET 100, 100, 200, 200

ENDIF
ENDIF
END SUB
The above script displays the following dialog box. 



Clicking an option button changes the portion of the image to display in the image box.

Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



Example 22: Dynamic dialog box

'Specifies the dynamic dialog box
BEGIN DIALOG OBJECT Dialog1 114, 93, "Resize", SUB ResizeDB

OKBUTTON  1, 1, 25, 14, .OK1
IMAGE  32, 21, 50, 50, .Image1

END DIALOG

'the next line sets image 
Dialog1.Image1.SETIMAGE "d:\corel60\photopnt\plgbrush\treebare.bmp"
Dialog1.SETSTYLE 64 'sets dialog box style to resize

DIALOG Dialog1

'Dialog Event Handler subroutine
SUB ResizeDB(BYVAL ControlID%, BYVAL Event%)

'changes size and position of image box when dialog is resized
IF Event = 6 THEN

DW = Dialog1.GETWIDTH ( ) 'returns width of dialog box
DH = Dialog1.GETHEIGHT ( ) 'returns height of dialog box
Dialog1.Image1.MOVE 0.2*DW, 0.2*DH, 0.6*DW, 0.6*DH 'resizes image control

ENDIF

END SUB
The above script displays the following dialog box. 

By resizing the dialog box, the image control is also resized. The width and height of the image control is set to 
60% of the width and height of the dialog box. 



Note
You can paste the above script into the Corel SCRIPT Editor by selecting it with the mouse, right-clicking 

and selecting Copy. The script can then be pasted into the Corel SCRIPT Editor.

{button ,AL(`dialog_example_all_dyn;;;;;',0,"Defaultoverview",)} Related Topics



ADDFOL statement
#ADDFOL folder

This statement adds a temporary folder to the paths Corel SCRIPT searches when trying to find an INCLUDE file 
on your system.

Syntax Definition
folder String expression specifying a drive and a folder.

Note 
The pound sign (#) is required in the syntax.
Corel SCRIPT searches for an INCLUDE file in the following order:

1. The folder where the script resides. You can use the GETSCRIPTFOLDER statement to set or determine the 
active folder.

2. Folders in the path. The path is specified in the systems AUTOEXEC.BAT file.
3. Folders set in the Corel SCRIPT Editors INCLUDE option. Click  for more information about setting INCLUDE 

folders.
4. Folders specified with the ADDFOL statement.

Example
#ADDFOL "C:\MyFiles"
The above example add the MYFILES folder on the C drive to the path Corel SCRIPT searches for INCLUDE files.

{button ,AL(`include;setcurrfolder;;;;',0,"Defaultoverview",)} Related Topics



ADDRESBMP statement
#ADDRESBMP name file

This statement embeds a Windows bitmap graphic (.BMP) into an executable (.EXE), DLL, or Corel Add-on (.CAO) 
created with Corel SCRIPT or a Corel SCRIPT Binary file (.CSB). If you're distributing a script that uses many 
bitmaps in the form of an executable, DLL, or Corel SCRIPT Binary file, this statement can reduce the number of 
files that you must distribute.
In Corel SCRIPT, bitmaps are most often used in custom dialog boxes. See the Image dialog box control for an 
example of a script using bitmaps.

Syntax Definition
name String expression specifying the bitmap reference name within a script. When this 

name is referenced within a script, it must be preceded with the pound sign (#) 
and be enclosed in quotations. However, within the ADDRESBMP statement, 
quotations should not be used. See the example below for more information.

file String expression specifying the filename and path of a Windows bitmap graphic.

Note 
The pound sign (#) is required in the syntax.

Example
#ADDRESBMP Wizard1Portrait "C:\MyScripts\portrait.bmp"
BEGIN DIALOG Dialog1 200, 100, "Corel SCRIPT Dialog"

IMAGE  11, 17, 74, 65, "#Wizard1Portrait"
END DIALOG
In the above example, the PORTRAIT.BMP bitmap file takes on the reference name Wizard1Portrait. This bitmap is
then used in an image control in a custom dialog box. If this script was compiled into an executable the 
PORTRAIT bitmap would be embedded into the executable file.

{button ,AL(`image;image_dyn;Creating Corel SCRIPT 
Executables;Distributing_cs_exe;;',0,"Defaultoverview",)} Related Topics



BEEP statement
BEEP

Sounds a tone.

Note
The sound your computer makes depends on your computer's hardware (for example, sound cards, PC 

speaker, and so on) and the Default sound in your Windows sound settings (see your Windows Control Panel for 
more details).

Example
IF (abc<=15.3) then BEEP ELSE MESSAGE "It's greater than 15.3"
If the variable abc is less than or equal to 15.3, the computer sounds a tone.

{button ,AL(`csui_statements;;;;;',0,"Defaultoverview",)} Related Topics



BEGINWAITCURSOR and ENDWAITCURSOR statements
BEGINWAITCURSOR
ENDWAITCURSOR

The BEGINWAITCURSOR statement sets the mouse pointer to Busy. The Busy pointer usually appears as an 
hour-glass on most systems. This command is useful for scripts that perform long operations. By setting the 
pointer to Busy, the user is alerted that the script is still executing.
The ENDWAITCURSOR statement returns the pointer to its normal state. If the ENDWAITCURSOR statement is
not in a script that uses the BEGINWAITCURSOR statement, the pointer reverts to its normal state after the 
script finishes executing.

Note
It is good programming practice to use an ENDWAITCURSOR statement with every BEGINWAITCURSOR 

statement.

Example
BEGINWAITCURSOR
WAIT FOR 30
ENDWAITCURSOR
In the above example, the pointer is set to Busy, script execution is paused for 30 seconds, and then the pointer 
reverts to its normal state.

{button ,AL(`csui_statements;;;;;',0,"Defaultoverview",)} Related Topics



COPY statement and function
COPY file1, file2, overwrite

The COPY statement copies a file. 
You can also use COPY as a function: it returns TRUE (-1) if the COPY operation is successful; FALSE (0) 
otherwise.

Syntax Definition
file1 String expression specifying the file to copy. file1 can include the drive and folder.
file2 String expression specifying the where file1 is to be copied. file2 can include the 

drive and folder.
overwrite If file2 already exists, this determines whether to overwrite the existing file:

0 copy and overwrite (default if omitted)
1 overwrite fails

Example
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "D:\work\example1.cdr"
COPY x, y, 0
The above example copies the EXAMPLE1.CDR file to the work folder on the D drive.

DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "D:\work\example1.cdr"
success = COPY (x, y, 0)
The above example copies the EXAMPLE1.CDR file to the Work folder on the D drive, and assigns -1 to success.

{button ,AL(`FINDFIRSTFOLDER_FINDNEXTFOLDER;rename;copy;SETCURRFOLDER;rmfolder;GETcurrf
older;;',0,"Defaultoverview",)} Related Topics



FILEATTR function
retval = FILEATTR(FileName)

This functions returns a file's or folder's attributes.

Syntax Definition
retval Returns the attributes of FileName:

0 file doesn't exist
1 read-only files or folder 
2 hidden files or folder
4 system files or folder used by operating system
16 folder
32 archive files or folder
128 normal files or folder
256 temporary files or folder
2048 compressed files and folders

FileName String expression specifying the file/folder for which the attributes are returned. 

Example
retval = FILEATTR("C:\myfiles\mysetup.txt") 
If MYSETUP.TXT is read-only, hidden, and a system file, retval equals 7.
In cases where multiple attributes are returned, you can use the AND (bitwise) operator to determine specific 
attributes. To determine if MYSETUP.TXT was a read-only file you could use the following syntax:

IF 1 AND retval THEN readOnly$ = "Yes" ELSE readOnly$ = "No" 
1 is the read-only attribute. The variable readOnly is assigned a string based on bitwise comparison. In this case
readOnly is assigned "Yes".

{button ,AL(`GETCURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfold
er;',0,"Defaultoverview",)} Related Topics



FILEDATE function
retval = FILEDATE(FileName)

This functions returns a file's last modification date.

Syntax Definition
retval Assigned the date of the specified file's last modification as date data type. If the 

file is not found, 0 is returned.
FileName Specifies the file for which the date property is returned. 

Note
If the file is not closed when the function is executed, the function returns 12:00 AM.

Example
retval = FILEDATE("C:\myfiles\mytext.txt") 

{button ,AL(`GETCURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfold
er;',0,"Defaultoverview",)} Related Topics



FILEMODE function
FILEMODE(num)

Returns the file mode of an open text file in your computer's memory. 

Syntax Definition
num Numeric expression specifying an open file number to examine: 

1 file was opened for input
2 file was opened for output
8 file was opened for append

Note
This the only Corel SCRIPT file function that doesn't have an optional # sign in front of the file number.

Examples
i% = FILEMODE(1)
If file 1 was opened for input, then i% is set to 1. If file 1 was opened for output, then i% is set to 2. If file 1 was 
opened for append, then i% is set to 8.

OPEN "C:\example.txt" FOR APPEND AS 2
i% = FILEMODE(2)
Assigns 8 to the variable i%.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;;;',0,"Defaultoverview",)} Related Topics



FILEPOS function
FILEPOS (#num)

Returns the current file position of the file pointer for the specified file.

Syntax Definition
#num Numeric expression specifying an open file number to examine. The # sign is 

optional.

Note
The seek always starts from the first position in the file.

Example
OPEN "C:\HELLO.TXT" FOR INPUT AS 2
SEEK 2, 12
position% = FILEPOS(2)
Assigns 12 to the variable i%.

{button ,AL(`lof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics



FILESIZE function 
retval = FILESIZE(FileName)

Use the FILESIZE function to return a file's size in bytes.

Syntax Definition
retval Assigned the size of the specified file in bytes. If the file is not found, 0 is returned.
FileName Specifies the file for which the date property is returned. 

Example
retval = FILESIZE("C:\myfiles\mytext.txt") 

{button ,AL(`GETCURRFOLDER;filemode;getfileattr;FINDFIRSTFOLDER_FINDNEXTFOLDER;setcurrfold
er;',0,"Defaultoverview",)} Related Topics



FINDFIRSTFOLDER, FINDNEXTFOLDER functions
FolderFileName$ = FINDFIRSTFOLDER(searchcriteria, attributes)
FolderFileName$ = FINDNEXTFOLDER( )

Use the FINDFIRSTFOLDER and FINDNEXTFOLDER functions to assemble or perform an operation on a list of 
files, folders, or both. The FINDFIRSTFOLDER function is used to locate the first file or first folder in a folder 
that meets a specified search criteria. The FINDNEXTFOLDER function is used to locate the next file or next 
folder that meets the specified search criteria set by the FINDFIRSTFOLDER. The FINDNEXTFOLDER function 
must be used in conjunction with the FINDFIRSTFOLDER function.

Syntax Definition
searchcriteria Specifies the files or folders for which to search. You can include wild-card 

characters (* or ?).
attributes The type of files or folders you want to use. Use the OR operator to specify 

multiple file and folder types:
1 read-only 
2 hidden
4 system
16 Specifies to use folders. If not specified, files are used.
32 archive
128 normal (not read-only, hidden, system or archive file or folder)
256 temporary
2048 compressed

Note 
Specifying folder in the attributes parameter (16) by itself does not specify a type of folder. You must use 

another parameter along with 16 to specify a folder type.

Example
DIM DCOUNT%,  FCOUNT%             'creates 2 integer variables
DIM FILESARR$(100), DIRARR$(100)  'creates 2 string arrays

REM LOOP #1
REM FIND ALL DIRECTORIES IN THE SAMPLES FOLDER
DCOUNT = 1
DIRARR(DCOUNT) = FINDFIRSTFOLDER("D:\COREL\VENTURA\SAMPLES\*", 16 OR 128)
WHILE (DIRARR(DCOUNT) <> "")

MESSAGE DIRARR(DCOUNT)
IF DIRARR(DCOUNT) <> "." AND DIRARR(DCOUNT) <> ".." THEN DCOUNT = DCOUNT + 1
DIRARR(DCOUNT) = FINDNEXTFOLDER()

WEND

REM LOOP #2
REM FIND ALL *.VP FILES IN EACH DIRECTORY FOUND IN EARLIER LOOP
DIM I%
FCOUNT = 1
FOR I% = 1 TO DCOUNT-1

FILESARR(FCOUNT) = FINDFIRSTFOLDER("D:\COREL\VENTURA\SAMPLES\" + DIRARR(I%) + "\*.VP", 1 OR
2 OR 4 OR 32 OR 128)

WHILE (FILESARR(FCOUNT) <> "" )
MESSAGE DIRARR(I%) & CHR(13) & FILESARR(FCOUNT)

FCOUNT = FCOUNT + 1
FILESARR(FCOUNT) = FINDNEXTFOLDER()

WEND
NEXT I%
In the above example, the first loop fills an array (DIRARR) with the names of the normal folders in the D:\
COREL\VENTURA\SAMPLES folder. The second loop searches the folders in the SAMPLES folder for any file with 
the extension VP. Any found VP file has its name added to the FILESARR array and has its name displayed in a 
message box.
The following statement in the first loop is used to remove the current (.) folder and parent (..) folder from being 
sent to the DIRARR array:

IF DirArr(Dcount) <> "." AND DirArr(Dcount) <> ".." THEN Dcount = Dcount + 1



{button ,AL(`CURRFOLDER;filemode;getfileattr;getcurrfolder;setcurrfolder;',0,"Defaultoverview",)} 
Related Topics



FREEFILE function
FREEFILE ( )

Returns the lowest file number not associated with an open text file in the computer's memory.

Example
OPEN "temp.out" FOR OUTPUT AS 1
OPEN "temp2.out" FOR OUTPUT AS 5
i% = FREEFILE( )
The lowest available file number in this example is 2 because 1 is already being used, therefore i is set to 2.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;;;',0,"Defaultoverview",)} Related Topics



GETAPPHANDLE function
ReturnValue& = GETAPPHANDLE ( )

Returns the Application Instance Handle for the Corel application that is running a script. For example, if you are 
running the script from the Corel SCRIPT Editor, GETAPPHANDLE returns the Editor's Application Instance Handle.
If you run a script from Corel VENTURA, GETAPPHANDLE returns VENTURA's Application Instance Handle. This 
function is used in conjunction with DLL calls that require the application's handle.

Syntax Definition
ReturnValue& Specifies a numeric variable that is passed the Application Instance Handle. 

Example
hand = GETAPPHANDLE()

{button ,AL(`declare_lib;open_output;open_append;open_input;getwinhandle;getapphandle;',0,"Def
aultoverview",)} Related Topics



GETCOMMANDLINE function
ReturnValue$ = GETCOMMANDLINE ( )

Returns the parameters used in the command line that launch a script. To test this command, specify a 
command line in the Command Line text box in the Corel SCRIPT Editor's Options dialog box (click Tools, Options,
Environment tab). For more information about command lines, click .

Syntax Definition
ReturnValue$ String variable that is passed the command line parameters.

Example
CommandLine$ = GETCOMMANDLINE ( )

{button ,AL(`setcurrfolder;getCURRFOLDER;getfolder;ht_start_cse_custom;;',0,"Defaultoverview",)} 
Related Topics



GETCURRFOLDER function
ReturnValue$ = GETCURRFOLDER ( )

Returns the name of the active Windows folder and path.

Syntax Definition
ReturnValue$ String variable that is passed the name of the active Windows folder and path.
Note

You can set the active folder using the SETCURRFOLDER statement.
In Corel SCRIPT version 7.0, the GETCURRFOLDER function and the SETCURRFOLDER statement replace

the CURRFOLDER statement.

Example
folder = GETCURRFOLDER ( )

{button ,AL(`setcurrfolder;getCURRFOLDER;getfolder;;;',0,"Defaultoverview",)} Related Topics



GETPROCESSINFO function
ReturnValue& = GETPROCESSINFO (ProcessHandle)

This function returns the status of an executable.

Syntax Definition
ReturnValue& Numeric variable that is passed a value that indicates whether an executable is 

running. If the executable is running, this variable is passed the value 259.
ProcessHandle Numeric expression specifying the Windows Process Handle of an executable. Use 

the STARTPROCESS function to determine an executable's Windows Process 
Handle.

Note

Example
launch = STARTPROCESS ("C:\WINDOWS\CALC.EXE")
... 'other script statements
... 'other script statements
... 'other script statements
Calc_Status = GETPROCESSINFO (launch)
The above example launches the Windows Calculator and passes the Windows Process Handle to the launch 
variable. The launch variable is used with the GETPROCESSINFO function to determine whether the Calculator 
is running.

{button ,AL(`STARTPROCESS ;GETPROCESSINFO;INCLUDE;INPUT;cs_exe_dll;;;',0,"Defaultoverview",)}
Related Topics



GETSCRIPTFOLDER function
ReturnValue$ = GETSCRIPTFOLDER ( )

Returns the path and the folder where the executing script resides. If this function is used in a Corel SCRIPT 
Executable, it returns the path and folder where the Executable resides.

Syntax Definition
ReturnValue$ String variable that is passed the path and folder of an executing script or 

Executable.
Note

If the script has not been previously saved to disk or a network, this function returns an empty string.

Example
folder = GETSCRIPTFOLDER ( )

{button ,AL(`DECLARE_LIB;OPEN_OUTPUT;OPEN_INPUT;GETWINHANDLE;GETAPPHANDLE;Creating 
Corel SCRIPT Executables;;;',0,"Defaultoverview",)} Related Topics



GETTEMPFOLDER function
ReturnValue$ = GETTEMPFOLDER ( )

Returns the path and the folder of the system's Windows temporary folder.

Syntax Definition
ReturnValue$ String variable that is passed the path and folder of the system's Windows 

temporary folder.

Example
t_folder = GETTEMPFOLDER ( )

{button ,AL(`GETCURRFOLDER;GETSCRIPTFOLDER;;;;',0,"Defaultoverview",)} Related Topics



GETVERSION function
ReturnValue& = GETVERSION (option)

Returns the system or Corel SCRIPT version numbers. 

Syntax Definition
option Specifies the system or Corel SCRIPT component to query:

0 Corel SCRIPT run-time interpreter version (the SCINTxx.DLL file being used 
with the current session of Corel SCRIPT)

10 Corel SCRIPT compiler version number
30 Windows platform
31 Windows major version number
32 Windows minor version number
33 Windows build number

ReturnValue& Numeric variable that is passed the version or platform number.
Option 0 - Corel SCRIPT run-time interpreter:
Four-digit number. The first two digits represent the major version number and the
last two digits represent the minor version number. For example, the four digit 
number 7001 indicates major version 7.0 and minor version 01.
Option 10 - Corel SCRIPT compiler version:
Four-digit number. The first two digits represent the major version number and the
last two digits represent the minor version number. For example, the four digit 
number 7001 indicates major version 7.0 and minor version 01.
Option 30 - Windows platform:
Single-digit number indicating the Windows platform that Corel SCRIPT is being 
used with.
0 Win32s (Windows 3.11)
1 Windows 95
2 Windows NT
Option 31 - Windows major version number:
For example, if you're running Windows 95 and your Windows version number is 
4.00.950, the major version number is 4. The same applies to Windows NT.
Option 32 - Windows minor version number:
For example, if you're running Windows 95 and your Windows version number is 
4.00.950, the minor version number is 0.
Option 33 - Windows build number:
For example, if you're running Windows 95 and your Windows version number is 
4.00.950, the minor version number is 950.

Note 
For a script, Executable, DLL, or    Corel Add-on created with Corel SCRIPT to run, the major version 

numbers for Corel SCRIPT (the compiler) and the Corel SCRIPT run-time interpreter (SCINTxx.DLL) must be the 
same or else an error will occur. A difference in the minor version numbers will not cause an error. 

Example
CS_version = GETVERSION(10)
MESSAGE "Corel SCRIPT major version number " & LEFT (CS_version, 2)
MESSAGE "Corel SCRIPT minor version number " & RIGHT (CS_version, 2) 
In the above example, the first line passes the Corel SCRIPT version number to CS_version. A message box is 
then used to display the first two digits in CS_version using the LEFT function. Next, a message box is used to 
display the first two digits in CS_version using the RIGHT function.

{button ,AL(`Creating Corel SCRIPT 
Executables;getscriptfolder;getapphandle;getwinhandle;;',0,"Defaultoverview",)} Related Topics



GETWINHANDLE function
ReturnValue& = GETWINHANDLE ( )

Returns the window handle for the window that is running the script. For example, if you are running the script 
from the Corel SCRIPT Editor, GETWINHANDLE returns the Editor's Windows handle. If you run a script from 
CorelDRAW, GETWINHANDLE returns DRAW's Windows handle. This function is used in conjunction with DLL 
calls that require the window's handle.

Syntax Definition
ReturnValue& Specifies a numeric variable that is passed the window's handle. 

Note 
If you run a Corel SCRIPT Executable, the GETWINHANDLE function returns 0. For more information about 

Corel SCRIPT Executables, click 
.

Example
hand = GETWINHANDLE()

{button ,AL(`declare_lib;open_output;open_append;open_input;getwinhandle;getapphandle;',0,"Def
aultoverview",)} Related Topics



INCLUDE statement
#INCLUDE filename

Specifies a Corel SCRIPT script to execute from the executing script. The specified script is treated as having its 
contents inserted into the executing script at the line holding the INCLUDE statement.
If you re-use many of the same constant, variable, and procedure declarations, you should consider putting that 
information in a separate script. Keeping this information in a separate script allows you to type the information 
once, and then call it as many times as you need with an INCLUDE statement in any new script you create.
For example, if you use the WITHOBJECT statement to call CorelDRAW 7or Corel VENTURA 7, you can insert the 
following statements in a INCLUDE file:

GLOBAL CONST DRAW7 = "CorelDraw.Automation.7"
GLOBAL CONST VENTURA7 = "CorelVentura.Automation.7"
The two statements above create two global constants named DRAW6 and VENTURA7. If you always convert 
from tenths of a micron to another unit of measurement, you could include the following statement:

M_POINT = LENGTHCONVERT (1 , 3 , 1)
The LENGTHCONVERT statement creates a variable (M_POINT) that is equal to the number of tenths of a 
micron in a point.

Syntax Definition
filename String expression specifying the filename, and optionally the path. If the path is 

not specified in filename, Corel SCRIPT will search for the file on your system in 
the following manner:
1 The active folder. You can use the GETCURRFOLDER statement to set or 

determine the active folder.
2 Folders in the path. The path is specified in the systems AUTOEXEC.BAT file.
3 Folders set in the Corel SCRIPT Editor's INCLUDE option. Click  for more 

information about setting INCLUDE folders.
4 Folders specified with the ADDFOL statement.

Note 
Corel SCRIPT 7 introduces and includes CSI files. CSI are scripts (text files) that define commonly used 

constants. These files can be edited in the Corel SCRIPT Editor, and each Corel application that supports Corel 
SCRIPT has its own CSI file. 

Based on a typical Corel installation, an application's CSI file resides in the C:\COREL\CorelSuite\
application\SCRIPTS folder, where CorelSuite refers to the Corel products installed and application refers 
to the Corel application's folder. For example, the CorelDRAW 7 CSI file may reside in C:\COREL\DRAW70\
DRAW\SCRIPTS folder and Corel VENTURA 7 CSI file may reside in the C:\COREL\VENTURA7\VENTURA\
SCRIPTS folder. 
A general constants CSI file (SCPCONST.CSI) for Corel SCRIPT normally resides in the C:\COREL\CorelSuite\
SCRIPTS folder.

The pound sign (#) is required in the syntax.

Example
#INCLUDE "My_constants.CSC"
#INCLUDE "SCPCONST.CSI"
The above example includes the Corel SCRIPT script MY_CONSTANTS.CSC and the SCPCONST constants file in the
executing script.

{button ,AL(`GETCURRFOLDER;lengthconvert;angleconvert;addfol;const;;',0,"Defaultoverview",)} 
Related Topics



KILL statement
KILL fileName

Deletes a file. This statement is the same as clicking File, Delete in the Windows Explorer or in My Computer in 
Windows 95. 

Syntax Definition
fileName String expression specifying the filename to delete. You can use wild cards (* 

and ?) if you want to delete a group of files. For example, script*.* deletes all the 
files in the current folder beginning with script. Using script?.* deletes all the 
files in the current folder that begin with script and are followed by only one more
character.

Note
An open file cannot be deleted.

Example
KILL "temp.out"
Deletes the file TEMP.OUT in the current folder.

KILL "C:\MyDocs\temp.out"
Deletes the file TEMP.OUT in the C:\MyDocs folder.

{button ,AL(`rmfolder;open_output;;;;',0,"Defaultoverview",)} Related Topics



MKFOLDER statement and function
Statement: MKFOLDER folderName
Function: ReturnValue& = MKFOLDER (folderName)

Creates a new folder. You can also use MKFOLDER as a function: it returns TRUE (-1) if the folder was created, 
FALSE (0) if it was not.

Syntax Definition
folderName String expression specifying the name of the folder to be created. Path information

is optional.
ReturnValue& Numeric variable that is assigned a value indicating whether MKFOLDER was able

to create the folder. If the folder was created, TRUE (-1) is assigned; otherwise, 
FALSE (0).

Example
MKFOLDER "work"
Creates the folder work as a subfolder of the current folder.

success = MKFOLDER ("work")
Creates the folder work as a subfolder of the current folder and assigns -1 to success.

{button ,AL(`;GETCURRFOLDER;SETCURRFOLDER;RMFOLDER;;;;',0,"Defaultoverview",)} Related 
Topics



REGISTRYQUERY function
ReturnValue = REGISTRYQUERY (MainKey, SubKey, Value)

Returns the value data of a specified value key in the system's Windows registry. This function can help you 
determine where programs and files are installed on a user's system. This type of information is important when 
creating scripts that are to run on different system setups.

Syntax Definition
ReturnValue Specifies the variable that is passed the value data of a specified value key in the 

Windows registry. Since this function can pass a string or numeric value, the 
variable you specify should be a variant. You can use the GETTYPE function to 
determine a variant's subtype.

MainKey Specifies the main registry value key to query:
0 HKEY_CLASSES_ROOT
1 HKEY_CURRENT_USER
2 HKEY_LOCAL_MACHINE
3 HKEY_USERS
4 HKEY_PERFORMANCE_DATA
5 HKEY_CURRENT_CONFIG
6 HKEY_DYN_DATA

SubKey Specifies the sub registry value key to query. This must be a complete key path. In 
Windows 95 for example, "SOFTWARE\Microsoft\Windows\CurrentVersion\Fonts" is 
a complete path.

Value Specifies the registry value key to query. To specify a default value, use an empty 
string. Specify an empty string by using two quotation marks ("").

Note
You cannot use this command to query binary values except those that can be converted to a number.

Example
Config_Ventura = REGISTRYQUERY (2, "SOFTWARE\Corel\Corel Ventura\7.0", "ConfigDir")
The above example returns the root folder where Corel VENTURA 7 is installed.

Arial_file = REGISTRYQUERY (2, "SOFTWARE\Microsoft\Windows\CurrentVersion\Fonts", "Arial 
(TrueType)")
The above example returns the Arial True Type font's file name.

YourName$ = REGISTRYQUERY(2,"SOFTWARE\Corel","UserName")
The above example returns the name of the registered owner of Corel Software.

CompanyName$ = REGISTRYQUERY(2,"SOFTWARE\Corel","ORGANIZATION")
The above example returns the organization name of the registered owner of Corel Software.

Phone$ = REGISTRYQUERY(2,"SOFTWARE\Corel","PHONENUMBER")
The above example returns the phone number of the registered owner of Corel Software

{button ,AL(`GETSCRIPTFOLDER;GETAPPHANDLE;GETWINHANDLE;GETTYPE;;',0,"Defaultoverview",)}
Related Topics



RENAME statement and function
RENAME file_folder1, file_folder2, overwrite

The RENAME statement changes the name of a file or folder, or can be used to move a file. You cannot move a 
folder using the RENAME statement.
You can also use RENAME as a function: it returns TRUE (-1) if the RENAME operation is successful, FALSE (0) if is 
not.

Syntax Definition
file_folder1 String expression specifying the name of the file or folder to move. file_folder1 

can include drive and folder path specifics  if path specifics are not included, 
RENAME assumes the current folder.

file_folder2 String expression specifying the name of the file where file_folder1 is to be moved. file_folder2 
can include drive and folder path specifics  if path specifics are not included, RENAME assumes the current folder.

overwrite If file_folder2 already exists, determines whether to overwrite the existing file 
(you cannot overwrite existing folders):
0 = rename and overwrite 
1 = overwrite fails (default if omitted)

Example
' statement example
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.vp"
y = "D:\work\example1.vp"
RENAME x, y, 0
The above example moves the EXAMPLE1.VP file to the Work folder on the D drive.

' statement example 
DIM x AS STRING
DIM y AS STRING
x = "C:\work\example1.cdr"
y = "C:\work\example2.cdr"
success = RENAME (x, y, 0)
The above example renames the EXAMPLE1.CDR file to EXAMPLE2.CDR, and assigns -1 to success.

{button ,AL(`FINDFIRSTFOLDER_FINDNEXTFOLDER;rename;copy;GETCURRFOLDER;rmfolder;SETcurrf
older;;',0,"Defaultoverview",)} Related Topics



RMFOLDER statement and function
RMFOLDER folderName

Removes an existing folder. The folder must be empty before it can be deleted. You can also use RMFOLDER as 
a function: it returns TRUE (-1) if the folder was removed, FALSE (0) if it was not.

Syntax Definition
folderName String expression specifying the name of the folder to remove. folderName can 

include drive specifics  if drive specifics are not included, RENAME assumes the 
current drive.

Example
RMFOLDER "C:\TEMP\WORK"
Removes the Work folder from the Temp folder.

success% = RMFOLDER "C:\TEMP\WORK"
Removes the Work folder from the Temp folder and assigns -1 to success.

{button ,AL(`KILL;MKFOLDER;GETCURRFOLDER;;;',0,"Defaultoverview",)} Related Topics



SETCURRFOLDER statement
SETCURRFOLDER FolderName    

Sets the active Windows folder and path.

Syntax Definition
FolderName String expression specifying a system folder and path.
Note

In Corel SCRIPT version 7.0, the SETCURRFOLDER statement and the GETCURRFOLDER function replace
the CURRFOLDER statement.

Example
SETCURRFOLDER "C:\corel\MyDocs"
The above example sets the active folder and path to C:\COREL\MYDOCS.

{button ,AL(`GETCURRFOLDER;getfolder;;;',0,"Defaultoverview",)} Related Topics



STARTPROCESS statement and function
Statement: STARTPROCESS exe
Function: ReturnValue& = STARTPROCESS (exe)

This statement or function launches executable files (.EXE files). You can also use this statement to launch Corel 
applications and Corel SCRIPT Executables. 

Syntax Definition
exe String expression specifying the executable to launch. The string expression 

should also include the executable's path and file extension.
ReturnValue& Numeric variable that is assigned a value indicating whether STARTPROCESS was

not able to launch the specified executable. If the specified executable was not 
launched, 0 is assigned; otherwise the Windows Process Handle is returned. 

Note
Use the GETPROCESSINFO function to determine whether an executable is still running.

Example
STARTPROCESS "C:\WINDOWS\CALC.EXE"
The above example attempts to launch the Windows Calculator.

launch = STARTPROCESS ("C:\WINDOWS\CALC.EXE")
The above example attempts to launch the Windows Calculator and assigns a value to the launch variable, 
indicating whether the calculator was launched.

{button ,AL(`STARTPROCESS ;GETPROCESSINFO;INCLUDE;INPUT;cs_exe_dll;;;',0,"Defaultoverview",)}
Related Topics



DO...LOOP statements
DO {WHILE | UNTIL} TestCondition

[statements]
LOOP

or
DO

[statements]
LOOP {WHILE | UNTIL} TestCondition

Repeats script instructions while a condition is TRUE or until it becomes TRUE. Note that the first form of syntax 
may never execute statements if an expression is or is not TRUE, but that the second form always executes 
statements at least once.

Syntax Definition
TestCondition Any numeric or string expression that can evaluate to a Boolean (TRUE or FALSE).
[statements] Series of script instructions to execute and repeat.
{WHILE | UNTIL} Specifies whether to repeat script instructions WHILE a condition is TRUE or 

UNTIL it becomes TRUE.
Note

By placing the condition at the end of the loop, the loop will always be executed once before the condition 
is tested. 

You can nest DO...LOOP statements inside each other up to 20 times.    
You can exit a DO...LOOP with the EXIT statement.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



Examples for DO...LOOP
i% = 5
DO WHILE i% > 0

i% = i% - 1
LOOP
The variable i% starts with a value of 5. The loop continues for as long as i% has a value greater than 0. Once i
% equals 0 and the condition (DO WHILE i% > 0) is again tested, processing continues at the next statement 
after the LOOP statement. In this example, the loop executes five times. If the condition were changed to "i
% = 0", the loop would never execute because the condition would be false immediately.

i% = 5
DO UNTIL i% = 0

i% = i% - 1
LOOP
This example is functionally identical to the previous example. The loop executes five times before the condition 
is TRUE. If the condition were changed to "i% > 0", the loop would never execute.

i% = 5
DO

i% = i% - 1
LOOP UNTIL i% = 0
By placing the condition at the end of the loop, the loop will always be executed once before the condition is 
tested. However, in the following example, the loop will still execute five times.

i% = 5
DO

i% = i% - 1
LOOP WHILE i% > 0
Again, the loop will execute five times before the condition is no longer TRUE. If the condition were changed to "i
% = 0", the loop would execute only once before the condition is tested.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



END statement
END { DIALOG | FUNCTION | SELECT | SUB | WITH | WITHOBJECT }

Ends a SELECT CASE, FUNCTION, SUB, WITHOBJECT or DIALOG construct. In Corel SCRIPT 7, the END statement 
also stops execution of a running Corel SCRIPT script (see the last example). The STOP statement can also be 
used to terminate script execution.

Example
BEGIN DIALOG ...

REM Dialog box statements go here.
END DIALOG

FUNCTION UserFunction%( )
REM Function processing statements go here.

END FUNCTION

SELECT CASE i%
CASE 0

REM Case statements go here.
END SELECT

SUB Subroutine( )
REM Subroutine statements go here.

END SUB

WITH Dialog1
REM Dynamic dialog functions go here.

END WITHOBJECT

WITHOBJECT "CorelDraw.Automation.6"
REM CorelDRAW commands and functions go here.

END WITHOBJECT
The script compiler must match a SELECT CASE, FUNCTION, SUB, WITHOBJECT or BEGIN DIALOG statement with 
a corresponding END statement, as shown in the examples above.

IF i% = 3 THEN END
If the value of i% is 3, then the script stops immediately. No other statements are executed.

{button ,AL(`WITH_Corel_Application;SELECT_CASE;BEGIN_END_DIALOG;BEGIN_END_DIALOG_dyn;wit
h_dialog;SUB_END_SUB;FUNCTION_END_FUNCTION;;',0,"Defaultoverview",)} Related Topics



EXIT statement
EXIT { DO | FOR | FUNCTION | SUB | WHILE}

The EXIT statement is used to exit a procedure or exit a script structure such as a loop.

Syntax Definition
DO Exits the most tightly enclosed DO...LOOP structure. Script execution is sent to 

the script instruction which follows the LOOP statement. If the EXIT DO 
statement is used in a nested loop, script execution is sent to loop nested one 
level above the loop where the EXIT statement is executed.

FOR Exits the most tightly enclosed FOR...NEXT structure. Script execution is sent to 
the script instruction which follows the NEXT statement. If the EXIT FOR 
statement is used in a nested loop, script execution is sent to loop nested one 
level above the loop where the EXIT statement is executed.

FUNCTION Exits a call to a function. Script execution is sent to the script instruction which 
follows the call to the function.

SELECT CASE Exits the most tightly enclosed SELECT CASE structure. Script execution is sent to
the script instruction which follows the END SELECT statement. If the EXIT 
SELECT CASE statement is used in a nested SELECT CASE construct, script 
execution is sent to construct nested one level above the construct where the 
EXIT statement is executed. 
This parameter is new for Corel SCRIPT 7.0.

SUB Exits a call to a subroutine. Script execution is sent to the script instruction which 
follows the call to the subroutine.

WHILE Exits the most tightly enclosed WHILE...WEND structure. Script execution is sent 
to the script instruction which follows the WEND statement. If the EXIT WHILE 
statement is used in a nested loop, script execution is sent to loop nested one 
level above the loop where the EXIT statement is executed. 
This parameter is new for Corel SCRIPT 7.0.

Note
If you do not supply a parameter for the EXIT statement, an exit occurs in the most tightly enclosed 

structure or procedure.
Do not confuse the EXIT statement with the END statement which is used to define the end of a structure 

or procedure.

Examples
FOR i% = 1 TO 5 

IF i = 3 THEN EXIT FOR
NEXT i
In the above example, the script execution exits the FOR loop when i equals 3, not 5.

FOR i% = 1 TO 5 
IF i = 3 THEN EXIT FOR
x% = 5
DO WHILE x% > 0

x% = x% - 1
IF x = 3 THEN EXIT 

LOOP
NEXT i
In the above example, the script execution exits the DO WHILE loop when X equals 3. Since the EXIT statement
doesn't specify a parameter and the DO WHILE loop is the most tightly enclosed structure, the DO WHILE is 
exited.

{button ,AL(`CS_FLOWS;;;;;',0,"Defaultoverview",)} Related Topics



FAIL statement
FAIL ERRNUM

The FAIL statement simulates an error and sets the ERRNUM variable to the specified parameter value. FAIL can
be used to force a call to an error-handling routine. For more information about run-time errors, see Script 
programming errors.

Syntax Definition
ERRNUM Any numeric expression. User-defined error numbers are between 800 and 999, 

inclusive. 

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics



FOR...NEXT statements
FOR counter = start TO end STEP increment

[statements]
NEXT counter

Repeats (or loops) a group of instructions a specified number of times. The variable loop counter has an initial 
value of start and is changed each time the loop statements are executed. The counter changes by the value 
set in the optional increment parameter. If the increment parameter is not used, counter steps, or is 
increased, by one each time the loop statements are executed.

Syntax Definition
counter Numeric variable used as counter. Cannot be an array element.
start Initial value of the counter.
TO Used to separate the start and end parameters.
end Final value of the counter.
STEP Optional syntax used with the increment parameter. 
increment Amount the counter is incremented each time through loop. If omitted, the default 

is set to 1. The increment parameter can be a positive or negative value. If the 
increment parameter is a positive value, the loop continues to execute as long as
counter is less than or equal to end. If the increment parameter is a negative 
value, the loop continues to execute as long as counter is greater than or equal 
to end.

[statements] Series of script instructions to execute and repeat.
Note

If the counter parameter is omitted in the NEXT statement matches to the most recent FOR statement.
If the start or end parameter is set outside the counter's data type range, an endless loop can occur. For 

example, if counter is an integer and end is set to 33000, an endless loop will occur since 33000 beyond the range
of an integer. For more information about data types, see Corel SCRIPT data type summary.    

You can nest FOR...NEXT statements inside each other up to 20 times.    
You can exit a FOR...NEXT with the EXIT statement.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



Examples for FOR...NEXT

FOR i% = 1 TO 10 STEP 2
intArray%(i%) = i%

NEXT i%
Every other element of the array intArray% (elements 1, 3, 5, 7, and 9) are given the value of i%.
FOR i% = 1 TO UBOUND(stringArray$)

stringArray$(i%) = "string"
NEXT i%
All the elements of the array stringArray$ are assigned the value "string".
Note

If you nest FOR...NEXTs within FOR...NEXTs, you should give each a counter% a unique name as shown
in the following example:

FOR a% = 1 TO 4
[statements] 
FOR b% = 1 TO 4

[statements] 
FOR c% = 1 TO 4

[statements] 
NEXT c%

NEXT b%
NEXT a%

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



GOSUB...RETURN statements
GOSUB LabelLine
...
...
LabelLine
...
...
RETURN

The GOSUB statement directs script execution to a specified line in the script and then RETURN statement 
returns execution to the script statement following the GOSUB statement. You can use the GOSUB statement to
execute the same block of statements in a script. The GOSUB and RETURN statements must be within the 
same procedure in a script.

Syntax Definition
GOSUB LabelLine Specifies the line label or line number to direct script execution to. 

Line labels cannot be preceded by spaces or tabs and must be followed by a colon.
Do not include the colon in the GOSUB statement. Line labels can include letters 
and numbers but must start with a letter. 
Line numbers cannot be preceded by spaces or tabs and are not followed with a 
colon. Line numbers cannot include strings or any other non-number characters. 

Note
Consider using user-defined subroutine instead of the GOSUB statement.
Using the RETURN statement without a corresponding GOSUB statement results in an error.

Example using line label
REM Statements...
IF i% = 3 THEN GOSUB BreakOut   'send execution to BreakOut label
...
...
...
IF i% = 4 THEN GOSUB 15         'send execution to line number 15
...
...
...
REM Statements execute here if i% is equal to 3
BreakOut:

REM More statements execute here.
RETURN            'execution sent back to line following GOSUB

...

...

...
REM Statements execute here if i% is equal to 4
15

REM More statements execute here.
RETURN            'execution sent back to line following GOSUB

If i% is equal to 3, the statements between the GOSUB and the Breakout label are skipped. The script 
processing is sent to the first statement after the label and is then redirected back to the statement that follows 
the GOSUB statement. 
If i% is equal to 4, the statements between the GOSUB and line number 15 are skipped. The script processing is 
sent to the first statement after the line number and is then redirected back to the statement that follows the 
GOSUB statement. 

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



GOTO statement
GOTO { LineLabel | LineNumber }

Directs script execution to a specified line in the script. A GOTO statement can branch only to another statement
at the same procedure level in the script. For example, you can use a GOTO statement in the main section of the
script to go to another line in the main section. 

Syntax Definition
LineLabel Specifies the line label to go to. The line label cannot be preceded by spaces or 

tabs and must be followed by a colon. Do not include the colon in the GOTO 
statement. Line labels can include letters and numbers but must start with a letter.

LineNumber Specifies the line number to go to. The line number cannot be preceded by spaces
or tabs and is not followed with a colon. Line numbers cannot include strings or 
any other non-number characters. 

Note
Using GOTO statements can make your script difficult to read and debug. You should provide remarks 

statements when using the GOTO statement. Consider using conditional or looping statements instead of the 
GOTO statement. 

Example using line label
REM Statements...
IF i% = 3 THEN GOTO BreakOut
REM Statements execute here if i% is not equal to 3
...
...
...
REM Statements execute here if i% is equal to 3
BreakOut:
REM More statements execute here.
If i% is equal to 3, the statements between the GOTO and the Breakout label are skipped. The script 
processing is sent to the first statement after the label. 

Example using line number
REM Statements...
IF i% = 3 THEN GOTO 10
REM Statements execute here if i% is not equal to 3
...
...
...
REM Statements execute here if i% is equal to 3
10
REM More statements execute here.
If i% is equal to 3, the statements between the GOTO and the 10 line number are skipped. The script processing
is sent to the first statement after the line number. 
Using the GOTO statement can easily cause an endless loop in a program. The following example creates an 
endless loop between the last two statements.

REM Statements...
I% = 3
Breakout: 
If I% = 3 then GOTO Breakout

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



IF...THEN...ELSE...ENDIF statements
IF condition1 THEN [statement] ELSE [statement]

or
IF condition1 THEN

[statements]
ELSEIF condition2 THEN

[statements]
ELSEIF condition... THEN

[statements]
ELSE

[statements]
ENDIF

Using the IF statement allows for conditional execution of script instructions based on TRUE or FALSE conditions. 
If the condition is TRUE, the program performs the THEN statement; if the condition is FALSE, the program 
performs the ELSE or ELSEIF statement, if included. You can have more than one set of ELSEIF statements in the 
IF...THEN...ELSEIF...ENDIF construct.
If only one THEN statement is needed, and it is included on the same line as the IF condition, then no ENDIF is 
required. If the THEN statement is more than one line, then ENDIF is required.

Syntax Definition
condition1, condition2, ... Any numeric or string expression that can be evaluated as Boolean condition 

(TRUE or FALSE). If the condition is TRUE, then the statements following the 
keyword THEN are executed. If the condition is FALSE, then the processing 
continues at the next ELSEIF statement, if present, or at the statement following 
the ELSE keyword, if present.

[statement] Script instruction to execute.
[statements] Series of script instructions to execute.
Note

You can nest IF statements inside each other up to 20 times.    

{button ,AL(`cs_loops;select_case;;;;',0,"Defaultoverview",)} Related Topics



Examples for IF...THEN...ELSE...ENDIF

IF i% = 0 THEN MESSAGE "The variable is 0."
If the variable i% has a value of 0, a message dialog box appears. 

IF i% = 0 THEN MESSAGE "The variable is 0." ELSE BEEP
If the variable i% has a value of 0, a message appears, otherwise a beep is sounded. Because the entire IF 
statement is on one line, no ENDIF is needed.

IF i% = 0 THEN
MESSAGE "The variable is 0"
i% = 1

ELSEIF i% = 1 THEN
MESSAGE "The variable is less than 2"

ELSEIF i% = 2 THEN
MESSAGE "The variable is greater than 1"

ELSE
BEEP

ENDIF
You must use the multi-line IF...THEN...ENDIF when there is a second condition to test after the first IF or when 
there is more than one statement to process as a result of the condition. Repeat the ELSEIF statements for as 
many conditions as needed. If many conditions must be tested, you might want to use the SELECT CASE 
statement. Note that in the example, even though i% is assigned a value of 1 in the i% = 0 condition, the 
ELSEIF i% = 1 condition does not execute. Once a condition is TRUE, processing continues after the ENDIF 
statement once the statements that meet the condition execute.
You can evaluate variables without assigning results. For example: 
IF (abc<=15.3) then BEEP ELSE MESSAGE "It's greater than 15.3"

{button ,AL(`cs_loops;select_case;;;;',0,"Defaultoverview",)} Related Topics



ON ERROR statement
ON ERROR { GOTO line | RESUME NEXT | EXIT }

The ON ERROR statement sets an error-handling routine. The error-handling routine is a series of instructions 
within the same procedure that are executed when an error occurs. If you don't use an error-handling routine, a 
run-time error stops script execution. For more information about run-time errors, see Script programming errors.
When an error occurs, an error value is passed, or trapped, to the Corel SCRIPT global variable ERRNUM. For 
example, if a division by zero error occurs, ERRNUM equals 100. For more information, see Error Codes. 

Syntax Definition
GOTO line Script execution is directed to a specified line when an error occurs. The line must 

be in the same procedure where the error occurred. See the GOTO statement for 
more information about the line parameter.

RESUME NEXT Script execution continues to the line immediately following the line where the 
error occurred.

EXIT Disables the ON ERROR setting in the current procedure. 

Error-handling routines
An error-handling routine is not a separate procedure but a block of script instructions within the same procedure
as the ON ERROR statement. You can use the following syntax in the error-handling routine to return execution 
to a procedure from an error-handling routine:

Syntax to return executionDefinition
RESUME Placing a RESUME statement at the end of an error-handling routine re-executes 

the script instruction which caused the error. If you use the RESUME statement, 
you should ensure that your error-handling routine resolves the error, otherwise an
infinite loop is likely to occur.

RESUME NEXT Placing a RESUME NEXT statement at the end of an error-handling routine directs
script execution to the line immediately following the line where the error 
occurred.

RESUME AT line Placing a RESUME AT statement at the end of the error-handling routine directs 
script execution to the specified line. The line must be in the same procedure 
where the error occurred. You can use line labels or line numbers to specify a line. 
See the GOTO statement for more information about the line parameter.

Note
You should place a STOP, EXIT FUNCTION, or an EXIT SUB before an error-handling routine in a script to 

prevent it from being executed when no error has occurred.
If an error occurs in an error-handling routine, script execution is redirected to the script instruction that 

initiated the error-handling routine.
Not all Corel SCRIPT errors are trappable.
If an error occurs in an error handler, control returns to the calling procedure. If the calling procedure has 

error handling, it is activated to handle the error. If the calling procedure's error handler is also active, control 
passes back to the first calling procedure that is enabled, and inactive. 

If no inactive, enabled error handler is found, the error terminates the script.    Each time the error handler 
passes control back to the calling procedure, that procedure becomes the current procedure.    Once an error is
handled by an error handler in any procedure, execution resumes in the current procedure at the point 
designated by the RESUME statement.
The ERRNUM value corresponds to the cause of the most recent error. An error handler should test or save 
the    ERRNUM value before another error can occur, or before a procedure that could cause an error is called.  

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics



Example for ON ERROR and FAIL

DECLARE FUNCTION asknum$()
ON ERROR GOTO mainerrhan

num$=asknum$()
MESSAGE "You entered "+num$
STOP

' main error handling routine
mainerrhan:

SELECT CASE ERRNUM
CASE 800

MESSAGE "Please enter a higher number"
RESUME

CASE 801
MESSAGE "Please enter a lower number"
RESUME

CASE ELSE
MESSAGE "Unexpected error"
RESUME NEXT

END SELECT
STOP

' This function will ask for a number between 10 and 20.
FUNCTION asknum$

ON ERROR GOTO asknumerror
number$=INPUTBOX("Please enter a number between 10 and 20")
somenum& = VAL(number$)
IF somenum&<10 THEN FAIL 800
IF somenum&>20 THEN FAIL 801
asknum$=number$
EXIT FUNCTION

askNumError:
' Error handling is passed to the main section

END FUNCTION
In the above example, a function is used to create an input box that takes a number. If the number input is not 
between 10 and 20 inclusive, an error-handling routine is called. (The FAIL statement is used to simulate an 
error number.) The error-handling routine displays a message and then returns to the input box again.

{button ,AL(`script_errors;;;;;',0,"Defaultoverview",)} Related Topics



REM statement
REM comment

' comment

A non-executed remark, or comment, in a program. You can use an apostrophe (') instead of REM. Everything 
from REM (or the apostrophe) to the end of the line is a remark. The REM statement must be placed at the 
beginning of a line. The apostrophe can be placed anywhere in a line.
If a script's first line, second line, or both are REM statements, the comments are displayed in a Corel 
application's Run Script dialog box if the script is specified. The same two REM statements are also displayed in 
the status bar if the script is assigned to a tool bar button.

Syntax Definition
comment Any text you want to include in your script as a comment.

Example
REM Description: This is a description.
REM Created by: Your Name
' This first statement sets up the variables
DIM int2Array%(10) ' The rest of this line is a comment
' More processing follows here.

{button ,AL(`Using_flow_control_statements;To_add_a_button_to_a_toolbar;;;;',0,"Defaultoverview",)
} Related Topics



SELECT CASE...END SELECT statements
SELECT CASE testexpression

CASE {caseexpression | caseexpression TO caseexpression | IS reloperator caseexpression} , ...
[statements]

CASE {caseexpression | caseexpression TO caseexpression | IS reloperator caseexpression} , ...
[statements]

CASE ELSE
[statements]

END SELECT

Compares the value of a test expression to the values in the CASE statements and executes blocks of 
statements dependent on their relationships. If none of the values in the CASE statements match the test 
expression, the CASE ELSE statements are executed.

Syntax Definition
testexpression Any numeric or string expression.
caseexpression An expression that evaluates to the same data type as testexpression. You can 

have more than one set of CASE statements in the SELECT CASE construct.
reloperator A relational operator such as =, <>, >, <, >=, or <=.
[statements] Program instructions conditionally executed; any number of statements on one or 

more lines.
TO Corel SCRIPT keyword used to specify a range of values. The smaller value must 

precede TO.
IS Corel SCRIPT keyword used with relational operators to specify a range of values. 
Note

You can exit a SELECT CASE with the EXIT statement. This is new for Corel SCRIPT 7.0.

{button ,AL(`IF_THEN_ELSE_ENDIF;Relational_Operators;;;;',0,"Defaultoverview",`main')} Related 
Topics



Example for SELECT CASE

SELECT CASE i%
CASE -10 TO -5, 5 TO 9, IS = 10

MESSAGE "Between -10 and -5 or 5 and 10"
CASE -4 TO -1, 2 TO 4

MESSAGE "Between -4 and 4 but not 0 or 1"
CASE 0, 1

MESSAGE "Zero or one"
CASE ELSE

MESSAGE "Greater than 10 or less than -10"
END SELECT
In the above example:

If i% is between -10 and -5 or 10 and 5, the message "Between -10 and -5 or 5 and 10" appears. 
 If i% is between -4 and 4, but is not zero or one, the message "Between -4 and 4 but not 0 or 1" appears. 
If i% is zero or 1, the message "Zero or one" appears.
 If i% is not any of those numbers, the message "Greater than 10 or less than -10" appears.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



STOP statement
STOP

Stops execution of a running Corel SCRIPT script. The END statement can also be used to terminate script 
execution.

Example
IF i% = 3 THEN STOP
If the value of i% is 3, then the script stops immediately. No other statements are executed.
The STOP statement is often used to stop a running script when a Cancel button is pressed in a dialog box as 
shown in the following example:

BEGIN DIALOG Buttons1 55, 34, 236, 40, "BUTTON example"
OKBUTTON 21, 12, 40, 14
CANCELBUTTON 71, 12, 40, 14
PUSHBUTTON 121, 12, 40, 14, "&Push"
HELPBUTTON 171, 12, 40, 14, "C:\Help.hlp", 1044

END DIALOG
ret = DIALOG(Buttons1)
IF ret = 1 THEN MESSAGE "OK button chosen"
IF ret = 2 THEN STOP    'Cancel pressed 
IF ret = 3 THEN MESSAGE "Push button chosen"

{button ,AL(`END;;;;;',0,"Defaultoverview",`main')} Related Topics



WHILE...WEND statements
WHILE TestCondition

[statements]
WEND

Continuously executes (or loops) script instructions as long as a test condition is TRUE.

Syntax Definition
TestCondition Any numeric or string expression that can evaluate to a Boolean (TRUE or FALSE).
[statements] Series of script instructions to execute.
Note

You can nest WHILE...WEND statements inside each other up to 20 times.
You can exit a WHILE...WEND    with the EXIT statement. This is new for Corel SCRIPT 7.0.

Example
i% = 5
WHILE i% > 0

i% = i% - 1
WEND
The loop executes for as long as the condition i% is greater than 0 is TRUE. In this example, the loop will execute
five times.

{button ,AL(`cs_loops;;;;;',0,"Defaultoverview",)} Related Topics



WITHOBJECT...END WITHOBJECT statements
WITHOBJECT application

[statements]
END WITHOBJECT

or
WITHOBJECT application [statement]

Use the WITHOBJECT statement to run a script that calls commands in a Corel application. You can also use the 
WITHOBJECT statement to call any application that is an OLE automation server. Click  for more information 
about OLE automation.

Syntax Definition
application A string expression specifying the application to call. Not every Corel application 

supports Corel SCRIPT programming and script files. Click  for a list of Corel 
applications that support Corel SCRIPT and application strings. This string is called 
the application's external name.

[statements] Series of script instructions to execute. Can be a combination of both Corel SCRIPT application 
commands and Corel SCRIPT programming statements.
[statement] Corel SCRIPT application command to execute.

Examples
'Example 1
WITHOBJECT "CorelDraw.Automation.6"
    .InsertPages -1, 2
    .SetPaperColor 2, 0, 255, 0, 0
END WITHOBJECT

'Example 2
WITHOBJECT "CorelDraw.Automation.6"
    .InsertPages -1, 2
    .SetPaperColor 2, 0, 255, 0, 0
END WITHOBJECT

'Example 3
WITHOBJECT "CorelDraw.Automation.6" .InsertPages -1, 2
WITHOBJECT "CorelDraw.Automation.6" .SetPaperColor 2, 0, 255, 0, 0
The three examples above all insert two pages into a CorelDRAW document and change the paper color.
Note

In Corel SCRIPT 6, predefined constants were used to specify an application. For example DRAW for 
CorelDraw.Automation.6. This option no longer exists but you can now use constants defined in the INCLUDE 
files distributed with script. See the INCLUDE statement for more information.

You can also use the WITHOBJECT statement to call any non-Corel application that supports OLE 
automation with an automation object. For example, you can call Microsoft Word 6.0 or Microsoft Excel 5.0 by using 
the external names "Word.Basic" or "Excel.sheet.5", respectively. 

The application that the WITHOBJECT statement is calling does not have to be opened to be called.
If you have more than one session of your application open, the script is executed in the application which 

was opened first.
Running a script with a combination of programming statements and application commands from the 

Editor lets you take advantage of the Editor's testing and debugging features. However, once you are satisfied your 
script is running properly, you should run your script from the Corel application that uses the application command 
for significant time savings.

{button ,AL(`ole_cs;end;corel_script_programming_language;Executing_script_files;Corel_SCRIPT_ad
vanced_programming_features;;',0,"Defaultoverview",)} Related Topics





To add a dialog box to a script using the Corel SCRIPT Editor
1. Place the insertion point in the script line before where you want to insert the dialog box definition.
2. Click Tools, Dialog.

The BEGIN DIALOG   and   END DIALOG   statements are inserted into the active script. 
A dialog window also opens containing an empty dialog box that can be edited. As you edit the dialog box, the 
script that launched the dialog window reflects the changes you make to the dialog box. For example, if you 
add a check box to the dialog box, a CHECKBOX statement is added to the script.

Note
While the dialog window for the new dialog box is open you cannot edit it's dialog definition in the script 

window.
By default, all new dialog boxes are of the static type. See To edit a dialog box's attributes for more 

information.

{button ,AL(`a_trans;;;;;',0,"Defaultoverview",)} Related Topics



To edit dialog box definition in a script using the Corel SCRIPT Editor
1. Place the insertion point in the a script line containing the dialog box definition you want to edit.
2. Click Tools, Dialog.

A dialog window opens containing a dialog based on the dialog definition statements from the BEGIN DIALOG
statement to the END DIALOG statement.
While the dialog window for the dialog box is open you cannot edit it's dialog definition in the script window.

Note
If the dialog definition statements you want to edit contain invalid dialog definition statements, you're 

prompted to either ignore the statement that contains the invalid dialog definition statement or create a new dialog
box.

{button ,AL(`a_trans;;;;;',0,"Defaultoverview",)} Related Topics



To close a Corel SCRIPT dialog window
Click File, Close.

Note
To use this command, the dialog window you want to close must be active.
Once the dialog window is closed, the cursor returns to script window that launched it.

{button ,AL(`a_start;;;;;',0,"Defaultoverview",)} Related Topics



To save a dialog box as a separate script file
Click File, Export Dialog. Type a name in the File name box.
Dialog boxes are saved as Corel SCRIPT statements. The statements form a dialog box definition which 

starts with the BEGIN DIALOG statement, ends with the END DIALOG statement, and has dialog control statements 
in between. 

Note
You can only issue this command if a dialog window is active. 

{button ,AL(`ht_file_menu_cse;script_files;;;;',0,"Defaultoverview",)} Related Topics



To copy a dialog box definition from a dialog window to a script window
From a dialog window:
1. Click Edit, Select All.
2. Click Edit, Copy.

The dialog box definition is transferred to the Clipboard as Corel SCRIPT statements consisting of the BEGIN 
DIALOG and END DIALOG statements with the control statements in between.

3. In a script window, place the insertion point where you want to insert the dialog box definition.
4. Click Edit, Paste. Selected text in the Editor is overwritten with the Clipboard contents.
Note

You can also transfer dialog control statements from a dialog window to a script window. Cut or copy the 
selected controls to the Clipboard and then paste them into a script window.

{button ,AL(`a_trans;a_insert;a_start;ht_start_cse_app;ht_start_cse_win;;',0,"Defaultoverview",)} 
Related Topics



To move or copy a dialog control script statement to a dialog window
From a script window:
1. Select dialog control statements.
2. Click Edit, Cut to move or Edit, Copy to copy. The dialog control statements are place on the Clipboard.
3. Click in the dialog box in the dialog window.
4. Click Edit, Paste.

{button ,AL(`a_trans;a_insert;a_start;ht_start_cse_app;ht_start_cse_win;;',0,"Defaultoverview",)} 
Related Topics



To edit a dialog box's attributes
1. Select the dialog box.
2. Click Edit, Attributes.
3. Type a new value into any of the following attribute boxes:

Width (in dialog units)
Height (in dialog units)
X (left border position)
Y (top border position)
Title 
Dialog Name
Dialog Function (used with dynamic dialogs)
Comment (a remark is added to the BEGIN DIALOG statement).

4. Enable or disable the Center Dialog option and the Dynamic Dialog Mode checkbox. 
Note

You can convert a static dialog box to a dynamic dialog box by enabling the Dynamic Dialog Mode 
checkbox. Disabling the checkbox converts a dynamic dialog box to a static dialog box.

If the Center Dialog option is enabled, the X and Y number boxes are grayed and cannot be edited. By 
default, a new dialog has the Center Dialog checkbox enabled.

A thick border around a dialog box indicates it has been selected. Dialog boxes don't use sizing handles.

{button ,AL(`a_edit;htde_select_dialog_box;;;;',0,"Defaultoverview",)} Related Topics



To resize a dialog box using the mouse
1. Place the mouse pointer on a dialog border. The mouse pointer changes shape.
2. Drag the side, top or bottom border to resize the window in one direction or drag a border corner to resize the 

window horizontally and vertically.
3. Release the mouse button when the window is the desired size. 
Note

Pressing ESC while resizing resets the dialog box to its original size.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics



To move a dialog box using the mouse
1. Position the mouse pointer on the dialog box title bar.
2. Hold the mouse button down and drag the dialog box to a new position.
Note

The dialog window is a representation of your computer screen. When you move the dialog box within the 
dialog window you are actually changing the dialog box's screen placement when it is run in a script. For example, if
you move the dialog box to the bottom-right corner of its dialog window, it will appear on the bottom-right corner of
the computer screen when run in a script file.      

If the Center Dialog checkbox in the dialog attributes box is enabled, the dialog box position in the dialog 
window is ignored and the dialog box is centered during script running. A dialog box can also be set to be centered 
on the screen by omitting the position attributes parameters in the BEGIN DIALOG statement.

By default, a new dialog has the Center Dialog checkbox enabled.

{button ,AL(`a_edit;;;;;',0,"Defaultoverview",)} Related Topics



To insert a control into a dialog box using the click method
1. Click Control and then click the control you want to insert.
2. Position the mouse pointer in the dialog box.

The mouse appears in the Control state ( ) when positioned in a dialog window.
3. Click in the dialog box where you want to place the control's top-left corner.

The control is inserted with its default size settings. 
Note

To insert a control a multiple number of times, hold down CTRL while you make your control selection. 
Press ESC to return the mouse back to the Selector state (
).

{button ,AL(`a_edit;htde_default_sizes;a_select;;;',0,"Defaultoverview",)} Related Topics



To insert a control into a dialog box using the click & drag method
1. Click Control and then click the control you want to insert.
2. Position the mouse pointer in the dialog box.

The mouse appears in the Control state ( ) when positioned in a dialog window.
3. Position the mouse pointer where you want one corner of the control to appear
4. Hold the mouse button down and drag up or down on a diagonal.
5. When the control is the size and shape you want, release the mouse button.

Note
To insert a control a multiple number of times, hold down CTRL while you make your control selection. 

Press ESC to return the mouse back to the Selector state (
).

The control is inserted with a default label and identifier which you can change.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To delete controls
1. Select the controls you want to delete. 
2. Click Edit, Delete.

The selected controls are not transferred from the dialog box to the Clipboard.
Note

Instead of using Edit, Delete, you can delete controls by clicking Edit, Cut which transfers controls from the
dialog box to the Clipboard as Corel SCRIPT statements.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To cut controls to the Clipboard
1. Select the controls you want to cut. 
2. Click Edit, Cut.

The selected controls are transferred from the dialog box to the Clipboard as Corel SCRIPT statements.
Note

Instead of using Edit, Cut, you can delete controls by clicking Edit, Delete. This does not transfer controls 
from the dialog box to the Clipboard.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To copy controls to the Clipboard
1. Select the controls you want to copy. 
2. Click Edit, Copy.

The selected controls are copied from the dialog box to the Clipboard as Corel SCRIPT statements.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To paste a copy of a control in a dialog box
1. Select the control(s) you want to copy. 
2. Click Edit, Copy.

The selected control(s) is copied from the dialog box to the Clipboard as Corel SCRIPT statements.
3. Click in the dialog window you want to paste the control(s) into.
4. Click Edit, Paste.
Note

If you try to paste Clipboard contents into a dialog window that contains invalid dialog definition 
statements, you're prompted to either ignore the statement that contains the invalid dialog definition statement or 
create a new dialog box.

A pasted control retains the original's label, identifier, size, and position attributes. 
If you paste a control into the same dialog window it was copied from, the pasted control is placed on top 

of the original control with the same name and identifier. You'll have to change the identifier in one of the controls 
because identifiers must be unique in a dialog definition.

If you try to paste controls from a different sized dialog box into a position that doesn't exist in the second 
dialog box, the controls are placed in the closest valid position. 

If the controls are too big to fit into the second dialog box, the controls are resized to fit.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To move a control in a dialog box using the mouse
1. Select the control(s) you want to move. 
2. Press and hold the mouse button.
3. Drag the control(s) to a new location.
4. Release the mouse button.
Note

As you are moving the controls, the Properties Bar in the dialog window shows the control coordinates of 
the last control you selected. The last control you select has a dotted line border.

If Snap to Grid is enabled, the control moves along the dialog box grid. 
If Snap to Grid is enabled and more than one control is selected, the last control you selected moves along 

the dialog box grid. 
Pressing ESC while moving the control(s) resets the control(s) to its original position.

Tip
You can also move selected controls by using the arrow keys on the keyboard.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To move a control in a dialog box using the attributes box
1. Select the control(s) you want to move. 
2. Click Edit, Attributes.
3. Type a number in the X number box for the distance from the inside of the dialog box's left border to the 

control's left border. The number is based in dialog units. 
4. Type a number in the Y number box for the distance from the bottom of the dialog box's title bar to the 

control's top border. The number is based in dialog units. 
Note

If more than one control is selected, the X and Y number boxes are cleared because they cannot show a 
mixed-value. Though cleared, the number boxes accept entries. Entering values in the X and Y number boxes 
positions the top-left corners of the selected controls on the on the same X-Y coordinate in the dialog box.

You can also move and resize controls by using the Properties bar in a dialog window. Click View, Properties
bar to first display the bar. Select a control(s) and type the new coordinates or size values in the number boxes on 
the properties bar.

Tip
You can also move selected controls by using the arrow keys on the keyboard.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To move a control from one dialog box to another
1. Select the control(s) you want to move. 
2. Click Edit, Cut.
3. By clicking in it, activate the dialog window that you want to move the control(s) into.
4. Click Edit, Paste. 

The control(s) are placed in the same position as in the first dialog box. 
Note

If you try to move controls from a different sized dialog box into a position that doesn't exist in the second 
dialog box, the controls are placed in the closest valid position. 

If the controls are too big to fit into the second dialog box, the controls are resized to fit.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To resize a control in a dialog box using the mouse
1. Select the control(s) you want to resize. 
2. Press and hold the mouse button on a sizing handle.

The sizing handles on the corners change both the width and height. The other sizing handles change either 
the width or height.

3. Drag the handle until the control is the size you want.
4. Release the mouse button.
Note

As you are resizing a control, the Properties Bar in the dialog window shows the control's new size and 
coordinates. If more than one control is selected, the Properties Bar in the dialog window shows the size of the last 
control you selected.

If Snap to Grid is enabled, the control is resized along the dialog box grid. 
If Snap to Grid is enabled and more than one control is selected, the last control you selected is resized 

along the dialog box grid. 
Pressing ESC while resizing resets the control(s) to its original size.
You can also move and resize controls by using the Properties bar in a dialog window. Click View, Properties

bar to first display the bar. Select a control(s) and type the new coordinates or size values in the number boxes on 
the properties bar.

Tip
You can also resize selected controls by holding down the SHFIT key and using the arrow keys on the 

keyboard.

{button ,AL(`a_edit;htde_control_size_label;a_select;;;',0,"Defaultoverview",)} Related Topics



To resize a control in a dialog box using the attributes box
1. Select the control(s) you want to resize. 
2. Click Edit, Attributes.
3. Type a new value in the Width number box to change the width. The value is expressed in dialog units. 
4. Type a new value in the Height number box to change the height. The value is expressed in dialog units. 
Note

Steps 3 and 4 are both optional. You can do one or both.
If more than one control is selected, they are resized to the same width and height as specified in the 

Multiple Selection Attributes dialog box.
You can also move and resize controls by using the Properties bar in a dialog window. Click View, Properties

bar to first display the bar. Select a control(s) and type the new coordinates or size values in the number boxes on 
the properties bar.

Tip
You can also resize selected controls by holding down the SHFIT key and using the arrow keys on the 

keyboard.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To edit a control's attributes using the attributes box
1. Select the control(s) you want to edit. 
2. Click Edit, Attributes.
3. Type a new value into any of the following attribute boxes, if applicable (this is not a complete list of control 

attributes but some of the most common):
Width
Height
X (left border position)
Y (top border position)
Text
Value
Option Group
Comment (a remark is added to the Corel SCRIPT statement for the control).

Note
If more than one control is selected, the selected controls take on the attributes specified in the Multiple 

Selection Attributes dialog box.
You can also move and resize controls by using the Properties bar in a dialog window. Click View, Properties

bar to first display the bar. Select a control(s) and type the new coordinates or size values in the number boxes on 
the properties bar.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To duplicate a control
1. Select the control(s) you want to duplicate.
2. Click Edit, Duplicate.
Note

The duplicated control(s) is offset from the original by 3 dialog units, both down and to the right.
The duplicated control(s) takes on the default identifier and the original control's label. If you copied the 

control, the original's label and identifier would also be copied.

{button ,AL(`a_edit;a_select;;;;',0,"Defaultoverview",)} Related Topics



To test a dialog box      
Click View, Test Dialog.

In test mode you can confirm the following dialog box features:
tab order within the dialog box
shortcut keys are operational
drop-down boxes openings

Note
Press ESC to exit test mode. Pressing any push button or the Close Dialog button (

) also exits test mode. 
You cannot edit a dialog box in test mode.

The following controls are filled with place holders in test mode:
list boxes
drop-down list boxes
combo boxes
drop-down combo boxes
image boxes
bitmap buttons
spin controls

The place holders give you a better idea of what the dialog box will actually look like when it is run rather than 
an empty control.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics



To select a control
1. Click Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog box, click anywhere on a control.
Note

A selected control has a 8 sizing handles.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To select a dialog box
Click anywhere in a dialog box until a thick border is displayed around it. 

Note
A thick border around a dialog box indicates it has been selected. Dialog boxes don't use sizing handles.

{button ,AL(`a_select;htde_dialog_attributes;;;;',0,"Defaultoverview",)} Related Topics



To select multiple controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog document window, while holding down the SHIFT key, click the controls you want to select.
Note

Selecting more than one control lets you apply the same attributes to each of them.
A selected control has a 8 sizing handles.
You can also select multiple controls using a marquee select.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To marquee select controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. Hold down the mouse button and drag the marquee box until it completely encloses the controls you want 

selected.
3. Release the mouse button.
Note

When you hold down ALT while you drag, any control that intersects with the marquee box is selected. If 
you do not release the mouse button before releasing ALT, only those controls enclosed by the marquee box will be 
selected.

A selected control has a 8 sizing handles.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To add or remove controls to a group of selected controls
1. Click the Control, Selector. By default, the mouse is in Selector mode and appears as .
2. In the dialog document window, while holding down the SHIFT key, click the controls you want to select or de-

select.
Note

A selected control has a 8 sizing handles.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To deselect all controls
Click any open space outside the dialog box in the dialog window.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To select all controls in a dialog
Click Edit, Select All.

Tip
Selecting the dialog box selects all the controls in the dialog as well.
Selecting all the controls in a dialog also selects the dialog box.
The last control you select has a dotted line border.

{button ,AL(`a_select;;;;;',0,"Defaultoverview",)} Related Topics



To align controls along their left edge
1. Select the controls you want to align. 

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Layout, Align Control, Left.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To align controls along their right edge
1. Select the controls you want to align. 

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Layout, Align Control, Right.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To align controls along their top edge
1. Select the controls you want to align. 

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Layout, Align Control, Top.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To align controls along their bottom edge
1. Select the controls you want to align. 

The last control you select maintains its position; all other selected controls move to align with this control.
2. Click Layout, Align Control, Bottom.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To make controls the same width
1. Select the controls you want to resize. 

The last control you select maintains its width; all other selected controls resize to this control.
2. Click Layout, Make Same Size, Width.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To make controls the same height
1. Select the controls you want to resize. 

The last control you select maintains its height; all other selected controls resize to this control.
2. Click Layout, Make Same Size, Height.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To make controls the same width and height
1. Select the controls you want to resize. 

The last control you select maintains its size; all other selected controls resize to this control.
2. Click Layout, Make Same Size, Both.
Note

The last control you select has a dotted line border.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To size a control to fit its label
1. Select the control(s) you want to resize. 
2. Click Layout, Size to Content.
Note 

You can use this command on option buttons, check boxes, push buttons, and text.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To center controls vertically in a dialog box
1. Select the controls you want to center. 
2. Click Layout, Center in Dialog, Vertical.

The selected controls are centered vertically based on the topmost and bottommost borders of the selected 
controls.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To center controls horizontally in a dialog box
1. Select the controls you want to center. 
2. Click Layout, Center in Dialog, Horizontal.

The selected controls are centered horizontally based on the leftmost and rightmost borders of the selected 
controls.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To even the spacing between controls horizontally within a dialog box
1. Select the controls you want to arrange. 
2. Click Layout, Distribute, Horizontal.

The selected controls are spaced evenly between the leftmost and rightmost borders of the selected controls.
Note 

More than two controls must be selected for this option to be enabled.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To even the spacing between controls vertically within a dialog box
1. Select the controls you want to arrange. 
2. Click Layout, Distribute, Vertical.

The selected controls are spaced evenly between the topmost and bottommost borders of the selected 
controls.

Note 
More than two controls must be selected for this option to be enabled.

{button ,AL(`a_align;;;;;',0,"Defaultoverview",)} Related Topics



To turn on or turn off Snap to Grid
Click Layout, Snap to Grid.

Note
Repeat the above procedure to turn off Snap to Grid
When Snap to Grid is enabled, a control can only be moved along the dialog box grid. Snap to Grid can be 

enabled without showing the grid.
Snap to Grid is set for all dialog windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics



To view or hide the grid
1. Click Tools, Grid Settings.
2. Enable Show Grid 

Show Grid is enabled when a check mark appears beside Show Grid.
Note

Click Show Grid again to hide the grid. Show Grid is disabled when no check mark appears beside Show 
Grid.

When Snap to Grid is enabled, a control can only be moved along the dialog box grid. Snap to Grid can be 
enabled without showing the grid.

Show Grid is set for all dialog windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics



To view or hide a dialog window's Properties bar      
Click View, Properties Bar.

A check mark beside the Properties Bar menu command indicates the Properties bar is displayed in the active 
dialog window.

Note
You can only issue this command if a dialog window is active. 

{button ,AL(`ht_view_wins;;;;;',0,"Defaultoverview",)} Related Topics



To set grid spacing
1. Click Tools, Grid Settings.
2. Type a new value in the Horizontal number box to set the horizontal spacing.
3. Type a new value in the Vertical number box to set the vertical spacing.
Note

Grid measurements are expressed in dialog units.
To show the grid, enable Show Grid in the same dialog box.
Grid spacing settings are set for all dialog windows.

{button ,AL(`a_edit;a_snap;a_insert;a_align;;',0,"Defaultoverview",)} Related Topics



To add a shortcut key to a control that has a label
1. Select a control that has a label (option buttons, push buttons, check boxes).
2. Click Edit, Attributes.
3. In the Label text box place an ampersand (&) in front of the letter you want to use as a shortcut key. 
Note 

A shortcut key is an alternative to using TAB to move within a dialog and change focus. To use a shortcut, 
press ALT+! where ! is the defined shortcut key. 

Shortcut keys in a dialog box should be unique.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics



To add a shortcut key to a control that doesn't have a label
The text control that precedes a control without a label (for example, list boxes and text boxes) can be used to 
hold the shortcut for the control. The text control statement must immediately precede the control's statement 
in the dialog box definition. Before you insert a control without a label into a dialog box, you should insert a text 
control if you want to create an association between the unlabelled control and the text control. To add a 
shortcut key to a control that doesn't have a label:
1. Select the text control that immediately precedes the unlabelled control.

Physical location in the dialog box is not important; it is the location of the Corel SCRIPT statement in the script
that is important. 

2. Click Edit, Attributes.
3. In the Label text box place an ampersand (&) in front of the letter you want to use as a shortcut key. 
Note 

A shortcut key is an alternative to using TAB to move within a dialog and change focus. To use a shortcut, 
press ALT+! where ! is the defined shortcut key. 

Shortcut keys in a dialog box should be unique.

{button ,AL(`a_focus;;;;;',0,"Defaultoverview",)} Related Topics



To change dialog tab order
Tab order in a dialog box is based on the order in which the controls are listed in the Corel SCRIPT script. The 
underlying Corel SCRIPT statements for controls are stored in the order in which they were inserted into a dialog 
box. 

To change the tab order of a control in a dialog box, enter a relative position value in the Tab Order window
of the dialog window's Properties Bar.

Note
If the Properties Bar isn't visible, click View, Properties Bar to make it visible.
You can reorder controls in a dialog box using the dialog window's Control List Move Up and Move Down 

buttons. If the Controls List isn't visible, click View, Controls List to make it visible.

{button ,AL(`a_focus;ht_view_properties;ht_view_controls;;;',0,"Defaultoverview",)} Related Topics



To open on-line Help to a selected dialog control's syntax reference
1. Click Help, What's This
2. Select a control.

{button ,AL(`cse_help;;;;;',0,"Defaultoverview",)} Related Topics



To view or hide a dialog window's Controls List      
Click View, Controls List.

A check mark beside the Control List menu command indicates the Control List is displayed in the active dialog
window.

Note
You can only issue this command if a dialog window is active. 

{button ,AL(`ht_view_wins;;;;;',0,"Defaultoverview",)} Related Topics



File Number

An integer (whole number) value between 1-10, inclusive. 
Non-integers are truncated.



CLOSE statement
CLOSE #num,...

Closes a text file opened with an OPEN statement (OPEN...APPEND or OPEN...OUTPUT). 

Syntax Definition
num Numeric expression(s) specifying a file number to close. If not specified, all open 

files are closed. The # sign is optional.

Note
In your scripts, every OPEN statement should have a corresponding CLOSE statement.

Examples
CLOSE
Closes all open files.

CLOSE #1
Closes the file opened as 1.

CLOSE 1
Closes the file opened as 1.

CLOSE 1, 3, 5
Closes the files opened as 1, 3, and 5.

{button ,AL(`open_append;open_input;open_output;;;',0,"Defaultoverview",)} Related Topics



EOF function
EOF (#num)

Returns TRUE (-1) if the file pointer is at the end of an open text file in your computer's memory. Returns FALSE 
(0) if the file contains data beyond the pointer. The statement is often used to determine whether to continue 
processing a file.

Syntax Definition
#num Numeric expression specifying an open file number to examine. The # sign is 

optional.

Example
IF EOF(1) THEN CLOSE 1
If the pointer is at the end of the file, then close the file.

{button ,AL(`lof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics



INPUT function
INPUT(bytes, #num)

Starting at the pointer, reads a number of bytes (characters) from a text file.

Syntax Definition
bytes Numeric expression specifying the number of bytes to be read.
#num Numeric expression specifying an open file number to examine. The # sign is 

optional.

Example
myExtract$ = INPUT(50, #1)
Reads 50 characters from file 1 and assigns them to the variable myExtract$.

{button ,AL(`INPUT;LINE_INPUT;SEEK;FILEPOS;EOF;LOF;',0,"Defaultoverview",`main')} Related 
Topics



INPUT # statement
INPUT #num, var1, var2, ...

Reads from a file to a list of variables. Values in the file are separated by commas. Character strings that include 
commas must be enclosed in quotation marks. The quotation marks do not appear in the variable.

Syntax Definition
#num Numeric expression specifying an open file number to examine. 
var1, var2, ... The variables that receive the fields as they are read from the file.

Note 
The number sign (#) is required in the syntax.
Numeric data with decimals can be input only if the period (.) is used as the decimal separator.
If you're converting dates, they must be in the standard International format (yy/MM/dd hh:mm:ss).
Booleans can be input only as TRUE or FALSE.

Example
INPUT #1, title$, number%
Reads a string and a numeric variable from file 1. Assigns the values to the string variable title$ and the integer 
variable number%. The contents of file 1 could be in either of two formats:

"Ottawa", 50
"Huckleberry Finn", 101
"Hamlet", 220
or
"Ottawa", 50, "Huckleberry Finn", 101, "Hamlet", 220

{button ,AL(`input_dollar;open_input;line_input;write;;',0,"Defaultoverview",)} Related Topics



LINE INPUT statement
LINE INPUT    #num, string

Reads the next line from an open text file in your computer's memory into a string.

Syntax Definition
#num Numeric expression specifying an open file number to examine. 
string$ String expression specifying the string variable to hold the line from the file.

Note 
The number sign (#) is required in the syntax.

Example
LINE INPUT #1, MyString$
Reads the next line from file 1 and places the string in the variable MyString$.

{button ,AL(`input_dollar;input;open_input;line_input;;;',0,"Defaultoverview",)} Related Topics



LOF function
LOF(#num)

LOF (Length of File) returns the number of bytes in an open text file.

Syntax Definition
#num Numeric expression specifying an open file number to examine. The # sign is 

optional.

Example
bytes% = LOF(1)
Sets bytes to the number of bytes in file 1.

{button ,AL(`eof;seek;open_append;print;write;',0,"Defaultoverview",)} Related Topics



OPEN...APPEND statement
OPEN fileName FOR APPEND AS #num

Opens a text file to add or append sequential data to the end of the file. Data is appended using the PRINT or 
WRITE statement. The FOR clause is required. 

Syntax Definition
fileName String expression specifying a filename to open. If the file doesn't exist, it is 

created and then opened. Drive and folder information is optional.
#num Numeric expression specifying a file number to associate with the open file. The # 

sign is optional.

Note 
You cannot use the COPY or RENAME command on an open file.

Example
OPEN "oldfile" FOR APPEND AS 3
Opens the file OLDFILE as file number 3 to append sequential data.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics



OPEN...INPUT statement
OPEN fileName FOR INPUT AS #num

Opens a text file so that data can be read from it using the INPUT or LINE INPUT statement.

Syntax Definition
fileName String expression specifying a filename to open. An error occurs if the file doesn't 

exist. Drive and folder information is optional.
#num Numeric expression specifying a file number to associate with the open file. The # 

sign is optional.

Note 
You cannot use the COPY or RENAME command on an open file.

Example
OPEN FileString$ FOR INPUT AS 2
Opens the file specified by FileString$ for input.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics



OPEN...OUTPUT statement
OPEN fileName$ FOR OUTPUT AS #num%

Opens a text file so that data can be written into it using the PRINT or WRITE statement. The FOR clause is 
required. 

Syntax Definition
fileName String expression specifying a filename to open. If the file doesn't exist, it is 

created and then opened. Drive and folder information is optional.
#num Numeric expression specifying a file number to associate with the open file. The # 

sign is optional.

Note 
You cannot use the COPY or RENAME command on an open file.

Example
OPEN "c:\temp\workfile.tmp" FOR OUTPUT AS 1
Opens the file C:\Temp\WORKFILE.TMP for output.

{button ,AL(`input_dollar;open_append;open_input;open_output;ACCESS;CLOSE;EOF;FILEMODE;FILE
POS;freefile;input;line_input;lof;print;seek;write',0,"Defaultoverview",`main')} Related Topics



PRINT statement
PRINT #num, expression1 { , | ; } expression2    { , | ; } ...

Prints expression(s) to an open text file (OPEN...APPEND or OPEN...OUTPUT) in your computer's memory. 

Syntax Definition
#num Numeric expression specifying a file number to print to.
expression1, expression2,... The numeric or string expressions to print to the specified file.
{ , | ; } Specifies how to separate the expressions being printed to the specified file. The 

comma places a tab between expressions. The semi-colon does not use a space, 
or a comma, between printed expressions.

Note 
Ending a PRINT statement without a comma or a semicolon inserts a line return at the end of the printed 

expression.
Strings are not enclosed in quotation marks when printed. 
Numeric expressions have either a leading space or a negative sign. 
The number sign (#) is required in the syntax.
Dates and time are printed using the system's regional settings. The decimal character is also dependent 

on the system's regional settings. In Windows 95, click Start, Setting, Control Panel, Regional settings to view and 
change your system settings.

Booleans are printed as TRUE or FALSE.

Example
PRINT #1, "A",           'inserts a tab after A
PRINT #1, "B"            'inserts a return after B
PRINT #1, "C";           'no spacing after C
PRINT #1, "D"
The above example prints the following to file #1 (there is a tab between A and B):

A B
CD
In the following example, a blank line is printed, and then the string HEADING: is followed by the value of 
string1$, a comma, a space, and the value in my_int%. 

PRINT #1, 
PRINT #1, "HEADING: "; string1$; ", "; my_int%

{button ,AL(`seek;print;write;open_append;open_output;input;;',0,"Defaultoverview",)} Related 
Topics



SEEK statement
SEEK #num, position

To prepare for subsequent input, moves the file pointer to a specific byte position in an open text file in your 
computer's memory. Characters, spaces, tabs, and line breaks, are counted as characters.

Syntax Definition
num Numeric expression specifying a file number to examine. The # sign is optional.
position Numeric expression specifying the byte position to SEEK (1 is 1st byte).

Note
The seek always starts from the first position in the file.
The seek range is limited from 1 to length of the file (LOF) + 1.

Example
SEEK 1, 100
Moves the file pointer to the 100th byte in file 1.

{button ,AL(`OPEN_APPEND;OPEN_INPUT;OPEN_OUTPUT;lof;;',0,"Defaultoverview",)} Related Topics



WRITE statement
WRITE #num, expression1 { , | ; } expression2    { , | ; } ...

Writes expressions to an open text file (OPEN...APPEND or OPEN...OUTPUT) in your computer's memory. 

Syntax Definition
#num% Numeric expression specifying a file number to write to.
expression1, expression2,... The numeric or string expressions to print to the specified file.
{ , | ; } Specifies a separator between expressions. Both the comma and the semicolon 

insert a comma as a separator.

Note 
Ending a complete WRITE statement without a comma or a semicolon inserts a line return at the end of 

the written expression.
Strings are enclosed in quotation marks when printed. 
Numeric expressions have either a leading space or a negative sign. 
The number sign (#) is required in the syntax.
Numeric data is written using the period (.) as a decimal separator.
If you're converting dates, they must be in the standard International format (yy/MM/dd hh:mm:ss).
Booleans are written as TRUE or FALSE.

Example
WRITE #1, "A ",          'inserts a space and comma after A
WRITE #1, "B"            'inserts a return after B
WRITE #1, "C";           'inserts a comma after C
WRITE #1, "D"            'inserts a return after D
WRITE #1,                'prints a blank line
The above example prints the following to file #1:

"A ","B"
"C","D"

{button ,AL(`seek;print;write;open_append;open_output;input;;',0,"Defaultoverview",)} Related 
Topics



ABS function
ABS(x)

Returns the absolute value of a number. Absolute value is the positive value of a number.

Syntax Definition
x Any numeric expression.

Examples
x% = ABS(-3)
y = ABS(3)
Both the above examples return 3 to x and y.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics



ACOS function
ACOS(x)

Returns the inverse cosine (arc cosine) of a given value. The result is an angle measured in radians between 0 
and  (where 
 is approximately 3.14152).

Syntax Definition
x A numeric expressionbetween -1 and 1. 

Note
To convert the result from radians to degrees, use the ANGLECONVERT function or multiply the result by 

180/3.14152.
Examples
v = ACOS(-0.75)
w = ACOS(0.75)
x = ACOS(0)
y = ACOS(1)
In the above example, v is equal to 2.418858406, w is equal to 0.722734248, x is equal to 1.570796327, and y 
is equal to 0.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics



ASIN function
ASIN(x)

Returns the inverse sine (arc sine) of a given value. The result is an angle in radians bounded by - /2 and 
/2.

Syntax Definition
x A numeric expressionbetween -1 and 1. 

Note
To convert the result from radians to degrees, use the ANGLECONVERT function or multiply the result by 

180/3.14152.
Examples
w = ASIN(-0.75)
x = ASIN(0.75)
y = ASIN(0) 
z = ASIN(1) 
In the above example, w is equal to -0.8480621, x is equal to 0.8480621, y is equal to 0, and z is equal to 
1.570796.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics



ATAN function
ATAN(x)

Returns the inverse tangent (arc tangent) of a given value. The result is an angle bounded by - /2 (-90 degrees) 
and 
/2 (90 degrees) measured in radians.

Syntax Definition
x A numeric expression. 

Note
To convert the result from radians to degrees, use the ANGLECONVERT function or multiply the result by 

180/3.14152.
Examples
w = ATAN(-0.75) 
x = ATAN(0.75) 
y = ATAN(0) 
z = ATAN(1) 
In the above example, w is equal to -0.6435011, x is equal to 0.6435011, y is equal to 0, and z is equal to 
0.7853982.

{button ,AL(`Math_PASTE;ACOS;ASIN;ATAN;;',0,"Defaultoverview",)} Related Topics



COS function
COS(x)

Returns the cosine of an angle measured in radians. 

Syntax Definition
x Any numeric expression. Specifies the angle measured in radians.

Note
The result of COS is between -1 and 1.
To convert degrees to radians, multiply degrees by 3.14159/180 (

 is approximately equal to 3.14159) or use the ANGLECONVERT function.

Examples
degreeMeasure% = 45
MyResult = COS(3.14159/180*degreeMeasure%) 
The above example returns the COS of 45 degrees as expressed in radians. The variable MyResult equals 
0.707106781.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics



DEC function
DEC(x)

Returns the conversion of a hexadecimal value into decimal notation (as a long data type).

Syntax Definition
x A string expression representing a hexadecimal number.
Note 

Decimal notation is a numerical system based on groups of ten units.
The highest value you can convert is 7FFFFFFF.
The HEX function performs the opposite conversion, from decimal to hexadecimal.

Examples
x& = DEC("A27")
In the above example, x equals 2599.

{button ,AL(`hex;;;;;',0,"Defaultoverview",)} Related Topics



EXP function
EXP(x)

Raises e to a given exponent where e is the base of the natural logarithm which equals 2.718281828.

Syntax Definition
x Any numeric expression.

Note 
 EXP is the inverse of the natural logarithm (LN ).

Example
x = EXP(7.89)
In the above example, x equals 2670.444.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics



FIX function
FIX(x)

Removes an argument's decimal or fraction and rounds towards 0. An integer is returned.

Syntax Definition
x A numeric expression.

Note 
Both INT and FIX return the integer portion of a given number. However, INT returns the greatest integer 

less than or equal to the number, while FIX returns the integer portion given, without any decimal points 
represented. As a result, -5.26 becomes -5 under the FIX function, and -6 under the INT function.

Examples
vv = FIX(12.65)
yy = FIX(-47.29)
In the above example, vv equals 12 and yy equals -47.

v = INT(12.65)
y = INT(-47.29)
In the above example, v equals 12 and y equals -48.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics



HEX function
HEX(x)

Converts a number to its corresponding hexadecimal string value.

Syntax Definition
x A numeric expressionspecifying a decimal value to convert.

Note 
Decimal numbers are rounded to the nearest whole number before being converted.
Hexadecimal notation is a numerical system based on groups of sixteen units. Hexadecimal numbers can 

be expressed in Corel SCRIPT by using the prefix &h. For example, &h10 or &h1ABC.
The DEC function performs the opposite conversion, from hexadecimal to decimal.

Example
x$ = HEX(27)
x$ = HEX(27.25)
In the above example x and y are both passed the value "1B".

{button ,AL(`dec;;;;;',0,"Defaultoverview",)} Related Topics



INT function
INT(x)

Removes an argument's decimal or fraction and rounds down to the nearest integer. An integer is returned.

Syntax Definition
x A numeric expression.

Note 
Both INT and FIX return the integer portion of a given number. However, INT returns the greatest integer 

less than or equal to the number, while FIX returns the integer portion given, without any decimal points 
represented. As a result, -5.26 becomes -5 under the FIX function, and -6 under the INT function.

Examples
v = INT(12.65)
y = INT(-47.29)
In the above example, v equals 12 and y equals -48.

vv = FIX(12.65)
yy = FIX(-47.29)
In the above example, vv equals 12 and yy equals -47.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics



LN function
LN(x)

Returns the natural logarithm (base e) of a number.

Syntax Definition
x Any positive numeric expression.

Notes 
LN is the inverse of the EXP function; therefore LN(EXP(x)) equals x.
Natural logarithms are based on the constant e which is equal to 2.718281828.

Examples
w = LN(1.2)
x = LN(30)
y = LN(1)
z = LN(EXP(30))
In the above example, w is equal to 0.1823215568, x is equal to 3.401197382, y is equal to 0, and z is equal to 
30.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics



LOG function
LOG(x)

Returns the base-10 logarithm of a number.

Syntax Definition
x Any positive numeric expression.

Note
The LOG function uses a base of 10. If another base is needed, use LOG(x)/LOG(b) formula where b is the 

base.

Examples
x = LOG(25)
y = LOG(5) 
In the above example, x equals 1.397940 and y equals 0.6989700.

{button ,AL(`log;ln;exp;;;',0,"Defaultoverview",)} Related Topics



RANDOMIZE function
RANDOMIZE x

Sets the random number generator seed to the integer portion of the argument value.

Syntax Definition
x Any numeric expression. This is an optional parameter. Randomize uses the 

argument as a seed to start a new sequence of random numbers. Using 
RANDOMIZE without an argument initializes the seed to the system timer. If 
RANDOMIZE isn't used before calling RND, the same sequence of numbers will 
result every time the random number generator is used.

Examples
RANDOMIZE
RANDOMIZE 24
In the above example, the first line initializes the random number generator seed to the system timer. The 
second line uses 24 as the first seed in the random number generator's sequence.
The following example returns 5 random integers between 1 and 10 to the variable a_random. Each random 
value is also displayed in a message box.

RANDOMIZE 
FOR x = 1 TO 5
   lower=1
   upper=10
   a_random = INT((upper - lower +1)*RND()+lower)
   MESSAGE a_random
NEXT x

{button ,AL(`randomize;rnd;;;;',0,"Defaultoverview",)} Related Topics



RND function
RND(x)

Returns a random number.

Syntax Definition
x A numeric expression that determines the bounds of the random number. See the 

table below.

x's value Random Number Bounds
Greater than 0 A number between 0 (lower bound)and x (upper bound).
Less than 0 A number between x (lower bound)and 0 (upper bound).
Omitted A number between 0 and 1.

Note 
If RANDOMIZE isn't used before calling RND for the first time, the same sequence of numbers will result 

every time the script is run.
Examples
x = RND()
y = RND(-7)
z = RND(24)
In the above example, x returns a random number between 0 and 1, y returns a random number between -7 and
0, and z returns a random number between 0 and 24.
To create a random integer in a specified range, use the following formula:

INT((upper - lower + 1)*RND()+ lower)
where upper is the highest number in the specified range and lower is the lowest number in the specified 
range. The following example returns a random integer between 1 and 10 to the variable a_random.

lower = 1
upper = 10
a_random = INT((upper - lower +1)*RND()+lower)

{button ,AL(`randomize;rnd;;;;',0,"Defaultoverview",)} Related Topics



SGN function
SGN(x)

Determines the sign (+ or -) of a number. Returns -1 if the number is negative, 1 if the number is positive, and 0 
if the number is 0.

Syntax Definition
x Any numeric expression.
Examples
x% = SGN(5)
y = SGN(0)
z = SGN(-0.021)
In the above example, x is equal to 1, y is equal to 0, and z is equal to -1.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics



SIN function
SIN(x)

Returns the sine of an angle measured in radians.

Syntax Definition
x Any numeric expression. Specifies the angle measured in radians.

Note
The result of SIN is between -1 to 1, inclusive.
To convert degrees to radians, multiply degrees by 3.14159/180 (

 is approximately equal to 3.14159) or use the ANGLECONVERT function.

Examples
degreeMeasure% = 45
MyResult = SIN(3.14159/180*degreeMeasure%) 
The above example returns the SIN of 45 degrees. The variable MyResult equals 0.70710678.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics



SQR function
SQR(x)

Returns the positive square root of a number.

Syntax Definition
x Any non-negative numeric expression.
Examples
w = SQR(4)
x = SQR(0.175)
In this example, w is equal to 2 and x is equal to 0.4183300133.

{button ,AL(`abs;sgn;fix;int;;',0,"Defaultoverview",)} Related Topics



TAN function
TAN(x)

Returns the tangent of an angle measured in radians.

Syntax Definition
x Any numeric expression. Specifies the angle measured in radians.

Note
To convert degrees to radians, multiply degrees by 3.14159/180 (

 is approximately equal to 3.14159) or use the ANGLECONVERT function.

Example
radianMeasure = 0.5
MyResult = TAN(radianMeasure)
The above example returns the TAN of 0.5 radians. The variable MyResult equals 0.546302.

{button ,AL(`Math_PASTE;CS_MATH_FNS;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT and OLE automation
Any Corel application that supports Corel SCRIPT provides a programmable OLE automation object. The object is
used by OLE automation controllers to send Corel SCRIPT application commands to their respective Corel 
application. For example, Corel SCRIPT DRAW application commands are sent to CorelDRAW. 
You can use OLE automation controllers such as Microsoft Visual Basic, Microsoft Excel Visual Basic, and Microsoft
Visual C++ (with the Microsoft Foundations Classes) to send commands to applications that support OLE 
automation objects such as CorelDRAW, and to develop applications using Corel application components.
The Corel application commands and functions in this online Help file provide a reference of all available 
commands and functions in your Corel application. The commands and functions are a part of automation-
enabled objects. The online Help provides only overview procedural and reference information about 
programming with OLE automation. For more information about OLE automation, see the following reference 
sources:

Microsoft Visual Basic Programmer's Guide
Microsoft Excel Visual Basic User's Guide
Microsoft Windows Developer's Kit
Microsoft Office Developer's Kit

Corel SCRIPT Editor
The Corel SCRIPT Editor is an OLE automation controller; that is, you can use it to access objects in other 
applications that have OLE automation objects. Ordinarily, the Editor is used to access objects in Corel 
applications that support OLE automation. However, you can also access objects in non-Corel applications. For 
example, you can call Microsoft Word 6.0 or Microsoft Excel 5.0 using the external names "Word.Basic" or 
"Excel.sheet.5", respectively.
To access objects in applications that support OLE automation from the Corel SCRIPT Editor, use the 
WITHOBJECT statement. 
Note 

For a list of Corel applications that support OLE automation, and their application object names, click 
.

The advanced Corel SCRIPT programming feature described above is intended for experienced Windows 
programmers, and not for beginner script writers.

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics



Using Corel applications with OLE automation controllers    
To access a Corel application with an OLE automation controller, an object variable must be first defined for the 
Corel application. Each Corel application that supports OLE automation has one object that can be accessed by a
controller. For a list Corel applications that support OLE automation and their respective automation object 
names, click .

The following section provides an example of using Microsoft Visual Basic to access Corel PHOTO-PAINT. Other OLE 
automation controllers may access OLE automation objects with different instructions.

Example
From Visual Basic, the first step is to declare an object variable type. For example, 
DIM paint AS OBJECT
The next step is to assign the application object to the object variable previously declared. In this case, the 
object variable is paint, and the Visual Basic CreateObject function with the PHOTO-PAINT object name is used 
to assign the application object. For example,
SET paint = CREATEOBJECT ("CorelPhotoPaint.Automation.6")
Corel PHOTO-PAINT commands can now be accessed by Visual Basic.
Starting applications
Before an automation controller (for example, Visual Basic) can access a Corel application that supports OLE 
automation objects, the application must be running. If it is not running, the controller attempts to start it. The 
application location and path information is stored in the Windows Registry. 
You can use the Visual Basic Set Nothing command to discontinue an association to a previously declared 
object.
One object in Corel OLE automation applications
Corel applications that support OLE automation have one object only. (For a list Corel applications that support 
OLE automation and their respective Corel application object names, click .) 

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics



Using Corel SCRIPT application commands: an example
Once an OLE automation controller has assigned a Corel application object to a variable and made it available, it 
can use Corel SCRIPT statements, functions, and commands the same way a Corel SCRIPT script uses them.
However, the OLE automation controller can only use Corel application statements. For example, it can use the 
commands EditCut from Corel PHOTO-PAINT and FileOpen from CorelDRAW, but it cannot use Corel SCRIPT 
programming statements and functions such as FOR...NEXT or MESSAGE or Corel dialog box definition 
statements. See the Corel SCRIPT programming language for more details about application commands, 
programming statements, and functions.
The following example, which uses Visual Basic as an automation controller and Corel PHOTO-PAINT as the OLE 
automation application receiving instructions, creates a Windows bitmap called SQUARE.BMP. The commands in 
bold are Visual Basic statements; the others are Corel SCRIPT application commands.
DIM paint AS OBJECT   'declare on object variable
SET paint = CREATEOBJECT ("CorelPhotoPaint.Automation.6") 'assigning the application object

.FileNew 216, 288, 4, 72, 72, 0, 0, 1, 12643084, 12, 87753640, 11203980, 255, 255, 255, 0

.SetPaintColor 5, 51, 255, 0, 0

.PenSettings 20, 20, 0, 0, 0, 0, 0

.ShapeSettings 50, 0, 20, -1, 0

.Rectangle 52, 218, 196, 65

.FileSave "C:\COREL60\PROGRAMS\square.BMP", 769, 0
SET paint = NOTHING   'discontinues the association to the declared object

{button ,AL(`ole_cs;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT Editor: OLE automation controller
Not only can you use the Corel SCRIPT Editor to edit and debug Corel SCRIPT scripts, but you can use it as an 
OLE automation controller. Any time you run a script from the Editor that contains Corel SCRIPT application 
statements, you are using the Editor's OLE automation capabilities to access Corel application commands.
You can also use the Editor to create scripts that can call non-Corel applications . For example, you can call 
Microsoft Word 6 or Microsoft Excel 5 using the OLE Automation identifiers "Word.Basic" or "Excel.sheet.5" 
respectively, with the WITHOBJECT statement. 
The following Corel SCRIPT script example creates a new Microsoft Word 6 document called NAMEDATE.DOC that 
contains the user's name and the current date:
WITHOBJECT "Word.Basic" 

.FileNew .Template = "Normal", .NewTemplate = 0

.InsertField .Field = "USERNAME  \* MERGEFORMAT"

.Insert Chr$(9)

.InsertDateTime .DateTimePic = "dddd, MMMM dd, yyyy", .InsertAsField = 1

.FileSaveAs .Name = "NAMEDATE.DOC", .Format = 0, .LockAnnot = 0, .Password = "", .AddToMru 
= 1, .WritePassword = "", .RecommendReadOnly = 0, .EmbedFonts = 0, .NativePictureFormat = 
0, .FormsData = 0
END WITHOBJECT
The Word Basic commands, or any commands from an OLE automation application receiving instructions, must 
be preceded by a period. In the above example, the Word Basic FileNew command became the .FileNew 
command.
Corel WordPerfect 7 Suite applications (Corel WordPerfect, Corel Quattro Pro, and Corel Presentations) do not 
support Corel SCRIPT. All three applications, however, do support OLE Automation. You could use the Corel 
SCRIPT Editor to create a script that sends instructions to any of these applications using the Corel application's 
macro or Perfect Script commands. The following example performs the same operation with Corel WordPerfect 7
that the above Microsoft Word 6 example performed:
WITHOBJECT "WordPerfect.PerfectScript" 

.FileNew

.CommentInsertUserName

.Tab

.DateText

.FileSave "NAMEDATE.DOC"
END WITHOBJECT
Click  for a list of Corel applications that support OLE Automation.
Note

You can also execute the script example shown above, or any other script that calls the automation 
controller from any Corel application that supports Corel SCRIPT. See To run a Corel SCRIPT script from a Corel 
application for more information.

Before the Corel SCRIPT OLE automation controller can access an OLE automation application (for 
example, Corel WordPerfect 7 or Microsoft Word 6), the application that is being accessed must be running. If it is 
not running, the Corel SCRIPT Editor controller attempts to start it. The application location and path information is 
stored in the Windows Registry. 

After the END WITHOBJECT command is executed, the Corel SCRIPT OLE automation controller can no 
longer access the object declared in the WITHOBJECT command until another WITHOBJECT command is issued.

{button ,AL(`ole_cs;corel_script_editor;;;;',0,"Defaultoverview",)} Related Topics



Arithmetic Operators
Use arithmetic operators to perform mathematical operations on two numeric expressions. Arithmetic operators 
are placed between two numeric expressions.
Operator Definition
+ (Addition) Sums two numeric expressions. The + operator is also a concatenation and unary 

operator. Click  for an example.
- (Subtraction) Subtracts one numeric expression from another. The - operator is also a unary operator. Click  for 
an example.
* (Multiplication) Multiplies two numeric expressions. Click  for an example.
/ (Division) Divides two numeric expressions returning a fractional result. Click  for an example.

^ (Exponentiation) Raises a numeric expressions to the power of another    numeric expression. Click  
for an example.

MOD (Modulus) Returns a whole number remainder of division between two numeric expressions. Non-integer 
expressions are rounded before division. Click  for an example. 
\ (Integer division) Divides two numeric operands and returns a whole number. Non-integer expressions are 
rounded before division to whole numbers. Click  for an example.

Note
All arithmetic operators have a left-associativity, except the exponentiation operator (^). Left-associativity 

means the expression with the operator is evaluated from left to right. For example, 4 * 10 / 2 is calculated as 4 
times 10 equals 40 divided by 2 equals 20. For the exponentiation operator which has a right-associativity, the 
expression is calculated from right to left. For example, the expression 4^3^2 is calculated as 3 to the power of 2 
(which equals 9), and then 4 to the power of 9, which equals 262,144.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



+ (Addition) Example
i = a + b
Assigns the sum of the values of variables a and b to the 
variable i.



- (Subtraction) Example
k = k - 2
Decreases the variable k by 2.



* (Multiplication) Example
k = (c + d) * 5
Adds the values of variables c and d together, multiplies the 
sum by 5, and assigns the result to the variable k. Note that 
the parentheses force the calculation of the addition before 
the multiplication.



* (Division) Example
m = e / f
Assigns the result of the value of variable e divided by the 
value of f to the variable m. 



^ (Exponentiation) Example
n = g ^ 2
Assigns the result of the value of g raised to the second 
power to the variable n. The expression g ^ 2 is the same as
g * g.



MOD (Modulus) Example
n = 14 MOD 3
n = 13.9 MOD 3.6
Both of the examples assign the value of 2 to n. In the 
second example, the operands are rounded to 14 and 3.



\ (Integer division) Example
n = 15 \ 4
n = 15.88 \ 4
n = 15 \ 4.123
n = 15.88 \ 4.123
The first and third examples assign the value of 3 to n. The 
second and fourth examples assign the value of 4 to n. In 
the second, third, and fourth examples, the operands are 
rounded to 16 and 4, respectively.



Assignment Operator
Use the assignment operator (=) to assign the value of a right operand expression to a left operand variable. The
= operator is also a relational operator.
In the following example, fox equals the number 1996 and car is equal to the string "Ford"
fox = 1987 + 9
car = "Ford"
Note

The LET statement can also be used with the assignment operator.

{button ,AL(`all_operators;LET;;;;',0,"Defaultoverview",)} Related Topics



Bitwise Operators
Use bitwise operators to compare identically positioned bits in expressions holding integers. Non-integer 
expressions are rounded.
Operator Definition
NOT (logical complement) Unlike the three other bitwise operators, NOT is unary, it only operates on one 

operand (see Unary Operators for more information). NOT returns the opposite of 
the corresponding bits of the operand, which is sometimes called "one's-
complement." Click  for an example. The NOT operator is also a logical operator.

AND (conjunction) Compares the individual bits in the expression to the left of the operator with the 
individual bits in the expression to the right of the operator. If the identically positioned bits are both 1, 1 is 
returned. If not, 0 is returned. Click  for an example. The AND operator is also a logical operator.

OR (disjunction) Compares the individual bits in the expression to the left of the operator with the 
individual bits in the expression to the right of the operator. If either of the 
identically positioned bits are 1, 1 is returned. If not, 0 is returned. Click  for an 
example. The OR operator is also a logical operator.

XOR (exclusive or) Compares the individual bits in the expression to the left of the operator with the 
individual bits in the expression to the right of the operator. If the identically positioned bits are both 1 or both 0, 0 
is returned. If not, 1 is returned. Click  for an example. The XOR operator is also a logical operator.

EQV (equivalence) Compares the individual bits in the expression to the left of the operator with the 
individual bits in the expression to the right of the operator. If the identically 
positioned bits are both 1 or both 0, 1 is returned. If not, 0 is returned. Click  for 
an example. The EQV operator is also a logical operator.

IMP (implication) Compares the individual bits in the expression to the left of the operator with the individual bits in
the expression to the right of the operator. If the identically positioned bits are 1 and 0, respectively, 0 is returned. If
not, 1 is returned. Click  for an example. The IMP operator is also a logical operator.

<< (Shift Left) Shifts bits a specified number of bit positions to the left, inserting 0 bits at the 
right end of the binary numeral. Click  for an example.

>> (Shift Right) Shifts bits a specified number of bit positions to the right, inserting 0 bits at the left end of the 
binary numeral. Click  for an example.

Note
The operators are listed in their order of precedence.
Although bitwise and logical operators are listed separately, they are the same operators, but function 

differently depending on the operand. 

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Bitwise NOT Example
n% = NOT(a%)
Toggles the bit values in a% to set n%. By toggling, bits 
equal to 1 are set to 0, and bits equal to 0 are set to 1. For 
example, if a% = 9, n% = -10 as follows:
0 0 0 0 1 0 0 1 = 9
1 1 1 1 0 1 1 0 = -10
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16 bits long. Bit 
positions are counted right-to-left and the first position is 
called the 0 position.



Bitwise AND Example
n% = a% AND b%
Compares the bits of the variables a% and b% and sets the 
corresponding bits of n% to 1 if the same bit is 1 in both a% 
and b%. For example, if a% = 9 and b% = 12, then n% = 8 
as follows:
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 0 0 0 = 8
Because only the 3rd bit (bits are always counted from right 
to left, starting with 0) is 1 in both operands, only the 
resulting number has the 3rd bit set to 1.
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16 bits long. Bit 
positions are counted right to left and the first position is 
called the 0 position.



Bitwise OR Example
n% = a% OR b%
Compares the bits of the variables a% and b%, and sets the 
corresponding bits of n% to 1 if the same bit is 1 in either a
% or b%. For example, if a% = 9 and b% = 12, then n% = 
13 as follows:
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 1 0 1 = 13
The 3rd, 2nd, and 0 bits (bits are always counted from right 
to left, starting with 0), are set to 1 because those bits have 
a value of 1 in either of the two operands.
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16-bits long. Bit 
positions are counted right-to-left and the first position is 
called the 0 position.



Bitwise XOR Example
n% = a% XOR b%
Compares the bits of the variables a% and b% and sets the 
corresponding bits of n% to 1 if the same bit is different in a
% and b%. For example, if a% = 9 and b% = 12, then n% =
5 as follows: 
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 0 1 0 1 = 5
Because the 3rd bit (bits are always counted from right to 
left, starting with 0) is 1 in both operands, the 3rd bit in the 
result is set to 0. The 2nd and 0 bits are different in the two 
operands, so those bits are set to 1 in the result.
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16 bits long. Bit 
positions are counted right to left and the first position is 
called the 0 position.



Bitwise EQV Example
n% = a% EQV b%
Compares the bits of the variables a% and b% and sets the 
corresponding bits of n% to 1 if the same bit is equal in a% 
and b%. For example, if a% = 9 and b% = 12, then n% = 10
as follows: 
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 0 1 0 = 10
Because the 3rd bit (bits are always counted from right to 
left, starting with 0) is 1 in both operands, the 3rd bit in the 
result is set to 1. The 2nd and 0 bits are different in the two 
operands, so those bits are set to 0 in the result.
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16 bits long. Bit 
positions are counted right to left and the first position is 
called the 0 position.



Bitwise IMP Example
n% = a% IMP b%
Compares the bits of the variables a% and b% and sets the 
corresponding bits of n% to 1 unless the bit in a% is set to 1 
and the bit in b% is set to 0. For example, if a% = 9 and b% 
= 12, then n% = 14 as follows: 
0 0 0 0 1 0 0 1 = 9
0 0 0 0 1 1 0 0 = 12
0 0 0 0 1 1 1 0 = 14
Because the 0 bit (bits are always counted from right to left, 
starting with 0) is 1 in the first operand, and the 0 bit is 0 in 
the second operand, the 0 bit in the result is set to 0. All 
other bits are set to 1.
The above example only uses eight bits to demonstrate the 
bit operation, but Corel SCRIPT integers are 16 bits long. Bit 
positions are counted right to left and the first position is 
called the 0 position.



Bitwise Shift Left (<<) Example
n% = 1 << a% 
This example shifts the bits in a% one position left, and 
inserts one 0 bit at the right end of the binary numeral. For 
example, if a% = 500, n% = 1000
0 1 1 1 1 1 0 1 0 0 = 500
1 1 1 1 1 0 1 0 0 0 = 1000



Bitwise Shift Right (>>) Example
n% = 1 >> a% 
This example shifts the bits in a% one position right, and 
inserts one 0 bit at the left end of the binary numeral. For 
example, if a% = 1000, n% = 500
1 1 1 1 1 0 1 0 0 0 = 1000
0 1 1 1 1 1 0 1 0 0 = 500



Integer
Integers include all positive whole numbers, their negatives, and zero, e.g., -3, 0, 5.



Concatenation Operators
Concatenation operators join strings together to make a single string.
Operator Definition
& Links strings or string variables together.
+ Links strings or string variables together. The + operator is also a unary and 

arithmetic operator.
Note

You can only use the concatenation operators with strings.
Use the STR function to return numbers as strings.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Examples of Concatenation Operators

& operator
firstString$ = "Corel"
secondString$ = "DRAW"
result$ = firstString$ & " " & secondString$
Assigns the value of firstString$ followed by the value of secondString$ to the variable result$ with a space 
in between.    In this example, result$ = "Corel DRAW".

+ operator
firstString$ = "Corel"
secondString$ = "PHOTO-PAINT"
result$ = firstString$ & " " & secondString$
Assigns the value of firstString$ followed by the value of secondString$ to the variable result$ with a space 
in between.    In this example, result$ = "Corel PHOTO-PAINT".

Using the STR function
a%=6
firstString$ = "Corel"
secondString$ = "DRAW"
result$ = firstString$ & " " & secondString$ & STR(a%)
In this example, result$ = "Corel DRAW 6".
Note

The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use 
type-declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics



Logical Operators
Logical operators, in conjunction with relational operators, determine a relationship between two or more 
expressions and return a Boolean TRUE (-1) or FALSE (0) value. In Corel SCRIPT, logical operators are most often 
used inside of flow control structures such as DO...LOOP, IF...THEN...ELSE...ENDIF, and WHILE...WEND. The 
following table lists the Corel SCRIPT logical operators in their order of precedence.
Operator Definition
NOT (logical complement) Evaluates the expression to the right of the operator. If the expression evaluates to

FALSE, TRUE is returned. The NOT operator is also a bitwise and unary operator. 
Click  for an example.

AND (conjunction) Logically compares the value of the expression to the left of the operator with the value 
of the expression to the right of the operator. If both expressions evaluate to TRUE, TRUE is returned. The AND 
operator is also a bitwise operator. Click  for an example.

OR (disjunction) Logically compares the value of the expression to the left of the operator with the 
value of the expression to the right of the operator. If either of the expressions 
evaluate to TRUE, TRUE is returned. The OR operator is also a bitwise operator. 
Click     for an example.

XOR (exclusive or) Logically compares the value of the expression to the left of the operator with the value 
of the expression to the right of the operator. If only one of the expressions evaluates to TRUE, TRUE is returned. 
The XOR operator is called the exclusive operator and is also a bitwise operator. Click  for an example.

EQV (equivalence) Logically compares the value of the expression to the left of the operator with the 
value of the expression to the right of the operator. If both of the expressions 
evaluate to TRUE or both of the expressions evaluate to FALSE, TRUE is returned. 
The EQV operator is called the equivalence operator and is also a bitwise operator.
Click  for an example.

IMP (implication) Logically compares the value of the expression to the left of the operator with the value of the 
expression to the right of the operator. If the first expression evaluates as a Boolean, it implies the second 
expression evaluates as the same Boolean. In this case, TRUE is returned. The IMP operator is called the implication 
operator and is also a bitwise operator. Click  for an example.

For more information about return values, see Logical Operator Return Values.
Note

Although bitwise and logical operators are listed separately, they are the same operators, but function 
differently depending on the operand. 

{button ,AL(`all_operators;Logical_Operator_Return_Values;;;;',0,"Defaultoverview",)} Related 
Topics



Logical Operator Return Values
The following table lists the conditions and corresponding Boolean return values for each Corel SCRIPT logical 
operator.

Conditions for NOT Returns
Expression1 is TRUE                                              FALSE
Expression1 is FALSE                                              TRUE

Conditions for AND Returns
Expression1 is TRUE and Expression2 is TRUE TRUE
Expression1 is TRUE and Expression2 is FALSE FALSE
Expression1 is FALSE and Expression2 is TRUE FALSE
Expression1 is FALSE and Expression2 is FALSE FALSE

Conditions for OR Returns
Expression1 is TRUE and Expression2 is TRUE TRUE
Expression1 is TRUE and Expression2 is FALSE TRUE
Expression1 is FALSE and Expression2 is TRUE TRUE
Expression1 is FALSE and Expression2 is FALSE FALSE

Conditions for XOR Returns
Expression1 is TRUE and Expression2 is TRUE FALSE
Expression1 is TRUE and Expression2 is FALSE TRUE
Expression1 is FALSE and Expression2 is TRUE TRUE
Expression1 is FALSE and Expression2 is FALSE FALSE

Conditions for EQV Returns
Expression1 is TRUE and Expression2 is TRUE TRUE
Expression1 is TRUE and Expression2 is FALSE FALSE
Expression1 is FALSE and Expression2 is TRUE FALSE
Expression1 is FALSE and Expression2 is FALSE TRUE

Conditions for IMP Returns
Expression1 is TRUE and Expression2 is TRUE TRUE
Expression1 is TRUE and Expression2 is FALSE FALSE
Expression1 is FALSE and Expression2 is TRUE TRUE
Expression1 is FALSE and Expression2 is FALSE TRUE

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Logical NOT Example
IF NOT(a% = 0) THEN BEEP
If the value of a% is not equal to 0, a beep sounds. The 
parentheses indicate that NOT operates on a% = 0 and not 
a% alone. 



Logical AND Example
IF (a% = 0) AND (b% = 0) THEN BEEP
If the value of a% is equal to 0 and the value of b% is equal 
to 0, a beep sounds. Both expressions must be true for the 
beep to sound.

IF a$ = "Corel" AND b$ = "Corel" THEN BEEP
If the value of a$ is equal to "Corel" and the value of b$ is 
equal to "Corel", a beep sounds. Both expressions must be 
true for the beep to sound.
Parentheses are placed around the relational expressions, 
but are not required because the = operator takes 
precedence over the OR operator. However, it is still a good 
practice to put parentheses around your expressions 
because it makes your scripts easier to read.



Logical OR Example
IF (a% = 0) OR (b% = 0) THEN BEEP
If either the value of a% is equal to 0 or the value of b% is 
equal to 0, a beep sounds. Only one of the expressions must 
be true for the beep to sound.

IF (a$ = "Corel") OR (b$ = "Corel") THEN BEEP
If either the value of a$ is equal to "Corel" or the value of b$
is equal to "Corel", a beep sounds. Only one of the 
expressions must be true for the beep to sound.
Parentheses are placed around the relational expressions, 
but are not required because the = operator takes 
precedence over the OR operator. However, it is still a good 
practice to put parentheses around your expressions 
because it makes your scripts easier to read.



Logical XOR Example
IF (a% = 0) XOR (b% = 0) THEN BEEP
If the value of a% is equal to 0 and the value of b% is not 
equal to 0, or vice versa, a beep sounds. One expression 
must be true and the other false for the beep to sound.
Parentheses are placed around the relational expressions, 
but are not required because the = operator takes 
precedence over the OR operator. However, it is still a good 
practice to put parentheses around your expressions 
because it makes your scripts easier to read.



Logical EQV Example
IF (a% = 0) EQV (b% = 0) THEN BEEP
If the value of a% is equal to 0 and the value of b% is equal 
to 0, a beep sounds. If both expressions are not equal to 0, a
beep will also sound. Both expressions must be true or both 
expressions must be false for a beep to sound.
Parentheses are placed around the relational expressions, 
but are not required because the = operator takes 
precedence over the OR operator. However, it is still a good 
practice to put parentheses around your expressions 
because it makes your scripts easier to read.



Logical IMP Example
IF (a > b) IMP (b > c) THEN BEEP
If a is greater than b and b is greater than c, this example 
returns true and a beep sounds. The reverse is also true.



Relational Operators
The relational operators are used to compare two operands, numeric or string expressions of the same type, and 
return a TRUE (-1) or FALSE (0) value. Relational operators are most often used inside of Corel SCRIPT flow 
control structures such as DO...LOOP, IF...THEN...ELSE...ENDIF, and WHILE...WEND.
Operator Definition
= Equal to. Click  for an example. The = operator is also a assignment operator.

<> Not equal to. Click  for an example.
> Greater than. Click  for an example.
< Less than. Click  for an example.
>= (or =>) Greater than or equal to. Click  for an example.
<= (or =<) Less than or equal to. Click  for an example.

Note
Because the equal sign (=) is used for both assignment and comparison, Corel SCRIPT will recognize the 

comparison operator only when it is within an IF, DO...LOOP, or WHILE...WEND statement.
You can compare numeric expressions of different data types with comparison operators. Variants are 

treated as their data subtype in comparison operations. See the Corel SCRIPT data type summary for more 
information.

Strings are always compared in their entirety, and case is significant. When comparing strings, the ANSI 
value of the characters in the strings are compared. See the Corel SCRIPT Character Map for more information.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



= (Equal to) Example
IF a% = b% THEN BEEP
The computer beeps if both a% and b% hold the same 
value. Because the equal sign (=) is used for both 
assignment and comparison, Corel SCRIPT will recognize the 
comparison operator only when it is within an IF, DO...LOOP, 
or WHILE...WEND statement.



<> (Not equal to) Example
IF str1$ <> str2$ THEN BEEP
The computer beeps if the values of the two string variables 
are not equal. Strings are always compared in their entirety, 
and case is significant. So if str1$ is "Cat" and str2$ is 
"cat", a beep will sound, because the strings are different.



> (Greater than) Example
IF a% > b% THEN BEEP
The computer beeps if the value of a% is greater than the 
value of b%.

IF str1$ > str2$ THEN BEEP
The computer beeps if the value of str1$ is greater than the
value of str2$. When comparing strings, the ANSI value of 
the characters in the strings are compared. So if str1$ is 
"dog" and str2$ is "cat", a beep will sound, because "c" 
comes before "d" in the ANSI character set.



< (Less than) Example
IF a% < b% THEN BEEP
The computer beeps if the value of a% is less than the value
of b%.

IF str1$ < str2$ THEN BEEP
The computer beeps if the value of str1$ is less than the 
value of str2$. When comparing strings, the ANSI value of 
the characters in the strings are compared. So if str1$ is 
"cat" and str2$ is "dog", a beep will sound, because "c" 
comes before "d" in the ANSI character set.



>= or => (Greater than or equal to) Example
IF a% >= b% THEN BEEP
The computer beeps if a% is greater than or equal to b%.



<= or =< (Less than or equal to) Example
IF a$ <= b$ THEN BEEP
The computer beeps if a$ is less than or equal to b$.



Unary Operators
Unary operators perform an operation on only one operand or expression.
Operator Definition
+ Multiplies a numeric operand by +1. The + operator is also a concatenation and 

arithmetic operator.
- Multiplies a numeric operand by -1. The operator is used to indicate a numeric 

operand is negative. The - operator is also an arithmetic operator.
NOT Inverts the result of relational and logical expressions. The NOT operator is also a 

logical and bitwise operator.

{button ,AL(`all_operators;;;;;',0,"Defaultoverview",)} Related Topics



Examples of Unary Operators

+
x% = 12 / +3

-
y% = 12 / -3

NOT
a% = 5
b% = NOT(a% > 3)
Since a% is greater than 3, resulting in TRUE, b% is FALSE (or 0) because NOT inverts the result of the logical 
operation.
x = 5
z = (x < 10)
IF (NOT(z)) THEN BEEP
The result of expression x < 10 is assigned to variable z. BEEP causes the computer to beep if the inverted value
of z equals TRUE. Because the inverted value of z equals FALSE, there is no beep.
Note

The variables in the examples above all use type-declaration suffixes (% and $). It is not necessary to use 
type-declaration suffixes with these operators.

{button ,AL(`all_operators_examples;all_operators;;;;',0,"Defaultoverview",)} Related Topics



Introduction to scripts and Corel SCRIPT 
A script is a computer program that executes a series of instructions with a single command. Generally, scripts 
are used to automate repetitive tasks, or simplify complicated actions; they can also be used to prompt for user 
input, display messages, and interact with other applications.
Scripts can significantly increase your productivity with Corel applications such as CorelDRAW or VENTURA, by 
automating repetitive tasks. For example, a script could be used to open a group of files, perform a set of editing
actions, or set an application's default properties. In their simplest form, scripts replicate a Corel application's 
keystrokes, and toolbar, menu, and mouse commands. In a more complex form, scripts can include the 
commands and constructs of a programming language. For example, you could create a script that only 
replicates an application's commands once a series of logical requirements have been met. 
A script is a text file that lists the Corel SCRIPT commands that will perform a particular task. These instructions 
are all part of the Corel SCRIPT programming language, which is partially based on Corel application menu 
commands. For example, the FileClose command corresponds to a menu command (click File, Close) on a Corel 
application's menu system.    
The rest of the Corel SCRIPT programming language is based on the BASIC programming language. If you're 
already familiar with a version of BASIC, you'll find the Corel SCRIPT programming language easy to read and 
understand. 
Computer programming experience isn't a prerequisite for using Corel SCRIPT to create and edit scripts. 
However, the more knowledge, experience, and desire you have to delve into the mechanics of your Corel 
application, the more you'll be able to take advantage of the power of Corel SCRIPT. 
Note

Most large computer applications have a built-in programming language of some form, but some call their 
programs macros instead of scripts.

Not every Corel application supports Corel SCRIPT programming and scripts. Click 
 for a list of Corel applications that support Corel SCRIPT.

{button ,AL(`Corel SCRIPT file 
types;intro_cs;corel_script_editor;corel_script_dialog_editor;;;',0,"Defaultoverview",)} Related Topics



What is Corel SCRIPT?
Corel SCRIPT is an application included with some Corel applications to record, play, and run recordings and 
scripts. Click  for a list of Corel applications that support Corel SCRIPT.

Corel SCRIPT starts automatically when you record or play a recording from a Corel application that supports scripts.
If you run a script for an application that is not running, Corel SCRIPT automatically starts the application.
A typical user can take advantage of Corel SCRIPT to automate repetitive tasks with scripts written in the Corel 
SCRIPT programming language. However, Corel SCRIPT is more than just a language that you can use to create and 
run application script files; it's also a powerful programming language that can be used as a standalone application.

The Corel SCRIPT programming language is based on the BASIC programming language. If you're already familiar
with a version of BASIC, you'll find the Corel SCRIPT programming language easy to read and understand. 
Corel SCRIPT Editor

Included with Corel SCRIPT is the Corel SCRIPT Editor which you can use to create, edit, run, test, and debug a 
script. Though scripts are text files, and can be edited or created with almost any Windows-based text editor or 
word processor, you must use the Corel SCRIPT Editor if you want to test or debug a script.
Corel SCRIPT and dialog boxes

In many cases, you'll need to get information from the user before your script performs a desired action. For 
simple information, you can use the Corel SCRIPT function INPUTBOX to get a string of characters from the user
returned to a running script. If you want to provide the user with options and more complex information, such as 
a list of choices, you can use a custom dialog box in your script.
Dialog boxes are created using the Corel SCRIPT language. Corel SCRIPT features a full set of programming 
statements to produce dialog boxes which incorporate sophisticated Windows options and features. You can also 
use Corel SCRIPT to create dynamic dialog boxes. Dynamic dialog boxes change their content depending on a 
user's action in a dialog box.
The Corel SCRIPT Editor includes tools to quickly create and edit dialog boxes. Working with the Editor is similar 
to using a drawing or painting application: dialog controls are graphic objects which can be inserted, moved, re-
sized, and aligned in a dialog box. Using the Corel SCRIPT Editor takes the place of editing Corel SCRIPT dialog 
box statements in a script file. 
Corel SCRIPT advanced features

Corel SCRIPT is OLE Automation enabled.
Corel SCRIPT can compile scripts as standalone executables.
Corel SCRIPT can access functions in Dynamic link libraries (DLL), and compile standard DLLs.

Note
Not every Corel application supports Corel SCRIPT programming and script files. Click 

 for a list of Corel applications that support Corel SCRIPT.

{button ,AL(`Corel SCRIPT file 
types;intro_cs;using_dynamic_link_libraries;ole_automation;;;',0,"Defaultoverview",)} Related Topics



Sample script
The following is an example of a script that can be used with CorelDRAW 6. The following script creates an ellipse
that is filled with a fountain color. The ellipse is then duplicated three times, and the duplicates are skewed.

WITHOBJECT "CorelDraw.Automation.6"   'Line 1
.CreateEllipse -250000, -500000, 250000, 500000, 0, 0, 0  'Line 2
.ApplyFountainFill 0, -25, 17, 0, 20, 0, 3, 50  'Line 3
.SetFountainFillcolor  0, 5, 15, 82, 155, 0  'Line 4
.SetFountainFillcolor 20, 5, 75, 51, 225, 0  'Line 5
.ApplyOutline 1, 0, 0, 0, 0, 0, 0, 0, 0, 0  'Line 6
FOR x = 1 TO 3  'Line 7

.DuplicateObject  'Line 8

.SkewObject -12000000, 10000000, x  'Line 9
NEXT x  'Line 10

END WITHOBJECT  'Line 11
If you're an inexperienced script (or macro) writer, the above script can seem somewhat overwhelming at first, 
but if you break it down into its basic components (each command and statement), you may find that the script 
is not as complicated as it looks. 
Line 1
Instructs Corel SCRIPT that the application commands which follow should be executed in CorelDRAW 6.
Line 2
Create an ellipse.
Lines 3, 4, and 5
Defines and applies a two-color fountain fill to the ellipse.
Line 6
Applies an outline to the ellipse.
Lines 7 and 10
Instructs Corel SCRIPT to repeat the commands between lines 7 and 10 three times.
Line 8
Duplicates the selected ellipse, three times. 
Line 9
Skews the selected ellipse, three times.
Line 11
Instructs Corel SCRIPT to stop sending commands to CorelDRAW 6.

{button ,AL(`Introduction_Scripts_Corel_script;What_is_Corel_SCRIPT;Corel_SCRIPT_syntax;Documen
tation_syntax_conventions;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT programming language
The Corel SCRIPT programming language is made of two distinct sets of instructions:

Corel SCRIPT application commands and functions
Corel SCRIPT programming statements and functions

Application commands and functions

Application commands perform tasks in a specific Corel application. For example, the FileNew command creates
a new document. Each Corel application that supports Corel SCRIPT has a distinct set of commands. Any script 
you create by saving a recording of your actions is made of Corel SCRIPT application commands.
The application commands are easy to understand since most are one-word equivalents of the corresponding 
Corel application user-interface. For example, the EditCut command is the complement of a menu command 
(click Edit, Cut) on a Corel application's menu system. Customizing your menu structure doesn't affect Corel 
SCRIPT command names.    
Unlike the EditCut command, most application commands require more than just a menu name to have the 
command carried out. Many menu commands in Corel applications open dialog boxes with dialog controls that 
require user input values. Since dialog boxes are not displayed during script execution, the values required for 
commands that open dialog boxes must be specified with the command in the script file. These specified values 
are called parameters and usually correspond to dialog box options.
For example, if you wanted to open a file named myfile.txt in a Corel application, you might use a command 
similar to the following:

.FileOpen "myfile.txt"  
where "myfile.txt" is a parameter for FileOpen. For more information, see Syntax for application commands 
and functions
An individual application command, or a block of application commands, must be enclosed by the Corel SCRIPT 
WITHOBJECT and ENDWITHOBJECT statements. These statements identify the Corel application that the 
application commands will be performed in. See the WITHOBJECT statement for more information.
Application functions are not recordable; they must be written into a script. Application functions ask questions 
about the status of a Corel application, selected items in Corel applications, or document properties. For 
example, a function may ask a Corel application about a document's page size. Functions cannot be recorded. 
In Corel SCRIPT Help, application statements and functions are in initial caps, such as FileOpen, EditCut, 
FilePrint.
Programming statements and functions

Corel SCRIPT programming statements and functions are a common set of instructions that can be used with any
Corel application that supports scripting. Programming statements and functions are derived from traditional 
BASIC programming language dialects and perform instructions that are not part of a Corel application. For 
example, Corel SCRIPT programming statements can be used to display a user-defined dialog box, include flow 
control constructs such as loops, create and manipulate variables, and retrieve information about your computer 
setup. On their own, Corel SCRIPT programming statements form a powerful programming language. In fact, a 
script containing only Corel SCRIPT programming statements can be executed, even if a supporting Corel 
application is not running.
In the Corel SCRIPT online Help, Corel SCRIPT programming statements and functions appear in uppercase, for 
example, LEFT, IF, and MESSAGEBOX. Click  for a listing of all programming statements and functions.
Note

From the Corel SCRIPT Editor you can open Corel SCRIPT online Help to a function's, command's or 
statement's syntax reference, by placing the insertion point in the keyword you want help for, and pressing F1.

Click 
 for a list of Corel applications that support Corel SCRIPT.

Corel SCRIPT is a command-based language that records keystrokes and mouse actions as commands.    It 
does not record the actual keystrokes.    For example, to open a file click File, Open.    If you record these steps, your 
script will contain an application command called FileOpen.

{button ,AL(`intro_cs;Corel_SCRIPT_syntax;Syntax for application commands and functions;Syntax 
for programming statements and 
functions;Documentation_syntax_conventions;',0,"Defaultoverview",)} Related Topics





Creating and modifying scripts
The easiest way to create a script is to record your actions in a Corel application. You can then save the recorded
actions as a script. Saving your recording as a script translates the recorded actions into script commands which 
are stored in a text file. When the script is executed or run, each line instructs the Corel application to perform a 
command  turning your sequence of recorded actions into a single mouse click.

Click  for a list of Corel applications that support Corel SCRIPT and recordings.
Once a recorded script is saved, it can be modified with the Corel SCRIPT Editor. For example, if you have a script
that opens several documents and executes a variety of commands, you can change the documents the script 
opens by modify a few script commands, rather than re-recording the entire script. Using the Editor, you can also
include application commands that cannot be recorded or include programming statements to customize your 
script. You can also use the Corel SCRIPT Editor to write scripts from scratch.

{button ,AL(`Corel_SCRIPT_Editor;;;;;',0,"Defaultoverview",)} Related Topics



Executing scripts
Corel SCRIPT scripts can be executed or run, under specific conditions, from any Corel application that supports 
Corel SCRIPT, or from the Corel SCRIPT Editor. 
Scripts containing Corel SCRIPT application commands

Any script file that contains application commands must include the WITHOBJECT statement. The WITHOBJECT
statement directs the executing script to the Corel application to call. 
The following example shows how to run a FileNew command in Corel PHOTO-PAINT.

WITHOBJECT "CorelPhotoPaint.Automation.6"
.FileNew 360, 504, 1, 72, 72, 0, 0, 1, 0, 0, 0, 19533528, 255, 255, 255, 0

END WITHOBJECT
You can have as many commands as you want after the WITHOBJECT statement, but the block of commands 
must end with an END WITHOBJECT statement. You can also have Corel SCRIPT programming statements 
within the WITHOBJECT block of commands.
You have the option of running scripts from the Corel SCRIPT Editor, or from your Corel application that supports 
Corel SCRIPT. Click  for a list of Corel applications that support Corel SCRIPT. 
When you create or edit a script, you should first run it from the Corel SCRIPT Editor. Executing from the Editor 
lets you take advantage of the Editor's testing and debugging features that allow you to fine tune script syntax, 
or fix script syntax errors. However, once you are satisfied that your script is running properly, you should run 
your script from the Corel application that uses the application commands. Running your script from the 
application can significantly decrease the script's execution time.
You can also nest application commands for different Corel applications within a script. For example, you can 
create a script that copies an object from PHOTO-PAINT to CorelDRAW:

WITHOBJECT "CorelPhotoPaint.Automation.6"
'Series of PHOTO-PAINT commands to copy an object
WITHOBJECT "CorelDraw.Automation.6"

'Series of DRAW commands to paste an object
END WITHOBJECT

END WITHOBJECT

Tip
You can also execute a script by double-clicking on its icon in the Windows Explorer or in a Windows folder.

Note
Scripts containing only programming statements can be run from any Corel application that supports Corel 

SCRIPT, or from the Corel SCRIPT Editor. Generally, a script that contains only programming statements runs faster 
from the Corel SCRIPT Editor.

Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; there is no 
compiled binary component in the scripts. Before a script is executed, it is compiled internally into a program file. 

{button ,AL(`Creating and modifying scripts_cs;Executing_script_files;Executing applications 
commands in the background;script_files;Script_planning_designing;',0,"Defaultoverview",)} 
Related Topics



Executing applications commands in the background
If you execute a script from the Corel SCRIPT Editor (or from a Corel application) containing commands for a 
Corel application that is not already running, Corel SCRIPT attempts to start the application. If the application is 
started, it is only opened in a portion of the computer memory called the background. Applications opened in the
background are not visible on the Windows desktop. 
In Windows 95, pressing CTRL+ALT+DEL opens the Close Program dialog box, which lists the active applications, 
both visible and invisible. From Windows NT, pressing CTRL+ALT+DEL opens the Windows NT Security dialog 
box. Click Task List to see a listing of active applications, both visible and invisible.
Corel SCRIPT executes commands for applications only open in the background, in the same manner as for 
visible applications.
The following should be kept in mind when executing a script for a Corel application that is not already open:

The first script application command after the WITHOBJECT statement should be a .FileNew 
or .FileOpen command.

If an error occurs while your script is executing, the hidden application becomes visible.
You can make a hidden application visible by including a .SetVisible command in your script.
If the last script application command before the END WITHOBJECT statement is not a .FileClose (for 

CorelDRAW or PHOTO-PAINT) or .FileExit (for Corel VENTURA, CorelFLOW, or Corel CAD), the hidden application 
becomes visible after executing the last command. 

Tip
You can also execute a script by double-clicking on its icon in the Windows Explorer or in a Windows folder.

{button ,AL(`cse_setvisible;draw_setvisible;flow_setvisible;vent_setvisible;pp_setvisible;cad_setvisi
ble;Creating and modifying scripts_cs;Executing_script_files;Executing applications commands in the
background;script_files;Script_planning_designing;',0,"Defaultoverview",)} Related Topics



Sample scripts    
Your Corel application comes with sample scripts. You can use these scripts as they are, or you can modify them 
to work better for you. You can also use them as a foundation for creating your own scripts.
The sample scripts are available in the following folders (based on a typical Corel installation):
C:\corel\scripts The scripts in this folder are not application specific: they do not send instructions 

to Corel applications. 
C:\corel\application The scripts in this folder are application specific: they send instructions to Corel 

applications to perform actions. application refers to the application's folder. For 
example, CorelDRAW scripts are saved in the C:\corel\draw folder. For a list of the
sample scripts included with your Corel application, see the Reference section in 
your Corel application's online Help.

You can also save your own scripts in the folders mentioned above. 
Notes

Comment statements at the top of each sample script describe what the script can do for you. If a script's 
first line, second line, or both lines, are REM statements, the comments are displayed in a Corel application's Run 
Script dialog box if the script is specified. The same two REM statements are also displayed in the status bar if the 
script is assigned to a tool bar button.

Unlike script files (or macro files) from other companies, Corel SCRIPT files are text only; they contain no 
compiled binary component. Before a script is executed, it is compiled internally into a program file. 

{button ,AL(`intro_cs;;;;;',0,"Defaultoverview",)} Related Topics



Script planning and designing tips
It is a good idea to plan the script before you begin writing. Keep the following criteria in the mind:

How much of any given process do you want to automate? Will the script be useful for one document, and 
not of much use in another? Which input boxes and dialog boxes are needed to obtain information while the script is
running?

Building error checking in your scripts prevents unexpected results. For example, you can tell a script to 
terminate if the intermediate script results are not suitable. You can also keep the user from entering inappropriate 
information, such as an inappropriate value in a dialog box. Click 
 for more information.

Build and test your scripts in parts. You're apt to make fewer mistakes when you build your scripts in 
smaller sections. Testing and debugging smaller script sections is easier than trying to trace errors through a large 
complicated script.

You should run the scripts you write or edit from the Corel SCRIPT Editor (not from another Corel 
application) until they run error free. Executing scripts from the Editor lets you take advantage of its testing and 
debugging features. However, once you are satisfied that a script is running properly, you should run it from a Corel
application to save execution time.

Take some time to lay out the steps a script will perform. Use plain language to describe the problem to be 
solved and the script solution in remark statements (REM) at the beginning of the script. Use remark statements at 
the beginning of each section to describe what that section will do.

Use the command recording feature in Corel applications to record the task you want to automate. You can
then edit the recording and include programming statements, for example, looping constructs and conditional 
statements, without worrying about the recorded application commands being syntactically correct. Not every Corel
application supports Corel SCRIPT programming and scripts. Click 
 for a list of Corel applications that support Corel SCRIPT and recording commands.

{button ,AL(`cs_fund;;;;;',0,"Defaultoverview",)} Related Topics



Corel applications supporting Corel SCRIPT and OLE Automation

Application WITHOBJECT string Supports
recordin

gs
CorelCAD 1 "CorelCad.automation.1" YES
CorelDRAW 6 "CorelDraw.automation.6" NO
CorelDRAW 7 "CorelDraw.automation.7" YES
CorelFLOW 3 "CorelFlow.automation.3" YES
Corel PHOTO-PAINT 
6

"CorelPhotoPaint.automation.
6"

YES

Corel PHOTO-PAINT 
7

"CorelPhotoPaint.automation.
7"

YES

Corel SCRIPT Editor 
7

"CorelScript.automation.7" NO

Corel VENTURA 7 "CorelVentura.automation.7" YES
The WITHOBJECT statement is used to direct Corel SCRIPT application commands to the Corel application 

that the commands are used in.
Corel SCRIPT is not compatible with the macros and PerfectScript used with Corel WordPerfect 7 Suite 

applications (Corel WordPerfect, Corel Quattro Pro, and Corel Presentations). 
All three applications do support OLE Automation. You could use the Corel SCRIPT Editor to create a script 

that sends instructions to any of these applications using the Corel application's macro or PerfectScript commands. 
The following table lists the OLE Automation identifiers to use with the WITHOBJECT statement to send instructions
to Corel WordPerfect Suite applications:

Application WITHOBJECT string
Corel Presentations 
7

" 
Presentations.PerfectScript"

Corel Quattro Pro 7 " QuattroPro.PerfectScript "
Corel WordPerfect 7 "WordPerfect.PerfectScript "

In Corel SCRIPT 6, predefined constants were used to specify an application. For example, DRAW for 
CorelDraw.Automation.6. This option no longer exists, but you can now use constants defined in the INCLUDE 
files distributed with Corel SCRIPT. See the INCLUDE statement for more information.

{button ,AL(`include;with_end_with;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT file types
The following file types are used in Corel SCRIPT:
Corel SCRIPT scripts (.CSC)

Corel SCRIPT scripts are text files that do not have a compiled executable component. Before a script is 
executed, it is internally compiled into a binary file, and is recompiled each time the script is run.
Corel SCRIPT include scripts (.CSI)

CSI files are scripts (text files) that define commonly used script components such as constants and procedures. 
These files can be edited in the Corel SCRIPT Editor, and each Corel application that supports Corel SCRIPT has 
its own .CSI file. Click  for more information.
Corel SCRIPT binaries (.CSB)

Corel SCRIPT binaries are created by compiling a script into computer binary format. Binaries can only be 
executed from the Corel SCRIPT Editor or a Corel application. Click  for more information.
Corel SCRIPT Executables (.EXE)

Corel SCRIPT Executables are standalone program files (.EXE) which are created by compiling a script into 
computer binary format. Unlike Corel SCRIPT binaries, executables can be run as a standalone application  the 
Corel SCRIPT Editor or a Corel application are not necessary to run an executable. Click 

 for more information.
Dynamic Link Libraries (.DLL)

Dynamic link libraries DLLs created with Corel SCRIPT contain only one exportable function. This function, named
RUN, executes the commands in the script that were used to create the DLL. Click  for more information.
Corel Add-ons (.CAO)

Add-ons are compiled software modules that can be used to customize and enhance a Corel application. 
Essentially, Corel Add-ons are special Windows DLLs (with a CAO extension) that have access to the Corel 
application programming interface (API). Add-ons can be created in Corel SCRIPT or in the programming 
environment you are most familiar with such as Pascal, FORTRAN, C, or C++. Currently, Corel VENTURA 7 is the 
only Corel application that supports Corel Add-ons. Click  for more information.

{button ,AL(`Distributing_cs_exe;;;;;',0,"Defaultoverview",)} Related Topics





Corel SCRIPT syntax    
Syntax refers to rules that govern the form of script statements, commands, and functions. For example,

.FileOpen "C:\file.xxx" 
opens the FILE.XXX file. The next example,

.FileOpen C:\file.xxx
lacks a closing quotation mark. The syntax is not correct and produces an error message.    In order for scripts 
that you type from the keyboard to work properly, script commands and their elements must be arranged in the 
correct order. To be syntactically correct, each script statement or command must be spelled correctly, and must 
include all of the required elements and the necessary separators in the correct order.
Script statements, commands and functions consist of three parts:    a name, parameters, and separators.
Name

The name indicates which feature the Corel SCRIPT statement, command, or function activates. Sometimes, the 
name is all that is necessary to perform a complete action. For example, BEEP is a complete script statement 
because Corel SCRIPT does not need any additional information; the statement name itself sounds your 
computer's default beep sound.
Example: BEEP
Parameters

If the statement, command, or function needs more information than is provided by the name alone, parameters 
are required. The name represents the feature. Parameters represent aspects of the feature you can change, or 
selections you can make. For example, the ABS function requires one parameter that specifies the number you 
want to return a absolute value for.    In the following example, ABS returns the absolute value of -123,

My_Number = ABS(-123)
For parameters that need numeric information, you can use numbers, variables, constants, functions, operators, 
or any combination of these, as long as they return a numeric result. The above example can be specified in the 
following manner:

My_Number = ABS(x) 'variable
My_Number = ABS(x - y) 'formula using variables
My_Number = ABS(x > y) 'conditional formula
The same type of rules apply to sting parameters. For more specific information about using parameters, see 
Syntax for application commands and functions.
Separators

Some Corel SCRIPT statements, commands, and functions require several parameters. Parameters generally 
need to be placed in the correct order, and must be separated properly. Commas (,) are used to separate 
individual parameters. In other cases, parameters need to be enclosed by parenthesis. Spaces between the 
command names, parameters, commas, and parenthesis are optional. For more information about the syntax of 
a specific statement, command, or function, see its topic in this help file (click Contents, Index, and type the 
name of the command).
Note
Corel SCRIPT is not case-sensitive; that is, when a Corel SCRIPT script is compiled, the names of all constants, 
variables, functions, and subroutines are converted to uppercase.    Therefore, you cannot have a variable called 
Left, for example, because when converted to uppercase, it would conflict with the Corel SCRIPT function called 
LEFT. The following commands are all interpreted the same way by Corel SCRIPT:

LOOP
loop
lOOp

Strings surrounded by double quotation marks are not converted when a script is compiled and executed.
If you create scripts by recording keystrokes and mouse clicks, the commands are automatically inserted in

the correct format.
From the Corel SCRIPT Editor, you can open the Corel SCRIPT online Help to a function's, command's or 

statement's syntax reference by placing the insertion point in the keyword you want help for, and pressing F1.



{button ,AL(`intro_cs;cs_case_sensitive;corel_script_editor_basics;;;',0,"Defaultoverview",)} Related 
Topics



Syntax for application commands and functions
The application commands and functions section in this online Help provides syntax and reference information 
for all Corel application commands and functions. The following is an example of a typical Corel SCRIPT 
application command (the Corel VENTURA file export command):
.FileExport .FileName=string, .FilterType=long, .Markup=Boolean

Application command names and functions are always preceded by a period. If they use parameters, the 
parameters are placed to the right of the application command or function name. Required parameters are noted
in bold type, and optional parameters are noted in normal type in the syntax reference. 
Application parameters have two parts: the parameter name and the data type (in italics). In this example, 
FileName is the parameter name and string is the data type. Data type indicates the type of information that 
the parameter can pass. For more information about data types, click . 
With most Corel SCRIPT application commands, you have options on how to specify parameters. The following 
examples show two methods to specify the .FileExport command:

.FileExport .FileName="C:\NEWFILE.RTF", .FilterType=11, .Markup=0

.FileExport "C:\NEWFILE.RTF", 11, 0
The first example uses the parameter names and equals signs, while the second example separates parameters 
with commas. Using the parameter names makes your script more self-documenting, but it isn't as easy to write.
Corel application commands are recorded using the second example's formatting. For more information about 
parameters, click .
You also have the option to mix the parameter specification for a command. For example:

.FileExport "C:\NEWFILE.RTF", .FilterType=11, .Markup=0
Once you use a parameter name in an application command, the parameters that follow in that command must 
also use parameter names.
Omitting optional parameters

The following CorelFLOW application command's last two parameters are optional:
.RotateObject .Angle=double, .Clockwise=Boolean, .ObjectName=string, .FileNumber=integer

In this case, you can specify .RotateObject without specifying the third parameter, the fourth parameter, or 
both, as shown in the examples below (the apostrophe indicates a script comment):

.RotateObject 58.3, -1, "poly", 2 'no omitted parameters

.RotateObject 58.3, -1, , 2       'third parameter omitted

.RotateObject 58.3, -1, "poly"    'fourth parameter omitted

.RotateObject 58.3, -1            'third and fourth parameters omitted
You can also omit optional parameters when you use the parameter names, as shown in the examples below 
(these examples replicate the previous example set):

.RotateObject .Angle=58.3, .Clockwise=-1, .ObjectName="poly", .FileNumber=2   'no omitted

.RotateObject .Angle=58.3, .Clockwise=-1, .FileNumber=2   'third omitted

.RotateObject .Angle=58.3, .Clockwise=-1, .ObjectName="poly"   'fourth omitted

.RotateObject .Angle=58.3, .Clockwise=-1,  'third and fourth omitted
Parameters and data types
Parameters must be of the correct data type; if a string is required, the argument must be a valid string 
expression, or an error occurs. Numeric parameters are not always as strict in terms of data types. For example, 
an application command parameter may require a long (a whole number). If you pass the parameter a fractional 
number instead, an error may occur, or the parameter may accept the fractional number and truncate it.
Note

Not every Corel application supports Corel SCRIPT programming and script files. Click 
 for a list of Corel applications that support Corel SCRIPT.

From the Corel SCRIPT Editor you can open Corel SCRIPT online Help to a function's, command's or 
statement's syntax reference by placing the insertion point in the keyword you want help for and pressing F1.

{button ,AL(`CS_app_commands_exe;using_variables;Documentation_syntax_conventions;cs_case_se
nsitive;Corel_SCRIPT_Editor_Basics;Variable_availability;;',0,"Defaultoverview",)} Related Topics





Syntax for programming statements and functions
Programming statements follow the same parameters specification rules as application commands (See Syntax 
for application commands and functions for more information). However, for the most part, programming 
statements and functions do not use parameter names. Script parameters specify the variable type by using the 
data type suffix.
Note

Parameters must appear in the order specified in the Corel SCRIPT programming statements and functions 
section in this online Help. 

Parameters must also be separated by commas, as specified in the Corel SCRIPT programming statements 
and functions section in this online Help.

From the Corel SCRIPT Editor, you can open Corel SCRIPT online Help to a function's, command's or 
statement's syntax reference by placing the insertion point in the keyword you want help for, and pressing F1.

{button ,AL(`using_variables;Documentation_syntax_conventions;cs_case_sensitive;Corel_SCRIPT_Ed
itor_Basics;Variable_availability;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT documentation syntax conventions
The Corel SCRIPT programming statements and functions section provides syntax and reference information for 
each statement and function. Click  for a listing of all programming statements and functions. 

The Corel SCRIPT application commands and functions section in this online Help provides syntax and reference 
information for all application commands and functions. Not every Corel application supports Corel SCRIPT 
programming and script files. Click  for a list of Corel applications that support Corel SCRIPT.

The following typographic conventions are used to show the syntax for all Corel SCRIPT programming and 
application commands.

Syntax convention example Description
LBOUND, IF, LCASE Corel SCRIPT programming statements and functions appear in boldface, all 

uppercase.
.FileOpen, .EditCut Corel SCRIPT application commands and functions appear in boldface, with the 

initial letter of each word in uppercase. The command is preceded by a period. 
Generally, Corel SCRIPT application command names correspond to the 
command's menu name, preceded by its main menu name. For example, 
the .EditCut command is the complement of a menu command (click Edit, Cut) on
an application's menu system. 

Required parameters Required parameters for Corel SCRIPT programming statements and functions 
appear in boldface.

Optional parameters Optional parameters for Corel SCRIPT programming statements and functions 
appear in normal face.

Command parameter Required parameters for Corel SCRIPT application commands and functions appear
in an boldfaced italics.

Command parameter Optional parameters for Corel SCRIPT application commands and functions appear 
in italics.

{%|&|!|#|@|$} Braces and vertical bars surrounding the variable type  suffixes indicate a choice 
between two or more items. The choice is mandatory if the syntax appears in 
boldface. If the syntax appears in normal typeface, use of the suffix is optional. 

{ WHILE | UNTIL } Braces and vertical bars surrounding statement keywords indicate a choice 
between two or more items. The choice is mandatory if the syntax appears in 
boldface. If the syntax appears in normal face, syntax use is optional. 

Script examples Script example statements and functions appear in this font.
'Comments    Script example comments appear with an apostrophe ('). In some cases, the REM 

statement is used instead of the apostrophe.
Description Text Commands, statements, and parameters in description text appear in boldface. 
FILENAME, FOLDERS Filenames, folders, and paths appear in uppercase letters in description text.

Click the button for a typical example of a Corel SCRIPT programming statement syntax topic in this online 
Help.

Click the button for a typical example of a Corel SCRIPT application command syntax topic in this online 
Help.

Note
Corel SCRIPT application command and function parameters must be separated by commas.
Required parameters are displayed in boldface type, while optional parameters are displayed in normal 

typeface. Optional parameters normally appear at the end of a command's syntax.

{button ,AL(`cs_syntax_ov;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT programming statement syntax example
This is a typical example of a Corel SCRIPT programming statement syntax topic in this online Help. For more 
information, position the mouse over items in the example and click when mouse pointer becomes the hand 
symbol.

Note
From the Corel SCRIPT Editor you can open Corel SCRIPT online Help to a functions, command's or 

statement's syntax reference by placing the insertion point in the keyword you want help for and pressing F1.
From the Corel SCRIPT Editor you can open Corel SCRIPT online Help to a function's, command's or 

statement's syntax reference by placing the insertion point in the keyword you want help for and pressing F1.

{button ,AL(`cs_syntax_ov;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT application command syntax example
This is a typical example of a Corel SCRIPT application command syntax topic in this online Help. For more 
information, position the mouse over items in the example, and click when the mouse pointer becomes the hand
symbol.

Note
From the Corel SCRIPT Editor, you can open Corel SCRIPT online Help to a function's, command's or 

statement's syntax reference by placing the insertion point in the keyword you want help for, and pressing F1.

{button ,AL(`CS_app_commands_exe;cs_syntax_ov;;;;;',0,"Defaultoverview",)} Related Topics



Provides a list of similar commands and functions.



Displays the application command name and the Corel application it is used with. For example DRAW for 
CorelDRAW, VENTURA for Corel VENTURA, and so on.



Displays the syntax to use with the application command. The syntax that appears to the right of the application 
command is the command's parameter set. Parameters are used to pass information to the application 
command. Required parameters are noted in boldfaced type, and optional parameters are noted in normal 
typeface.
Application parameters have two parts: the parameter name and the data type (in italic typeface). In this 
example, FileName is the parameter name and string is the data type. Data type indicates the type of 
information that the parameter can pass. For more information about data types, click . With most Corel SCRIPT 
application commands, you have options on how to specify parameters. The following examples show two 
methods to specify the .FileExport command:

.FileExport .FileName="C:\NEWFILE.RTF", .FilterType=11, .Markup=0

.FileExport "C:\NEWFILE.RTF", 11, 0
The first example uses the parameter names and equals signs, while the second example separates parameters 
with commas. Using the parameter names makes your script more self-documenting, but is not as easy to write. 
Corel application commands are recorded using the second example's formatting. 



Displays a description of what the command can do.



Displays a description of the parameters and the information they can pass.



Displays additional information about using the application command. Often, the note indicates how to record 
the command.



Displays an example of the command. 



Displays the programming statement or function name.



Displays the syntax to use with the programming statement or function. The syntax that appears to the right of 
the programming statement or function name is the command's parameter set. Parameters are used to pass 
information. Required parameters are noted in boldfaced type, and optional parameters are noted in normal 
typeface. 



Displays a description of what the programming statement or function can do.



Displays a description of the parameters and the information they can pass.



Displays an example of the statement or function.



Provides a list of similar statements and functions.



Compiling and debugging scripts



Compiling scripts
Corel SCRIPT scripts are text files; they do not have a compiled binary component. Before a script is executed, it 
is compiled internally into a executable file and then run. 
What is an executable

A computer's central processing unit (CPU) plays instructions written in machine (computer) language. Machine 
language consists of binary digits (bits) 0 and 1. For example, the first three letters of the alphabet in binary 
notation are 1000001, 1000010, and 1000011.    The binary result of 4 + 5 is 1001. Because binary digits are 
hard to work with, English-based programming languages (such as BASIC, Pascal, and C) were created. Programs
are written with the help of an editor or word-processor, and saved as source files.
Corel SCRIPT can be considered a dialect of BASIC. Scripts are written with a text editor and saved. Before a 
script is executed, Corel SCRIPT converts the source file (the script) into binary format and runs it. The binary 
format is not saved in the script and must be recompiled each time the script is run.
Note

You can create a compiled version of a script 
, a Corel SCRIPT Executable. See Creating Corel SCRIPT Executables for more information.

{button ,AL(`comp_debug;;;;;',0,"Defaultoverview",)} Related Topics



Script programming errors and debugging
When you edit a recording or write your own scripts, programming errors can occur. There are three main types 
of errors that can occur:

Compilation errors
Run-time errors
Logic errors

Note
Corel SCRIPT scripts are Windows text files; they do not have a compiled binary component. Before a script

is executed, it is compiled internally into a program file, and then run. You can create a compiled version of a script 
 a Corel SCRIPT Executable. See Creating Corel SCRIPT Executables for more information. 

If you create scripts by recording keystrokes and mouse clicks, the commands are automatically inserted in
the correct format.

From the Corel SCRIPT Editor, you can open Corel SCRIPT online Help to a function's, command's or 
statement's syntax reference by placing the insertion point in the keyword you want help for and pressing F1.

Scripts that use application commands should be run from the Corel SCRIPT Editor until they run error free.
Executing scripts from the Editor allows you to take advantage of its testing and debugging features. However, once
you are satisfied a script is running properly, you should run the script from a Corel application for significant time 
savings.

If Corel SCRIPT attempts to execute an application's commands, and it is not already running, Corel SCRIPT
attempts to start the application in a portion of the computer memory called the background. The best way to 
ensure that all applications running in the background are closed after script execution, is to have the script close 
all its documents. If your script is not closing the open documents and leaving the application to run in the 
background, press CTRL+ALT+DEL to open the Close Program dialog box to close the invisible applications. 

In some cases, you can have both a visible and an invisible instance of an application running in the 
background. In this case, Corel SCRIPT executes the application commands on the application instance which 
was started first. This can result in confusion if the invisible application was started first, and you expect the 
Corel SCRIPT application commands to be executed in the visible instance of the application. Press 
CTRL+ALT+DEL to open the Close Program dialog box to close the instance of the application you want to 
close. 

{button ,AL(`comp_debug;;;;;',0,"Defaultoverview",)} Related Topics



Compilation errors
Corel SCRIPT scripts are text files; they do not have a compiled binary component. Before a script is executed, it 
is compiled internally into a program file, and then run. Compilation errors prevent Corel SCRIPT from compiling 
a script into machine instructions. Compilation errors are easy to find since Corel SCRIPT detects them, and 
notes them in the Compiler Output Window in the Corel SCRIPT Editor.
The most common compilation errors include:

typographic errors such as misspelling variable names or command names
missing opening or closing bracket, or parentheses 
missing a required parameter 
missing a corresponding closing statement, for example, omitting the FOR statement when using the 

FOR...NEXT construct
incorrect use of a statement or function

The compiler identifies and reports a maximum of ten errors. Once the compiler finds eleven errors, it stops. You 
must correct the errors, and re-compile. The compiler also suggests solutions for the script writer to verify.
For more information about other errors, see Error codes.
Tip

The Check Syntax command (click Debug, Check Syntax) in the Corel SCRIPT Editor searches for all syntax 
errors. 

{button ,AL(`comp_debug;;;;;',0,"Defaultoverview",)} Related Topics



Run-time errors
Run-time errors occur when a script is run, or executed. These errors are generated when scripts produce bad or 
illegal values, or try to run an impossible operation. You can design your scripts with run-time errors in mind. For 
example, an UNABLE TO DELETE FILE run-time error might occur when you try to remove a file. Since you may 
not know the restrictions on the file you're trying to remove, you could write an error handling routine to trap for 
this possibility and have your script act accordingly. See Error Codes or the ON ERROR command for more 
information.    
The most common run-time errors include:

division by 0
variable type mismatch
file access errors
variable overflow

Tip
Use the MESSAGE statement to display a built-in Corel SCRIPT message dialog box. A message box stops 

script execution and can be used to display the value of variables.

{button ,AL(`comp_debug;;;;;',0,"Defaultoverview",)} Related Topics



Logic errors
Logic errors are the hardest to find; the only indication of a logic error may be a bad value, or an unexpected 
result. The Corel SCRIPT Editor cannot tell you when a logic error is present, so it is up to you to test for and find 
these problems. The Corel SCRIPT Editor provides powerful debugging tools to help you debug scripts:

run scripts in slow motion (step-by-step), pausing as long as you want between steps
set breakpoints to pause a script when it reaches a specified line in the script
run scripts at full speed until reaching a breakpoint, then either continue in slow motion, or at full speed 

until the next breakpoint
monitor, or trace, changes to specific variables as a script runs

For more information about these tools, see Corel SCRIPT Editor debugging features .
Tip

Use the MESSAGE statement to display a built-in Corel SCRIPT message dialog box. A message box stops 
script execution and can be used to display the value of variables.

{button ,AL(`comp_debug;;;;;',0,"Defaultoverview",)} Related Topics



Advanced features



Using Dynamic Link Libraries
Corel SCRIPT can call functions and subroutines in Dynamic Link Libraries (DLLs), such as those supplied with 
Windows, other applications' DLLs, or any custom DLL files. To find out how to use functions in DLLs, you need 
specific technical reference material. For example, to use the Windows DLLs, you need the Windows Software 
Development Kit.
Before you can use a DLL function or subroutine, you must declare the function using the DECLARE...LIB 
statement. See the statement's reference for more information and an example. 
Warning

You should save or back up essential files and programs before using functions and subroutines in DLL 
files. Passing an invalid argument to a function can result in a Windows General Protection Fault or unstable system 
behavior.

Note
The advanced Corel SCRIPT programming feature, described above, is intended for experienced Windows 

programmers, and not for beginner script writers.

{button ,AL(`declare_lib;getapphandle;getwinhandle;;;',0,"Defaultoverview",)} Related Topics



Creating Corel SCRIPT Executables, Binaries, DLLs, and Corel Add-
ons
Corel SCRIPT scripts are text files that do not have a compiled executable component. Before a script is 
executed, it is internally compiled into a binary file, and is re-compiled each time the script is run. To save time, 
compile your scripts into Corel SCRIPT Executables, Corel SCRIPT Binaries or Dynamic Linked Libraries (DLLs). 
Compiling your scripts into Executables, Binaries, or DLLs, not only speeds up their run-time, but also allows you 
to hide the programming code. 
Corel SCRIPT Executables

Corel SCRIPT Executables are standalone program files (.EXE) which are created by compiling a script into 
computer binary format.
Corel SCRIPT Binaries

Like Corel SCRIPT Executables, Binaries (.CSB) are created by compiling a script into computer binary format. 
However, Binaries can only be executed from the Corel SCRIPT Editor or a Corel application. For example, if you 
have a script that applies a fountain fill to objects in CorelDRAW 7, you could convert the script into a Binary. 
When you want to apply the fountain fill to an object, simply drag the Binary onto the selected object within 
CorelDRAW.
Dynamic Linked Libraries

DLLs created with Corel SCRIPT contain only one exportable function. This function, named RUN, executes the 
commands in the script that was used to create the DLL.
Corel Add-ons

You can use Corel SCRIPT to add your own compiled software modules to Corel applications so that you can 
customize and enhance their features. These software modules, called Corel Add-ons, are special Windows DLLs 
(with a CAO extension) that have access to the Corel application programming interface (API). Currently, Corel 
VENTURA 7 is the only Corel application that supports Corel Add-ons.
Speed is the major advantage of using an Add-on rather than a script or executable. Other advantages of using 
Corel Add-ons include the following:

They can contain routines that can be called by scripts or executables.
An Add-on function can be called the same way you call a routine from a regular DLL.
Corel Add-ons can be written in the programming environment you are most familiar with such as Pascal, 

FORTRAN, C, or C++. 
The Corel application API gives your programming language full access to all Corel SCRIPT application 

commands.
Like DLLs created with Corel SCRIPT, Corel Add-ons created with Corel SCRIPT contain only one function (RUN). 
This function executes the commands in the script that was used to create the Add-on. If you create a Corel Add-
on in a programming environment other than Corel SCRIPT, you are not limited to a single function. See 
Developing Corel Add-ons for VENTURA for information about writing your own Add-ons in languages other than 
Corel SCRIPT.
Executing Corel SCRIPT Executables, Binaries, DLLs, and Corel Add-ons

Corel SCRIPT Executables or DLLs can run without having a Corel application open or running. Both, however, as 
well as Corel SCRIPT Binaries and Corel Add-ons created with Corel SCRIPT, require the Corel SCRIPT run-time 
interpreter to be installed on the user's system when run. The run-time interpreter is a Dynamic Linked Library 
named SCINTxx.DLL, where xx indicates the Corel SCRIPT major version number  for example, SCPINT70.DLL for
Corel SCRIPT version 7.0. The run-time interpreter contains the instructions that tell your computer how to 
execute the Corel SCRIPT programming instructions in the Executable, Binary, DLL, or Add-on.
Click  for a list of locations on a user's system where a Corel SCRIPT Executable, Binary, DLL, or Add-on searches
for the run-time interpreter. 
Corel SCRIPT versions

For a script, Executable, Binary, DLL, or    Corel Add-on created with Corel SCRIPT to run, the major version 
numbers for Corel SCRIPT (the compiler) and the Corel SCRIPT run-time interpreter (SCINTxx.DLL) must be the 
same or else an error will occur. A difference in the minor version numbers will not cause an error. See the 
GETVERSION function for information about determining the Corel SCRIPT or run-time interpreter version 
numbers. 
Note

You can edit and change a script after it has been used to compile a Corel SCRIPT Executable, Binary, or 
DLL without affecting the compiled file.



Although you can't assign a Corel SCRIPT Executable directly to a toolbar in a Corel application, you can 
assign it to the Corel Application Launcher toolbar button 
. Click 
 for more information.

See the Corel Corporation World Wide Web home page (www.corel.com) for updates to the Corel SCRIPT 
run-time interpreter (SCINTxx.DLL).

{button ,AL(`addresbmp;Distributing_cs_exe ;Using_Dynamic_Link_Libraries ;GETVERSION;GETSCRIP
TFOLDER;;;',0,"Defaultoverview",)} Related Topics



Distributing Corel SCRIPT Executables, Binaries, DLLs, and Corel 
Add-ons
You can freely distribute the Corel SCRIPT Executables, Binaries, DLLs, and Corel Add-ons you create along with 
the Corel SCRIPT run-time interpreter (SCINTxx.DLL). Provided:
(a) You do not alter or modify the run-time interpreter in any manner.
(b) You do not use the logo, name, or trademarks of Corel or its licensors.
(c) You include a valid copyright notice. 
(d) You agree to indemnify Corel and its licensors against any claims or lawsuits arising from your use or 

distribution of the Corel SCRIPT Executables, Binaries, DLLs, or Corel Adds-on you distribute.
COREL MAKES NO WARRANTY, EXPRESS OR IMPLIED, REGARDING THE USE OF COREL SCRIPT EXECUTABLES, 
BINARIES, DLLS, OR COREL ADD-ONS,    NOR DOES COREL ASSUME ANY OBLIGATION OR LIABILITY FOR THEIR 
USE.

{button ,AL(`addresbmp;Creating Corel SCRIPT 
Executables;Distributing_cs_exe ;Using_Dynamic_Link_Libraries ;GETVERSION;GETSCRIPTFOLDER;;;',
0,"Defaultoverview",)} Related Topics



Corel SCRIPT Editor
The Corel SCRIPT Editor creates and edits Corel SCRIPT scripts and custom dialog boxes. Working with a script is 
similar to working with a text editor or a word processor, while working with custom dialog boxes is similar to 
using a drawing or painting application. Because creating and editing both scripts and dialog boxes require a 
unique set of commands, scripts and dialog boxes have their own separate document windows within the Corel 
SCRIPT Editor; script windows and dialog windows, respectively.
The following picture of the Corel SCRIPT Editor shows both a script window and dialog window. (The menu in the
Corel SCRIPT Editor changes depending on the type of window that is active.)

Though script windows and dialog windows are separate, they are not independent. A dialog window can only be 
opened from an active script window. 
For more information about Corel SCRIPT Editor windows, see Script windows and Dialog windows.
Note

The Corel SCRIPT Editor is a stand-alone program included with Corel applications. If you didn't install the 
Editor when you installed the Corel applications, you can run the Corel setup program again to install it. 

In Corel SCRIPT version 7.0 you can use Corel SCRIPT application commands and functions to create scripts
that can be used to create and modify other scripts. With the addition of customization features to the Corel SCRIPT 
Editor, the scripting commands give you almost total control over the Corel SCRIPT Editor. Click 
 for a list of Corel SCRIPT application commands for the Corel SCRIPT Editor. 

{button ,AL(`Editor_ole;cse_reference;Corel_SCRIPT_Dialog_Editor;Dialog windows and the Corel 
SCRIPT Editor;;;',0,"Defaultoverview",)} Related Topics



Script windows and the Corel SCRIPT Editor 
The Corel SCRIPT Editor included with your Corel application is used to create and modify scripts. Since Corel 
SCRIPT scripts are Windows text files, the Corel SCRIPT Editor has many of the features of a standard text editor 
as well as specialized programming features to help you test, debug, modify, and run all or part of a script.
Script windows
You can have more than one script open in the Corel SCRIPT Editor at a time. Each script is in a separate script 
window and its file name is noted in the window border. The script windows can be arranged in a variety of 
layouts. Each script window contains a compiler output window and a watch window. 
A script's syntax errors are displayed in the Compiler Output window after it has been run or checked for syntax 
errors. Double-clicking on an error message sends the insertion point to the line containing the error. The line 
with the error has the  symbol in its left margin after it has been double-clicked. The Compiler Output window is 
part of a script window and is displayed at the bottom of the window. This window can also be hidden or resized.
Like the Compiler Output window, the Watch window is part of a script window and is displayed at the bottom of 
the window. The Watch window is used to monitor the value of variables in the script during a debugging session.
Each variable being watched displays its current value and the procedure (Main, a function, or a subroutine) 
where it is found.
Note

Unlike scripts (or macro files) from other companies, Corel SCRIPT scripts are text only; there is no 
compiled binary component in a script. Before a script is executed, it is compiled internally into a program file. 

Scripts are saved with the extension .CSC (for Corel SCRIPT) in the SCRIPTS folder, by default. If you use 
Corel VENTURA 7, scripts can be embedded into a VENTURA document as an internal script.

{button ,AL(`Trappable_error_codes;Script_programming_errors;cse_reference;Corel_SCRIPT_Dialog_
Editor;Dialog windows and the Corel SCRIPT Editor;;;',0,"Defaultoverview",)} Related Topics



Script basics
When you create or edit a script using the Corel SCRIPT Editor, you should keep the following in mind:

Each line can hold up to 1024 characters, including spaces. You can continue script commands and 
functions over lines by using double backslashes (\\) to break lines.

As you reach the right edge of the script window with text, the window scrolls to the right as needed. Text 
never wraps to the next line.

Each line in a Corel SCRIPT script can contain more than one statement or command. Multiple statements 
on a line are separated with a colon ( : ). 

Each line in a Corel SCRIPT script must be followed by a hard return. A hard return is inserted when you 
press ENTER.

Use tabs, blank lines, and multiple spaces to format your script to make it easier to read. Tabs, blank lines, 
and multiple spaces are ignored during script playback.

Use the arrow keys or the mouse to move the insertion point in the script window. Press the CTRL key with 
the left and right arrow keys to move from word to word. 

An indicator at the bottom of the script window shows the current line number. This can help you find and 
fix errors.

Like most other Windows text editors, you can use the Corel SCRIPT Editor to insert and delete text in 
script windows. The editor also has cut, copy, and paste features. 

You can have more than one script open in the Corel SCRIPT Editor at a time in a separate script window. 
Use the commands on the Window menu in the Editor to arrange the script windows or to switch to a different 
window. 

{button ,AL(`cse_reference;;;;;',0,"Defaultoverview",)} Related Topics



Formatting a script
If you want to improve the readability of a script, you can format it to include tabs, spaces, and blank lines. 
Formatting the script will not affect how it works. Formatted scripts also help you to find and fix errors. Here are 
some tips to make your scripts easier to read: 

Use remarks statements to document your scripts. At the beginning of the script, describe what the script 
does, how to use it, and give examples of its usage. See REM for more information about using remarks.    

Give your scripts meaningful names. You are not limited to the DOS file standard of 8 characters and 3 
characters. For example, instead of using gbo.csc, use Gold Bar Object.csc. It is more descriptive and, six 
months after writing the script, you will still remember what it does.

Give your variables meaningful names. You should also capitalize each word after the first or use the 
underscore character to separate words. While x, y, and z may sound like good variable names, they don't reveal 
anything about what is supposed to be stored in the variable. An example of better names include userMaleName,
character_Total, numberOfPicas and typeArray.

Group commands related to a certain function in the same area, and separate the groups using blank lines.
For example:

'Creates a new file
.FileNew 360, 504, 1, 300, 300, 0, 0, 0, -1, -1, -1, -1, 255, 255, 255, 0

'next 3 lines set default settings
.SetPaintColor 5, 0, 0, 0, 0
.PenSettings 17, 10, 0, 0, 0, 0, 0
.ShapeSettings 0, 2, 10, 0, 0

'next 3 lines draw a line
.StartDraw 91, 441
.ContinueDraw 213, 214
.EndDraw 

'saves the file
.FileSave "C:\myfolder\example.CPT", 1792, 0

When a set of statements lies within a functional area, indent the set to show that they form a subset. For 
example, with a FOR...NEXT structure, indent the lines after the FOR statement.

FOR a% = 1 To 4
[statements] 
FOR b% = 1 To 4

[statements] 
FOR c% = 1 To 4

[statements] 
NEXT c%

NEXT b%
NEXT a%

It is a generally accepted programming convention to put declaration statements at the beginning of a 
procedure.

Define any frequently used numbers or strings as constants. This way, if the value of the constant 
changes, you need only to change it at the top of the script, rather than throughout the script, everywhere it is 
used. Constants and variables should be defined at the beginning of the procedure in which they are used.

Limit the use of the GOTO statement. When you use the GOTO, make sure that you don’t create spaghetti
code 
 scripts that are impossible to trace through, because they repeatedly jump from one area of the script to another.

Your function and subroutines procedures should be self-contained. A variable required only within a 
procedure should be a local or static variable. Following this advice can make your procedures more modular, 
enabling you to copy them to other scripts with limited customization.

{button ,AL(`cs_fund;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT Editor debugging features
When you run a script, it may not always perform the way you expect. A script (or program) that does not work 
correctly is said to have a "bug" in it. The act of finding and correcting these problems is what is traditionally 
called "debugging." While some mistakes and typographic errors are often easily spotted by looking carefully at 
a script, some bugs are harder to find. In order to help you in your search, the Corel SCRIPT Editor includes a full 
set of debugging tools. You can use the following debugging tools in the Corel SCRIPT Editor.
Running a script 
An easy way to see if your script has any errors is to run it. If the script does not contain any errors, it executes 
to the last line. When you run a script that contains programming errors, playback is aborted at the first instance
of an error. The error is noted in the Compiler Output window of the Corel SCRIPT Editor. You can also set an 
option to check for variables that have not been initialized when you run the script.
Checking script syntax
You can check the syntax of each line in a script without running the script. Common syntax errors include 
misspelled commands, missing operators, and missing punctuation. If errors are found, error messages appear in
the Compiler Output window. 
Logic errors are the hardest to find and the only indication of a logic error may be a bad value or an unexpected 
result. The Corel SCRIPT Editor cannot tell you when a logic error is present, therefore it is up to you to test for 
and find these problems. To help you with this job, the Corel SCRIPT Editor provides the following tools to help 
you step through a script more carefully, tracking the values of variables and following the flow of execution:
Executing individual lines in a script
You can run individual script lines using the following commands on the Debug menu in the Corel SCRIPT Editor.
Run to Cursor Executes the script in the active script window to the position of the insertion 

point. Using the Run to Cursor command is similar to using a breakpoint.
Step Into Executes a script line by line. The Step Into command also steps into functions and

subroutines to execute them line by line. 
Step Over Executes a script line by line. The Step Over command executes an entire 

procedure (a function or    a subroutine) before stopping. 
Step Out Executes the remaining lines in a function or subroutine, returns, and stops at the 

line after the procedure call. 
Using a watch
Stepping through a script to watch the flow of execution can tell you a lot about how a script is performing. It is, 
however, often just as important to look at the contents of variables as a script runs to see what values they 
contain. You can monitor a variable's value during script execution with a Quickwatch or the Watch window.
Using breakpoints
When debugging long or complex scripts, it may be difficult to work with the step commands. If the script is long,
it's better to mark one or more lines where execution will stop to let you check how things are going. This is done
by setting breakpoints. 
Help
If you're having trouble understanding the syntax of a Corel SCRIPT, you can get reference information from the 
help file.

{button ,AL(`cse_reference;debugging_scripts;common_programming_errors;;script_errors;;',0,"Def
aultoverview",)} Related Topics



Corel SCRIPT Editor menu shortcut keys 
Script window 
active

Dialog window 
active

File Menu
CTRL+N New New
CTRL+O Open Open
CTRL+S Save Save
CTRL+P Print
Edit Menu
CTRL+Z Undo
CTRL+A Redo
CTRL+X Cut Cut
CTRL+C Copy Copy
CTRL+V Paste Paste
DEL Delete Delete
CTRL+D Duplicate
CTRL+K Comment
CTRL+U UnComment
ALT+ENTER Attributes
Search 
Menu
CTRL+F Find
CTRL+R Replace
CTRL+G Go To Line
F4 Next Error
SHIFT+F4 Previous Error
View Menu
ALT+1 Watch Window
ALT+2 Compiler Output 

Window
CTRL+T Test Dialog
SHIFT+CTRL
+G

Grid Settings

Debug 
Menu
F5 Run
CTRL+SHIFT
+F5

Restart

SHIFT+F5 Reset
F8 Step Into
F10 Step Over
SHIFT+F7 Step Out
CTRL+F5 Execute
CTRL+F5 Check Syntax
CTRL+W Quick Watch
F9 Toggle Breakpoint
Tools Menu
CTRL+SHIFT
+D

Dialog

CTRL+J Options Options



CTRL+T Test Dialog
CTRL+SHIFT
+G

Grid Settings

Layout 
Menu
F7 Size To Content
CTRL+Y Snap To Grid
Help Menu
F1 Help Topics
SHIFT+F1 What's This? What's This?

{button ,AL(`Corel_SCRIPT_Editor;Corel_SCRIPT_Editor_Basics;Corel_SCRIPT_Editor_windows;;;',0,"De
faultoverview",)} Related Topics



Using the Corel SCRIPT Editor to create dialog boxes    
Many times you need to get information from the user before your script performs a desired action. For simple 
information, you can use the Corel SCRIPT INPUTBOX statement to get a string from the user returned to a 
running script. If you want to provide the user with options and more complex information, such as a list of 
choices, you can use a dialog box in your script.
Along with creating and modifying Corel SCRIPT scripts, the Corel SCRIPT Editor can also be used to create and 
edit custom dialog boxes that can be used in a script. Working with dialog boxes in the Editor is similar to using a
drawing or painting application: Dialog controls are graphic objects which can be inserted, moved, resized, and 
aligned in a dialog box. 
Working with dialog boxes in the Corel SCRIPT Editor takes the place of creating and editing Corel SCRIPT 
statements in a script. A dialog box and its controls represent Corel SCRIPT statements; therefore the process of 
creating and editing them is visual. The following is an example of a dialog box created using the Corel SCRIPT 
Editor.

{button ,AL(`csde;Corel_SCRIPT_Dialog_Tips;;;;',0,"Defaultoverview",)} Related Topics



Dialog windows and the Corel SCRIPT Editor
Dialog boxes are edited in dialog windows. A dialog window can only be created and opened from a script 
window, which is used to modify scripts. A relationship exists between these two windows. The dialog window is 
considered a child of the parent script window. When the script window closes, the dialog window closes as well; 
however, the dialog window can be closed on its own.
A dialog window is opened by placing the insertion point within a script window and clicking Tools, Dialog. 
Depending where the insertion point is placed, the command either creates a new dialog box or opens an 
existing dialog. If the insertion point is placed in an existing dialog box definition, that dialog definition is sent to 
a dialog window to be displayed as a dialog box. If the insertion point is not placed in a dialog definition, a new 
dialog box is created in a dialog window and the BEGIN DIALOG   and   END DIALOG   statements are inserted into 
new lines immediately below the line that contained the insertion point in the script window.
In either case, as you edit the dialog box in the dialog window, the script that launched the dialog window 
reflects the changes you make to the dialog box. For example, if you add a check box to the dialog box, a 
CHECKBOX statement is added to the script. You cannot edit a dialog box definition in a script window while it is 
open in a dialog window. However, you can still continue to edit other statements in the script, including dialog 
box definition statements, that have not be launched to dialog windows. While a dialog box definition is open in a
dialog window, it appears in a different colored font than the rest of the script that launched it.
The following picture of the Corel SCRIPT Editor shows a script window which has launched a dialog window:

Once you have finished editing a dialog box in dialog window, close the window and the dialog box definition 
becomes available to be edited in a script window.
Note

The Corel SCRIPT Editor is a stand-alone program included with Corel applications. If you didn't install the 
Editor when you installed the Corel applications, you can run the Corel setup program again to install it. 

{button ,AL(`csde;Corel_SCRIPT_Dialog_Tips;;;;',0,"Defaultoverview",)} Related Topics





Working with dialog windows
The easiest way to work in dialog windows is to use the mouse, instead of the keyboard, to create and edit dialog
boxes and their controls, much the same way you do with a drawing or painting program. The mouse pointer in a
dialog window has two states: the Selector state (default status) and the Control state.
In the Selector state, the mouse pointer appears as  and is used to select, resize, and drag and drop dialog 
controls. You can also select, move, and resize dialog boxes. By default, the mouse pointer is in the Selector 
state, and when not in the Selector state can be reset by clicking 
 from the tool bar or clicking Control, Selector from the menu system.
In the Control state the mouse pointer appears as  and is used to create dialog controls. The mouse pointer can 
only be set to a Control state by clicking any of the dialog controls in the Control ribbon bar or any control under 
the Control menu.
Note

The mouse pointer can only appear in a Control state when it is positioned over a dialog box in an active 
dialog window.

{button ,AL(`csde;;;;;',0,"Defaultoverview",)} Related Topics



Dialog window features in the Corel SCRIPT Editor
Each time you create new dialog box in the Corel SCRIPT Editor, a dialog window opens containing a 

template of a dialog box. The template is a dialog box without any controls placed in it. From the window you can 
resize the dialog box, add and edit controls, and move the dialog box. 

When you move a dialog box within a dialog window, you are actually changing the dialog box's placement
on the screen when it is run in a script. Its placement changes because a dialog window represents your computer 
screen, and moving the dialog box changes its horizontal and vertical position attribute. For example, if the dialog 
box is placed in the bottom-right corner of its dialog window, it will appear on the bottom-right corner of a computer
screen when it is run in a script.      

You can have more than one dialog window open, but each window can only hold one dialog box. Having 
more than one window open enables you to copy dialog boxes and controls between windows. You can also copy 
and paste controls from dialog windows to scripts as dialog definition statements.

In addition to creating and editing dialog boxes, you can also test a dialog box's functionality from a dialog 
window.

Note
You can save a dialog box as a set of Corel SCRIPT statements. These statements can be used in other 

scripts by clicking File, Export. However, on their own, these statements cannot perform a task in a script.

{button ,AL(`csde;;;;;',0,"Defaultoverview",)} Related Topics



Inserting and deleting dialog controls
Inserting
To insert dialog controls into a dialog box, the mouse pointer must be in the Control state. To activate the Control
state, activate a dialog window and select a control from the Control menu or from the Control ribbon bar. Once 
in the Control state, the selected control can be added to the dialog box by clicking in the dialog box where you 
want the top-left corner of the selected control to appear. Each control has a default size setting. You can also 
use the click and drag method to insert controls in a dialog box.
After the control has been inserted, the mouse pointer reverts back to the Selector state. You can insert multiple 
controls of the same type by holding down the CTRL key as you select a control from the Control menu or the 
Control ribbon bar. The mouse pointer remains in the Control state until you press ESC or select the Selector Tool 
from the menu or ribbon.
Along with a default size setting, most controls have default text and value attributes when inserted in a dialog 
box. The text labels and values are updated for each instance of the control inserted in a dialog box. For 
example, the first push button inserted takes the text PushButton1. The second push button takes on the text 
PushButton2, and so on.
Deleting
Controls are not permanent fixtures in a dialog box and can be deleted if they are not required.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics



Editing dialog boxes and controls
Dialog boxes and their controls can be moved, copied, deleted, resized, and their attributes can be edited 
through a variety of methods. 
Moving and Resizing
By selecting a dialog box or control, you can move it or resize it using the mouse. Alternatively, opening a dialog 
box's or control's attribute box enables you to set position and size attributes.
Cut, Copy, Paste and Duplicate
The standard Windows Cut, Copy and Paste commands also function in a dialog window for dialog boxes and 
their controls. Additionally, the Duplicate command can help speed up your dialog box editing.
Label and identifier editing
You can edit a dialog box's or control's label and identifier setting by opening its attributes dialog box and editing
the settings.
Snap to Grid
If you're moving and resizing controls in a dialog box using the mouse, turning on Snap to Grid can help to align 
and position controls accurately. It also allows you to draw precisely sized controls. The grid is not displayed 
during a script run.
Note

When a dialog box or a control is selected, the Editor displays its attributes in the status bar, Properties 
Bar, or both (if enabled). The status bar also displays the mouse pointer position when it is positioned over a dialog 
box.

{button ,AL(`csde;Dialog_controls_summary;Dialog_box_conventions;;;',0,"Defaultoverview",)} 
Related Topics



Aligning and distributing dialog controls
Dialog boxes that are arranged symmetrically, centered, and have the controls aligned are easier to read and 
understand. The Corel SCRIPT Editor provides a complete set of tools to help you refine your dialog boxes. Using 
the tools you can:

Align controls along an edge
Distribute controls evenly 
Center controls in a dialog box
Make controls the same size
Size a control to its label

Snap to Grid
If you're moving and resizing controls in a dialog box using the mouse, turning on Snap to Grid can help to align 
and position controls accurately. It also allows you to draw precisely sized controls. The grid is not displayed 
during a script execution.
Note

When a dialog box or a control is selected, information about its attributes is displayed in the status bar. 
When the mouse pointer is over a dialog box, the status bar also displays information about the pointer's position.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics



Using dialog units to size and position dialog boxes and controls 
Sizing dialog boxes and controls
Every dialog box and dialog box control has a width and height attribute, expressed in dialog units. For width, a 
dialog unit is 1/4 the average width of the Corel system font. For height, a dialog unit is 1/8 the average height of
the Corel system font. In other words, a dialog unit for width and height are practically equal because, on 
average, the height of the Corel system font is twice its width (1/8 x 2=1/4). Creating a dialog box that is 200 
units (width) by 200 units (height) results in a dialog box that is a square or very close to a square.
Positioning dialog boxes and controls
Dialog controls also have attributes which hold position measurements in a dialog box. A control's vertical 
position is measured in width dialog units from the inside of the dialog box's left border to the left side of the 
control. A control's horizontal position is measured in height dialog units from the bottom of the dialog box's title 
bar to the top of the control.
A dialog box's position during a script run is also set with attributes which hold dialog unit measurements. The 
position of the left border, with respect to the left side of the monitor's display area, is measured in width dialog 
units. The position of the top border, with respect to the top of the monitor's display area, is measured in height 
dialog units.
A dialog box can be centered on the screen by either omitting the position attribute parameters in the BEGIN 
DIALOG statement, or by enabling the Center Dialog check box in the attributes dialog box in a dialog window.
When you create a new dialog box in the Editor, by default the dialog is placed in the top-left corner of the dialog
window with the Center Dialog attribute enabled. If the Center Dialog attribute is disabled, the dialog box is 
displayed in the monitor's top-left corner when run in a script because the dialog window is a representation of 
your monitor. When you move the dialog box within the dialog window, you are actually changing the dialog 
box's screen placement when it is run in a script. If you move the dialog box to the bottom-right corner of its 
dialog window, it will appear on the bottom-right corner of a monitor when run it us in a script.      
Note 

The Corel system font cannot be changed.
In some cases, changing the screen resolution will change a dialog box's appearance. If your dialog boxes 

will be used on a variety of screens at different resolution settings, you should test them at each setting to ensure 
they will be displayed properly.

{button ,AL(`csde;Dialog_controls_summary;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;',0,"
Defaultoverview",)} Related Topics



Default control sizes and labels
The following table lists each control's default width, height, and label settings, where applicable.
Control Width Height Label
Bitmap button 46 14 N/A
Cancel button 40 14 Cancel
Check box 50 10 CheckBoxN
Combo box 50 42 N/A
Drop-down combo 
box

50 42 N/A

Drop-down list box 50 42 N/A
Group box 50 40 N/A
Help button 40 14 Help
Horizontal slider 50 16 N/A
Image 40 40 N/A
Image List Box 50 42 N/A
List box 50 42 N/A
OK button 40 14 OK
Option button 58 10 OptionButtonN
Progress Indicator 50 8 N/A
Push button 46 14 PushButtonN
Spin control 50 12 N/A
Text 50 8 TextN
Text box 50 13 N/A
Vertical slider 16 45 N/A

Note
N is the Nth occurrence of the control in the dialog box.

{button ,AL(`csde;Dialog_controls_summary;Dialog_box_conventions;Corel_SCRIPT_dialog_controls;;'
,0,"Defaultoverview",)} Related Topics



Testing dialog boxes
You can test the dialog boxes you create to confirm that they meet your requirements and function properly in a 
dialog window. It is often easier to test a dialog box in a dialog window than by running it in a script.
To test a dialog box, set the dialog window to test mode. In test mode you can confirm the following dialog box 
features:

tab order within the dialog box
shortcut keys are operational
drop-down list box openings

Note
You cannot edit a dialog box in test mode.
The following controls are filled with place holders in test mode:

list boxes
drop-down list boxes
combo boxes
drop-down combo boxes
image boxes
bitmap buttons
spin controls

The place holders give you a better idea than an empty control of what the dialog box will actually look like
when it is run.

{button ,AL(`csde;Corel_SCRIPT_Dialog_Tips;Dialog_box_conventions;;;',0,"Defaultoverview",)} 
Related Topics





Corel SCRIPT and dialog boxes
Dialog boxes are created using the Corel SCRIPT language. The Corel SCRIPT language features a full set of 
programming statements to produce dialog boxes which incorporate sophisticated Windows options and 
features. For example, the Corel SCRIPT statements below create the following dialog box: 
BEGIN DIALOG Dialog1 55, 10, 180, 53, "A Corel SCRIPT dialog box example"
    OKBUTTON 130, 27, 40, 14
    CANCELBUTTON 130, 7, 40, 14
    OPTIONGROUP ogroup%
        OPTIONBUTTON 10, 9, 90, 10, "Corel&DRAW!"
        OPTIONBUTTON 10, 21, 90, 10, "Corel &VENTURA"
        OPTIONBUTTON 10, 33, 90, 10, "Corel &WordPerfect"
END DIALOG

The first and last statements initialize and end a dialog box's definition as well as specifying the dialog box's 
screen location and size attributes. Each indented statement specifies a dialog control, and the parameters 
specify the control's dialog box location, size, and other attributes
There are two methods for creating the Corel SCRIPT statements used to produce a dialog box. The first method 
is to use the Corel SCRIPT Editor and type in the dialog statements. This can prove to be a time-consuming 
option because each statement's parameters are particular and it is difficult to visualize the dialog box based on 
coordinate positions.
The second method is to use the Corel SCRIPT Editor to draw your dialog box. The dialog box, and the items in it,
are graphical representations of Corel SCRIPT statements. With the Corel SCRIPT Editor you can create or edit a 
dialog box in a few steps.
Note

The Corel SCRIPT Editor is a stand-alone program included with Corel applications. If you didn't install the 
Editor when you installed the Corel applications, you can run the Corel setup program again to install it. 

{button ,AL(`Static and dynamic dialog 
boxes;Corel_SCRIPT_dialog_controls;Corel_SCRIPT_Dialog_Editor;Dialog windows and the Corel 
SCRIPT Edito;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT dialog controls
A Corel SCRIPT dialog box is comprised of a border that encloses graphic elements called dialog controls. By 
using the mouse and keyboard, you can interact with the controls by selecting options, entering text, and 
pressing dialog box buttons. The following example is comprised of four types of dialog controls: an OK button, a 
Cancel button, three option buttons, and a group box.

Each control has its own set of underlying attributes. Each of the four types of controls above, and almost every 
other dialog control, have a height, width, horizontal location, vertical location, and text attribute. Additionally, most
controls also have a value attribute. The value is a variable that is assigned string and number values that reflect 
the state of the dialog box when it closes. These variables can then be used in a script to initiate actions dependent 
on their values.

In some cases controls don't return a value to a script because their only function is to organize the dialog box 
controls or to provide the user with information. In the above example, the group box is the only control that 
doesn't return a value to a running script but provides a logical grouping for the option buttons. 
Corel SCRIPT supports most sophisticated Windows dialog controls and the following dialog box provides an 
example of every dialog control available in Corel SCRIPT. See Dialog controls summary for more information.

{button ,AL(`Dialog_controls_summary;Returning_dialog_settings_and_choices;Corel_SCRIPT_Dialog_
Editor;Sizing_and_placing_dialogs_and_controls;Default_control_sizes_and_labels;',0,"Defaultovervie
w",)} Related Topics



Dialog controls summary
The following table lists all the dialog controls available in Corel SCRIPT. 

Control
Syntax
(static

reference)

Static dialog box
return values

Example
(click pop-up)

Bitmap button BITMAPBUTTON ID value (cannot 
equal 1 or 2) and 
closes the dialog

Cancel button CANCELBUTTON 2 and closes the 
dialog

Check box CHECKBOX 0 if disabled
1 if enabled
2 if mixed state

Combo box COMBOBOX string value
Drop-down combo box DDCOMBOBOX string value
Drop-down list box DDLISTBOX integer value 

corresponding to 
an array

Group box GROUPBOX doesn't return a 
value

Help button HELPBUTTON opens a help file at
a specified topic 
(does not close 
dialog box).

Horizontal Slider HSLIDER a value from 0 to 
100, inclusive

Image List Box IMAGELISTBOX string value 
Image IMAGE doesn't return a 

value
List box LISTBOX integer value 

corresponding to 
an array

OK button OKBUTTON 1 and closes the 
dialog

Option button OPTIONBUTTON value returns to 
OPTIONGROUP not
the dialog

Option group OPTIONGROUP integer value 
corresponding to 
the option button 
selected

Progress Indicator PROGRESS doesn't return a 
value

Push button PUSHBUTTON ID value (cannot 
equal 1 or 2) and 
closes the dialog

Spin control SPINCONTROL numeric value
Status control STATUS doesn't return a 

value
Text box TEXTBOX string value
Text TEXT doesn't return a 

value
Vertical Slider VSLIDER a value from 0 to 

100, inclusive



{button ,AL(`Corel_SCRIPT_dialog_controls;Returning_dialog_settings_and_choices;Working_with_dia
log_controls;Default_control_sizes_and_labels;Corel_SCRIPT_Dialog_Editor;',0,"Defaultoverview",)} 
Related Topics



Static and dynamic dialog boxes
Corel SCRIPT dialog boxes come in two types: static and dynamic.
Static dialog boxes
A static dialog box, as its name indicates, doesn't change; that is, users can manipulate the dialog controls and 
then click a push button to close the dialog controls. Except for the control settings, static dialog boxes cannot 
be altered in appearance.
See Returning static dialog box settings to a script for more information about using static dialog boxes.
Dynamic dialog boxes
Unlike static dialog boxes, dynamic dialog boxes can change their display contents based on user action such as 
clicking a push button or selecting a list item. Most Windows applications use dynamic dialog boxes. For 
example, click Tools, Options in the Corel SCRIPT Editor to open the Options dialog box: clicking on a tab changes
the dialog box appearance.
Dynamic dialog boxes are created the same way as static dialog boxes using the Corel SCRIPT Editor and dialog 
windows to create dialog definition statements. However, the definition statements in static and dynamic dialog 
boxes are not used the same way. Dynamic dialog boxes must respond each time the dialog box receives an 
action or an event occurs, while static dialog boxes do not have to respond immediately.
The following dynamic dialog box was created in Corel SCRIPT. This dialog box displays and hides different 
controls depending on the option button is selected: Sale or Expense.

Note
The BEGIN DIALOG and END DIALOG statements on their own cannot display a static or dynamic dialog 

box and hold return values during a Corel SCRIPT script execution. Use the DIALOG statement to display the dialog 
box.

Corel SCRIPT dialog boxes are modal; that is, a running script cannot continue until a dialog box is closed. 
However, a dynamic dialog box can open other dialog boxes, therefore, more than one dynamic dialog box can be 
open on the desktop.

{button ,AL(`Returning_dialog_settings_and_choices;Dynamic dialog box syntax;Dynamic Dialog 
Event Handler subroutine;;;',0,"Defaultoverview",)} Related Topics



Returning static dialog box settings to a script
Static dialog boxes are a simple way for users to provide information that can be used with other script 
operations. The information comes from the dialog control settings when the dialog box is closed. Each dialog 
control has a value associated with it that corresponds to its setting. 
Example
The following example shows how a static dialog box can return a value to a script.

BEGIN DIALOG Dialog1 16, 1, 184, 84, "Return a value"
PUSHBUTTON  19, 11, 70, 14, "Option &1"
PUSHBUTTON  19, 34, 70, 14, "Option &2"
PUSHBUTTON  19, 58, 70, 14, "&Option &3"
CHECKBOX  103, 37, 66, 10, "Click Checkbox", Y%

END DIALOG
'
' the next line defines the dialog return variable called "X"
X = DIALOG(Dialog1)    'this statement also displays the dialog box
The above code creates the following dialog box:

IF X = 3 THEN 
MESSAGE "Option 1 chosen"

ELSEIF X = 4 THEN 
MESSAGE "Option 2 chosen"

ELSE
MESSAGE "Option 3 chosen"

ENDIF

IF Y = 0 THEN 
MESSAGE "Check box disabled"

ELSEIF Y = 1 THEN 
MESSAGE "Check box enabled"

ELSE
MESSAGE "Check box in gray state"

ENDIF

The above script code opens a message box dependent on the dialog button pressed. The following message box
is displayed if the "Option 2" was selected:

The variable x holds the dialog return value and is used in conditional statements to initiate further actions. The 
Y variable holds a value corresponding to the check box state. 



Note
Each Corel SCRIPT static dialog control that returns a value, does so in its own manner. For more 

information on how a dialog control returns a value, see its syntax reference and its respective example. See Dialog 
controls summary for a complete listing of Corel SCRIPT dialog controls.

Corel SCRIPT dialog boxes are modal; that is, the running script cannot continue until the dialog box is 
closed.

Neither the BEGIN DIALOG nor the END DIALOG statement on its own can display a dialog box; the 
DIALOG function displays a dialog box after it has been defined with the BEGIN DIALOG and END DIALOG 
statements.

{button ,AL(`Dialog;Static and dynamic dialog 
boxes;Corel_SCRIPT_dialog_controls;Dialog_controls_summary;Transferring_and_saving_Corel_SCRIP
T_statements;Viewing_a_dialog_boxs_Corel_SCRIPT_statements;Working_with_dialog_controls;',0,"De
faultoverview",)} Related Topics



Changing focus in dialog boxes
Within a dialog box, only one control can have focus. Focus means that the control is active and can accept user 
input such as text or option selections. A dialog box's initial focus goes to the first control defined after the 
BEGIN DIALOG statement in a dialog box definition. 
To move from control to control in a dialog box, you can use the TAB key. As you move around, the dialog boxe's 
focus changes. A dialog box convention is to have the focus move from left to right and top to bottom as you TAB
through the controls. The TAB order is based on the order in which the controls are defined in the dialog box 
definition statements. You should try to place your control statements between the BEGIN DIALOG and END 
DIALOG statements in the order in which you want to TAB through a dialog.
Shortcut keys
An alternative to using the TAB key to move around a dialog box and change focus is to use shortcut keys. By 
placing an ampersand (&) before a character in a dialog box control's label you create a shortcut key. For 
example, in the following dialog box, pressing ALT+D changes the dialog focus to the first push button. 

Dialog box controls that don't have labels, such as text boxes or list boxes, can also take on shortcut keys if you 
create an association with a text control. To associate a text control with a dialog control, the text control statement 
in the Corel SCRIPT script must precede the unlabelled control statement. Association is not based on a control's 
dialog location.

The following example shows two text boxes with defined shortcut keys in a static dialog box:

BEGIN DIALOG Dialog1 55, 10, 97, 89, "Shortcut key example"
    TEXT 5, 4, 80, 8, "&Enter text here:"
    TEXTBOX 5, 13, 80, 12, text1$
    TEXT 5, 31, 80, 8, "&Here too:"
    TEXTBOX 5, 40, 80, 12, text2$
    OKBUTTON 5, 64, 80, 14
END DIALOG

Note
The initial focus of a dialog box should be a text box control, so that a user can start typing immediately 

once the dialog opens.
Pressing ENTER is a shortcut for clicking the OK button and the Close Dialog button (

) is a shortcut for the clicking the Cancel button.
To use a ampersand (&) in a dialog control's text label, it must be preceded by another ampersand, for 

example, "Cats && Dogs"

{button ,AL(`csde;;;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT dialog box tips
Editing dialog box tips

You can insert multiple controls of the same type by holding down the CTRL key as you select a control 
from the Control menu or from the Control ribbon bar. 

The dialog Grid and the Snap to Grid options can help you align and distribute your dialog controls.
List boxes and drop-down list boxes return integers that correspond to a selection from the array displayed 

in the control. The first array item returns 0, the second returns 1 and so on.
You can select more than one dialog control by holding down the SHIFT key while selecting, or by clicking 

the mouse and dragging across the dialog box in a dialog window.
General dialog box tips

In some cases, changing the screen resolution will change a dialog box's appearance. If your dialog boxes 
will be used on a variety of screens at different resolution settings, you should test the dialog boxes at each setting 
to ensure they will be properly displayed.

Instead of a custom dialog box, consider using a predefined Corel SCRIPT dialog box. Click 
 for more information.

Neither the BEGIN DIALOG nor the END DIALOG statement on its own can display a dialog box. The 
DIALOG function displays a dialog box after it has been defined with the BEGIN DIALOG and END DIALOG 
statements.

Pressing the Close Dialog button (
) is the same as pressing the Cancel button; both return 2 to the dialog box.

Use push buttons and bitmap buttons to open other dialog boxes. For example, within a script consider 
using a CASE statement to open another dialog box after a user has pressed a push button.

Pressing ENTER is a shortcut for clicking the OK button, and pressing ESC or the Close Dialog button (
) is a shortcut for clicking the Cancel button.

Corel SCRIPT dialog boxes are modal; that is, the running script cannot continue until the dialog box is 
closed. However, a dynamic dialog box can be used to open another dialog box.

{button ,AL(`Dialog_box_conventions;Corel_SCRIPT_and_dialog_boxes;Corel_SCRIPT_Dialog_Editor;;;'
,0,"Defaultoverview",)} Related Topics



Dialog box conventions
To make dialog boxes easier to understand at a quick glance, consider the following conventions when creating 
them:

Dialog boxes are read left to right and top to bottom. The dialog controls should be arranged in a way that 
allows a user to easily read the controls. The tab order should also follow the left-to-right and top-to-bottom 
convention.

The initial focus of a dialog box should be a text box control so that a user can start typing immediately 
once the dialog box opens.

Use sentence formatting for dialog text titles; that is, the initial character of the sentence should be in 
uppercase. The sentence should end with a colon, not a period, for example, Choose a file:.

Push button text should only have the initial character of each word in uppercase characters. For example, 
Close File not CLOSE FILE. If a push button option opens another dialog, the push button text should be followed 
by an ellipsis (...), for example, Printer Options... .

Group and position option buttons and check boxes vertically. Both option buttons and check boxes should 
be grouped in a logical manner. Avoid grouping option buttons and check boxes together. 

Consider using a list box of some type when you are providing    more than 6 choices.
Provide a shortcut key for every dialog control. For controls that don't use labels, such as text boxes and 

list boxes, create a shortcut key association with a text control.
Static text should be aligned to the control it is identifying.
Each dialog box should include both an OK and a Cancel button. The two buttons should be aligned 

horizontally in the bottom-right of the dialog box, or aligned vertically in the top-right of a dialog box. 

Sizing, aligning, and distributing dialog controls
Dialog controls of the same type should be the same size, especially in the case of push buttons, check 

boxes, option buttons, and list boxes.
Use a margin of 4 dialog units from the inside of the dialog box borders.
Separate groups of controls by 6 units both horizontally and vertically. Controls within a group can be 

separated by 2 units, except for option buttons and check boxes which do not need any separation.
Use the alignment and distribution tools to create a symmetrical look for dialog controls. 

{button ,AL(`Corel_SCRIPT_Dialog_Tips;Corel_SCRIPT_and_dialog_boxes;Corel_SCRIPT_Dialog_Editor;
Sizing_and_placing_dialogs_and_controls;Default_control_sizes_and_labels;',0,"Defaultoverview",)} 
Related Topics



Predefined dialog boxes in Corel SCRIPT
Corel SCRIPT provides predefined dialog boxes for your scripts. Most of these dialog boxes perform only a single 
function, but are easy to use and can save you the time it takes to program a custom dialog box . See the 
following Corel SCRIPT statements for more information about using predefined dialog boxes: 

GETCOLOR
GETFILEBOX
GETFOLDER
GETFONT
INPUTBOX
MESSAGEBOX
MESSSAGE

{button ,AL(`Corel_SCRIPT_Dialog_Tips;Corel_SCRIPT_and_dialog_boxes;;;;',0,"Defaultoverview",)} 
Related Topics



Dynamic dialog box syntax
Dynamic and static dialog boxes are both created using Corel SCRIPT dialog definition statements. However, the 
syntax of each dynamic dialog definition statement differs slightly from its static counterpart. The following 
script creates a dynamic dialog box which enables and disables option buttons depending on the state of the 
checkbox. Click the green hot spots in the script for a description of the dynamic dialog box syntax.

BEGIN DIALOG OBJECT Test 128, 88, 130, 62, "Dynamic", SUB Example1
CHECKBOX  7, 5, 74, 13, .CheckBox1, "Enable buttons"
OPTIONGROUP OptionGroup1%

OPTIONBUTTON 19, 20, 68, 10, .OptionButton1, "Corel VENTURA"
OPTIONBUTTON 19, 32, 68, 10, .OptionButton2, "CorelDRAW!"

OKBUTTON  85, 44, 40, 14, .OK1
END DIALOG

Test.CheckBox1.SETVALUE(1)
DIALOG Test

'The following section is a Dialog Event Handler subroutine
SUB Example1(BYVAL Control%, BYVAL Event%)

DIM ReturnValue%
IF Event = 0 THEN

Test.CheckBox1.SETTHREESTATE FALSE
ENDIF

IF Event = 2 THEN 
ReturnValue = Test.CheckBox1.GETVALUE()
Test.OptionButton1.ENABLE ReturnValue
Test.OptionButton2.ENABLE ReturnValue

ENDIF

END SUB

{button ,AL(`Static and dynamic dialog boxes;Dynamic Dialog Event Handler subroutine;Dialog 
Event Handler subroutine syntax;Using dynamic dialog box 
functions;Dynamic_dialog_functions_listing;',0,"Defaultoverview",)} Related Topics



Dynamic Dialog Event Handler subroutine
The biggest difference between a dynamic and static dialog box is that a dynamic dialog box uses a Dialog Event
Handler subroutine. This user-defined subroutine is specified in the BEGIN DIALOG statement. The Dialog Event 
Handler subroutine sends script instructions to a dynamic dialog box when an event or changes occur in a dialog 
box. For example, clicking a checkbox is a dialog event that can be used to trigger a change in a dialog box such 
as enabling or hiding a control.
The Dialog Event Handler subroutine is first called when a dynamic dialog box is initialized (opened and 
displayed with the DIALOG statement). After it is initialized, the subroutine is called continuously until the dialog
box is closed.
In the following script example, both statements begin a dialog box definition. The first statement is used with a 
static dialog box and the second statement is used with a dynamic dialog box. The second statement specifies 
Example1 as the Dialog Event Handler subroutine. Note that the dynamic dialog box syntax also uses the 
OBJECT keyword.
BEGIN DIALOG Test 128, 88, 130, 62, "Static"    '<-- Static dialog box
BEGIN DIALOG OBJECT Test 128, 88, 130, 62, "Dynamic", SUB Example1 '<-- Dynamic dialog box

See Dialog Event Handler subroutine syntax for more information. 

{button ,AL(`Script_procedures ;SUB_end_sub;Static and dynamic dialog 
boxes;all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics



Dialog Event Handler subroutine syntax
SUB Subname(BYVAL ControlID%, BYVAL EventCode%)

The above syntax must be used to specify a Dialog Event Handler subroutine. 
Syntax Definition
Subname Specifies the name of Dialog Event Handler subroutine. The name of the 

subroutine must correspond to the subroutine specified in dynamic dialog box's 
BEGIN DIALOG statement.

ControlID Specifies the variable that is passed a value corresponding to the dialog control 
that is generating a dialog event. The values correspond to the control's position in
the dialog box's definition statements. The first listed control is identified as 1, the 
second listed control is identified as 2, and so on. NOTE: Although, OPTIONGROUP 
is not a control, it still uses a position value. 
The following example illustrates ControlID numbering:
BEGIN DIALOG...
   CHECKBOX 7, 5, 74, 13, .CheckBox1, "Enable buttons"
   OPTIONGROUP OptionGroup1%
      OPTIONBUTTON 19, 20, 68, 10, .OptionButton1, "Corel VENTURA"
      OPTIONBUTTON 19, 32, 68, 10, .OptionButton2, "CorelDRAW!"
   OKBUTTON  85, 44, 40, 14, .OK1
END DIALOG
The check box is identified as 1, the option group is identified as 2, the first option 
button is identified as 3, and so on.

Event Specifies the variable that is passed a value corresponding to the dialog event that
occurs in the dialog box. The following events occur in a dialog box:
0 Dialog Initialization
1 Change in content
2 Clicking a control
3 Double-clicking a list box item
4 Change in focus
5 Time out
6 Resizing dialog box

Example
The following example shows the format of a typical Dialog Event Handler subroutine. This example doesn't show
the instructions sent to dynamic dialog box, but shows how to use the conditional IF...THEN...ENDIF statements
to set up a Dialog Event Handler subroutine. For more information about the instructions sent to dynamic dialog 
boxes, see Using dynamic dialog box functions. This example uses the same control examples used in the 
ControlID parameter, above. Click the green hot spots in the script for a description of the dynamic dialog box 
syntax.
SUB Example1(BYVAL ControlID%, BYVAL Event%)

IF Event = 0 THEN
REM send these instructions to the dialog box

ENDIF

IF Event = 2 THEN 
REM send these instructions to the dialog box

ENDIF

IF ControlID = 1 THEN 
REM send these instructions to the dialog box

ENDIF

IF Event = 2 THEN 
IF ControlID = 1 THEN 

REM send these instructions to the dialog box
ENDIF
IF ControlID = 3 THEN 

REM send these instructions to the dialog box
ENDIF

ENDIF

END SUB



Note
Both Dialog Event Handler subroutine parameters must be passed by value (BYVAL). 

{button ,AL(`all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics



Using dynamic dialog box functions
To set, change, or return attributes and settings in a dynamic dialog box, special dynamic dialog box functions 
must be used. The following section compares using controls in static dialog boxes to using controls in dynamic 
dialog boxes.
In static dialog boxes, use the control statement to set and to return a dialog control's attributes. For example, 
the following line from a script sets a the attributes of a check box:
LISTBOX 4, 14, 90, 50, ArrayList, SelectNum
The four numeric parameters set list box positioning, the ArrayList variable sets the array to use in the list box, 
and the SelectNum variable sets the default selection and holds the return value that corresponds to the 
selected list box entry.
To set the same options in a dynamic dialog box, the following lines of script code are required:
LISTBOX 4, 14, 90, 50, .ListBox1                'Line 1
DialogName.ListBox1.SETARRAY ArrayList          'Line 2
DialogName.ListBox1.SETSELECT SelectNum         'Line 3
ReturnValue = DialogName.ListBox1.GETSELECT( )  'Line 4

Line 1 is similar to the static statement; it sets the list box positioning but also creates an identifier 
(ListBox1) for the list box. This identifier is used to send messages to the list box. This line must be in the dialog 
box definition.

Line 2 uses the SETARRAY function to set the array used in the list box. The function is preceded by the 
control's identifier (ListBox1) and the dialog box's identifier (DialogName). The identifiers and functions must be 
separated by periods. Initial settings for a dialog box and its controls are normally set in the dialog box's Dialog 
Event Handler subroutine in the Dialog Initialization event. 

Line 3 is similar to Line 2, except that it uses the SETSELECT function to set the default list box selection.
Line 4 uses the GETSELECT function to return the selection in the list box to the ReturnValue variable. 

Normally, a function that returns a value appears after the dialog initialization statement (DIALOG), or within the 
Dialog Event Handler subroutine.

The above four Corel SCRIPT lines duplicate the functionality of a listbox in a static dialog box. However, you 
have more control over dynamic dialog boxes and their controls than their static counterparts. For example, you 
can also use the ENABLE function to disable a list box or the SETSTYLE function to hide the list box.
Each dialog control and dialog box uses a unique set of dialog box functions. To find the functions a dialog box or 
a control can use, see the dynamic dialog box and control syntax in the online help. The syntax overview for 
each dynamic dialog box function also indicates which dialog items they can be used with. See Dynamic dialog 
functions listing for a list of dynamic dialog box functions.

{button ,AL(`Dialog Event Handler subroutine syntax;Returning_dialog_settings_and_choices;Static 
and dynamic dialog boxes;Dynamic_dialog_functions_listing;;',0,"Defaultoverview",)} Related Topics



Dynamic dialog functions listing
The following functions can be used to set control values and settings in dynamic dialog boxes. 
ADDITEM
CLOSEDIALOG
ENABLE
GETBITMAPHEIGHT
GETBITMAPWIDTH
GETHEIGHT
GETHELPINDEX
GETHELPPATH
GETID
GETIMAGE
GETINCREMENT
GETITEM
GETITEMCOUNT
GETLEFTPOSITION
GETMAXRANGE
GETMINRANGE
GETPRECISION
GETSELECT
GETSTYLE
GETTEXT
GETTICK
GETTIMER
GETTOPPOSITION
GETVALUE
GETWIDTH
MOVE
REMOVEITEM
RESET
SETARRAY
SETBITMAPOFFSET
SETDOUBLEMODE
SETHELPINDEX
SETHELPPATH
SETIMAGE
SETINCREMENT
SETMAXRANGE
SETMINRANGE
SETPRECISION
SETSELECT
SETSTYLE
SETTEXT
SETTHREESTATE
SETTICK
SETTIMER
SETVALUE
SETVISIBLE



STEP

{button ,AL(`Using dynamic dialog box functions;Dialog Event Handler subroutine syntax;Dynamic 
Dialog Event Handler subroutine;;;',0,"Defaultoverview",)} Related Topics



Dialog Event 0: Dialog Initialization
The Dialog Initialization event occurs just before a dynamic dialog box is initialized. Initializing a dialog box 
means that it is being opened and displayed with the DIALOG statement. A dynamic dialog box can only be 
initialized once ; that is, a dialog event equal to 0 can only be passed to the Dialog Event Handler subroutine one
time.
The initialization event is the time to set the opening attributes for the dialog box and controls within it. By 
default, all dynamic dialog controls are enabled and visible. If you wanted to open a dialog box with some 
controls disabled or hidden, use Dialog Event 0 in the Dialog Event Handler subroutine. Other typical uses for the
Dialog Initialization event include setting default text in text boxes, specifying arrays for list boxes, and check 
box and spin control attributes.
Once the dialog box is initialized, Corel SCRIPT displays it based on the specifications in the dialog box's 
definition and the Dialog Event Handler's Dialog Initialization condition.
Note

Since a control is not used in generating the Dialog Initialization event, the ControlID parameter in the 
Dialog Event Handler subroutine does not have a valid return value.

You can also set the opening attributes for a dialog box by placing dynamic dialog box functions before the 
DIALOG statement in a script.

{button ,AL(`all_dialog_events;enable;getstyle;setstyle;;',0,"Defaultoverview",)} Related Topics



Dialog Event 1: Change in content
The Change in content event occurs whenever:

text is typed into a text box control
text is typed into the text box portion of a combination box control
arrow keys on the keyboard are used to move the slider indicator on a horizontal or vertical slider
a spin control value setting changes by either typing in the text box portion or using the arrow keys

Note
In addition to the Change in content event, you should consider using the Change in focus event when 

using text box controls.
When the Event parameter in the Dialog Event Handler subroutine is 1 (Change in content), the 

ControlID parameter corresponds to the dialog control that is changed.

{button ,AL(`all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics



Dialog Event 2: Change in control
The Change in control event is the most common type of event in a dynamic dialog box and generally occurs 
whenever a push button is clicked or a selection is made in a check box, option button, or any type of list box. 
This event also occurs whenever the mouse is used to drag the slider indicator on a horizontal or vertical slider.
Note

When the Event parameter in the Dialog Event Handler subroutine is 2 (Change in control), the ControlID 
parameter corresponds to the dialog control that is changed.

{button ,AL(`all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics



Dialog Event 3: Double-clicking a list box item
The Double-clicking a list box item event occurs whenever a user double-clicks an item in one of the five list 
boxes included in Corel SCRIPT:

list boxLISTBOX_dyn
drop-down list boxDDLISTBOX_dyn
combo boxCOMBOBOX_dyn
drop-down combo boxDDCOMBOBOX_dyn
image list boxIMAGELISTBOX_dyn

This event is often used as a shortcut for closing a dialog box or to update a dynamic dialog box's contents.
Note

When the Event parameter in the Dialog Event Handler subroutine is equal to 3 (Double-clicking a list box 
item), the ControlID parameter corresponds to the dialog control that is double-clicked. 

{button ,AL(`Script_programming_errors;all_dialog_events;Corel_SCRIPT_Editor_Debugging_Features
;message;;',0,"Defaultoverview",)} Related Topics



Dialog Event 4: Change in focus
The Change in focus event occurs whenever a control in a dynamic dialog box loses focus. Focus means that the 
control is active and can accept user input such as text or option selections. Only one control can have focus. A 
dialog box's initial focus goes to the first control defined after the BEGIN DIALOG statement in a dialog box 
definition. Controls lose focus whenever another control dialog control is selected or when you use the TAB or 
arrow key to move focus. The TAB order is based on the order in which the controls are defined in the dialog box 
definition statements. 
The Change in focus event is most often used to update dialog control settings after a user has typed into a text 
box control and has changed dialog box focus to another control. Many common Windows dialog boxes exhibit 
this behavior. For example, in the following Font dialog box, changing the value in the Size text box and then 
moving the dialog focus to another dialog control updates the Sample text box.

Note
When the Event parameter in the Dialog Event Handler subroutine is equal to 4 (Change in focus), the 

ControlID parameter corresponds to the dialog control that gains focus.
You should try to place your control statements between the BEGIN DIALOG and END DIALOG statements in

the order in which you want to TAB through a dialog.
You should be careful debugging a script using the Change in focus event and a message box. It is easy to 

create a endless loop that continually closes and displays a message box. 

{button ,AL(`Script_programming_errors;all_dialog_events;Corel_SCRIPT_Editor_Debugging_Features
;message;;',0,"Defaultoverview",)} Related Topics



Dialog Event 5: Timer
The Timer event occurs when the dialog timer runs down to or equals 0. By default, dynamic dialog boxes do not 
use a timer; you must use the SETTIMER function to set a dialog box's timer value. The following line sets the 
timer value for MyDialog dynamic dialog box to 3 seconds (or 3000 milliseconds):
MyDialog.SETTIMER(3000)
Using this setting, the MyDialog dialog box calls its Dialog Event Handler subroutine every 3 seconds looking for
an event condition equal to 4. The following example from a Dialog Event Handler subroutine displays a message
box each time the Timer event is called:
IF Event = 5 THEN

MESSAGE "Another 3 seconds of your life has passed"
ENDIF
Once the subroutine call has terminated, the timer is reset to its last SETTIMER value and starts to count down 
again.
You can use this event to automatically initiate an action such as closing a dynamic dialog box after a specified 
amount of time.
Note

The SETTIMER function should be placed before the DIALOG function in a script; it should not normally be
placed in the Dialog Event Handler subroutine, except to change it's value. 

Because of system speed limitations, setting the timer value to a low number may not give desired results.
For example, setting the timer to 300 milliseconds may actually result in the timer using more than 0.3 seconds.

{button ,AL(`closedialog;all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics



Dialog Event 6: Resizing dialog box
The Resizing dialog box event occurs when a custom dynamic dialog box is resized. A dialog box can only be 
resized if the SETSTYLE function is set to 2048. You can use this event to change dialog box control settings 
when you allow users to resize a dialog box. For example, if you allow users to resize a dialog box that uses an 
image control, you can set the image control so that it takes up a specified proportion of the dialog box size. 
Click the Example button above for more information.

{button ,AL(`closedialog;all_dialog_events;;;;;',0,"Defaultoverview",)} Related Topics





To print my own Corel SCRIPT manual
1. From a Corel SCRIPT Help window, click Contents or Help Topics button.
2. Click the Contents tab. 
3. Click the book or sub-book you want to print and then click the Print button.
4. Check your printer settings, then click OK. 
Note

Because Help prints one topic at a time and prints one topic per page, printing may take a lot of time and a
lot of paper.



To start Corel SCRIPT Editor using the Windows 95/NT Run command
1. On the Windows desktop, click Start, Run.
2. In the Open edit box, type the Editor's folder location and SCEDIT. 

For example, C:\COREL\PROGRAMS\SCEDIT 
Corel applications typically reside in the COREL\PROGRAMS folder.

Note
If you forget the location of the Corel SCRIPT Editor, click Browse.
After the program is started, the Corel SCRIPT Editor button is displayed in the Windows taskbar. 

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics



To start the Corel SCRIPT Editor from a Corel application

From your Corel application:
From CorelCAD: click Tools, Corel SCRIPT Editor. 
From CorelDRAW 6/7: click Tools, Scripts, Corel SCRIPT Editor.
From CorelFLOW 3: click Tools, Corel SCRIPT Editor.
From Corel PHOTO-PAINT 6/7: click Tools, Scripts, Corel SCRIPT Editor.
From Corel VENTURA 7: click Tools, Scripts, Corel SCRIPT Editor.

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics



To run a Corel SCRIPT script from a Corel application
1. Click Tools:

For CorelCAD 1: click Run Script. 
For CorelDRAW 6/7: click Scripts, Run Script.
For CorelFLOW 3: click Run Script.
For Corel PHOTO-PAINT 6/7: click Scripts, Run.
For Corel VENTURA 7: click Scripts, Run / Manage Script.

2. If the Corel SCRIPT script is not in the default folder, chose the drive and folder where it is stored. 
3. Double-click the Corel SCRIPT script you want to run. From VENTURA 7, select the script you want to run and 

click Run.
Notes

You can use wild cards (* and ?) if you're not sure of the name of the file you want to run. For example, 
typing script*.csc in the File Name box and clicking OK lists all CSC files in the selected folder beginning with 
script. Typing sc?.csc in the File Name box and clicking OK lists all CSC files in the selected folder that begin with 
sc and are followed by only one more character.

To run a script from your Corel application, the script must contain the WITHOBJECT construct.
You can't undo executed script commands. If you're not sure whether a script is running to your 

specifications, then before the script is executed, save the documents in the Corel application that will receive the 
script instructions .

You can terminate a script's execution by pressing CTRL+BREAK. 

{button ,AL(`app_Corel_SCRIPT;script_files;ht_play_script_cse;;;',0,"Defaultoverview",)} Related 
Topics



To start the Corel SCRIPT Editor from the Windows 95 desktop
1. On the Windows desktop, click Start, Programs.
2. Point to the folder that contains the Corel SCRIPT Editor if it does not appear on the main Program menu. 

Corel applications normally reside in the COREL folder.
3. Click Corel SCRIPT Editor (scedit.exe).
Note

After the program is started, the Corel SCRIPT Editor button is displayed in the Windows taskbar. 

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics



To start the Corel SCRIPT Editor from Windows NT
From the Windows Program Manager, double-click the Corel SCRIPT Editor.

Note
The Corel SCRIPT Editor icon normally resides in a Corel programs window group.

{button ,AL(`a_start_de;;;;;',0,"Defaultoverview",)} Related Topics



To start the Corel SCRIPT Editor with startup options

Startup options are commands that you can use when you start the Corel SCRIPT Editor.
1. On the Windows taskbar, click Start, Run.
2. Type C:\COREL\PROGRAMS\SCEDIT.EXE followed by a space, then type the startup options you want. The 

C:\COREL\PROGRAMS folder is based on a typical installation.

Startup options Action executed
SCEDIT.EXE Starts the Editor with a new script.
SCEDIT.EXE file Starts the Editor and opens a previously saved script. file specifies the name and 

path of the script to open.
SCEDIT.EXE /p file Prints a previously saved script to the default printer port. file specifies the name 

and path of the script to print.
SCEDIT.EXE /pt file port Prints a previously saved script to a specified printer port. file specifies the name 

and path of the script to print. port specifies the printer port.
SCEDIT.EXE /r file Executes a previously saved script or Corel SCRIPT Binary file. file specifies the 

name and path of the script or Binary to execute.
SCEDIT.EXE /n Starts the Editor without displaying the splash screen.
SCEDIT.EXE file /exe name Creates a Corel SCRIPT Executable from a script. file specifies the name and path 

of the script to use. name specifies the name and, optionally, the path of the 
executable to create.

SCEDIT.EXE file /dll name Creates a Corel SCRIPT dynamic link library (DLL) from a script. file specifies the 
name and path of the script to use. name specifies the name and, optionally, the 
path of the DLL to create.

SCEDIT.EXE file /cao name Creates a Corel Add-on (.CAO) from a script. file specifies the name and path of 
the script to use. name specifies the name and, optionally, the path of the Add-on 
to create.

SCEDIT.EXE file /csb name Creates a Corel SCRIPT Binary (.CSB) from a script. file specifies the name and 
path of the script to use. name specifies the name and, optionally, the path of the 
Binary to create.

SCEDIT /c commandline Starts the Editor and commandline sets the command line. 
Note

When you use more than one start-up option, add a space between options.

{button ,AL(`Creating Corel SCRIPT 
Executables;GETCOMMANDLINE ;a_start_de;;;;;',0,"Defaultoverview",)} Related Topics





To create a new script with the Corel SCRIPT Editor
Click File, New. An untitled document window opens.

Note
You can have multiple document windows opened in the Corel SCRIPT Editor.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics



To open a Corel SCRIPT script
1. Click File, Open.
2. If the Corel SCRIPT script is not in the default folder, chose the drive and folder where the Corel SCRIPT script 

is stored. 
3. Double-click the Corel SCRIPT script you want to open. 
Note

You can use wild cards (* and ?) if you're not sure of the name of the file you want to open. For example, 
typing script*.csc in the File Name box and clicking OK lists all CSC files in the selected folder beginning with 
script. Typing sc?.csc in the File Name box and clicking OK lists all CSC files in the selected folder that begin with 
sc and are followed by only one more character.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics



To close a Corel SCRIPT script
Click File, Close.

Note
If your changes have not been saved, a confirmation message appears.
To use this command, the script window you want to close must be active.
If you close a script window that has launched a still open dialog window, the dialog window also closes.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics



To save a Corel SCRIPT script
Click File, Save.

Note
If you're saving a new Corel SCRIPT script, type a name in the File name box.
If you issue this command with a dialog window active, Corel SCRIPT Editor saves the script that launched 

the dialog window. See Script windows and the Corel SCRIPT Editor for more information.
To save a Corel SCRIPT script with a new name, click File, Save As and type a new name in the File Name 

box.
To save all open scripts, click File, Save All.

{button ,AL(`ht_file_menu_cse;script_files;;;;',0,"Defaultoverview",)} Related Topics



To print a Corel SCRIPT script
Click File, Print.

Note
You can only issue this command if a script window is active. 
Click the Setup button from Printer dialog or click File, Print Setup to set the paper size and orientation as 

specified by the active printer.
Tip

If your script has lines longer than 80 characters, click File, Print Setup to change page orientation to 
landscape. The Corel SCRIPT Editor does not automatically wrap long lines when printing.

You can't print a dialog box from the Corel SCRIPT Editor directly, but you can work around this: First, press 
PRINT SCREEN on your keyboard to capture the screen contents to the Clipboard or ALT+PRINT SCREEN to capture 
the active window's contents. Then open a graphics program such as Corel PHOTO-PAINT or the Windows Paintbrush
and paste the Clipboard contents. From either one of these applications you can edit your screen capture and print.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics



To create a Corel SCRIPT Executable
1. Click File, Make EXE.
2. Type a name in the File name box.
3. Click Save.
Note

You can edit and change a script after it has been used to compile a Corel SCRIPT Executable without 
affecting the Executable.

Executables require that the Corel SCRIPT run-time interpreter be installed on the user's system when run. 
The run-time interpreter is a dynamic link library named SCINTxx.DLL where xx indicates the Corel SCRIPT major 
version number 
 for example SCINT70.DLL for Corel SCRIPT version 7.0. Click 
 for a list of locations a Corel SCRIPT Executable searches for the run-time interpreter.

{button ,AL(`cs_exe_dll;ht_exe_dll;GETVERSION;;;',0,"Defaultoverview",)} Related Topics



To run a Corel SCRIPT Executable

There are several ways to run a Corel SCRIPT Executable in Windows 95 or NT. Here are a few:
Right-click the Executable in the Windows Explorer and choose Open.
On the Windows 95/NT 4.0 desktop, click Start, Run. Enter the Executable name in the Open text box and 

click OK.
In Windows NT 3.51, select the Executable with the File Manager and click File, Run.

Note
Though you can't assign a Corel SCRIPT Executable directly to a toolbar in a Corel application, you can 

assign it to the Corel Application Launcher toolbar button. Click 
 for more information.

Corel SCRIPT Executables require that the Corel SCRIPT run-time interpreter be installed on the user's 
system when run. The run-time interpreter is a dynamic link library named SCINTxx.DLL where xx indicates the 
Corel SCRIPT major version number 
 for example SCINT70.DLL for Corel SCRIPT version 7.0 . Click 
 for a list of locations where a Corel SCRIPT Executable searches for the run-time interpreter.

{button ,AL(`cs_exe_dll;ht_exe_dll;GETVERSION;;;',0,"Defaultoverview",)} Related Topics



To create a dynamic link library
1. Click File, Make DLL.
2. Type a name in the File name box.
3. Click Save.
Note

DLLs created with Corel SCRIPT contain only one exportable function. This function is always named RUN. 
The RUN function executes the script commands in the script that was used to create the DLL.

DLLs, created with Corel SCRIPT, require that the Corel SCRIPT run-time interpreter be installed on the 
user's system when run. The run-time interpreter is a dynamic link library named SCINTxx.DLL, where xx indicates 
the Corel SCRIPT major version number 
 for example, SCINT70.DLL for Corel SCRIPT version 7.0. Click 
 for a list of locations where a DLL created with Corel SCRIPT searches for the run-time interpreter.

{button ,AL(`addresbmp;cs_exe_dll;ht_exe_dll;;;;',0,"Defaultoverview",)} Related Topics



To create a Corel Add-on using Corel SCRIPT 
1. Click File, Make CAO.
2. Type a name in the File name box.
3. Click Save.
Note

You can also write Corel Add-ons in a programming environment you are most familiar with such as Pascal, 
FORTRAN, C, or C++. See Developing Corel Add-ons for VENTURA for information about writing your own Add-ons. 

Corel Add-ons, created with Corel SCRIPT, require that the Corel SCRIPT run-time interpreter be installed on
the user's system when run. The run-time interpreter is a dynamic link library named SCINTxx.DLL, where xx 
indicates the Corel SCRIPT major version number 
 for example, SCINT70.DLL for Corel SCRIPT version 7.0. Click 
 for a list of locations where a Corel Add-on created with Corel SCRIPT searches for the run-time interpreter.

{button ,AL(`addresbmp;cs_exe_dll;ht_exe_dll;;;;',0,"Defaultoverview",)} Related Topics



To create a Corel SCRIPT Binary 
1. Click File, Make CSB.
2. Type a name in the File name box.
3. Click Save.
Note

Corel SCRIPT Binary files require that the Corel SCRIPT run-time interpreter be installed on the user's 
system when executed. The run-time interpreter is a dynamic link library named SCINTxx.DLL, where xx indicates 
the Corel SCRIPT major version number 
 for example, SCINT70.DLL for Corel SCRIPT version 7.0. Click 
 for a list of locations where a Corel SCRIPT Binary file created with Corel SCRIPT searches for the run-time 
interpreter.

You can run a Corel SCRIPT Binary file by double-clicking its icon in the Windows Explorer. Click 
 for information about running Corel SCRIPT Binaries.

Like scripts, Binaries can be assigned to shortcut keys, the menu system, or toolbar buttons. Click 
 for more information.

{button ,AL(`addresbmp;cs_exe_dll;ht_exe_dll;;;;',0,"Defaultoverview",)} Related Topics



To add or remove applications from the Corel Application Launcher

The Corel Application Launcher is a toolbar button  you can use to launch Corel applications, Corel SCRIPT 
Executables, and applications from other vendors. The list of applications on the Application Launcher is 
determined at the time of installation. 

You can add or delete other applications by editing the CORELAPP.INI which is located in the \COREL\CONFIG folder. 
Use a text editor such as the Windows NotePad or the Corel SCRIPT Editor to open the file, then locate the 
[Applications] section. 

To add an application, type its name as you want it to appear on the Application Launcher drop-down menu. 
Then, type an equals sign (=) and the path to the folder where the application is located. Next, type the 
application's executable file name. Using Corel PHOTO-PAINT as an example, the entry should look like this:
[Applications]
Corel PHOTO-PAINT = C:\COREL\PROGRAMS\CORELPNT.EXE
To remove an application from the Application Launcher, delete its entry in the [Applications] section.
Note

If the Corel Application Launcher is not available on a toolbar in the Corel SCRIPT Editor, click Tools, 
Customize. Click the Toolbars tab, then click the Tools folder in the Command categories box. In the buttons section 
of the dialog box, click the Application Launcher icon 
 to add it to the Toolbar.

{button ,AL(`cs_exe_dll;ht_exe_dll;cs_toolbar_cs;ht_ca_launching;;',0,"Defaultoverview",)} Related 
Topics



To launch applications from the Corel Application Launcher

1. Click the Corel Application Launcher toolbar button .
2. Click the application you want to run.

Note
If the Corel Application Launcher is not available on a toolbar in the Corel SCRIPT Editor, click Tools, 

Customize. Click the Toolbars tab, then click the Tools folder in the Command categories box. In the buttons section 
of the dialog box, click the Application Launcher icon 
 to add it to the Toolbar.

{button ,AL(`cs_exe_dll;ht_exe_dll;cs_toolbar_cs;ht_ca_launcher;;',0,"Defaultoverview",)} Related 
Topics



To close the Corel SCRIPT Editor
Click File, Exit.

Note
You are prompted to save any unsaved changes in any open documents.

{button ,AL(`ht_file_menu_cse;;;;;',0,"Defaultoverview",)} Related Topics





To undo editing operations
Click Edit, Undo.

Note
You can only issue this command if a script window is active; that is, custom dialog editing in a dialog 

window can't be undone.
You can't undo editing operations after the script has been saved.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics



To restore changes reversed by the Undo command
Click Edit, Redo.

Note
You can only issue this command if a script window is active; that is, you can't use the Redo command 

when editing a custom dialog in dialog window.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics



To copy text to another location
1. Select the text.
2. Click Edit, Copy.
3. Place the insertion point in the document window where you want paste the text.
4. Click Edit, Paste.
Note

The selected text remains on the Clipboard until you cut or copy another selection to it from any Windows 
application.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics



To cut text to move to another location
1. Select the text.
2. Click Edit, Cut.
3. Place the insertion point in the document window where you want paste the text.
4. Click Edit, Paste.
Note

The selected text remains on the Clipboard until you cut or copy another selection to it from any Windows 
application.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics



To delete text
1. Select the text you want to delete. 
2. Click Edit, Delete.

The selected text is not transferred to the Clipboard.
Note

You can also delete text without selecting it by pressing the BACKSPACE and DELETE key. The BACKSPACE 
key deletes text to the left of the insertion point and the DELETE key deletes text to the right of the insertion point.

Instead of using Edit, Delete, you can delete text by clicking Edit, Cut which transfers controls from the 
script to the Clipboard.

{button ,AL(`ht_edit_cse;;;;;',0,"Defaultoverview",)} Related Topics



To place REM statements at the beginning of script lines
1. Place the insertion point in the line where you want to place a REM statement. If you want to place REM 

statements in a contiguous block of statements, select the statements.
2. Click Edit, Comment.
Note

Script lines that begin with REM statements are ignored during script execution. This feature can be useful
during debugging sessions.

Use the UnComment command to remove REM statements from selected lines in a script.

{button ,AL(`rem;ht_uncomment;ht_comment;;;',0,"Defaultoverview",)} Related Topics



To remove REM statements from the beginning of script lines
1. Place the insertion point in the line where you want to remove a REM statement. If you want to remove REM 

statements in a contiguous block of statements, select the statements.
2. Click Edit, UnComment.
Note

Script lines that begin with REM statements are ignored during script execution. This feature can be useful
during debugging sessions.

{button ,AL(`rem;ht_uncomment;ht_comment;;;',0,"Defaultoverview",)} Related Topics





To find text
1. Click in the document where you want to begin searching.
2. Click Search, Find.
3. Enter the text you want to find in the Find What box.
4. Click Find Next.
Tip

To find and replace text, click Edit, Replace instead of Edit, Find.

{button ,AL(`ht_find_replace_cse;;;;;',0,"Defaultoverview",)} Related Topics



To find and replace text
1. Click in the document where you want to begin searching.
2. Click Search, Replace.
3. In the Find What box, enter the text you want to find.
4. In the Replace With box, enter the replacement text. 
5. Click Replace All to replace all occurrences of the text to find.
Note

To replace individual text occurrences, click Find Next, Replace instead of clicking Replace All.

{button ,AL(`ht_find_text_cse;;;;;',0,"Defaultoverview",)} Related Topics



To go to a line in the Corel SCRIPT Editor
1. Click Search, Go to Line.
2. In the Line number box, enter a line number.

{button ,AL(`next_prev;;;;;',0,"Defaultoverview",)} Related Topics



To go to the next error in a script
Click Search, Next Error.

Note
Before running this command, the Compiler Output window must display at least one error message and 

the insertion point must be in the script window. 
The line where the insertion point is sent has the 

 symbol displayed in its left margin. 

{button ,AL(`ht_debug;next_prev;;;;',0,"Defaultoverview",)} Related Topics



To go to the previous error in a script
Click Search, Previous Error.

Note
Before running this command, the Compiler Output window must display at least one error message and 

the insertion point must be in the script window. 
The line where the insertion point is sent has the 

 symbol displayed in its left margin. 

{button ,AL(`ht_debug;next_prev;;;;',0,"Defaultoverview",)} Related Topics





To view or hide Watch window 
Click View, Watch Window.

A check mark beside the Watch Window menu command indicates the Watch window is displayed.
Note

The Watch window can be resized by clicking on a border and dragging.

{button ,AL(`ht_statusbar;ht_watch;ht_compiler;Corel_SCRIPT_Editor_windows;;',0,"Defaultoverview
",)} Related Topics



To view or hide Compiler Output window
Click View, Compiler Output Window.

A check mark beside the Compiler Output Window menu command indicates the Compiler Output window is 
displayed.

Note
The Compiler Output window can be resized by clicking on a border and dragging.

{button ,AL(`ht_statusbar;ht_watch;ht_compiler;Corel_SCRIPT_Editor_windows;;',0,"Defaultoverview
",)} Related Topics





To change display colors in script windows
1. Click Tools, Options.
2. Click Colors tab.
3. Click the text item whose color you want to change in the Set Colors For box.
4. Click the text color you want in the Foreground list box.
5. Click the background color you want in the Background list box.
Tip

You can reset a text item or all text items to their original colors by clicking the Reset or Reset All buttons.
Note

The Display Code Colors checkbox must be enabled to use display colors.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics



To change display and print fonts in script windows
1. Click Tools, Options.
2. Click Font tab.
3. Click Change button. 
4. Click the font you want in the Font list box. Only monospaced fonts can be used in the Editor.
5. Click the style you want in the Font style list box.
6. Click the size you want in the Size list box.
Tip

You can reset the font to the Corel SCRIPT Editor's original settings by clicking the Reset button instead of 
the Change button. 

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics



To change tab width in script windows
1. Click Tools, Options.
2. Click Editor tab.
3. Enter a number in the Tab Width number box. Tab width is expressed in characters.
Tip

When the Auto Indent check box is in an enabled state, tabs are automatically inserted at the beginning a 
new line in a script. The tabs are inserted after you press Enter, and the number of tabs in the new line corresponds
to the number of tabs in the line that precedes it.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics



To automatically save scripts before executing them
1. Click Tools, Options.
2. Click Editor tab.
3. Click the Save Scripts Before Running checkbox. A check mark in the checkbox indicates this option is enabled.

Click checkbox again to disable this option.
Note

If you're running a new script that has yet been saved, you will be prompted to save before execution 
begins.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics



To set the folders search path for INCLUDE files

To add a folder to the search path:
1. Click Tools, Options.
2. Click Folders tab.
3. Click Add.
4. To select a folder, type a path and folder name in the Folder text box or click the Browse button to select an 

existing folder.

To remove a folder from the search path:
1. Click Tools, Options.
2. Click Folders tab.
3. Select a folder from the folder list box and click Remove.
Note

The folders are search according to their order in the folder list box.
The folder information is stored in the SCEDIT.INI file. See the INCLUDE statement for more information 

about including files in a script.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics



To prevent scripts from using implicitly declared variables
1. Click Tools, Options.
2. Click Environment tab.
3. Enable the Disable Implicit Declarations check box.
Note

For more information about explicit declaration, click 
.

{button ,AL(`cse_settings;;;;;',0,"Defaultoverview",)} Related Topics





To execute a script from the Corel SCRIPT Editor
Click Debug, Execute. The Execute command ignores all debugging information including script 

breakpoints during script execution.
Note

To debug a script, click Debug, Run. Running a script in debug mode in noticeably slower than running a 
script with the Execute command.

You can only issue this command if a script window is active. 
If the script you're running contains Corel application commands, the script must use the 

WITHOBJECT...END WITHOBJECT statements.
You can terminate a script's execution by pressing CTRL+BREAK. 
If you're running a new script that has yet been saved, you may be prompted to save before execution 

begins depending on your Corel SCRIPT Editor settings. See How to automatically save scripts before executing 
them for more information.

{button ,AL(`ht_open_file_cse;ht_close_file_cse;ht_debug;;;',0,"Defaultoverview",)} Related Topics



To run a script from the Corel SCRIPT Editor in debug mode
Click Debug, Run. In debug mode, script execution stops a breakpoints or when the end of the script is 

reached.
Note

Click Debug, Execute to ignore all debugging information during a script run. Running a script in debug 
mode in noticeably slower than running a script with the Execute command.

You can only issue this command if a script window is active. 
If the script you're running contains Corel application commands, the script must use the 

WITHOBJECT...END WITHOBJECT statements.
You can also use the procedure above to restart a paused script at the current line.
You can terminate a script's execution by pressing CTRL+BREAK. 
If you're running a new script that has yet been saved, you may be prompted to save before execution 

begins depending on your Corel SCRIPT Editor settings. See How to automatically save scripts before executing 
them for more information.

{button ,AL(`ht_open_file_cse;ht_close_file_cse;ht_debug;;;',0,"Defaultoverview",)} Related Topics



To stop the execution of a script at a breakpoint
Click Debug, Reset.

Note
You can only issue this command if a script window is active. 
You can only use this command when you've paused script execution by stepping, using breakpoints, or 

when script execution has finished. 

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To interrupt an executing script
Click CTRL+BREAK. 

Note
After interrupting a script, you can step through it. 

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To restart a script while debugging
Click Debug, Restart.

Note
You can only issue this command if a script window is active. 
You can only use this command when you've paused script execution by stepping, using breakpoints, 

pressing ESC, or when script execution has finished. 

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To execute a script one line at a time (Step Into)

To start stepping from the beginning of a script:
Click Debug, Step Into. Repeat the action for each line you want to execute.

To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Into. Repeat the action for each line you want to execute.
Note

The line with the 
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To execute a script one line at a time stepping over procedures (Step Over)

To start stepping from the beginning of a script:
Click Debug, Step Over. Repeat the action for each line you want to execute.

When a procedure is encountered, it is executed in its entirety. Execution is then paused after the procedure 
call.

To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Over. Repeat the action for each line you want to execute.

When a procedure is encountered, it is executed. Execution is then paused after the procedure call.
Note

The line with the 
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To execute a script to the first line after the current procedure call (Step Out)

To start stepping from the beginning of a script:
Click Debug, Step Out. 

The debugger runs to the first line following the current procedure call and pauses.

To start stepping from an intermediary position in the script.
1. Click Debug, Toggle Breakpoint where you want to begin stepping.
2. Click Run.

Script execution is paused at the breakpoint.
3. Click Debug, Step Out. 

The debugger runs to the first line following a procedure call and pauses.
Note

The line with the 
 symbol in its left margin is the next line to execute.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To add a variable to the Watch window
1. Place the insertion point on a variable in your script. 
2. Click Add Watch
Note

You can also add a variable to the Watch window by entering it in the Watch window text box.
Watches are not part of a script. Additionally, they cannot be saved and are lost when you close the script 

window.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To delete a variable from the Watch window
1. Select a watch in the watch window.

2. Click  in the Watch window.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To display a variable's value using the QuickWatch
1. Place the insertion point on a variable in your script. 
2. Click Debug, QuickWatch.
Note

You can use this command only when you've paused the script's execution by stepping or using 
breakpoints.

You can type in any variable in the QuickWatch window to return its current value.
You can type a value in the Value box to change the value of the variable or expression being watched.
Use the Convert button to change the data sub-type of a variant being watched. Before clicking, select a 

sub-type in the drop-down list box. Click 
 for more information about variants.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To add or remove a breakpoint
1. Place the insertion point on a line to which you want to add or remove a breakpoint.
2. Click Debug, Toggle Breakpoint.
Note

Breakpoints cannot be saved and are lost when you close the script window.
A line with a breakpoint has the 

 symbol in its left margin.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To run a script to the cursor
1. Place the insertion point on the line where you want the script execution to stop.
2. Click Debug, Run To Cursor.
Note

Since the insertion point acts as a breakpoint, using the Run to Cursor command is similar to using a 
breakpoint.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To clear all breakpoints
Click Debug, Clear All Breakpoints.

Note
Breakpoints cannot be saved and are lost when you close the script window.
A line with a breakpoint has the 

 symbol in its left margin.
You can only issue this command if a script window is active.

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics



To check a Corel SCRIPT script for syntax errors
Click Debug, Check Syntax.

Note 
If errors are found, error messages appear in the Compiler Output window. Double-click an error message's

line number in the Compiler Output window to send the insertion point to the line containing the error. The line with 
the error has the 
 symbol in its left margin after double-clicking.

You can only issue this command if a script window is active. 

{button ,AL(`ht_debug;;;;;',0,"Defaultoverview",)} Related Topics





To view all windows
Click Window, Tile Horizontally or click Window, Tile Vertically.

Note
Minimized windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related 
Topics



To cascade windows in the Corel SCRIPT Editor
Click Window, Cascade.

Note
Minimized windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related 
Topics



To close all windows in the Corel SCRIPT Editor
Click Window, Close All.

Note
You are prompted to save any unsaved changes in any open documents. 

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related 
Topics



To arrange minimized windows
Click Window, Arrange Icons

Note
Minimized windows are arranged at the bottom of the Corel SCRIPT Editor window.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related 
Topics



To keep the Corel SCRIPT Editor visible in Windows
Click Window, Always on Top. Choose the command again to turn off the setting.

Tip
Keeping the Corel SCRIPT Editor visible, even when another application is active, is helpful when you're 

debugging a script.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;debugging_scripts;;',0,"Defaultoverv
iew",)} Related Topics



To view an open window in the Corel SCRIPT Editor
Click Window and click the window you want to view. The open windows are noted at the bottom of the 

Window menu.

{button ,AL(`ht_windows_cse;ht_open_file_cse;ht_close_file_cse;;;',0,"Defaultoverview",)} Related 
Topics





To start online Help from Corel SCRIPT Editor
Click Help, Help Topics.

Note
Click the 

 (What's This) button and then click on an available menu command or other item on the Corel SCRIPT Editor to 
find out what it does.

{button ,AL(`cse_help;;;;;',0,"Defaultoverview",)} Related Topics



To open Corel SCRIPT online Help to a script keyword's syntax reference
1. Place the insertion point in the keyword you want help for.
2. Press F1.
Note

If the selected keyword is not found or the insertion point is not placed in a word, Corel SCRIPT online Help 
displays the Help Topics dialog box.

{button ,AL(`cse_help;;;;;',0,"Defaultoverview",)} Related Topics

















































CALL statement
CALL name parameter1, parameter2, ...
name parameter1, parameter2, ...

The CALL statement sends script execution to a procedure. Once a called procedure has terminated execution, 
script execution returns to the statement that follows the statement that called the procedure. You are not 
required to use the CALL keyword when calling the procedure; however, it is good programming practice to use 
to CALL keyword to help make your scripts easier to read. 

Syntax Definition
name Name of the procedure to execute; not case-sensitive.
parameter One or more optional arguments (variables, constants, or expressions), separated 

by commas, that are passed to the procedure. 
Note

In cases where the call to the procedure is placed ahead of the SUB or FUNCTION statement in a script, 
the procedure must first be declared with the DECLARE statement somewhere in the script above the call to the 
procedure. 

You have the option of using type-declaration characters or names in the SUB or FUNCTION statement. 
The number of parameters in a calling statement must match the number of subroutine or function 

parameters.
Parenthesis are required when calling a function. Functions use the assignment operator (=). In the 

following example, the function abc assigns a value to xyz:
xyz = abc (parameter1, parameter2, ...)

{button ,AL(`User_defined_functions ;User_defined_subroutines;DECLARE;SUB;return;;;',0,"Defaulto
verview",`main')} Related Topics



DECLARE statement
DECLARE FUNCTION name{%|&|!|#|@|$} (PASS parameter{%|&|!|#|@|$}, PASS parameter AS type, ...) AS 
returnType
DECLARE SUB name (PASS parameter{%|&|!|#|@|$}, PASS parameter AS type, ...)

In cases where a call to a procedure (a user-defined function or subroutine) is placed ahead of the SUB or 
FUNCTION statement in a script, the procedure must be first made available with the DECLARE statement. It is 
programming convention to place DECLARE statements at the top a program or script.

Syntax Definition
FUNCTION Used to declare a function.
SUB Used to declare a subroutine.
name {%|&|!|#|@|$}
or name ... AS returnType Declares the name of the user-defined procedure. Optionally you can declare the 

data type of the value returned by the function. The data type can be declared 
using a type-declaration character (the first option)or by using a type declaration 
name (the second option). The name and data type declaration (if exists) must 
correspond to the name and data type used in procedure defining statement 
(FUNCTION SUB).

parameter{%|&|!|#|@|$}
or parameter AS type Declares the procedure parameter and follows the Corel SCRIPT naming 

convention. Optionally you can declare the procedure parameter's data type. The 
data type can be declared using a type-declaration character (the first option)or 
by using a type declaration name (the second option). The parameter name and 
data type declaration (if exists) must correspond to the parameter name and data 
type used in procedure defining statement (FUNCTION or SUB).

PASS Determines how the variable it precedes in the script is passed to the procedure. 
PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of the variable it
precedes is passed by value. That is, the procedure accesses a copy of the 
variable and its value can't be changed by the procedure to which it was passed. 
When set to BYREF, the value of the variable it precedes is passed by reference 
and its value can be changed by the procedure. PASS is optional, and if omitted, 
Corel SCRIPT uses BYREF. 

Note
Parenthesis are required as shown in the syntax above.
User-defined subroutines and functions must be declared in the main section of a script file. See Script 

procedures for more information.
Use the DECLARE...LIB statement to call functions and subroutines in Windows dynamic link libraries (DLL

files).

{button ,AL(`cs_procedures_a ;User_defined_subroutines;using_functions_subroutines;call;function_
end_function;sub_end_sub;;',0,"Defaultoverview",)} Related Topics



Example for DECLARE and FUNCTION statements

REM main section of script file
DECLARE FUNCTION cube_function%(a%) 'function declaration 
DECLARE FUNCTION rank_function(a as INTEGER, b as STRING) as STRING
'
'
MESSAGE CSTR(cube_function(3)) 
MESSAGE rank_function(1, "Corel Script")
'
'
REM function section of script file
FUNCTION cube_function%(a%) 'function definition

cube_function = a^3
END FUNCTION
'
FUNCTION rank_function(a as INTEGER, b as STRING) as STRING

rank_function = b + " is #"+ CSTR(a)
END FUNCTION

In the above example, two functions are declared and defined. The first function cubes an integer and the 
second function creates a string. The result of each function is displayed in a message dialog box. Since the calls
to the functions are placed ahead of the functions in the script, the DECLARE statements are placed ahead of 
the calls.

{button ,AL(`example_vars;function_end_function;sub_end_sub;declare;;',0,"Defaultoverview",)} 
Related Topics



Example for DECLARE, SUB, and CALL statements

REM main section of script file
DECLARE SUB cube_sub(a%) 'sub declaration 
DECLARE SUB rank_sub(a as INTEGER, b as STRING)
'
'
CALL cube_sub 3   'calling with a CALL statement
rank_sub 1, "Corel Script"   'calling without a CALL statement
'
'
REM subroutine section of script file
SUB cube_sub(a%) 'sub definition

MESSAGE CSTR(a^3)
END SUB
'
SUB rank_sub(a as INTEGER, b as STRING)

MESSAGE b + " is #"+ CSTR(a)
END SUB

In the above example, two subroutines are declared and defined. The first subroutine, cube_sub, displays the 
result of cubing the subroutine's parameter in a message dialog box. The second subroutine, rank_sub, displays
the result of concatenating strings in a message dialog box.
The cube_sub is called with the CALL statement while rank_sub is not. Since the calls are placed ahead of the 
subroutines in the script, the DECLARE statements are placed ahead of the calls.

{button ,AL(`example_vars;function_end_function;sub_end_sub;declare;call;',0,"Defaultoverview",)} 
Related Topics



DECLARE...LIB statements
For declaring functions
DECLARE FUNCTION procName LIB "file" (PASS argument AS type, PASS argument AS type, ...) AS 
returnType ALIAS "aliasName" 
Syntax for declaring subroutines
DECLARE SUB procName LIB "file" (PASS argument AS type, PASS argument AS type, ...) ALIAS "aliasName"

Corel SCRIPT scripts can be used to call procedures in Windows dynamic link libraries (DLL files).
Before you can call an external procedure, it must be declared with the DECLARE...LIB statement. The 
statement specifies a DLL, a procedure within the DLL,    and the number and type of arguments passed to the 
procedure. Consult the DLL's technical reference before you call any of its functions. For example, to use the 
Windows DLLs, you need the Windows Software Development Kit.
Warning

You should save or back up essential files and programs before using functions and subroutines in DLL 
files. Passing invalid arguments to a function can result in a Windows General Protection Fault (GPF) or unstable 
system behavior.

Syntax Definition
FUNCTION Used to declare a function in a specified DLL.
SUB Used to declare a subroutine in a specified DLL.
procName String specifying the name of the procedure to call; must correspond to the 

procedure name in the DLL module where it resides; name matching is case-
sensitive. You have the option of using another name for the procedure if you 
specify the procedure's name using the ALIAS syntax part of the statement.

"file" String expression specifying the DDL to access. The DLL's extension and path 
should also be specified. If the DLL's path is not specified, Corel SCRIPT searches 
the system for it. Click  for the Corel SCRIPT location search order.

argument Variables that pass values to the procedure when it is called. You can use more 
than one argument but each argument's data type must be declared. Some 
procedures don't pass arguments but the brackets ( ) must still be used.

AS type Declares an argument's data type with a type declaration name. If the procedure 
uses an argument, a type declaration name must be used.

ALIAS "aliasName" String specifying the name of the called procedure; must correspond to the 
procedure name in the DLL module where it resides; name matching is case-
sensitive. This option must be used if the DLL procName is not in uppercase 
characters. You should also use an alias if the actual name of the procedure is a 
reserved Corel SCRIPT keyword. Quotation marks must be used.

PASS Determines how the variable it precedes in the script is passed to the procedure. 
PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of the variable it
precedes is passed by value. That is, the procedure accesses a copy of the 
variable and its value can't be changed by the procedure to which it was passed. 
When set to BYREF, the value of the variable it precedes is passed by reference 
and its value can be changed by the procedure. PASS is optional, and if omitted, 
Corel SCRIPT uses BYREF. 
If a procedure expects a BYREF parameter, it cannot be passed a non-variable (for 
example, a constant) since BYREF indicates that the called procedure can modify 
the contents of what you pass. Use BYVAL in all parameters that you do not expect
the called function to modify.

AS returnType Declares the data type of the value returned by the function with a type 
declaration name.

Note
You can declare an argument's data type using a Corel SCRIPT type declaration character, for example, X$ 

instead of X AS STRING      
The DECLARE...LIB statement can be placed anywhere in a script before the first call to the declared 

procedure.
You might not be able to use a DLL procedure that uses a variable type that is not supported by Corel 

SCRIPT. See Corel SCRIPT data type summary  for a list of supported data types. Declare unsupported data types as 
a Corel SCRIPT data type if the unsupported data type uses the same number of bytes as a Corel SCRIPT data type. 



For example, most Win32 procedures expect LONG (4 byte) integers, therefore the Core SCRIPT data type INTEGER 
(2 byte) will not work for these procedures. In these cases, change Parameter as INTEGER to Parameter as 
LONG.

The "A" character must be added to the end of alias with almost all Windows procedures using string 
parameters. The common name of a procedure doesn't really exist in the Windows DLL. Instead, there are in two 
versions of these Windows procedures. For example the FindWindow procedure has two versions 
 one for ANSI strings (FindWindowA) and one for UNICODE strings (FindWindowW). Since Corel SCRIPT uses 
ANSI strings, you must use the ANSI version of the procedure.    

If you declare a procedure wrongly, for instance, use INTEGER in place of LONG, you may get unexpected 
results (even General Protection Faults) while running the script. This is because Corel SCRIPT expects the 
declaration to be correct; there is no way of verifying the types of parameters that a DLL procedure expects with 
what is declared.

{button ,AL(`Using_Dynamic_Link_Libraries;getapphandle;getwinhandle;declare;function_end_functi
on;sub_end_sub;call;Corel_SCRIPT_advanced_programming_features;',0,"Defaultoverview",)} 
Related Topics



Corel SCRIPT location search order

Corel SCRIPT searches for DLLs specified with the DECLARE...LIB statement and the 
SCPINTxx.DLL (run-time interpreter file where xx indicates the major version number) used with 
Corel SCRIPT Executables in the following locations and order:
1. The folder from which the script or executable was loaded.
2. The active folder.
3. The system subfolder in the Windows folder for Windows 95 and Windows NT.
4. The Windows folder.
5. The folders listed in the system's PATH environment variable. Type PATH in an MS-DOS window

for a list.
For more information about version numbers see the GETVERSION function.



Examples of DECLARE...LIB statement
DECLARE FUNCTION GetActiveWindow LIB "C:\WINDOWS\user.exe" ( ) AS INTEGER
DECLARE SUB CloseWindow LIB "C:\WINDOWS\user.exe" (win AS INTEGER)
The first statement defines a procedure named GetActiveWindow (a Windows function that does not require a 
type-declaration character). The executable code for this procedure is stored in "user.exe" which is actually a 
dynamic link library without a DLL extension. The brackets ( ) indicate an empty parameter list, and the 
keywords AS INTEGER describes the type of value the function returns.
The second statement is similar, except that a SUB procedure does not return a value. The parameter's data 
type is declared with an AS keyword, as shown by (win AS INTEGER).
The following are some examples of the DECLARE...LIB statement using Windows DLL files:

DECLARE FUNCTION FindWindow LIB "user32" (BYVAL classname AS LONG,BYVAL title AS STRING) AS 
INTEGER ALIAS "FindWindowA"
Looks for a given window title and class. Returns the handle of that window.

DECLARE FUNCTION SetFocus LIB "user32" (BYVAL hwnd AS INTEGER) AS INTEGER ALIAS "SetFocus"
Gives focus to a specified window.

DECLARE FUNCTION WinExec LIB "kernel32" (BYVAL path AS STRING,BYVAL shw AS INTEGER) AS INTEGER 
ALIAS "WinExec"
Executes the specified executable (.exe). 

DECLARE FUNCTION GetActiveWindow LIB "user32" () AS INTEGER ALIAS "GetActiveWindow" 
Returns the handle of the active window.

DECLARE SUB CloseWindow LIB "user32" (BYVAL win AS INTEGER) ALIAS "CloseWindow"
Closes the specified window.

{button ,AL(`declare;function_end_function;sub_end_sub;call;Corel_SCRIPT_advanced_programming_
features;',0,"Defaultoverview",)} Related Topics



FUNCTION and END FUNCTION statements
FUNCTION name{%|&|!|#|@|$} (PASS parameter{%|&|!|#|@|$}, PASS parameter AS type, ...) AS type

[statements]
END FUNCTION

The FUNCTION statement is the first line of a user-defined function and END FUNCTION is the last line. A 
function is a series of Corel SCRIPT statements that are executed to return a single value. You should use 
subroutines and functions when you want to repeat a series of Corel SCRIPT statements in a script. Using these 
user-defined procedures can make your scripts easier to change and debug.
You use, or call, a user-defined function the same way that you call any other Corel SCRIPT programming 
function. Calling statements consist of a function name, which can be followed by one or more parameter values 
that are passed to the function. If there are no parameters, empty parentheses must follow the function name. 
The number of parameters in a calling statement must match the number of function parameters. In cases 
where the call to function is placed ahead of the FUNCTION statement in a script, the function must be first 
declared with the DECLARE statement. Functions do not execute unless they are called. 
For more information about functions, see Script Procedures.

Syntax Definition
name{%|&|!|#|@|$}
or name...AS TYPE Specifies the name assigned to the function. It follows the Corel SCRIPT naming 

convention. Optionally, you can declare the data type returned by the function. 
The data type can be declared using a type-declaration character (the first 
option)or by using a type declaration name (the second option). If the type is not 
specified, the function returns a variant. 

parameter{%|&|!|#|@|$}
or parameter AS type Specifies the variable(s) that store the value(s) that is passed to the function. The 

variables follow the Corel SCRIPT naming convention. Optionally, you can declare 
the data type of the variable. The data type can be declared using a type-
declaration character (the first option)or by using a type declaration name (the 
second option). If the type is not specified, the parameter is a variant.

 [statements] Script instructions that are executed when the function is called. The instructions 
may return a value, but it is not necessary.

PASS Determines how the variable it precedes in the script is passed to the procedure. 
PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of the variable it
precedes is passed by value. That is, the procedure accesses a copy of the 
variable and its value can't be changed by the procedure to which it was passed. 
When set to BYREF, the value of the variable it precedes is passed by reference 
and its value can be changed by the procedure. PASS is optional, and if omitted, 
Corel SCRIPT uses BYREF. 

Note
Parameters are optional in the FUNCTION statement but the parentheses are required.
It's a generally accepted programming convention to indent function statements. 
Use the DECLARE...LIB statement to declare functions and subroutines in Windows dynamic link libraries 

(DLL files).
Your function and subroutines procedures should be self-contained; that is, a variable only required within a

procedure should be a local or static variable. Following this advice can make your procedures more modular, 
enabling you to copy them to other scripts with limited customization.

A function cannot be defined inside another function or subroutine.
Functions can be called from a function, or functions can be called recursively. For an example of a 

recursive function click 
.

You can immediately exit a function with the EXIT statement. Script execution is sent to the script 
instruction which follows the call to the function.

{button ,AL(`cs_procedures_a ;Script_procedures ;using_functions_subroutines;declare;static;call;su
b_end_sub;;;',0,"Defaultoverview",)} Related Topics



Example of recursive function

REM Example of factorial function

FUNCTION facto(BYVAL a%) AS INTEGER
    IF a%>1 THEN
        facto = facto(a-1)*a
    ELSE
        facto = 1
END FUNCTION

x% = facto(4)
message x

In the above example, the facto function is used to calculate a factorial. For example, the factorial of 4 equals 
4*3*2*1 or 24. The above function multiplies the parameter by (parameter less 1) until the (parameter less 1) 
equals 1. The result, 24, is displayed in a message box. 
The facto parameter is passed by value (BYVAL). 

{button ,AL(`example_vars;function_end_function;sub_end_sub;declare;;',0,"Defaultoverview",)} 
Related Topics



SUB...END SUB statements
SUB name (parameter{%|&|!|#|@|$}, parameter AS type, ...)

[statements]
END SUB

The SUB statement is the first line of a user-defined subroutine and END SUB is the last line. A subroutine is a 
series of Corel SCRIPT statements that are executed when called. Unlike functions, subroutines don't return a 
value. You should use subroutines and functions when you want to repeat a series of Corel SCRIPT statements in 
a script. Using these user-defined procedures can make your scripts easier to change and debug. Subroutines 
cannot execute unless called.
To use or call a subroutine, see the CALL statement. In cases where the call to subroutine is placed ahead of the 
SUB statement in a script, the subroutine must be first declared with the DECLARE statement. For more 
information about subroutines, see Script Procedures.

Syntax Definition
name Specifies the name assigned to the subroutine. It follows the Corel SCRIPT naming 

convention. 
parameter{%|&|!|#|@|$}
or parameter AS type Specifies the variable(s) that store the value(s) that is passed to the subroutine. 

The variables follow the Corel SCRIPT naming convention. Optionally, you can 
declare the data type of the variable. The data type can be declared using a type-
declaration character (the first option)or by using a type declaration name (the 
second option). 

[statements] Script instructions that are executed when the subroutine is called.
PASS Determines how the variable it precedes in the script is passed to the procedure. 

PASS can be set to BYVAL or BYREF. When set to BYVAL, the value of the variable it
precedes is passed by value. That is, the procedure accesses a copy of the 
variable and its value can't be changed by the procedure to which it was passed. 
When set to BYREF, the value of the variable it precedes is passed by reference 
and its value can be changed by the procedure. PASS is optional, and if omitted, 
Corel SCRIPT uses BYREF. 

Note
Subroutines and functions are both Corel SCRIPT procedures that execute instructions but functions can 

also return values. 
Use the DECLARE...LIB statement to declare functions and subroutines in Windows dynamic link libraries 

(DLL files).
Your function and subroutines procedures should be self-contained; that is, a variable only required within a

procedure should be a local or static variable. Following this advice can make your procedures more modular, 
enabling you to copy them to other scripts with limited customization. Subroutine variables are local to the 
subroutine. A variable with the same name as a subroutine variable can be used elsewhere in the script without 
conflict.

The number of parameters in a subroutine calling statement must match the number of subroutine 
parameters.

A subroutine cannot be defined inside another subroutine.
Subroutines can be called from a subroutine, or a subroutine can be called recursively.
Subroutines can include line number and line labels which are not visible outside the subroutine. A line 

label inside a subroutine should not have the same name as a subroutine or function. For more information about 
line numbers and labels see the GOTO statement.

It's a generally accepted programming convention to indent subroutine statements. 
You can immediately exit a subroutine with the EXIT statement. Script execution is sent to the script 

instruction which follows the call to the subroutine.

{button ,AL(`cs_procedures_a ;Script_procedures ;function_end_function;using_functions_subroutine
s;declare;call;;;',0,"Defaultoverview",)} Related Topics



Corel SCRIPT character map
Corel SCRIPT uses the American National Standards Institute (ANSI) character mapping. At 256 characters, the 
ANSI character set offers twice as many characters as ASCII text, including special characters such as the 
copyright symbol, accents, and mathematical and currency symbols. 
The first 128 characters (numbers 0-127) in the ANSI set correspond to characters on a standard U.S. keyboard, 
and include many non-printing characters. The second 128 characters (numbers 128-255) return different 
characters, depending on the font used.
Because some character symbols in Corel SCRIPT are reserved for use in syntax, such as quotation marks for 
defining strings, the CHR function and ANSI character codes should be used to include special symbols in a 
script. For example, to add double quotation marks to a string variable, you use ANSI character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use the function to add a return and a line feed    within a string, with character 13 and 10, 
respectively:
s$ = "String 1" + CHR(13) + CHR(10) + "String 2"
MESSAGE s$
The result will be the two strings on separate lines, as displayed in the message box.

Character Set (ANSI 0 - 127)
Character Set (ANSI 128 - 255)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics



Character Set (ANSI 0 - 127)
0  32  [SPACE] 64  @ 96  `
1  33  ! 65  A 97  a
2  34  " 66  B 98  b
3  35  # 67  C 99  c
4  36  $ 68  D 100  d
5  37  % 69  E 101  e
6  38  & 70  F 102  f
7  39  ' 71  G 103  g
8  [BACKSPACE] 40  ( 72  H 104  h
9  [TAB] 41  ) 73  I 105  i

10  [LINEFEED] 42  * 74  J 106  j
11  43  + 75  K 107  k
12  44  , 76  L 108  l
13  [RETURN] 45  - 77  M 109  m
14  46  . 78  N 110  n
15  47  / 79  O 111  o
16  48  0 80  P 112  p
17  49  1 81  Q 113  q
18  50  2 82  R 114  r
19  51  3 83  S 115  s
20  52  4 84  T 116  t
21  53  5 85  U 117  u
22  54  6 86  V 118  v
23  55  7 87  W 119  w
24  56  8 88  X 120  x
25  57  9 89  Y 121  y
26  58 : 90  Z 122  z
27  59  ; 91  [ 123  {
28  60  < 92  \ 124  |
29  61  = 93  ] 125  }
30  62  > 94  ^ 126  ~
31  63  ? 95  _ 127  

Note
Characters displayed with a 

 do not have a graphical representation in ANSI.

Character Set (ANSI 128 - 255)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics



Character Set (ANSI 128 - 255)
128  160 [SPACE] 192 À 224 à
129  161 ¡ 193 Á 225 á
130  162 ¢ 194 Â 226 â
131  163 £ 195 Ã 227 ã
132  164 ¤ 196 Ä 228 ä
133  165 ¥ 197 Å 229 å
134  166 ¦ 198 Æ 230 æ
135  167 § 199 Ç 231 ç
136  168 ¨ 200 È 232 è
137  169 © 201 É 233 é
138  170 ª 202 Ê 234 ê
139  171 « 203 Ë 235 ë
140  172 ¬ 204 Ì 236 ì
141  173 205 Í 237 í
142  174 ® 206 Î 238 î
143  175 ¯ 207 Ï 239 ï
144  176 ° 208 Ð 240 ð
145 ‘ 177 ± 209 Ñ 241 ñ
146 ’ 178 ² 210 Ò 242 ò
147  179 ³ 211 Ó 243 ó
148  180 ´ 212 Ô 244 ô
149  181 µ 213 Õ 245 õ
150  182 ¶ 214 Ö 246 ö
151  183 · 215 × 247 ÷
152  184 ¸ 216 Ø 248 ø
153  185 ¹ 217 Ù 249 ù
154  186 º 218 Ú 250 ú
155  187 » 219 Û 251 û
156  188 ¼ 220 Ü 252 ü
157  189 ½ 221 Ý 253 ý
158  190 ¾ 222 Þ 254 þ
159  191 ¿ 223 ß 255 ÿ

Note
Characters displayed with a 

 do not have a graphical representation in ANSI.

Character Set (ANSI 0 - 127)

{button ,AL(`using_strings;chr;cs_character_map;;;',0,"Defaultoverview",)} Related Topics



Reserved keywords
The following keywords are reserved by Corel SCRIPT and cannot be used as variable, constant, procedure, 
function, subroutine, parameter, or array names:

ABS
ACOS
ADDFOL
ADDITEM
ADDRESBIN
ADDRESBMP
ADDRESICO
ALIAS
AND
ANGLECONVERT
APPEND
AS
ASC
ASIN
AT
ATAN

BEEP
BEGIN
BEGINWAITCURSOR
BITMAPBUTTON
BOOLEAN
BUILDDATE
BUILDTIME
BYREF
BYVAL

CALL
CANCELBUTTON
CASE
CBOL
CCUR
CDAT
CDBL



CHECKBOX
CHR
CINT
CLNG
CLOSE
CLOSEDIALOG function
COMBOBOX
CONST
COPY
COS
CSNG
CSTR
CURRENCY

DATA
DATE
DDCOMBOBOX
DDLISTBOX
DEC
DECLARE
DEFINE
DIALOG
DIM
DO
DOUBLE

ELSE
ELSEIF
ENABLE
END
ENDIF
ENDWAITCURSOR
EOF
EQV
ERROR
EXIT
EXP

FAIL
FALSE
FIELD
FILEATTR
FILEDATE
FILEMODE
FILEPOS
FILESIZE
FINDFIRSTFOLDER
FINDNEXTFOLDER
FIX



FOR
FORMATDATE
FORMATTIME
FREEFILE
FROMCENTIMETERS
FROMCICEROS
FROMDIDOTS
FROMINCHES
FROMPICAS
FROMPOINTS
FUNCTION

GET
GETAPPHANDLE
GETBITMAPHEIGHT
GETBITMAPWIDTH
GETCOLOR 
GETCOMMANDLINE 
GETCURRDATE
GETCURRFOLDER
GETDATEINFO
GETFILEBOX
GETFOLDER
GETFONT
GETHEIGHT
GETHELPINDEX
GETHELPPATH
GETIMAGE
GETID
GETINCREMENT
GETITEM
GETITEMCOUNT
GETLEFTPOSITION
GETMAXRANGE
GETMINRANGE
GETPRECISION
GETPROCESSINFO
GETSCRIPTFOLDER
GETSELECT
GETSTYLE
GETTEMPFOLDER
GETTEXT
GETTICK
GETTIMEINFO
GETTIMER
GETTOPPOSITION
GETTYPE
GETVALUE
GETVERSION



GETWIDTH
GETWINHANDLE
GLOBAL
GOSUB
GOTO
GROUPBOX

HELPBUTTON
HEX
HSLIDER

IF
IMAGE
IMAGELISTBOX
IMP
INCLUDE
INPUT
INSTR
INT
INTEGER
IS

KILL

LBOUND
LCASE
LEFT
LEN
LENGTHCONVERT
LET
LIB
LINE
LISTBOX
LN
LOCK
LOF
LOG
LONG
LOOP
LSET
LTRIM

MESSAGE
MESSAGEBOX
MID
MKFOLDER
MOD
MOVE



NEXT
NOT

OBJECT
OKBUTTON
ON
OPEN
OPTIONBUTTON
OPTIONGROUP
OR
OUTPUT

PRESERVE
PRINT
PROGRESS
PUSHBUTTON
PUT

RANDOMIZE
READ
REDIM
REGISTRYQUERY
REM
REMOVEITEM
RENAME
RESET
RESTORE
RESUME
RETURN
RIGHT
RMFOLDER
RND
RTRIM

SEEK
SELECT
SET
SETBITMAPOFFSET
SETCURRDATE
SETDOUBLEMODE
SETEMPTY statement
SETHELPINDEX
SETHELPPATH
SETIMAGE
SETINCREMENT
SETMAXRANGE
SETMINRANGE
SETPRECISION
SETSELECT



SETSTYLE
SETTEXT
SETTHREESTATE
SETTICK
SETTIMER
SETVALUE
SETVISIBLE
SGN
SIN
SINGLE
SPACE
SPINCONTROL
SQR
STARTPROCESS
STATIC
STATUS
STEP
STOP
STRING
STR
SUB
SWAP

TAN
TEXT
TEXTBOX
THEN
TIMER
TO
TOCENTIMETERS
TOCICEROS
TODIDOTS
TOINCHES
TOPICAS
TOPOINTS
TRUE
TYPE

UBOUND
UCASE
UNDEF
UNLOCK
UNTIL

VAL
VARIANT
VSLIDER

WAIT



WEND
WHILE
WITH
WITHOBJECT
WRITE

XOR



This word is reserved for future use.



This word used in Corel SCRIPT version 6.0.



Corel SCRIPT glossary

Add-ons
Alignment
Align
ANSI
Application command
Application function
Array
Assignment Statements
ASCII

Binary
Bitmap
BMP
Boolean variable
Bounding box
Breakpoint
By reference (BYREF)
By value (BYVAL)

Character code
Check box
Clipboard
Comment statements
Compile
Conditional statements
constant
Corel SCRIPT 
Corel SCRIPT Binary
CSB
Current folder
Cursor
Custom dialog box

Data type
Debug
Declare
Dialog box



Dialog unit
Didot
DLL (dynamic link library)
Dynamic dialog boxes

Executable
Expression
External scripts

Folder
Function

Global 
Group

Handles

Internal scripts

List boxes
Local 
Loop

Marquee
Maximize
Micron
Minimize

Numeric expression

OLE Automation
Operators
Option buttons

Parameters
Pica
Point
Procedure
Programming statements
Prompt

Recording

String
String expression
Subroutine
Syntax

Trace



Type-declaration character

Variable

Wildcard
Window
Window handle



Add-ons
Corel Add-ons are programs that add custom features to Corel applications. Third-party software developers are 
making Add-ons commercially available to meet the specialized needs of Corel users. Currently, Corel VENTURA 
7 is the only Corel application that supports Corel Add-ons.



Alignment, relative
Setting two or more objects to some meaningful spatial relationship, such as centering them or distributing them
evenly along a line.



Alignment, text
Text alignment affects text objects of more than one line. The lines of text may be aligned to the left edge, 
center, or right edge of the text frame.



ANSI
The American National Standards Institute character set. It consists of 256 characters; the first 128 are the same
as the ASCII character set.



Application command

Application commands perform tasks in a specific Corel application. For example, the FileNew command creates
a new document. Each Corel application that supports Corel SCRIPT has a distinct set of commands. Any script 
you create by saving a recording of your actions is made of Corel SCRIPT application commands.
Application command names often describe the action they perform since most are one-word equivalents of the 
corresponding Corel application user-interface. For example, the EditCut command is the complement of the Cut
command found in the Edit menu.



Application function

Application functions ask questions about the status of a Corel application, selected items in Corel applications, 
or document properties. For example, a function may ask a Corel application about a document's page size. 
Functions cannot be recorded. 



Array
An ordered set of items of the same data type. The items can be referred to both as a unit and individually. Click
 for more information.



Assignment statements
Assign the value of an expression to a variable.
x = "John Doe"
REM x equals John Doe
y = 5
REM y equals 5
z = 3 + 4
REM z equals the result of 3 + 4
The assignment operator (=) assigns the value of a right operand expression to a left operand variable. Click  for
more information.



ASCII
The American Standard Code for Information Interchange character set which consists of the characters 
available on a standard 128 character keyboard. ASCII also includes non-printable control codes such as carriage
returns and page breaks.



Corel SCRIPT Binary (.CSB)
A Corel SCRIPT script compiled into computer binary format. A script compiled into binary format does not have 
to be re-compiled each time it is run. Click  for more information.

Binary also means a system of counting based on a unit of two.



Bitmap
An image composed of a series of pixels or dots. Scanners and paint programs, such as Corel PHOTO-PAINT and 
Microsoft Paintbrush, generate this type of image. By contrast, CorelDRAW creates images using vector objects
shapes stored internally as mathematical equations.



BMP
The filename extension for Windows bitmap files.



Boolean
A Corel SCRIPT data type which can only equal TRUE (-1) or FALSE (0). Click  for more information.



Bounding box
A box drawn around an object or group. A bounding box is the smallest rectangular box in which the object (or 
group) will fit completely. The bounding box is parallel to the axes of the object. 



Breakpoint
A line in a script at which execution pauses, usually to aid in debugging. Click  for more information.



By reference (BYREF)
A method of passing an argument to a procedure that enables the procedure to change the argument's value.



By value (BYVAL) 
A method of passing an argument to a procedure that enables the procedure to alter a copy of the argument but 
not change the value of the original argument.



Character code
The number corresponding to a character in a character set, such as the ASCII or ANSI character sets. Click  for 
more information.



Check box
A square box in a dialog box used to enable and disable options. An option is enabled when an X or a check mark
appears in the check box, and is disabled when the check box is empty.



Clipboard
A temporary storage area used to hold cut or copied information. You can paste the contents of the Clipboard 
into other programs that support the type of information that has been cut or copied. Information remains on the
Clipboard until another cut or copy command is executed.



Comment statements
Contain notes and other information that do not affect script execution. Use comment statements to explain the 
purpose of your script, to describe its components, or to prevent a statement from playing. Comment statements
are helpful when you have to modify a script months after it is written, or when someone else is attempting to 
understand your script. A comment begins an apostrophe or a REM. 



Compile
The period of time during which a script is translated into executable code.



Conditional statements
A statement or group of statements (statement block) that execute when a specified condition is met. 
Conditional statements are useful for displaying a list of options. Conditional statements include CASE, IF, and 
SWITCH. Click  for more information.



Constant
A name given to a particular value, such as pi (3.14152), or a name, such as MyCompany. A constant's value 
cannot be altered during script execution.



Corel SCRIPT 
A programming language used to create programs to use with Corel applications such as CorelDRAW or Corel 
VENTURA.



Current Folder
The folder (or directory) where a file will be saved if no other directory is specified.



Cursor
Also called the mouse pointer. It indicates the object, command, tool, or other screen item you want to select. 
The shape of the cursor changes depending on the tool or command you have selected.



Custom dialog box
A dialog box created with Corel SCRIPT programming statements and functions that displays options for user 
input. Click  for more information.



Data type
Defines the set of values that a variable can store. For more information about data types, click .



Debug
To remove the syntax and logic errors that prevent the script from either being compiled or executing correctly. 
Click  for more information.



Declare
A statement (DIM) that states the name and data type of a variable to be used in a script.



Dialog box
A window that displays warnings, messages, and options for users to select. Dialog boxes have a title bar and a 
control menu, but not a menu bar. They can be moved to different positions on the screen. 



Dialog unit
The dialog unit measurement is used in Corel SCRIPT dialog boxes. For width, a dialog unit is 1/4 the average 
width of the Corel system font. For height, a dialog unit is 1/8 the average height of the Corel system font. In 
other words, a dialog unit for width and height are practically equal because, on average, the height of the Corel 
system font is twice its width (1/8 x 2=1/4). Creating a dialog box that is 200 units (width) by 200 units (height) 
results in a dialog box that is a square or very close to a square.



Didot
A unit of measure equivalent to 1.07 times a U.S. point. Sixty seven thousand, five hundred sixty seven (67.567) 
didots equal one inch.



DLL (dynamic link library)
A library of functions and subroutines that can be called from a script at run time.



Dynamic dialog boxes
Unlike static dialog boxes, dynamic dialog boxes can change their display contents based on user action such as 
clicking a push button or selecting a list item. Most Windows applications use dynamic dialog boxes. For 
example, click Tools, Options in the Corel SCRIPT Editor to open the Options dialog box: clicking on a tab changes
the dialog box appearance. Click  for more information.



Executable
Corel SCRIPT scripts are text files and do not have a compiled executable component. Before a script is 
executed, it is internally compiled into a binary file, and is re-compiled each time the script is run. To save the 
compile time, you can compile your scripts into Corel SCRIPT Executables. Compiling your scripts into 
executables not only speeds up their run-time, but allows you to hide the programming code that has gone into 
creating the script. 



Expression
Numeric expression: a combination of numbers, variables, constants, functions, and operators that return a 
number. 
String expression: a combination of literals, string variables, string constants, and string operators that return 
a string. 



External scripts
Corel VENTURA supports two types of scripts: external and internal. External scripts are ordinary text files that 
are saved to disk as a separate file. Internal scripts are embedded in a publication and can only be executed or 
edited if the publication has been opened.



Folder
Folders are used to store and organize your documents, programs, and other files. For example, you could create
a folder called LOGOS for storing logo designs. In previous versions of Windows, folders were called directories.



Function
Functions are a group of Corel SCRIPT statements and commands that are treated as a block.    Functions are 
accessible from other parts of a script, and can be called any number of times during execution. A function can 
also return a value to an executing script.
To define a functions, use the FUNCTION...END FUNCTION statements. 



Global 
Global variables are available anywhere in a running script, but they and their values cease to exist when the 
script stops running. Global variables are created in the main section of a script and cannot be created within a 
subroutine or a function. However, they can be used in the execution of any subroutine or function. Use the 
GLOBAL statement to create global variables.



Group
A set of collected objects. Grouping enables a set of simple objects to behave as one object.



Handles
Small squares that appear on the corners and sides of an object's highlighting box when the object is selected. 
Use the square handles to resize and transform an object. Click on a selected object and the handles change to 
arrows which then permit you to rotate and skew the object.



Internal scripts
Corel VENTURA supports two types of scripts: external and internal. External scripts are ordinary text files that 
are saved to disk as a separate file. Internal scripts are embedded in a publication and can only be executed or 
edited if the publication has been opened.



List boxes
Display a list of options. There are different styles of list boxes available in Corel SCRIPT, See LISTBOX.



Local 
Local variables are available in the procedure in which they are declared. If declared in a subroutine or function, 
a local variable ceases to exist after the procedure finishes execution and is re-created the next time the 
subroutine or function is called. 



Loop
Statement or group of statements (statement block) that executes a specified number of times until an 
expression is true or while an expression is true. The script then exits the loop and continues to the next 
statement. Loop statements include Do...Loop, For...Next, and While...Wend. Click  for more information.



Marquee
The rectangle that results when you drag diagonally to select a set of elements or a region on an image, the 
rectangle created between the start point (mouse down) and the end point (mouse up) is called a marquee.



Maximize
To enlarge an application window to full-screen size.



Minimize
To reduce an application window to an icon in the docking bar.



Micron
A unit of measure equivalent to one millionth of a meter. CorelDRAW and Corel VENTURA use tenths of a micron 
as standard unit of measure in scripts. See the LENGTHCONVERT statement to convert microns to other units 
of measure.
Unit of measurement Number of tenths of a micron per unit
inch 254,000
centimeters 100,000
points 3,527.78
ciceros 45,118.7
didots 3,759.2
picas 42,333.33



Numeric expression
In Corel SCRIPT, a numeric expression is a combination of numbers, variables, constants, functions, and 
operators that return a number. 



OLE Automation
OLE Automation is an integration standard that allows applications to expose their programmable objects so that
other applications can control them. Exposing an object means an application makes the script or macro 
commands that control it available to other programming applications. The exposed commands become an 
extension of the controlling programming language. Click  for more information.



Operators
A symbol or word that performs a function on one or more expressions. Operators compare expressions, link 
words together, and perform mathematical functions. Click  for more information.



Option buttons
Display mutually exclusive options. Option buttons are also called radio buttons. 



Parameters

Parameters pass information to Corel SCRIPT statements, commands, or functions so that they can perform a 
specified action. In this Corel VENTURA example, .FileOpen is the command name, and "C:\VENTURA\
MYFILES\TEST1.VP" is a parameter which specifies a file to open.

.FileOpen "C:\VENTURA\MYFILES\TEST1.VP"



Pica
A unit of measurement used primarily in typesetting. One pica equals approximately 1/6 of an inch (exactly 12 
points).



Point
A unit of measure used primarily in typesetting for designating type sizes. There are approximately 72 
points(pts) to an inch and exactly 12 points to a pica.

10 pts    18 pts    36 pts



Procedure
Corel SCRIPT scripts are comprised of three types of procedures:

main section of a script (one per script)
user-defined functions (optional and more than one can exist)
user-defined subroutines (optional and more than one can exist)

If you have a group of instructions that will be repeated in a script, create a user-defined procedure for those 
instructions. The instructions are written once in the script and can be called from different places within the 
script. If the instructions are changed, the changes take effect everywhere. Using these user-defined procedures 
can make your scripts easier to change and debug.



Programming statements
Corel SCRIPT programming statements and functions are a common set of instructions that can be used with any
Corel application that supports scripting. Programming statements and functions are derived from traditional 
BASIC programming language dialects and perform instructions that are not part of a Corel application. In the 
Corel SCRIPT online Help, Corel SCRIPT programming statements and functions appear in uppercase, for 
example, LEFT, IF, and MESSAGEBOX. Click  for a listing of all programming statements and functions.



Prompt
A message box that displays information for the user.



Recording
A series of commands and keystrokes saved to a portion of an application's memory called a "recording." Playing
a recording results in commands and keystrokes being repeated.



String
A data type that accepts characters enclosed in double quotation marks. Click  for more information.



String expression
In Corel SCRIPT, a string expression is a combination of literals, string variables, string constants, and string 
operators that return a string. Click  for more information.



Subroutine
Subroutines are a group of Corel SCRIPT statements and commands that are treated as a block. Subroutines are 
accessible from other parts of a script, and can be called any number of times during execution. 
To define a subroutine, use the SUB...END SUB statements. 



Syntax
The set of rules that determine the order and format in which a command, statement, or function is made in 
order for it to be understood by the Corel SCRIPT    compiler.
Refers to rules that govern the form of macro statements and expressions. For example,
MESSAGE "John Doe"
displays a message box with John Doe in it. The next example,
MESSAGE "John Doe"
lacks a closing quotation mark. The syntax is not correct and produces an error message. Click  for more 
information.



Trace
To follow the progression of the script, line-by-line, as it executes. Click  for more information.



Type-declaration character
The character suffixed to a variable name, indicating the data type of the variable. Click  for more information.



Variable
Represent data that can change during script execution. Data may include any type of expression, but only one 
expression at a time. Variable names are user defined, are not case sensitive, must begin with a letter, can 
include any other combination of letters or numbers. Click  for more information.



Wildcard
Characters that represent variables in a word, file, or directory search. A question mark (?) represents a single 
character. An asterisk (*) represents zero or more characters in succession.



Window
A rectangular area on the screen in which applications are displayed. Every application window has a title bar 
and menu bar along the top and one or two scroll bars along the sides or bottom.



Window Handle
A unique internal identifier for a window or control. For more information, see the GETWINHANDLE function.



ASC function
ASC(source)

Returns the numerical ANSI character value of the first character specified in a string. ASC is the opposite of the 
CHR function, which returns a character when the ANSI value is specified.

Syntax Definition
source The string expression to be examined.

Note 
See the Corel SCRIPT Character Map for more ANSI details and Windows characters.

Example
i% = ASC("string")
This expression will assign the value 115, which is the ANSI value of the letter "s."

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



CHR function
CHR (value)

Returns the ANSI character that occupies the specified position in the ANSI character set. CHR is the opposite of 
ASC, which returns the ANSI code value when the character is entered. See the Corel SCRIPT Character Map for 
more ANSI details and Windows characters.

Syntax Definition
value ANSI code value to be examined.

Example
s$ = CHR(65)
Assigns the letter "A" to the variable s$. (Character 65 of the ANSI character set is A.)
Special Characters
The CHR function is often used to add special characters to string variables that cannot be entered directly 
within double quotation marks. For example, to add double quotation marks to a string, you use character 34:
s$ = CHR(34) + "This will be in double quotes." + CHR(34)
MESSAGE s$
You can also use the function to add a return and a line feed within a string; use character 13 and 10, 
respectively:
s$ = "String 1" + CHR(13) + CHR(10) + "String 2"
MESSAGE s$
This will place the two strings on separate lines, as displayed in the message box.

The following table notes some of the special characters you can use with the CHR function.

Character Number Special Character Returned
8 Backspace
9 Tab 
10 Linefeed
13 Return 
32 Space 
34 Quotation mark
The following table notes some of the special characters you can use with the CHR function if you're using Corel 
VENTURA commands .InsertSymbol or .TypeText.

Character Number Special Character Returned
10 Paragraph return
13 Forced line break
17 Em space
18 En space
19 Figure space
20 Thin space
21 Non-breaking space
22 Discretionary hyphen
34 Straight double quote
145 Typographical open single quote
146 Typographical close single quote
147 Typographical open double quote
148 Typographical close double quote
150 En dash
151 Em dash
153 Trademark
169 Copy right



174 Registered mark

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



INSTR function
INSTR (string1, string2, start) 

Returns the starting position of the first occurrence of a string within another string. If the specified string is not 
found, the function returns 0.

Syntax Definition
string1 The string expression within which the search is made.
string2 The string for which you are searching.
start Specifies the position where the search begins within string1. If unspecified, the 

search starts at the beginning of string1 (same as start=1). Must be a non 
negative number and fractional numbers are rounded.

Example
pos = INSTR("Los Angeles", "Ang")
Sets pos to the value 5 because "Ang" occurs at the fifth character in the string "Los Angeles".

pos = INSTR("Los Angeles: City of Angels", "Ang", 8)
Sets pos to the value 22.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



LCASE function
LCASE(source)

Converts a string to lowercase characters.

Syntax Definition
source The string expression to convert.

Note 
Non letter characters do not change when this function is used.
You can use UCASE to convert to lowercase characters.

Example
x$="HI"
firststring$ = LCASE(x)
secondstring$ = LCASE("THerE")
MESSAGE firststring + " " + secondstring
The above example displays the converted strings "hi there" in a message box.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



LEFT function
LEFT (source, number)

Returns the specified number of characters from the beginning of a string.

Syntax Definition
source The string expression from which the specified characters are returned.
number Specifies the number of characters to be returned. Must be a non negative number

and fractional numbers are rounded.

Note
This function can be used to truncate user input from a dialog box.
You can use the LEN function to determine the number of characters in a string.
You can use the RIGHT function to return characters from the end of a string.

Example
abc$ = LEFT("I want to dance with you", 15)
MESSAGE abc$
Displays "I want to dance" in a message box. 
Combine LEFT with INSTR to extract the portion of a string either up to or including a specified substring.
city$ = "San Francisco, California"
Mystr$ = LEFT(city$, INSTR(city$, ",")-1)
Extracts the characters in city$ up to, but not including the comma, and places the result in the variable 
Mystr$. The variable Mystr$ now has the value "San Francisco".

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



LEN function
LEN(source)

Returns the length or number of characters in a string.

Syntax Definition
source The string expression that is measured.

Example
num = LEN("This is a test")
Assigns the length of the string, 14, to the variable num.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



LTRIM function
LTRIM(source)

Removes any leading spaces from a string. You can use LTRIM to remove leading spaces from dialog box inputs.

Syntax Definition
source The string expression from which leading spaces are removed.

Example
MyString$ = "   Test"
MyString$ = LTRIM(MyString$)
Assigns "Test" to the variable MyString$. All leading spaces that were previously in the variable are removed.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



MID function and statement
Function:    MID(source, index, count)
Statement:    MID(source, index , count) = modify

If used as a function, MID returns a specified number of characters, starting at a specified position in a string. If 
used as a statement, MID replaces a portion of a string with another string, beginning at a specified character. 

Syntax Definition
source Any string, string variable, string constant, or expression returning a string. Hold 

the string to be modified.
source For a function, the string expression from which to return characters. For a 

statement, the string expression holding the original string to be modified.
index Position of the first character to be returned (function) or modified (statement).
count For a function, the number of characters to be returned. For a statement, the 

number of characters to be overwritten. If not specified, the rest of source is 
returned or overwritten.

modify A string expression replacing a portion of source. 

Note
You can use the LEN function to determine the number of characters in a string.

Example
s$ = MID("I want to dance with you", 11, 5)
The function extracts five characters from the string, beginning with the eleventh character. The variable s$ then
becomes "dance".

str1$ = "I want to dance with you"
MID(str1$, 22, 3) = "him"
The statement changes three characters, starting with the 22nd character, to the new string. The str1$ variable 
now contains "I want to dance with him".

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



RIGHT function
RIGHT (source, number)

Returns the specified number of characters from the end of a string.

Syntax Definition
source The string expression from which the specified characters are returned.
number Specifies the number of characters to be returned. Must be a non negative number

and fractional numbers are rounded.

Note
This function can be used to truncate user input from a dialog box.
You can use the LEN function to determine the number of characters in a string.
You can use the LEFT function to return characters from the beginning of a string.

Example
abc$ = RIGHT("I don't want to dance", 13)
MESSAGE abc$
Displays "want to dance" in a message dialog box. 

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



RTRIM function
RTRIM(source)

Removes any trailing spaces from a string. You can use RTRIM to remove trailing spaces from dialog box inputs.

Syntax Definition
source The string expression from which trailing spaces are removed.

Example
MyString$ = "Test   "
MyString$ = RTRIM(MyString$)
Assigns "Test" to the variable MyString$. All trailing spaces that were previously in the variable are removed.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



SPACE function
SPACE (num)

Returns a string that consists of a specified number of spaces (ANSI character number 32).

Syntax Definition
num Specifies the number of spaces to be included in a string.

Note 
See the Corel SCRIPT Character Map  for more ANSI details and Windows characters.

Example
Mystr$ = SPACE(4) + "Test" + SPACE(4)
Makes the string variable Mystr$ equal to "        Test          ". (The string Mystr$ now consists of 4 spaces, the word
TEST and another 4 spaces).

x1 = "Corel"
x2 = "SCRIPT"
x3 = x1 + SPACE(1) + x2
Makes the string variable x3$ equal to "Corel SCRIPT". 

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



STR function
STR(num)

Returns a string representation of a numeric data type. The STR function is useful when you want to manipulate 
a number as a string. 

Syntax Definition
num Specifies the numeric expression that is returned as string representation.

Note
If a positive number is converted, the STR function inserts a leading space before the first character. If a 

negative number is converted, the STR function inserts a negative sign before the first character.
You can use only the period as a decimal separator with the STR function. If you're not using a period (.) as

a decimal separator, the CSTR function can be used to convert a number to a string. Your Windows decimal settings
are set in the Control Panel.

If you're converting dates, they must be in the standard International format (yy/MM/dd hh:mm:ss).

Example
aInteger$ = STR(72)
aNonInteger$ = STR(.140166)
The first example assigns "72" to the variable aInteger$. The second example assigns "0.140166" to 
aNonInteger$.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



UCASE function
UCASE(source)

Converts a string to uppercase characters.

Syntax Definition
source The string expression to convert.

Note 
Non letter characters do not change when this function is used.
You can use LCASE to convert to lowercase characters.

Example
x$="hI"
firststring$ = UCASE (x)
secondstring$ = UCASE("THerE")
MESSAGE firststring + " " + secondstring
Displays the converted strings "HI THERE" in a message dialog box.

{button ,AL(`cs_strings_fns;;;;;',0,"Defaultoverview",)} Related Topics



VAL function
VAL (chars)

Converts a string to a number. The number's variable type is double. This function is the opposite of the STR 
function.

Syntax Definition
chars The string expression to be converted. If the string does not begin with a number, 

VAL returns 0.

Note
You can use only the period as a decimal separator with the VAL function. If you're not using a period (.) as 

a decimal separator, the CDBL or CSNG function can be used to convert a string to a number. Your Windows 
decimal settings are set in the Control Panel.

The VAL function converts the string up to the first non-number character it encounters, from left to right 
in the string. Spaces are ignored.

Because text box controls in dialog boxes can only return strings (even if numbers are input), you can use 
the VAL function to convert strings entered in dialog boxes to numbers.

Example
g = VAL("72nd Street")
h = VAL("72.700113")
Both the above statements assign 72 to the variables g and h. 

{button ,AL(`cs_strings_fns;inputbox;;;;',0,"Defaultoverview",)} Related Topics



Mathematical functions
You can use to the following formulas to create mathematical functions in Corel SCRIPT scripts. The formulas are 
based on Corel SCRIPT functions.

Function To use this... ...paste this formula into your 
script

Secant SEC(X) = 1 / COS(X)
Cosecant COSEC(X) = 1 / SIN(X)
Cotangent COTAN(X) = 1 / TAN(X)
Arc secant ARCSEC(X) = ACOS ( 1 / X )
Arc cosecant ARCCOSEC(X) = ASIN ( 1 / X )
Arc cotangent ARCCOTAN(X) = ATAN ( 1 / X )
Hyperbolic sine HSIN(X) = (EXP(X)- EXP (-X))/ 2
Hyperbolic cosine HCOS(X) = (EXP(X)+ EXP (-X))/ 2
Hyperbolic tangent HTAN(X) = (EXP(X)- EXP (-X)) / (EXP(X)+ EXP (-X))
Hyperbolic secant HSEC(X) = 2 / (EXP(X)+ EXP (-X))
Hyperbolic cosecant HCOSEC(X) = 2 / (EXP(X)- EXP (-X))
Hyperbolic cotangent HCOTAN(X) = (EXP(X)+ EXP (-X)) / (EXP(X)- EXP (-X))
Inverse hyperbolic sine HARCSIN(X) = LOG (X + SQR (X * X + 1)) 
Inverse hyperbolic cosine HARCCOS(X) = LOG (X + SQR (X * X -1))
Inverse hyperbolic tangent HARCTAN(X) = LOG ((1 + X)/(1 - X)) / 2
Inverse hyperbolic secant HARCSEC(X) = LOG ((SQR (-X * X + 1) + 1) / X
Inverse hyperbolic cosecant HARCCOSEC(X) LOG ((SQR (X) * SQR (X * X + 1) +1) / 

X)
Inverse hyperbolic cotangent HARCCOTAN(X) LOG ((X + 1)/(X - 1)) / 2

Note
You can copy a formula into a script by selecting it, clicking right-mouse button, Copy. The formula is 

placed on the clipboard ready to be pasted.

{button ,AL(`all_math_fns;;;;;',0,"Defaultoverview",)} Related Topics



CBOL function
CBOL(NumStrExp)

Converts an expression to a Boolean data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression.
Note

A numeric expression equal to 0 is converted to FALSE. All other numeric expressions are converted to 
TRUE (-1).

Example
x% = 354.43
y = CBOL(x)
This example sets y to TRUE (-1).

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related 
Topics



CCUR function
CCUR(NumStrExp)

Converts an expression to a Currency data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression.
Note

When Corel SCRIPT converts the value to the currency data type, it rounds off the value, rather than 
truncating it.

If the result of this function lies outside the Currency data type range, an error occurs.
Example
x = 354.432675434
y = CCUR(x*2)
This example sets y to a currency data type.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related 
Topics



CDAT function
CDAT(NumStrExp)

Converts an expression to a Date data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

This function denotes a base date of December 31, 1899 at 12:00:00 A.M. as 1. Each additional whole 
number is one additional day. Each additional fraction is a portion of a day.

When Corel SCRIPT converts the value to a date, it rounds off the value, rather than truncating it.
Example
x% = 25.25
y = CDAT(x)
This example sets y to January 24th, 1900 at 6:00:00 A.M. 

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related 
Topics



CDBL function
CDBL(NumStrExp)

Converts an expression to a Double data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

When Corel SCRIPT converts the value to a double, it rounds off the value, rather than truncating it.
If the result of this function lies outside the Double data type range, an error occurs.

Example
x@ = 35489097326.43    'x is currency data type
y = CDBL(x/2)
This example sets y to double data type.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related 
Topics



CINT function
CINT(NumStrExp)

Converts an expression to a Integer data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

In converting the value to an integer, Corel SCRIPT rounds off the value, rather than truncating it. If the 
decimal portion of the number is 0.5, CINT rounds to the nearest even number. For example, 8.5 rounds to 8, and 
9.5 rounds to 10. 

If the result of this function lies outside the Integer data type range, an error occurs.
You can also use INT and FIX to remove the fractional portion of a number.

Example
x = 354.63
y = CINT(x)
This example sets y to 355.

xx = 354.43
yy = CINT(xx)
This example sets yy to 354.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;int;fix;;',0,"Defaultoverview",)} 
Related Topics



CLNG function
CLNG(NumStrExp)

Converts an expression to a Long data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

In converting the value to a long integer, Corel SCRIPT rounds off the value, rather than truncating it.
If the result of this function lies outside the Long data type range, an error occurs.
You can also use INT and FIX to remove the fractional portion of a number.

Example
x = 98765578.43
y = CLNG(x)
This example sets y to 98765578.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;int;fix;;',0,"Defaultoverview",)} 
Related Topics



CONST statement
GLOBAL CONST constant{%|&|!|#|@|$} = expression , constant{%|&|!|#|@|$} = expression, ...
GLOBAL CONST constant AS type = expression, constant AS type = expression, ...

Declares constants for use in place of numeric or string values. Changing the value of a constant normally 
requires editing only one script statement.

Syntax Definition
GLOBAL An optional parameter used to declare global constants. Global constants are 

available to all procedures in a script. If not used, the constant is only available to 
the procedure in which it was declared.

constant{%|&|!|#|@|$} Specifies the name of the constant. It follows the Corel SCRIPT naming convention.
Optionally, a type-declaration character can follow the name.

constant Specifies the name of the constant. It follows the Corel SCRIPT naming convention.
AS type Declares the data type of the constant with a type declaration name.
expression A numeric or string expression assigned to the declared constant.
Note

You cannot declare a constant as a variant.
Unlike variables, you can't change or assign a new value to a constant once it has been declared.
Constants can be used to declare the size of an array.
If you re-use many of the same constants, you should consider putting them in a separate script. Keeping 

this information in a separate script allows you to type the information once and then call it as many times as you 
need with an INCLUDE statement in any new script you create.

Example

REM creates a global constant for the base of the natural logarithm
GLOBAL CONST NATURAL_LOG# = 2.71828182845 

REM creates a local constant for pi
CONST PI AS DOUBLE = 3.1415926535

{button ,AL(`script_procedures;global;dim;using_variables;Using_constants;corel_script_data_type_s
ummary;;;',0,"Defaultoverview",)} Related Topics



CSNG function
CSNG(NumStrExp)

Converts an expression to a Single data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

In converting the value to a single, Corel SCRIPT rounds off the value, rather than truncating it.
If the result of this function lies outside the Currency data type range, an error occurs.

Example
x = 354
y = CSNG(x + 0.02)
This example sets y to a single data type.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;;;;',0,"Defaultoverview",)} Related 
Topics



CSTR function
CSTR(NumStrExp)

Converts an expression to a String data type. Corel SCRIPT data type conversion functions set the result of an 
expression to a specified data type rather than the default data type.

Syntax Definition
NumStrExp A numeric or string expression. 
Note

A Boolean value of 0, when cast as a string, will return "FALSE". All other values will return "TRUE". 
Converting a date returns a string with a date in the Windows long-date format.
You can also use STR to convert numeric expressions to a string.
The CSTR function is locale aware; that is, it uses the decimal character specified in the user system's 

regional settings. In Windows 95, click Start, Setting, Control Panel, Regional settings to view and change your 
system settings.

Example
x = 354.43
y = CSTR(x)
This example sets y to "354.43", a string.

{button ,AL(`Corel_SCRIPT_data_type_summary;vars_convert;STR;;;',0,"Defaultoverview",)} Related 
Topics



DEFINE statement
#DEFINE substituteID syntax : syntax: ...

This statement is used to create a substitute for Corel SCRIPT syntax. Using a substitute is similar to using a 
constant. A substitute can be used to provide meaningful names for numeric and string values but it can also be 
used to replace script statements and functions.

Syntax Definition
substituteID Specifies the identifier for the substituted Corel SCRIPT syntax.
syntax : syntax: ... Specifies the Corel SCRIPT to substitute.
Note

You can remove a defined substitute from a script by using the UNDEF statement.
The number sign (#) is required in the syntax.

Example
#DEFINE ErrorBox MESSAGE "An error occurred" : MESSAGE "FIX IT!"
The above example replaces two MESSAGE statements with the substitute ErrorBox.

{button ,AL(`const;global;define;undef;;',0,"Defaultoverview",)} Related Topics



DIM statement
Syntax for variables:
DIM variable{%|&|!|#|@|$}, variable AS type,...
Syntax for arrays:
DIM array_name{%|&|!|#|@|$} (upperbound)
DIM array_name(upperbound) AS type
DIM array_name{%|&|!|#|@|$} (lowerbound TO upperbound)
DIM array_name(lowerbound TO upperbound) AS type

Use DIM to declare local variables explicitly or to specify the number and type of elements in an array. Local 
variables are available only to one procedure in a script.

Syntax Definition
variable{%|&|!|#|@|$}
or variable AS type Specifies the name of the variable and follows the Corel SCRIPT naming 

convention. The variable can be declared using a type-declaration character (the 
first option)or by using a type declaration name (the second option).

array_name {%|&|!|#|@|$}
or array_name AS type Specifies the name of the array and follows the Corel SCRIPT naming convention. 

The array can be declared using a type-declaration character (the first option)or 
by using a type declaration name (the second option).

upperbound The upper bound of the array expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO upperbound) is
used. 

lowerbound The lower bound of the array expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO upperbound) is
used.

Note
If you declare a variable or array using the DIM statement without a type declaration name or a type-

declaration character, Corel SCRIPT sets the variable or array to a variant data type.
Variables and arrays declared in the main section of a script are available in the main section only. Global 

variables are available to all procedures in a script. See GLOBAL for more information. 
Declaring a variable in a subroutine or a function makes it available only in the procedure it was declared. 

See Variable availability for more information about using variables in procedures.
It's a generally accepted programming convention to put declaration statements at the beginning of a 

procedure (main section, subroutines, or functions).
The DIM statement can be placed anywhere in a script before the variable(s) it declares is called.
Arrays can hold only one data type. The number of elements arrays can hold is limited to your system's 

memory.
See Multi-dimensional arrays to create arrays of more than one dimension.
You can re-dimension (or resize) arrays using the REDIM statement.

{button ,AL(`Explicitly_declaring;dim;redim;global;using_arrays;using_variables;lbound;ubound;mul
ti_dimensional_arrays;',0,"Defaultoverview",)} Related Topics



GETTYPE function
GETTYPE(expression)

Returns an expression's data type. In the case of variants, the data subtype is returned. See Variants for more 
information.

Syntax Definition
expression Specifies the expression to use. 

Return Values Case
0 Empty variant
2 Boolean
3 Integer
4 Long
5 Single
6 Double
7 Date
8 Currency
9 String

Example
x% = 66    'integer data type 
y# = 14    'long data type
Z = x / y
A = GETTYPE (x / y)
In the above example, A is assigned the value 2 since the variant Z data subtype is set to long. In the following 
example, B is set to 4 since a whole number is treated as a long and C is set to 6 since a fractional number is 
treated as a double.

B = GETTYPE (3)
C = GETTYPE (3.3)

{button ,AL(`all_vars;dim;;;;',0,"Defaultoverview",)} Related Topics



GLOBAL statement
Syntax for variables
GLOBAL variable{%|&|!|#|@|$}, variable AS type,...
Syntax for arrays
GLOBAL array_name{%|&|!|#|@|$} (upperbound)
GLOBAL array_name(upperbound) AS type
GLOBAL array_name{%|&|!|#|@|$} (lowerbound TO upperbound)
GLOBAL array_name(lowerbound TO upperbound) AS type

Use GLOBAL to explicitly declare variables or to specify the number and type of elements in an array. Global 
variables and arrays are available to all procedures in a script. See the DIM statement for information on local 
variable declarations. See Variable availability for more information on the use of variables in procedures.

Syntax Definition
variable{%|&|!|#|@|$}
or variable AS type Specifies the name of the variable and follows the Corel SCRIPT naming 

convention. The variable can be declared using a type-declaration character (the 
first option)or by using a type declaration name (the second option).

array_name {%|&|!|#|@|$}
or array_name AS type Specifies the name of the array and follows the Corel SCRIPT naming convention. 

The array can be declared using a type-declaration character (the first option)or 
by using a type declaration name (the second option).

upperbound The upper bound of the array expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO upperbound) is
used. 

lowerbound The lower bound of the array expressed as an integer. 
Note

If you declare a variable or array using the GLOBAL statement without a type declaration name or a type-
declaration character, Corel SCRIPT sets the variable or array to a variant data type. 

Global variables cannot be declared in a subroutine or a function. Additionally, globals cannot    be declared
in a flow construct such as FOR...NEXT or DO...LOOP. This restriction also applies to arrays.

It's a generally accepted programming convention to put declaration statements at the beginning of the 
script.

Arrays can hold only one data type. The number of elements arrays can hold is limited by your system 
memory.

You can also declare global constants. See CONST for more information.
See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`const;dim;global;using_arrays;using_variables;lbound;ubound;multi_dimensional_array
s;',0,"Defaultoverview",)} Related Topics



Examples for DIM statement

Variables
DIM my_color$
DIM my_color AS STRING
The above examples show different methods of declaring variables. The above DIM statements all declare 
strings.

DIM a AS INTEGER, b AS BOOLEAN, c AS SINGLE
You can also mix the type of variables you declare with a DIM statement.
Arrays
DIM color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
Creates a string array named color$ that consists of 5 elements. 

DIM salespeople(-2 TO +3) AS INTEGER
salespeople(-2) = 1
salespeople(-1) = 3
salespeople(0) = 5
salespeople(1) = 7
salespeople(2) = 9
salespeople(3) = 11
Creates an integer array named salespeople that consists of 6 elements.
Note

See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`example_multi_array;dim;global;using_variables;using_arrays;',0,"Defaultoverview",)} 
Related Topics



Examples for GLOBAL statement

Variables
GLOBAL my_color$
GLOBAL my_color AS STRING
The above examples show different methods of declaring global variables. The above GLOBAL statements all 
declare strings.

GLOBAL a AS INTEGER, b AS BOOLEAN, c AS SINGLE
You can also mix the type of variables you declare with a GLOBAL statement.
Arrays
GLOBAL color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
Creates a global string array named color$ that consists of 5 elements. 

GLOBAL salespeople(-2 TO +3) AS INTEGER
salespeople(-2) = 1
salespeople(-1) = 3
salespeople(0) = 5
salespeople(1) = 7
salespeople(2) = 9
salespeople(3) = 11
Creates an global integer array named salespeople that consists of 6 elements.
Note

See Multi-dimensional arrays to create arrays of more than one dimension.

{button ,AL(`example_multi_array;dim;global;using_variables;using_arrays;',0,"Defaultoverview",)} 
Related Topics



LBOUND function
LBOUND(array, dimension)

Returns the lower bound for a specified dimension of an array.

Syntax Definition
array Specifies the array to dimension.
dimension A whole number variable or numeric constant ranging from 1 to the number of 

dimensions in the array. Specifies which dimension's lower bound is returned. If 
omitted, the limit of the first dimension is returned.

Example
DIM a%(-5 TO 7, 10)
x% = LBOUND(a%,1)
y% = LBOUND(a%,2)
Sets x% and y% to -5 and 1, respectively.

{button ,AL(`LBOUND;UBOUND;DIM;USING_ARRAYS;multi_dimensional_arrays;',0,"Defaultoverview",
)} Related Topics



LET statement
LET variable{%|&|!|#|@|$} = expression
LET variable = expression AS type
variable{%|&|!|#|@|$} = expression
variable = expression AS type

Assigns the value of an expression to a variable. The LET keyword is optional.

Syntax Definition
variable{%|&|!|#|@|$} Specifies the name of variable and is assigned expression's value. The variable 

name follows the Corel SCRIPT naming convention. 
variable Specifies the name of variable and is assigned expression's value. The variable 

name follows the Corel SCRIPT naming convention. 
expression A numeric or string expression that is assigned to the variable.
type Declares the variable's type with a type declaration name.
Note

There isn't an advantage in using the LET statement to assign an expression to a variable, but in some 
cases it can make your script easier to read and modify.

If the variable's data type is not declared, the variable is set to the variant data type.
Example
LET stringVar$ = "This is a string."
Assigns the string "This is a string." to the variable stringVar$.

stringVar$ = "This is a string."
Assigns the string "This is a string." to the variable stringVar$.    The LET keyword is omitted.

result% = (a% + b%) / c%
Assigns the result of the sum of the values of variables a% and b%, divided by the value of c%, to the variable 
result%. The LET keyword is omitted.

{button ,AL(`variable_availability;using_variables;Dim;;;',0,"Defaultoverview",)} Related Topics



REDIM statement
REDIM PRESERVE array_name{%|&|!|#|@|$} (upperbound)
REDIM PRESERVE array_name(upperbound) AS type
REDIM PRESERVE array_name{%|&|!|#|@|$} (lowerbound TO upperbound)
REDIM PRESERVE array_name(lowerbound TO upperbound) AS type

Used to re-dimension (change the number of array elements or dimensions) in a previously declared array. See 
the DIM statement for information about declaring arrays. 

Syntax Definition
array_name {%|&|!|#|@|$}
or array_name AS type Specifies the name of the array and follows the Corel SCRIPT naming convention. 

The array can be declared using a type-declaration character (the first option)or 
by using a type declaration name (the second option).

upperbound The upper bound of the array expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO upperbound) is
used. 

lowerbound The lower bound of the array expressed as an integer. If you do not use a TO 
clause to specify the number of array elements, the default (1 TO upperbound) is
used.

PRESERVE Corel SCRIPT keyword which when used indicates to preserve the data in the array
that is being re-dimensioned. Use the PRESERVE keyword to retain data in the 
elements that are part of the re-dimensioned array. If this keyword is not used, all 
the array data is discarded.

Note
You can't use the REDIM statement to change the variable type an array can hold.

Example
DIM color$(5)
color$(1) = "black"
color$(2) = "red"
color$(3) = "white"
color$(4) = "blue"
color$(5) = "green"
The above example creates a string array with 5 elements. The following scripting command removes the last 
two elements from the color string array by using the REDIM statement.

REDIM PRESERVE color$(3)

{button ,AL(`dim;redim;global;using_arrays;using_variables;lbound;ubound;multi_dimensional_array
s;',0,"Defaultoverview",)} Related Topics



SETEMPTY statement
SETEMPTY variable

This statement removes data from a variable. If the variable is numeric, the variable is set to 0. If the variable is 
a string, the variable is set to an empty string (""). If the variable is a variant, the variable is set to Empty. An 
Empty variant contains no valid data in both a numeric and string context. See Corel SCRIPT data type summary 
for more information about data types and variants.

Syntax Definition
variable Specifies the name of the variable to remove data from.

Example
SETEMPTY VariableName
The above example remove data from the VariableName variable. 

{button ,AL(`variants;variable_availability;using_variables;Dim;;;',0,"Defaultoverview",)} Related 
Topics



STATIC statement
STATIC variable{%|&|!|#|@|$}    = expression
STATIC variable AS type = expression

This statement declares and assigns an initial value to a variable in a user-defined subroutine or function. Static 
variables can only be called in these user-defined procedures, and retain their values as long as the script they 
are declared in is running. See Variable availability for more information about using variables in procedures.

Syntax Definition
variable{%|&|!|#|@|$} Specifies the name of the variable to be declared. The variable name follows the 

Corel SCRIPT naming convention. 
variable Specifies the name of the variable to be declared. The variable name follows the 

Corel SCRIPT naming convention. 
type Declares the variable's data type with a type declaration name.
expression The numeric expression initially assigned to the declared static variable. This 

option cannot be used with static variables of string or variant data types. 
Declaring and assigning a value to constant at the same time is new to Corel 
SCRIPT in version 7.0.

Note
If you declare a variable using the STATIC statement without a type declaration name or a type-

declaration character, Corel SCRIPT sets the variable to a variant data type.
It's a generally accepted programming convention to put static declaration statements at the beginning of 

subroutines or functions with DIM declarations.

{button ,AL(`function_end_function;sub_end_sub;variable_availability;using_variables;Dim;;;',0,"Def
aultoverview",)} Related Topics



Example for STATIC statement

REM main section of script file
DECLARE FUNCTION staticFunc% (a%)
FOR i% = 1 to 5

j% = staticFunc%(i%)
NEXT I%
'
REM (Static Function Example)
FUNCTION staticFunc%(a%)
STATIC staticVar%
' Because staticVar% is STATIC, it retains its previous value
' each time the function is called
staticVar% = staticVar% + a%
' The function returns the current value of staticVar%
staticFunc% = staticVar%
END SUB
The variable staticVar% in the function is created as a STATIC variable, so that its value remains unchanged 
each time the function is called. In the main program, a FOR loop calls the function five times. The result of each 
function call follows:
1 The first time the script runs, staticVar% has a value of 0 because it is created for the first time. The passed 

parameter, i%, has a value of 1, and the variable also has a value of 1.
2 In the second call, staticVar% has a value of 1 and the passed parameter has a value of 2. So the calculation 

causes staticVar% to be 3.
3 In the third call, staticVar% is equal to 3 and i% is equal to 3, so staticVar% has a new value of 6.
4 In the fourth call, staticVar% is 6 and i% is 4, giving staticVar% a new value of 10.
5 In the last call, staticVar% is 10 and i% is 5, giving staticVar% a value of 15.

{button ,AL(`example_vars;;;;;',0,"Defaultoverview",)} Related Topics



UBOUND function
UBOUND(array, dimension)

Returns the upper bound for a specified dimension of an array.

Syntax Definition
array Specifies the array to dimension.
dimension A whole number variable or numeric constant ranging from 1 to the number of 

dimensions in the array. Specifies which dimension's upper bound is returned. If 
omitted, the limit of the first dimension is returned.

Example
DIM a%(-5 TO 7, 10)
x% = UBOUND(a%,1)
y% = UBOUND(a%,2)
Sets x% and y% to 7 and 10, respectively.

{button ,AL(`redim;LBOUND;UBOUND;DIM;USING_ARRAYS;multi_dimensional_arrays;',0,"Defaultover
view",)} Related Topics



UNDEF statement
#UNDEF substituteID 

This statement is used to remove a substitute declared with a DEFINE statement from a script.

Syntax Definition
substituteID Specifies the identifier of the substituted Corel SCRIPT syntax to remove.
Note

The number sign (#) is required in the syntax.
Example
#UNDEF ErrorBox 
The above example removes the substitute ErrorBox.

{button ,AL(`const;global;define;undef;;',0,"Defaultoverview",)} Related Topics




