
About
This function displays the About Ami Pro Dialog Box. Choosing this function is equivalent to choosing
Help/About Ami Pro.

Syntax
About()

Return Value
This function does not return a value.

Example
FUNCTION Example()
About()'This brings up the About Ami Pro dialog box.
END FUNCTION

See also:

Help, EnhancementProducts, HowDoIHelp, KeyboardHelp, MacroHelp, UpgradeHelp, UsingHelp

ActivateApp
This function causes the application used in the argument to become the active application in Windows.
Choosing this function is equivalent to choosing the application from the Windows 3.x Task List. The
application must be started before this command is used.
Though control passes to the named application, Ami Pro regains control if the macro continues with
additional statements beyond this statement.

Syntax
ActivateApp(App)
App is the name of the application that you want to find. The name you use must appear as it does in the
Task List window or as it does in the application's title bar.

Return Value
This function returns:

1    (TRUE) if the application was activated.
0    (FALSE) if control could not be passed to the application or if the application was incorrectly
named.

Example
FUNCTION Example()
StatusBarMsg("Activating Program Manager...")'Notify the user what we are doing.
IF AppIsRunning("Program Manager")'Check to see if the app is running
ActivateApp("Program Manager")'Activate it if it is.
AppRestore("Program Manager")'Restore it to it's previous size
ELSE
Exec("PROGMAN.EXE", 1)'Run it if it is not (it becomes the active app).
ENDIF
StatusBarMsg("")'Clear the status bar
END FUNCTION

See also:

Exec, , AppSize, AppMinimize, AppMaximize, AppRestore, AppHide, AppGetAppNames,
AppIsRunning, AppGetAppCount

AddBar
This function creates a new menu bar that can be filled with pull down menus. It must be called prior to
adding any pull down menus to this menu bar.

Syntax
AddBar()

Return Value
This function returns:

a positive number if the new menu bar was created.
0    (FALSE) if the new menu bar was not created.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()
ShowBar(1)'Restore the original Ami Pro menu bar.
END FUNCTION

See also:

AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem, DeleteMenu,
DeleteMenuItem, GrayMenuItem, RenameMenuItem, Showbar, AddCascadeMenu,
AddCascadeMenuItem, ChangeCascadeAction, InsertMenu, InsertMenuItem, InsertCascadeMenu,
InsertCascadeMenuItem

AddCascadeMenu
This function adds a cascading menu to the end of an existing pull down menu.

Syntax
AddCascadeMenu(BarID, Menu, CascadeMenu)
BarID is the identification number of the menu bar returned from the AddBar function. To use the    ami   
pro menu bar, use 1.
Menu is the name of the pull down menu this cascade menu should be added to. This must match exactly
the name of the pull down menu you want to add to, including any ampersand (&) characters.
CascadeMenu is the name of the Cascade menu you want to add. Placing an ampersand (&) in front of a
character makes that character appear underlined and makes that character a shortcut key.

Return Value
This function returns:

1    (TRUE) if the cascading menu was created.
0    (FALSE) if the cascading menu was not created.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()
ShowBar(1)'Restore the original Ami Pro menu bar.
END FUNCTION

See also:

AddMenu, AddBar, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, AddCascadeMenuItem,
InsertMenu, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem, RenameMenuItem,
GrayMenuItem, CheckMenuItem, ChangeMenuAction, DeleteMenu, DeleteMenuItem, ShowBar

AddCascadeMenuItem
This function adds a menu item to an existing cascading menu.

Syntax
AddCascadeMenuItem(BarID, Menu, CascadeMenu, Item, MacroName[!Function[(parm1[, parm2...])]], Help)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu this cascade menu should be added to. This must match exactly
the name of the pull down menu you want to add to, including any ampersand (&) characters.
CascadeMenu is the name of the Cascade menu you want to add. Placing an ampersand (&) in front of a
character makes that character appear underlined and makes that character a shortcut key.
Item is the name of the menu item to add. Placing an ampersand (&) in front of a character makes that
character appear underlined and makes that character a shortcut key.
MacroName is the name of the macro to run if this menu item is selected. This parameter may contain
the macro file name, the function within that file to call, and any parameters that function may require. At a
minimum, this parameter must contain the macro file name.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted. It
is not optional for this function.

Return Value
This function returns:

1    (true) if the new menu bar was created.
0    (UserCancel/FALSE) if the new menu bar was not created or if the user canceled the function.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()
ShowBar(1)'Restore the original Ami Pro menu bar.

END FUNCTION

See also:

AddMenu, AddBar, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, AddCascadeMenu,
InsertMenu, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem, RenameMenuItem,
GrayMenuItem, CheckMenuItem, ChangeMenuAction, DeleteMenu, DeleteMenuItem, ShowBar

AddFrame
This function automatically creates a frame. All dimensions of the frame must be entered in twips (1
inch=1440 twips), with the 0,0 location considered to be the top left corner of the page. Choosing this
function is equivalent to choosing Frame/Create Frame.
You must be in Layout Mode to call this function.

Syntax
AddFrame(X1, Y1, X2, Y2)
X1 is the horizontal position of the top left corner of the frame.
Y1 is the vertical position of the top left corner of the frame.
X2 is the horizontal position of the bottom right corner of the frame.
Y2 is the vertical position of the bottom right corner of the frame.
The two X coordinates should either be zero or positive numbers. The two Y coordinates should either be
zero or negative numbers.
To display the Add a Frame Dialog Box and allow the user to select the coordinates or select manual
draw: AddFrameDLG

Return Value
This function returns:

1    (TRUE) if the frame was created.
-2    (GeneralFailure) if the frame was not created.

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

FrameLayout, CursorPosition, GraphicsScaling, FrameModInit, AddFrameDLG, ImportPicture,
FrameModLines, FrameModType, FrameModBorders, FrameModFinish, GroupFrames,
IsFrameSelected, SelectFrameByName, SetFrameDefaults

AddFrameDLG
This function displays the Create Frame dialog box. Choosing this function is equivalent to choosing
Frame/Create Frame.
It does not automatically create a frame. To create a frame automatically, refer to the AddFrame function.
You must be in Layout Mode to call this function.

Syntax
AddFrameDLG()

Return Value
This function returns:

1    (TRUE) if the frame was created.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

FrameLayout, CursorPosition, GraphicsScaling, FrameModInit, AddFrame, ImportPicture,
FrameModLines, FrameModType, FrameModBorders, FrameModFinish, GroupFrames,
IsFrameSelected, SelectFrameByName, SetFrameDefaults

AddMenu
This function creates a new menu on an existing menu bar. The new menu is added to the right of the last
menu on the menu bar.

Syntax
AddMenu(BarID, Menu)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu that should be added. Placing an ampersand (&) character
before a character makes that character appear underlined and makes that character a shortcut key.

Return Value
This function returns:

1    (TRUE) if the menu was added.
0    (FALSE) if the menu was not added to the menu bar, or if an invalid BarID was used.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()
ShowBar(1)'Restore the original Ami Pro menu bar.
END FUNCTION

See also:

AddBar, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem, DeleteMenu,
DeleteMenuItem, GrayMenuItem, RenameMenuItem, ShowBar, AddCascadeMenu,
ChangeCascadeAction, InsertMenu, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem,
AddCascadeMenuItem

AddMenuItem
This function adds a new menu item to the bottom of an existing pull down menu or adds an item directly
to an existing menu bar.

Syntax
AddMenuItem(BarID, Menu, Item, MacroName[!Function[(parm1[, parm2...])]][, Help])
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu to which this item should be added. This name must match the
name of the pull down menu, including any ampersand (&) characters.
Item is the name of the menu item to add. Placing an ampersand (&) in front of a character makes that
character appear underlined and makes that character a shortcut key.
MacroName is the name of the macro to run if this menu item is selected. This parameter may contain
the macro file name, the function within that file to call, and any parameters that function may require. At a
minimum, this parameter must contain the macro file name. If you want to run an Ami Pro function, use its
name without quotes or parentheses.
Help is the optional one-line Help text that appears in the title bar of Ami Pro when this menu item is
highlighted.
If you want the item on the menu bar: AddMenuItem

Return Value
This function returns:

1    (TRUE) if the new menu item was added.
0    (FALSE) if the new menu item was not added, or if an invalid BarID or MenuName was used.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()

ShowBar(1)'Restore the original Ami Pro menu bar.
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem, DeleteMenu,
DeleteMenuItem, GetMacPath, GrayMenuItem, RenameMenuItem, ShowBar, AddCascadeMenuItem,
AddCascadeMenu, ChangeCascadeAction, InsertMenu, InsertMenuItem, InsertCascadeMenu,
InsertCascadeMenuItem

AddMenuItemDDE
This function creates a new menu item in a pulldown menu. This function allows an external program to
be notified when the user selects this menu item. An external application must initiate a conversation with
the "AmiPro!RemoteControl" Dynamic Data Exchange (DDE) channel, and request an Advise for Menus.
When the user selects this menu item, the AdviseID is sent to the application as data in CF_Text format.

Syntax
AddMenuItemDDE(BarID, Menu, Item, AdviseID[, Help])
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu to which this cascade menu should be added. This name must
match the name of the pull down menu, including any ampersand (&) characters.
Item is the name of the menu item to add. Placing an ampersand (&) in front of a character makes that
character appear underlined and makes that character a shortcut key.
AdviseID is an integer that should be sent to an external DDE application if this menu item is chosen by
the user.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted.

Return Value
This function returns:

1    (TRUE) if the new menu item was added.
0    (FALSE) if the new menu item was not added, or if an invalid BarID or Menu name was used.

Example
FUNCTION Example()
DeleteMenu(1, "&DDE")'Remove the menu if it already exists.
AddMenu(1, "&DDE")'Add the menu "DDE" to the Ami Pro menu bar
AddMenuItemDDE(1, "&DDE", "&Return Value of 555", 555, "This sends 555 to the app")
'Add the DDE menu item to that menu
AddMenuItemDDE(1, "&DDE", "&Return Value of 123", 123, "This sends 123 to the app")
'Add the DDE menu item to that menu
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, ChangeMenuAction, CheckMenuItem, DeleteMenu,
DeleteMenuItem, DDEAdvise, DDEPoke, DDEExecute, DDEInitiate, DDEReceive$, DDETerminate,
DDEUnAdvise, GrayMenuItem, RenameMenuItem, ShowBar, AddCascadeMenu,
AddCascadeMenuItem, InsertMenu, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem,
Exec

AllocGlobalVar
This function allocates memory to hold a global variable (single element or array). Global variables retain
their values until the user frees them or exits Ami Pro, as opposed to regular variables, which are lost
once the macro is finished.

Syntax
AllocGlobalVar(Name, Count)
Name is a unique number or string naming the variable being allocated.
Count is the number of entries to allocate. A count of one allocates a single element global variable. A
count of more than one allocates an array with count elements.

Return Value
This function returns:

a positive number that is the VarID for this variable.
0    (FALSE) if a global variable for the requested ID number already exits or if there is no free memory
to allocate.

Example
FUNCTION Example()
AllocGlobalVar("Names", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("Numbers", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("YourName", 1)'Allocate space for a single element global variable.
FOR I = 1 to 5'Do the following 5 times.
SetGlobalArray("Names", I, Query$("Enter Name Number {I}"))
'Fill a global array with the return from QUERY
SetGlobalArray("Numbers", I, (100/I))'Fill a global array with a number
NEXT
NewName = Query$("What is your name?")'Query the user for his/her name
SetGlobalVar("YourName", NewName)'Set a global variable to that value
CALL Example2()'Call the following function
END FUNCTION

FUNCTION Example2()
Name = GetGlobalVar$("YourName")'Get the value of the global variable
Message("Your name is {Name}.")'Message that value in a box.
FOR I = 1 to 5'Do the following 5 times.
TheirName = GetGlobalArray$("Names", I)'Get the value of the current element from the array
TheirNumber = GetGlobalArray$("Numbers", I)'Get the value of the current element from the array
TYPE("Name #{I} is {TheirName}, and the number is {TheirNumber}.[Enter]")
'Type the values to the screen.
NEXT
FreeGlobalVar("Names")'Clear the space for the first global array
FreeGlobalVar("Numbers")'Clear the space for the second global array
FreeGlobalVar("YourName")'Clear the space for the global variable
END FUNCTION

See also:

FreeGlobalVar, GetGlobalArray$, GetGlobalVar$, SetGlobalArray, SetGlobalVar, Global Variables,
GetGlobalVarCount, GetGlobalVarNames

AmiProIndirect
This function is used to call any Ami Pro function where the number of parameters cannot be determined
ahead of time.

Syntax
AmiProIndirect(FunctionName, &Parameters, Count)
FunctionName is the function you want to call.
Parameters are the arrays that contain the parameters.
Count is the number of parameters in the array.

Return Value
This function returns:

1    (TRUE) if the changes were made.
0    (FALSE) if the changes could not be made.

Example
FUNCTION Example()
Cnt = GetLayoutParmCnt(ModLayoutRightPage)'Get number of parameters for ModLayoutRightPage
DIM Stuff(Cnt)'Dimension an array for that amount
GetLayoutParameters(ModLayoutRightPage, &Stuff)'Get the parameters and place in the array
length = Query$("New length of right/all headers?")'Query for new headers lengthh
width = Query$("New width of right/all headers?")'Query for new headers height.
Stuff(1) = length * 1440'Turn into twips
Stuff(2) = width * 1440'Turn into twips
ModLayoutInit(512)'Prep Ami Pro to accept Layout changes for all pages
AmiProIndirect(ModLayoutRightPage, &Stuff, Cnt)'Apply changes to specified function.
ModLayoutFinish()'Tell Ami Pro to accept the specified changes
END FUNCTION

See also:

GetLayoutParmCnt, GetLayoutParameters, ModLayoutInit, ModLayoutRightPage, ModLayoutFinish

AnswerMsgBox
This function is used to 'reply' to an Ami Pro function that asks the user for a response. Many functions
require the user to provide some response before the function can be completed. The Messages function
allows the macro programmer to decide if the user has to respond to messages or if the default action is
taken. The AnswerMsgBox function works in a similar manner; however, a response determined by the
programmer is taken, rather than the default.
The AnswerMsgBox function should be used immediately before the function which displays the
message. Unlike the Messages function, the AnswerMsgBox function provides a response only to the
next Ami Pro function called, rather than all succeeding messages.
In general, within a given macro, you should not mix the Messages and AnswerMsgBox functions.

Syntax
AnswerMsgBox(Response)
Response is the desired response to a message box displayed by a function. It must be set to one of the
following options:

OK (1) - Equivalent to choosing OK
Cancel (2) - Equivalent to choosing Cancel
Abort (3) - Equivalent to choosing Abort
Retry (4) - Equivalent to choosing Retry
Yes (6) - Equivalent to choosing Yes
No (7) - Equivalent to choosing No

Return Value
This function does not return a value.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()'Get the current name of this file.
AddMenuItem(1, "&File", "&Quick Close File", "{MacFile}!Example2()")
'Add the menu item to the File menu.
END FUNCTION
FUNCTION Example2()
AnswerMsgBox(No)'Answer the next message box "NO"
FileClose()'Close the current file.
END FUNCTION

See also:

IgnoreKeyboard, Messages, SingleStep, UserControl, HourGlass

AppClose
This function closes any Windows application.

Syntax
AppClose(App)
App is the name of the application which should be closed.

Return Value
This function returns:

1    (TRUE) if the changes were made.
0    (FALSE) if the changes could not be made.

Example
FUNCTION Example()
StatusBarMsg("Finding all active applications...")'Tell the user what we're doing
Cnt = AppGetAppCount()'The the number of open applications
DIM Apps(Cnt)'Dimension an array to hold their names
AppGetAppNames(&Apps)'Get the names of the open applications
StatusBarMsg("")'Clear the status bar.
FOR I = 1 to Cnt'Do the following for each app
CurrentApp = Apps(I)'Set a temporary variable
IF Decide("Close {CurrentApp}?")'Ask the user if he/she wants to close it.
AppClose(CurrentApp)'Close it
ENDIF
NEXT
END FUNCTION

See also:

ActivateApp, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppHide, AppIsRunning,
AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize

AppGetAppCount
This function allows you to get the number of currently running Windows applications. It is usually used to
dimension an array before the AppGetAppNames function is called.

Syntax
AppGetAppCount()

Return Value
This function returns:

the number of running Windows apps.

Example
FUNCTION Example()
StatusBarMsg("Finding all active applications...")'Tell the user what we're doing
Cnt = AppGetAppCount()'The the number of open applications
DIM Apps(Cnt)'Dimension an array to hold their names
AppGetAppNames(&Apps)'Get the names of the open applications
StatusBarMsg("")'Clear the status bar.
FOR I = 1 to Cnt'Do the following for each app
CurrentApp = Apps(I)'Set a temporary variable
IF Decide("Close {CurrentApp}?")'Ask the user if he/she wants to close it.
AppClose(CurrentApp)'Close it
ENDIF
NEXT
END FUNCTION

See also:

ActivateAppActivateApp, AppClose, AppGetAppNames, AppGetWindowPos, AppHide,
AppIsRunning, AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize

AppGetAppNames
This function retrieves the names of all of the currently running Windows applications and places them in
an array. The array may be dimensioned using the AppGetAppCount function.

Syntax
AppGetAppNames(&Array)
Array is the name of an array, dimensioned from the return value of the AppGetAppCount function. Note
the use of indirection (&).

Return Value
This function returns:

the number of applications.

Example
FUNCTION Example()
StatusBarMsg("Finding all active applications...")'Tell the user what we're doing
Cnt = AppGetAppCount()'The the number of open applications
DIM Apps(Cnt)'Dimension an array to hold their names
AppGetAppNames(&Apps)'Get the names of the open applications
StatusBarMsg("")'Clear the status bar.
FOR I = 1 to Cnt'Do the following for each app
CurrentApp = Apps(I)'Set a temporary variable
IF Decide("Close {CurrentApp}?")'Ask the user if he/she wants to close it.
AppClose(CurrentApp)'Close it
ENDIF
NEXT
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetWindowPos, AppHide, AppIsRunning,
AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize

AppGetWindowPos
This function returns the location and size information about any Windows application. Note the use of
indirection (&). The X, Y, Width, and Height parameters are all passed by addressing. The return values
are in percentages of the screen size.

Syntax
AppGetWindowPos(App, &X, &Y, &Width, &Height)
App is the name of the application that you want to find.
X is the horizontal starting point of App.
Y is the vertical starting point of App.
Width is the width of App.
Height is the height of App.

Return Value
This function returns:

1    (TRUE) if the application was valid.
0    (FALSE) if the application was not valid.

Example
FUNCTION Example()
DEFSTR x, y, x2, y2;'Pre-define the variables to be used
AppGetWindowPos("Program Manager", &x, &y, &x2, &y2)
'Get Program Manager's current (restored) position
AppRestore("Program Manager")'Restore Program Manager
x = Query$("New X pos of upper-left corner (in twips)?", x)
'Get horizontal starting point
y = Query$("New Y pos of upper-left corner (in twips)?", y)
'Get vertical starting point
x2 = Query$("New width of window (in % of Screen Size)?")
'Get window width
y2 = Query$("New height of window (in % of Screen Size)?")
'Get window height
AppMove("Program Manager", x, y)'Move to the new position
AppSize("Program Manager", x2, y2)'Size the window accordingly
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppHide, AppIsRunning,
AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize

AppHide
This function hides any Windows application. When an application is hidden it cannot receive keyboard or
mouse input; however, it responds to Dynamic Data Exchange (DDE) commands.

Syntax
AppHide(App)
App is the name of the application that should be hidden.

Return Value
This function returns:

1    (TRUE) if the app was hidden.
0    (FALSE) if the app could not be hidden.

Example
FUNCTION Example()
Again:
AppName = Query$("Modify which application's window?")'Find the app to modify
IF not AppIsRunning(AppName)'Check to see if it is running
Message("That App is not running.")'Message if it is not
GoTo Again'and try again
ELSE
Again2:
Action = UCASE$(Query$("Hide, Maximize, Minimize, or Restore?"))
'Find what to do to the app
SWITCH Action'Do a SWITCH on the var Action
CASE "HIDE"'If user typed "hide"
AppHide(AppName)'then hide the app.
CASE "MAXIMIZE"'If user typed "maximize"
AppMaximize(AppName)'then maximize the app
CASE "MINIMIZE"'If user typed "minimize"
AppMinimize(AppName)'then minimize the app
CASE "RESTORE"'If user typed "restore"
AppRestore(AppName)'then restore the app
default'If the user didn't type one of the above
Message("You made a typo. Try again.")
GoTo Again2'tell them so and let them try again.
ENDSWITCH
ENDIF
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppIsRunning,
AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize

AppIsRunning
This function allows you to see if any Windows application is currently running.

Syntax
AppIsRunning(App)
App is the name of the application to be evaluated.

Return Value
This function returns:

1    (TRUE) if the application is running.
0    (FALSE) if the application is not running.

Example
FUNCTION Example()
Again:
AppName = Query$("Modify which application's window?")'Find the app to modify
IF not AppIsRunning(AppName)'Check to see if it is running
Message("That App is not running.")'Message if it is not
GoTo Again'and try again
ELSE
Again2:
Action = UCASE$(Query$("Hide, Maximize, Minimize, or Restore?"))
'Find what to do to the app
SWITCH Action'Do a SWITCH on the var Action
CASE "HIDE"'If user typed "hide"
AppHide(AppName)'then hide the app.
CASE "MAXIMIZE"'If user typed "maximize"
AppMaximize(AppName)'then maximize the app
CASE "MINIMIZE"'If user typed "minimize"
AppMinimize(AppName)'then minimize the app
CASE "RESTORE"'If user typed "restore"
AppRestore(AppName)'then restore the app
default'If the user didn't type one of the above
Message("You made a typo. Try again.")
GoTo Again2'tell them so and let them try again.
ENDSWITCH
ENDIF
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppMaximize,
AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize, AppHide

ApplyFormat
This function applies text formatting and enhancements to selected text. The text formatting and
enhancements must be loaded using the FastFormat function. A macro must be edited to insert this non-
recordable function.

Syntax
ApplyFormat()

Return Value
This function returns:

1.

Example
FUNCTION Example()
UserControl("Shade the area that contains the formatting you want:")
FastFormat() ' Turn on Fast Formatting
FastFormat() ' Turn off Fast Formatting
UserControl("Shade the area you want to apply formatting to:")
ApplyFormat()
END FUNCTION

See also:

FastFormat

AppMaximize
This function maximizes any Windows application.

Syntax
AppMaximize(App)
App is the name of the application that is to be maximized.

Return Value
This function returns:

1    (TRUE) if the app was maximized.
0    (FALSE) if the app could not be maximized.

Example
FUNCTION Example()
Again:
AppName = Query$("Modify which application's window?")'Find the app to modify
IF not AppIsRunning(AppName)'Check to see if it is running
Message("That App is not running.")'Message if it is not
GoTo Again'and try again
ELSE
Again2:
Action = UCASE$(Query$("Hide, Maximize, Minimize, or Restore?"))
'Find what to do to the app
SWITCH Action'Do a SWITCH on the var Action
CASE "HIDE"'If user typed "hide"
AppHide(AppName)'then hide the app.
CASE "MAXIMIZE"'If user typed "maximize"
AppMaximize(AppName)'then maximize the app
CASE "MINIMIZE"'If user typed "minimize"
AppMinimize(AppName)'then minimize the app
CASE "RESTORE"'If user typed "restore"
AppRestore(AppName)'then restore the app
default'If the user didn't type one of the above
Message("You made a typo. Try again.")
GoTo Again2'tell them so and let them try again.
ENDSWITCH
ENDIF
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppIsRunning,
AppMinimize, AppMove, AppRestore, AppSendMessage, AppSize, AppHide

AppMinimize
This function minimizes any Windows application.

Syntax
AppMinimize(App)
App is the name of the application that is to be minimized.

Return Value
This    Function Returns:

1    (TRUE) if the app was minimized.
0    (FALSE) if the app could not be minimized.

Example
FUNCTION Example()
Again:
AppName = Query$("Modify which application's window?")'Find the app to modify
IF not AppIsRunning(AppName)'Check to see if it is running
Message("That App is not running.")'Message if it is not
GoTo Again'and try again
ELSE
Again2:
Action = UCASE$(Query$("Hide, Maximize, Minimize, or Restore?"))
'Find what to do to the app
SWITCH Action'Do a SWITCH on the var Action
CASE "HIDE"'If user typed "hide"
AppHide(AppName)'then hide the app.
CASE "MAXIMIZE"'If user typed "maximize"
AppMaximize(AppName)'then maximize the app
CASE "MINIMIZE"'If user typed "minimize"
AppMinimize(AppName)'then minimize the app
CASE "RESTORE"'If user typed "restore"
AppRestore(AppName)'then restore the app
default'If the user didn't type one of the above
Message("You made a typo. Try again.")
GoTo Again2'tell them so and let them try again.
ENDSWITCH
ENDIF
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppIsRunning,
AppMaximize, AppMove, AppRestore, AppSendMessage, AppSize, AppHide

AppMove
This function moves a Windows application. It does not size the window, but moves it to a new location on
the screen.

Syntax
AppMove(App, X, Y)
App is the name of the application that is to be moved. To identify Ami Pro as the application to move,
use the null string ("").
X is the horizontal location on the screen, in percent.
Y is the vertical location on the screen, in percent.
(0,0) is the upper left position on the screen.

Return Value
This function returns:

1    (TRUE) if the app was moved.
0    (FALSE) if the app could not be moved.

Example
FUNCTION Example()
DEFSTR x, y, x2, y2;'Pre-define the variables to be used
AppGetWindowPos("Program Manager", &x, &y, &x2, &y2)
'Get Program Manager's current (restored) position
AppRestore("Program Manager")'Restore Program Manager
x = Query$("New X pos of upper-left corner (in twips)?", x)
'Get horizontal starting point
y = Query$("New Y pos of upper-left corner (in twips)?", y)
'Get vertical starting point
x2 = Query$("New width of window (in % of Screen Size)?")
'Get window width
y2 = Query$("New height of window (in % of Screen Size)?")
'Get window height
AppMove("Program Manager", x, y)'Move to the new position
AppSize("Program Manager", x2, y2)'Size the window accordingly
END FUNCTION

See also:

"ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppIsRunning,
AppMaximize, AppMinimize, AppRestore, AppSendMessage, AppSize, AppHide

AppRestore
This function restores any Windows application to its former non-maximized or non-minimized size.

Syntax
AppRestore(App)
App is the name of the application that is to be restored.

Return Value
This function returns:

1    (TRUE) if the app was restored.
0    (FALSE) if the app could not be restored.

Example
FUNCTION Example()
Again:
AppName = Query$("Modify which application's window?")'Find the app to modify
IF not AppIsRunning(AppName)'Check to see if it is running
Message("That App is not running.")'Message if it is not
GoTo Again'and try again
ELSE
Again2:
Action = UCASE$(Query$("Hide, Maximize, Minimize, or Restore?"))
'Find what to do to the app
SWITCH Action'Do a SWITCH on the var Action
CASE "HIDE"'If user typed "hide"
AppHide(AppName)'then hide the app.
CASE "MAXIMIZE"'If user typed "maximize"
AppMaximize(AppName)'then maximize the app
CASE "MINIMIZE"'If user typed "minimize"
AppMinimize(AppName)'then minimize the app
CASE "RESTORE"'If user typed "restore"
AppRestore(AppName)'then restore the app
default'If the user didn't type one of the above
Message("You made a typo. Try again.")
GoTo Again2'tell them so and let them try again.
ENDSWITCH
ENDIF
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos, AppIsRunning,
AppMaximize, AppMinimize, AppMove, AppSendMessage, AppSize, AppHide

AppSendMessage
This function allows you to send any Windows message to any Windows application. You should be
familiar with the Message, Wparam, and Lparam parameters. This function first locates the application's
handle and then calls the SendMessage function from Windows with the specified parameters.

Syntax
AppSendMessage(App, Message, Wparam, Lparam)
App is the name of the application to send the message to. It can also be a window handle.
Message is the Windows message to send to the application.
Wparam is the wparam parameter for the Windows message.
lparam is the lparam parameter for the Windows message.

Return Value
This function returns:

the return value from the Windows function SendMessage.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!ClearBox")
FOR I = 1 to 10
FillEdit(9000, I)
NEXT
Box = DialogBox(".", "ExampleBox")
END FUNCTION

FUNCTION ClearBox(hdlg, id, text)
handle = GetDlgItem(hdlg, 9000)
AppSendMessage(handle, 0x0405, 0, 0)
Message("Cleared List Box, Now I Will Re-Fill It...")
FOR I = 1 to 10
SetDlgItemText(hdlg, 9000, I)
NEXT
END FUNCTION

DIALOG ExampleBox
-2134376448 4 169 46 106 76 "" "" "Example Dialog Box"
FONT 6 "Helv"
62 3 40 14 2 1342242817 "button" "DONE" 0
62 19 40 14 50 1342242816 "button" "Re-Fill Box" 0
4 11 52 61 9000 1352728579 "listbox" "" 0
5 2 51 9 1000 1342177280 "static" "Number:" 0
END DIALOG

See also:

SetDlgCallback, ActivateApp, AppClose, AppGetAppCount, AppGetAppNames, AppGetWindowPos,
AppIsRunning, AppMaximize, AppMinimize, AppMove, AppRestore, AppSize, AppHide

AppSize
This function changes the size of any Window application.

Syntax
AppSize(App, Width, Height)
App is the name of the application that is to be sized.
Width is the new width, as a percentage of screen size, of the App.
Height is the new height, as a percentage of screen size, of the App.

Return Value
This function returns:

1    (TRUE) if the app was successfully sized.
0    (FALSE) if the app could not be sized.

Example
FUNCTION Example()
DEFSTR x, y, x2, y2;'Pre-define the variables to be used
AppGetWindowPos("Program Manager", &x, &y, &x2, &y2)
'Get Program Manager's current (restored) position
AppRestore("Program Manager")'Restore Program Manager
x = Query$("New X pos of upper-left corner (in twips)?", x)
'Get horizontal starting point
y = Query$("New Y pos of upper-left corner (in twips)?", y)
'Get vertical starting point
x2 = Query$("New width of window (in % of Screen Size)?")
'Get window width
y2 = Query$("New height of window (in % of Screen Size)?")
'Get window height
AppMove("Program Manager", x, y)'Move to the new position
AppSize("Program Manager", x2, y2)'Size the window accordingly
END FUNCTION

See also:

ActivateApp, AppClose, AppGetAppCount, AppHide, AppGetAppNames, AppGetWindowPos,
AppIsRunning, AppMaximize, AppMinimize, AppMove, AppRestore, AppSendMessage

ArrayDelete
This function deletes the specified record from an existing array.
This function does not re-dimension the array.

Syntax
ArrayDelete(&Array, Index)
Array is the name of the array from which to delete a record. Note the use of indirection (&).
Index is the location in the array to delete. This parameter must be a valid array index.

Return Value
This function returns:

1    (TRUE) if the record could be deleted.
0    (FALSE) if the record could not be deleted.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this person's Name (Enter to quit)?")
IF ThisName != ""
ArrayInsert(&Names, 1, ThisName)
ELSE
BREAK
ENDIF
WEND
Size = ArraySize(&Names)
Message("Number of records is {Size}.")
ArraySort(&Names)
Again:
Ndex = ArraySearch(&Names, Query$("What name to find?"))
IF Ndex != 0
IF Decide("Do you want to delete record {Ndex}?")
ArrayDelete(&Names, Ndex)
Size = Size - 1
ENDIF
ELSE
Message("Could not find record.")
GoTo again
ENDIF
FOR I = 1 to Size
ThisName = Names(I)
Message("Record Number {I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayInsert, ArrayInsertByKey, ArraySearch, ArraySize, ArraySort

ArrayInsert
This function inserts the specified record into the array at the specified index. It "moves" existing records
to make room for the new record. If the array is full, the function expands the array.

Syntax
ArrayInsert(&Array, Index, Record)
Array is the name of the array in which to insert the specified record. Note the use of indirection (&).
Index is the position in the array to insert the specified record. Index must be a valid array index or one
greater than the full array. If the array index is greater than the current size of the array by one, the record
appends to the end of the array.
Record is the data to insert into the array.
The name of the array uses indirection (&).

Return Value
This function returns:

1    (TRUE) if the record was inserted.
0    (FALSE) if the record could not be inserted.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this person's Name (Enter to quit)?")
IF ThisName != ""
ArrayInsert(&Names, 1, ThisName)
ELSE
BREAK
ENDIF
WEND
Size = ArraySize(&Names)
Message("Number of records is {Size}.")
ArraySort(&Names)
Again:
Ndex = ArraySearch(&Names, Query$("What name to find?"))
IF Ndex != 0
IF Decide("Do you want to delete record {Ndex}?")
ArrayDelete(&Names, Ndex)
Size = Size - 1
ENDIF
ELSE
Message("Could not find record.")
GoTo again
ENDIF
FOR I = 1 to Size
ThisName = Names(I)
Message("Record Number {I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayDelete, ArrayInsertByKey, ArraySearch, ArraySize, ArraySort

ArrayInsertByKey
This function inserts the record based on the assumption that the array is sorted. The array can be a
single element array or field-delimited records. If the array is full, the function expands the array.

Syntax
ArrayInsertByKey(&Array, Record, DuplicatesOk[, FieldNumber, Delimiter])
Array is the name of the array in which to insert the specified record. Note the use of indirection (&).
Record is the data to insert into the array.
DuplicatesOk determines if this record should be inserted if its key is already in the array. If the
DuplicatesOk parameter is TRUE and this record has a duplicate key, the record is inserted after all other
records with the same key.
FieldNumber is the optional field number when using field delimited records. This defines the Key field.
Delimiter is the optional delimiter in field delimited records.

Return Value
This function returns:

a positive number which is the index of the inserted record.
0    (FALSE) if the record was not inserted.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this one's name?")
IF ThisName = ""
BREAK
ENDIF
ArrayInsertByKey(&Names, ThisName, TRUE)
WEND
Size = ArraySize(&Names)
FOR I = 1 to Size
ThisName = Names(I)
Message("Record #{I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayInsert, ArrayDelete, ArraySearch, ArraySize, ArraySort

ArraySearch
This function searches the specified array looking for a key. If a    fieldnumber and a    delimiter are
specified, the function assumes the records are field-delimited and matches only on the specified field. If
duplicate matches occur, this function finds the first matching record. If an index is specified, the function
begins searching at that position and returns the next matching index of the record.

Syntax
ArraySearch(&Array, Key[, FieldNumber, Delimiter][, Index])
Array is the name of the array to search. Note the use of indirection (&).
Key is the data to search for.
FieldNumber is the optional field number when using field delimited records. This defines the Key field.
Delimiter is the optional delimiter in field delimited records.
Index is the position in the array to begin the search.

Return Value
This function returns:

a positive number which is the index of the matching record.
0    (FALSE) if the record was not matched.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this person's Name (Enter to quit)?")
IF ThisName != ""
ArrayInsert(&Names, 1, ThisName)
ELSE
BREAK
ENDIF
WEND
Size = ArraySize(&Names)
Message("Number of records is {Size}.")
ArraySort(&Names)
Again:
Ndex = ArraySearch(&Names, Query$("What name to find?"))
IF Ndex != 0
IF Decide("Do you want to delete record {Ndex}?")
ArrayDelete(&Names, Ndex)
Size = Size - 1
ENDIF
ELSE
Message("Could not find record.")
GoTo again
ENDIF
FOR I = 1 to Size
ThisName = Names(I)
Message("Record Number {I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayInsert, ArrayDelete, ArrayInsertByKey, ArraySize, ArraySort

ArraySize
This function returns the number of elements in an existing array.

Syntax
ArraySize(&Array)
Array is the name of the array to be examined. Note the use of indirection (&).

Return Value
This function returns:

the number of dimensioned elements in the array.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this person's Name (Enter to quit)?")
IF ThisName != ""
ArrayInsert(&Names, 1, ThisName)
ELSE
BREAK
ENDIF
WEND
Size = ArraySize(&Names)
Message("Number of records is {Size}.")
ArraySort(&Names)
Again:
Ndex = ArraySearch(&Names, Query$("What name to find?"))
IF Ndex != 0
IF Decide("Do you want to delete record {Ndex}?")
ArrayDelete(&Names, Ndex)
Size = Size - 1
ENDIF
ELSE
Message("Could not find record.")
GoTo again
ENDIF
FOR I = 1 to Size
ThisName = Names(I)
Message("Record Number {I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayInsert, ArrayDelete, ArrayInsertByKey, ArraySearch, ArraySort

ArraySort
This function sorts an existing array in ascending order. If a    fieldnumber and    delimiter are specified, the
function assumes the records are field-delimited and the sort is performed on the specified field. If
duplicate keys exist, their order is undefined.
Numbers sort before alphabetical characters.

Syntax
ArraySort(&Array[, FieldNumber, Delimiter])
Array is the name of the array to be sorted. Note the use of indirection (&).
FieldNumber is the optional field number when using field delimited records. This defines the Key field.
Delimiter is the optional delimiter in field delimited records.

Return Value
This function returns:

1    (TRUE) if the array was sorted.
0    (FALSE) if the array could not be sorted.

Example
FUNCTION Example()
DIM Names(1)
WHILE (1)
ThisName = Query$("What is this person's Name (Enter to quit)?")
IF ThisName != ""
ArrayInsert(&Names, 1, ThisName)
ELSE
BREAK
ENDIF
WEND
Size = ArraySize(&Names)
Message("Number of records is {Size}.")
ArraySort(&Names)
Again:
Ndex = ArraySearch(&Names, Query$("What name to find?"))
IF Ndex != 0
IF Decide("Do you want to delete record {Ndex}?")
ArrayDelete(&Names, Ndex)
Size = Size - 1
ENDIF
ELSE
Message("Could not find record.")
GoTo again
ENDIF
FOR I = 1 to Size
ThisName = Names(I)
Message("Record Number {I} of {Size} is {ThisName}.")
NEXT
END FUNCTION

See also:

DIM, ArrayInsert, ArrayDelete, ArrayInsertByKey, ArraySearch, ArraySize

ASC
This function determines the numeric ANSI code of the first letter in the text. If the text contains more than
one letter, the remaining letters are ignored.

Syntax
ASC(Text)
Text is a string of one or more letters.

Return Value
This function returns:

 a number that is the ANSI character code of the first letter in the text.

Example
FUNCTION Example()
String = Query$("What character to return the ASCII Value of?")
Number = ASC(String)
Message("The ASCII equivalent of {String} is {Number}.")
END FUNCTION

See also:

CHR$, LCASE$, MID$, strchr, strfield$, UCASE$, Right$, Left$, Instr, LEN, strcat$

ASCIIOptions
This function sets the ASCII options for any opened file that uses the ASCII filter. Choosing this function is
equivalent to choosing File/Open, specifying    the ASCII file type, and choosing ASCII Options.

Syntax
ASCIIOptions(Options)
Options is the options available to open an ASCII file. It is one or more of the following values:

CRLF (2) - Expect carriage return/line feed characters at end of lines; if not set, expect CR/LFs at end
of paragraphs
ASCII (4) - 7 bit ASCII file
PCASCII (8) - 8 bit PC ASCII file
ANSI (16) - 8 bit ANSI file
KeepStyle (32) - Keep style names

Return Value
This function returns:

1.

Example
FUNCTION Example()
ASCIIOptions(PCASCII)
WinDir = GetWindowsDirectory$()
FileOpen("{WinDir}PRINTERS.TXT", 16, "ASCII")
END FUNCTION

See also:

FileOpen, ImportExport, SaveAs

Assign
This function assigns the result of an expression to a variable and returns the same result. The
expression can be anything that you can pass to another function. This function is useful when using
IF/THEN and WHILE/WEND statements.

Syntax
Assign(&Var, Express)
Var is the name of the variable to assign the return value from Express to. Note the use of indirection (&).
Express is the expression to evaluate.

Return Value
This function returns:

the return value of Express.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
DEFSTR id, Line;
WinDir = GetWindowsDirectory$()
IF 0 != Assign(&id, fopen("{WinDir}PRINTERS.TXT", "r"))
New("~BASIC.STY", 0, 0)
WHILE -1 != Assign(&Line, fgets$(id))
TYPE("{Line}[Enter]")
WEND
toast:
fclose(id)
ELSE
Message("Could not open {WinDir}PRINTERS.TXT!")
ENDIF
END FUNCTION

See also:

Defstr, fopen, fgets$, fclose

AssignMacroToFile
This function assigns an open and close macro to the current file. Choosing this function is equivalent to
choosing Tools/Macro/Edit/Assign.

Syntax
AssignMacroToFile(OpenMacro, CloseMacro, Flag)
OpenMacro is the macro name that is specified to run when the current file opens. Use the null string ("")
to specify no opening macro.
CloseMacro is the macro name that is specified to run when the current file closes. Use the null string ("")
to specify no closing macro.
Flag indicates whether to run the specified open or close macro. Add the values together to run both open
and close macros.

(2) - Run the opening macro
(4) - Run the closing macro

Return Value
This function returns:

0.

Example
FUNCTION Example()
AssignMacroToFile("Openit.smm", "Closeit.smm", 6)
END FUNCTION

AtEOF
This function determines if the insertion point is at the end of the document.

Syntax
AtEOF()

Return Value
This function returns:

1    (TRUE) if the insertion point is at the end of the document.
0    (FALSE) if the insertion point is not at the end of the document.

Example
FUNCTION Example()
TYPE("[CtrlHome]")
Count = 0
WHILE not AtEOF()
TYPE("[CtrlDOWN]")
Count = Count + 1
WEND
Beep()
Message("There are {Count} paragraphs in the document.")
END FUNCTION

See also:

CurChar$, CurWord$, GetPageNo, Type,
TopOfFile, EndOfFile

Beep
This function tells Windows to sound (beep) the current audio device if the sound is turned on in the
Control Panel.

Syntax
Beep()

Return Value
This function does not return a value.

Example
FUNCTION Example()
TYPE("[CtrlHome]")
Count = 0
WHILE not AtEOF()
TYPE("[CtrlDOWN]")
Count = Count + 1
WEND
Beep()
Message("There are {Count} paragraphs in the document.")
END FUNCTION

See also:

Message, StatusBarMsg, HourGlass

BinToBrackets
This function takes binary information and converts it to the Ami Pro brackets convention. This function is
useful after using the fread function to see exactly what was read.

Syntax
BinToBrackets(Data)
Data is the binary information you want to convert to brackets.

Return Value
This function returns:

the bracket convention to which the binary information equates.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

BracketsToBin, fopen, fclose, fread, fwrite, fgets$, fputs, ASC, CHR$

Bold
This function sets the bold attribute for selected text or all following text if no text is selected. It acts as a
toggle, turning off the attribute if it is currently on and turning on the attribute if it is currently off. Choosing
this function is equivalent to choosing Text/Bold.    this function toggles the bold attribute on or off,
depending on its current state.

Syntax
Bold()

Return Value
This function returns:

0 if the bold attribute is toggled on and there are no attributes assigned to the text.
4 if the bold attribute is toggled off.
8 if the bold attribute is toggled on and the italic attribute is assigned.
16 if the bold attribute is toggled on and the underline attribute is already assigned.
32 if the bold attribute i toggled on and the word underline attribute is already assigned.
-2    (GeneralFailure) if the text was not changed.

The return values may be added together to identify the attributes that were previously assigned.

Example
FUNCTION Example()
String = "This is a line of text.[Enter]"
NormalText()
TYPE("Normal...[Enter]{String}")
BOLD(1)
TYPE("Bold...[Enter]{String}")
BOLD(0)
Italic(1)
TYPE("Italics...[Enter]{String}")
Italic(0)
Underline()
TYPE("Underline...[Enter]{String}")
Underline()
WordUnderline(1)
TYPE("Word Underline...[Enter]{String}")
WordUnderline(0)
Bold()
Underline(1)
Italic()
TYPE("Bold, Underline, Italics...[Enter]{String}")
NormalText()
TYPE("Normal...[Enter]{String}")
END FUNCTION

See also:

Italic, NormalText, Underline, WordUnderline

BracketsToBin
This function converts bracketed values to their binary equivalents. It is useful when you are using the
fwrite function.

Syntax
BracketsToBin(Data)
Data is the bracketed information to convert to binary.

Return Value
This function returns:

the binary equivalent to the bracketed information.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

BinToBrackets, fopen, fclose, fread, fwrite, fgets$, fputs, ASC, CHR$

BringFrameToFront
This function brings the selected frame to the front of a stack of frames for editing. Choosing this function
is equivalent to choosing Frame/Bring to Front.

Syntax
BringFrameToFront()

Return Value
This function returns:

1    (TRUE) if the frame was brought to the front.
0    (NoAction) if no action was taken because the frame was already brought to the front.

Example
FUNCTION Example()
x = strfield$(CursorPosition$(), 1, ",")
y = strfield$(CursorPosition$(), 2, ",")
AddFrame(x, y, (x + 1440), (y - 1440))
MarkBookMark("Frame1", AddBookMark)
AddFrame((x + 360), (y - 360), (x + 1800), (y - 1800))
MarkBookMark("Frame2", AddBookMark)
SendFrameToBack()
MarkBookMark("Frame1", FindBookMark)
Message("The First frame is in front.")
MarkBookMark("Frame2", FindBookMark)
BringFrameToFront()
Message("The Second frame is in front.")
END FUNCTION

See also:

GoToCmd, SendFrameToBack, SelectFrameByName, AddFrame, AddFrameDLG

CascadeWindow
This function cascades and overlaps multiple open windows with the currently active window on top.
Choosing this function is equivalent to choosing Window/Cascade.

Syntax
CascadeWindow()

Return Value
This function does not return a value.

Example
FUNCTION Example()
Text = UCASE$(Left$(Query$("What action to take (Tile, Cascade, New, Select) on MDI Windows?"),
1))
SWITCH Text
CASE "T"
TileWindow()
CASE "C"
CascadeWindow()
CASE "N"
NewWindow()
CASE "S"
SelectWindow(Query$("Name of window to select (Name must match EXACTLY)?"))
default
Message("Only the proposed options are available.")
ENDSWITCH
END FUNCTION

See also:

TileWindow, NextWindow, SelectWindow, NewWindow

Center
This function turns centering on or off. This function toggles the current state of the centering attribute.
Choosing this function is equivalent to choosing Text/Alignment/Center.

Syntax
Center()

Return Value
This function returns:

1    (TRUE) if the text was centered, or if centering was removed.
-2    (GeneralFailure) if the alignment was not changed.

Example
FUNCTION Example()
String = "This is a line of Text"
Center()'Turn Center On
TYPE("{String} Centered[Enter]")
Center()'Turn Center Off
LeftAlign()'Turn Left Alignment On
TYPE("{String} Left Aligned[Enter]")
LeftAlign()'Turn Left Alignment Off
RightAlign()'Turn Right Alignment On
TYPE("{String} Right Aligned[Enter]")
RightAlign()'Turn Right Alignment Off
Justify()'Turn Jusification On
TYPE("{String} Justified[Enter]")
Justify()'Turn Justification Off
END FUNCTION

See also:

Justify, LeftAlign, NormalText, RightAlign

ChangeCascadeAction
This function changes the action of the selected cascade menu item.

Syntax
ChangeCascadeAction(BarID, Menu, CascadeMenu, Item, NewAction, Help)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu this cascade menu rests on. This must match exactly the name
of the pull down menu you are referencing, including any ampersand (&) characters in the name of the
menu.
CascadeMenu is the name of the Cascade menu that the item to change is on. This must match exactly
the name of the cascade menu that the item to change is on, including any ampersands (&).
Item is the name of the cascade menu item to be changed.
NewAction can either be an Ami Pro function or a macro.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted.
This parameter is not optional for this function.

Return Value
This function returns:

1    (TRUE) if the item's action was changed.
0    (FALSE) if the change could not be made.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
DeleteMenu(1, "Test")
AddMenu(1, "Test")
AddMenuItem(1, "Test", "Test Menu Item 1", "{MacFile}!Test()", "Test help")
AddCascadeMenu(1, "Test", "Test Cascade")
AddCascadeMenuItem(1, "Test", "Test Cascade", "TCMI 1", "{MacFile}!Test2()", "")
AddMenuItem(1, "Test", "Change Stuff", "{MacFile}!Change()", "Change...")
END FUNCTION

FUNCTION Test()
Message("Test")
END FUNCTION

FUNCTION Test2()
Message("Test2")
END FUNCTION

FUNCTION Change()
MacFile = GetRunningMacroFile$()
ChangeMenuAction(1, "Test", "Test Menu Item 1", "{MacFile}!Test2()", "")
ChangeCascadeAction(1, "Test", "Test Cascade", "TCMI 1", "{MacFile}!Test()", "")
END FUNCTION

See also:

AddMenu, AddBar, AddMenuItem, ChangeMenuAction, ShowBar, AddCascadeMenu,
AddCascadeMenuItem, InsertMenu, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem,
RenameMenuItem, GrayMenuItem, CheckMenuItem

ChangeIcons
This function changes the current icon set to the icon set specified in the Name parameter. Choosing this
function is equivalent to choosing Tools/SmartIcons or the SmartIcons button on the status bar and
specifying the desired icon set. A macro must be edited to insert this non-recordable function.

Syntax
ChangeIcons(Name)
Name is the name of the icon set. This is the full icon set name, not the file name.
A null string ("") changes the current set to the default icon set.

Return Value
This function returns:

1.

Example
FUNCTION Example()
ChangeIcons("Working Together")
END FUNCTION

See also:

GetIconPalette, IconBottom, IconCustomize, IconFloating, IconLeft, IconRight, IconTop, SetIconSize

ChangeLanguage
This function changes the default language path and sets the language used for the current document
and new documents. Choosing this function is equivalent to choosing Tools/Spell Check/Language
Options.

Syntax
ChangeLanguage(Path, NewLang, CurrentLang)
Path is the full path where the dictionary file is located.
NewLang is the number of the language dictionary to use.
CurrentLang is the number of the language dictionary for this document.
Language numbers are:

1- American
2 - British
3 - French
4 - Canadian French
5 - Italian
6 - Spanish
7 - German
8 - Dutch
9 - Norwegian
10 - Swedish
11 - Danish
12 - Portuguese
13 - Finnish
14 - Brazilian
15 - Australian

Return Value
This function returns:

1    (TRUE) if the language was changed.
0    (UserCancel/FALSE) if the language dictionary could not be changed or if the user canceled the
function.

Example
FUNCTION Example()
DEFSTR Item;
String = "American,British,French Canadian"
String = strcat$(String, ",French,Italian,Spanish,German,Dutch,Norwegian")
String = strcat$(String, ",Swedish,Danish,Portuguese,Finnish,Brazilian,Australian")
I = 1
WHILE "" != Assign(&Item, strfield$(String, I, ","))
FillList(Item)
I = I + 1
WEND
Box = DialogBox(".", "ChangeLanguageBox")
IF Box = -1
Message("Could not find dialog box!")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF

Item = GetDialogField$(9000)
LangNum = Instr(String, 0, Item)
Path = GetProfileString$("AmiPro", "dictionary", "AMIPRO.INI")
ChangeLanguage(Path, LangNum, LangNum)
END FUNCTION

DIALOG ChangeLanguageBox
-2134376448 4 150 42 128 60 "" "" "Change Languages"
FONT 6 "Helv"
83 3 40 14 1 1342242817 "button" "OK" 0
84 19 40 14 2 1342242816 "button" "Cancel" 0
6 11 71 44 9000 1352728577 "listbox" "" 0
6 2 51 8 1000 1342177280 "static" "Languages:" 0
END DIALOG

See also:

SpellCheck, Thesaurus

ChangeMenuAction
This function changes the function of a menu item on a pull down menu.

Syntax
ChangeMenuAction(BarID, Menu, Item, MacroName[!Function[(parm1[, parm2...])]][, Help])
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu on which the item is located. This name must match the name
of the pull down menu, including any ampersand (&) characters.
Item is the name of the existing menu item to change. This name must match the name of the existing
menu item, including any ampersand (&) characters.
MacroName is the name of the Ami Pro function or macro to run if this menu item is selected. This
parameter may contain the macro file name, the function within that file to call, and any parameters that
function may require. At a minimum, this parameter must contain the macro file name.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted. If
an Ami Pro function is used, its one-line Help appears.

Return Value
This function returns:

a positive number if the menu item was changed.
0    (FALSE) if the menu item could not be changed, or if an invalid BarID or MenuName was used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
DeleteMenu(1, "Test")
AddMenu(1, "Test")
AddMenuItem(1, "Test", "Test Menu Item 1", "{MacFile}!Test()", "Test help")
AddCascadeMenu(1, "Test", "Test Cascade")
AddCascadeMenuItem(1, "Test", "Test Cascade", "TCMI 1", "{MacFile}!Test2()", "")
AddMenuItem(1, "Test", "Change Stuff", "{MacFile}!Change()", "Change...")
END FUNCTION

FUNCTION Test()
Message("Test")
END FUNCTION

FUNCTION Test2()
Message("Test2")
END FUNCTION

FUNCTION Change()
MacFile = GetRunningMacroFile$()
ChangeMenuAction(1, "Test", "Test Menu Item 1", "{MacFile}!Test2()", "")
ChangeCascadeAction(1, "Test", "Test Cascade", "TCMI 1", "{MacFile}!Test()", "")
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenu, DeleteMenuItem, GetMacPath$, GrayMenuItem, RenameMenuItem, ShowBar,
AddCascadeMenu, AddCascadeMenuItem, ChangeCascadeAction, InsertMenu, InsertMenuItem,
InsertCascadeMenu, InsertCascadeMenuItem

ChangeShortcutKey
This function assigns a shortcut key combination to run a macro. It overrides an existing macro key
definition. It does not check to make sure that the MacroName exists. If an invalid MacroName is used,
the keystroke does nothing when pressed.

Syntax
ChangeShortcutKey(MacroName, Key, State)
MacroName is the name of the macro, including file name that should be assigned to a keystroke.
Key is the alphanumeric function key used as the shortcut key combination.
State is the shift state of the key. It can be "C" (Control key), "S" (Shift key), "A" (Alternate key), or a
combination of the three.

Return Value
This function returns:

1    (TRUE) if the macro was successfully assigned to the function key.
-2      (GeneralFailure) if the key could not be assigned because an invalid keyname was used.

Example
FUNCTION Example()
FileName = Query$("What macro do you want to change the shortcut key for?")
Key = Query$("What number function key do you want to assign?")
IF UCASE$(Left$(Key, 1)) = "F"
Key = MID$(Key, 2, len(Key))
IF not IsNumeric(Key)
Message("Not a valid function key; try again.")
ENDIF
ENDIF
IF Decide("Use Shift with F{key}?")
State = "S"
ELSE
State = ""
ENDIF
IF Decide("Use Ctrl with F{key}?")
State = strcat$(State, "C")
ENDIF
IF Decide("Use Alt with F{key}?")
State = strcat$(State, "A")
ENDIF
IF -2 = ChangeShortcutKey(Filename, Key, State)
Message("Could not change shortcut key for {Filename} to {State}F{Key}")
ENDIF
END FUNCTION

See also:

AddCascadeMenu, AddCascadeMenuItem, AddMenu, AddMenuItem, AddBar, ShowBar,
ChangeMenuAction, InsertMenu, InsertMenuItem, Onkey InsertCascadeMenu,
InsertCascadeMenuItem

CharLeft
This function scrolls the document left one character without moving the insertion point. Choosing this
function is equivalent to clicking once on the right arrow at the right of the horizontal scroll bar.

Syntax
CharLeft()

Return Value
This function returns:

0.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
Mode = GetMode()
IF Mode != 1
LayoutMode()
ENDIF
Again:
UserControl("Click Resume to shift to the left, or Cancel to Quit.")
CharLeft()
GoTo Again
toast:
IF Mode != 1
IF Mode = 16
DraftMode()
ELSEIF Mode = 48
OutlineMode()
ENDIF
ENDIF
END FUNCTION

See also:

CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

CharRight
This function scrolls the document right one character without moving the insertion point. Choosing this
function is equivalent to clicking once on the left arrow at the left of the horizontal scroll bar.

Syntax
CharRight()

Return Value
This function returns:

0.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
Mode = GetMode()
IF Mode != 1
LayoutMode()
ENDIF
Again:
UserControl("Click Resume to shift to the right, or Cancel to Quit.")
CharRight()
GoTo Again
toast:
IF Mode != 1
IF Mode = 16
DraftMode()
ELSEIF Mode = 48
OutlineMode()
ENDIF
ENDIF
END FUNCTION

See also:

CharLeft, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

ChartingMode
This function displays the Charting dialog box. Choosing this function is equivalent to choosing
Tools/Charting (charting must be installed). This function does not draw a chart automatically. The user
must select the charting options manually.

Syntax
ChartingMode()

Return Value
This function returns:

1    (TRUE) if the charting mode was initiated.
-2    (GeneralFailure) if the charting mode was not initiated.

Example
FUNCTION Example()
New("~BASIC.STY", 0, 0)
TYPE("12 33 55 87 99[Enter]45 67 32 88 94[Enter][Enter]")
TYPE("[CtrlHome][CtrlShiftEND]")
Copy()
ChartingMode()
END FUNCTION

See also:

AddFrame, ModifyLayout, DrawingMode

CheckMenuItem
This function places or removes a check mark next to a menu item. Use this function to indicate that the
menu function is currently active.

Syntax
CheckMenuItem(BarID, Menu[, CascadeMenu], Item, State)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu that the item to be checked or unchecked rests on. This must
match exactly the name of the pull down menu you want to modify, including any ampersand (&)
characters.
CascadeMenu is the optional name of the cascade menu that the item to be checked or unchecked rests
on. This must match exactly the name of the cascade menu you want to modify, including any ampersand
(&) characters.
Item is the name of the menu item you want to check or uncheck.
State indicates whether the item is checked or unchecked. State can be either a 1 (On) or a 0 (Off).

Return Value
This function returns:

1    (TRUE) if the item was successfully checked or unchecked.
0    (FALSE) if the item could not be checked/unchecked, or if an invalid BarID, MenuName, or
ItemName was used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
State = 0
DeleteMenuItem(1, "&Text", "B&old+Italic+Underline")
InsertMenuItem(1, "&Text", 10, "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
END FUNCTION

FUNCTION Example2(State)
MacFile = GetRunningMacroFile$()
State = Right$((State - 1), 1)
Bold(State)
Underline(State)
Italic(State)
ChangeMenuAction(1, "&Text", "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
CheckMenuItem(1, "&Text", "B&old+Italic+Underline", State)
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, ChangeMenuItem,
DeleteMenu, DeleteMenuItem, GrayMenuItem, RenameMenuItem, ShowBar, AddCascadeMenu,
AddCascadeMenuItem, ChangeCascadeAction, InsertMenu, InsertMenuItem, InsertCascadeMenu,
InsertCascadeMenuItem

CHR$
This function determines the ANSI character of the number provided.

Syntax
CHR$(Value)
Value is a number between 0 and 255.

Return Value
This function returns:

a single character string that is the ANSI character derived from the function's argument.

Example
FUNCTION Example()
TYPE("NumberCharacter[Enter]")
FOR I = 1 to 255
Char = CHR$(I)
TYPE("{I}={Char}[Enter]")
NEXT
END FUNCTION

See also:

ASC, LCASE$, MID$, strchr, strfield$, UCASE$, Right$, Left$, strcat$, Instr

CleanScreenOptions
This functions determines which elements display in Clean Screen mode. Choosing this function is
equivalent to choosing View/View Preferences and choosing Clean Screen Options.

Syntax
CleanScreenOptions(Options)
Options is a flag that determines the screen elements to display. The Options parameter should be set to
one or more of the following options:

None (0) - None of the elements display.
TitleBar (1) - Display the title bar. This value must be combined with MenuBar (2).
MenuBar (2) - Display the menu bar.
Icons (4) - Display the SmartIcons.
StatusBar (8) - Display the status bar.
VertScroll (16) - Display the vertical scroll bar.
HorzScroll (32) - Display the horizontal scroll bar.
ReturnIcon (64) - Display the icon to exit Clean Screen mode.

Return Value
This function returns:

1.

Example
FUNCTION Example()
CleanScreenOptions(112) ' Display the scroll bars and return icon
ToggleCleanScreen()
END FUNCTION

See also:

ToggleCleanScreen, ViewPreferences

ClipboardRead
This function retrieves information from the Clipboard.

Syntax
ClipboardRead(Format)
Format is how the information is stored in the Clipboard. It passes a 0 for information in a text format.

Return Value
This function returns:

1    (TRUE) if the information was read.
0    (FALSE) if the information was not read.

Example
FUNCTION Example()
Stuff = Query$("Enter what you want put on the clipboard:")
ClipboardWrite(Stuff, 1)
CALL Example2()
END FUNCTION

FUNCTION Example2()
Paste()
TYPE("[Enter]Should look exactly like the line below:[Enter]")
TYPE(ClipboardRead(1))
END FUNCTION

See also:

ClipboardWrite, Cut, Copy, Paste, DDELinks

ClipboardWrite
This function places information of a specified format on the Clipboard.

Syntax
ClipboardWrite(Data, Format)
Data is the string to be placed on the Clipboard.
Format is how the text is stored in the Clipboard. It passes 0 for information in a text format.

Return Value
This function returns:

1    (TRUE) if the information was written.
0    (FALSE) if the information was not written.

Example
FUNCTION Example()
Stuff = Query$("Enter what you want put on the clipboard:")
ClipboardWrite(Stuff, 1)
CALL Example2()
END FUNCTION

FUNCTION Example2()
Paste()
TYPE("[Enter]Should look exactly like the line below:[Enter]")
TYPE(ClipboardRead(1))
END FUNCTION

See also:

ClipboardRead, Cut, Copy, Paste, DDELinks

ConnectCells
This function connects or disconnects the selected table cells. Choosing this function is equivalent to
choosing Table/Connect Cells. The ConnectCells function is a toggle. If the selected cells are not
connected, they become connected. If the selected cells are already connected, they become
disconnected.

Syntax
ConnectCells()

Return Value
This function returns:

1    (TRUE) if the cells were successfully connected or disconnected.
-2    (GeneralFailure) if the cells could not be connected or disconnected.
-7    (CouldNotFind) if the cells to connect or disconnect could not be located.

Example
FUNCTION Example()
DEFSTR StartRow, StartCol, EndRow, EndCol;
Tables(1, TRUE, 4, 10)
'TableLayout(2, TRUE, 1440, 0, 0, 0, TRUE, TRUE, FivePoint, TRUE)
WHILE StartRow != 2
TYPE("[Right]")
TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
WEND
TYPE("[ShiftRight][ShiftRight]")
ConnectCells()
TableLines(AllSides, 0, 0, OnePoint, 0)
END FUNCTION

See also:

ProtectCells, TableLayout, Tables, SizeColumnRow, TableLines

ControlPanel
This function runs the Microsoft Windows Control Panel. Choosing this function is equivalent to choosing
System/Control Panel. Control Panel settings cannot be set directly with this macro function. This function
opens the Control Panel window and then immediately returns control to the macro. The user can adjust
the Control Panel settings, close the window, and return to word processing.
If later functions in the macro involve screen display, these functions cause the Ami Pro window to
obscure the Control Panel window as the macro continues to run in the background. To prevent this from
occurring either minimize the Ami Pro window before using this function or allow the function to be the last
function in the macro. You could also place a Pause or UserControl box to halt operation of the macro
temporarily.

Syntax
ControlPanel

Return Value
This function returns:

1.

Example
FUNCTION Example()
UserControl("Click Resume to bring up Control Panel...")
ControlPanel
UserControl("Click Resume to shut down Control Panel...")
AppClose("Control Panel")
END FUNCTION

See also:

PrintSetup, PrintOptions

Copy
This function copies the selected text, selected frame, or table to the clipboard. Choosing this function is
equivalent to choosing Edit/Copy.

Syntax
Copy()

Return Value
This function returns:

1    (TRUE) if the text was copied to the clipboard.
-2    (GeneralFailure) if the text could not be copied or if there was no text to copy.

Example
FUNCTION Example()
New("~BASIC.STY", 0, 0)
TYPE("12 33 55 87 99[Enter]45 67 32 88 94[Enter][Enter]")
TYPE("[CtrlHome][CtrlShiftEND]")
Copy()
ChartingMode()
END FUNCTION

See also:

Cut, Paste, CurChar$, CurWord$, CurShade$, DDELinks, ClipboardRead, ClipboardWrite

CreateDataFile
This function creates a new data file. It does not run the automated data file record entry function.

Syntax
CreateDataFile()

Return Value
This function returns:

1.

Example
FUNCTION Example()
CreateDataFile()
END FUNCTION

See also:

CreateDescriptionFile, Merge, MergeToFile, OpenDataFile, OpenMergeFile

CreateDescriptionFile
This function creates an Ami Pro merge description file. A description file contains a list of the fields in an
external data file. Choosing this function is equivalent to File/Merge, choosing Option 1, selecting a file
type and file name, and entering the field names in the Merge Data File Fields dialog box.

Syntax
CreateDescriptionFile(FileName, Type[, Fields...])
FileName is the name of the description file, in Ami Pro format, to be created.
Type is the format of the data file and is one of the following:

Ami Pro
1-2-3
1-2-3 rel 3
Comma delimited
dBase
DIF
Excel
Excel 3.0
Excel 4.0
Fixed length ASCII
Paradox
SuperCalc

Fields are the names of the fields to insert into the description file.

Return Value
This function returns:

1.

Example
FUNCTION Example()
CreateDescriptionFile("123desc.sam", "1-2-3 rel 3", "Name", "Address", "City", "State", "Zip")
END FUNCTION

See also:

CreateDataFile, MergeToFile, OpenDataFile, OpenMergeFile

CreateStyle
This function creates a new paragraph style. Choosing this function is equivalent to choosing Style/Create
Style.
The paragraph style name cannot exceed thirteen characters.

Syntax
CreateStyle(NewName, BaseName, Options)
NewName is the name of the new paragraph style.
BaseName is the name of the existing paragraph style on which to base the new paragraph style.
Options is a flag which determines whether to create or modify a style. It also determines whether to
create or modify a style based on the style at the insertion point position or in the BaseName parameter.

CreateSty (0) - Create style
ModSty (1) - Modify style
SelectSty (2) - Create or modify style based on the style at the insertion point position. If this
parameter is used, the BaseName parameter is ignored.

You must still enter an empty string ("") for the BaseName.
The Options parameter must use either CreateSty or ModSty. SelectSty may be added to one of the other
parameters.
To display the Create Styles dialog box and allow the user to select the new paragraph style name and
the paragraph style it is based on: CreateStyle

Return Value
This function returns:

1    (TRUE) if the new paragraph style was created.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the paragraph style could not be created.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines, ModifyStyle, ModifyReflow,
ModifySelect, ModifySpacing, ModifyTable, SaveAsNewStyle, UseAnotherStyle,   
StyleManageAction, StyleManageFinish, StyleManageInit, StyleManagement

CurChar$
This function is used to determine the character to the right of the insertion point.

Syntax
CurChar$()

Return Value
This function returns:

 The character to the right of the insertion point.
 The null string ("") if there is a mark at the insertion point. Marks returning the null string include a
bookmark, a note, a date mark, a merge variable, the end of a paragraph, a footnote, etc.

Example
FUNCTION Example()
UserControl("Place your cursor in the document, then click Resume...")
Message(CurChar$())
UserControl("Shade some text, then click Resume...")
Message(CurShade$())
UserControl("Click a word in your document, then click Resume...")
Message(CurWord$())
END FUNCTION

See also:

CurWord$, CurShade$, GoToCmd, GetMarkText$, GetTextBeforeCursor$, GoToShade

CurShade$
This function is used to obtain the value of the selected text.

Syntax
CurShade$()

Return Value
This function returns:

the null string ("") if    there is no text selected.
only printable characters are returned. Marks in the text are ignored.

Example
FUNCTION Example()
UserControl("Place your cursor in the document, then click Resume...")
Message(CurChar$())
UserControl("Shade some text, then click Resume...")
Message(CurShade$())
UserControl("Click a word in your document, then click Resume...")
Message(CurWord$())
END FUNCTION

See also:

CurChar$, CurWord$, GoToCmd, GetMarkText$, GetTextBeforeCursor$, GoToShade

CursorPosition$
This function is used to determine the location of the insertion point on the page. X represents the
horizontal position on the page in twips (1 inch=1440 twips). Y represents the vertical position on the page
in twips. The upper left corner of the page is location 0,0. The X value gets larger as the position moves
right. The Y value is negative, and becomes a larger negative number as the position moves down.

Syntax
CursorPosition$()

Return Value
This function returns:

the null string ("") if the insertion point is not displayed, is not on the current page, or if Ami Pro is in
Draft Mode.
a string with the position of the insertion point in the format "X, Y".

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

AddFrame, GetTextBeforeCursor$, AddFrameDLG, TYPE, strfield$, GetMode, LayoutMode,
DraftMode, OutlineMode

CurWord$
This function is used to obtain the value of the word at the insertion point.

Syntax
CurWord$()

Return Value
This function returns:

only printable characters. Marks in the text are ignored.

Example
FUNCTION Example()
UserControl("Place your cursor in the document, then click Resume...")
Message(CurChar$())
UserControl("Shade some text, then click Resume...")
Message(CurShade$())
UserControl("Click a word in your document, then click Resume...")
Message(CurWord$())
END FUNCTION

See also:

CurChar$, CurShade$, GoToCmd, GetMarkText$, GetTextBeforeCursor$, GoToShade

CustomView
This function changes the current view level to Custom View. Choosing this function is equivalent to
choosing View/Custom.

Syntax
CustomView()

Return Value
This function returns:

1.

Example
FUNCTION Example()
Again:
View = Query$("Choose a view: (C)ustom, (E)nlarged, (F)acing Pages, Full (P)age, or (S)tandard.")
View = UCASE$(Left$(View, 1))
SWITCH View
CASE "C"
CustomView()
CASE "E"
EnlargedView()
CASE "F"
FullPageView()
CASE "P"
FacingView()
CASE "S"
StandardView()
default
Message("Please enter one of the following: ""C"", ""E"", ""F"", or ""S"")
GoTo again
ENDSWITCH
END FUNCTION

See also:

EnlargedView, FacingView, FullPageView, GetViewLevel, LayoutMode, StandardView

Cut
This function is used to cut the selected text, selected frame, or table from the document and save it to
the clipboard. Choosing this function is equivalent to choosing Edit/Cut.

Syntax
Cut()

Return Value
This function does not return a value. If no text was shaded, the macro terminates with an error message.

Example
FUNCTION Example()
UserControl("Shade the text to move to the end of the doc, then click Resume...")
Cut()
TYPE("[CtrlEND]")
Paste()
END FUNCTION

See also:

Copy, Paste, CurChar$, CurWord$, CurShade$, DDELinks, ClipboardRead, ClipboardWrite

DarkMode
This function is used to turn off updating of the Ami Pro screen during execution of a macro. When
DarkMode is turned on, the screen display in the current Multiple Document Interface (MDI) window is
frozen. The screen is not updated until DarkMode is turned off.
Make sure that you turn DarkMode off before the macro finishes, or the user never sees the screen
repaint.

Syntax
DarkMode(State)
State is a flag variable that determines if DarkMode is in effect. The State parameter should be set to one
of the following values:

On (1) - Stops the screen from updating
Off (0) - Repaint the screen and allow updating

Return Value
This    Function Returns:

 the State of the function.   

Example
FUNCTION Example()
DarkMode(1)
TYPE("This is a sample of what Dark Mode can do for you.")
DarkMode(0)
END FUNCTION

See also:

HourGlass, Pause, StatusBarMsg

DateDiff
This function takes two dates (Date1, Date2) and calculates the number of days elapsed by subtracting
Date2 from Date1.

Syntax
DateDiff(Date1, Date2)
Date1 is the first date to examine. It can be stated as the number of seconds since January 1, 1970 or the
current Windows date format.
Date2 is the second date to examine. It can be stated as the number of seconds since January 1, 1970 or
the current Windows date format.

Return Value
This function returns:

the number of days the two dates differ.

Example
FUNCTION Example()
Born = Query$("What is your Birthday (MM/DD/YYYY)?")
Date = FormatDate$(Now(), "h")
Time = FormatTime$(Now(), 6)
Days = DateDiff(Born, Date)
TextDate = FormatDate$(Now(), "d")
Message("It is now {Time} on {TextDate}. You are {Days} days old.")
END FUNCTION

See also:

FormatDate$, FormatTime$, Now, GetTime

DDEAdvise
This function is used to have another application notify Ami Pro when data has changed in that
application. Before using the DDEAdvise function, a conversation with the other application must be
started using the DDEInitiate function.
Following the DDEAdvise function, Ami Pro continues operation normally. When data is received from the
channel and item, the macro specified in the DDEAdvise function is started. The data received from the
other application (in CF_Text format) is passed to the macro specified in the DDEAdvise function as the
first argument to the macro. It is up to the macro to parse the data from the other application as needed.

Syntax
DDEAdvise(ChannelID, Item, MacroName[!Function])
ChannelID is the channel ID of the Dynamic Data Exchange (DDE) conversation.
Item describes the information requested from the linked application.
MacroName is the name of an Ami Pro macro to execute when data changes in the linked application.

Return Value
This function returns:

1    (TRUE) if the other application responded to the Ami Pro request.
0    (FALSE) if the other application could not be contacted or if an invalid ChannelID was used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
DECLARE GetNumber()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
AllocGlobalVar("ChannelNumber", 1)
SetGlobalVar("ChannelNumber", id)
DDEPoke(id, "A1", "12345")
DDEAdvise(id, "A1", "{MacFile}!GetNumber")
GoTo endit
toast:
DDEUnAdvise(id, "A1")
FreeGlobalVar("ChannelNumber")
DDETerminate(id)
endit:
END FUNCTION

FUNCTION GetNumber()
id = GetGlobalVar$("ChannelNumber")
FreeGlobalVar("ChannelNumber")

Value = DDEReceive$(id, "A1")
DDEUnAdvise(id, "A1")
DDETerminate(id)
Message("The contents of cell A1 is {Value}")
END FUNCTION

See also:

AddMenuItemDDE, DDEExecute, DDEInitiate, DDEPoke, DDEReceive$, DDETerminate,
DDEUnAdvise, Exec, GetMacPath$, Determining a Macro's Location, GetRunningMacroFile$

DDEExecute
This function gives a command to an application using the Windows Dynamic Data Exchange (DDE).
Before using this function, a conversation with the other application must be started using the DDEInitiate
function. The command given to the linked application is defined by that application.

Syntax
DDEExecute(ChannelID, Command)
ChannelID is the channel ID of the DDE conversation.
Command is the command, in square brackets, to give to the linked application.

Return Value
This function returns:

1    (TRUE) if the command was successfully sent to the other application.
0    (FALSE) if the application refused the command or if an invalid ChannelID was used.

Example
FUNCTION Example()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("C:\123W\123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
Principal = Query$("What is the principal of the loan?")
Interest = Query$("What is the annual interest rate (12% = .12)?") / 12
Term = Query$("What is the term in months?")
IF Interest > 1
Interest = Interest / 100
ELSEIF Right$(Interest, 1) = "%"
Interest = Left$(Interest, (Len(Interest) - 1)) / 100
ENDIF
DDEExecute(id, "[RUN(""+@PMT({Principal},{Interest},{Term})~"")]")
Value = DDEReceive$(id, "A1")
DDETerminate(id)
Message(Value)
END FUNCTION

See also:

ActivateApp, AddMenuItemDDE, DDEAdvise, DDEInitiate, DDEPoke, DDEReceive$, DDETerminate,
DDEUnAdvise, Exec

DDEInitiate
This function starts a conversation with another application using the Windows Dynamic Data Exchange
(DDE). The application must be capable of communicating using the DDE protocol. This function must be
used prior to any other DDE activity with an application.

Syntax
DDEInitiate(App, Data)
App is the application that is the target of the DDE conversation.
Data is defined by the other application, but usually is the name of the application's data file    you want to
access.

Return Value
This function returns:

a positive number if the ChannelID of the conversation was successfully established.
0    (FALSE) if the conversation could not be started. This was because the application was not
running, did not have the Topic open, or does not support DDE.

Example
FUNCTION Example()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("C:\123W\123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
Principal = Query$("What is the principal of the loan?")
Interest = Query$("What is the annual interest rate (12% = .12)?") / 12
Term = Query$("What is the term in months?")
IF Interest > 1
Interest = Interest / 100
ELSEIF Right$(Interest, 1) = "%"
Interest = Left$(Interest, (Len(Interest) - 1)) / 100
ENDIF
DDEExecute(id, "[[RUN(""+@PMT({Principal},{Interest},{Term})~"")]")
Value = DDEReceive$(id, "A1")
DDETerminate(id)
Message(Value)
END FUNCTION

See also:

DDEAdvise, DDEExecute, DDEPoke, DDEReceive$, DDETerminate, DDEUnAdvise, Exec

DDELinks
This function displays the Link Options dialog box. Choosing this function is equivalent to choosing
Edit/Link Options. Links cannot be adjusted automatically using a macro. When the dialog box displays,
the user can view and adjust them manually and then choose OK or Cancel to return to the macro.

Syntax
DDELinks(Flag, Count[, LinkSpecPairs][, App, Data, Item])
Flag is the action taken.

1 - Unlink
2 - Update
3 - Stop
4 - Change
5 - Create

Count is the number of Link Spec Pairs. Each pair consists of the internal ID and the Type (text or frame).
Create is probably the most commonly used value.

Return Value
This function returns:

1    (TRUE) if the    links dialog box was successfully displayed.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
DDELinks(5) ' Note that this function assumes the clipboard already has linkable data in it
END FUNCTION

See also:

Paste, Cut, Copy, ClipboardRead, ClipboardWrite

DDEPoke
This function is used to send data from Ami Pro to another application. Before using this function, a
conversation with the other application must be started using the DDEInitiate function.

Syntax
DDEPoke(ChannelID, Location, Data)
ChannelID is the channel ID of the Dynamic Data Exchange (DDE) conversation.
Location is the location in the other application to poke the data.
Data is the data to send to the other application.

Return Value
This function returns:

1    (TRUE) if the other application accepted the data sent by Ami Pro.
0    (FALSE) if the other application could not be contacted or if an invalid ChannelID was used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
DECLARE GetNumber()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
AllocGlobalVar("ChannelNumber", 1)
SetGlobalVar("ChannelNumber", id)
DDEPoke(id, "A1", "12345")
DDEAdvise(id, "A1", "{MacFile}!GetNumber")
GoTo endit
toast:
DDEUnAdvise(id, "A1")
FreeGlobalVar("ChannelNumber")
DDETerminate(id)
endit:
END FUNCTION

FUNCTION GetNumber()
id = GetGlobalVar$("ChannelNumber")
FreeGlobalVar("ChannelNumber")
Value = DDEReceive$(id, "A1")
DDEUnAdvise(id, "A1")
DDETerminate(id)
Message("The contents of cell A1 is {Value}")
END FUNCTION

See also:

AddMenuItemDDE, DDEAdvise, DDEExecute, DDEInitiate, DDEReceive$, DDETerminate,
DDEUnAdvise, Exec

DDEReceive$
This function receives data from an application using the Windows Dynamic Data Exchange (DDE).
Before using this function, a conversation with the other application must be started using the DDEInitiate
function. When this function is used, Ami Pro waits until the other application processes the request and
then receives the data.

Syntax
DDEReceive$(ChannelID, Item)
ChannelID is the channel ID of the DDE conversation.
Item describes the information requested from the linked application.

Return Value
This function returns:

a null string ("") if the application could not send the data.
the data requested from the other application.

Example
FUNCTION Example()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("C:\123W\123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
Principal = Query$("What is the principal of the loan?")
Interest = Query$("What is the annual interest rate (12% = .12)?") / 12
Term = Query$("What is the term in months?")
IF Interest > 1
Interest = Interest / 100
ELSEIF Right$(Interest, 1) = "%"
Interest = Left$(Interest, (Len(Interest) - 1)) / 100
ENDIF
DDEExecute(id, "[[RUN(""+@PMT({Principal},{Interest},{Term})~"")]")
Value = DDEReceive$(id, "A1")
DDETerminate(id)
Message(Value)
END FUNCTION

See also:

AddMenuItemDDE, DDEAdvise, DDEExecute, DDEInitiate, DDEPoke, DDETerminate,
DDEUnAdvise, Exec

DDETerminate
This function ends a conversation with an application using the Windows Dynamic Data Exchange (DDE).
When this function is used, Ami Pro closes the link with the other application. If more information is
needed after this function is used, a new conversation must be started.

Syntax
DDETerminate(ChannelID)
ChannelID is the channel ID of the DDE conversation.

Return Value
This function returns:

1    (TRUE) if the conversation was successfully concluded.
0    (FALSE) if the conversation was not concluded or if an invalid ChannelID was used.

Example
FUNCTION Example()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("C:\123W\123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
Principal = Query$("What is the principal of the loan?")
Interest = Query$("What is the annual interest rate (12% = .12)?") / 12
Term = Query$("What is the term in months?")
IF Interest > 1
Interest = Interest / 100
ELSEIF Right$(Interest, 1) = "%"
Interest = Left$(Interest, (Len(Interest) - 1)) / 100
ENDIF
DDEExecute(id, "[[RUN(""+@PMT({Principal},{Interest},{Term})~"")]")
Value = DDEReceive$(id, "A1")
DDETerminate(id)
Message(Value)
END FUNCTION

See also:

AddMenuItemDDE, DDEAdvise, DDEExecute, DDEInitiate, DDEPoke, DDEReceive$, DDEUnAdvise,
Exec

DDEUnAdvise
This function is used to reset the notification status set up using the DDEAdvise function. When this
function is used, the other application on the current Dynamic Data Exhanve (DDE) channel no longer
notifies Ami Pro when data changes have occurred.

Syntax
DDEUnAdvise(ChannelID, Item)
ChannelID is the channel ID of the DDE conversation.
Item describes the information requested from the linked application.

Return Value
This function returns:

1    (TRUE) if the other application responded to the Ami Pro request.
0    (FALSE) if the other application could not be contacted or if an invalid ChannelID was used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
DECLARE GetNumber()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
AllocGlobalVar("ChannelNumber", 1)
SetGlobalVar("ChannelNumber", id)
DDEPoke(id, "A1", "12345")
DDEAdvise(id, "A1", "{MacFile}!GetNumber")
GoTo endit
toast:
DDEUnAdvise(id, "A1")
FreeGlobalVar("ChannelNumber")
DDETerminate(id)
endit:
END FUNCTION

FUNCTION GetNumber()
id = GetGlobalVar$("ChannelNumber")
FreeGlobalVar("ChannelNumber")
Value = DDEReceive$(id, "A1")
DDEUnAdvise(id, "A1")
DDETerminate(id)
Message("The contents of cell A1 is {Value}")
END FUNCTION

See also:

AddMenuItemDDE, DDEAdvise, DDEExecute, DDEInitiate, DDEPoke, DDEReceive$, DDETerminate,
Exec

Decide
This function displays a standard Windows message box with a question mark icon, the specified prompt,
and Yes and No push buttons. It waits for the user to select a push button and then returns the ID of the
button pressed.

DecideYes (1) - Yes
DecideNo (0) - No

Syntax
Decide(Prompt[, Title])
prompt is a string used as a prompt to the user. It can be a maximum of 80 characters.
Title is the title for the message box. The default is "Ami Pro Macro."

Return Value
This function returns:

a number representing the number pressed.

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

DialogBox, Message, MultiDecide, Query$, UserControl

DECLARE
This function pre-defines a function to the macro compiler. This allows you to call a non-defined function
without having to use a CALL statement.

Syntax
DECLARE [FileName!]MacroName([parm1[, parm2...]])][, ALIAS ShortName]
FileName is the optional file name of the function to be pre-defined. If not specified, the macro is
assumed to be in the current file.
MacroName is the name of the macro to be pre-defined.
ALIAS is a reserved word that takes the parameter ShortName if used. This optional specification allows
you to assign the macro function that has been pre-defined on this line to a shorter name.
Any parameters must be specified so the compiler knows how many to expect.

Return Value
This function does not return a value.

Example
FUNCTION Example()
DECLARE Example2(p1, p2) ALIAS ExMac
Top = Query$("Enter the value for the numerator:")
Bottom = Query$("Enter the value for the denominator:")
Result = ExMac(Top, Bottom)
Message(Result)
END FUNCTION

FUNCTION Example2(Numerator, Denominator)
Result = MOD(Numerator, Denominator)
Return Result
END FUNCTION

See also:

Call, CALLI

DefineStyle
This function takes the attributes of the selected text and applies it to the style. Choosing this function is
equivalent to choosing Style/Define Style.

Syntax
DefineStyle()

Return Value
This function returns:

1    (TRUE) if the style was changed.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
CreateStyle("Example", "Body text")
WHILE ""=CurShade$()
UserControl("Select the text to use to define the style, then choose Resume...")
WEND
DefineStyle()
END FUNCTION

See also:

CreateStyle, ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, UseAnotherStyle, SaveAsNewStyle,
StyleManageAction, StyleManageFinish, StyleManageInit, StyleManagement

DeleteColumnRow
This function deletes a column or row from a table. Choosing this function is equivalent to choosing
Table/Delete Column/Row.

Syntax
DeleteColumnRow(Which)
Which determines whether to delete the current column or the current row. This parameter should be set
to one of the following values:

Column (1) - Delete the current column
Row (0) - Delete the current row

To display a dialog box that allows the user to decide whether to delete a column or row:
DeleteColumnRow

Return Value
This function returns:

1    (TRUE) if the column or row was deleted.
0    (UserCancel/FALSE) if the user canceled the function or if no action was taken.

Example
FUNCTION Example()
DeleteColumnRow(Column)
END FUNCTION

See also:

InsertColumnRow, SizeColumnRow

DeleteEntireTable
This function deletes the selected table. Choosing this function is equivalent to choosing Table/Delete
Entire Table.

Syntax
DeleteEntireTable()

Return Value
This function returns:

0 (NoAction) if no action is taken. The table may not exist or may not be selected.
1 (True) if the table is deleted.
-2 (GeneralFailure) if the function failed.

Example
FUNCTION Example()
DeleteEntireTable()
END FUNCTION

See also:

DeleteColumnRow, InsertColumnRow, SizeColumnRow, TableLayout, TableLines,Tables

DeleteMenu
This function deletes a menu from a menu bar.

Syntax
DeleteMenu(BarID, Menu)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down menu to be deleted. This name must match the name of the pull down
menu you want to delete, including any ampersand (&) characters.

Return Value
This function returns:

1    (TRUE) if the menu was successfully deleted.
0    (FALSE) if the menu could not be deleted or if an invalid BarID or Menu name was used.

Example
FUNCTION Example()
DeleteMenu(1, "&DDE")'Remove the menu if it already exists.
AddMenu(1, "&DDE")'Add the menu "DDE" to the Ami Pro menu bar
AddMenuItemDDE(1, "&DDE", "&Return Value of 555", 555, "This sends 555 to the app")
'Add the DDE menu item to that menu
AddMenuItemDDE(1, "&DDE", "&Return Value of 123", 123, "This sends 123 to the app")
'Add the DDE menu item to that menu
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenuItem, GrayMenuItem, RenameMenuItem, ShowBar

DeleteMenuItem
This function deletes a menu item from a menu or a cascade menu.

Syntax
DeleteMenuItem(BarID, Menu[, CascadeMenu], Item)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
Menu is the name of the pull down where the item to be deleted is located. This name must match the
name of the pull down menu, including any ampersand (&) characters.
CascadeMenu is the optional name of the cascade menu where the item to be deleted is located. This
name must match the name of the cascade menu, including any ampersand (&) characters.
ItemName is the name of the menu item to be deleted. This name must match.

Return Value
This function returns:

1    (TRUE) if the item was successfully deleted.
0    (FALSE) if the item could not be deleted or if an invalid BarID, MenuName, or ItemName was
used.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
State = 0
DeleteMenuItem(1, "&Text", "B&old+Italic+Underline")
InsertMenuItem(1, "&Text", 10, "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
END FUNCTION

FUNCTION Example2(State)
MacFile = GetRunningMacroFile$()
State = Right$((State - 1), 1)
Bold(State)
Underline(State)
Italic(State)
ChangeMenuAction(1, "&Text", "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
CheckMenuItem(1, "&Text", "B&old+Italic+Underline", State)
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenu, GrayMenuItem, RenameMenuItem, ShowBar

DialogBox
This function displays a modal dialog box that has been created using the Ami Pro Dialog Editor or the
Microsoft Windows Software Developer's Kit. The user can make choices from the dialog box. When
done, the user can choose a push button to return control to the macro.
Fields within the dialog box should be assigned as follows:

0-19 -    Push    Buttons to close the dialog box
 20-99 -    Push    buttons, Group Boxes, Radio Buttons, and    Check Boxes
1000-7999 -    Static    Text Fields
 8000-8999 -    Edit    Boxes
 9000-9499 -    List    Boxes
 9500-9999 -    Combo    Boxes

The FillList function can be used to supply the contents of a list box prior to display of the dialog box. The
FillEdit function can be used to supply the contents of any edit box or list box. It can also be used to
supply the state of a button prior to display of the dialog box. Once the dialog box display is complete, the
GetDialogField$ function can be used to retrieve the contents of the dialog box fields.

Syntax
DialogBox(ResourceFile, DialogBoxName)
ResourceFile is the name of the file which contains the dialog box. If the dialog box was created using
the Ami Pro Dialog Editor and is the only dialog box in the file, this parameter should be the null string ("").
If the dialog box was created using the Ami Pro Dialog Editor and resides in the currently running macro
file, this parameter should be a period (".").
DialogBoxName is the name of the dialog box to be accessed. If the dialog box was created using the
Ami Pro Dialog Editor and is the only dialog box in an external file, this parameter should be set to the
name of the file.

Return Value
This function returns:

the ID of the push button pressed.
0    (UserCancel) if the user canceled the function.
-1    (NotFound) if the resource file was not found.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION

ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")
ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0
74 46 60 40 24 1342308359 "button" "Group Box #1" 0
78 58 50 10 50 1342242825 "button" "Radio #1" 0
78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0
142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

Decide, FillEdit, FillList, GetDialogField$, GetMacPath$, Message, MultiDecide, Query$, UserControl,
SetDlgCallback, SetDLGCallback, GetDLGItem, GetDLGItemText, SetDLGItemText

DlgKeyInterrupt
This function sets a callback function that is "called" when the user presses the specified key while
processing a macro dialog box. It should be used before the DialogBox statement and is in effect during
that dialog box only. This function is passed the dialog box handle (HDLG) and the virtual key.

Syntax
DlgKeyInterrupt(Key, Function)
Key is a virtual key, such as [F1] or [PgDown].
Function is the function that is executed when the specified key is pressed. This parameter may contain
the macro file name or the function within that file to call.

Return Value
This function does not return a value.

Example
FUNCTION Example()
DlgKeyInterrupt([F1], "HelpFun") ' This if F1
DialogBox(".", "QT")
END FUNCTION
FUNCTION HelpFun(hdlg, key)
Message("No help!")
END FUNCTION

DIALOG QT
-2134376448 4 58 44 160 50 "" "AmiDialog" "Key Int Text"
FONT 8 "Helv"
112 6 40 14 1 1342373889 "button" "OK" 0
112 24 40 14 2 1342373888 "button" "Cancel" 0
14 8 50 12 20 1342242825 "button" "Radio 1" 0
14 22 50 12 21 1342242825 "button" "Radio 2" 0
END DIALOG

See also:

KeyInterrupt, MouseInterrupt

DLLCall
This function calls a Dynamic Link Library (DLL) function that has been initialized using the DLLLocate or
DLLLoadLib function. DLL functions are extremely powerful tools that provide access to Windows
functions and to specially written functions. They are for the benefit of experienced Windows
programmers.
Before using these functions, make sure that you know how to use them correctly. If they are used
incorrectly, you may have problems with Ami Pro and Windows after their use.

Syntax
DLLCall(DLLId[, Parm1[, Parm2...]])
DLLId is the number returned as the ID of the DLL module by the DLLLocate function. It can also be a
string, "Lib, Function, Parameters." These are the three parameters passed to the DLLLoadLib and
DLLLocate functions. When using this string, the user does not need to call the DLLLoadLib or DLLLocate
function.
Parm1 and Parm2 are the parameters passed to the function.

Return Value
This function returns:

the return value of the DLLCall function defined by the module that is called.

Example
FUNCTION Example()
Text = Query$("Enter text for window:")'Get ne Title Text
hGetActiveWindow = DLLLocate("User", "GetActiveWindow", "H")
'Find the handle to the DLL
hWnd = DLLCall(hGetActiveWindow)'and get the active window handle
hSetActiveText = DLLLocate("User", "SetWindowText", "IHC")
'Find the handle to the DLL
DLLCall(hSetActiveText, hWnd, Text)'and set the text through the DLL
END FUNCTION

See also:

DLLLocate, Exec, DLLLoadLib, DLLFreeLib

DLLFreeLib
This function unloads the library loaded by the DLLLoadLib function.

Syntax
DLLFreeLib(LibID)
LibID is the ID returned by the DLLLoadLib function.

Return Value
This function returns:

1    (TRUE) if the DLL was successfully freed.
0    (FALSE) if the DLL could not be freed.

Example
FUNCTION Example()
Text = Query$("Enter text for window:")'Get new title bar text
hGetActiveWindow = DLLLoadLib("User", "GetActiveWindow", "H")
'Load DLL into memory
hWnd = DLLCall(hGetActiveWindow)'Call for active window handle
hSetActiveText = DLLLoadLib("User", "SetWindowText", "IHC")
'Load DLL into memory
DLLCall(hSetActiveText, hWnd, Text)'Call to set title bar text
DLLFreeLib(hGetActiveWindow)'Free DLL
DLLFreeLib(hSetActiveText)'Free DLL
END FUNCTION

See also:

DLLCall, DLLLoadLib, DLLLocate

DLLLoadLib
This function is used to verify that a Dynamic Link Library (DLL) function is available. It is also used to
load DLL functions into memory so that they can be used later. Any DLL function can be used in your
macro. The function must have been declared as a FAR PASCAL function when it was compiled. The
parameter list, if described, must be a string containing letters specifying the variable type of the
function's return value. This must be followed by one letter per parameter. These parameters are passed
to the function when it is called. The letter codes for variable types are:

A - Boolean integer
B - Far pointer to double
C - Far pointer to string
E - Double
H - Unsigned integer
I - Integer
J - Unsigned long integer
L - Far pointer to word (Word Far *)
M - Far pointer to array or string (CHAR FAR * FAR *)
N - Far pointer to array or words (Word Far *)
O - Far pointer to a long (LONG FAR *)

DLL functions are extremely powerful tools that provide access to Windows functions and to specially
written functions. They are for the benefit of experienced Windows programmers.
Before using these functions, make sure that you know how to use them correctly. If they are used
incorrectly, you may have problems with Ami Pro and Windows after their use.

Syntax
DLLLoadLib(Module, Function, Parameters)
Module is the file name of the Dynamic Link Library module.
Function is the name of the function within the DLL module to be accessed.
Parameters is a string with the prototype parameters and return code for the function.

Return Value
This function returns:

1    (TRUE) if the DLL was successfully loaded.
0    (FALSE) if the DLL could not be loaded or could not be found.

Example
FUNCTION Example()
Text = Query$("Enter text for window:")'Get new title bar text
hGetActiveWindow = DLLLoadLib("User", "GetActiveWindow", "H")
'Load DLL into memory
hWnd = DLLCall(hGetActiveWindow)'Call for active window handle
hSetActiveText = DLLLoadLib("User", "SetWindowText", "IHC")
'Load DLL into memory
DLLCall(hSetActiveText, hWnd, Text)'Call to set title bar text
DLLFreeLib(hGetActiveWindow)'Free DLL
DLLFreeLib(hSetActiveText)'Free DLL
END FUNCTION

See also:

DLLCall, DLLFreeLib, DLLLocate

DLLLocate
This function is used to verify that a Dynamic Link Library (DLL) function is available for use. It is also
used to inform Ami Pro of the function's parameters and return type so that the function can be used later.
Any DLL function can be used in your macro. The function should have been declared as a FAR PASCAL
function when it was compiled. The parameter list, if described, must be a string containing letters
specifying the variable type of the function's return value. This must be followed by one letter per
parameter. These parameters are passed to the function when it is called. The letter codes for variable
types are:

A - Boolean integer
B - Far pointer to double
C - Far pointer to string
D - Far pointer to a byte string (1 byte count, followed by the string)
E - Double
F - Far pointer to a 256 byte string
G - Far pointer to a 256 byte string
H - Unsigned integer
I - Integer
J - Unsigned long integer
L - Far pointer to word (Word Far *)
M - Far pointer to array or string (CHAR FAR * FAR *)
N - Far pointer to array or words (Word Far *)
O - Far pointer to a long (LONG FAR *)

DLL functions are extremely powerful tools that provide access to and Windows functions and to
specifically written functions. They are for the benefit of experienced Windows programmers.
Before using these functions, make sure that you know how to use them correctly. If they are used
incorrectly, you may have problems with Ami Pro and Windows after their use.

Syntax
DLLLocate(Module, Function, Parameters)
Module is the file name of the Dynamic Link Library module.
Function is the name of the function within the DLL module to be accessed.
Parameters is a string with the prototype parameters and return code for the function.

Return Value
This function returns:

a positive ID number for the routine if the routine was located and the parameter prototype string is
correct.
0    (FALSE) if the other DLL module was not found or if the parameter string is incorrect. The ID is
used by the DLLCall function to execute the routine.

Example
FUNCTION Example()
Text = Query$("Enter text for window:")'Get ne Title Text
hGetActiveWindow = DLLLocate("User", "GetActiveWindow", "H")
'Find the handle to the DLL
hWnd = DLLCall(hGetActiveWindow)'and get the active window handle
hSetActiveText = DLLLocate("User", "SetWindowText", "IHC")
'Find the handle to the DLL
DLLCall(hSetActiveText, hWnd, Text)'and set the text through the DLL
END FUNCTION

See also:

DLLCall, Exec, DLLLoadLib, DLLFreeLib

DocInfo
This function enters new values in the current document's Document Info. Choosing this function is
equivalent to choosing File/Doc Info. The DocInfo function does not allow the user to examine the system
fields in the document information, nor does it allow the macro to determine their values.

Syntax
DocInfo(Description, Keyword, Flag)
Description is the text that replaces the contents of the Description field in the document description.
Keyword is the text that replaces the contents of the Keyword field in the document description.
Flag indicates whether or not a document is locked. It also indicates whether a frame macro should be
executed when the user clicks on a frame. It is one of the following values:

DocResetFlag (0) - Do not lock the document and do not run frame macros
DocRunMacro (1) - Enables you to run frame macros
DocLock (2) - Locks out all editing functions except notes
DocRevLock (4) - Enables you to toggle the locking of revision marking on and off

Lock does not take effect until the document is saved. The notes functions available are editing, inserting,
and deleting.
To display the Document Info dialog box and allow the user to examine and fill out the document
description: DocInfo

Return Value
This function returns:

1    (TRUE) if the new document info fields were saved.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
Replace(0, 0, 0, "Subject:", "")
IF CurShade$() != ""
TYPE("[Right][CtrlShiftDown]")
De = CurShade$()
ENDIF
Replace(0, 0, 0, "To:", "")
IF CurShade$() != ""
TYPE("[Right][CtrlShiftDown]")
Keywords = CurShade$()
ENDIF
Flag = 0
DocInfo(De, Keywords, Flag)
END FUNCTION

See also:

RenameDocInfoField, GetDocInfo$, InsertDocInfo, DocInfoFields, InsertDocInfoField

DocInfoFields
This function replaces the contents of the text in a user field. The user fields are located in the document
information. Choosing this function is equivalent to choosing File/Doc Info/Other Fields.

Syntax
DocInfoFields(Field1, Field2, Field3, Field4, Field5, Field6, Field7, Field8)
field1    is the text that replaces the contents of user field 1.
field2    is the text that replaces the contents of user field 2.
field3    is the text that replaces the contents of user field 3.
field4    is the text that replaces the contents of user field 4.
field5    is the text that replaces the contents of user field 5.
field6    is the text that replaces the contents of user field 6.
field7    is the text that replaces the contents of user field 7.
field8    is the text that replaces the contents of user field 8.

Return Value
This function returns:

1    (TRUE) if the info fields were successfully changed.
0    (UserCancel) if the user canceled the function.
-2    (General Failure) if the info fields were not changed.

Example
FUNCTION Example()
Replace(0, 0, 0, "To:", "")
IF "" != CurShade$()
TYPE("[Right][CtrlShiftDown]")
Data = CurShade$()
ELSE
Data = Query$("Please enter data, separated by commas:")
ENDIF
DIM Field(8)
FOR I = 1 to 8
Field(I) = strfield$(Data, I, ",")
NEXT
DocInfoFields(Field(1), Field(2), Field(3), Field(4), Field(5), Field(6), Field(7), Field(8))
END FUNCTION

See also:

RenameDocInfoField, GetDocInfo$, InsertDocInfo, InsertDocInfoField, DocInfo

DocumentCompare
This function compares two documents. Choosing this function is equivalent to choosing Tools/Doc
Compare.

Syntax
DocumentCompare(FileName)
FileName is the name of the file to be compared. The file name must include the path if the file is not in
the current or document directory.

Return Value
This function returns:

1    (TRUE) if the documents were successfully compared.
0    (UserCancel) if the user canceled the function.
-2    (General Failure) if the documents were not successfully compared    OR IF AN ERROR
OCCURRED.

Example
FUNCTION Example()
Filename1 = Query$("Please enter the name of the first document (Enter for current):")
Filename2 = Query$("Please enter the name of the second document:")
IF Filename1 != ""
FileOpen(Filename1, 1, "")
ENDIF
DocumentCompare(Filename2)
END FUNCTION

See also:

RevisionMarking, RevisionMarkOpts

DOSchdir
This function makes the parameter the current DOS directory.
This function does not change the drive.

Syntax
DOSchdir(Dir)
Dir is the path you wish to make the current directory.

Return Value
This function returns:

0    if the directory was successfully changed.
-1    if the directory could not be changed or does not exist.

Example
FUNCTION Example()
Dir = Query$("What directory do you want to change to?")
IF -1 = DOSchdir(Dir)
Message("Could not change to {Dir}")
ENDIF
NewDir = GetCurrentDir$()
Message("The current directory reported by DOS is: {NewDir}")
END FUNCTION

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSGetEnv$,
DOSSetFileAttr, DOSrmdir, FileManagement

DOSCopyFile
This function copies an existing file.

Syntax
DOSCopyFile(OldFile, NewFile)
OldFile is the name of the file to be copied. Use the path if the file to be copied is not in the current
directory.
NewFile is the name to which the file is being copied. Use the path if you do not want the file copied to
the current working directory.

Return Value
This function returns:

1    (TRUE) if the file was successfully copied.
0    (FALSE) if the file was not copied.

Example
FUNCTION Example()
Filename = Query$("What file (with path) do you want to perform an action on?")
IF Decide("Do you want to Copy {Filename}?")
Filename2 = Query$("What file do you want to copy {Filename} to?")
IF 0 = DOSCopyFile(Filename, Filename2)
Message("Could not copy {Filename} to {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Rename {Filename}?")
Filename2 = Query$("What is the new name for {Filename}?")
IF 0 != DOSRename(Filename, Filename2)
Message("Could not rename {Filename} as {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Delete {Filename}?")
IF Decide("Are you SURE you want to Delete {Filename}?")
IF -1 = DOSDelFile(Filename)
Message("Could not delete {Filename}")
ENDIF
ENDIF
ENDIF
END FUNCTION

See also:

DOSRename, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSGetEnv$, DOSSetFileAttr,
DOSrmdir, FileManagement

DOSDelFile
This function deletes an existing file.

Syntax
DOSDelFile(FileName)
FileName is the name of the file to be deleted. If the file is not in the current directory, the path must be
used.

Return Value
This function returns:

0    if the file was deleted.
-1 (NotFound) if the file was not deleted.

Example
FUNCTION Example()
Filename = Query$("What file (with path) do you want to perform an action on?")
IF Decide("Do you want to Copy {Filename}?")
Filename2 = Query$("What file do you want to copy {Filename} to?")
IF 0 = DOSCopyFile(Filename, Filename2)
Message("Could not copy {Filename} to {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Rename {Filename}?")
Filename2 = Query$("What is the new name for {Filename}?")
IF 0 != DOSRename(Filename, Filename2)
Message("Could not rename {Filename} as {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Delete {Filename}?")
IF Decide("Are you SURE you want to Delete {Filename}?")
IF -1 = DOSDelFile(Filename)
Message("Could not delete {Filename}")
ENDIF
ENDIF
ENDIF
END FUNCTION

See also:

DOSRename, DOSCopyFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSGetEnv$, DOSSetFileAttr,
DOSrmdir, FileManagement

DOSGetEnv$
This function searches the DOS environment for the passed variable.

Syntax
DOSGetEnv$(Var)
Var is the name of the environment variable to search for.

Return Value
This function returns:

the information stored in the environment variable if the variable is found.
the null string ("") if the variable is not found.

Example
FUNCTION Example()
Env = Query$("What environment variable do you want to retrieve?")
Var = DOSGetEnv$(Env)
IF VAR != ""
Message("The value of the environment variable ""{Env}"" is ""{Var}"".")
ELSE
Message("The environment variable ""{Env}"" was not found, or is empty.")
ENDIF
END FUNCTION

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSSetFileAttr,
DOSrmdir, FileManagement

DOSGetFileAttr
This function returns the attributes for a specified file.

Syntax
DOSGetFileAttr(FileName)
FileName is the name of the file for which the attributes are determined. If the file is not in the current
directory, the path must be used.

Return Value
This function returns:

a bit number corresponding to the attributes for the specified file. The bit values that a file can have
are:
1 - Read-only
2 - Hidden
4 - System
8 - Volume ID
16 - Subdirectory
32 - Archive

These bit numbers are added together if more than one attribute is set for that file. Use the binary
operator OR (|) or AND (&) to extract them.

-1    if the attributes could not be found

Example
FUNCTION Example()
Filename = Query$("Enter the name of the file whose attributes you want to modify:")
Attributes = DOSGetFileAttr(Filename)
IF Attributes != -2
IF (Attributes & 1)
ReadOnly = TRUE
ENDIF
IF (Attributes & 2)
Hidden = TRUE
ENDIF
IF (Attributes & 4)
System = TRUE
ENDIF
IF (Attributes & 32)
Archive = TRUE
ENDIF
FillEdit(8000, Filename)
FillEdit(20, ReadOnly)
FillEdit(21, Hidden)
FillEdit(22, System)
FillEdit(23, Archive)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
ReadOnly2 = GetDialogField$(20)
Hidden2 = GetDialogField$(21) * 2
System2 = GetDialogField$(22) * 4

Archive2 = GetDialogField$(23) * 32
NewAttributes = ReadOnly2 + Hidden2 + System2 + Archive2
DOSSetFileAttr(Filename, NewAttributes)
ELSE
Message("Could not find {Filename}")
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 9 108 38 160 80 "" "" "File Attributes"
FONT 6 "Helv"
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
44 6 68 10 8000 1342177280 "static" "text" 0
4 6 36 10 1001 1342177280 "static" "Filename:" 0
8 26 50 10 20 1342242819 "button" "Read-Only" 0
8 38 50 10 21 1342242819 "button" "Hidden" 0
8 50 50 10 22 1342242819 "button" "System" 0
8 62 50 10 23 1342242819 "button" "Archive" 0
4 16 60 60 24 1342242823 "button" "Attributes" 0
END DIALOG

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSmkdir, DOSchdir, DOSGetEnv$, DOSSetFileAttr,
DOSrmdir, FileManagement

DOSmkdir
This function creates a directory.

Syntax
DOSmkdir(Dir)
Dir is the name of the directory to be created.

Return Value
This function returns:

0    if the directory was created.
-1    if the directory could not be created.

Example
FUNCTION Example()
Dir = Query$("What is the name of the new directory?")
IF -1 = DOSmkdir(Dir)
Message("Could not create directory {Dir}")
ELSE
Message("Directory {Dir} created.")
ENDIF
END FUNCTION

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSchdir, DOSGetEnv$,
DOSSetFileAttr, DOSrmdir, FileManagement

DOSRename
This function renames an existing file.

Syntax
DOSRename(OldName, NewName)
OldName is the name of the file to be renamed. If the file is not in the current directory, the path must be
used.
NewName is the name to which the file is being renamed. If you do not want this file to be placed in the
current directory, the path must be used.
The NweName file name must not exist in the specified directory.

Return Value
This function returns:

0    if the file was renamed.
non zero number if the file could not be renamed or if the specified new file name exists.

Example
FUNCTION Example()
Filename = Query$("What file (with path) do you want to perform an action on?")
IF Decide("Do you want to Copy {Filename}?")
Filename2 = Query$("What file do you want to copy {Filename} to?")
IF 0 = DOSCopyFile(Filename, Filename2)
Message("Could not copy {Filename} to {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Rename {Filename}?")
Filename2 = Query$("What is the new name for {Filename}?")
IF 0 != DOSRename(Filename, Filename2)
Message("Could not rename {Filename} as {Filename2}")
ENDIF
ELSEIF Decide("Do you want to Delete {Filename}?")
IF Decide("Are you SURE you want to Delete {Filename}?")
IF -1 = DOSDelFile(Filename)
Message("Could not delete {Filename}")
ENDIF
ENDIF
ENDIF
END FUNCTION

See also:

DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSGetEnv$, DOSSetFileAttr,
DOSrmdir, FileManagement

DOSrmdir
This function removes an existing directory.

Syntax
DOSrmdir(Dir)
Dir is the name of the existing directory to be removed.
The directory must be empty and cannot be the current working directory or the root directory.

Return Value
This function returns:

0    if the directory was successfully removed.
-1    if the directory could not be removed.

Example
FUNCTION Example()
Dir = Query$("What is the name of the directory you want to delete?")
IF Decide("Are you SURE you want to delete {Dir}?")
IF -1 = DOSrmdir(Dir)
Message("Could not remove {Dir}. The directory may not be empty.")
ELSE
Message("The directory {Dir} has been removed.")
ENDIF
ENDIF
END FUNCTION

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSGetEnv$,
DOSSetFileAttr, FileManagement

DOSSetFileAttr
This function sets the attribute bits for an existing file.

Syntax
DOSSetFileAttr(FileName, Attr)
FileName is the name of the file for which the attribute bits are to be set. If the file is not in the current
directory, the path must be used.
Attr is the number of the attribute to be set. The bit values that a file can have are:

1 - Read-only
2 - Hidden
4 - System
8 - Volume ID
16 - Subdirectory
32 - Archive

To set more than one attribute, add the bit values for the attributes you want to set and use that number.

Return Value
This function returns:

0    if the attributes were successfully set.

Example
FUNCTION Example()
Filename = Query$("Enter the name of the file whose attributes you want to modify:")
Attributes = DOSGetFileAttr(Filename)
IF Attributes != -2
IF (Attributes & 1)
ReadOnly = TRUE
ENDIF
IF (Attributes & 2)
Hidden = TRUE
ENDIF
IF (Attributes & 4)
System = TRUE
ENDIF
IF (Attributes & 32)
Archive = TRUE
ENDIF
FillEdit(8000, Filename)
FillEdit(20, ReadOnly)
FillEdit(21, Hidden)
FillEdit(22, System)
FillEdit(23, Archive)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
ReadOnly2 = GetDialogField$(20)
Hidden2 = GetDialogField$(21) * 2
System2 = GetDialogField$(22) * 4
Archive2 = GetDialogField$(23) * 32
NewAttributes = ReadOnly2 + Hidden2 + System2 + Archive2

DOSSetFileAttr(Filename, NewAttributes)
ELSE
Message("Could not find {Filename}")
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 9 108 38 160 80 "" "" "File Attributes"
FONT 6 "Helv"
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
44 6 68 10 8000 1342177280 "static" "text" 0
4 6 36 10 1001 1342177280 "static" "Filename:" 0
8 26 50 10 20 1342242819 "button" "Read-Only" 0
8 38 50 10 21 1342242819 "button" "Hidden" 0
8 50 50 10 22 1342242819 "button" "System" 0
8 62 50 10 23 1342242819 "button" "Archive" 0
4 16 60 60 24 1342242823 "button" "Attributes" 0
END DIALOG

See also:

DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir, DOSGetEnv$,
DOSrmdir, FileManagement

DraftMode
This function changes the current Multiple Document Interface (MDI) document in Ami Pro from Layout
Mode or Outline Mode to Draft Mode. Choosing this function is equivalent to choosing View/Draft Mode.

Syntax
DraftMode()

Return Value
This function returns:

1    (TRUE) if the    view    mode was changed.
0    (NoAction) if no action was taken because the document was already in Draft Mode.

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

EnlargedView, FacingView, FullPageView, GetMode, GetViewLevel, LayoutMode, OutlineMode,
StandardView

DrawingMode
This function initiates the drawing function, bringing the drawing menu and icon bar onto the screen.
Choosing this function is equivalent to choosing Tools/Drawing.

Syntax
DrawingMode()

Return Value
This function returns:

1    (TRUE) if the drawing mode was initiated.
-2    (GeneralFailure) if the drawing mode could not be initiated.

Example

FUNCTION Example()
LayoutMode()
IF not IsFrameSelected()
Pos = CursorPosition$()
x = strfield$(Pos, 1, ",")
y = strfield$(Pos, 2, ",")
AddFrame(x, y, (x + 1440), (y - 1440))
ENDIF
DrawingMode()
END FUNCTION

See also:

ChartingMode, AddFrame, AddFrameDLG, GraphicsScaling

EditFormula
This function displays the    edit formula dialog box. Choosing this function is equivalent to choosing
Table/Edit Formula. This function does not automatically allow a macro to insert a formula into a cell. To
insert a formula automatically, use the SetFormula function.

Syntax
EditFormula()

Return Value
This function returns:

1    (TRUE) if the dialog box is displayed.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
OnKey([CtrlAlte], EditFormula, 0)
Message("Press Ctrl+Alt+E to edit the formula in a table cell")
END FUNCTION

See also:

SetFormula

ElevatorLeftRight
This function scrolls the document to a new position in the file without moving the insertion point.
Choosing this function is equivalent to dragging the scroll box on the horizontal scroll bar left or right. This
function may be used only through macro keystroke record. The parameter for this function is generated
by Windows and can not be selected from a list of values.

Syntax
ElevatorLeftRight()

Return Value
This function does not return a value.

See also:

CharLeft, CharRight, ElevatorUpDown, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge,
ScreenDown, ScreenLeft, ScreenRight, ScreenUp, TopOfFile

ElevatorUpDown
This function scrolls the document to a new position in the file without moving the insertion point.
Choosing this function is equivalent to dragging the scroll box on the vertical scroll bar up or down. This
function may be used only through macro keystroke record. The parameter for this function is generated
by Windows and can not be selected from a list of values.

Syntax
ElevatorUpDown()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

See also:

CharLeft, CharRight, ElevatorLeftRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge,
ScreenDown, ScreenLeft, ScreenRight, ScreenUp, TopOfFile

EndOfFile
This function scrolls the document to the end of the file without moving the insertion point. Choosing this
function is equivalent to dragging the scroll box on the vertical scroll bar to the extreme bottom.

Syntax
EndOfFile()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

Example
FUNCTION Example()
Action = Query$("Move to (T)op of file, or (E)nd of file?")
Action = UCASE$(Left$(Action, 1))
SWITCH Action
CASE "T"
message(TopOfFile())
CASE "E"
message(EndOfFile())
default
Message("""T"" or ""E"" will do just fine, please.")
ENDSWITCH
END FUNCTION

See also:

CharLeft, CharRight, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

EnhancementProducts
This function displays the Windows Help for enhancement products. Choosing this function is equivalent
to choosing Help/Enhancements.

Syntax
EnhancementProducts()

Return Value
This functions returns:

1    (TRUE) if the Enhancement Products Help window is displayed.
-2    (GeneralFailure) if the Enhancement Products Help window is not displayed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
EnhancementProducts()
END FUNCTION

See also:

About, Help, HowDoIHelp, KeyboardHelp, MacroHelp, UpgradeHelp, UsingHelp

EnlargedView
This function changes the current view level to    enlarged view. Choosing this function is equivalent to
choosing View/Enlarged View.

Syntax
EnlargedView()

Return Value
This function returns:

1.

Example
FUNCTION Example()
Again:
View = Query$("Choose a view: (C)ustom, (E)nlarged, (F)acing Pages, Full (P)age, or (S)tandard.")
View = UCASE$(Left$(View, 1))
SWITCH View
CASE "C"
CustomView()
CASE "E"
EnlargedView()
CASE "F"
FullPageView()
CASE "P"
FacingView()
CASE "S"
StandardView()
default
Message("Please enter one of the following: ""C"", ""E"", ""F"", or ""S"")
GoTo again
ENDSWITCH
END FUNCTION

See also:

FacingView, FullPageView, GetViewLevel, LayoutMode, StandardView, CustomView, ChartingMode,
DrawingMode, AddFrame, AddFrameDLG

Equations
This function changes to equation mode. Choosing this function is equivalent to choosing
Tools/Equations. If a frame is selected, it is used. If no frame is selected, one is created.
This function does not automatically enter equations.

Syntax
Equations()

Return Value
This function returns:

1    (TRUE) if the equations mode was initiated.
-2    (GeneralFailure) if the mode could not be initiated.

Example
FUNCTION Example()
OnKey([Ctrlshifte], Equations, 0)
Message("Press Ctrl+Shift+E to activate the equation editor.")
END FUNCTION

See also:

ChartingMode, DrawingMode, AddFrame, AddFrameDLG

EvalField
This function passes a power field to the field manager for evaluation and then returns the result.

Syntax
EvalField(Field)
Field is the Power Field you wish to evaluate.

Return Value
This function returns:

the result of the specified Power Field.

Example
FUNCTION Example()
NumberOfPages = EvalField("NumPages")
IF NumberOfPages > 1
Adv = "are"
s = "s"
ELSE
Adv = "is"
s = ""
ENDIF
Message("There {Adv} {NumberOfPages} page{s} in this document.")
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

Exec
This function executes a program. This function uses Microsoft Windows to start the new program.
Choosing this function is equivalent to choosing Run from the Program Manager menu.

Syntax
Exec(App, Parameters[, State])
App is the name of the program, including extension, which should be executed. If the desired program
has any parameters, they should be passed in Parameters. If the file to be executed is not in the path,
you must supply the path. If the program has no parameters, a place holder must be used.
State is a number corresponding to the state that the window (if it is a Windows application) should be
displayed. This parameter can be one of the following:

0 - Exec hidden
1 - Exec and show the window normally
2 - Exec the program minimized
3 - Exec the program maximized
4 - Exec normally, but do not make active
5 - Exec normally
6 - Exec program minimized in the background
7 - Exec the program minimized and do not activate it
8 - Exec the program and display it normally
9 - Exec the program and display it restored

Return Value
This function returns:

a positive number greater than 32 if the program was executed successfully.

Example
FUNCTION Example()
id = DDEInitiate("123W", "Untitled")
IF id = 0
Exec("C:\123W\123W.EXE", 1)
FOR I = 1 to 10
id = DDEInitiate("123W", "Untitled")
IF id > 0
OK = TRUE
BREAK
ENDIF
NEXT
IF not OK
Message("Could not initiate a conversation with 1-2-3!")
EXIT FUNCTION
ENDIF
ENDIF
Principal = Query$("What is the principal of the loan?")
Interest = Query$("What is the annual interest rate (12% = .12)?") / 12
Term = Query$("What is the term in months?")
IF Interest > 1
Interest = Interest / 100
ELSEIF Right$(Interest, 1) = "%"
Interest = Left$(Interest, (Len(Interest) - 1)) / 100
ENDIF
DDEExecute(id, "[[RUN(""+@PMT({Principal},{Interest},{Term})~"")]")
Value = DDEReceive$(id, "A1")

DDETerminate(id)
Message(Value)
END FUNCTION

See also:

ActivateApp, DDEExecute, DDEInitiate, GetMacPath$, Appclose, AppGetAppCount,
AppGetAppNames, AppGetWindowPos, AppHide, AppIsRunning, AppMaximize, AppMinimize,
AppMove, AppRestore, AppSendMessage, AppSize

FacingView
This function changes the current view level to    facing pages View. Choosing this function is equivalent to
choosing View/Facing Pages.
You must be in Layout Mode to call this function.

Syntax
FacingView()

Return Value
This function returns:

1.

Example
FUNCTION Example()
Again:
View = Query$("Choose a view: (C)ustom, (E)nlarged, (F)acing Pages, Full (P)age, or (S)tandard.")
View = UCASE$(Left$(View, 1))
SWITCH View
CASE "C"
CustomView()
CASE "E"
EnlargedView()
CASE "F"
FullPageView()
CASE "P"
FacingView()
CASE "S"
StandardView()
default
Message("Please enter one of the following: ""C"", ""E"", ""F"", or ""S"")
GoTo again
ENDSWITCH
END FUNCTION

See also:

EnlargedView, FullPageView, GetViewLevel, LayoutMode, StandardView, CustomView

FastFormat
This function extracts text formatting information from selected text and then applies that formatting to
other main document text, table text, or text in a text frame. Text formatting is any typeface, point size,
color, attribute (bold, italic, underline, word underline), capitalization, or special effects. This function
enables Fast Format if it is not enabled or disables it if it is enabled. Choosing this function is equivalent
to choosing Text/Fast Format.
This function can be used to load the text formatting for use with the ApplyFormat function.

Syntax
FastFormat()

Return Value
This function returns:

1.

Example
FUNCTION Example()
FastFormat() ' Enable Fast Formatting
UserControl("Press Resume to cancel Fast Formatting")
FastFormat() ' Disable Fast Formatting
END FUNCTION

See also:

ApplyFormat

fclose
This function closes an ASCII file that has been opened by the fopen function. All open files must be
closed by the macro that created them, otherwise unpredictable results occur.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
fclose(Handle)
Handle is the file handle of the file to close.

Return Value
This function does not return a value.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
DEFSTR id, Line;
WinDir = GetWindowsDirectory$()
IF 0 != Assign(&id, fopen("{WinDir}PRINTERS.TXT", "r"))
New("~BASIC.STY", 0, 0)
WHILE -1 != Assign(&Line, fgets$(id))
TYPE("{Line}[Enter]")
WEND
toast:
fclose(id)
ELSE
Message("Could not open {WinDir}PRINTERS.TXT!")
ENDIF
END FUNCTION

See also:

fgets$, fopen, fputs, fseek, ftell, fwrite, fread

fgets$
This function reads a line of text from the file opened by the fopen function. The line of text is read from
the current file pointer position. When reading a line of text, the carriage return/line feed combination is
stripped from the end of the line before the line is returned by the function.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
fgets$(Handle)
Handle is the file handle for the file returned by the fopen function.

Return Value
This function returns:

the line of text if the file pointer was not at the end of the file.
-1    if the file pointer was at the end of the file.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
DEFSTR id, Line;
WinDir = GetWindowsDirectory$()
IF 0 != Assign(&id, fopen("{WinDir}PRINTERS.TXT", "r"))
New("~BASIC.STY", 0, 0)
WHILE -1 != Assign(&Line, fgets$(id))
TYPE("{Line}[Enter]")
WEND
toast:
fclose(id)
ELSE
Message("Could not open {WinDir}PRINTERS.TXT!")
ENDIF
END FUNCTION

See also:

fclose, fopen, fputs, fseek, ftell, fwrite, fread

FieldAdd
This function adds a power field. Choosing this function is equivalent to choosing Edit/Power Fields/Insert.

Syntax
FieldAdd(Field)
Field is the name of the field to add.

Return Value
This function returns:

the new ID if the    power field was successfully added.
-2    (GeneralFailure) if the Power field was not added.

Example
FUNCTION Example()
FieldAdd("TOC 1 ""Related Functions""")
FieldAdd("Index ""experience""#")
FieldAdd("CreateDate %DB")
END FUNCTION

See also:

FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldAuto
This function sets or clears the auto update bit for a power field. Choosing this function is equivalent to
choosing Edit/Power Fields/Insert/Auto run.

Syntax
FieldAuto(ID, Flag)
ID is the ID for the Power Field to modify.
Flag is the value of the update bit for the field and is either a 1 (On) or a 0 (Off).

Return Value
This function returns:

1    (TRUE) if the bit was set or cleared.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
FieldCommand()
both = FieldPrev
id = MOD(both, 0x10000)
FieldAuto(id, 1)
FieldLock(id, 1)
END FUNCTION

See also:

FieldAdd, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldCommand
This function brings up the Insert Power Fields dialog box. Choosing this function is equivalent to
choosing Edit/Power Fields/Insert.

Syntax
FieldCommand()

Return Value
This function does not return a value.

Example
FUNCTION Example()
FieldCommand()
both = FieldPrev
id = MOD(both, 0x10000)
FieldAuto(id, 1)
FieldLock(id, 1)
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldEvaluate
This function updates the field in the current location of the insertion point. Choosing this function is
equivalent to choosing Edit/Power Fields/Update.

Syntax
FieldEvaluate()

Return Value
This function returns:

1    (TRUE) if the field was updated.
0    (FALSE) if the field was not updated.

Example
FUNCTION Example()
FieldNext()
FieldEvaluate()
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldLock
This function sets or clears the lock bit for a power field. Choosing this function is equivalent to choosing
Edit/Power Fields/Insert/Lock.

Syntax
FieldLock(ID, Flag)
ID is the ID of the Power Field to modify.
Flag is the value of the lock bit for the field and is either a 1 (On) or a 0 (Off).

Return Value
This function does not return a value.

Example
FUNCTION Example()
FieldCommand()
both = FieldPrev
id = MOD(both, 0x10000)
FieldAuto(id, 1)
FieldLock(id, 1)
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldNext / FieldPrev
These functions go backward to the previous power field or forward to the next power field. Choosing this
function is equivalent to choosing Edit/Power Fields/Next Field or Edit/Power Fields/Prev Field.

Syntax
FieldNext()
FieldPrev()

Return Value
These functions returns:

the ID and Type of the next/previous Power Field in a bit number. To extract the ID and Type:
both = FieldNext()
or
both = FieldPrev()

ID = Mod(both, 0x10000)
Type = Round(both / 0x10000)
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
FieldCommand()
both = FieldPrev
id = MOD(both, 0x10000)
FieldAuto(id, 1)
FieldLock(id, 1)
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldRemove, FieldToggleDisplay,
FieldUpdate, FieldUpdateAll

FieldRemove
This function removes the power field identified by the ID number.

Syntax
FieldRemove(ID, 8)
ID identifies the Power Field and may be obtained by using the FieldNext or FieldPrev functions.
8 tells the function to remove the index entry.

Return Value
This function returns:

1.

Example
FUNCTION Example()
Both=FieldNext()
ID=MOD(Both,0x100000)
FieldRemove(ID,8)
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev,
FieldToggleDisplay, FieldUpdate, FieldUpdateAll

FieldToggleDisplay
This function toggles the field display on or off. Choosing this function is equivalent to choosing
View/Show/Hide Power Fields.

Syntax
FieldToggleDisplay()

Return Value
This function returns:

1.

Example
FUNCTION Example()
UserControl("Click Resume to show power fields.")
FieldToggleDisplay()
UserControl("Click Resume to update all power fields.")
FieldToggleDisplay()
FieldUpdateAll()
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldUpdate, FieldUpdateAll

FieldUpdate
This function updates an existing power field. Choosing this function is equivalent to choosing Edit/Power
Fields/Update.

Syntax
FieldUpdate(ID, Type, Field)
ID is the ID of the Power Field to update.
Type is the type of the Power Field to update.
Field is the name of the Power Field to update.

Return Value
This function returns:

1    (TRUE) if the Power    field was successfully updated.
-7    (NoFind) if the Power Field could not be located.

Example
FUNCTION Example()
id = FieldAdd("NumPages")
both = FieldPrev()
id = MOD(both, 0x10000)
type = Round(both/0x10000)
FieldUpdate(id, type, "NumPages")
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdateAll

FieldUpdateAll
This function updates all fields in the current document. Choosing this function is equivalent to choosing
Edit/Power Fields/Update All.

Syntax
FieldUpdateAll()

Return Value
This function returns:

1    (TRUE) if all of the fields were successfully updated.

Example
FUNCTION Example()
UserControl("Click Resume to show power fields.")
FieldToggleDisplay()
UserControl("Click Resume to update all power fields.")
FieldToggleDisplay()
FieldUpdateAll()
END FUNCTION

See also:

FieldAdd, FieldAuto, FieldCommand, FieldEvaluate, FieldLock, FieldNext, FieldPrev, FieldRemove,
FieldToggleDisplay, FieldUpdate

FileChanged
This function reads and optionally sets the file-changed flag internal to Ami Pro. The file-changed flag
determines whether Ami Pro asks the user to save the document before displaying a new document or
exiting the program.

Syntax
FileChanged(Action, NewValue)
Action determines whether to read or set the file changed flag. If the Action parameter is 1 (TRUE), the
state of the flag changes to the second parameter. If the Action parameter is false (0), the parameter is
not changed and NewValue is ignored.
NewValue is the new value to used for the file changed flag. This should be set to a 1 (changed) or a 0
(not changed).

Return Value
This function returns:

a positive number if the file had been changed prior to using the function.
0    (FALSE) if the file had not been changed.
Changing the value of the file changed parameter does not affect the return value of the function until
the subsequent function call.

Example
FUNCTION Example()
WHILE CurShade$() = ""
UserControl("Select the text to print and click Resume...")
WEND
Copy()
New("~ENVELOP.STY", 1, 0)
Paste()
FilePrint(1, 1, 9999, 1537)
FileChanged(1, 0)
FileClose()
END FUNCTION

See also:

FileOpen, Save, SaveAs, FilePrint, FileClose

FileClose
This function closes the current Multiple Document Interface (MDI) window in Ami Pro. Choosing this
function is equivalent to choosing File/Close.

Syntax
FileClose()

Return Value
This function returns:

1    (TRUE) if the file was successfully closed.
-2    if the file was not closed.

Example
FUNCTION Example2()
AnswerMsgBox(No)'Answer the next message box "NO"
FileClose()'Close the current file.
END FUNCTION

See also:

FileOpen, FileChanged, FilePrint, Save, SaveAs

FileManagement
This function opens the Ami Pro File Manager. Choosing this function is equivalent to choosing File/File
Management. File Management functions cannot be run directly with this macro function. It opens the Ami
Pro File Manager, then immediately returns control to the macro. The user can do file management
functions, close the window, and return to word processing.
If later functions in the macro involve screen display, these functions cause the Ami Pro window to
obscure the Ami Pro File Management window as the macro continues to run. Either have the macro
pause with a UserControl box or allow this function to be the last function in the macro.

Syntax
FileManagement()

Return Value
This function returns:

1    (TRUE) if the File Manager was started.
-2    (GeneralFailure) if the File Manager could not be started.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
OnKey([CtrlAltf], FileManagement, 0)
Message("Press Ctrl+Alt+F to execute the Ami Pro File Manager.")
END FUNCTION

See also:

ControlPanel, DOSRename, DOSCopyFile, DOSDelFile, DOSGetFileAttr, DOSmkdir, DOSchdir,
DOSGetEnv$, DOSSetFileAttr, DOSrmdir

FileOpen
Choosing this function is equivalent to choosing File/Open.

Syntax
FileOpen(FileName, Options, App)
FileName is the name of the document to open. If the file to be opened is not in the current directory or
document directory, the path must be used. To open the 'Untitled' file, use the null string ("") as the file
name.
Options is a bit number corresponding to the options for the file you open. To use more than one of the
options, add them together. Options can be one or more of the following:

1 - Ami Pro file
5 - ASCII file
8 - Import/Insert
16 - Non-Ami Pro or Non-ASCII file
128 - Close current file

App is the file type of the file. The file type must appear as it does in the AMIPRO.INI file or the list of file
types in the File Open dialog box. To open an Ami Pro file, use the null string ("") here.
To display the Open dialog box and allow the user to choose the file to open: FileOpen

Return Value
This function returns:

1    (TRUE) if the file was opened.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the file was not opened.
2    if the user created a file that did not exist.

Example
FUNCTION Example()
Filename = Query$("What file do you want to open?")
IF FindFirst$(Filename, 0)
FileOpen("GOODIES.SAM", 1, "")
ELSE
Message("Could not find {Filename}.")
ENDIF
END FUNCTION

See also:

GetOpenFileName$, New, SaveAs, FileChanged, FilePrint, Save, GetOpenFileCount,
GetOpenFileNames

FilePrint
This function allows printing the current document to a printer. Choosing this function is equivalent to
choosing File/Print. Before using this function, your macro should ensure that the document you want to
print is currently active.
The options for setting the sheet feeder bin cannot be set through this command. In order to set the sheet
feeder bins, you need to use the PrintOptions function. If the PrintOptions function is not used, Ami Pro
uses the bins specified in the Control Panel.

Syntax
FilePrint(Copies, StartPage, EndPage, Flag)
Copies is the number of copies of the document to print.
StartPage is the page number to start printing. This parameter is ignored if the PrintAll option is used, but
must still be present.
EndPage is the page number after which to stop printing. This parameter is ignored if the PrintAll option
is used, but must still be present.
Flag is a number that defines the value of other print options. This parameter defines which of the
optional parameters are used and may be one or more of the following:

(1) - Prints all pages of document, ignoring StartOn and StopAfter.
(2) - Prints the document in reverse order.
(4) - Collate multiple copy output.
(16) - Print the document with crop marks.
(32) - Print the document description along with the document.
(64) - Print the document on pre-printed forms. Do not print protected text.
(128) - Updates power fields before printing.
(256) - Prints the document with notes.
(512) - Prints only the even pages of the document.
(1024) - Prints only the odd pages of the document.
(1536) - Prints both even and odd pages of the document.
(2048) - Prints the document without pictures. To print with pictures do not use this value.
(4096) - Prints the only current page.

The desired options should be added together to make up the value of the    flag parameter.
To display the Print dialog box and allow the user to set print options: FilePrint

Return Value
This function returns:

1    (TRUE) if the print job was successfully completed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the print job failed.

Example
FUNCTION Example()
WHILE CurShade$() = ""
UserControl("Select the text to print and click Resume...")
WEND
Copy()
New("~ENVELOP.STY", 1, 0)
Paste()
FilePrint(1, 1, 9999, 1537)
FileChanged(1, 0)
FileClose()

END FUNCTION

See also:

ControlPanel, Merge, PrintSetup, PrintOptions

FillEdit
This function is used to fill the contents of an object that display in a dialog box called by the DialogBox
function. If the object is an edit box or static text with an 8000-8999 ID, the text specified in the    value
parameter fills the edit box. If the object is a radio button or check box, the expression specified in the   
value parameter is evaluated and the button is activated if the result of the evaluation is TRUE. If the
result of the evaluation is FALSE,    the button is not activated. If the object is a list box or a combo box (ID
of 9000-9999), the text specified as the    value parameter is passed. An array can be passed to a list or
combo box, filling the list with the contents of the array. To do so, use indirection (&) and the name of the
array to pass.
You can use this function to put a wildcard pattern into a Multiple Document Interface (MDI) list box or to
append other selection criteria.

0x1 - Read-only
0x2 - Hidden
0x4 - System
0x10 - Disk volume label
0x20 - Directories
0x4000 - Drives
0x8000 - Exclusive

Syntax
FillEdit (ID, Value)
ID is the number of the object that receives the value.
Value is either a text string, an expression that evaluates to TRUE or FALSE, or the address of an
existing array. It is one of the following values:

Return Value
This function does not return a value.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")

ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0
74 46 60 40 24 1342308359 "button" "Group Box #1" 0
78 58 50 10 50 1342242825 "button" "Radio #1" 0
78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0
142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

DialogBox, FillList, GetDialogField$, SetDlgCallback, SetDlgItemText, GetDlgItem, GetDlgItemText

FillList
This function is used to fill the contents of a list box that displays in a dialog box that is called by the
DialogBox function. If there is only one list box, this list box is filled. If there is more than one list box, the
list box with the lowest ID is filled. Each iteration of the FillList function can only contain 80 characters. If
there are more items, additional iterations of FillList can be used to add additional items. The FillList
function must be used before each call to the DialogBox function.

Syntax
FillList(Item1[, Item2]...)
Item1 and Item2 are strings that should be placed in the list box.

Return Value
This function does not return a value.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")
ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0
74 46 60 40 24 1342308359 "button" "Group Box #1" 0
78 58 50 10 50 1342242825 "button" "Radio #1" 0
78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0

142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

DialogBox, FillEdit, GetDialogField$, SetDlgCallback, SetDlgItemText, GetDlgItem, GetDlgItemText

FindFirst$
This function finds files that match the FileSpec given to the function. All files or a subset of files in a
directory can be found. The FindFirst$ function retrieves the first matching file and must be used before
the FindNext$ function. FindNext$ finds other files that match the FileSpec.

Syntax
FindFirst$(FileSpec, Attr)
FileSpec describes the file specification desired. It may include a drive and/or directory name, if desired.
The file name portion of the filespec can include the wildcard characters "*" and "?".
Attr is a number that represents the type of file desired. The possible attributes are:

A_Normal (0) - Normal    Files
A_ReadOnly (1) - Read-only    Files
A_Hidden (2) - Hidden    Files
A_System (4) - System    Files
A_Vollabel (8) -Disk's    Volume Label
A_Directory (16) - Directories
A_Archive (32) - Archived files

The values listed above may be added together to retrieve different file types.

Return Value
This function returns:

 a string with the matching file.
 the null string ("") if no files are matched.

Example
FUNCTION Example()
Filename = Query$("What file do you want to open?")
IF FindFirst$(Filename, 0)
FileOpen("GOODIES.SAM", 1, "")
ELSE
Message("Could not find {Filename}.")
ENDIF
END FUNCTION

See also:

findNext$, fclose, fgets$, fputs, fseek, ftell,fread, fwrite

FindNext$
This function finds files that match the FileSpec given to the FindFirst$ function. All files or a subset of
files in a directory can be found. The FindFirst$ function retrieves the first matching file and must be used
before the FindNext$ function. FindNext$ finds other files that match the FileSpec.

Syntax
FindNext$()

Return Value
This function returns:

 a string with the matching file.
 the null string ("") if no files are matched.

Example
FUNCTION Example()
DIR=Query$("What directory to report on?")
File=FindFirst$("{DIR}*.*", 0)
WHILE File<>""
TYPE ("{File}[Enter]")
File=FindNext$()
WEND
END FUNCTION

See also:

FindNext$, fclose, fgets$, fputs, fseek, ftell,fread, fwrite

FindReplace
This function allows the user to view the Find & Replace menu and make choices from that menu.
Choosing this function is equivalent to choosing Edit/Find & Replace. This function does not automatically
replace words. If automatic Find & Replace is desired, use the Replace function instead. A macro must be
edited to insert this non-recordable function.

Syntax
FindReplace()

Return Value
This function returns:

1    (TRUE) if the Find & Replace function was started.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
IF CurShade$() = ""
FindReplace()
ELSE
Replace(0, 0, 0, CurWord$(), "")
ENDIF
END FUNCTION

See also:

GoToCmd, GoToShade, Replace

FloatingHeader
This function adds or removes floating headers and floating footers in a document. Choosing this function
is equivalent to choosing Page/Header/Footer and choosing Floating Header/Footer.
You must be in Layout Mode to use this function.

Syntax
FloatingHeader(Function)
Function is the desired function for adding or removing a floating header or footer. The function
implemented depends on the Function parameter, according to the following list:

AddHeader (1) - Add a floating header
AddFooter (2) - Add a floating footer
DelHeader (4) - Delete a floating header
DelFooter (8) - Delete a floating footer

The desired header/footer type should be combined with one of the following parameters if you want to
add or remove an odd or even header/footer:

OddHF (16) - Odd    Header or Footer
EvenHF (32) - Even    Header or Footer

To display the Floating    header/Footer dialog box and allow the user to determine the header/footer
function desired: FloatingHeader

Return Value
This function returns:

1    (TRUE) if the header or footer was created or removed.
0    (UserCancel) if the user canceled the function.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
Again:
Action = Query$("(A)dd or (R)emove a floating header?")
Action = lcase$(Left$(Action, 1))
SWITCH Action
CASE "a"
FloatingHeader(1)
CASE "r"
FloatingHeader(4)
default
Message("Please type in an ""A"" or an ""R"".")
GoTo again
ENDSWITCH
END FUNCTION

See also:

GoToCmd, PageNumber, ModifyLayout

FontChange
This function sets the font, family, color, and size to be used for selected text. Choosing this function is
equivalent to choosing Text/Font.

Syntax
FontChange(Name, PitchFamily, Color, Size)
Name is the name of the font to use. The name of the font is the font name, as seen in the Font list box in
the menu.
PitchFamily is a combination of the pitch of the font and the typestyle parameters. Pitch is one of the
following values:

False (0) - Not    Specified
FixedPitch (1) - This is a fixed pitch font
VariablePitch (2) - This is a proportional font

Family is one of the following typeface families:
False (0) - Not    Specified
Roman (16) - Roman like typestyle; proportional pitch, serif
Swiss (32) - Swiss like typestyle; proportional pitch, sans-serif
Modern (48) - Modern like typestyle; fixed pitch, could be either serifed or sans-serif
Script (64) - Script-like typestyle, such as Brush or Park Avenue
Decorative (80) - Decorative typeface, such as Old English

One value for Pitch and one value for family should be added together to make up the PitchFamily
parameter. This parameter is used to determine another font if the font named is not available on the
printer.
Color is a numeric representation of the color of the font. It is one of the following values:

White (16777215) - White
Cyan (16776960) - Light    Blue
Yellow (65535) - Yellow
Magenta (16711935) - Purple
Green (65280) - Green
Red (255) - Red
Blue (16711680) - Blue
Black (0) - Black

Size is expressed in twips (1 inch=1440 twips). An 8 point font is 160 twips. 10 point is 200 twips; 12 point
is 240 twips, etc. The formula to determine twips from point size is pointsize * 20.
To display the dialog box to allow the user to select the desired font:
FontChange

Return Value
This function returns:

1
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
DEFSTR Name, Color, Size, Family;
GetCurFontInfo(&Name, &Color, &Size, &Family)
Size = ((Size / 20) + 2) * 20
FontChange(Name, Family, Color, Size)
END FUNCTION

See also:

FontRevert, ModifyFont, NormalText, Spacing, FontFaceChange, FontPointSizeChange

FontFaceChange
This function changes the selected font for the active document. Choosing this function is equivalent to
choosing a font from the status bar. Through the status bar, the user can only select from the fonts
available on the printer. Using this function, any type of font can be requested. When it is time to display
or print the font, Ami Pro selects the closest matching font to the specification given.

Syntax
FontFaceChange(Name)
Name is the name of the font to be used. The font name is selected from the list of names displayed in
the FontName section of the status bar.

Return Value
This function returns:

1    (TRUE) if the    Font Face was changed.
0    (NoAction) if no action was taken because the font was not available.

Example
FUNCTION Example()
FontFaceChange("Times New Roman PS")
END FUNCTION

See also:

FontChange, FontPointSizeChange

FontPointSizeChange
This function changes the point size of the selected font for the active document. Choosing this function is
equivalent to choosing a point size from the status bar.

Syntax
FontPointSizeChange(Size)
Size is the pointsize to use. The pointsize is selected from the list of sizes displayed in the PointSize
section of the status bar.

Return Value
This function returns:

1.

Example
FUNCTION Example()
FontPointSizeChange(20*20)
END FUNCTION

See also:

FontChange, FontFaceChange

FontRevert
This function changes the text font to the font defined by the current paragraph style. Choosing this
function is equivalent to choosing Text/Font and selecting the Revert to    style check box.

Syntax
FontRevert()
To display the Font dialog box and allow the user to select the font that should be used for text:
FontChange

Return Value
This function does not return a value.

Example
FUNCTION Example()
WHILE CurShade$() = ""
UserControl("Select the text to revert back to the style...")
WEND
FontRevert()
END FUNCTION

See also:

FontChange, ModifyFont, NormalText, FontFaceChange, FontPointSizeChange

Footnotes
This function sets the options for footnotes, as well as allowing the user to edit, insert, or remove
footnotes. Choosing this function is equivalent to choosing Tools/Footnotes.

Syntax
Footnotes(Function, Options, StartNum, Length, Indent)
Function is the desired footnote function. The    function parameter is one of the following values:

InsFootnote (1) - Insert new footnote
EditFootnote (2) - Edit existing footnote
SetOptions (3) - Set footnote options only

Options are the desired footnote options. Options are one or more of the following options:
Gather (1) - Gather the notes at the end of the document
Reset (2) - Reset the footnote numbering at the end of each page
CustomLength (4) - The footnote separator line is a custom length, rather than the length of the
margins

Options should be added together if more than one option is desired.
StartNum is the starting footnote number. If the Custom length option is chosen, the Length parameter
should be set to the length of the line. If the length of the line is not customized, this value should be set
to 0. The Indent parameter should be set to the desired indent from the left margin. If no indent is desired,
the value for Indent should be 0.
Length is the length of the footnote line in twips (1 inch=1440 twips).
Indent is the indention of the footnote line from the left margin in twips.
To determine the Length and Indent parameters, multiply the desired number of inches by 1440 to
determine the value in twips.
To display the dialog box and allow the user to select the footnote functions and options: Footnotes

Return Value
This function returns:

1    (TRUE) if the footnote function was completed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the function could not be completed.

Example
FUNCTION Example()
Footnotes(InsFootnote, Gather, 1, 0, 0)
END FUNCTION

See also:

GoToCmd

fopen
This function is used to open an ASCII or binary file for processing in a macro. This function must be used
first when wanting to process an ASCII or binary file. A file that is opened must be closed by the fclose
function before the macro ends, otherwise unpredictable results occur.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
fopen(FileName, Mode)
FileName is the name of the file to open. If the file is not in the current directory, the full path must be
used.
Mode is the file mode to use and may be one of the following:

r -- Opens the file for reading. If the file is opened for reading, any attempts to write to the file fail. If
the file does not exist, the fopen call fail.
w -- Opens the file for writing. If the file already exists, its contents are erased. If the file does not
exist, it is created.
a -- Opens the file for appending. If the file does not exist, it is created. If the file already exists, text
written to the file is written to the end of the file.
b -- Used with fread and fwrite.
t -- Used with fgets$ and fputs.

Return Value
This function returns:

a non-zero file handle if the file was successfully opened.
0    (FALSE) if the file could not be opened.

Example
FUNCTION Example()
ONERROR toast
ONCANCEL toast
DEFSTR id, Line;
WinDir = GetWindowsDirectory$()
IF 0 != Assign(&id, fopen("{WinDir}PRINTERS.TXT", "r"))
New("~BASIC.STY", 0, 0)
WHILE -1 != Assign(&Line, fgets$(id))
TYPE("{Line}[Enter]")
WEND
toast:
fclose(id)
ELSE
Message("Could not open {WinDir}PRINTERS.TXT!")
ENDIF
END FUNCTION

See also:

fclose, fgets$, fputs, fseek, ftell, fread, fwrite

FormatDate$
This function takes a date (in seconds) from January 1, 1970, and creates a formatted string.

Syntax
FormatDate$(Date, Style)
Date is the date to be converted in seconds format.
Style is one of the formats listed below:

a - 2/18/91
b - February 18, 1991
B - FEBRUARY 18, 1991
c - 18 February 1991
C - 18 FEBRUARY 1991
d - Monday, February 18, 1991
D - MONDAY, FEBRUARY 18, 1991
e - February 18
E - FEBRUARY 18
f - Monday, February 18
F - MONDAY, FEBRUARY 18
g - 2/18
h - 2/18/1991
i - 18. February
I - 18. FEBRUARY
j - 18. February 1991
k - 1991 February 18
K - 1991 FEBRUARY 18
l - February, 1991
L - FEBRUARY, 1991

Return Value
The function returns:

the date converted to the selected style.

Example
FUNCTION Example()
Born = Query$("What is your Birthday (MM/DD/YYYY)?")
Date = FormatDate$(Now(), "h")
Time = FormatTime$(Now(), 6)
Days = DateDiff(Born, Date)
TextDate = FormatDate$(Now(), "d")
Message("It is now {Time} on {TextDate}. You are {Days} days old.")
END FUNCTION

See also:

FormatTime$, InsertDate, Now

FormatNum$
This function formats a number to a string, adds an optional prefix at the beginning, the specified number
of digits to the right of the decimal point, and an optional suffix at the end. The decimal point character
and thousands-separator character are taken from the Country Settings option in the Control Panel.

Syntax
FormatNum$(Prefix, Suffix, Decimals, Number)
Prefix is a string that is placed at the beginning of the formatted number.
Suffix is a string that is placed at the end of the formatted number.
Decimals is the number of decimal places to use in the number.
Number is the number to format, without commas, prefix, or suffix.

Return Value
This function returns:

 the string with the formatted number.

Example
FUNCTION Example()
Again:
Number = Query$("How much was the sale?")
Where = Query$("Where was the sale made (E)ngland, or (A)merica?")
Where = lcase$(Left$(Where, 1))
IF Where = "e"
Prefix = ""
Suffix = "£"
ELSEIF Where = "a"
Prefix = "$"
Suffix = ""
ELSE
Message("Please choose ""a"" or ""e"".")
GoTo again
ENDIF
NewNumber = FormatNum$(Prefix, Suffix, 2, Number)
Message("The sale was for {NewNumber}.")
END FUNCTION

See also:

IsNumeric, strcat$, strchr, LCASE$, UCASE$, strfield$, MID$, LEN, Instr

FormatSeq$
This function formats the Number parameter to a specified paragraph style as defined in the Style
parameter.

Syntax
FormatSeq$(Number, Style)
Number is the number you want to format, without commas, prefixes, or suffixes.
Style can be one of the paragraph styles listed below:

1 - 1, 2, 3...
2 - I, II, III...
3 - i, ii, iii...
4 - A, B, C...
5 - a, b, c...

Return Value
This function returns:

 the number in the paragraph style specified.

Example
FUNCTION Example()
Number = Query$("Enter the number to format to A,B,C style:")
Number = FormatSeq$(Number, 4)
Message("The number you gave, in A,B,C style is {Number}.")
END FUNCTION

See also:

FormatNum$, ModifyStyle

FormatTime$
This function takes the time (in seconds) and formats it to a specified style.

Syntax
FormatTime$(Time, Style)
Time is the time to be formatted.
Style is one of the formats listed below:

1 - 22:28
2 - 9:00AM
3 - 09:00AM
4 - 9:00A
5 - 09:00A
6 - 9:00am
7 - 09:00am
8 - 9:00a
9 - 09:00a

Return Value
This function returns:

 the time in the format specified.

Example
FUNCTION Example()
Born = Query$("What is your Birthday (MM/DD/YYYY)?")
Date = FormatDate$(Now(), "h")
Time = FormatTime$(Now(), 6)
Days = DateDiff(Born, Date)
TextDate = FormatDate$(Now(), "d")
Message("It is now {Time} on {TextDate}. You are {Days} days old.")
END FUNCTION

See also:

FormatDate$, Now, InsertDate

fputs
This function writes a line of ASCII text to the file opened by the fopen function. The line of text is written
at the end of the file. When writing a line of text, a carriage return/line feed combination is added to the
end of each line before it is written to the file.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
fputs(Handle, Text)
Handle is the file handle for the file returned by the fopen function.
Text is a line of text to be written to the file.

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

fclose, fgets$, fopen, fseek, ftell, fread, fwrite

FrameLayout
This function displays the Modify Frame Layout dialog box. Choosing this function is equivalent to
choosing Frame/Modify Frame Layout. This function does not automatically modify the    frame layout.

Syntax
FrameLayout()

Return Value
This function returns:

1    (TRUE) if the    frame layout was modified.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the Frame    layout was not modified.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

ModifyLayout, ModifyStyle, FrameModInit, FrameModBorders, FrameModLines, FrameModType,
FrameModFinish

FrameModBorders
This function allows you to change the size and placement of the selected frame. Choosing this function
is equivalent to choosing Frame/Modify Frame Layout/Size & position.
You must call the FrameModInit function before using this function. Before the frame modifications take
effect, the FrameModFinish function must be called.

Syntax
FrameModBorders(Width, Height, Top, Left, LeftMargin, TopMargin, RightMargin, BottomMargin, Units)
Width is the desired width of the frame.
Height is the desired height of the frame.
Top is the distance from the top of the page (vertical starting position).
Left is the distance from the left side of the page (horizontal starting position).
LeftMargin is the desired left margin of the frame.
TopMargin is the desired top margin of the frame.
RightMargin is the desired right margin of the frame.
BottomMargin is the desired bottom margin of the frame.
The value for all parameters except Units should be given in twips (1 inch=1440 twips). Multiply the
desired number of inches by 1440 to determine the value in twips.
Units is the unit of measure to use when using the dialog box to set the values for all other parameters. It
is one of the following values:
Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

Return Value
This function returns:

1    (TRUE) if the frame was changed.
-2    (GeneralFailure) if the frame was not changed.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

FrameModInit, FrameModFinish, FrameModLines, AddFrame, FrameModType, AddFrameDLG,
FrameLayout

FrameModColumns
This function allows you to change the columns and tabs of the selected frame. Choosing this function is
equivalent to choosing Frame/Modify Frame Layout/Columns & tabs.
You must call the FrameModInit function before using this function. Before the frame modifications take
effect, the FrameModFinish function must be called.

Syntax
FrameModColumns(Options, GutterLine, Color, NumCols[, Cols], NumTabs[, Tabs])
Options is a flag parameter and can have one or more of the following values:

(0) - No column balance and no line between columns
(1) - Column balance on
(2) - Line between columns

GutterLine determines the type of line between the columns. Available lines styles are:
(1) - Hairline
(2) - One point rule
(3) - Two point rule
(4) - Three point rule
(5) - Four point rule
(6) - Five point rule
(7) - Six point rule
(8) - Parallel one point rules
(9) - Parallel two point rules
(10) - Hairline above and below a two point rule
(11) - Hairline below a three point rule
(12) - Hairline above a three point rule

Color is the color of the line between the columns and can be one of the following:
(16777215) - White
(16776960) - Light blue
(65535) - Yellow
(16711935) - Purple
(65280) - Green
(255) - Red
(16711680) - Blue
(0) - Black
(12566463) - 90% gray scale (Dark gray)
(8355711) - 50% gray scale (Medium Gray)
(4144959) - 20% gray scale (Light gray)
(1644825) - 10% gray scale (Very light gray)

NumCols is the number of columns to use in the frame.
Cols are pairs of numbers that represent the twip offset to the left and right margin for each column.
There should be a pair of offsets for each column.
NumTabs is how many tab pairs follow. The pairs are the type of tabs, followed by the offset from the left
margin.
Tabs are pairs of numbers that represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

(1) - Left tab

(2) - Center tab
(3) - Right tab
(4) - Numeric tab

You can enter one of the folowing values, using the bitwise operator OR (|):
0x4000 - for dashed leaders
0x8000 - for dot leaders
0xc000 - for underline leaders

Return Value
This function returns:

1    (TRUE) if the lines are modified.
-2    (GeneralFailure) if the lines are not modified.

Example
FUNCTION Example()
AddFrame(1440 -1440 2880 -2880)
FrameModInit()
' no column, no lines between columns, one point rule gutter line, black line between columns,
one column, no tabs
FrameModColumns(0 2 0 1 48 -176 0)
FrameModFinish()
END FUNCTION

FrameModFinish
This function applies all of your changes made when modifying the frame layout. This function is the last
of a series of functions recorded when modifying the frame layout through Frame/Modify Frame Layout.
Choosing this function is equivalent to accepting changes entered by choosing Frame/Modify Frame
Layout.
You must call the FrameModInit function before you call FrameModFinish.

Syntax
FrameModFinish()

Return Value
This function returns:

1    (TRUE) if the frame was changed.
-2    (GeneralFailure) if the frame was not changed.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

FrameModInit, FrameModLines, FrameModBorders, AddFrame, AddFrameDLG, FrameLayout,
FrameModType

FrameModInit
This function prepares Ami Pro to accept changes to the currently selected frame when modifying the
frame layout. Choosing this function is equivalent to initializing changes made when choosing
Frame/Modify Frame Layout.
You must have a frame selected before calling this function.

Syntax
FrameModInit()

Return Value
This function returns:

1    (TRUE) if the frame was changed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

FrameModFinish, FrameModLines, FrameModBorders, AddFrame, AddFrameDLG, FrameLayout,
FrameModType

FrameModLines
This function applies modifications to the lines around, the background color, the shadow color, and the
shadow placement of the selected frame. Choosing this function is equivalent to choosing Frame/Modify
Frame Layout/Lines & shadows.
You must call the FrameModInit function before you use this function. Before the frame modifications take
effect, the FrameModFinish function must be called.

Syntax
FrameModLines(BorderWhere, PosType, ThickType, ShadeType, BackType, ShadowColor, ShadowLeft,
ShadowTop, ShadowRight, ShadowBottom)
BorderWhere is the lines around a frame. It is one of the following values:

1 - All
2 - Left
4 - Right
8 - Top
16 - Bottom

PosType is the position of the border around a frame. It is one of the following values:
1 - Middle
2 - Inside
3 - Outside
5 - Close to outside

You can only choose one value for the Postype parameter.
ThickType is the thickness of the border. It is one of the following values:

Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule
FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rule
DoubleTwoPoint (9) - Parallel two point rule
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

ShadeType is the line color.
BackType is the background color.
ShadowColor is the value assigned to the colors. It is one of the following values:

Red - 255
Orange - 33279
Yellow - 65535
Green - 65280
Cyan - 16776960
MedBlue - 16744448
Blue - 16727905
Purple - 16711809

Magenta - 16711935
Pink - 8388863
White - 16777215
Black - 0

The following four parameters determine the distance of the shadow from a specific side of the frame.
They are either zero or positive integers. Multiply the desired distance in inches by 1440 to determine the
value in twips. They are one of the following values, or may be a custom value:

None (0) - No shadow
Shallow (57) - Shallow shadow
Normal (100) - Normal shadow
Deep (172) - Deep shadow

ShadowLeft is the distance that the shadow is offset from the left side of the frame in twips (1 inch=1440
twips).
ShadowTop is the distance that the shadow is offset from the top of the frame in twips (1 inch=1440
twips).
ShadowRight is the distance that the shadow is offset from the right side of the frame in twips (1
inch=1440 twips).
ShadowBottom is the distance that the shadow is offset from the bottom of the frame in twips (1
inch=1440 twips).

Return Value
This function returns:

1    (TRUE) if the lines are modified.
-2    (GeneralFailure) if the lines are not modified.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

FrameModInit, FrameModFinish, FrameModBorders, AddFrame, AddFrameDLG, FrameLayout,
FrameModType

FrameModType
This function allows you to set the options for wrapping, placement, and roundness of the frame You can
also set any macro that is associated with the selected frame. Choosing this function is equivalent to
choosing Frame/Modify Frame Layout/Type.
You must call the FrameModInit function before this function. Before the frame modifications take effect,
the FrameModFinish function must be called.

Syntax
FrameModType(Type, Rounded, MacroName)
Type is a setting based on: how the text should wrap around a frame, whether a frame is transparent or
opaque, has square or round corners, where it is placed on a page, and whether a macro is assigned to a
frame. It is one of the following values:

Opaque (64) - Hides text or picture behind frame.
Wraparound (128) - Displays text above, below, to the left, or to the right of the frame.
RepeatFrame (256) - Repeats frame on multiple pages. To repeat on all pages, do not use in
combination with RepeatEven or RepeatOdd.
NoWrapBeside (131072) - Displays text above and below frame, but not to the left or right of the
frame.
AnchorFrame (524288) - Used to anchor frame in its current position or to a carriage return. You can
not use any repeat values with this value.
RepeatEven (4194304) - Repeats frame on even pages. Use with the RepeatFrame value.
RepeatOdd (8192) - Repeats frame on odd pages. Use with the RepeatFrame value.
RunMacro (134217728) - Executes a macro each time the frame is selected.
Borders (65536) - Uses if frame has borders.
TextFrame (512) - Is always used in combination with other values. It is a required value.

You can add the values together to get the Type parameter.
Rounded is the amount that the corners are rounded, in percent. (100% = circle).
MacroName is the name of the macro to run when the frame is selected.

Return Value
This function returns:

1    (TRUE) if the frame was modified.
-2    (GeneralFailure) if the frame was not modified.

Example
FUNCTION Example()
AddFrame(1440, -1440, 2880, -2880)
IF Decide("Do you want to choose the frame layout options?")
FrameLayout()
ELSE
FrameModInit()
Border = (1440 / 5)
FrameModBorders(1440, 1440, 1440, 1440, Border, Border, Border, Border, 1)
FrameModLines(20, 3, 1, 0, 16777215, 0, 0, 0, 100, 100)
FrameModType(Opaque, 0, "")
FrameModFinish()
ENDIF
END FUNCTION

See also:

FrameModInit, FrameModFinish, FrameModLines, FrameModBorders, AddFrame, AddFrameDLG,

FrameLayout

fread
This function reads a specified number of bytes from the open file. This function is not line oriented.
When using ASCII file functions, ensure that the file was opened correctly before performing additional
ASCII file functions. If the fopen function was unable to open the desired file, unpredictable results can
occur if the macro attempts to read or write to that file. If you are reading binary information, zeroes can
confuse this function. You must read binary files one byte at a time. If the empty string ("") is returned, it
indicates a binary zero.

Syntax
fread(Handle, Length)
Handle is the file ID returned by the fopen function.
Len is the number of bytes to read from the file.

Return Value
This function returns:

the data requested from the file.
-1    if the file pointer is at the end of the file.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

fopen, fclose, fwrite, fseek, ftell, BinToBrackets, BracketsToBin

FreeGlobalVar
This function frees allocated memory assigned to a global variable. Global variables retain their values
until they are freed or you exit Ami Pro, as opposed to regular variables, which are lost once the function
they were created in is finished.

Syntax
FreeGlobalVar(Name)
Name is the string or number of the existing global variable being freed.

Return Value
This function returns:

1    (TRUE) if the global variable was successfully freed.
0    (FALSE) if no global variable with the requested ID number or name exists.

Example
FUNCTION Example()
AllocGlobalVar("Names", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("Numbers", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("YourName", 1)'Allocate space for a single element global variable.
FOR I = 1 to 5'Do the following 5 times.
SetGlobalArray("Names", I, Query$("Enter Name Number {I}"))
'Fill a global array with the return from QUERY
SetGlobalArray("Numbers", I, (100/I))'Fill a global array with a number
NEXT
NewName = Query$("What is your name?")'Query the user for his/her name
SetGlobalVar("YourName", NewName)'Set a global variable to that value
CALL Example2()'Call the following function
END FUNCTION

FUNCTION Example2()
Name = GetGlobalVar$("YourName")'Get the value of the global variable
Message("Your name is {Name}.")'Message that value in a box.
FOR I = 1 to 5'Do the following 5 times.
TheirName = GetGlobalArray$("Names", I)'Get the value of the current element from the array
TheirNumber = GetGlobalArray$("Numbers", I)'Get the value of the current element from the array
TYPE("Name #{I} is {TheirName}, and the number is {TheirNumber}.[Enter]")
'Type the values to the screen.
NEXT
FreeGlobalVar("Names")'Clear the space for the first global array
FreeGlobalVar("Numbers")'Clear the space for the second global array
FreeGlobalVar("YourName")'Clear the space for the global variable
END FUNCTION

See also:

AllocGlobalVar, GetGlobalArray$, GetGlobalVar$, SetGlobalArray, SetGlobalVar, Variables

fseek
This function moves the file pointer to another location in the file. The file pointer is the location in the file
from which the next text is read.
The fseek function only works reliably when seeking to a location that is zero bytes from one of the
starting locations, or to a location that is a value returned by the ftell function, starting from the beginning
of the file.
When using ASCII file functions, ensure that the file was opened correctly before performing additional
ASCII file functions. If the fopen function was unable to open the desired file, unpredictable results can
occur if the macro attempts to read or write to that file.

Syntax
fseek(Handle, Location, StartPoint)
Handle is the file handle for the file returned by the fopen function.
Location is the number of characters to move the file pointer. It must be a positive integer.
StartPoint is the offset in the file to begin moving the file pointer from. Possible offsets are:

FBegin (0) - The start of the file
FCurrent (1) - The current file pointer location
FEnd (2) - The end of the file

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

fclose, fgets$, fopen, fputs, ftell,fread, fwrite

ftell
This function finds the location of the file pointer in the currently open file. The file pointer is the location in
the file where the next text is read from or where the previous text was written to.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
ftell(Handle)
Handle is the file handle for the file returned by the fopen function.

Return Value
This function returns:

 the current location in the file.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

fclose, fgets$, fopen, fputs, fseek, fread, fwrite

FullPageView
This function changes the current view level to Full Page View. Choosing this function is equivalent to
choosing View/Full Page. You must be in Layout Mode to call this function.

Syntax
FullPageView()

Return Value
This function returns:

1.

Example
FUNCTION Example()
Again:
View = Query$("Choose a view: (C)ustom, (E)nlarged, (F)acing Pages, Full (P)age, or (S)tandard.")
View = UCASE$(Left$(View, 1))
SWITCH View
CASE "C"
CustomView()
CASE "E"
EnlargedView()
CASE "F"
FullPageView()
CASE "P"
FacingView()
CASE "S"
StandardView()
default
Message("Please enter one of the following: ""C"", ""E"", ""F"", or ""S"")
GoTo again
ENDSWITCH
END FUNCTION

See also:

EnlargedView, FacingView, GetViewLevel, LayoutMode, StandardView, CustomView

fwrite
This function writes data to the open file. Unlike the fputs function, this one does not append a carriage
return/line feed to the end of the file and is not line oriented.
When using ASCII file functions, be careful to ensure that the file was opened correctly before performing
additional ASCII file functions. If the fopen function was unable to open the desired file, unpredictable
results can occur if the macro attempts to read or write to that file.

Syntax
fwrite(Handle, Data[, Length])
Handle is the file ID handle returned by the fopen function.
Data is the string data to place in the file.
Len is the optional length of the string to send. If Len is less than the actual length of the string data, the
data is cut off at the Len position. If Len is greater than the length of the string data, the remaining
positions are padded with spaces.

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR string;
id = fopen("test.txt", "w")
IF id != 0
Name = Query$("What is your name?")
fwrite(id, Name)
fwrite(id, BracketsToBin([Enter]))
fputs(id, Query$("What is your address?"))
fclose(id)
ENDIF
Exec("NOTEPAD.EXE", "TEST.TXT")
UserControl("Click Resume to continue...")
AppClose("Notepad - TEST.TXT")
id2 = fopen("test.txt", "r")
IF id2 != 0
NameLength = len(Name)
fseek(id2, 0, 0)
Name = fread(id2, NameLength)
EnterKey = BinToBrackets(fread(id2, 2))
AddressBegins = ftell(id2)
Address = fgets$(id2)
Message("Your name is {Name}.")
Message("Your address is {Address}.")
Message("EnterKey = {EnterKey}")
Message("The address begins at the {AddressBegins} byte.")
fclose(id2)
ENDIF
END FUNCTION

See also:

fopen, fread, fclose, fwrite, fseek, ftell, BinToBrackets, BracketsToBin

Generate
This function generates a table of contents and/or an index for the current document. Choosing this
function is equivalent to choosing Tools/TOC, Index. If this is the first time a table of contents has been
generated, the user needs to select the paragraph styles and format for the table of contents before it is
generated.
To set the output file for the table of contents, use the SetTOCFile function prior to calling Generate. To
set the output file for the index, use the SetIndexFile function prior to calling Generate.

Syntax
Generate(Which)
Which is which table to generate and may be one of the following:

GenTOC (101) - Generate the table of contents
GenIndex (102) - Generate index
GenBoth (100) - Generate both tables

This parameter can be zero. If you are in a master document, no index or TOC is generated. The files
open and the page numbers update.
To display the dialog box and allow the user to decide which table(s) to generate: Generate

Return Value
This function returns:

1    (TRUE) if the table was generated.
0    (UserCancel) if the user canceled the function.
 -2    (GeneralFailure) if the table could not be generated.

Example
FUNCTION Example()
OnKey([CtrlAltg], Generate, 0)
Message("Press Ctrl+Alt+G to generate a TOC or index.")
END FUNCTION

See also:

MarkIndexWord

GetAmiDirectory$
This function returns the path from which Ami Pro is currently running.

Syntax
GetAmiDirectory$()

Return Value
This function returns:

a string containing the path where Ami Pro is currently running, with a trailing backslash.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
END FUNCTION

See also:

GetDocPath$, GetWindowsDirectory$, GetBackPath$, GetMacPath$, GetStylePath$

GetBackPath$
This function returns the default path for backup files.

Syntax
GetBackPath$()

Return Value
This function returns:

a string with the current default document backup path, with a trailing backslash.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
BackPath = GetBackPath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
Message("Ami Pro's default backup path is {BackPath}.")
END FUNCTION

See also:

GetCurrentDir$, GetDocPath$, GetMacPath$, GetStylePath$, SetBackPath, SetDocPath,
SetStylePath, GetAmiDirectory$, GetWindowsDirectory$

GetBookMarkCount
This function is used to dimension the arrays for the GetBookMarkNames function.

Syntax
GetBookMarkCount()

Return Value
This function returns:

the number of bookmarks in the current document.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
Count = GetBookMarkCount()
IF Count > 0
DIM BookMarks(Count)
GetBookMarkNames(&BookMarks)
DeleteMenu(1, "&BookMarks")
AddMenu(1, "&BookMarks")
FOR I = 1 to Count
ThisBookMark = BookMarks(I)
AddMenuItem(1, "&BookMarks", ThisBookMark, "{MacFile}!Example2({ThisBookMark})", ThisBookMark)
NEXT
ELSE
Message("No bookmarks in this document!")
ENDIF
END FUNCTION

FUNCTION Example2(Bkmk)
MarkBookMark(Bkmk, FindBookMark)
PhysicalPage = GetBookMarkPage(Bkmk)
LogicalPage = PhysicalToLogical(GetBookMarkPage(Bkmk))
Message("{Bkmk} is on physical page {PhysicalPage} and logical page {LogicalPage}.")
END FUNCTION

See also:

GetBookMarkNames, MarkBookMark, GoToCmd, GoToShade

GetBookMarkNames
This function shows the names of the arrays that are to receive the bookmark names.

Syntax
GetBookMarkNames(&Array)
&Array is the names of the arrays. Note the use of indirection (&).

Return Value
This function returns:

the number of bookmark names.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
Count = GetBookMarkCount()
IF Count > 0
DIM Bookmarks(Count)
GetBookMarkNames(&Bookmarks)
DeleteMenu(1, "&Bookmarks")
AddMenu(1, "&Bookmarks")
FOR I = 1 to Count
ThisBookmark = Bookmarks(I)
AddMenuItem(1, "&Bookmarks", ThisBookmark, "{MacFile}!Example2({ThisBookmark})", ThisBookmark)
NEXT
ELSE
Message("No bookmarks in this document!")
ENDIF
END FUNCTION

FUNCTION Example2(Bkmk)
MarkBookMark(Bkmk, FindBookMark)
PhysicalPage = GetBookMarkPage(Bkmk)
LogicalPage = PhysicalToLogical(GetBookMarkPage(Bkmk))
Message("{Bkmk} is on physical page {PhysicalPage} and logical page {LogicalPage}.")
END FUNCTION

See also:

GetBookMarkCount, MarkBookMark, GoToCmd, GoToShade

GetBookMarkPage
This function finds the page number where the specified bookmark begins. This number is relative only to
the current document. If the file is one file of a master document, you must use the PhysicalToLogical
function to determine the printed page number.

Syntax
GetBookMarkPage(Name)
Name is the name of the bookmark (in the current document) whose page you want to find.

Return Value
This function returns:

the page number on which the specified bookmark begins.
-2    if the bookmark could not be found.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
Count = GetBookMarkCount()
IF Count > 0
DIM Bookmarks(Count)
GetBookMarkNames(&Bookmarks)
DeleteMenu(1, "&Bookmarks")
AddMenu(1, "&Bookmarks")
FOR I = 1 to Count
ThisBookmark = Bookmarks(I)
AddMenuItem(1, "&Bookmarks", ThisBookmark, "{MacFile}!Example2({ThisBookmark})", ThisBookmark)
NEXT
ELSE
Message("No bookmarks in this document!")
ENDIF
END FUNCTION

FUNCTION Example2(Bkmk)
MarkBookMark(Bkmk, FindBookMark)
PhysicalPage = GetBookMarkPage(Bkmk)
LogicalPage = PhysicalToLogical(GetBookMarkPage(Bkmk))
Message("{Bkmk} is on physical page {PhysicalPage} and logical page {LogicalPage}.")
END FUNCTION

See also:

GetPageNo, MarkBookMark, GoToCmd,    PhysicalToLogical, GetBookMarkCount,
GetBookMarkNames,

GetCurFontInfo
This function returns information about the current font at the insertion point.

Syntax
GetCurFontInfo(&Name, &Color, &Size, &PitchFamily)
Name is the name of the font.
Color is the color of the font.
Size is the size of the font in twips (1 inch=1440 twips).
Family is the bit value containing Pitch and Family. To extract these, use the bitwise operator OR (|).
Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Name, Color, Size, Family;
GetCurFontInfo(&Name, &Color, &Size, &Family)
Size = ((Size / 20) + 2) * 20
FontChange(Name, Family, Color, Size)
END FUNCTION

See also:

FontChange, FontFaceChange, FontPointSizeChange, FontRevert

GetCurFrameBorders
This function finds the frame border information for the selected frame.

Syntax
GetCurFrameBorders(&Width, &Height, &Top, &Left, &LeftMargin, &TopMargin, &RightMargin,
&BottomMargin)
Width is the width of the selected frame.
Height is the height of the selected frame.
Top is the vertical starting position of the frame.
Left is the horizontal starting position of the frame.
LeftMargin is the size of the left border of the frame.
TopMargin is the size of the top border of the frame.
RightMargin is the size of the right border of the frame.
BottomMargin is the size of the bottom border of the frame.
All values are returned in twips (1 inch=1440 twips).
Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Width, Height, Top, Left, LM, TM, RM, BM, Units;
WHILE not IsFrameSelected()
UserControl("Please select a frame and choose Resume.")
WEND
GetCurFrameBorders(&Width, &Height, &Top, &Left, &LM, &TM, &RM, &BM, &Units)
Message("The frame's dimensions are {Width} x {Height}.")
Message("The frame starts {Top} twips from the top of the page.")
Message("The frame starts {Left} twips from the left edge of the page.")
Message("The margins (in twips) of the frame are (T,B,L,R): {TM}, {BM}, {LM}, {RM}")
END FUNCTION

See also:

FrameModBorders, FrameLayout

GetCurFrameLines
This function finds information pertaining to the lines and shadows of the selected frame.

Syntax
GetCurFrameLines(&BorderWhere, &PosType, &ThickType, &ShadeType, &BackType, &ShadowColor,
&ShadowLeft, &ShadowTop, &ShadowRight, &ShadowBottom, Units)
BorderWhere is the lines around a frame. It is one of the following values:

1 - All
2 - Left
4 - Right
8 - Top
16 - Bottom

PosType is the position of the border around a frame. It is one of the following values:
1 - Middle
2 - Inside
3 - Outside
5 - Close to outside

You can only choose one value for the PosType parameter.
ThickType is the thickness of the border. It is one of the following values:

Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule
FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rule
DoubleTwoPoint (9) - Parallel two point rule
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

ShadeType is the line color.
BackType is the background color.
ShadowColor is the value assigned to the colors. It is one of the following values:

Red - 255
Orange - 33279
Yellow - 65535
Green - 65280
Cyan - 16776960
MedBlue - 16744448
Blue - 16727905
Purple - 16711809
Magenta - 16711935
Pink - 8388863
White - 16777215
Black - 0

The following four parameters determine the distance of the shadow from a specific side of the frame.
They are either zero or positive integers. Multiply the desired distance in inches by 1440 to determine the
value in twips. They are one of the following values or they may be a custom value:

None (0) - No shadow
Shallow (57) - Shallow shadow
Normal (100) - Normal shadow
Deep (172) - Deep shadow

ShadowLeft is the distance that the shadow is offset from the left side of the frame in twips (1 inch=1440
twips).
ShadowTop is the distance that the shadow is offset from the top of the frame in twips (1 inch=1440
twips).
ShadowRight is the distance that the shadow is offset from the right side of the frame in twips (1
inch=1440 twips).
ShadowBottom is the distance that the shadow is offset from the bottom of the frame in twips (1
inch=1440 twips).
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Note    The Use Of Indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
WHILE not IsFrameSelected()
UserControl("Please select or create frame.")
WEND
DEFSTR Border, Pos, Thick, Shade, Background, ShadowColor, SL, ST, SR, SB Units;
GetCurFrameLines(&Border, &Thick, &Shade, &Background, &ShadowColor, &SL, &ST, &SR, &SB, &Units)
TYPE("[ESC]Frame Border: {Border}[Enter]Frame Pos: {Pos}[Enter]")
TYPE("Line Thickness: {Thick}[Enter]Line Shading: {Shade}[Enter]")
TYPE("Shadow Background: {Background}[Enter]Bkgrnd Color: {ShadowColor}[Enter]")
TYPE("Shadow Left: {SL}[Enter]Shadow Right: {SR}[Enter]")
TYPE("Shadow Top: {ST}[Enter]Shadow Bottom: {SB}[Enter]")
END FUNCTION

See also:

FrameModBorders, FrameModFinish, FrameModInit, FrameModType

GetCurFrameType
This function finds information about the type of frame, the roundness of the frame, and the macro
assigned to the frame.

Syntax
GetCurFrameType(&Type, &Rounded, &MacroName)
Type is the frame type.
Rounded is the amount that the corners are rounded, in percent. (100% = circle).
MacroName is the name, if any, of the macro attached to this frame.

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Type, Rounded, MacroName;
WHILE not IsFrameSelected()
UserControl("Please select or create a frame.")
WEND
GetCurFrameType(&Type, &Rounded, &MacroName)
Message("The type number of this frame is {Type}.")
Message("The percentage of corner rounding on this frame is {Rounded}.")
IF MacroName != ""
Message("The macro attached to this frame is {MacroName}.")
ELSE
Message("There is no macro attached to this frame.")
ENDIF
END FUNCTION

See also:

FrameModType, FrameLayout

GetCurrentDir$
This function returns the current directory as seen by Ami Pro, Windows, and DOS.

Syntax
GetCurrentDir$()

Return Value
This function returns:

a string with the current working directory, including a trailing backslash.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
END FUNCTION

See also:

GetBackPath$, GetDocPath$, GetMacPath$, GetStylePath$, GetAmiDirectory$,
GetWindowsDirectory$

GetDialogField$
This function is used to retrieve the contents of a dialog box field that has been displayed in the last
DialogBox function call.
Before using this function, ensure that the user did not cancel out of the DialogBox function, or the results
of this function are invalid.

Syntax
GetDialogField$(ID)
ID is the ID Number of the field whose value is being retrieved, as defined in the resource file.

Return Value
This function returns:

up to an 80 byte string if the field is an edit box, a list box, or a combo box.
0    (FALSE) if the object was a button and was not checked or selected.
1    (TRUE) if the object was a button and was checked or selected.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")
ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0
74 46 60 40 24 1342308359 "button" "Group Box #1" 0

78 58 50 10 50 1342242825 "button" "Radio #1" 0
78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0
142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

DialogBox, FillEdit, FillList, SetDLGCallback, GetDLGItem, GetDLGItemText, SetDLGItemText

GetDlgItem
This function returns the Microsoft Windows window handle to the specified control or object.

Syntax
GetDlgItem(Handle, ID)
Handle is the handle to the dialog box, passed to a callback function.
ID is the ID number of the object for which you want to get the handle.

Return Value
This function returns:

the Microsoft Windows window handle for the specified control or object.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!ClearBox")
FOR I = 1 to 10
FillEdit(9000, I)
NEXT
Box = DialogBox(".", "ExampleBox")
END FUNCTION

FUNCTION ClearBox(hdlg, id, text)
handle = GetDlgItem(hdlg, 9000)
AppSendMessage(handle, 0x0405, 0, 0)
Message("Cleared List Box, Now I Will Re-Fill It...")
FOR I = 1 to 10
SetDlgItemText(hdlg, 9000, I)
NEXT
END FUNCTION

DIALOG ExampleBox
-2134376448 4 169 46 106 76 "" "" "Example Dialog Box"
FONT 6 "Helv"
62 3 40 14 2 1342242817 "button" "DONE" 0
62 19 40 14 50 1342242816 "button" "Re-Fill Box" 0
4 11 52 61 9000 1352728579 "listbox" "" 0
5 2 51 9 1000 1342177280 "static" "Number:" 0
END DIALOG

See also:

DialogBox, FillEdit, FillList, SetDLGCallback, GetDLGItemText, SetDLGItemText

GetDlgItemText
This function returns the contents of a dialog box object field.

Syntax
GetDlgItemText(Handle, ID)
Handle is the handle to the dialog box, passed to a CallBack function.
ID is the ID number of the desired object. If the ID is a radio button or check box, the text returns a TRUE
or FALSE condition.

Return Value
This function returns:

the contents of the specified object.
if the object is a button, this function returns a TRUE or FALSE value.
if the object is an edit box, a list box, or a combo box, this function returns a string.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!Message1")
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not find dialog box!")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
TYPE(GetDialogField$(8002))
END FUNCTION

FUNCTION Message1(hdlg, id, text)
Name = GetDlgItemText(hdlg, 8000)
Message("The contents of the first box are {Name}.")
Message("We will now fill the second box with the inverse of {Name}.")
FOR I = len(Name) to 1 step -1
Name2 = strcat$(Name2, MID$(Name, I, 1))
NEXT
SetDlgItemText(hdlg, 8002, Name2)
END FUNCTION

DIALOG ExampleBox
-2134376448 8 106 38 160 54 "" "" "Sample Dialog Box"
FONT 6 "Helv"
50 6 62 12 8000 1350631552 "edit" "" 0
4 6 44 10 1000 1342177280 "static" "Your Name:" 0
50 20 62 12 1003 1342177287 "static" "" 0
4 22 44 10 1002 1342177280 "static" "Reversed:" 0
52 22 58 8 8002 1342177280 "static" "" 0
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
100 36 56 14 50 1342242816 "button" "&Run Example..." 0
END DIALOG

See also:

DialogBox, FillEdit, FillList, SetDlgCallback, GetDlgItem, GetDialogField$, GetDlgItemText

GetDocInfo$
This function retrieves one of the document information fields from the current document.

Syntax
GetDocInfo$(Which)
Which is the desired document info field to retrieve and may be one of the following:

DDFilename (1) - File name
DDPath (2) - Path for this document
DDStylesheet (3) - Style sheet for this document
DDCreated (4) - Date document was created
DDRevised (5) - Date document was revised
DDRevisions (6) - Number of document revisions
DDDescription (7) - Document info
DDUser1 (8) - User    Defined Field 1
DDUser2 (9) - User defined Field 2
DDUser3 (10) - User defined Field 3
DDUser4 (11) - User defined Field 4
DDUser5 (12) - User defined Field 5
DDUser6 (13) - User defined Field 6
DDUser7 (14) - User defined Field 7
DDUser8 (15) - User    Defined Field 8

Return Value
This function returns:

a string containing the desired document info field.

Example
FUNCTION Example()
Message("Ready to type the contents of the Doc Info fields into the document.")
DIM Field(15)
FOR I = 1 to 15
Field(I) = GetDocInfo$(I)
NEXT
Filename = Field(1)
Path = Field(2)
Style = Field(3)
Created = Field(4)
Revised = Field(5)
Number = Field(6)
Descrip = Field(7)
TYPE("The current filename is {Filename}.[Enter]")
TYPE("The path for this document is {Path}.[Enter]")
TYPE("The style sheet for this document is {Style}.[Enter]")
TYPE("This document was created on {Created}.[Enter]")
TYPE("This document was last revised on {revised}.[Enter]")
TYPE("This document has been revised {Number} times.[Enter]")
TYPE("The document description for this document states:[Enter]{Descrip}.[Enter]")
FOR I = 1 to 8
ThisField = Field(I + 7)
IF ThisField != ""
TYPE("User defined field {I} of this document contains: {ThisField}.[Enter]")
ELSE
TYPE("User defined field {I} contains nothing.[Enter]")

ENDIF
NEXT
END FUNCTION

See also:

DocInfo, RenameDocInfoField, InsertDocInfo, InsertDocInfoField

GetDocInfoKeywords$
This function returns the    keywords field from the Doc Info dialog box.

Syntax
GetDocInfoKeywords$()

Return Value
This function returns:

the Keywords field.

Example
FUNCTION Example()
Words=GetDocInfoKeywords$()
Message ("The Keywords for this doc are:{Words}.")
END FUNCTION

See also:

GetDocInfo$

GetDocPath$
This function returns the drive and directory of the default document storage path.

Syntax
GetDocPath$()

Return Value
This function returns:

a string containing the current default document path, with a trailing backslash.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
END FUNCTION

See also:

GetBackPath$, GetCurrentDir$, GetMacPath$, GetStylePath$, SetBackPath, SetDocPath,
SetStylePath, GetAmiDirectory$, GetWindowsDirectory$

GetDocVar
This function returns the value associated with Name. Document variables are kept with the current
document. Document variables are similar to WIN.INI entries in that they have a name and a value. They
can be retrieved by name using this function or all document variables can be returned using the
GetPowerFields function.

Syntax
GetDocVar(Name)
Name is the name of the document variable to retrieve.

Return Value
This function returns:

a string containing the information in the document variable.

Example
FUNCTION Example()
val = GetDocVar("answer1")
END FUNCTION

See also:

SetDocVar

GetFmtPageStr$
This function returns the page number of a bookmark and the paragraph style that page number is
currently using.

Syntax
GetFmtPageStr$(Name)
Name is the name of the Bookmark for which to find the page number.

Return Value
This function returns:

a string containing the page on which the specified bookmark begins, including the paragraph style
the page number is using.

Example
FUNCTION Example()
Bkmk = Query$("What is the name of the bookmark to use?")
Page = GetFmtPageStr$(Bkmk)
Message("The page, with formatting that {Bkmk} is on is {Page}.")
END FUNCTION

See also:

GetBookMarkPage, GetBookMarkCount, GetBookMarkNames, MarkBookMark, GetPageNo,
GoToCmd

GetGlobalArray$
This function returns a global array element.
Global variables cannot be directly used by functions and statements. Their values must be assigned to
local variables before they can be used.

Syntax
GetGlobalArray$(Name, Index)
Name is the name or the number of the global variable to use.
Index is the element of the global array you are retrieving.

Return Value
This function returns:

the value of the global array element.

Example
FUNCTION Example()
AllocGlobalVar("Names", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("Numbers", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("YourName", 1)'Allocate space for a single element global variable.
FOR I = 1 to 5'Do the following 5 times.
SetGlobalArray("Names", I, Query$("Enter Name Number {I}"))
'Fill a global array with the return from QUERY
SetGlobalArray("Numbers", I, (100/I))'Fill a global array with a number
NEXT
NewName = Query$("What is your name?")'Query the user for his/her name
SetGlobalVar("YourName", NewName)'Set a global variable to that value
CALL Example2()'Call the following function
END FUNCTION

FUNCTION Example2()
Name = GetGlobalVar$("YourName")'Get the value of the global variable
Message("Your name is {Name}.")'Message that value in a box.
FOR I = 1 to 5'Do the following 5 times.
TheirName = GetGlobalArray$("Names", I)'Get the value of the current element from the array
TheirNumber = GetGlobalArray$("Numbers", I)'Get the value of the current element from the array
TYPE("Name #{I} is {TheirName}, and the number is {TheirNumber}.[Enter]")
'Type the values to the screen.
NEXT
FreeGlobalVar("Names")'Clear the space for the first global array
FreeGlobalVar("Numbers")'Clear the space for the second global array
FreeGlobalVar("YourName")'Clear the space for the global variable
END FUNCTION

See also:

AllocGlobalVar, FreeGlobalVar, GetGlobalVar$, SetGlobalArray, SetGlobalVar, Variables

GetGlobalVar$
This function returns a global array variable.
Global variables cannot be directly used by functions and statements. Their values must be assigned to
local variables before they can be used.

Syntax
GetGlobalVar$(Name)
Name is the name or the number of the global variable to retrieve the data from.

Return Value
This function returns:

the value of the global variable.

Example
FUNCTION Example()
AllocGlobalVar("Names", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("Numbers", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("YourName", 1)'Allocate space for a single element global variable.
FOR I = 1 to 5'Do the following 5 times.
SetGlobalArray("Names", I, Query$("Enter Name Number {I}"))
'Fill a global array with the return from QUERY
SetGlobalArray("Numbers", I, (100/I))'Fill a global array with a number
NEXT
NewName = Query$("What is your name?")'Query the user for his/her name
SetGlobalVar("YourName", NewName)'Set a global variable to that value
CALL Example2()'Call the following function
END FUNCTION

FUNCTION Example2()
Name = GetGlobalVar$("YourName")'Get the value of the global variable
Message("Your name is {Name}.")'Message that value in a box.
FOR I = 1 to 5'Do the following 5 times.
TheirName = GetGlobalArray$("Names", I)'Get the value of the current element from the array
TheirNumber = GetGlobalArray$("Numbers", I)'Get the value of the current element from the array
TYPE("Name #{I} is {TheirName}, and the number is {TheirNumber}.[Enter]")
'Type the values to the screen.
NEXT
FreeGlobalVar("Names")'Clear the space for the first global array
FreeGlobalVar("Numbers")'Clear the space for the second global array
FreeGlobalVar("YourName")'Clear the space for the global variable
END FUNCTION

See also:

AllocGlobalVar, FreeGlobalVar, GetGlobalArray$, SetGlobalArray, SetGlobalVar, Variables

GetGlobalVarCount
This function returns the total number of global variables currently allocated. It is used to dimension an
array before calling the GetGlobalVarNames function.

Syntax
GetGlobalVarCount()

Return Value
This function returns:

the total number of global variables currently allocated.

Example
FUNCTION Example()
Again:
Count = GetGlobalVarCount()
IF Count < 1
Count = 1
ELSE
DIM Globals(Count)
GetGlobalVarNames(&Globals)
FillEdit(9000, &Globals)
ENDIF
Box = DialogBox(".", "ExampleBox")
IF Box = 0
EXIT FUNCTION
ELSEIF Box = 3 AND GetDialogField$(9000) != ""
FreeGlobalVar(GetDialogField$(9000))
ELSEIF Box = 4 AND GetDialogField$(9000) != ""
Message(GetGlobalVar$(GetDialogField$(9000)))
ELSEIF Box = 5
AllocGlobalVar(Query$("Name for new global variable:"), Query$("Number of elements?"))
ELSEIF Box = 6 AND GetDialogField$(9000) != ""
SetGlobalVar(GetDialogField$(9000), Query$("What do you want in it?"))
ENDIF
GoTo Again
END FUNCTION

DIALOG ExampleBox
-2134376448 7 98 20 160 102 "" "" "Global Variables"
FONT 6 "Helv"
116 4 40 14 2 1342242817 "button" "Done" 0
116 20 40 14 3 1342242816 "button" "Free" 0
116 36 40 14 4 1342242816 "button" "Show..." 0
116 52 40 14 5 1342242816 "button" "Allocate..." 0
116 68 40 14 6 1342242816 "button" "Set..." 0
6 14 102 82 9000 1352728579 "listbox" "" 0
8 4 98 8 1000 1342177280 "static" "Currently Allocated Globals:" 0
END DIALOG

See also:

GetGlobalVarNames, AllocGlobalVar, SetGlobalVar, SetGlobalArray, GetGlobalVar$,
GetGlobalArray$

GetGlobalVarNames
This function finds the names or ID numbers of all of the currently allocated global variables.

Syntax
GetGlobalVarNames(&Array)
Array is the name of the array to place the names or ID numbers of the currently allocated global
variables.
Note the use of indirection (&).

Return Value
This function returns:

the number of global variances.

Example
FUNCTION Example()
Again:
Count = GetGlobalVarCount()
IF Count < 1
Count = 1
ELSE
DIM Globals(Count)
GetGlobalVarNames(&Globals)
FillEdit(9000, &Globals)
ENDIF
Box = DialogBox(".", "ExampleBox")
IF Box = 0
EXIT FUNCTION
ELSEIF Box = 3 AND GetDialogField$(9000) != ""
FreeGlobalVar(GetDialogField$(9000))
ELSEIF Box = 4 AND GetDialogField$(9000) != ""
Message(GetGlobalVar$(GetDialogField$(9000)))
ELSEIF Box = 5
AllocGlobalVar(Query$("Name for new global variable:"), Query$("Number of elements?"))
ELSEIF Box = 6 AND GetDialogField$(9000) != ""
SetGlobalVar(GetDialogField$(9000), Query$("What do you want in it?"))
ENDIF
GoTo Again
END FUNCTION

DIALOG ExampleBox
-2134376448 7 98 20 160 102 "" "" "Global Variables"
FONT 6 "Helv"
116 4 40 14 2 1342242817 "button" "Done" 0
116 20 40 14 3 1342242816 "button" "Free" 0
116 36 40 14 4 1342242816 "button" "Show..." 0
116 52 40 14 5 1342242816 "button" "Allocate..." 0
116 68 40 14 6 1342242816 "button" "Set..." 0
6 14 102 82 9000 1352728579 "listbox" "" 0
8 4 98 8 1000 1342177280 "static" "Currently Allocated Globals:" 0
END DIALOG

See also:

GetGlobalVarCount, AllocGlobalVar, SetGlobalVar, SetGlobalArray, GetGlobalVar$, GetGlobalArray$

GetIconPalette
This functions returns the name of the current icon set.

Syntax
GetIconPalette()

Return Value
This function returns:

a string containing the name of the icon set.

Example
FUNCTION Example()
palette = GetIconPalette()
Message("The icon palette is {palette}.")
END FUNCTION

See also:

ChangeIcons, IconBottom, IconCustomize, IconFloating, IconLeft, IconRight, IconTop, SetIconSize

GetLayoutLeftLines
This function finds the current information about any lines associated with the current page.

Syntax
GetLayoutLeftLines(&GutterShade, &GutterStyle, &BorderSides, &BorderStyle, &BorderSpace)
GutterShade is the color of the line.
GutterStyle and BorderStyle define the width and type of the line and should be one of the following:

1 - One half point wide
2 - One point wide
3 - Two points wide
4 - Four points wide
5 - Six points wide
6 - Eight points wide
7 - Twelve points wide
8 - Two 1 point lines
9 - Two 2 point lines
10 - Three lines, a 1 point over a 2 point over a 1 point
11 - One 2 point line over one 1 point line
12 - One 1 point line over one 2 point line

BorderSides is where the lines are placed on the page and can be one or more of the following:
1 - All sides
2 - Left
4 - Right
8 - Top
16 - Bottom

To extract any combination, use the bitwise operator OR (|) on this number.
The Right value is also used when you have only one page format.
BorderSpace is how close the border is to the printed page and can be one of the following:

1 - Middle
2 - Inside
3 - Outside
4 - Close to the inside
5 - Close to the outside

Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Gshade, Gstyle, Bsides, Bstyle, Bspace;
GetLayoutLeftLines(&Gshade, &Gstyle, &Bsides, &Bstyle, &Bspace)
TYPE("The color of the lines is: {Gshade}.[Enter]")
TYPE("The width of the gutter is: {Gstyle}.[Enter]")
TYPE("The lines are placed: {Bsides}.[Enter]")
TYPE("The style of the border is: {Bstyle}.[Enter]")
TYPE("The location of the lines is: {Bspace}.[Enter]")
END FUNCTION

See also:

GetLayoutPageSize, GetLayoutParameters, GetLayoutParmCnt, GetLayoutRightLines,
GetLayoutType, ModifyLayout

GetLayoutPageSize
This function finds the page size information for the current page.

Syntax
GetLayoutPageSize(&Length, &Width, &Units, &PaperType)
Length is the length of the page, in twips (1 inch=1440 twips).
Width is the width of the page, in twips.
Units is the units the current page is measured in, and can be one of the following:

1 - Inches
2 - Centimeters
3 - Picas
4 - Points.

PaperType is the pre-determined type of paper and can be one of the following:
1 - Letter
2 - Legal
3 - A3
4 - A4
5 - A5
6 - B5
7 - Custom

Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Length, Width, Units, Papertype;
GetLayoutPageSize(&Length, &Width, &Units, &Papertype)
TYPE("The length of the page is {Length} twips.[Enter]")
TYPE("The width of the page is {Width} twips.[Enter]")
SWITCH Units
CASE 1
Units = "inches"
CASE 2
Units = "centimeters"
CASE 3
Units = "picas"
CASE 4
Units = "Points"
ENDSWITCH
TYPE("The current page measurements are in {Units}.[Enter]")
TYPE("The current paper type is {Papertype} (where 1 = Letter, 2 = Legal, 3 = A3, 4 = A4, 5 = A5,
6 = B5, and 7 = Custom).[Enter]")
END FUNCTION

See also:

GetLayoutLeftLines,    GetLayoutParameters, GetLayoutParmCnt, GetLayoutRightLines,
GetLayoutType, ModifyLayout

GetLayoutParameters
This function finds the margin, columns, and tab information for the current page.

Syntax
GetLayoutParameters(Which, &Parameters)
Which is the type of page layout you want to get information about. It can be one of the following
functions:

ModLayoutRightPage
ModLayoutRightHeader
ModLayoutRightFooter
ModLayoutLeftPage
ModLayoutLeftHeader
ModLayoutLeftFooter

Parameters is an array that was dimensioned according to the return value of GetLayoutParmCnt.
Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
Cnt = GetLayoutParmCnt(ModLayoutRightPage)'Get number of parameters for ModLayoutRightPage
DIM Stuff(Cnt)'Dimension an array for that amount
GetLayoutParameters(ModLayoutRightPage, &Stuff)'Get the parameters and place in the array
length = Query$("New length of right/all headers?")'Query for new headers lengthh
width = Query$("New width of right/all headers?")'Query for new headers height.
Stuff(1) = length * 1440'Turn into twips
Stuff(2) = width * 1440'Turn into twips
ModLayoutInit(512)'Prep Ami Pro to accept Layout changes for all pages
AmiProIndirect(ModLayoutRightPage, &Stuff, Cnt)'Apply changes to specified function.
ModLayoutFinish()'Tell Ami Pro to accept the specified changes
END FUNCTION

See also:

GetLayoutLeftLines, GetLayoutPageSize,    GetLayoutParmCnt, GetLayoutRightLines,
GetLayoutType, ModifyLayout

GetLayoutParmCnt
This function returns the number of parameters to expect from the function GetLayoutParameters. It is
used to dimension an array for that function.

Syntax
GetLayoutParmCnt(Which)
Which is the type of page layout you want to get information about. It can be one of the following
functions:

ModLayoutRightPage
ModLayoutRightHeader
ModLayoutRightFooter
ModLayoutLeftPage
ModLayoutLeftHeader
ModLayoutLeftFooter

Return Value
This function returns:

the number of parameters for the specified function.

Example
FUNCTION Example()
Cnt = GetLayoutParmCnt(ModLayoutRightPage)'Get number of parameters for ModLayoutRightPage
DIM Stuff(Cnt)'Dimension an array for that amount
GetLayoutParameters(ModLayoutRightPage, &Stuff)'Get the parameters and place in the array
length = Query$("New length of right/all headers?")'Query for new headers lengthh
width = Query$("New width of right/all headers?")'Query for new headers height.
Stuff(1) = length * 1440'Turn into twips
Stuff(2) = width * 1440'Turn into twips
ModLayoutInit(512)'Prep Ami Pro to accept Layout changes for all pages
AmiProIndirect(ModLayoutRightPage, &Stuff, Cnt)'Apply changes to specified function.
ModLayoutFinish()'Tell Ami Pro to accept the specified changes
END FUNCTION

See also:

GetLayoutLeftLines, GetLayoutPageSize, GetLayoutParameters,    GetLayoutRightLines,
GetLayoutType, ModifyLayout

GetLayoutRightLines
This function finds the current information about any lines associated with the current page.

Syntax
GetLayoutRightLines(&GutterShade, &GutterStyle, &BorderSides, &BorderStyle, &BorderSpace)
GutterShade is the color of the line.
GutterStyle and BorderStyle define the width and type of the line and should be one of the following:

1 - One half point wide
2 - One point wide
3 - Two points wide
4 - Four points wide
5 - Six points wide
6 - Eight points wide
7 - Twelve points wide
8 - Two 1 point lines
9 - Two 2 point lines
10 - Three lines, a 1 point over a 2 point over a 1 point
11 - One 2 point line over one 1 point line
12 - One 1 point line over one 2 point line

BorderSides is where the lines are placed on the page and can be one or more of the following:
1 - All sides
2 - Left
4 - Right
8 - Top
16 - Bottom

To extract any combination, use the bitwise operator OR (|) on this number.
BorderSpace is how close the border is to the printed page and can be one of the following:

1 - Middle
2 - Inside
3 - Outside
4 - Close to the inside
5 - Close to the outside

Note the use of indirection (&).

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Gshade, Gstyle, Bsides, Bstyle, Bspace;
GetLayoutRightLines(&Gshade, &Gstyle, &Bsides, &Bstyle, &Bspace)
TYPE("The color of the lines is: {Gshade}.[Enter]")
TYPE("The width of the gutter is: {Gstyle}.[Enter]")
IF 1 & Bsides Sides = "All" ENDIF
IF 2 & Bsides IF Sides = "" Sides = "Left" ELSE Sides = strcat$(Sides, "and Left") ENDIF ENDIF
IF 4 & Bsides IF Sides = "" Sides = "Right" ELSE Sides = strcat$(Sides, "and Right") ENDIF ENDIF
IF 8 & Bsides IF Sides = "" Sides = "Top" ELSE Sides = strcat$(Sides, "and Top") ENDIF ENDIF
IF 16 & Bsides IF Sides = "" Sides = "Bottom" ELSE Sides = strcat$(Sides, "and Bottom") ENDIF
ENDIF

TYPE("The lines are placed: {Sides}.[Enter]")
TYPE("The style of the border is: {Bstyle}.[Enter]")
TYPE("The location of the lines is: {Bspace} (where 1=Middle, 2=Inside, 3=Outside, 4=Close to
inside, and 5=Close to outside).[Enter]")
END FUNCTION

See also:

GetLayoutLeftLines, GetLayoutPageSize, GetLayoutParameters, GetLayoutParmCnt,   
GetLayoutType, ModifyLayout

GetLayoutType
This function returns the type of    page layout for the current page.

Syntax
GetLayoutType()

Return Value
This function returns:

a bit number containing the values of the All Pages bit and the Mirror Image bit and should be one of
the following:
0 - Neither
512 - All    Pages
1024 - Mirror    Image
1536 - Both

To extract the individual bits, use the bitwise operator OR (|).

Example
FUNCTION Example()
Type = GetLayoutType()
IF Type & 0
Type = "Neither all pages nor mirrored"
ELSEIF Type & 512
Type = "All Pages"
ELSEIF Type & 1024
Type = "Mirror Image"
ELSEIF Type & 1536
Type = "Both all pages and mirror image"
ENDIF
Message("The current layout type is {Type}.")
END FUNCTION

See also:

GetLayoutLeftLines, GetLayoutPageSize, GetLayoutParameters, GetLayoutParmCnt,
GetLayoutRightLines, ModifyLayout

GetMacPath$
This function returns the drive and directory of the default macro directory path.

Syntax
GetMacPath$()

Return Value
This function returns:

a string with the drive and directory of the default macro directory path.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
END FUNCTION

See also:

GetBackPath$, GetCurrentDir$, GetDocPath$, GetStylePath$, Determining a Macro's Location

GetMarkText$
This function gets the name of a bookmark, a merge field, contents of a note, or a power field. Before
using this function, the insertion point should be at the location of a merge field, a bookmark, or a power
field.
You should use the GoToCmd function for bookmarks, merge fields, notes, and fields. Use the FieldNext
function to set the insertion point.

Syntax
GetMarkText$()

Return Value
This function returns:

the name of the bookmark, merge field, or power field at the insertion point.
the null string ("") if the insertion point was not on one of these marks.

Example
FUNCTION Example()
MarkBookMark("Example", AddBookmark)
TYPE("[CtrlEND]")
PageNo = GetPageNo()
MarkBookMark("Example", FindBookMark)
Text = GetMarkText$()
MarkBookMark("Example", DeleteBookMark)
IF Text != ""
Message("Your bookmark was named ""{Text}"", and there are {PageNo} pages in this document.")
ENDIF
END FUNCTION

See also:

GoToCmd, GoToShade, GetTextBeforeCursor$,
FieldAdd, FieldNext, MarkBookMark

GetMasterFiles
This function fills an array with the names of any master file documents associated with the current
document. The array may be dimensioned using the GetMasterFilesCount function.

Syntax
GetMasterFiles(&Array)
Array is the name of the array in which to place the names of the master files. Note the use of indirection
(&).

Return Value
This function returns:

the number of files.

Example
FUNCTION Example()
Count = GetMasterFilesCount()
IF Count > 1
DIM Files(Count)
GetMasterFiles(&Files)
FOR I = 1 to Count
Message(Files(I))
NEXT
ELSE
Message("No master files!")
ENDIF
END FUNCTION

See also:

GetMasterFilesCount, SetMasterFiles, AmiProIndirect

GetMasterFilesCount
This function returns the total number of master files associated with the current file. It is useful in
dimensioning an array to hold the names of all of the master files.

Syntax
GetMasterFilesCount()

Return Value
This function returns:

the number of master files associated with the current document.

Example
FUNCTION Example()
Count = GetMasterFilesCount()
IF Count > 1
DIM Files(Count)
GetMasterFiles(&Files)
FOR I = 1 to Count
Message(Files(I))
NEXT
ELSE
Message("No master files!")
ENDIF
END FUNCTION

See also:

GetMasterFiles, SetMasterFiles, AmiProIndirect

GetMode
This function determines whether the program is in Layout Mode, Outline Mode, or Draft Mode.

Syntax
GetMode()

Return Value
This function returns:

a number representing the current view mode and may be one of the following:
Layout (1) - Layout Mode
Draft (16) - Draft Mode
Outline (48) - Outline Mode

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

GetViewLevel, DraftMode, LayoutMode, OutlineMode, FullPageView, CustomView, StandardView,
EnlargedView

GetOpenFileCount
This function finds the total number of Multiple Document Interface (MDI) documents currently open. It is
useful in dimensioning an array to hold the names of these files.

Syntax
GetOpenFileCount()

Return Value
This function returns:

the total number of documents this instance of Ami Pro currently has open.

Example
FUNCTION Example()
Count = GetOpenFileCount()
IF Count > 0
DIM Files(Count)
GetOpenFileNames(&Files)
FOR I = 1 to Count
Message(Files(I))
NEXT
ELSE
Message("No open files!")
ENDIF
END FUNCTION

See also:

GetOpenFileNames, GetOpenFileName$, FileClose, FileOpen, Save, SaveAs

GetOpenFileName$
This function retrieves the full path of the current document. If more than one document is open, the name
of the file with the focus is returned.

Syntax
GetOpenFileName$()

Return Value
This function returns:

the path of the open file.
 The null string ("") if the current file is "Untitled".

Example
FUNCTION Example()
DEFSTR Char;
OpenFile = GetOpenFileName$()
I = len(OpenFile)
WHILE "\" != Assign(&Char, MID$(OpenFile, I, 1))
I = I - 1
WEND
FileName = Right$(OpenFile, (len(OpenFile) - I))
Message("The current file is {FileName}.")
END FUNCTION

See also:

GetCurrentDir$, GetDocInfo$, GetDocPath$, GetMacPath$, SetDocPath

GetOpenFileNames
This function fills an array with the names of all open Ami Pro documents. The array may be dimensioned
using the GetOpenFileCount function.

Syntax
GetOpenFileNames(&Array)
&Array is the name of the array in which to place the list of open files.
Untitled files return the empty string ("").

Return Value
This function returns:

1    (TRUE) if the array was filled.
0    (FALSE) if the array was not filled.

Example
FUNCTION Example()
Count = GetOpenFileCount()
IF Count > 0
DIM Files(Count)
GetOpenFileNames(&Files)
FOR I = 1 to Count
Message(Files(I))
NEXT
ELSE
Message("No open files!")
ENDIF
END FUNCTION

See also:

 GetOpenFileCount, FileClose, FileOpen, Save, SaveAs

GetPageNo
This function retrieves the page number of the displayed page of the current document.

Syntax
GetPageNo()

Return Value
This function returns:

the number of the displayed page of the current document.
0    if you are in Draft or Outline Mode.

Example
FUNCTION Example()
MarkBookMark("Example", AddBookMark)
TYPE("[CtrlEND]")
PageNo = GetPageNo()
MarkBookMark("Example", FindBookMark)
Text = GetMarkText$()
MarkBookMark("Example", DeleteBookMark)
IF Text != ""
Message("Your bookmark was named ""{Text}"", and there are {PageNo} pages in this document.")
ENDIF
END FUNCTION

See also:

GetMode, AtEOF, GetFmtPageStr$, GetBookMarkPage

GetPowerFieldCount
This function returns the total number of power fields of the power field type requested.

Syntax
GetPowerFieldCount(Type)
Type is the type of power field and can be one of the following:

(0) - All the power fields (except document variables)
(3) - General fields
(4) - Sequence power fields
(5) - Set power fields
(6) - Button power fields
(7) - PrintEscape power fields
(8) - Index mark power fields
(9) - User power fields
(10) - Document variables
(11) - TOC power fields
(12) - MergeField power fields

Return Value
This function returns:

the number of power fields of the type requested.

Example
FUNCTION Example()
Count = GetPowerFieldCount(9)
DIM Power(Count)
GetPowerFields(9, &Power)
FOR i = 1 to Count
pfid = strfield$(Power(i), 1, ",")
pftype = strfield$(Power(i), 2, ",")
pageno = GetPowerFieldPage(pfid, pftype)
NEXT
END FUNCTION

See also:

GetPowerFieldPage, GetPowerFields, GoToPowerField

GetPowerFieldPage
This function returns the page number of the specified power field. The ID and type may be found using
the GetPowerFields function.

Syntax
GetPowerFieldPage(ID, Type)
ID is the number assigned to that specific power field.
Type is the type of power field that is located and can be one of the following:

(0) - All the power fields (except document variables)
(3) - General fields
(4) - Sequence power fields
(5) - Set power fields
(6) - Button power fields
(7) - PrintEscape power fields
(8) - Index mark power fields
(9) - User power fields
(10) - Document variables
(11) - TOC power fields
(12) - MergeField power fields

Return Value
This function returns:

the page number of the specified power field.

Example
FUNCTION Example()
Count = GetPowerFieldCount(9)
DIM Power(Count)
GetPowerFields(9, &Power)
FOR i = 1 to Count
pfid = strfield$(Power(i), 1, ",")
pftype = strfield$(Power(i), 2, ",")
pageno = GetPowerFieldPage(pfid, pftype)
NEXT
END FUNCTION

See also:

GetPowerFieldCount, GetPowerFields, GoToPowerField

GetPowerFields
This function fills an array with any power fields located in the current document. The array may be
dimensioned using the GetPowerFieldCount function.

Syntax
GetPowerFields(Type, &Array)
Type is the type of power field located and can be one of the following:

(0) - All the power fields (except document variables)
(3) - General fields
(4) - Sequence power fields
(5) - Set power fields
(6) - Button power fields
(7) - PrintEscape power fields
(8) - Index mark power fields
(9) - User power fields
(10) - Document variables
(11) - TOC power fields
(12) - MergeField power fields

Array is the name of the array in which to place the power fields. The format returned in the array is "ID,
type, power field." Document variables are only returned when type 10 is specified. The format for
document variables are "name=value".

Return Value
This function returns:

The number of power fields returned in the array.

Example
FUNCTION Example()
Count = GetPowerFieldCount(9)
DIM Power(Count)
GetPowerFields(9, &Power)
FOR i = 1 to Count
pfid = strfield$(Power(i), 1, ",")
pftype = strfield$(Power(i), 2, ",")
pageno = GetPowerFieldPage(pfid, pftype)
NEXT
END FUNCTION

See also:

GetPowerFieldCount, GetPowerFieldPage

GetProfileString$
This function retrieves an entry from a text file such as the Windows WIN.INI file or the AMIPRO.INI file.

Syntax
GetProfileString$(Section, Key[, FileName])
Section is the section in the file to look in. If this is the empty string (""), the [Ami Pro] section is searched.
Key is the desired entry in the file. If this is zero (0), or a null string (""), all the keys from the [Ami Pro]
section are returned separated with a tilde (~).
FileName is the optional file to look in. If this parameter is omitted, the Windows' WIN.INI file is used.

Return Value
This function returns:

a string with the contents of the entry.
the null string ("") if the entry doesn't exist.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")
ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0
74 46 60 40 24 1342308359 "button" "Group Box #1" 0
78 58 50 10 50 1342242825 "button" "Radio #1" 0

78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0
142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

GetMacPath$, WriteProfileString, Determining a Macro's Location, GetAmiDirectory$,
GetWindowsDirectory$

GetRunningMacroFile$
This function returns the file name, including full path, of the currently running macro. This function is
useful in allowing a function to call another function in the same file, even if the file name has been
changed.

Syntax
GetRunningMacroFile$()

Return Value
This function returns:

a string containing the full path and file name of the currently running macro.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
MacName = GetRunningMacroName$()
Message("This macro file is {MacFile}.")
Message("This function is {MacName}.")
END FUNCTION

See also:

Determining a Macro's Location, GetMacPath$, GetRunningMacroName$

GetRunningMacroName$
This function returns the name of the currently running function.

Syntax
GetRunningMacroName$()

Return Value
This function returns:

a string containing the name of the currently running macro function.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
MacName = GetRunningMacroName$()
Message("This macro file is {MacFile}.")
Message("This function is {MacName}.")
END FUNCTION

See also:

Determining a Macro's Location, GetMacPath$, GetRunningMacroFile$

GetSpecialEffects$
This function returns the text located at the beginning of a paragraph style. The text is the text that is
specified in Style/Modify Style/Bullets & numbers.

Syntax
GetSpecialEffects$()

Return Value
This function returns:

the text that is located at the beginning of the paragraph style.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the special effects could not be retrieved.

Example
FUNCTION Example()
Effects = GetSpecialEffects$()
IF Effects = ""
Message("There is no text in special effects on this paragraph.")
ELSE
Message("{Effects} is appended to this style.")
ENDIF
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable

GetStyleCount
This function returns the number of styles in the current document.

Syntax
GetStyleCount()

Return Value
This function returns:

the number of styles in the current document.

Example
FUNCTION Example()
Count = GetStyleCount()
DIM Styles(Count)
GetStyleNames(&Styles)
END FUNCTION

See also:

GetStyleNames

GetStyleName$
This function determines the name of the paragraph style assigned to the current paragraph.

Syntax
GetStyleName$()

Return Value
This function returns:

a string with the name of the paragraph style.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

ModifyStyle, SelectStyle, SetStyle, ShowStylesBox, ToggleStylesBox

GetStyleNames
This function fills an array with the names of the styles in the current document. The array may be
dimensioned using the GetStyleCount function.

Syntax
GetStyleNames(&Array)
Array is the name of the array in which to place the names of the styles.

Return Value
This function returns:

the style names.

Example
FUNCTION Example()
Count = GetStyleCount()
DIM Styles(Count)
GetStyleNames(&Styles)
END FUNCTION

See also:

GetStyleCount

GetStylePath$
This function returns the drive and directory of the default style sheet path.

Syntax
GetStylePath$()

Return Value
This function returns:

a string containing the current default paragraph style sheet path.

Example
FUNCTION Example()
AmiDir = GetAmiDirectory$()
WinDir = GetWindowsDirectory$()
CurDir = GetCurrentDir$()
DocPath = GetDocPath$()
StylePath = GetStylePath$()
MacPath = GetMacPath$()
Message("Ami Pro is in {AmiDir}.")
Message("Windows is in {WinDir}.")
Message("DOS reports the current directory is {CurDir}.")
Message("Ami Pro's default doc path is {DocPath}.")
Message("Ami Pro's default macro path is {MacPath}.")
Message("Ami Pro's default style path is {StylePath}.")
END FUNCTION

See also:

GetBackPath$, GetDocPath$, GetMacPath$, SetBackPath, SetDocPath, SetStylePath

GetTextBeforeCursor$
This function retrieves the text between the beginning of the paragraph the insertion point is in and the
insertion point.

Syntax
GetTextBeforeCursor$()

Return Value
This function returns:

a string with the contents of the paragraph prior to the insertion point.

Example
FUNCTION Example()
Text = GetTextBeforeCursor$()
Length = len(Text)
Message("You are {Length} characters into the current paragraph.")
END FUNCTION

See also:

CurChar$, CurShade$, CurWord$, CursorPosition$, GetMarkText$, TYPE

GetTime
This function determines the amount of time that has passed since Windows was started.

Syntax
GetTime()

Return Value
This function returns:

the number of milliseconds since Windows was started.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
CurrentTime = GetTime()
Message("The current counter is at {CurrentTime}.")
RunLater("{MacFile}!Example2()", 0.10)
END FUNCTION

FUNCTION Example2()
Message("It is now 10 seconds after you pushed ""OK"" in the message box.")
END FUNCTION

See also:

Pause, RunLater, Now, FormatDate$, FormatTime$

GetViewLevel
This function returns the current Layout Mode View level.

Syntax
GetViewLevel()

Return Value
This function returns:

a number representing the current view level:
FullPage (201) - Full Page View
Custom (202) - Custom View
Standard (203) - Standard View
Enlarged (204) - Enlarged View

Example
FUNCTION Example()
Level = GetViewLevel()
SWITCH Level
CASE 201
Level = "Full Page View"
CASE 202
Level = "Custom View"
CASE 203
Level = "Standard View"
CASE 204
Level = "Enlarged View"
ENDSWITCH
Message("The current view level is at {Level}.")
END FUNCTION

See also:

GetMode, DraftMode, LayoutMode, FullPageView, CustomView, StandardView, EnlargedView,
FacingView

GetViewPrefLevel
This function gets the current view level from the View/View Preferences function. It is used to change the
view level in the ViewPreferences function.
This function must be used with the GetViewPrefOpts function.

Syntax
GetViewPrefLevel()

Return Value
This function returns:

the value of the view level which is a number from 10-400.

Example
FUNCTION TurnOffNotes()
Viewopts=GetViewPrefOpts() ' get the View Preferences options
Viewlevel=GetViewPrefLevel() ' get the View Preferences level
IF(Viewopts & 2048) ' notes turned on?
Viewopts=Viewopts - 2048 ' turn notes display off in options
ENDIF
ViewPreferences(Viewopts, Viewlevel) ' set new options
END FUNCTION

See also:

GetViewPrefOpts

GetViewPrefOpts
This function retrieves the current Options parameter from the View Preferences function. This function is
required to change the View Preferences in a macro when you need to know the current options to modify
that value.
You must get the view options as well as the view level using the GetViewPrefLevel function to change
View Preferences.

Syntax
GetViewPrefOpts()

Return Value
This function returns:

the value of the View Preferences option.

Example
FUNCTION TurnOffNotes()
Viewopts=GetViewPrefOpts() ' get the View Preferences options
Viewlevel=GetViewPrefLevel() ' get the View Preferences level
IF(Viewopts & 2048) ' notes turned on?
Viewopts=Viewopts - 2048 ' turn notes display off in options
ENDIF
ViewPreferences(Viewopts, Viewlevel) ' set new options
END FUNCTION

See also:

GetViewPrefLevel

GetWindowsDirectory$
This function returns the Windows directory.

Syntax
GetWindowsDirectory$()

Return Value
This function returns:

the Windows directory.

Example
FUNCTION Example()
ASCIIOptions(PCASCII)
WinDir = GetWindowsDirectory$()
FileOpen("{WinDir}PRINTERS.TXT", 16, "ASCII")
END FUNCTION

See also:

GetAmiDirectory$, GetDocPath$, GetStylePath$, GetMacPath$

Glossary
This function inserts the named glossary item into the document at the insertion point. Choosing this
function is equivalent to choosing Edit/Insert/Glossary Record. To set the glossary file before inserting
items, use the GlossSet function.

Syntax
Glossary(Item)
Item is the name of the glossary item to insert.
To display the Glossary dialog box and allow the user to select the name of the glossary item to insert:
Glossary

Return Value
This function returns:

1    (TRUE) if a glossary item was inserted.
0    (UserCancel) if the user canceled the menu function.
-2    (GeneralFailure) if the item could not be inserted or if the item was not found.

Example
FUNCTION Example()
Gloss = Query$("What glossary file do you want to use?")
GlossSet(Gloss)
Glossary
END FUNCTION

See also:

GlossSet, GlossaryAdd

GlossaryAdd
This function adds the currently selected text to the current glossary file. It is the equivalent to choosing
Edit/Mark Text/Glossary.

Syntax
GlossaryAdd(Item, FileName, Flag)
Item is the glossary item name to insert into the glossary data file.
FileName is the name of the glossary file or NewWave object in which to insert the new item.
Flag is a number that defines whether the Filename parameter is a file name or a NewWave object name.

FALSE (0) - Filename parameter is a file name
TRUE (1) - Filename parameter is an object name

To display the Mark Glossary dialog box and allow the user to select the item name and glossary data file:
GlossaryAdd

Return Value
This function returns:

1    (TRUE) if the glossary record was inserted.
0    (NoAction) if no action was taken.
-2    (General Failure) if the glossary record could not be inserted, if the data file is not an Ami Pro file,
or if the data file is encrypted.

Example
FUNCTION Example()
WHILE "" = CurShade$()
UserControl("Select the text to place in the glossary, then choose Resume...")
WEND
Name = Query$("What do you want to name this record?")
FileName = Query$("What glossary file do you want to use?")
GlossaryAdd(Name, Filename)
END FUNCTION

See also:

GlossSet, Glossary

GlossSet
This function selects the named glossary file to use as the source file for insertion of glossary items.
Choosing this function is equivalent to choosing Edit/Insert/Glossary Record/Data File.

Syntax
GlossSet(FileName)
FileName is the name of the glossary file from which to select records.
To display the Glossary dialog box and allow the user to select the name of the glossary file: Glossary

Return Value
This function returns:

1    (TRUE) if a glossary file was selected.
-2    (GeneralFailure) if the file could not be selected or if the file was not found.

Example
FUNCTION Example()
Gloss = Query$("What glossary file do you want to use?")
GlossSet(Gloss)
Glossary
END FUNCTION

See also:

Glossary, GlossaryAdd

GoToAgain
This function goes to the next location of an item after using the GoToCmd function. Choosing this
function is equivalent to choosing Edit/Go To and selecting Go To ^H.

Syntax
GoToAgain()

Return Value
This function returns:

1    (TRUE) if the item was located.
0    (UserCancel) if the user canceled the function.
-3    if the input was invalid.
-7    if the item to Go To could not be found.
-2    if any other error.

See also:

GoToCmd

GoToCmd
This function allows the user to go to a page or a mark. Choosing this function is equivalent to choosing
Edit/Go To.

Syntax
GoToCmd(Which, Page, Name)
Which is a flag that determines what type of object to Go To, and can be one of the following:

GoPage (1) - Goes to the page number specified in the Page    Parameter.
GoFirst (2) - Goes to the first page of the document.
GoLast (3) - Goes to the last page of the document.
GoMark (4) - Goes to the mark specified in the MarkName parameter.

To go to a specific page, set the Which parameter to 1, set the Page parameter to the page number you
want to go to, and set the MarkName parameter to 0.
Parameters not necessary for a specific function may be set to 0. However, Keystroke Record may use
other numbers. These numbers are ignored, but must be present.
To go to the first or last page, set the Which parameter to either 2 or 3, and set the Page parameter and
the MarkName parameter to 0.
To go to a mark, set the Which parameter to 4, set the Page parameter to 0, and set the MarkName
parameter to the value for the mark you want to go to.
Page is the page number to go to if you want to go to a page number.
Name is the type of mark to go to if you want to go to a mark. It can be one of the following:

GoFrame (1) - Go to the next frame
GoHeader (2) - Go to the header area
GoFooter (3) - Go to the footer area
GoField (4) - Go to the next field
GoTab (5) - Go to the tab ruler
GoRuler (6) - Go to the next tab ruler mark in the text
GoFootnote (7) - Go to the next footnote mark
GoFoottext (8) - Go to the text of the footnote
GoPageBreak (9) - Go to the next hard page break
GoNote (10) - Go to the next note
GoLayout (11) - Go to the next layout change
GoBookmark (12) - Go to the next Bookmark
GoHF (13) - Go to the next floating Header/Footer mark

To display the Go To dialog box and allow the user to select the parameters for the Go To function:
GoToCmd

Return Value
This function returns:

1    (TRUE) if the desired location was reached.
0    (UserCancel) if the user canceled the function.
-3    if the desired mark could not be found (for example, going to a frame in Draft Mode).
-7    if the desired location could not be found.
-2    if any other error.

Example
FUNCTION Example()
WHILE not AtEOF()

GoToCmd(4, 0, GoField)
GoToShade(4, 0, GoField)
TYPE("[DEL]")
WEND
END FUNCTION

See also:

GoToShade, GetMarkText$, Replace, GoToAgain

GoToPowerField
This function moves the insertion point to the specified power field. The ID and type may be found using
the GetPowerFields function.

Syntax
GoToPowerField(ID, Type)
ID is the number assigned to that specific power field.
Type is the type of power field that is located and can be one of the following:

(0) - All the power fields
(3) - General fields
(4) - Sequence power fields
(5) - Set power fields
(6) - Button power fields
(7) - PrintEscape power fields
(8) - Index mark power fields
(9) - User power fields
(11) - TOC power fields
(12) - MergeField power fields

Return Value
This function returns:

1 (TRUE) if the power field is located.
0 (FALSE) if the power field is not located.

Example
FUNCTION Example()
Count = GetPowerFieldCount(9)
DIM Power(Count)
GetPowerFields(9, &Power)
FOR i = 1 to Count
pfid = strfield$(Power(i), 1, ",")
pftype = strfield$(Power(i), 2, ",")
pageno = GetPowerFieldPage(pfid, pftype)
NEXT
GoToPowerField(pfid, pftype)
END FUNCTION

See also:

GetPowerFieldCount, GetPowerFieldPage, GetPowerFields

GoToShade
This function allows the user to go to a mark. The difference between this function and the GoToCmd
function is that when this function is executed, the text between the insertion point and location gone to is
shaded.

Syntax
GoToShade(4, 0, Name)
Name is the type of mark to go to if you want to go to a mark. It may be one of the following:

GoField (4) - Go to the next field
GoRuler (6) - Go to the next tab ruler mark in the text
GoFootnote (7) - Go to the next footnote mark
GoPageBreak (9) - Go to the next hard page break
GoNote (10) - Go to the next note
GoLayout (11) - Go to the next layout change
GoBookmark (12) - Go to the next Bookmark
GoHF (13) - Go to the next floating Header/Footer mark

Return Value
This function returns:

1    (TRUE) if the desired location was reached.
-3    if the input is invalid.
-7    if the item could not be found.
-2    if any other error.

Example
FUNCTION Example()
WHILE not AtEOF()
GoToCmd(4, 0, GoField)
GoToShade(4, 0, GoField)
TYPE("[DEL]")
WEND
END FUNCTION

See also:

GoToCmd, GetMarkText$

GraphicsScaling
This function scales a graphic. Choosing this function is equivalent to choosing Frame/Graphics Scaling.

Syntax
GraphicsScaling(Options, Percentage, Units, Height, Width, Rotate)
Options is a bit number with scaling options, and should be set to one of the following:

OriginalSize (1) - Display as original size
FitInFrame (2) - Size the graph to fit in the frame
PercentSize (4) - Use the Percentage parameter to size the graph
CustomSize (8) - Use the    height and    width parameters to determine the graph's size
MaintainAspect (16) - Maintain the aspect ratio of the graph

One of the four sizing parameters must be used. If the OriginalSize option is used, all other parameters
are ignored. If the FitInFrame parameter is used, the MaintainAspect option can also be used and the
other parameters are ignored. If the PercentSize option is used, the Percentage parameter is used to
determine the size of the graph and all other parameters are ignored. If the CustomSize option is used,
the Height and Width options are used to determine the size of the graph.
The values may be combined to determine the Options parameter.
Percentage is the percentage of original size to display the graph if that is the option.
Units is the units of measurement to use when using the dialog box to set the height and width and can
be one of the following:

Inches (1) - Display measurements in inches
CM (2) - Display measurements in centimeters
Picas (3) - Display measurements in picas
Points (4) - Display measurements in points

Height is the height of the graph in the selected units.
Width is the width of the graph in the selected units.
Rotate is the amount to rotate the graph and must be between 0 and 360 degrees to indicate the amount
the graph should be rotated.
To display the Graphics Scaling dialog box and allow the user to select the options for graphics scaling:
GraphicsScaling

Return Value
This function returns:

1.

Example
FUNCTION Example()
LayoutMode()
WHILE not IsFrameSelected()
UserControl("Select a frame and choose Resume...")
WEND
GraphicsScaling
END FUNCTION

See also:

AddFrame, AddFrameDLG, ImportPicture, DrawingMode, ChartingMode, ImageProcessing

GrayMenuItem
This function grays or ungrays a menu item. When a menu item is grayed, it appears on the menu, but
the user cannot select it. Use this function to indicate that the function is currently unavailable.

Syntax
GrayMenuItem(BarID, MenuName, Item, State)
BarID is the identification number of the menu bar returned from the AddBar function. To use the Ami Pro
menu bar, use 1.
MenuName is the name of the menu where the item to be grayed is located. The name must include any
ampersand (&) characters used in the menu name.
Item is the name of the menu item to be grayed, and must match the actual menu item, including any
ampersand (&) characters.
State is either 1 (TRUE) to gray the menu item, or 0 (FALSE) to ungray the menu item.

Return Value
This function returns:

1    (TRUE) if the item was successfully grayed or ungrayed.
0    (FALSE) if the item could not be grayed/ungrayed, or if an invalid BarID, MenuName, or ItemName
was used.

Example
FUNCTION Example()
AddMenuItem(1, "&File", "Grayed Menu Item", "")
GrayMenuItem(1, "&File", "Grayed Menu Item", 1)
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenu, DeleteMenuItem, RenameMenuItem, ShowBar

GroupFrames
This function groups the selected frames. Choosing this function is equivalent to choosing Frame/Group.
If the frames were already grouped, this function ungroups them.

Syntax
GroupFrames()

Return Value
This function returns:

1.

Example
FUNCTION Example()
LayoutMode()
WHILE not IsFrameSelected()
UserControl("Select the frames to group, then choose Resume...")
WEND
GroupFrames()
END FUNCTION

See also:

AddFrame, AddFrameDLG

HeaderFooter
This function goes to the header/footer or displays the Floating Header/Footer dialog box. Choosing this
function is equivalent to choosing Page/Header/Footer.

Syntax
HeaderFooter(Function)
Function is a flag that can be one of the following:

(1) - Go to the header
(2) - Go to the footer
(3) - Display Floating Header/Footer dialog box

To display the Headers & Footers dialog box: HeaderFooter

Return Value
This function returns:

0    (UserCancel) if the user cancels the function.
1    (TRUE) if the header or footer is found or the Floating Header/Footer dialog box displays.
-6    (NoMemory) if the function fails because of insufficient memory.

Example
FUNCTION Example()
HeaderFooter(1) ' Go to the header
Type("This is a test.")
END FUNCTION

See also:

FloatingHeader, GoToCmd, ModifyLayout, PageNumber

Heading
This function assigns the selected rows of a table to be the heading rows for each page of a table. This
function toggles on and off. Choosing this function is equivalent to choosing Table/Headings.

Syntax
Heading()

Return Value
This function returns:

1    (TRUE) if the rows were successfully set to be the heading for each page.
-2    (GeneralFailure) if the rows were not set.

Example
FUNCTION Example()
Heading()
END FUNCTION

See also:

Tables, TableLayout, InsertColumnRow, DeleteColumnRow, ConnectCells, DeleteEntireTable

Help
This function displays the online Help for Ami Pro. Choosing this function is equivalent to choosing
Help/Contents, but it does not select a Help topic automatically. Because Help displays in a window other
than the regular Ami Pro window, further macro functions which cause a repainting of the Ami Pro window
cause the Help window to be replaced by the Ami Pro window.
If this function is used, it should be the last function used in the macro.

Syntax
Help()

Return Value
This    Function Returns:

1    (TRUE) if the Help window was displayed.
-2    (GeneralFailure) if the Help window could not be displayed for some other reason.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
Help()
END FUNCTION

See also:

About, EnhancementProducts, HowDoIHelp, KeyboardHelp, MacroHelp, UpgradeHelp, UsingHelp

HideIconBar
This function hides the set of SmartIcons. Choosing this function is equivalent to choosing View/Hide
SmartIcons.

Syntax
HideIconBar()

Return Value
This function returns:

1    (TRUE) if the icon bar was hidden.
0    (NoAction) if no action was taken because the icon bar was already hidden.

Example
FUNCTION Example()
HideIconBar()
END FUNCTION

See also:

ViewPreferences, ShowIconBar, ToggleIconBar, SetIconPath, SetIconSize, GetIconPalette,
IconCustomize, ChangeIcons

HideStylesBox
This function removes the Styles Box from the screen. Choosing this function is equivalent to choosing
View/Hide Styles Box.

Syntax
HideStylesBox()

Return Value
This function returns:

1    (TRUE) if the Styles Box is hidden.
0    (NoAction) if the Styles Box was already hidden.

Example
FUNCTION Example()
HideStylesBox()
END FUNCTION

See also:

ViewPreferences, ShowStylesBox, ToggleStylesBox

HideTabRuler
This function removes the tab ruler from the top of the screen. Choosing this function is equivalent to
choosing View/Hide Ruler.

Syntax
HideTabRuler()

Return Value
This function returns:

1    (TRUE) if the tab ruler was hidden.
0    (NoAction) if no action was taken because the tab ruler was already hidden.

Example
FUNCTION Example()
HideTabRuler()
END FUNCTION

See also:

ViewPreferences, ShowTabRuler, ToggleTabRuler

HourGlass
This function turns on or off the Windows hourglass mouse pointer. The original state of the hourglass can
be determined from the function's return value. If a macro changes the state of the hourglass mouse
pointer, it must restore the original state before exiting. If it does not restore the mouse pointeter, the
insertion point is incorrect from that point on.

Syntax
HourGlass(State)
State is either On (1) to turn on the hourglass mouse pointer or Off (0) to turn it off.

Return Value
This function returns:

1    (TRUE) if the hourglass was on prior to using the hourglass function.
0    (FALSE) if the hourglass was off.

Example
FUNCTION Example()
IgnoreKeyboard(1)
HourGlass(1)
StatusBarMsg("Importing graphic file...")
ImportPicture("BMP", "C:\AMIPRO\ICONS\123W.BMP", ".BMP", 0)
StatusBarMsg("")
HourGlass(0)
IgnoreKeyboard(0)
END FUNCTION

See also:

DarkMode, Pause, StatusBarMsg

HowDoIHelp
This function displays the online Help for Ami Pro. Choosing this funtcion is equivalent to choosing
Help/How Do I?, but it does not select a Help topic automatically. Because Help displays in a window
other than the regular Ami Pro window, further macro functions which cause a repainting of the Ami Pro
window cause the Help window to be replaced by the Ami Pro window.
If this function is used, it should be the last function used in the macro.

Syntax
HowDoIHelp()

Return Value
This    Function Returns:

1    (TRUE) if the Help window was displayed.
-2    (GeneralFailure) if the Help window could not be displayed for some other reason.
 -6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
HowDoIHelp()
END FUNCTION

See also:

About, EnhancementProducts, Help, KeyboardHelp, MacroHelp, UpgradeHelp, UsingHelp

IconBottom
This function moves the set of SmartIcons to the bottom of the screen. Choosing this function is
equivalent to choosing Tools/SmartIcons    and selecting Bottom for the position. A macro must be edited
to insert this non-recordable function.

Syntax
IconBottom()

Return Value
This function returns:

1.

Example
FUNCTION Example()
IconBottom()
END FUNCTION

See also:

IconCustomize, IconFloating, IconLeft, IconRight, IconTop, ToggleIconBar, ShowIconBar,
HideIconBar

IconCustomize
This function displays the SmartIcons dialog box that allows the user to customize the icon set. Choosing
this function is equivalent to choosing Tools/SmartIcons. A macro must be edited to insert this non-
recordable function.

Syntax
IconCustomize()

Return Value
This function returns:

1    (TRUE) if the icons were customized.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
IconCustomize()
END FUNCTION

See also:

IconBottom, IconFloating, IconLeft, IconRight, IconTop, ToggleIconBar, ShowIconBar, HideIconBar

IconFloating
This function moves the set of SmartIcons to a floating position on the screen. Choosing this function is
equivalent to choosing Tools/SmartIcons    and selecting Floating for the position. A macro must be edited
to insert this non-recordable function.

Syntax
IconFloating()

Return Value
This function returns:

1.

Example
FUNCTION Example()
IconFloating()
END FUNCTION

See also:

IconBottom, IconCustomize, IconLeft, IconRight, IconTop, ToggleIconBar, ShowIconBar, HideIconBar

IconLeft
This function moves the set of SmartIcons to the left side of the screen. Choosing this function is
equivalent to choosing Tools/SmartIcons    and selecting Left for the position. A macro must be edited to
insert this non-recordable function.

Syntax
IconLeft()

Return Value
This function returns:

1.

Example
FUNCTION Example()
IconLeft()
END FUNCTION

See also:

IconBottom, IconCustomize, IconFloating, IconRight, IconTop, ToggleIconBar, ShowIconBar,
HideIconBar

IconRight
This function moves the set of SmartIcons to the right side of the screen. Choosing this function is
equivalent to choosing Tools/SmartIcons    and selecting Right for the position. A macro must be edited to
insert this non-recordable function.

Syntax
IconRight()

Return Value
This function returns:

1.

Example
FUNCTION Example()
IconRight()
END FUNCTION

See also:

IconBottom, IconCustomize, IconFloating, IconLeft, IconTop, ToggleIconBar, ShowIconBar,
HideIconBar

IconTop
This function moves the set of SmartIcons to the top of the screen. Choosing this function is equivalent to
choosing Tools/SmartIcons    and selecting Top for the position. A macro must be edited to insert this non-
recordable function.

Syntax
IconTop()

Return Value
This function returns:

1.

Example
FUNCTION Example()
IconTop()
END FUNCTION

See also:

IconBottom, IconCustomize, IconFloating, IconLeft, IconRight, ToggleIconBar, ShowIconBar,
HideIconBar

IgnoreKeyboard
This function determines whether macro execution is interrupted if the user presses any key or the ESC
key. Normally, macro execution pauses if the user presses any key.

Syntax
IgnoreKeyboard(State)
State is either On (1) to ignore keyboard interruptions or Off (0) to honor them.

Return Value
This function does not return a value.

Example
FUNCTION Example()
IgnoreKeyboard(1)
HourGlass(1)
StatusBarMsg("Importing graphic file...")
ImportPicture("BMP", "C:\AMIPRO\ICONS\123W.BMP", ".BMP", 0)
StatusBarMsg("")
HourGlass(0)
IgnoreKeyboard(0)
END FUNCTION

See also:

AnswerMsgBox, Messages, SingleStep, HourGlass

ImageProcessing
This function adds the Image menu to the main menu bar. Choosing this function is equivalent to
choosing Tools/Image Processing.
A frame containing a gray scale TIFF image must be selected before calling this function.

Syntax
ImageProcessing()

Return Value
This function returns:

1    (TRUE) if the Image menu was added to the main menu bar.
-2    (GeneralFailure) if the Image menu could not be added.

Example
FUNCTION Example()
LayoutMode()
WHILE not IsFrameSelected()
UserControl("Select a frame with a gray-scale tiff, and choose Resume...")
WEND
ImageProcessing()
END FUNCTION

See also:

AddFrame, AddFrameDLG, GraphicsScaling, FrameLayout, ManualFrame

ImportExport
This function allows you to import a non-Ami Pro file or export a file to another file format. If you are
importing a file, the macro should make sure the insertion point is at the location in the file where the new
file should be imported. If exporting a file, the file to be exported should be on the screen.

Syntax
ImportExport(Which, FileName, FilterName, CopyImage)
Which indicates if the file should be imported or exported. The Which parameter should be set according
to the list below:

Export (1) - Exports the file onscreen to a new file
Import (0) - Imports the specified file to the current document

FileName is the full path of the file being imported or the destination path of the file to export to.
FilterName is the name of the filter as listed in the Open dialog box or in the AMIPRO.INI.
CopyImage is a flag indicating whether to copy the graphic file or use the information in the original
graphics file. The CopyImage parameter should be set to 1 (True) if the graphic file should be copied into
the document. It should be set to 0 (False) if the original graphic file should be referred to when the
graphic is displayed.
ASCII
IMPORT and EXPORT syntax:
ImportExport(Which, FileName, FilterName, CopyImage, CRLF, Type, KeepStyle)
CRLF - Carriage return/line feed options

LINE - Use carriage return/line feed characters at end of line
PARA - Use carriage return/linefeed characters at end of paragraph

Type - is the type of ASCII file to import or export
ASCII (4) - 7 bit ASCII file
PCASCII (8) - 8 bit PC ASCII file
ANSI (16) - 8 bit ANSI file

KeepStyle allows you to keep the style names
KeepStyle - Keep style names

DisplayWrite 4
EXPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox)
StyleBox - Choices for the Styles box

Apply - Apply styles
Ignore (5) - Ignore styles

DCA/RFT
EXPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox)
StyleBox - Choices for the Styles box

Apply - Apply styles
Ignore (5)    - Ignore styles

Lotus 1-2-3 Version 3.0 and higher
IMPORT Syntax:

ImportExport(Which, FileName, FilterName, CopyImage, RangeBox[, Range], StyleBox)
RangeBox - Choices for the Range box

Entire - Entire file
Active - Active worksheet
Range - Range. This parameter must be followed by another giving the exact range.

Range - Range if the RangeBox parameter has a range
StyleBox - Choices for the Styles box

Convert - Convert styles
Apply - Apply styles
Keep - Keep style names
Ignore (5) - Ignore styles

Manuscript
IMPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox, Flag)
StyleBox - Choices for the Styles box

Convert - Convert levels into styles
Apply - Apply levels

Flag tells Manuscript whether to prompt the user if a graphics file cannot be found to import. The default
is False.

TRUE (1) - the dialog box prompts you if Manuscript cannot find the file in the specified path.
FALSE (0) - the dialog box does not prompt you if Manuscript cannot find the file and the graphic is
not be imported.

Rich Text Format, Word for Windows 1.x and 2.0
IMPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox)
StyleBox - Choices for the Styles box

Convert - Convert styles
Apply - Apply styles
Keep - Keep style names
Ignore (5) - Ignore styles

WordPerfect 5.0 and 5.1
IMPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox)
StyleBox - Choices for the Styles box

Apply - Apply styles
Ignore (5) - Ignore styles
Style - Import style sheet

EXPORT Syntax:
ImportExport(Which, FileName, FilterName, CopyImage, StyleBox, Version)
StyleBox - Choices for the Styles box

Convert - Convert styles
Apply - Apply styles
Ignore (5) - Ignore styles

Version is the version of WordPerfect

TRUE (1) - Wordperfect 5.0 format
FALSE (0) - Wordperfect 5.1 format

For all exports: If the export file already exists, a message box prompts you whether or not to overwrite
the existing file.
This function does not display a dialog box.

Return Value
This function returns:

1    (TRUE) if the file was successfully imported/exported.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the file could not be imported because the file was not the appropriate type or
if the file could not be found.

Example
FUNCTION Example()
ImportExport(Import, "C:\AUTOEXEC.BAT", "ASCII", 0, "PARA", PCASCII, 0)
END FUNCTION

See also:

FileOpen, SaveAs, ImportPicture, ASCIIOptions, ImportText

ImportPicture
This function imports a graphic into the current document. If an empty frame is selected, the graphic is
placed in it. If no frame is selected, this function creates a 1" by 1" frame and imports the graphic into it.
This function is equivalent to choosing File/Import Picture.

Syntax
ImportPicture(App, FileName, FileExt, CopyImage)
App is the name of the application filter name. This name may be extracted from the list of file types in
the Import Picture dialog box. The name may also be found in the AMIPRO.INI file.
FileName is the name of the file and extension to be imported and the full path, if necessary.
FileExt is the extension of the file to be imported. There must be a period (.) before the extension name.
CopyImage can be one of the following values:

(1) - Graphics file copied into the document.
(0) - Original graphics file referred to when the graphic is displayed.

Return Value
This function returns:

1    (TRUE) if the picture was imported.
0    (UserCancel) if the user canceled the function.
-2    (General Failure) if the picture was not imported.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IgnoreKeyboard(1)
HourGlass(1)
StatusBarMsg("Importing graphic file...")
ImportPicture("BMP", "C:\AMIPRO\ICONS\123W.BMP", ".BMP", 0)
StatusBarMsg("")
HourGlass(0)
IgnoreKeyboard(0)
END FUNCTION

See also:

GetProfileString$, FileOpen, ImportExport, AddFrame, AddFrameDLG, GraphicsScaling,
ImageProcessing

Indent
This function sets the amount of indention for the current paragraph. Choosing this function is equivalent
to choosing    text/Indention.

Syntax
Indent(AllIndent, FirstIndent, RestIndent, RightIndent)
AllIndent is the amount to indent all the lines.
FirstIndent is the amount to indent the first line.
RestIndent is the amount to indent the rest of the lines after the first line.
RightIndent is the amount to indent from the right side.
All amounts are in twips (1 inch=1440 twips). Multiply the desired number of inches by 1440 to determine
the value in twips.
To display the Indention dialog box: Indent

Return Value
This function returns:

1    (TRUE) if the indention was set.
0    (UserCancel) if the user canceled the function.
-6    (InsufficientMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
Indent(1440, 720, 0, 0)
END FUNCTION

Spacing, Center, Justify, NormalText, IndentAll, IndentFirst, IndentRest, FastFormat, LeftAlign,
RightAlign

IndentAll
This function allows you to increase the amount of indention for the selected text. Choosing this function
is equivalent to clicking the Indent All icon. The amount of indention to be increased is determined by the
value set in Text/Indention/Indent All. If the units in Page/Modify Page Layout are set to centimeters, the
amount to increase is 1 centimeter. For the other units (inches, picas, or points), the amount to increased
is one-half of an inch.

Syntax
IndentAll()

Return Value
This function returns:

1    (TRUE) if the indention was increased.
-6    (InsufficientMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IndentAll()
END FUNCTION

See also:

Indent, IndentFirst, IndentRest

IndentFirst
This function allows you to increase the amount of indention for the selected text. Choosing this function
is equivalent to clicking the Indent First icon. The amount of indention to be increased is determined by
the value set in Text/Indention/Indent First. If the units in Page/Modify Page Layout are set to centimeters,
the amount to increase is 1 centimeter. For the other units (inches, picas, or points), the amount to
increased is one-half of an inch.

Syntax
IndentFirst()

Return Value
This function returns:

1    (TRUE) if the indention was increased.
-6    (InsufficientMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IndentFirst()
END FUNCTION

See also:

Indent, IndentAll, IndentRest

IndentRest
This function allows you to increase the amount of indention for the selected text. Choosing this function
is equivalent to clicking the Indent Rest icon. The amount of indention to be increased is determined by
the value set in Text/Indention/Indent Rest. If the units in Page/Modify Page Layout are set to centimeters,
the amount to increase is 1 centimeter. For the other units (inches, picas, or points), the amount to
increased is one-half of an inch.

Syntax
IndentRest()

Return Value
This function returns:

1    (TRUE) if the indention was increased.
-6    (InsufficientMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IndentRest()
END FUNCTION

See also:

Indent, IndentAll, IndentFirst

InitialCaps
This function sets the initial capitalization for selected text or for all following text if no text is selected. It
acts as a toggle, turning off initial caps if it is currently on or    turning on initial caps if it is currently off.
Choosing this function is equivalent to choosing Text/Caps/Initial Caps.

Syntax
InitialCaps()

Return Value
This function returns:

1    (TRUE) if the text is set to initial caps.
0    (UserCancel) if the user canceled the function.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
WHILE "" = CurShade$()
UserControl("Shade the text to modify, then choose Resume.")
WEND
InitialCaps()
END FUNCTION

See also:

UpperCase, LowerCase, SmallCaps

InsertBullet
This function inserts a bullet into the text at the cursor position. Choosing this function is equivalent to
choosing Edit/Insert/Bullet.

Syntax
InsertBullet(Type)
Type is the type of bullet to insert and can be one of the following:

(1) - Small round bullet
(2) - Large round bullet
(3) - Small square bullet
(4) - Large square bullet
(5) - Large outline square bullet
(6) - Small diamond bullet
(7) - Large diamond bullet
(8) - Small open circle bullet
(9) - Large open circle bullet
(10) - Check mark
(11) - Tack
(12) - Square shadow below bullet
(13) - Square shadow above bullet
(14) - Check box
(15) - Square with X bullet
(16) - Rounded arrowhead top shaded
(17) - Rounded arrowhead bottom shaded

To display the Insert Bullet dialog box to allow the user to select a bullet: InsertBullet

Return Value
This function returns:

1 (TRUE) if the bullet is inserted.
-2 (GeneralFailure) is the insertion failed.

Example
FUNCTION Example()
InsertBullet(14)
END FUNCTION

See also:

InsertDate, InsertDocInfo, ModifyEffects, ModifyStyle

InsertCascadeMenu
This function inserts a cascade menu in an existing pull down menu.

Syntax
InsertCascadeMenu(BarID, Menu, Position, NewMenu)
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.
Menu is the name of the pull down menu to insert this cascade menu in. This string must contain any
ampersand (&) characters used in the menu name is the name of the menu.
Position is the position in the pull down menu to insert the cascade menu.
This parameter begins with 0 (to insert as the first position in the pull down menu).
NewMenu is the name of the cascade menu to insert. Placing an ampersand (&) character in front of a
character in the string makes that string appear underlined and causes that character to become a
shortcut character.

Return Value
This function returns:

1    (TRUE) if the cascade menu was inserted.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the cascade menu could not be inserted or if the pull down menu name does
not match or exist.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
InsertCascadeMenu(1, "&File", 7, "&Example")
AddCascadeMenuItem(1, "&File", "&Example", "Example1", "{MacFile}!Example2(1)", "")
AddCascadeMenuItem(1, "&File", "&Example", "Example2", "{MacFile}!Example2(2)", "")
InsertCascadeMenuItem(1, "&File", "&Example", 1, "Example1.5", "{MacFile}!Example2(3)", "")
END FUNCTION

FUNCTION Example2(Msg)
Message(Msg)
END FUNCTION

See also:

AddBar, AddCascadeMenu, AddCascadeMenuItem, AddMenu, AddMenuItem, AddMenuItemDDE,
ChangeCascadeAction, DeleteMenu, DeleteMenuItem, InsertMenu, InsertMenuItem,
InsertCascadeMenuItem

InsertCascadeMenuItem
This function inserts a cascade menu item on an existing cascade menu.

Syntax
InsertCascadeMenuItem(BarID, Menu, Position, Item, MacroName[!Function[(parm1[, parm2...])]], Help)
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.
Menu is the name of the cascade menu this item should be inserted in. This must match exactly the
name of the menu item you want to use, including any ampersand (&) characters in the name of the
menu.
Position is where to locate the item in the cascade menu.
This parameter begins with 0 (to insert as the first position in the cascade menu).
Item is the text to insert. This is the text that the user sees on the cascade menu bar. Placing an
ampersand (&) in front of a character causes that character to appear underlined and makes that
character a shortcut key.
MacroName is the name of the macro to run if this menu item is selected. This parameter may contain
the macro filename, the function within that file to call, and any parameters that the function may require.
At a minimum, this parameter must contain the macro filename.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted.
This parameter is not optional for this function.

Return Value
This function returns:

1    (TRUE) if the cascade menu item was inserted.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the cascade menu item could not be inserted, or if the pull down menu or the
cascade menu names did not match the parameters or if either did not exist.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
InsertCascadeMenu(1, "&File", 7, "&Example")
AddCascadeMenuItem(1, "&File", "&Example", "Example1", "{MacFile}!Example2(1)", "")
AddCascadeMenuItem(1, "&File", "&Example", "Example2", "{MacFile}!Example2(2)", "")
InsertCascadeMenuItem(1, "&File", "&Example", 1, "Example1.5", "{MacFile}!Example2(3)", "")
END FUNCTION

FUNCTION Example2(Msg)
Message(Msg)
END FUNCTION

See also:

AddBar, AddCascadeMenu, AddCascadeMenuItem, AddMenu, AddMenuItem, AddMenuItemDDE,
ChangeCascadeAction, DeleteMenu, DeleteMenuItem, InsertMenu, InsertMenuItem,
InsertCascadeMenu

InsertColumnRow
This function inserts table columns or rows. Choosing this function is equivalent to choosing Table/Insert
Column/Row.

Syntax
InsertColumnRow(Number, Where, Which)
Number is the number of columns or rows to insert.
Where is a number representing where to insert the columns or rows and can be one of the following:

InsAfter (0) - Inserts after the current column/row
InsBefore (1) - Inserts before the current column/row

Which is a number determining whether to insert columns or rows and can be one of the following:
Column (1) - Inserts a column
Row (0) - Inserts a row
To display the Insert Column/Row dialog box to allow the user to decide the number and type of
columns/rows to insert: InsertColumnRow

Return Value
This function returns:

1    (TRUE) if the column or row was inserted.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the row or column was not inserted.

Example
FUNCTION Example()
' Insert 1 column after the current column
InsertColumnRow(1, 0, 1)
END FUNCTION

See also:

DeleteColumnRow, DeleteEntireTable, SelectColumn, SelectEntireTable, SelectRow,
SizeColumnRow

InsertDate
This function inserts a date into the document. Choosing this function is equivalent to choosing
Edit/Insert/Date/Time.

Syntax
InsertDate(Type, Style)
Type is the type of date to insert and can be one of the following:

Today (2) - Inserts the current system date and always displays this date
SysDate (3) - Inserts the current system date and updates this date each time you open the
document
LastRev (5) - Inserts the date the document was last revised
CreateDate (7) - Inserts the date the document was created

Style is the style of date to insert and can be one of the following:
(0) NMDY - 9/11/91
(1) MDY - September 11, 1991
(2) UMDY - SEPTEMBER 11, 1991
(3) DMY - 11 September 1991
(4) UDMY - 11 SEPTEMBER 1991
(5) DMDY - Friday, September 11, 1991
(6) UDMDY - FRIDAY, SEPTEMBER 11, 1991
(7) MD - September 11
(8) UMD - SEPTEMBER 11
(9) DMD - Friday September 11
(10) UDMD - FRIDAY SEPTEMBER 11
(11) NMD - 9/11
(12) NMDLY - 9/11/91
(13) DPM - 11. September
(14) UDPM - 11. SEPTEMBER
(15) DPMY - 11. September 1991
(16) UDPMY - 11. SEPTEMBER 1991
(17) YMD - 1991 September 11
(18) UYMD - 1991 SEPTEMBER 11
(19) MY - September, 1991
(20) UMY - SEPTEMBER, 1991
To display the Insert Date/Time dialog box and allow the user to select the date type and style:
InsertVariable

Return Value
This function returns:

1    (TRUE) if the date was inserted.
-2    (GeneralFailure) if no date was inserted.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
InsertDate(2, DMDY)
END FUNCTION

See also:

InsertVariable, InsertDocInfo, Now, FormatDate$, FormatTime$, GetTime

InsertDocInfo
This function displays the Insert Doc Info dialog box. Choosing this function is equivalent to choosing
Edit/Insert/Doc Info Field. To insert the Doc Info    field without the dialog box, see the InsertDocInfoField
function.

Syntax
InsertDocInfo

Return Value
This function does not return a value.

Example
FUNCTION Example()
InsertDocInfo
END FUNCTION

See also:

DocInfo, RenameDocInfoField, GetDocInfo$, InsertDocInfoField

InsertDocInfoField
This function inserts the Doc Info    field without the Insert Doc Info    field dialog box. Choosing this
function is equivalent to choosing Edit/Insert/Doc Info Field/Insert.To display the Insert Doc Info    field
dialog box, see the InsertDocInfo function.

Syntax
InsertDocInfoField(Style, Which)
Style is the style of date to insert and can be one of the following:

(0) NMDY - 9/11/91
(1) MDY - September 11, 1991
(2) UMDY - SEPTEMBER 11, 1991
(3) DMY - 11 September 1991
(4) UDMY - 11 SEPTEMBER 1991
(5) DMDY - Friday, September 11, 1991
(6) UDMDY - FRIDAY, SEPTEMBER 11, 1991
(7) MD - September 11
(8) UMD - SEPTEMBER 11
(9) DMD - Friday September 11
(10) UDMD - FRIDAY SEPTEMBER 11
(11) NMD - 9/11
(12) NMDY - 9/11/91
(13) DPM - 11. September
(14) UDPM - 11. SEPTEMBER
(15) DPMY - 11. September 1991
(16) UDPMD - 11. SEPTEMBER 1991
(17) YMD - 1991 September 11
(18) UYMD - 1991 SEPTEMBER 11
(19) MY - September, 1991
(20) UMY - SEPTEMBER, 1991

Which is the desired document info field and can be one of the following:
DDFilename (1) - File name
DDPath (2) - Path for this document
DDStylesheet (3) - Style sheet for this document
DDRevisions (6) - Number of document revisions
DDDescription (7) - Document description
DDUser1 (8) - User defined field 1
DDUser2 (9) - User defined field 2
DDUser3 (10) - User defined field 3
DDUser4 (11) - User defined field 4
DDUser5 (12) - User defined field 5
DDUser6 (13) - User defined field 6
DDUser7 (14) - User defined field 7
DDUser8 (15) - User defined field 8

Return Value
This function returns:

1    (TRUE) if the field was inserted.

0    (FALSE) if the field was not inserted.
-6    (InsufficientMemory) if not enough memory

Example
FUNCTION Example()
InsertDocInfoField(0, 6)
END FUNCTION

See also:

DocInfo, InsertDocInfo, RenameDocInfoField, GetDocInfo$

InsertLayout
This function inserts a page break at the current insertion point and displays the Modify Page Layout
dialog box. Choosing this function is equivalent to choosing Page/Insert Page Layout/Insert. You must be
in Layout Mode to use this function.

Syntax
InsertLayout()

Return Value
This function returns:

1.

Example
FUNCTION Example()
InsertLayout()
END FUNCTION

See also:

CreateStyle, ModifyLayout, ModifyStyle, HeaderFooter, RemoveLayout

InsertMenu
This function inserts a new pull down menu on the specified menu bar.

Syntax
InsertMenu(BarID, Position, NewMenu)
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.
Position is where to locate the menu.
This parameter begins with 0 (to insert as the first position on the menu bar).
NewMenu is the name of the new menu name to insert. Placing an ampersand (&) in front of a character
causes that character to appear underlined and makes that character a shortcut key.

Return Value
This function returns:

1    (TRUE) if the menu was inserted.
0    (UserCancel) if the user canceled the function
-2    (GeneralFailure) if the menu could not be inserted.

Example
FUNCTION Example()
InsertMenu(1, 1, "&NewMenu")
END FUNCTION

See also:

AddBar, AddCascadeMenu, AddCascadeMenuItem, AddMenu, AddMenuItem, AddMenuItemDDE,
DeleteMenu, DeleteMenuItem, InsertMenuItem, InsertCascadeMenu, InsertCascadeMenuItem,
RenameMenuItem

InsertMenuItem
This function inserts a new menu item on the specified pull down menu.

Syntax
InsertMenuItem(BarID, Menu, Position, Item, MacroName[!Function[(parm1[, parm2...])]][, Help])
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.
Menu is the name of the existing menu to insert this item in. The exact name of the menu must be used,
including any ampersand (&) characters.
Position is where to locate the menu item in the pull down menu.
This parameter begins with 0 (to insert as the first position in the pull down menu).
Item is the text to appear for this menu item. Placing an ampersand (&) in front of a character causes that
character to appear underlined and makes that character a shortcut key.
MacroName is the name of the macro to run if this menu item is selected. This parameter may contain
the macro filename, the function within that file to call, and any parameters that function may require. At a
minimum, this parameter must contain the macro filename.
Help is the one-line Help text that appears in the title bar of Ami Pro when this menu item is highlighted.

Return Value
This function returns:

1    (TRUE) if the menu item was inserted.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the menu item could not be inserted.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
State = 0
DeleteMenuItem(1, "&Text", "B&old+Italic+Underline")
InsertMenuItem(1, "&Text", 10, "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
END FUNCTION
FUNCTION Example2(State)
MacFile = GetRunningMacroFile$()
State = Right$((State - 1), 1)
Bold(State)
Underline(State)
Italic(State)
ChangeMenuAction(1, "&Text", "B&old+Italic+Underline", "{MacFile}!Example2({State})", "Bold and
Italicize and Underline Text.")
CheckMenuItem(1, "&Text", "B&old+Italic+Underline", State)
END FUNCTION

See also:

AddBar, AddCascadeMenu, AddCascadeMenuItem, AddMenu, AddMenuItem, AddMenuItemDDE,
DeleteMenu, DeleteMenuItem, InsertMenu, InsertCascadeMenu, InsertCascadeMenuItem,
RenameMenuItem

InsertMerge
This function displays the Insert Merge Field dialog box. The user must select the merge field to insert.
Choosing this function is equivalent to choosing Edit/Insert/Merge Field.
To insert the field automatically, see the FieldAdd function.

Syntax
InsertMerge

Return Value
This function returns:

0.

Example
FUNCTION Example()
InsertMerge
END FUNCTION

See also:

FieldAdd, FieldRemove, Merge, MergeAction, MergeMacro, MergeToFile

InsertNewObject
This function inserts an OLE object into a frame. Choosing this function is equivalent to choosing
Edit/Insert/New Object.

Syntax
InsertNewObject(Description)
Description is the class description of the object to be inserted. The name may be extracted from the list
of names displayed in the Object type list box when viewing the Insert New Object dialog box. The list is
taken from the embedding section of the WIN.INI file. In this file, the true class name, an equals sign, and
the class description name are shown.

Return Value
This function returns:

1    (TRUE) if the object was successfully inserted.
-2    (GeneralFailure) if the insertion failed.

Example
FUNCTION Example()
AddFrameDLG
InsertNewObject("Package")
END FUNCTION

See also:

AddFrame, AddFrameDLG

InsertNote
This function inserts a note with the specified text at the insertion point. The note is automatically inserted,
and the note window is closed using this function. Choosing this function is equivalent to choosing
Edit/Insert/Note, typing the note, and closing the note. A macro must be edited to insert this non-
recordable function.

Syntax
InsertNote(Text)
Text is the text that should go inside the note.
To allow the user to determine note options or to type the note text: Notes

Return Value
This function returns:

 1    (TRUE) if the note was inserted.
-2    (GeneralFailure) if the note was not inserted.

Example
FUNCTION Example()
InsertNote("Ami Pro is the easiest word processor to learn.")
END FUNCTION

See also:

Notes, UserSetup, ViewPreferences

InsertVariable
This function displays the Insert Date/Time dialog box. Choosing this function is equivalent to choosing
Edit/Insert/Date/Time. This function does not insert variables automatically. Variables can be directly
inserted using the InsertDate, InsertDocInfoField, and FieldAdd functions.

Syntax
InsertVariable

Return Value
This function returns:

0.

Example
FUNCTION Example()
InsertVariable
END FUNCTION

See also:

InsertDate, InsertDocInfo, FieldAdd

Instr
This function searches a text string for a pattern.

Syntax
Instr(Offset, Text, Pattern)
Offset is the position in the string to begin searching.
Text is the string to search.
Pattern is the pattern to search for.

Return Value
This function returns:

the value of the offset of the beginning of the pattern, if it is found.
0    (FALSE) if the offset is not found.

Example
FUNCTION Example()
Name = UCASE$(Query$("What is your name?"))
FOR I = 65 to 90
Ltr = CHR$(I)
IF 0 != Instr(0, Name, Ltr)
TYPE("The letter {Ltr} is in your name.[Enter]")
ENDIF
NEXT
END FUNCTION

See also:

CHR$, strcat$, strchr, strfield$, Left$, Right$, MID$

IsFrameSelected
This function determines whether or not a frame is currently selected.

Syntax
IsFrameSelected()

Return Value
This function returns:

1    (TRUE) if the frame is currently selected.
0    (FALSE) if the frame is not currently selected.

Example
FUNCTION Example()
LayoutMode()
IF not IsFrameSelected()
 Pos = CursorPosition$()
 x = strfield$(Pos, 1, ",")
 y = strfield$(Pos, 2, ",")
 AddFrame(x, y, (x + 1440), (y - 1440))
ENDIF
DrawingMode()
END FUNCTION

See also:

AddFrame, AddFrameDLG, BringFrameToFront, FrameLayout, ManualFrame, SelectFrameByName

IsNumeric
This function determines whether a string is suitable for numeric operations.

Syntax
IsNumeric(Text)
Text is the string which is to be evaluated.

Return Value
This function returns:

1    (TRUE) if the passed string is numeric.
0    (FALSE) if the passed string is not numeric.

Example
FUNCTION Example()
again:
Num1 = Query$("What is the first number?")
Num2 = Query$("What is the second number?")
IF (not IsNumeric(Num1)) OR (not IsNumeric(Num2))
 GoTo again
ENDIF
sum = Num1 + Num2
Message("The sum of {Num1} and {Num2} is {sum}.")
END FUNCTION

See also:

FormatNum$, Mod, Round

Italic
This function sets the italic attribute for selected text or for all following text if no text is selected. It acts as
a toggle, turning off the attribute if it is currently on or turning on the attribute if it is currently off. Choosing
this function is equivalent to choosing Text/Italic.

Syntax
Italic()

Return Value
This function returns:

0 if the italic attribute is toggled on and there are no attributes assigned to the text.
4 if the italic attribute is toggled on and the bold attribute is already assigned.
8 if the italic attribute is toggled off.
16 if the italic attribute is toggled on and the underline attribute is already assigned.
32 if the italic attribute is toggled on and the word underline attribute is already assigned.
-2    (GeneralFailure) if the attribute was not changed.

The returns values may be added together to identify the attributes that were previously assigned.

Example
FUNCTION Example()
String = "This is a line of text.[Enter]"
NormalText()
TYPE("Normal...[Enter]{String}")
BOLD(1)
TYPE("Bold...[Enter]{String}")
BOLD(0)
Italic(1)
TYPE("Italics...[Enter]{String}")
Italic(0)
Underline()
TYPE("Underline...[Enter]{String}")
Underline()
WordUnderline(1)
TYPE("Word Underline...[Enter]{String}")
WordUnderline(0)
Bold()
Underline(1)
Italic()
TYPE("Bold, Underline, Italics...[Enter]{String}")
NormalText()
TYPE("Normal...[Enter]{String}")
END FUNCTION

See also:

Bold, NormalText, Underline, WordUnderline

Justify
This function acts as a toggle to turn justification on or off for a paragraph. Choosing this function is
equivalent to choosing Text/Alignment/Justify.

Syntax
Justify()

Return Value
This function returns:

1    (TRUE) if the text was justified or if justification was removed.
-2    (GeneralFailure) if the alignment was not changed.

Example
FUNCTION Example()
String = "This is a line of Text"
Center()'Turn Center On
TYPE("{String} Centered[Enter]")
Center()'Turn Center Off
LeftAlign()'Turn Left Alignment On
TYPE("{String} Left Aligned[Enter]")
LeftAlign()'Turn Left Alignment Off
RightAlign()'Turn Right Alignment On
TYPE("{String} Right Aligned[Enter]")
RightAlign()'Turn Right Alignment Off
Justify()'Turn Jusification On
TYPE("{String} Justified[Enter]")
Justify()'Turn Justification Off
END FUNCTION

See also:

Center, LeftAlign, NormalText, RightAlign

KeyboardHelp
This function displays the online Help for Ami Pro. Choosing this function is equivalent to choosing
Help/Keyboard, but it does not select a Help topic automatically. Because Help displays in a window other
than the regular Ami Pro window, further macro functions which cause a repainting of the Ami Pro window
cause the Help window to be replaced by the Ami Pro window.
If this function is used, it should be the last function used in the macro.

Syntax
KeyboardHelp()

Return Value
This    Function Returns:

1    (TRUE) if the Help window was displayed.
-2    (GeneralFailure) if the Help window could not be displayed for some other reason.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
KeyboardHelp()
END FUNCTION

See also:

About, Help, EnhancementProducts, HowDoIHelp, MacroHelp, UpgradeHelp, UsingHelp

KeyInterrupt
This function sets a macro function to be called if the user hits a key while the current macro is running.
The called macro function is passed the virtual key. If the interrupt routine needs to pass information to
the main function, it must pass it through a global variable and the main function must check that global
variable.

Syntax
KeyInterrupt(Function)
Function is the function that runs when a key is pressed. This parameter may contain the macro file
name or the function within that file to call.

Return Value
This function returns:

the previously set KeyInterrupt function.

Example
FUNCTION Example()
KeyInterrupt("KeyInt")
TYPE("Touch any key")
FOR i = 1 to 5 ' Kill some time.
 FOR j = 1 to 100
 NEXT
 TYPE("{i}.")
NEXT
END FUNCTION

FUNCTION KeyInt(key)
Message("KeyInt {key}")
END FUNCTION

See Also:

MouseInterrupt, DlgKeyInterrupt

LayoutMode
This function changes the current Multiple Document Interface (MDI) document in Ami Pro from Draft
Mode or Outline Mode to Layout Mode. Choosing this function is equivalent to choosing View/Layout
Mode.

Syntax
LayoutMode()

Return Value
This function returns:

1    (TRUE) if the view mode was changed.
0    (NoAction) if no action was taken because Ami Pro is already in the mode selected.

Example
FUNCTION Example()
Mode = GetMode()'What mode is the screen in?
IF Mode != 1
LayoutMode()'If not Layout Mode, make it so.
ENDIF
IF Decide("Do you want to create the frame at the current cursor position?")
'Give user Yes or No Dialog Box
Position = CursorPosition$()'Get current cursor prosition, in twips
X = strfield$(Position, 1, ",")'Parse out the X coordinate
Y = strfield$(Position, 2, ",")'Parse out the Y coordinate
X2 = X + (Query$("How wide do you want the frame (in inches)?") * 1440)
'Compute Length of box
Y2 = Y + (Query$("How tall do you want the frame (in inches)?", "1") * -1440)
'Compute height of box
AddFrame(X, Y, X2, Y2)'Add the frame, using current defaults
ELSE
AddFrameDLG'Display Add Frame dialog box.
ENDIF
IF Mode = 48
OutlineMode()
ELSEIF Mode = 16
DraftMode()
ENDIF
END FUNCTION

See also:

DraftMode, OutlineMode, EnlargedView, FacingView, FullPageView, GetMode, GetViewLevel,
StandardView, CustomView

LCASE$
This function converts uppercase letters in the source string to lower case and returns the resulting string.
It does not change punctuation or numbers.

Syntax
LCASE$(Text)
Text is the string that is converted to lower case.

Return Value
This function returns:

the string with all lowercase letters.

Example
FUNCTION Example()
Again:
Number = Query$("How much was the sale?")
Where = Query$("Where was the sale made (E)ngland, or (A)merica?")
Where = lcase$(Left$(Where, 1))
IF Where = "e"
 Prefix = ""
 Suffix = "£"
ELSEIF Where = "a"
 Prefix = "$"
 Suffix = ""
ELSE
 Message("Please choose ""a"" or ""e"".")
 GoTo again
ENDIF
NewNumber = FormatNum$(Prefix, Suffix, 2, Number)
Message("The sale was for {NewNumber}.")
END FUNCTION

See also:

ASC, CHR$, strcat$, strchr, strfield$, UCASE$, MID$, LEN, FormatNum$, Instr

LeaderDots
This function applies dots for leader characters in the current table cell or selected table cells. Choosing
this function is equivalent to choosing Table/Leaders and selecting dots for the leader type.

Syntax
LeaderDots()

Return Value
This function returns:

1    (TRUE) if the leader dots were applied.
0    (NoAction) if no action was taken.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
LeaderDots()
END FUNCTION

See also:

TableLines, LeaderHyphs, LeaderLines, LeaderNone, Tables, TableLayout

LeaderHyphs
This function applies hyphens for leader characters in the current table cell or selected table cells.
Choosing this function is equivalent to choosing Table/Leaders and selecting hyphens for the leader type.

Syntax
LeaderHyphs()

Return Value
This function returns:

1    (TRUE) if the leader dots were applied.
0    (NoAction) if no action was taken.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
LeaderHyphs()
END FUNCTION

See also:

TableLines, LeaderDots, LeaderLines, LeaderNone, Tables, TableLayout

LeaderLines
This function applies underlines for leader characters in the current table cell or selected table cells.
Choosing this function is equivalent to choosing Table/Leaders and selecting underline for the leader type.

Syntax
LeaderLines()

Return Value
This function returns:

1    (TRUE) if the leader dots were applied.
0    (NoAction) if no action was taken.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
LeaderLines()
END FUNCTION

See also:

TableLines, LeaderDots, LeaderHyphs, LeaderNone, Tables, TableLayout

LeaderNone
This function turns off the leader characters in the current table cell or selected table cells. Choosing this
function is equivalent to choosing Table/Leaders/None.

Syntax
LeaderNone()

Return Value
This function returns:

1    (TRUE) if the leader dots were applied.
0    (NoAction) if no action was taken.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
LeaderNone()
END FUNCTION

See also:

TableLines, LeaderDots, LeaderHyphs, LeaderLines, Tables, TableLayout

Left$
This function returns the specified number of characters from the left of the specified string.

Syntax
Left$(Text, Length)
Text is the string to be parsed.
Length is the number of characters from the left end of the string to be parsed.

Return Value
This function returns:

the specified number of characters from the left end of the string.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the string could not be parsed.

Example
FUNCTION Example()
Message(Left$(Query$("What is your name?"), 5))
END FUNCTION

See also:

Right$, Instr, MID$

LeftAlign
This function acts as a toggle to turn on/off left alignment for a paragraph. Choosing this function is
equivalent to choosing Text/Alignment/Left.

Syntax
LeftAlign()

Return Value
This function returns:

1    (TRUE) if the text was left aligned, or if alignment was removed.
-2    (GeneralFailure) if the alignment was not changed.

Example
FUNCTION Example()
String = "This is a line of Text"
Center()'Turn Center On
TYPE("{String} Centered[Enter]")
Center()'Turn Center Off
LeftAlign()'Turn Left Alignment On
TYPE("{String} Left Aligned[Enter]")
LeftAlign()'Turn Left Alignment Off
RightAlign()'Turn Right Alignment On
TYPE("{String} Right Aligned[Enter]")
RightAlign()'Turn Right Alignment Off
Justify()'Turn Jusification On
TYPE("{String} Justified[Enter]")
Justify()'Turn Justification Off
END FUNCTION

See also:

Center, Justify, NormalText, RightAlign

LeftEdge
This function scrolls the document to the left edge of the page without moving the insertion point.
Choosing this function is equivalent to dragging the elevator on the horizontal scroll bar to the left using
the mouse.

Syntax
LeftEdge()

Return Value
This function returns:

0.

Example
FUNCTION Example()
LeftEdge()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

LEN
This function determines the number of characters in the specified string.

Syntax
LEN(Text)
Text is the string whose length is determined.

Return Value
This function returns:

the length of the string.
0    (FALSE) if the string is empty.

Example
FUNCTION Example()
DEFSTR Char;
OpenFile = GetOpenFileName$()
I = len(OpenFile)
WHILE "\" != Assign(&Char, MID$(OpenFile, I, 1))
 I = I - 1
WEND
FileName = Right$(OpenFile, (len(OpenFile) - I))
Message("The current file is {FileName}.")
END FUNCTION

See also:

strcat$, LCASE$, UCASE$, strfield$, MID$, strchr, FormatNum$, Right$, Left$

LineDown
This function scrolls the document down one line without moving the insertion point. Choosing this
function is equivalent to clicking the up arrow at the top of the vertical scroll bar once using the mouse.

Syntax
LineDown()

Return Value
This function returns:

0.

Example
FUNCTION Example()
WHILE (1)
UserControl("Choose Resume to perform a LineDown...")
LineDown()
WEND
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

LineNumber
This function places line numbers in the left margin of the document. Choosing this function is equivalent
to choosing Page/Line Numbering.

Syntax
LineNumber(Which, Style, Custom)
Which determines the type of line to number and the frequency of the line numbering and should be a
combination of these values:
Type of line to number:

Off (0) - Do not number lines
NumberLines (1) - Number any type of line
NumberTextLines (128) - Number text lines

Use one of the following in combination with one of the above:
NumberEvery (2) - Number all lines (of the type selected above)
NumberEveryOther (4) - Number every other line (of the type selected above)
NumberEveryFifth (8) - Number every fifth line (of the type selected above)
NumberEveryCustom (32) - Number every nth line (of the type selected above), where n is a custom
number.

Additional Optional Value:
ResetEachPage (16) - Reset the numbering sequence on every page of the document.

Style is the paragraph style to use in determining the spacing for the line numbering. The Style parameter
must be used, even if line numbering is being turned off.
Custom is the number indicating the frequency of the line numbering.
To display the Line Numbering dialog box to allow the user to choose the line numbering options:
LineNumber

Return Value
This function returns:

1    (TRUE) if the numbering sequence was set.
0    (UserCancel) if the user canceled the function, or if no action was taken.

Example
FUNCTION Example()
LineNumber(3, "Body Text", 0)
END FUNCTION

See also:

PageNumber

LineUp
This function scrolls the document up one line without moving the insertion point. Choosing this function is
equivalent to clicking the down arrow at the bottom of the vertical scroll bar once using the mouse.

Syntax
LineUp()

Return Value
This function returns:

0.

Example
FUNCTION Example()
WHILE (1)
UserControl("Choose Resume to perfom a LineUp...")
LineUp()
WEND
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

LoadOptions
This function sets initial display preferences for using Ami Pro. Choosing this function is equivalent to
choosing Tools/User Setup/Load.

Syntax
LoadOptions(InitialView, Options, StyleSheet)
InitialView determines whether Standard or C ustom    view initially displays. The InitialView parameter
should be set to one of the following options:

StartCustom (2) - Start in Custom View
StartStandard (3) - Start in Standard View

Options is a flag variable determining other display defaults.
If any of the following options parameters are set, they take effect when the program is started. If the
options are not set, they do not take effect. Options can be one or more of the following:

StartLayout (1) - Start the program in Layout Mode. If this value or StartOutline is not set, the program
starts in Draft Mode. This value may not be combined with StartOutline.
StylesBox (2) - Display the styles box when the program starts; otherwise, do not display the styles
box.
StartMax (8) - Maximize the Ami Pro window when the program is loaded; otherwise, use the
previously set window size.
StartOutline (256) - Start the program in Outline Mode. This value may not be combined with
StartLayout.
ShowDesc (1024) - Show the style sheets by description name (rather than style sheet file name) in
the Load Options dialog box.
StartClean (2048) - Start the program in Clean Screen mode.

To set multiple options, add the option values together before passing them to the function.
StyleSheet is the default style sheet to use for new documents.
To show the View Preferences dialog box and allow the user to select his view preferences:
ViewPreferences

Return Value
This function returns:

1    (TRUE) if the load options were successfully set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the options could not be set.

Example
FUNCTION Example()
LoadOptions(StartStandard, StartLayout, _~MACRO.STY")
END FUNCTION

See also:

ViewPreferences, SetDefOptions, UserSetup

LowerCase
This function sets lower case for selected text or for all following text if no text is selected. It acts as a
toggle, turning off lower case if it is currently on or turning on lower case if it is currently off. Choosing this
function is equivalent to choosing Text/Caps/Lower Case.

Syntax
LowerCase()

Return Value
This function returns:

1    (TRUE) if the attribute was changed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
LowerCase()
END FUNCTION

See also:

UpperCase, InitialCaps, SmallCaps

MacroEdit
This function displays the Edit Macro dialog box. Choosing this function is equivalent to choosing
Tools/Macros/Edit.
A macro must be edited to insert this non-recordable function.

Syntax
MacroEdit()

Return Value
This function returns:

1.

Example
FUNCTION Example()
MacroEdit()
END FUNCTION

See also:

AssignMacroToFile, MacroPlay, MacroOptions, ChangeShortcutKey, OnKey

MacroHelp
This function displays the online Ami Pro Macro Reference Help. Choosing this function is equivalent to
choosing Help/Macro Doc.

Syntax
MacroHelp()

Return Value
This function returns:

1    (TRUE) if the macro Help window was displayed.
-2    (GeneralFailure) if the macro Help window could not be displayed for some other reason.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
MacroHelp()
END FUNCTION

See also:

About, EnhancementProducts, Help, HowDoIHelp, KeyboardHelp, UpgradeHelp, UsingHelp

MacroOptions
This function displays the Quick Record Macro Options dialog box. Choosing this function is equivalent to
choosing Tools/Macros/Record/Options. The dialog box allows you to select shortcut keys for Quick
Macro Record and Quick Macro Play. A macro must be edited to insert this non-recordable function.

Syntax
MacroOptions()

Return Value
This function returns:

1.

Example
FUNCTION Example()
MacroOptions()
END FUNCTION

See also:

AssignMacroToFile, MacroPlay, MacroEdit, ChangeShortcutKey, OnKey

MacroPlay
This function displays the Play Macro dialog box. Choosing this function is equivalent to choosing
Tools/Macros/Playback. A macro must be edited to insert this non-recordable function.

Syntax
MacroPlay()

Return Value
This function returns:

1.

Example
FUNCTION Example()
MacroPlay()
END FUNCTION

See also:

AssignMacroToFile, MacroOptions, MacroEdit, ChangeShortcutKey, OnKey

ManualFrame
This function displays the frame arrow and allows the user to manually create a frame. Choosing this
function is equivalent to choosing Frame/Create Frame/Manual.

Syntax
ManualFrame()

Return Value
This function returns:

1.

Example
FUNCTION Example()
ManualFrame()
END FUNCTION

See also:

AddFrame, AddFrameDlg, FrameLayout, FrameModBorders, FrameModFinish, FrameModInit,
FrameModLines, FrameModType, IsFrameSelected, SelectFrameByName, SetFrameDefaults

MarkBookMark
This function allows the user to add a bookmark, remove a bookmark, or go to a specific bookmark.
Choosing this function is equivalent to choosing Edit/Bookmarks.

Syntax
MarkBookMark(Name, Which)
Name is the name of the new bookmark.
Which is the desired bookmark function and can be one of the following:

AddBookmark (4003) - Add a new bookmark with the name provided
DeleteBookmark (4004) - Delete the named bookmark
FindBookmark (4002) - Go to the named bookmark

To display the Bookmarks dialog box to allow the user to select the bookmark function and name:
MarkBookMark

Return Value
This function returns:

1    (TRUE) if the bookmark function was successfully completed.
-2    (GeneralFailure) if the bookmark function could not be completed.

Example
FUNCTION Example()
MarkBookMark("Example", AddBookmark)
TYPE("[CtrlEND]")
PageNo = GetPageNo()
MarkBookMark("Example", FindBookmark)
Text = GetMarkText$()
MarkBookMark("Example", DeleteBookmark)
IF Text != ""
Message("Your bookmark was named ""{Text}"", and there are {PageNo} pages in this document.")
ENDIF
END FUNCTION

See also:

GoToCmd, GoToShade, GetMarkText$

MarkIndexWord
This function displays the Mark Index Entry dialog box to allow you to mark selected text for inclusion in
the index. Choosing this function is equivalent to choosing Edit/Mark Text/Index Entry.
To automatically mark a word for the index, use the FieldAdd function. To automatically remove an index
entry, use the FieldRemove function.

Syntax
MarkIndexWord

Return Value
This function returns:

0.

Example
FUNCTION Example()
MarkIndexWord
END FUNCTION

See also:

Generate, FieldAdd, FieldRemove, SetIndexFile

MarkTOCEntry
This function displays the TOC Entry dialog box to allow you to mark selected text for a table of contents
entry. Choosing this function is equivalent to choosing Edit/Mark Text/TOC Entry.
To automatically add a TOC entry, use the FieldAdd function. To automatically remove a TOC entry, use
the FieldRemove function.

Syntax
MarkTOCEntry

Return Value
This function returns:

0.

Example
FUNCTION Example()
MarkTOCEntry
END FUNCTION

See also:

Generate, FieldAdd, FieldRemove, SetTOCFile, TOCOptions

MasterDoc
This function displays the Master Document dialog box and allows you to select files to add or remove
from the master document. Choosing this function is equivalent to choosing File/Master Document.
This function does not automatically add or remove files from the master document. Please refer to the
SetMasterFiles function.

Syntax
MasterDoc

Return Value
This function returns:

0.

Example
FUNCTION Example()
MasterDoc
END FUNCTION

See also:

MasterDocOpts, GetMasterFilesCount, GetMasterFiles, SetMasterFiles

MasterDocOpts
This function displays the Master Document Options dialog box. Choosing this function is equivalent to
choosing File/Master Document/Options.
This function does not automatically set the master document options. Please refer to the SetIndexFile
and SetTOCFile functions.

Syntax
MasterDocOpts

Return Value
This function returns:

0.

Example
FUNCTION Example()
MasterDocOpts
END FUNCTION

See also:

GetMasterFilesCount, GetMasterFiles, SetMasterFiles, SetIndexFile, SetTOCFile, MasterDoc,
Generate, TOCOptions

Maximize
This function maximizes the Ami Pro window, causing it to fill the entire screen. Choosing this function is
equivalent to choosing System/Maximize. If the window size is already maximized, executing this function
restores the previous screen size. All other windows are moved behind the Ami Pro window when this
function is executed.

Syntax
Maximize()

Return Value
This function does not return a value.

Example
FUNCTION Example()
Maximize()
END FUNCTION

See also:

Minimize, Restore

Merge
This function merges a merge document with a data file. Choosing this function is equivalent to choosing
File/Merge, selecting option 3, and selecting Merge & print. Using this function sends the merge
documents directly to the printer.
Before using the merge function, your macro should ensure that the merge document you want to merge
to is on the screen.

Syntax
Merge(Flag, RecFile[, DescFile][, LabelsAcross, LabelsDown, OffsetRight, OffsetDown][, SelectionKey,
SelectionKey, Operator, FieldNumber, NextOp...])
Flag is a number which defines which optional parameters are used and can be one of the following:

(0) - 0 selection criteria given
(1) - 1 selection criterion given
(2) - 2 selection criteria given
(3) - 3 selection criteria given
Description (8) - This merge uses a description file and includes the description filename
Labels (16) - This merge is for labels and includes label specifications

The number of criteria used (0-3) should be added to the description value and the label value, if they are
used, to make up the value of the Flag parameter.
RecFile is the data file the merge document is merged with.
DescFile is the optional description file used when the data file is not an Ami Pro file. The DescFile
should be used as the next parameter only if a description file is used.
All four label parameters must be given if merging labels. If this is a regular merge, all four label
parameters should be skipped.
LabelsAcross is the optional number of labels across the page.
LabelsDown is the optional number of labels down the page.
OffsetRight is the optional distance to offset the first label to the right, in twips (1 inch=1440 twips).
OffsetDown is the optional distance to offset the first label down, in twips (1 inch=1400 twips).
SelectionKey is a string or number to use in the selection of records to merge. The compare key is a
string, if using an alphanumeric comparison, or a number, if using a numeric comparison.
Operator is the operator to use in the selection comparison and can be one of the following values:

Equal (0) - The field's value must be equal to the key to merge.
LessThan (1) - The field's value must be less than the key to merge.
GreaterThan (2) - The field's value must be greater than the key to merge.
NotEqual (3) - The field's value must be different than the key to merge.
Lteq (4) - The field's value must be less than or equal to the key to merge.
Gteq (5) - The field's value must be greater than or equal to the key to merge.

FieldNum is the number of the field to use for this selection. It is zero based. To compare against the first
field in the data file, set field number to 0.
NextOp is a number which defines whether to select based on this criterion AND the next one, or this one
OR the next one. If there are no more specifications this field should be zero. The values for this field are:

AndNext (1) - This selection AND the following selection must match to merge this record.
OrNext (2) - This selection OR the following selection must match to merge this record.

To display the Merge dialog box and allow the user to set merge specifications: Merge

Return Value
This function returns:

1    (TRUE) if the merge was completed.
0    (UserCancel) if the user canceled the function.
-3    if the input was invalid.
-2    (GeneralFailure) if the merge failed.

Example
FUNCTION Example()
Merge(0, "TEST.SAM")
END FUNCTION

See also:

MergeAction, MergeMacro, MergeToFile

MergeAction
This function is used in conjunction with the MergeMacro function to decide whether a merge document
should be printed, not printed, canceled, or the rest of the documents should be printed. Choosing this
function is equivalent to choosing File/Merge, selecting option 3, and selecting Merge, view & print.
This function must be called once for each record merged and again after either the end of the data file
has been reached or the user cancels the printing of the merged records.

Syntax
MergeAction(Which)
Which is the action to take on the merged document and can be one of the following:

PrintDoc (1) - Print this one
MergeNext (2) - Do not print this one; prepare the next one
MergeCont (3) - Print this one; print the rest of them without stopping
MergeStop (4) - Do not print this one; cancel the rest of the merge
PrintDocMrgNext (5) - Print this one; prepare the next one

Return Value
This function returns:

1    (TRUE) if the record was merged.
0    (UserCancel/FALSE) at the end of the data file, or if the user cancels printing of the merged record
following a PrintDoc or MergeCont.
-2    (GeneralFailure) if the record was not merged.

Example
FUNCTION Example()
IF MergeAction(0, "DATAFILE.SAM")
'print this one and prepare the next one for every record
WHILE (MergeAction(5))
WEND
MergeAction(4) 'terminate the merge
ENDIF
END FUNCTION

See also:

Merge, MergeMacro, MergeToFile

MergeMacro
This function merges a merge document with a data file, then allows the macro to examine the merged
document, edit it, and decide if it should be printed. Choosing this function is equivalent to choosing
File/Merge, selecting option 3, and selecting Merge, view & print. Once the first document has been
merged, the MergeAction function is used to decide what should be done with the document. Choosing
this function is equivalent to choosing the dialog box that appears onscreen during Merge, view & print.
Before using the merge function, your macro should ensure that the merge document you want to merge
to is on the screen.

Syntax
MergeMacro(Flag, RecFile[, DescFile][, LabelsAcross, LabelsDown, OffsetRight, OffsetDown][, SelectionKey,
SelectionKey, Operator, FieldNumber, NextOp...])
The Flag parameter and optional parameters are identical to those used in the Merge function. For a list
of their values, refer to the section of the documentation on the Merge function.
Flag is a number which defines which optional parameters are used and can be one of the following:

(0) - 0 selection criteria given
(1) - 1 selection criterion given
(2) - 2 selection criteria given
(3) - 3 selection criteria given
Description (8) - This merge uses a description file and includes the description filename
Labels (16) - This merge is for labels and includes label specifications

The number of criteria used (0-3) should be added to the description value and the label value, if they are
used, to make up the value of the Flag parameter.
RecFile is the data file the merge document is merged with. If Recfile is a NewWave object, this
parameter must be the full path to the object name.
DescFile is the description file used when the data file is not an Ami Pro file. If Descfile is a NewWave
object, this parameter must be the full path to the object name.
All four label parameters must be given if merging labels. If this is a regular merge, all four label
parameters should be skipped.
LabelsAcross is the number of labels across the page if merging labels.
LabelsDown is the number of labels down the page if merging labels.
OffsetRight is the distance to offset the first label to the right, in twips (1 inch=1440 twips).
OffsetDown is the distance to offset the first label down, in twips (1 inch=1440 twips).
SelectionKey is a string or number to use in the selection of records to merge. The compare key is a
string, if using an alphanumeric comparison, or a number, if using a numeric comparison.
Operator is the operator to use in the selection comparison and can be one of the following values:

Equal (0) - The field's value must be equal to the key to merge.
LessThan (1) - The field's value must be less than the key to merge.
GreaterThan (2) - The field's value must be greater than the key to merge.
NotEqual (3) - The field's value must be different than the key to merge.
Lteq (4) - The field's value must be less than or equal to the key to merge.
Gteq (5) - The field's value must be greater than or equal to the key to merge.

FieldNum is the number of the field to use for this selection. It is zero based. To compare against the first
field in the data file, set field number to 0.
NextOp is a number which defines whether to select based on this criterion AND the next one, or this one
OR the next one. If there are no more specifications this field should be zero. The values for this field are:

AndNext (1) - This selection AND the following selection must match to merge this record.

OrNext (2) - This selection OR the following selection must match to merge this record.
To display the Merge dialog box and allow the user to set merge specifications: Merge

Return Value
This function returns:

1    (TRUE) if the merge was completed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the merge failed.

Example
FUNCTION Example()
IF MergeAction(0, "DATAFILE.SAM")
'print this one and prepare the next one for every record
WHILE (MergeAction(5))
WEND
MergeAction(4) 'terminate the merge
ENDIF
END FUNCTION

See also:

Merge, MergeAction, MergeToFile

MergeToFile
This function merges a merge document with a data file and places the result in another file for later
editing or printing. Choosing this function is equivalent to choosing File/Merge, selecting option 3, and
selecting Merge & save as.
Before using the merge function, your macro should ensure that the merge document you want to merge
to is on the screen.

Syntax
MergeToFile(Flag, RecFile, OutFile[, DescFile][, LabelsAcross, LabelsDown, OffsetRight, OffsetDown][,
SelectionKey, SelectionKey, Operator, FieldNumber, NextOp]...)
Flag is a number which defines which optional parameters are used. The    flag parameter defines which
of the optional parameters are used, according to the following list:

(0) - 0 selection criteria given
(1) - 1 selection criterion given
(2) - 2 selection criteria given
(3) - 3 selection criteria given
Description (8) - This merge uses a description file, and includes the description filename
Labels (16) - This merge is for labels, and includes label specifications
ToFile (32) - This merge is merged to a file

The number of criteria used (0-3) must be added to the description value and the label value, if they are
used. Because this file merges, 32 must be added to this result to make up the value of the    flag
parameter.
RecFile is the data file the merge document is merged with. If Recfile is a NewWave object, this
parameter must be the full path to the object name.
OutFile is the file to which the merged document is saved.
DescFile is the description file used when the data file is not an Ami Pro file. If Descfile is a NewWave
object, this parameter must be the full path to the object name.
All four label parameters must be given if merging labels. If this is a regular merge, all four label
parameters should be skipped.
LabelsAcross is the number of labels across the page if merging labels.
LabelsDown is the number of labels down the page if merging labels.
OffsetRight is the distance to offset the first label to the right, in twips (1 inch=1440 twips).
OffsetDown is the distance to offset the first label down, in twips (1 inch=1440 twips).
SelectionKey is a string or number to use in the selection of records to merge. The compare key is a
string, if using an alphanumeric comparison, or a number, if using a numeric comparison.
Operator is the operator to use in the selection comparison and can be one of the following values:

Equal (0) - The field's value must be equal to the key to merge.
LessThan (1) - The field's value must be less than the key to merge.
GreaterThan (2) - The field's value must be greater than the key to merge.
NotEqual (3) - The field's value must be different than the key to merge.
Lteq (4) - The field's value must be less than or equal to the key to merge.
Gteq (5) - The field's value must be greater than or equal to the key to merge.

FieldNum is the number of the field to use for this selection. It is zero based. To compare against the first
field in the data file, set field number to 0.
NextOp is a number which defines whether to select based on this criterion AND the next one or this one
OR the next one. If there are no more specifications this field should be zero. The values for this field are:

AndNext (1) - This selection AND the following selection must match to merge this record.

OrNext (2) - This selection OR the following selection must match to merge this record.
To display the Merge dialog box and allow the user to set merge specifications: Merge

Return Value
This function returns:

0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the merge failed.

Example
FUNCTION Example()
MergeToFile(32 "mrgdata.SAM" "output.SAM")
END FUNCTION

See also:

Merge, MergeAction, MergeMacro

Message
This function displays a Windows Message box with the specified title, prompt, and an OK push button. It
waits for the user to acknowledge the message by selecting OK.

Syntax
Message(Prompt[, Title])
Prompt is a string used as a prompt to the user. It can be a maximum of 80 characters.
Title is the title for the message box. The default is "Ami Pro Macro".

Return Value
This function does not return a value.

Example
FUNCTION Example()
DEFSTR Char;
OpenFile = GetOpenFileName$()
I = len(OpenFile)
WHILE "\" != Assign(&Char, MID$(OpenFile, I, 1))
 I = I - 1
WEND
FileName = Right$(OpenFile, (len(OpenFile) - I))
Message("The current file is {FileName}.")
END FUNCTION

See also:

Decide, DialogBox, Messages, MultiDecide, Query$, UserControl

Messages
This function allows the macro programmer to determine whether the user should respond to certain
program messages during macro execution. Many Ami Pro functions display message boxes asking the
user to confirm an action before it is taken. If messages display is off, the macro forces Ami Pro to take
the default action proposed by the message box (as if the user had pressed ENTER). If messages display
is on, the message box displays, and the user needs to intervene before macro execution can continue.
If a specific reply is required to a specific message, the AnswerMsgBox function must be used to reply to
a specific function.

Syntax
Messages(State)
State determines whether unexpected messages appear during macro execution, and can be a 1 (On) to
display the messages, or a 0 (Off) to accept the default replies and not display the messages.

Return Value
This function does not return a value.

Example
FUNCTION Example()
Messages(Off)
FileClose()
Messages(On)
FileClose()
END FUNCTION

See also:

AnswerMsgBox, SingleStep, UserControl, IgnoreKeyboard

MID$
This function is used to extract a portion of a string.

Syntax
MID$(Text, Offset, Length)
Text is the string from which a shorter string is extracted.
Offset is the location in the specified string to start parsing the new string. Offset is one based; to extract
from the beginning of the longer string, use a offset of 1 or the function Left$.
Length is the number of characters to extract out of the specified string.

Return Value
This function returns:

 the requested text.
 The null string ("") if the starting offset is beyond the end of the larger string.

Example
FUNCTION Example()
DEFSTR Char;
OpenFile = GetOpenFileName$()
I = len(OpenFile)
WHILE "\" != Assign(&Char, MID$(OpenFile, I, 1))
 I = I - 1
WEND
FileName = Right$(OpenFile, (len(OpenFile) - I))
Message("The current file is {FileName}.")
END FUNCTION

See also:

ASC, CHR$, strcat$, LCASE$, UCASE$, strfield$, LEN, strchr, FormatNum$

Minimize
This function minimizes the Ami Pro window by reducing it to an icon. Choosing this function is equivalent
to choosing System/Minimize. If the window is already reduced to an icon, executing this function restores
the previous window size. When Ami Pro is minimized, macro execution continues in the background.

Syntax
Minimize()

Return Value
This function does not return a value.

Example
FUNCTION Example()
Minimize()
END FUNCTION

See also:

Maximize, Restore

Mod
This function finds the remainder of the first parameter divided by the second.

Syntax
Mod(Numerator, Denominator)
Numerator is the number to be divided.
Denominator is the number to divide into the numerator.

Return Value
This function returns:

the remainder of the numerator divided by the denominator.
-2    (GeneralFailure) if the numbers could not be divided.

Example
FUNCTION Example()
DECLARE Example2(p1, p2) ALIAS ExMac
Top = Query$("Enter the value for the numerator:")
Bottom = Query$("Enter the value for the denominator:")
Result = ExMac(Top, Bottom)
Message(Result)
END FUNCTION

FUNCTION Example2(Numerator, Denominator)
Result = MOD(Numerator, Denominator)
Return Result
END FUNCTION

See also:

Round, IsNumeric

ModifyAlignment
This function modifies paragraph style alignment options. Choosing this function is equivalent to choosing
Style/Modify Style/Alignment.
ModifySelect should be called before this function to define the style to modify.
Before the new alignment options take effect for the selected paragraph style, the ModifyReflow function
must be called in the macro.

Syntax
ModifyAlignment(Options, AllLevel, FirstLevel, RestLevel, Units, RightIndent)
Options is a flag parameter containing the paragraph style's alignment options. The Options parameter
should be set to one or more of the following options:

AlignLeft (1) - Left align the paragraph
AlignRight (2) - Right align the paragraph
AlignCenter (4) - Center the paragraph
AlignJustify (8) - Justify the paragraph
IndentBoth (16) - Indent both sides of the paragraph
NoIndentAll (32) - Do not use entire paragraph indention option
NoIndentFirst (64) - Do not use first line indention option
NoIndentRest (128) - Do not use rest of lines indention options
Hyphenate (256) - Hyphenate the paragraph
HangingIndent (512) - This paragraph has a hanging indent

One of the four alignment options should always be chosen. Multiple options should be added together
before they are passed to the function. All levels are in twips (1 inch=1440 twips).
AllLevel is the level to indent all lines in the paragraph. This parameter is ignored if the NoIndentAll flag is
set.
FirstLevel is the level to indent the first line of the paragraph. This parameter is ignored if the
NoIndentFirst flag is set.
RestLevel is the level to indent the rest of the lines in the paragraph. This parameter is ignored if the
NoIndentRest flag is set.
Units is the amount of indention to be selected from the Modify Style dialog box.

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

RightIndent is the level to indent all lines in the paragraph from the right. This parameter is ignored if the
NoIndentRest flag is set.
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle
To modify the tabs used when modifying the style, refer to the ModifyBreaks function.

Return Value
This function returns:

1    (TRUE) if the alignment options were set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the options were not set.

Example
FUNCTION Example()

NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines, ModifyReflow,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifyBreaks
This function modifies paragraph style page break options. Choosing this function is equivalent to
choosing Style/Modify Style/Breaks.
ModifySelect should be called before this function to define the style to modify.
Before the new page break options take effect for the selected paragraph style, the ModifyReflow function
must be called in the macro.

Syntax
ModifyBreaks(Options, Style, NumTabs[, Type, Offset])
Options is a flag parameter specifying the breaks options. The Options parameter should be set to one or
more of the following options:

NoBreaks (0) - Do not allow page breaks within this paragraph
PageBreakBefore (1) - Put a page break before this paragraph
PageBreakAfter (2) - Put a page break following this paragraph
BreakWithin (4) - Allow page breaks within the paragraph
KeepPrevious (8) - Keep this paragraph with the previous paragraph
KeepNext (16) - Keep this paragraph with the next paragraph
(64) - If set, the style defined in the Style parameter is applied to the next paragraph
ColBreakBefore (128) - Put a column break before this paragraph
ColBreakAfter (256) - Put a column break after this paragraph
One of the four break options should always be chosen. The KeepPrevious option may be chosen if
the NoBreak, PageBreakAfter, or ColBreakAfter option is chosen. The KeepNext option may be
chosen if the NoBreak, PageBreakBefore, or ColBreakBefore option is chosen.

Style is the paragraph style to use for the next paragraph. The NextStyle (64) option must also be set in
order to apply this paragraph style.
NumTabs is the number of tabs to set for this style. You must enter a Type and Offset for each tab.
To modify the tabs in the Modify Style dialog box, select Alignment.
Type is the type of tab. The Offset parameter must also be used for each tab.

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

To display leaders preceding the tab, add one of the following values to the type of tab:
TabHyph (16384) - Displays hyphens
TabDot (32768) - Displays dots
TabLine (49152) - Displays a line

Offset is the distance of the tab from the left margin and must be given in twips. (1 inch=1440 twips). The
Type parameter must also be used for each tab.
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the break options were set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the options were not set.

Example

FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyEffects, ModifyFont, ModifyLines, ModifyReflow,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifyEffects
This function modifies paragraph style bullets and numbers. Choosing this function is equivalent to
choosing Style/Modify Style/Bullets & numbers.
ModifySelect should be called before this function to define the style to modify.
Before the new bullets and numbering options take effect for the selected paragraph style, the
ModifyReflow function must be called in the macro.
If the ModifyEffects function is included in a macro created in Ami Pro 1.2B, the attribute values must be
changed in Ami Pro 3.0 or the macro plays back unpredictable results.

Syntax
ModifyEffects(Text, Spacing, Indent, Attr, LevelNum, Align, Units)
Text is the leading text for the paragraph. The Text parameter specifies the text, bullet, or numbers that
precede each paragraph using this paragraph style. The text must be typed as it would appear in the edit
box in the Bullets & numbers panel in the Modify Style dialog box. Bullets can be inserted by typing the
following text where the bullet should be placed:

<·1> - Small    Round Bullet
<·2> - Large    Round Bullet
<·3> - Small    Square Bullet
<·4> - Large    Square Bullet
<·5> - Large    Outline Square Bullet
<·6> - Small    Diamond Bullet
<·7> - Large    Diamond Bullet
<·8> - Small    Open Circle Bullet
<·9> - Large    Open Circle Bullet
<·10> - Check    Mark
<·11> - Tack
<·12> - Square shadow below bullet
<·13> - Square shadow above bullet
<·14> - Check box
<·15> - Square with X bullet
<·16> - Rounded arrowhead top shaded
<·17> - Rounded arrowhead bottom shaded

To type the dot in front of the bullet number, turn on Num Lock, hold the ALT key, type 0183 and release
the ALT key. Numbers can be inserted by typing the following text where the number should be inserted:

<#1> - 1 2 3 4 5...
<#2> - A B C D E...
<#3> - a b c d e...
<#4> - I II III IV V...
<#5> - i ii iii iv v...
<#6> - * ** *** ****...
<#7> - (dagger characters)...

Spacing is a flag indicating how to space between the text and the paragraph body. The Spacing
parameter should be set to one of the following options:

TabIndent (0) - Separate leading text from body with a tab
SpaceIndent (1) - Separate leading text from body with the space specified in the Indent parameter

Indent is the amount of space to use between the text and the paragraph body. The SpaceIndent option
should be set for this spacing to be used.

The amount of indention must be given in twips (1 inch=1440 twips).
The right alignment option must have enough indention space to line up on the right. For example, when
using asterisks, there must be enough space to line up on the rightmost asterisk.
Attr is a flag parameter specifying the attribute options for the leading text and can be one of the
following:

NormalAttr (0) - Text has no attributes
BoldText (4) - Bold text
ItalicText (8) - Italicized text
UnderlineText (16) - Underlined text
WordUnderlineText (32) - Word underlined text
(2048) - Capitalized text
SuperScript (64) - Superscripted text

Multiple attributes can be added together. Not all fonts have all attributes and the underline attributes
cannot be combined.
LevelNum is the outlining level number to use and should be a number from 0 to 9. If this is not an outline
style, this option should be set to 0.
Align is a flag determining whether to right align the text in the special effect and can be one of the
following:

(0) - Do not right align
(16) - Right align

Units is the amount of indention to be selected from the Style/Modify Style/Bullets & numbers dialog box.
Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips).
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the effects options were set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the options were not set.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, 288, 0, 0, 0, 1)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")

SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyFont, ModifyLines, ModifyReflow,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifyFont
This function modifies paragraph style font. Choosing this function is equivalent to choosing Style/Modify
Style/Font. Through the menu commands, the user can only select from the fonts available on the printer.
Using the macro commands, any type of font can be requested.
ModifySelect should be called before this function to define the style to modify.
Before the new font options take effect for the selected paragraph style, the ModifyReflow function must
be called in the macro.
If the ModifyFont function is included in a macro created in Ami Pro 1.2B, the attribute values must be
changed in Ami Pro 3.0 or the macro plays back unpredictable results.

Syntax
ModifyFont(FontName, Size, Color, Options)
FontName is the name of the font as listed in the Face list box.
Size is the size of the font, in twips. The formula for finding the proper point size is pointsize * 20 = twips.
Color is the color of the font and can be one of the following:

White (16777215) - White
Cyan (16776960) - Light blue
Yellow (65535) - Yellow
Magenta (16711935) - Purple
Green (65280) - Green
Red (255) - Red
Blue (16711680) - Blue
Black (0) - Black

Options is a flag parameter specifying the attribute options and can be one or more of the following:
NormalAttr (0) - Text has no attributes
BoldText (4) - Bold text
ItalicText (8) - Italicized text
UnderlineText (16) - Underlined text
WordUnderlineText (32) - Word underlined text
(2048) - All caps text
DoublelineAttr (256) - Double underline text
InitialCaps (8192) - Initial caps text
(32768) - First line bold text
VarPitch (1) - Variable pitch font
Serifs (1024) - Serifs in font

Multiple attributes can be added together. Not all the fonts have all the attributes and some attributes,
such as the caps attributes and the underline attributes, cannot be combined.
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the font options were set.
-2    (GeneralFailure) if the options were not set.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")

BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyLines, ModifyReflow,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifyLayout
This function displays the Modify Page Layout dialog box. Choosing this function is equivalent to choosing
Page/Modify Layout. This function does not modify the page layout automatically.
You must be in Layout Mode to use this function.

Syntax
ModifyLayout()

Return Value
This function returns:

1    (TRUE) if the page layout was modified.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the layout was not modified.

Example
FUNCTION Example()
ModifyLayout()
END FUNCTION

See also:

FrameLayout, ModLayoutFinish, ModLayoutInit, ModLayoutLeftFooter, ModLayoutLeftHeader,
ModLayoutLeftLines, ModLayoutLeftPage, ModLayoutPageSize, ModLayoutRightFooter,   
ModLayoutRightHeader, ModLayoutRightLines, ModLayoutRightPage, ModifyStyle

ModifyLines
This function modifies paragraph style lines. Choosing this function is equivalent to choosing Style/Modify
Style/Lines.
ModifySelect should be called before this function to define the style to modify.
Before the new line options take effect for the selected paragraph style, the ModifyReflow function must
be called in the macro.

Syntax
ModifyLines(Options, StyleAbove, SpaceAbove, StyleBelow, SpaceBelow, Length, Color, Units)
Options is a flag parameter specifying the line options. The Options parameter consists of one or more of
the following options:

Off (0) - No lines above or below
LineAbove (1) - Put a line above the paragraph
LineBelow (2) - Put a line below the paragraph
LengthOfText (4) - Line is the length of the text
LengthMargins (8) - Line is the length of the margins
LengthCustom (16) - Line's length is determined by the    length parameter

StyleAbove and StyleBelow determine the type of line to print above and below the paragraph,
respectively. Available line styles are:

Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule
FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rules
DoubleTwoPoint (9) - Parallel two point rules
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

SpaceAbove is the spacing between the font and the line above the text, in twips. If none, use 0 for this
parameter.
SpaceBelow is the spacing between the font and the line below the text, in twips. If none, use 0 for this
parameter.
Length is the length of the line, in twips, if a custom length.
Color is the color of the line and can be one of the following:

White (16777215) - White
Cyan (16776960) - Light blue
Yellow (65535) - Yellow
Magenta (16711935) - Purple
Green (65280) - Green
Red (255) - Red
Blue (16711680) - Blue
Black (0) - Black
DarkGray (12566463) - 90% gray scale

MediumGray (8355711) - 50% gray scale
LightGray (4144959) - 20% gray scale
VeryLightGray (1644825) - 10% gray scale

Units is the amount of indention to be selected from the Style/Modify Style/Lines dialog box.
Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips).
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the line options were set.
-2    (GeneralFailure) if the options were not set.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyReflow,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifyReflow
This function applies changes that have been made to paragraph styles using the other modify paragraph
style functions. This function should be called after using the modify paragraph style functions and before
editing other text. Choosing this function is equivalent to choosing Style/Modify Style.

Syntax
ModifyReflow()

Return Value
This function returns:

1    (TRUE) if the changed paragraph styles were applied.
-2    (GeneralFailure) if the paragraph styles were not applied.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines,
ModifySelect, ModifySpacing, ModifyStyle, ModifyTable

ModifySelect
This function selects a paragraph style to modify. The other    Modify    Paragraph Style functions act on
the paragraph style selected by this function. Choosing this function is the equivalent to choosing
Style/Select a Style.
This function should be called prior to using other modify paragraph style functions.

Syntax
ModifySelect(Style)
Style is the name of an existing paragraph style.
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the paragraph style was selected.
-2    (GeneralFailure) if the paragraph style was not selected.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines,
ModifyReflow, ModifySpacing, ModifyStyle, ModifyTable

ModifySpacing
This function modifies paragraph style spacing. Choosing this function is equivalent to choosing
Style/Modify Style/Spacing.
ModifySelect should be called before this function to define the style to modify.
Before the new spacing options take effect for the selected paragraph style, the ModifyReflow function
must be called in the macro.

Syntax
ModifySpacing(Options, Amount, ParaAbove, ParaBelow, Tightness, SpacingUnits, ParaUnits)
Options is a flag parameter with spacing options. The    options parameter should be set to one of the
following options:

SingleSpacing (1) - Use single line spacing
OneOneHalfSpacing (2) - One and one half line spacing
DoubleSpacing (4) - Double line spacing
CustomSpacing (8) - Custom line spacing
AddAlways (16) - Always use line above spacing
AddNotBreak (32) - Use line above spacing only if not at page break

Amount is the line spacing to use if custom spacing is selected.
ParaAbove is the spacing to use above the paragraph, in twips.
ParaBelow is the spacing to use below the paragraph, in twips.
Tightness is the line tightness factor to use and can be one of the following:

TightLines (90) - 90% line tightness
NormalLines (100) - 100% line tightness (normal)
LooseLines (115) - 115% line tightness

SpacingUnits is the amount of line spacing to be selected from the Style/Modify Style/Spacing dialog
box.

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips).
ParaUnits is the amount of spacing for above and below the paragraph to be selected from the
Style/Modify Style/Spacing dialog box.
Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points
To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the spacing was set.
-2    (GeneralFailure) if the spacing was not set.

Example
FUNCTION Example()

NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines,
ModifyReflow, ModifySelect, ModifyStyle, ModifyTable

ModifyStyle
This function displays the Modify Style dialog box. Choosing this function is equivalent to choosing
Style/Modify Style, but it cannot automatically modify a paragraph style. The function is provided so that
the macro programmer can replace a menu choice with a macro or allow the user to make paragraph
style modification decisions. To allow the macro to modify paragraph styles directly, use the other modify
paragraph style functions.

Syntax
ModifyStyle()

Return Value
This function returns:

1    (TRUE) if the paragraph style was modified.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the paragraph style could not be modified.

Example
FUNCTION Example()
ModifyStyle()
END FUNCTION

See also:

CreateStyle, DefineStyle, GetStyleName$, ModifyAlignment, ModifyBreaks, ModifyEffects,
ModifyFont, ModifyLines, ModifyReflow, ModifySelect, ModifySpacing, ModifyTable

ModifyTable
This function modifies paragraph style table format. Choosing this function is equivalent to choosing
Style/Modify Style/Table format.
ModifySelect should be called before this function to define the style to modify.
Before the new table format options take effect for the selected paragraph style, the ModifyReflow
function must be called in the macro.

Syntax
ModifyTable(CellFormat, Decimals, DecimalPoint, Separator, CurrencySymbol, Options)
CellFormat determines the cell format and can be one of the following:

GeneralFormat (1) - Show decimals only if required
FixedFormat (2) - Show a fixed number of decimals
CurrencyFormat (3) - Show the currency symbol
PercentFormat (4) - Display the number with a percent sign

Decimals is the number of decimal places to display for numbers.
DecimalPoint is the character to use for the decimal point.
Separator is the character to use as the thousands separator.
CurrencySymbol is the character to use for the currency symbol.
Options is a flag parameter with table format options and can be one of the following:

ThousandsSep (8) - Use thousands separator character. The ThousandsSeparator option should be
set if thousands separators are to display and print. Either LeadingNegative, TrailingNegative, or
ParenthesesNegative should be chosen to determine how to display negative numbers. The
RedNegative option can be used to display and print negative numbers in red. Either the
CurrencyLead or CurrencyTrail option should be used to indicate the position of the currency symbol
LeadingNegative (16) - Use leading hyphen to indicate negative numbers
TrailingNegative (32) - Use trailing hyphen to indicate negative numbers
ParenthesesNegative (64) - Use parentheses to indicate negative numbers
RedNegative (128) - Display/print negative numbers in red
CurrencyLead (256) - Place currency symbol ahead of number
CurrencyTrail (0) - Place currency symbol after number

To display the Modify Style dialog box and allow the user to select the options for modifying paragraph
styles: ModifyStyle

Return Value
This function returns:

1    (TRUE) if the table options were set.
-2    (GeneralFailure) if the options were not set.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)

ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

CreateStyle, DefineStyle, ModifyAlignment, ModifyBreaks, ModifyEffects, ModifyFont, ModifyLines,
ModifyReflow, ModifySelect, ModifySpacing, ModifyStyle

ModLayoutFinish
This function applies changes to the page layout after the function ModLayoutInit has been run. Choosing
this function is equivalent to accepting changes entered by choosing Page/Modify Page Layout.
Do not call this function without calling ModLayoutInit first.

Syntax
ModLayoutFinish()

Return Value
This function returns:

1    (TRUE) if the changes are accepted.
-2      if the changes were not accepted.

Example
FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutInit
This function prepares Ami Pro to accept page layout changes. Choosing this function is equivalent to
initializing changes made when choosing Page/Modify Page Layout.
This function must be called prior to any modify page layout functions.

Syntax
ModLayoutInit(Type)
Type is the type of page setup and can be one or both of the following:

0x200 (512) = All pages
0x400 (1024) = Mirror image

Return Value
This function returns:

1    (TRUE) if the initialization for changes was successful.
-2    (GeneralFailure) if the initialization failed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutLeftFooter
This function modifies the left footer information for the current page layout if the current page layout is
not for all pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Footer    and
choosing Left Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutLeftFooter(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, Flag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Flag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
 2 - Gutterline (if multi-column)
 4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:

1    (TRUE) if the left footer was modified.
-2    (General Failure) if the left footer was not modified.

Example
FUNCTION Example()

ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutLeftHeader
This function modifies the left header information for the current page layout if the page setting is not for
all pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Header    and
choosing Left Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutLeftHeader(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, Flag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Flag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
 2 - Gutterline (if multi-column)
 4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:

1    (TRUE) if the left header was modified.
-2    (General Failure) if the left header was not modified.

Example
FUNCTION Example()

ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutLeftLines
This function modifies the lines settings for the left page of the current page layout if the current page
layout setting is not for all pages. Choosing this function is equivalent to choosing Page/Modify Page
Layout/Lines    and choosing Left Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutLeftLines(GutterShade, GutterStyle, BorderSides, BorderStyle, BorderSpace)
GutterShade is the color of the lines and can be one of the following:

White (16777215) - White
Cyan (16776960) - Light blue
Yellow (65535) - Yellow
Magenta (16711935) - Purple
Green (65280) - Green
Red (255) - Red
Blue (16711680) - Blue
Black (0) - Black
DarkGray (12566463) - 90% gray scale
MediumGray (8355711) - 50% gray scale
LightGray (4144959) - 20% gray scale
VeryLightGray (1644825) - 10% gray scale

GutterStyle defines the width of the line and can be one of the following:
Hairline (1) - Hairline
OnePoint (2) - One point wide
TwoPoint (3) - Two points wide
ThreePoint (4) - Three points wide
FourPoint (5) - Four points wide
FivePoint (6) - Five points wide
SixPoint (7) - Six points wide
DoubleOnePoint (8) - Parallel one point lines
DoubleTwoPoint (9) - Parallel two point lines
ThreeLines (10) - Hairline above and below a two point line
HairBelow (11) - Hairline below a three point line
HairAbove (12) - Hairline above a three point line

BorderSides is one of the following:
1 - All sides, or a combination of:
2 - Left
4 - Right
8 - Top
16 - Bottom
To set a combination of Left, Right, Top, or Bottom, add them together.

BorderStyle is the width of the border from a range of 1 to 12.
The values for GutterStyle and BorderStyle are:

1 - One half point wide
2 - One point wide

3 - Two points wide
4 - Four points wide
5 - Six points wide
6 - Eight points wide
7 - Twelve points wide
8 - Two one-point lines
9 - Two two-point lines
10 - Three lines, one point over two point over one point
11 - One two-point line over one one-point line
12 - One one-point line over one two-point line

BorderSpace is the position of the border with the following values:
1 - Middle
 2 - Inside
 3 - Outside
 4 - Close inside
 5 - Close to outside

Return Value
This function returns:

1    (TRUE) if the left page line settings were modified.
-2    (General Failure) if the left page line settings were not modified.

Example
FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutLeftPage
This function modifies the left page information for the current page layout if the page setting is not for all
pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Left Pages    and
choosing Left Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutLeftPage(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, Flag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Flag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
2 - Gutterline (if multi-column)
4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:

1    (TRUE) if the left page information was modified.
-2    (General Failure) if the left page information was not modified.

Example
FUNCTION Example()

ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutPageSize
This function modifies the page size information for the current page layout. Choosing this function is
equivalent to choosing Page/Modify Page Layout/Page settings.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutPageSize(Length, Width, Units, PaperType)
Length is the length of the page in twips, if the paper type is custom.
Width is the width of the page in twips, if the paper type is custom.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
PaperType is one of the pre-defined paper types and must be one of the following:

1 - Letter
2 - Legal
3 - A3
4 - A4
5 - A5
6 - B5
7 - Custom

Return Value
This function returns:

1    (TRUE) if the page size information was modified.
-2    (General Failure) if the page size information was not modified.

Example
FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutRightFooter
This function modifies the footer information for the current page layout if the page setting is for all or right
pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Footer    and choosing
All Pages or Right Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutRightFooter(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, Flag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Flag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
2 - Gutterline (if multi-column)
4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:

1    (TRUE) if the right footer was modified.
-2    (General Failure) if the right footer was not modified.

Example
FUNCTION Example()

ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutRightHeader
This function modifies the header information for the current page layout if the page setting is for all or
right pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Header    and
choosing All Pages or Right pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutRightHeader(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, Flag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
Flag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
2 - Gutterline (if multi-column)
4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:
1    (TRUE) if the right header was modified.
-2    (General Failure) if the right header was not modified.

Example

FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutRightLines
This function modifies the lines settings for the current page layout if the page setting is for all or right
pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Lines    and choosing
All Pages or Right Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutRightLines(GutterShade, GutterStyle, BorderSides, BorderStyle, BorderSpace)
GutterShade is the color of the lines and can be one of the following:

White (16777215) - White
Cyan (16776960) - Light blue
Yellow (65535) - Yellow
Magenta (16711935) - Purple
Green (65280) - Green
Red (255) - Red
Blue (16711680) - Blue
Black (0) - Black
DarkGray (12566463) - 90% gray scale
MediumGray (8355711) - 50% gray scale
LightGray (4144959) - 20% gray scale
VeryLightGray (1644825) - 10% gray scale

GutterStyle defines the width of the line and can be one of the following:
Hairline (1) - Hairline
OnePoint (2) - One point wide
TwoPoint (3) - Two points wide
ThreePoint (4) - Three points wide
FourPoint (5) - Four points wide
FivePoint (6) - Five points wide
SixPoint (7) - Six points wide
DoubleOnePoint (8) - Parallel one point lines
DoubleTwoPoint (9) - Parallel two point lines
ThreeLines (10) - Hairline above and below a two point line
HairBelow (11) - Hairline below a three point line
HairAbove (12) - Hairline above a three point line

BorderSides is one of the following:
1 - All sides, or a combination of:
2 - Left
4 - Right
8 - Top
16 - Bottom

To set a combination of Left, Right, Top, or Bottom, add them together.
BorderStyle is the width of the border from a range of 1 to 12.
The values for GutterStyle and BorderStyle are:

1 - One half point wide
2 - One point wide

3 - Two points wide
4 - Four points wide
5 - Six points wide
6 - Eight points wide
7 - Twelve points wide
8 - Two one-point lines
9 - Two two-point lines
10 - Three lines, one point over two point over one point
11 - One two-point line over one one-point line
12 - One one-point line over one two-point line

BorderSpace is the position of the border with the following values:
1 - Middle
2 - Inside
3 - Outside
4 - Close inside
5 - Close to outside

Return Value
This function returns:

1    (TRUE) if the right page line settings were modified.
-2    (General Failure) if the right page line settings were not modified.

Example
FUNCTION Example()
ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

ModLayoutRightPage
This function modifies the page information for the current page layout if the page setting is for all or right
pages. Choosing this function is equivalent to choosing Page/Modify Page Layout/Right Pages    and
choosing All Pages or Right Pages.
The ModLayoutFinish function must be called after this function to accept the modifications.
Do not call this function without having called the ModLayoutInit function previously.

Syntax
ModLayoutRightPage(LeftMargin, TopMargin, RightMargin, BottomMargin, Units, FaceFlag, NumCols, Cols,
NumTabs, Tabs)
LeftMargin is the distance from the left edge of the paper.
TopMargin is the distance from the top edge of the paper.
RightMargin is the distance from the right edge of the paper.
BottomMargin is the distance from the bottom edge of the paper.
The margin parameters are in twips and represent how much space to leave on that edge of the paper.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

The amount of indention must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.
FaceFlag is an options parameter and can have one or more of the following values:

1 - Balance (if multi-column)
2 - Gutterline (if multi-column)
4 - Borderline

NumCols is the number of columns for the page.
Cols are pairs of numbers which represent the twip offset to the left and right margin for this column.
NumTabs is how many tabs follow.
Tabs are pairs of numbers which represent the type of tab and its offset from the left margin. The tab type
can be one of the following:

TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric tab

The leader value can be added to the tab type and can be one of the following:
(16384) - for dashed leaders
(-32768) - for dot leaders
(-16384) - for underline leader

Return Value
This function returns:

1    (TRUE) if the right page information was modified.
-2    (General Failure) if the right page information was not modified.

Example
FUNCTION Example()

ModLayoutInit(512)
ModLayoutLeftFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutLeftLines(255, 7, 1, 9, 1)
ModLayoutLeftPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutPageSize((11 * 1440), (8.5 * 1440), 1, 1)
ModLayoutRightHeader(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightFooter(1440, 180, 1440, 720, 1, 1, 1, 0, 1, 0)
ModLayoutRightLines(255, 7, 1, 9, 1)
ModLayoutRightPage(1440, 1440, 1440, 1440, 1, 1, 1, 0, 1, 0)
ModLayoutFinish()
END FUNCTION

See also:

ModifyStyle, ModifyLines, ModifyAlignment, ModifyReflow, ModifyBreaks, ModifySelect,
ModifyEffects, ModifySpacing, ModifyFont, ModifyTable, ModifyLayout

MouseInterrupt
This function sets a macro function to be called if the user clicks the mouse while the current macro is
running. This function is passed the window handle (HWND), a flag, and x and y coordinates. HWND is
one of Ami Pro's windows, and flag is a combination of the following bits:

(1) Left mouse button is down.
(2) Right mouse button is down.
(4) Shift key is down.
(8) Control key is down.

X and Y are relative to upper left corner of HWND and are in device units.

Syntax
MouseInterrupt(Function)
Function is the function that is run when a mouse button is pressed. This parameter may contain the
macro filename or the function within that file to call.

Return Value
This function returns:

the previously set MouseInterrupt function.

Example
FUNCTION Example()
MouseInterrupt("MouseInt") ' Set them
TYPE("Click the mouse")
FOR i = 1 to 5 ' Kill some time.
 FOR j = 1 to 100
 NEXT
 TYPE("{i}.")
NEXT
END FUNCTION

' The Interrupt function: just echo the input parameters

FUNCTION MouseInt(hwnd, flag, x, y)
Message("hwnd {hwnd}, flag {flag}, {x}, {y}")
END FUNCTION

See Also:

KeyInterrupt, DlgKeyInterrupt

MoveLeftOrPromote
This function promotes the current paragraph to a higher outline level in Outline Mode or moves cells in a
table left one column. In a table, you can move either two or more adjacent selected cells or the entire
column the cursor is located to the left one column. Keyboard commands must be used to record this
function.

Syntax
MoveLeftOrPromote()

Return Value
This function returns:

1 (TRUE) if the cells move or the outline paragraph style is promoted.
0 (NoAction) if no action is taken.

Example
FUNCTION Example()
MoveLeftOrPromote()
END FUNCTION

See also:

MoveParagraphDown, MoveParagraphUp, MoveRightOrDemote

MoveParagraphDown
This function exchanges the current paragraph with the next paragraph or moves cells in a table down
one row. In a table, you can move either two or more adjacent selected cells or the entire column the
cursor is located to the left one column. Keyboard commands must be used to record this function.

Syntax
MoveParagraphDown()

Return Value
This function returns:

1 (TRUE) if the cells move or the current paragraph style is exchanged with the next paragraph.
0 (NoAction) if no action is taken.

Example
FUNCTION Example()
MoveParagraphDown()
END FUNCTION

See also:

MoveLeftOrPromote, MoveParagraphUp, MoveRightOrDemote

MoveParagraphUp
This function exchanges the current paragraph with the previous paragraph or moves cells in a table up
one row. In a table, you can move either two or more adjacent selected cells or the entire row the cursor
is located in up one row. Keyboard commands must be used to record this function.

Syntax
MoveParagraphUp()

Return Value
This function returns:

1 (TRUE) if the cells move or the current paragraph style is exchanged with the previous paragraph.
0 (NoAction) if no action is taken.

Example
FUNCTION Example()
MoveParagraphUp()
END FUNCTION

See also:

MoveLeftOrPromote, MoveParagraphDown, MoveRightOrDemote

MoveRightOrDemote
This function demotes the current paragraph to a lower outline level in Outline Mode or moves cells in a
table right one column. In a table, you can move either two or more adjacent selected cells or the entire
column the cursor is located in to the right one column. Keyboard commands must be used to record this
function.

Syntax
MoveRightOrDemote()

Return Value
This function returns:

1 (TRUE) if the cells move or the outline paragraph style is demoted.
0 (NoAction) if no action is taken.

Example
FUNCTION Example()
MoveRightOrDemote()
END FUNCTION

See also:

MoveLeftOrPromote, MoveParagraphDown, MoveParagraphUp

MultiDecide
This function displays a Windows Message box with the specified title, prompt, icon, and push buttons. It
waits for the user to select a push button, then returns the ID of the button the user pressed.

Syntax
MultiDecide(Prompt, Type[, Title])
prompt    is a string used as a prompt to the user. It can be a maximum of 80 characters.
type is a number that defines the push buttons offered to the user and the icon displayed in the dialog
box. It can be one of the following button types and one of the icon types added together.
The choices for buttons are:

OKButton (0) - OK button.
OKCancelButton (1) - OK and Cancel Buttons
AbortIgnoreRetryButton (2) - Abort, Ignore and Retry Buttons
YesNoCancelButton (3) - Yes, No and Cancel Buttons
YesNoButton (4) - Yes and No Buttons
RetryCancelButton (5) - Retry and Cancel Buttons

The choices for icons are:
HandIcon (16) - The hand
QuestionIcon (32) - Question mark
ExclamationIcon (48) - Exclamation point
AsteriskIcon (64) - Asterisk

Title is the title for the message box. The default title is "Ami Pro Macro".

Return Value
This function returns:

a number representing the button pressed:
OK (1) - OK button
Cancel (2) - Cancel button
Abort (3) - Abort button
Retry (4) - Retry button
Ignore (5) - Ignore button
Yes (6) - Yes button
No (7) - No button

Example
FUNCTION Example()
Answer = MultiDecide("Do you want to close this file?", (4 + 32))
IF Answer = 6
FileChanged(1, 0)
FileClose()
ENDIF
END FUNCTION

See also:

Decide, DialogBox, Message, Query$, UserControl

New
This function is equivalent to choosing the File/New dialog box.

Syntax
New(Style, WithContents, Options)
Style is the file name of the style sheet to use with the new file.
WithContents determines whether the new file is created with the paragraph style sheet contents and
can be one of the following:

NoContents (0) - Do not bring in contents of paragraph style sheet
WithContents (1) - Bring in contents with paragraph style sheet

Options determines whether the new file is placed in a new Multiple Document Interface (MDI) window or
replaces the currently active document. It can be one of the following values:

0 - Open another window for the new file
128 - Close the current document
512 - Do not run the macro associated with the style sheet, if one exists
1024 - Show the style sheets by description rather than file name when the New dialog box displays

If the ReplaceCurrent option is used and a document is already open, then the new file replaces the
current document in the selected window. If the ReplaceCurrent option is set, then any documents
opened thereafter have this option set. To display the New File dialog box and allow the user to choose
the paragraph style sheet and with contents options: New

Return Value
This function returns:

1    (TRUE) if the new file was created.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the file was not created.

Example
FUNCTION Example()
New("~MACRO.STY", 1, 0)
END FUNCTION

See also:

FileOpen, GetOpenFileName$

NewWindow
This function creates a new window with the same name as the active window. If the active window
contains a saved Ami Pro file, the new window contains a read only copy of that file. Choosing this
function is equivalent to choosing Window/New Window.

Syntax
NewWindow()

Return Value
This function returns:

1    (TRUE) if the new window was created.
-2    (GeneralFailure) if the new window was not created.

Example
FUNCTION Example()
Text = UCASE$(Left$(Query$("What action to take (Tile, Cascade, New, Select) on MDI Windows?"),
1))
SWITCH Text
CASE "T"
TileWindow()
CASE "C"
CascadeWindow()
CASE "N"
NewWindow()
CASE "S"
SelectWindow(Query$("Name of window to select (Name must match EXACTLY)?"))
default
Message("Only the proposed options are available.")
ENDSWITCH
END FUNCTION

CascadeWindow, NextWindow, TileWindow, SelectWindow

NextWindow
This function changes the active document window to the next document window. Choosing this function
is equivalent to pressing the CTRL+TAB accelerator.

Syntax
NextWindow()

Return Value
This function does not return a value.

Example
FUNCTION Example()
NextWindow()
END FUNCTION

See also:

CascadeWindow, NewWindow, TileWindow, SelectWindow

NoHyphenation
This function sets the no hyphenation attribute for selected text or for all following text if no text is
selected. It acts as a toggle, turning off the attribute if it is currently on or turning on the attribute if it is
currently off. Choosing this function is equivalent to choosing Edit/Mark Text/No Hyphenation.

Syntax
NoHyphenation()

Return Value
This function returns:

1    (TRUE) if the change of hyphenation was successful.
-2    (GeneralFailure) if the change of hyphenation was not successful.

Example
FUNCTION Example()
NoHyphenation()
END FUNCTION

See also:

ProtectedText

NormalText
This function removes attributes for selected text or for all following text if no text is selected. Choosing
this function is equivalent to choosing Text/Normal.

Syntax
NormalText()

Return Value
This function returns:

1    (TRUE) if the attributes were removed from the text.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
String = "This is a line of text.[Enter]"
NormalText()
TYPE("Normal...[Enter]{String}")
BOLD(1)
TYPE("Bold...[Enter]{String}")
BOLD(0)
Italic(1)
TYPE("Italics...[Enter]{String}")
Italic(0)
Underline()
TYPE("Underline...[Enter]{String}")
Underline()
WordUnderline(1)
TYPE("Word Underline...[Enter]{String}")
WordUnderline(0)
Bold()
Underline(1)
Italic()
TYPE("Bold, Underline, Italics...[Enter]{String}")
NormalText()
TYPE("Normal...[Enter]{String}")
END FUNCTION

See also:

Bold, Italic, Underline, WordUnderline

Notes
This function opens a note at the current insertion point and allows the user to type the contents. It is the
equivalent to choosing Edit/Insert/Note. This function does not insert or delete notes automatically.
To set the user initials for notes and the default note color, refer to the UserSetup function.

Syntax
Notes()

Return Value
This function returns:

1    (TRUE) if the note function was completed.
-2    (GeneralFailure) if the notes function was not completed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
Notes()
END FUNCTION

See also:

InsertNote, UserSetUp

Now
This function returns the current date and time to the number of seconds since January 1, 1970.

Syntax
Now()

Return Value
This function returns:

a number corresponding to the number of seconds that have elapsed since midnight on January 1,
1970.

Example
FUNCTION Example()
Born = Query$("What is your Birthday (MM/DD/YYYY)?")
Date = FormatDate$(Now(), "h")
Time = FormatTime$(Now(), 6)
Days = DateDiff(Born, Date)
TextDate = FormatDate$(Now(), "d")
Message("It is now {Time} on {TextDate}. You are {Days} days old.")
END FUNCTION

See also:

InsertDate, GetTime, FormatDate$, FormatTime$

OnKey
This function sets an accelerator key when you specify an Ami Pro function or a macro name. Any
accelerator key currently set to the specified keystroke is reassigned to the new function or macro. To
reassign the keystroke to its original state, make the second parameter a 0 and the third parameter the
null string (""). Choosing this function is equivalent to choosing Tools/Macros/Edit    and entering keys in
the Playback shortcut keys text box.

Syntax
OnKey(Key, Function, MacroName)
Key is the keystroke to use as an accelerator key, in square brackets.
Function is the Ami Pro function this keystroke should execute. If a macro is to be run, this parameter
should be the null string(""). Do not include parentheses around the function.
MacroName is the name of the macro to be run. If an Ami Pro function is to be executed, this parameter
should be the null string ("").
To cancel this function: OnKey(Key,"","")

Return Value
This function returns:

1    (TRUE) if the accelerator key was assigned.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the accelerator key could not be assigned.

Example
FUNCTION Example()
OnKey([ctrlshifts], SaveAs, "")
END FUNCTION

See also:

ChangeShortcutKey

OnMDIActivate
This function sets a permanent callback function that is called whenever focus changes from one Multiple
Document Interface (MDI) document to another.

Syntax
OnMDIActivate(MacroName[!Function])
MacroName is the name of the macro to run when the focus changes from one Ami Pro document to
another using the MDI interface. This parameter may contain the macro filename and the function to call.
At a minimum, this parameter must contain the macro file name.
Use the null string("") as the MacroName to disable this function.

Return Value
This function returns:

the previously set OnMDIActivate callback function.

Example
FUNCTION Example()
Mac = GetRunningMacroFile$()
OnMDIActivate("{Mac}!Changed") ' Note: filename is required here
END FUNCTION

FUNCTION Changed()
Message(GetOpenFileName$()) ' Just show the new filename
StatusBarMsg("")
END FUNCTION

See also:

NextWindow, RunLater

OpenDataFile
This function opens a merge data file. It does not edit the data file automatically.

Syntax
OpenDataFile(FileName, App)
FileName is the name of the document to open. If the file to be opened is not in the current directory or
document directory, the full path must be used.
App is the Ami Pro file type. To open an Ami Pro file, use the null string ("").

Return Value
This function returns:

1.

Example
FUNCTION Example()
OpenDataFile("senators.sam","")
END FUNCTION

See also:

CreateDataFile, MergeToFile, OpenMergeFile

OpenMergeFile
This function opens a merge document file. The user can insert additional field names into the document,
continue the merge, or select a data file.

Syntax
OpenMergeFile(FileName, Options, App)

FileName is the name of the document to open. If the file to be opened is not in the current directory or
document directory, the full path must be used. To open the 'Untitled' file, use the null string ("") as the file
name.
Options is a number corresponding to the options for the file you open. To use both options, add them
together.

(1) - required
(128) - Close the current file (must combine with 1)

App is the Ami Pro file type. To open an Ami Pro file, use the null string ("").

Return Value
This function returns:

1.

Example
FUNCTION Example()
OpenMergeFile("Merge.sam", 1, "")
END FUNCTION

See also:

CreateDataFile, MergeToFile, OpenDataFile

OpenPreviousFile1 /    / OpenPreviousFile2 / OpenPreviousFile3 /    /
OpenPreviousFile4OpenPreviousFile5
These functions open one of the last five previously opened Ami Pro files. The function
OpenPreviousFile1 is the most recently opened file and OpenPreviousFile5 is the oldest file. Choosing
these functions are equivalent to choosing File/#, where # is the number to the left of the file name to
open at the bottom of the File menu.
The number of recently open files to display may be set using the UserSetup function.

Syntax
OpenPreviousFile1()
OpenPreviousFile2()
OpenPreviousFile3()
OpenPreviousFile4()
OpenPreviousFile5()

Return Value
This function returns:

0 (FALSE) if the user cancels the function or if no action is taken.
1 (TRUE) if the file is opened.
-2 (GeneralFailure) if the file is not opened.

Example
FUNCTION Example()
OpenPreviousFile1()
END FUNCTION

See also:

UserSetup

OutlineLevels
This function changes the number of displayed outline levels. The number of levels set are the number of
levels printed if the document is printed. Choosing this function is equivalent to clicking the icon for the
number of outline levels while in Outline Mode.
You must be in Outline Mode to use this function.

Syntax
OutlineLevels(Levels)
Levels is the number of outline levels to display.

Return Value
This function returns:

1.

Example
FUNCTION Example()
Levels=Query$("Levels?")
OutlineLevels(Levels)
END FUNCTION

See also:

OutlineStyle

OutlineMode
This function changes the current Multiple Document Interface (MDI) document in Ami Pro from Draft
Mode or Layout Mode to Outline Mode. Choosing this function is equivalent to choosing View/Outline
Mode.

Syntax
OutlineMode()

Return Value
This function returns:

1    (TRUE) if the view mode was changed.
0    (NoAction) if no action was taken because Ami Pro is already in the mode selected.

Example
FUNCTION Example()
IF GetMode() != 48
OutlineMode()
ENDIF
END FUNCTION

See also:

DraftMode, LayoutMode, EnlargedView, FacingView, FullPageView, GetMode, GetViewLevel,
StandardView, OutlineMode

OutlineStyle
This function assigns outline styles and options to paragraph styles. Choosing this function is equivalent
to choosing Style/Outline Styles.

Syntax
OutlineStyle(Count[, Style, Level, Options, BulletText])
Count is the number of levels to which you assign styles.
The remaining parameters depend on Count. An entire set of the optional parameters must be present for
the number of levels defined by the Count parameter.
Style is the paragraph to which you want to assign a style.
Level is the outline level in which the style is assigned.
Options is the reset options for each outline level. It is one of the following values:

0 = Do not reset
2 = Reset after a higher level
4 = Reset after an intervening style
8 = Turn on cumulative numbering

The Reset after a higher level and Reset after an intervening style options cannot be used together.
However, the cumulative numbering value can be combined with either of the other values.
BulletText is the leading text for the paragraph. The BulletText parameter specifies the text, bullets, or
numbers which must precede each paragraph using this paragraph style. The text must be typed as it
would appear in the edit box in the Style/Modify Style/Bullets & numbers dialog box. Bullets can be
inserted by typing the following text where the bullet should be placed:

<·1> - Small    Round Bullet
<·2> - Large    Round Bullet
<·3> - Small    Square Bullet
<·4> - Large    Square Bullet
<·5> - Large    Outline Square Bullet
<·6> - Small    Diamond Bullet
<·7> - Large    Diamond Bullet
<·8> - Small    Open Circle Bullet
<·9> - Large    Open Circle Bullet
<·10> - Check    Mark
<·11> - Tack
<·12> - Square shadow below bullet
<·13> - Square shadow above bullet
<·14> - Check box
<·15> - Square with X bullet
<·16> - Rounded arrowhead top shaded
<·17> - Rounded arrowhead bottom shaded

To type the dot in front of the bullet number, turn on Num Lock, hold the ALT key, and type 0183, and
release the ALT key. Numbers can be inserted by typing the following text where the number should be
inserted:

<#1> - 1 2 3 4 5...
<#2> - A B C D E...
<#3> - a b c d e...
<#4> - I II III IV V...
<#5> - i ii iii iv v...

<#6> - * ** *** ****...
<#7> - (dagger characters)...

Return Value
This function returns:

1    (TRUE) if the outline style is created.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
OutlineStyle(1, "Body Text", 1, 4, <·17>)
END FUNCTION

See also:

ModifyStyle

PageBreak
This function inserts or removes a page break at the insertion point. Choosing this function is equivalent
to choosing Page/Breaks.

Syntax
PageBreak(Function)
Function is the page break function desired. The Function parameter defines the page break function to
use, according to the following list:

InsBreak (1) - Insert page break
DelBreak (2) - Delete page break
CenterBreak (3) - Insert vertically-centered page break
InsColBreak (4) - Insert column break
DelColBreak (5) - Delete column break

To display the Page Breaks dialog box and allow the user to choose the page break options: PageBreak

Return Value
This function returns:

1    (TRUE) if the page break was inserted or removed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the break was not inserted or removed.

Example
FUNCTION Example()
PageBreak(1)
END FUNCTION

See also:

InsertLayout

PageDown
This function moves the insertion point down one page. Choosing this function is equivalent to clicking the
PageDown icon on the status bar.

Syntax
PageDown()

Return Value
This function returns:

1.

Example
FUNCTION Example()
PageDown()
END FUNCTION

See also:

PageUp, TYPE

PageNumber
This function is equivalent to choosing Page/Page Numbering.

Syntax
PageNumber(Text, StartOn, StartNum, Style)
Text is the leading text to use for the page number. If no leading text is used, this parameter should be
the null string ("").
StartOn is the page number to start the numbering on.
StartNum is the number to use for the first numbered page.
Style is the numbering style to use for the number and can be one of the following:

1 - 1, 2, 3, 4, 5
I - I, II, III, IV, V, VI
i - i, ii, iii, iv, v, vi
A - A, B, C, D, E, F
a - a, b, c, d, e, f

To display the Page Numbering dialog box and allow the user to choose the page number: PageNumber

Return Value
This function returns:

1    (TRUE) if the page number was inserted.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the number was not inserted.

Example
FUNCTION Example()
PageNumber("Page", 1, 1, 1)
END FUNCTION

See also:

LineNumber

PageUp
This function moves the insertion point up one page. Choosing this function is equivalent to clicking the
PageUp icon on the status bar.

Syntax
PageUp()

Return Value
This function returns:

1.

Example
FUNCTION Example()
PageUp()
END FUNCTION

See also:

PageDown, TYPE

Paste
This function pastes the contents of the clipboard at the location of the insertion point. Choosing this
function is equivalent to choosing Edit/Paste.

Syntax
Paste()

Return Value
This function returns:

1    (TRUE) if the text was pasted.
-2    (GeneralFailure) if the text could not be pasted or if there was no text to paste.

Example
FUNCTION Example()
Stuff = Query$("Enter what you want put on the clipboard:")
ClipboardWrite(Stuff, 1)
CALL Example2()
END FUNCTION

FUNCTION Example2()
Paste()
TYPE("[Enter]Should look exactly like the line below:[Enter]")
TYPE(ClipboardRead(1))
END FUNCTION

See also:

Copy, Cut, CurChar$, CurWord$, CurShade$

Pause
This function allows the macro to pause for a set period of time before continuing.

Syntax
Pause(Time)
Time is the amount of time to pause, in tenths of seconds.

Return Value
This function does not return a value.

Example
FUNCTION Example()
TYPE("Hello...")
PAUSE(030)
TYPE("There!")
END FUNCTION

See also:

DarkMode, HourGlass, RunLater, GetTime

PhysicalToLogical
This function returns the logical page number in a master document, given the physical page number.

Syntax
PhysicalToLogical(Page)
Page is the page number that appears when the file is opened for viewing.

Return Value
This function returns:

the logical page number (the number that actually prints in a master document print).
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
Count = GetBookMarkCount()
IF Count > 0
 DIM Bookmarks(Count)
 GetBookMarkNames(&Bookmarks)
 DeleteMenu(1, "&Bookmarks")
 AddMenu(1, "&Bookmarks")
 FOR I = 1 to Count
 ThisBookmark = Bookmarks(I)
 AddMenuItem(1, "&Bookmarks", ThisBookmark, "{MacFile}!Example2({ThisBookmark})",
ThisBookmark)
 NEXT
ELSE
 Message("No bookmarks in this document!")
ENDIF
END FUNCTION

FUNCTION Example2(Bkmk)
MarkBookMark(Bkmk, FindBookmark)
PhysicalPage = GetBookMarkPage(Bkmk)
LogicalPage = PhysicalToLogical(GetBookMarkPage(Bkmk))
Message("{Bkmk} is on physical page {PhysicalPage} and logical page {LogicalPage}.")
END FUNCTION

See also:

GetBookMarkPage, GetFmtPageStr$

PrintEnvelope
This function displays the Print Envelope dialog box. This function does not automatically print the
envelope. Choosing this function is equivalent to choosing File/Print Envelope.

Syntax
PrintEnvelope()

Return Value
This function returns:

1.

Example
FUNCTION Example()
PrintEnvelope()
END FUNCTION

See also:

FilePrint, PrintSetup

PrintOptions
This function sets print options to use for print and merge. If this function is not used before printing and
merging, the default options are used for printing the document. Choosing this function is equivalent to
choosing File/Print/Options.

Syntax
PrintOptions(Flag, FirstBin, RestBin)
Flag is a number which defines the value of other print options and may be one or more of the following:

(1) - Prints all pages of document.
(2) - Prints the document in reverse order.
(4) - Collate multiple copy output.
(16) - Prints the document with crop marks.
(32) - Prints the document description along with the document.
(64) - Prints document on pre-printed forms. Do not print protected text.
(128) - Update power fields when printing.
(256) - Prints the document with notes.
(512) - Prints only even pages.
(1024) - Prints only odd pages.
(1536) - Prints both even and odd pages of the document.
(2048) - Prints the document without pictures. To print with pictures do not use this value.
(4096) - Prints only the current page.
The desired options should be added together to make up the value of the    flag parameter. The
options for setting the sheet feeder bin cannot be set with this command. To set the bins, use the
PrintOptions function. If the PrintOptions function is not used, Ami Pro uses the bins specified in the
Control Panel.

FirstBin is a number representing the sheet feeder bin to use for the first page of the document.
RestBin is a number representing the sheet feeder bin to use for the remaining pages of the document.
To display the Merge dialog box and allow the user to set print options for merge: Merge
To display the Print dialog box and allow the user to set print options for print: Print

Return Value
This function returns:

1    (TRUE) if the print options were set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the print options were not set.

Example
FUNCTION Example()
PrintSetup("PostScript Printer")
PrintOptions(1537, 1, 1)
END FUNCTION

See also:

FilePrint, Merge, MergeMacro, MergeToFile

PrintSetup
This function selects a new printer and printer port for the current document. Choosing this function is
equivalent to choosing File/Printer Setup.

Syntax
PrintSetup(Printer, Port)
Printer is the name of the printer that must be used for this document.
Port is the name of the port where the printer is attached.
To display the Printer Setup dialog box and allow the user to select the name of the printer to use or to
allow the printer to be configured: PrintSetup

Return Value
This function returns:

1    (TRUE) if the named printer was successfully selected for the document.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the printer name was incorrect.

Example
FUNCTION Example()
PrintSetup("Apple LaserWriter II NTX", "LPT1:")
PrintOptions(1537, 1, 1)
END FUNCTION

See also:

ControlPanel, FilePrint

ProtectCells
This function sets protection of the selected table cells. It acts as a toggle, turning off the protection if it is
currently on or turning on the protection if it is currently off. Choosing this function is equivalent to
choosing Table/Protect Cells.
You must be in a table to use this function.

Syntax
ProtectCells()

Return Value
This function returns:

1    (TRUE) if the cells were protected or unprotected.
-2    (GeneralFailure) if the cells could not be protected or unprotected or if the program was not in   
tables mode.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
ProtectCells()
END FUNCTION

See also:

TableLayout, Tables, ConnectCells

ProtectedText
This function sets protection for selected text or for all following text if no text is selected. It acts as a
toggle, turning off the protection if it is currently on or turning on the protection if it is currently off.
Choosing this function is equivalent to choosing Edit/Mark Text/Protected Text.

Syntax
ProtectedText()

Return Value
This function returns:

1    (TRUE) if the text was protected.
-2    (GeneralFailure) if the text was not protected or unprotected.

Example
FUNCTION Example()
WHILE "" = CurShade$()
UserControl("Shade the text you want to modify...")
WEND
ProtectedText()
END FUNCTION

See also:

ConnectCells, ProtectCells

Query$
This function displays a Windows Message box with a specified prompt and an edit box for the user to
enter string data to be sent back to the macro.

Syntax
Query$(Prompt[, Text])
Prompt is a string passed as a prompt to the user. It can be up to 80 characters long.
Text is an optional parameter which displays in the edit box as a default.

Return Value
This function returns:

 the string typed by the user.
 null string ("") if the user does not type anything.

If the user chooses Cancel instead of OK, the macro executes the ONCANCEL routine (if one has been
defined.)

Example
FUNCTION Example()
DEFSTR x, y, x2, y2;'Pre-define the variables to be used
AppGetWindowPos("Program Manager", &x, &y, &x2, &y2)
'Get Program Manager's current (restored) position
AppRestore("Program Manager")'Restore Program Manager
x = Query$("New X pos of upper-left corner (in twips)?", x)
'Get horizontal starting point
y = Query$("New Y pos of upper-left corner (in twips)?", y)
'Get vertical starting point
x2 = Query$("New width of window (in % of Screen Size)?")
'Get window width
y2 = Query$("New height of window (in % of Screen Size)?")
'Get window height
AppMove("Program Manager", x, y)'Move to the new position
AppSize("Program Manager", x2, y2)'Size the window accordingly
END FUNCTION

See also:

Decide, DialogBox, Message, MultiDecide, UserControl

QuickAddCol
This function sums a column and places the results in the current cell. Choosing this function is equivalent
to choosing Table/Quick Add/Column.

Syntax
QuickAddCol()

Return Value
This function returns:

1    (TRUE) if the column was added.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
QuickAddCol()
END FUNCTION

See also:

SetFormula, EditFormula, QuickAddRow

QuickAddRow
This function sums a row and places the results in the current cell. Choosing this function is equivalent to
choosing Table/Quick Add/Row.

Syntax
QuickAddRow()

Return Value
This function returns:

1    (TRUE) if the row was added.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
QuickAddRow()
END FUNCTION

See also:

SetFormula, EditFormula, QuickAddCol

ReadMail
This function allows you to view any messages that have been received. Choosing this function is
equivalent to clicking the mail button on the status bar (to the right of the Insert/Type/Rev button). If the
mail server is running, the server is activated so you can view the mail that has been received.
This function is only available if a mail server compatible with Ami Pro is installed.

Syntax
ReadMail()

Return Value
This function returns:

1    (TRUE) if the mail server was activated to view the mail.
0    (NoAction) if the mail server was not running or if there is no mail.

Example
FUNCTION Example()
ReadMail()
END FUNCTION

See also:

SendMail

RecClose
This function closes the data file that was opened by the RecOpen function.

Syntax
RecClose(Handle)
Handle is the file ID handle returned by the RecOpen function.

Return Value
This function returns:

1    (TRUE) if the data file was closed.
-2    (GeneralFailure) if the data file could not be closed.

Example
FUNCTION Example()
Handle = RecOpen("TEST.SAM", "")
NumFields = RecFieldCount(Handle)
TYPE("There are {NumFields} fields:")
FOR I = 1 to NumFields
TYPE(RecFieldName$(Handle, I))
NEXT
FOR I = 1 to NumFields
TYPE(RecGetField(Handle, I))
NEXT
RecClose(Handle)
END FUNCTION

See also:

RecFieldCount, RecGetField, RecNextRec, RecOpen, RecFieldName$

RecFieldCount
This function counts the number of fields in the specified data file.

Syntax
RecFieldCount(Handle)
Handle is the file ID handle returned by the RecOpen function.

Return Value
This function returns:

the number of fields in the data file.
-2    (GeneralFailure) if the number of fields could not be determined.

Example
FUNCTION Example()
Handle = RecOpen("TEST.SAM", "")
NumFields = RecFieldCount(Handle)
TYPE("There are {NumFields} fields:")
FOR I = 1 to NumFields
TYPE(RecFieldName$(Handle, I))
NEXT
FOR I = 1 to NumFields
TYPE(RecGetField(Handle, I))
NEXT
RecClose(Handle)
END FUNCTION

See also:

RecGetField, RecNextRec, RecOpen, RecFieldName$, RecClose

RecFieldName$
This function retrieves the name of the field for the specified field number.

Syntax
RecFieldName$(Handle, FieldNumber)
Handle is the file ID handle returned by the RecOpen function.
FieldNumber is the number of the field name to retrieve from the field names paragraph in the data file.

Return Value
This function returns:

a string containing the requested field name.
-2    (GeneralFailure) if the field name could not be extracted.

Example
FUNCTION Example()
Handle = RecOpen("TEST.SAM", "")
NumFields = RecFieldCount(Handle)
TYPE("There are {NumFields} fields:")
FOR I = 1 to NumFields
TYPE(RecFieldName$(Handle, I))
NEXT
FOR I = 1 to NumFields
TYPE(RecGetField(Handle, I))
NEXT
RecClose(Handle)
END FUNCTION

See also:

RecFieldCount, RecGetField, RecNextRec, RecOpen, RecClose

RecGetField
This function retrieves the contents of the specified field in the current record.

Syntax
RecGetField(Handle, FieldNumber)
Handle is the file ID handle returned by the RecOpen function.
FieldNumber is the number of the field to retrieve from the current record in the data file.

Return Value
This function returns:

the contents of the specified field.
-2    (GeneralFailure) if the contents could not be retrieved.

Example
FUNCTION Example()
Handle = RecOpen("TEST.SAM", "")
NumFields = RecFieldCount(Handle)
TYPE("There are {NumFields} fields:")
FOR I = 1 to NumFields
TYPE(RecFieldName$(Handle, I))
NEXT
FOR I = 1 to NumFields
TYPE(RecGetField(Handle, I))
NEXT
RecClose(Handle)
END FUNCTION

See also:

RecFieldCount, RecNextRec, RecOpen, RecFieldName$, RecClose

RecNextRec
This function advances the record pointer to the next record in the specified data file.

Syntax
RecNextRec(Handle)
Handle is the file ID handle returned by the RecOpen function.

Return Value
This function returns:

0    if the action was successful.
-1    if the end of the file was reached.

Example
FUNCTION Example()
Handle = RecOpen("data.sam", "") ' open the data file
If Handle < 1 ' quit if failed to open
 exit function
ENDIF
Field1 = RecFieldName$(handle, 1) ' get the field name for field 1
while (RecNextRec(handle) <> -1) ' read until end of the file
 data = recgetfield(handle, Field1) ' get the value of field1
 message(data) ' display the value
WEND
RecClose(Handle) ' close the data file when finished
END FUNCTION

See also:

RecFieldCount, RecGetField, RecOpen, RecFieldName$, RecClose

RecOpen
This function allows you to open an existing data file.

Syntax
RecOpen(FileName, Description[, Options])
FileName is the name of the data file to open.
Description is the description file. If the data file is an Ami Pro document, the description is the null string
("").
Options is the filter type when import filters are used to read the data file.

Return Value
This function returns:

a positive number if the record is opened.
0    (FALSE) if the record is not opened.

Example
FUNCTION Example()
Handle = RecOpen("TEST.SAM", "")
NumFields = RecFieldCount(Handle)
TYPE("There are {NumFields} fields:")
FOR I = 1 to NumFields
TYPE(RecFieldName$(Handle, I))
NEXT
FOR I = 1 to NumFields
TYPE(RecGetField(Handle, I))
NEXT
RecClose(Handle)
END FUNCTION

See also:

RecFieldCount, RecGetField, RecNextRec, RecFieldName$, RecClose

RemoveLayout
This function deletes the page layout for the current page. The page layout for the previous page is
effective for the current page. If the page layout deleted was for the first page, the original (default) page
layout is in effect. Choosing this function is equivalent to choosing Page/Insert Page Layout/Remove.
You must be in Layout Mode to use this function.

Syntax
RemoveLayout()

Return Value
This function returns:

1    (TRUE) if the page layout was deleted.
-2    if the page layout was not removed.
0    (NoAction) if no action was taken.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IF Decide("This will remove the current page layout. Continue?")
 RemoveLayout()
ENDIF
END FUNCTION

See also:

InsertLayout, RevertLayout

RenameDocInfoField
This function renames the eight user defined document info fields. Choosing this function is equivalent to
choosing File/Doc Info, selecting Other Fields, and then selecting Rename Fields.

Syntax
RenameDocInfoField(FieldNumber, Field)
FieldNumber is the number of the field to rename. The first field number is 0.
Field is the new name for the field.
To display the Document Info dialog box and allow the user to choose names for the fields DocInfo

Return Value
This function returns:

1    (TRUE) if the new document info field name was saved.
-2    (GeneralFailure) if the name was not saved.

Example
FUNCTION Example()
FieldNum = Query$("What field do you want to rename?")
FieldName = Query$("What do you want to rename field #{FieldNum} to?")
RenameDocInfoField(FieldNum, FieldName)
END FUNCTION

See also:

DocInfo, InsertDocInfo

RenameMenuItem
This function gives a new name to an existing menu item. RenameMenuItem does not change the
functionality of the menu item, but simply gives it a new name. The new name displays the next time the
user displays the pulldown menu.

Syntax
RenameMenuItem(BarID, Menu[, CascadeMenu], OldName, NewName)
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.
Menu is the name of the pull down menu which contains the item you wish to rename. This must match
exactly the name of the pull down menu you want to modify, including any ampersand (&) characters. in
the name of the menu.
CascadeMenu is the optional Cascade menu name which contains the item you wish to rename. This
must match exactly the name of the cascade menu you want to modify, including any ampersand (&)
characters, in the name of the menu.
OldName is the current name of the menu item.
NewName is the new name to use for the menu item.

Return Value
This function returns:

1    (TRUE) if the item was successfully renamed.
0    (FALSE) if the item could not be found.

Example
FUNCTION Example()
RenameMenuItem(1, "&File", "E&xit", "&Quit")
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenu, DeleteMenuItem, GrayMenuItem, ShowBar

Replace
This function finds and optionally replaces text or paragraph styles in a document. Choosing this function
is equivalent to choosing Edit/Find & Replace. If the macro replaces all the occurrences of a phrase or
paragraph style, the macro works as if the user initiated Find & Replace and issued the Replace All
command. If the ReplaceAll flag is not used, this function finds the first occurrence of the target phrase
and continues with the macro. If the ReplaceAll flag is not used, this function does not perform a
replacement.
The Replace function is not interactive. If an interactive Find & Replace is desired, the FindReplace
function should be used. A macro must be edited to insert this non-recordable function.

Syntax
Replace(SourceAttr, DestAttr, Flag, FindString, ReplaceString)
SourceAttr is the attribute combination for the source string and can be one or more of the following:

NormalAttr (0) - Text without any attributes
BoldText (4) - Bold    Text
ItalicText (8) - Italicized text
UnderlineText (16) - Underlined text
WordUnderlineText (32) - Word underlined text
SmallCaps (-32768) - Small caps text

Multiple attributes can be specified by adding the values for the attributes together.
DestAttr is the attribute combination for the destination string and can be one or more of the following:

NormalAttr (0) - Text without any attributes
BoldText (4) - Bold    Text
ItalicText (8) - Italicized text
UnderlineText (16) - Underlined text
WordUnderlineText (32) - Word underlined text
SmallCaps (-32768) - Small caps text

Multiple attributes can be specified by adding the values for the attributes together.
Flag is a flag which defines the options for the Find & Replace and can be one or more of the following:

FindExact (1) - Find only text with same capitalization as typed in search string
FindStyles (2) - Find/replace paragraph styles instead of text
FindWholeWord (4) - Find whole words only
FindBackwards (8) - Find from the current cursor position to the beginning of the document
ReplaceExact (16) - Replace using capitalization specified for replace string
ReplaceExactAttr (32) - Replace using attributes specified, rather than as found
FindExactAttr (64) - Find only text with same attributes as specified
ReplaceAll (1024) - Replace all occurrences without stopping for confirmation
FindFromPage1 (8192) - Start search on page 1 of document
FindCurrentStream (16384) - Find only in the current text stream.

Note: Setting this option turns off the option to search in other text streams, unlike the other flags,
which turn on the option.

Multiple options can be specified by adding values together.
FindString is the string or paragraph style to search for.
ReplaceString is the string or paragraph style name to replace with. If the ReplaceAll flag is not used,
this parameter is ignored.
To display the Find/Replace dialog box and allow the user to determine the parameters for the find and
replace operation: FindReplace

Return Value
This function returns:

1    (TRUE) if the find/replace function was successful.
 -7    (EndFile) if the end of the file was reached or if no match was found. Since a global replacement
always reaches the end of the file, this function always returns EndFile if the ReplaceAll option is
used.
-6      (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IF CurShade$() = ""
 FindReplace()
ELSE
 Replace(0, 0, 0, CurWord$(), "")
ENDIF
END FUNCTION

See also:

FindReplace, GoToCmd, GoToShade

Restore
This function restores the Ami Pro window to the size of the last non-full screen window. Choosing this
function is equivalent to choosing System/Restore.

Syntax
Restore()

Return Value
This function does not return a value.

Example
FUNCTION Example()
Restore()
END FUNCTION

See also:

Maximize, Minimize

Revert
This function cancels changes made to the document since it was last saved and displays the previously
saved version of the document. Choosing this function is equivalent to choosing File/Revert to Saved.
Normally, the user is given a chance to abort the revert. If you want to avoid this message in your macro,
use the Messages function to turn off messages before using this function.

Syntax
Revert()

Return Value
This function returns:

1    (TRUE) if the file successfully reverted to the previous version.
-2    (GeneralFailure) if the file could not be reverted.

Example
FUNCTION Example()
Revert()
END FUNCTION

See also:

Messages, Save, SaveAs

RevertLayout
This function restores the original page layout to the layout for the current page. Choosing this function is
equivalent to choosing Page/Insert Page Layout/Revert.

Syntax
RevertLayout()

Return Value
This function returns:

1    (TRUE) if the page layout was successfully reverted.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
RevertLayout()
END FUNCTION

See also:

InsertLayout, RemoveLayout

ReviewRevisions
This function initiates Revision Marking Review. If any revisions are found, the Review Revision Marking
dialog box is displayed and the user may decide whether to accept, cancel, or skip the revision. This
function does not accept or cancel a revision automatically. Choosing this function is equivalent to
choosing Tools/Revision Marking/Review Rev.

Syntax
ReviewRevisions()

Return Value
This function returns:

1    (TRUE) if the mode was changed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the mode could not be changed.

Example
FUNCTION Example()
ReviewRevisions()
END FUNCTION

See also:

RevisionMarking, RevisionMarkOpts

RevisionInsertion
This function marks selected text as a revision insertion. Choosing this function is equivalent to choosing
Edit/Mark Text/Revision Insertion.

Syntax
RevisionInsertion()

Return Value
This function returns:

1    (TRUE) if the revision was accepted.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
WHILE ""<>CurShade$()
UserControl ("Select text to revision insert...")
WEND
RevisionInsertion()
END FUNCTION
RevisionMarking,, ReviewRevisions

RevisionMarking
This function turns revision marking on or off and lets you determine what revision marking function to
perform. Choosing this function is equivalent to choosing Tools/Revision Marking.

Syntax
RevisionMarking(Which, State)
Which defines which function to perform and can be one of the following:

MarkRevisions (1) - Changes the revision state only
ReviewRevisions (2) - Step through each revision mark from the beginning of the document
AcceptRevisions (3) - Accept all revisions in the document
CancelRevisions (4) - Cancel all revisions in the document

State is a flag which determines if revision marking is in effect and can be one of the following:
RevOn (1) - Turn on revision marking
RevOff (0) - Turn off revision marking

To display the Revision Marking dialog box and allow the user to select the revision marking function:
RevisionMarking

Return Value
This function returns:

1    (TRUE) if the changes were accepted.
0    (UserCancel/FALSE) if the user canceled the function or if no action was taken.

Example
FUNCTION Example()
RevisionMarkOpts(RevItalic, ColorOn, 16711680, RevStrikeThru, 0, ColorOn, 255, RevBars, 0,
RevMarkRightLeft)
RevisionMarking(1, 1)
END FUNCTION

See also:

RevisionMarkOpts, RevisionInsertion, ReviewRevisions

RevisionMarkOpts
This function is used to set the attributes and colors for marking insertions and deletions for revision
marking. Options may also be changed for showing marks in margins. Choosing this function is
equivalent to choosing Tools/Revision Marking/Options.

Syntax
RevisionMarkOpts(InsFlag, InsUseColor, InsColor, DelFlag, DelChar, DelUseColor, DelColor, MarksFlag,
MarksChar, Position)
InsFlag defines which attributes to use for marking insertions and can be one of the following:

RevNoAttribute (0) - No attribute set for marking insertions
RevBold (1) - Use bold attribute for marking insertions
RevItalic (2) - Use italic attribute for marking insertions
RevbUnderline (3) Use underline attribute for marking insertions
RevDblUnderline (4) - Use double underline attribute for marking insertions

InsUseColor defines if color is to be used for marking insertions and can be one of the following:
ColorOn (1) - Use color
ColorOff (0) - Do not use color

InsColor is the color to use for marking insertions and can be one of the following:
White (16777215)
Cyan (16776960)
Yellow (65535)
Magenta (16711935)
Green (65280)
Red (255)
Blue (16711680)
Black (0)

DelFlag defines which attributes to use for marking deletions and can be one of the following:
RevNoAttribute (0) - No attribute set for marking deletions
RevStrikeThru (1) - Strike through the delete characters
RevOverstrike (2) - Use the DelChar parameter to overstrike the deleted characters

DelChar is the overstrike character to use for marking deletions.
DelUseColor sets the flag if color is to be used for marking deletions and can be one of the following:

ColorOn (1) - Use color
ColorOff (0) - Do not use color

DelColor is the color to use for marking deletions and can be one of the following:
White (16777215)
Cyan (16776960)
Yellow (65535)
Magenta (16711935)
Green (65280)
Red (255)
Blue (16711680)
Black (0)

MarksFlag defines the kind of mark used to show marks in margins. It is one of the following values:
RevNoAttribute (0) - No attribute set for showing marks in margins
RevBars (1) Use revision bar when showing marks in margins

RevChar (2) Use the MarksChar to show marks in margins
MarksChar is the character used for showing marks in margins.
Position defines in which margin the marks indicator is displayed and can be one of the following:

RevMarkLeft (0) - Show marks in left margin
RevMarkRight (1) - Show marks in right margin
RevMarkRightLeft (2) - Show marks for even pages in the left margin and odd pages in the right
margin

To display the    revision    marking    options dialog box and allow the user to select the options:
RevisionMarkOpts

Return Value
This function returns:

1   
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
RevisionMarkOpts(RevItalic, ColorOn, 16711680, RevStrikeThru, 0, ColorOn, 255, RevBars, 0,
RevMarkRightLeft)
RevisionMarking(1, 1)
END FUNCTION

See also:

RevisionMarking, ReviewRevisions, RevisionInsertion

Right$
This function retrieves the specified number of characters from the right end of the specified string.

Syntax
Right$(Text, Length)
Text is the string to parse.
Length is the number of characters from the right end of the string to parse.

Return Value
This function returns:

a string containing the specified characters parsed from the original string which may be the null
string.

Example
FUNCTION Example()
DEFSTR Char;
OpenFile = GetOpenFileName$()
I = len(OpenFile)
WHILE "\" != Assign(&Char, MID$(OpenFile, I, 1))
 I = I - 1
WEND
FileName = Right$(OpenFile, (len(OpenFile) - I))
Message("The current file is {FileName}.")
END FUNCTION

See also:

Left$, MID$, Instr, LEN

RightAlign
This function acts as a toggle to turn right alignment on or off for a paragraph of text. Choosing this
function is equivalent to choosing Text/Alignment/Right.

Syntax
RightAlign()

Return Value
This function returns:

1    (TRUE) if the text was right aligned, or if alignment was removed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
String = "This is a line of Text"
Center()'Turn Center On
TYPE("{String} Centered[Enter]")
Center()'Turn Center Off
LeftAlign()'Turn Left Alignment On
TYPE("{String} Left Aligned[Enter]")
LeftAlign()'Turn Left Alignment Off
RightAlign()'Turn Right Alignment On
TYPE("{String} Right Aligned[Enter]")
RightAlign()'Turn Right Alignment Off
Justify()'Turn Jusification On
TYPE("{String} Justified[Enter]")
Justify()'Turn Justification Off
END FUNCTION

See also:

Center, Justify, LeftAlign, NormalText

RightEdge
This function scrolls the document to the right edge of the page without moving the insertion point.
Choosing this function is equivalent to dragging the scroll box on the horizontal scroll bar to the extreme
right using the mouse.

Syntax
RightEdge()

Return Value
This function returns:

0.

Example
FUNCTION Example()
RightEdge()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp, TopOfFile

Round
This function rounds a number to an integer. Values with fractional parts greater than or equal to .5 are
rounded up to the next highest integer value. Those with fractional parts less than .5 are rounded down to
the next lowest integer.

Syntax
Round(Value)
Value is the number to be rounded.

Return Value
This function returns:

an integer.

Example
FUNCTION Example()
Number = Query$("What number do you want to round?")
Round(Number)
END FUNCTION

See also:

Mod, IsNumeric

RunLater
This function allows one macro to start another at a later time. While waiting for the called macro to start,
control is turned back to the user.

Syntax
RunLater(MacroName[!Function[(parm1[, parm2...])]][, Hours:]Minutes[.Seconds])
MacroName is the macro to run at a later time.
Hours is the number of hours to wait before playing back the macro. Minutes is the number of minutes to
wait before playing back the macro. Seconds is the number of seconds to wait before playing back the
macro.

Return Value
This function does not return a value.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
CurrentTime = GetTime()
Message("The current counter is at {CurrentTime}.")
RunLater("{MacFile}!Example2()", 0.10)
END FUNCTION

FUNCTION Example2()
Message("It is now 10 seconds after you pushed ""OK"" in the message box.")
END FUNCTION

See also:

GetTime, Pause

Save
This function saves the currently active document to disk. Choosing this function is equivalent to choosing
File/Save. This function cannot be used to save the Untitled document. You should use the SaveAs
function to save the Untitled document.

Syntax
Save()

Return Value
This function returns:

1    (TRUE) if the file was saved.
0    (UserCancel/FALSE) if the user canceled the function or if the file to be saved was untitled.
-2    (GeneralFailure) if the file was not saved, if the file was password protected and password
verification failed, or if the file was read only.

Example
FUNCTION Example()
IF not Save()
SaveAs("test.sam", 32, "Test file", "")
ENDIF
FileClose()
END FUNCTION

See also:

SaveAs, Revert

SaveAs
This function saves the document on the screen with a different name or filetype. Choosing this function is
equivalent to choosing File/Save As.

Syntax
SaveAs(FileName, Options, Description, App)
FileName is the name of the file to save the document as. This parameter may optionally include a path.
Options are options for saving the file if saving as an Ami Pro document. It is one of the following values:

0 - Ami Pro file or Non-ASCII file
4 - ASCII file
KeepFormat (32) - Keep format
Password (64) - Use password protection
SaveAs12 (128) - Save as Ami Pro release 1.2 format

Password and SaveAs12 values may not be used together. If saving as an Ami Pro Macro file type, use
the KeepFormat value only.
Description is the document description of the new file.
App is the name of the filter that appears in the AMIPRO.INI file.
To display the Save As dialog box and allow the user to choose the name of the file: SaveAs

Return Value
This function returns:

1    (TRUE) if the file was saved.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the file was not saved.

Example
FUNCTION Example()
IF not Save()
SaveAs("test.sam", 32, "Test file", "")
ENDIF
FileClose()
END FUNCTION

See also:

FileOpen, Revert, Save

SaveAsNewStyle
This function saves the current document's paragraph styles to a new paragraph style sheet. Choosing
this function is equivalent to choosing Style/Save as a Style Sheet.

Syntax
SaveAsNewStyle(Name, WithContents, MacroName, RunMacro, Description)
Name is the name to name the new style sheet.
WithContents is a flag that determines whether to save the document's contents in the new paragraph
style sheet and can be one of the following:

1 - Save the contents of the file in the paragraph style sheet
0 - Do not save the file's contents in the paragraph style sheet

MacroName is the name of the macro to run when a new file is opened with the selected paragraph style
sheet.
RunMacro determines whether or not to run MacroName when the new file with the selected paragraph
style sheet is opened. It is one of the following values:

1 - Run the macro
0 - Do not run the macro

Description is the style sheet description.
To display a dialog box to allow the user to select the name for the new paragraph style sheet:
SaveAsNewStyle

Return Value
This function returns:

1    (TRUE) if the paragraph style sheet was saved.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
SaveAsNewStyle("Example.sty", 1)
END FUNCTION

UseAnotherStyle

ScreenDown
This function scrolls the document down one screen without moving the insertion point. Choosing this
function is equivalent to clicking above the scroll box on the vertical scroll bar.

Syntax
ScreenDown()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

Example
FUNCTION Example()
ScreenDown()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenLeft, ScreenRight,
ScreenUp, TopOfFile

ScreenLeft
This function scrolls the document left one screen without moving the insertion point. Choosing this
function is equivalent to clicking to the right of the scroll box on the horizontal scroll bar.

Syntax
ScreenLeft()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

Example
FUNCTION Example()
ScreenLeft()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenRight,
ScreenUp, TopOfFile

ScreenRight
This function scrolls the document right one screen without moving the insertion point. Choosing this
function is equivalent to clicking to the left of the scroll box on the horizontal scroll bar.

Syntax
ScreenRight()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

Example
FUNCTION Example()
ScreenRight()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenUp, TopOfFile

ScreenUp
This function scrolls the document up one screen without moving the insertion point. Choosing this
function is equivalent to clicking below the scroll box on the vertical scroll bar.

Syntax
ScreenUp()

Return Value
This function returns:

1    (TRUE) if the document was able to scroll.
-2    (GeneralFailure) if the document could not be scrolled.

Example
FUNCTION Example()
ScreenUp()
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, TopOfFile

SelectColumn
This function selects an entire column in a table. The column that contains the insertion point is selected.
Choosing this function is equivalent to choosing Table/Select Column.
The insertion point must be located in the table before trying to select a column in the table.

Syntax
SelectColumn()

Return Value
This function returns:

1 (TRUE) if the column is selected.
0 (NoAction) if no action is taken. The table may not exist or may not be selected.

Example
FUNCTION Example()
SelectColumn()
END FUNCTION

See also:

SelectEntireTable, SelectRow

SelectEntireTable
This function selects the entire table. Choosing this function is equivalent to choosing Table/Select Entire
Table.
The table must contain the insertion point previous to performing this function.

Syntax
SelectEntireTable()

Return Value
This function returns:

1 (TRUE) if the entire table is selected.
0 (NoAction) if no action is taken. The table may not exist or may not be selected.

Example
FUNCTION Example()
SelectEntireTable()
END FUNCTION

See also:

SelectColumn, SelectRow

SelectFrameByName
This function allows you to select a frame by name. Use the MarkBookMark function to name the frames.

Syntax
SelectFrameByName(FrameName)
FrameName is the name of the frame you want to select.

Return Value
This function returns:

0    if the frame could not be found.

Example
FUNCTION Example()
SelectFrameByName(Query$("Enter the name of the bookmark set to the frame you want to select:"))
END FUNCTION

See also:

MarkBookMark, GoToCmd

SelectRow
This function selects an entire row in a table. The row that contains the insertion point is selected.
Choosing this function is equivalent to choosing Table/Select Row.
The insertion point must be located in the table before trying to select a row in the table.

Syntax
SelectRow()

Return Value
This function returns:

1 (TRUE) if the row is selected.
0 (NoAction) if no action is taken. The table may not exist or may not be selected.

Example
FUNCTION Example()
SelectRow()
END FUNCTION

See also:

SelectColumn, SelectEntireTable

SelectStyle
This function allows the user to select a new paragraph style. Choosing this function is equivalent to
choosing Style/Select a Style. This function does not automatically select a new paragraph style. To have
the macro select a paragraph style for the user, use the SetStyle function.

Syntax
SelectStyle()

Return Value
This function returns:

1    (TRUE) if the new paragraph style was selected.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the paragraph style was not selected.

Example
FUNCTION Example()
SelectStyle()
END FUNCTION

See also:

ModifyStyle, SetStyle, ShowStylesBox, ToggleStylesBox

SelectWindow
This function allows you to give any Multiple Document Interface (MDI) document in Ami Pro the focus
and make it the active document.

Syntax
SelectWindow(FileName)
FileName is the name of the document to get the focus. This name must match the name in the title bar
of the document .

Return Value
This function returns:

0    if the document was not selected, or was not found.

Example
FUNCTION Example()
Text = UCASE$(Left$(Query$("What action to take (Tile, Cascade, New, Select) on MDI Windows?"),
1))
SWITCH Text
CASE "T"
TileWindow()
CASE "C"
CascadeWindow()
CASE "N"
NewWindow()
CASE "S"
SelectWindow(Query$("Name of window to select (Name must match EXACTLY)?"))
default
Message("Only the proposed options are available.")
ENDSWITCH
END FUNCTION

See also:

NewWindow, NextWindow, TileWindow, CascadeWindow

SendFrameToBack
This function sends the selected frame to the rear of a stack of frames. Choosing this function is
equivalent to choosing Frame/Send to Back.

Syntax
SendFrameToBack()

Return Value
This function returns:

1    (TRUE) if the frame was sent to the back.
0    (NoAction) if no action was taken because the frame was already in the back.

Example
FUNCTION Example()
x = strfield$(CursorPosition$(), 1, ",")
y = strfield$(CursorPosition$(), 2, ",")
AddFrame(x, y, (x + 1440), (y - 1440))
MarkBookMark("Frame1", AddBookmark)
AddFrame((x + 360), (y - 360), (x + 1800), (y - 1800))
MarkBookMark("Frame2", AddBookmark)
SendFrameToBack()
MarkBookMark("Frame1", FindBookmark)
Message("The First frame is in front.")
MarkBookMark("Frame2", FindBookmark)
BringFrameToFront()
Message("The Second frame is in front.")
END FUNCTION

See also:

BringFrameToFront, GoToCmd, AddFrame, AddFrameDLG

SendKeys
This function sends keystrokes to the active application.

Syntax
SendKeys(Keys)
Keys is a string that is typed into the document.
Keys can be any of the keyboard characters. Any attributes or variables within the string are not typed into
the document.
To insert a left curly brace, type two curly braces ({{).
To insert a left square brace, type two square braces ([[).
To insert a double quote mark, type two double quote marks ("").
Text can contain a variable name. If a variable name is used, enclose it in curly braces ({}) so that it can
be recognized as a variable name. Text can also contain an insertion point movement or function key. To
type a key, surround its name with square braces. An insertion point movement or function key can
include the words CTRL, SHIFT or ALT to indicate a shifted state. The following key names can be used:

[Home] - Home Key
[End] - End Key
[PgUp] - Page Up Key
[PgDn] - Page Down Key
[Ins] - Insert Key
[Del] - Delete Key
[Backspace] - Backspace Key
[Enter] - Enter or Return Key
[Tab] - Tab Key
[ESC] - Escape Key
[Up] - Up Arrow Key
[Down] - Down Arrow Key
[Left] - Left Arrow Key
[Right] - Right Arrow Key
[F1] - [F12] - Function Keys F1 through F12

Return Value
This function does not return a value.

Example
FUNCTION Example()
Exec("SYSEDIT.EXE", 1)
SendKeys("[altw]t")
END FUNCTION

See also:

TYPE, Exec, ActivateApp

SendMail
This functions allows you to send a mail message using a mail server. Currently, Ami Pro supports cc:Mail
and Lotus Notes. If the text has been selected in the current document, the text is copied to the clipboard
and then sent as a note. Choosing this function is equivalent to choosing File/Send Mail.
You can only use one mail server. This function is only available if a mail server compatible with Ami Pro
is installed.

Syntax
SendMail(Attach)
Attach is used to save and attach the active document to the note. It is one of the following values:

Attach (1) - Save and attach the active document to the note
No (0) - Do not attach the active document to the note

To display the Send Mail dialog box: SendMail

Return Value
This function returns:

1    (TRUE) if the mail was sent.
0    (UserCancel/FALSE) if the user canceled the function or if no action was taken.
-2    (GeneralFailure) if the mail server was not found, or if it could not be activated.

Example
FUNCTION Example()
SendMail()
END FUNCTION

SetBackPath
This function sets the default path for backup files. Choosing this function is equivalent to choosing
Tools/User Setup/Paths.

Syntax
SetBackPath(NewPath)
NewPath is the desired new backup path.

Return Value
This function returns:

1    (TRUE) if the path was successfully set.
-2    (BadPath) if the path could not be set because of an invalid directory name.

Example
FUNCTION Example()
Backup = Query$("Please enter the desired backup path:" GetBackPath$())
Docs = Query$("Please enter the desired document path:" GetDocPath$())
Styles = Query$("Please enter the desired styles path:" GetStylePath$())
SetDocPath(Docs)
SetStylePath(Styles)
SetBackPath(Backup)
END FUNCTION

See also:

GetBackPath$, GetDocPath$, GetStylePath$, SetDocPath, SetStylePath

SetDataFile
This function sets the data and description file for the InsertMerge function.

Syntax
SetDataFile(RecFile, RecFileFlag, DescFile, DescFileFlag)
RecFile is the record file to use when performing a merge. If the RecFile is a NewWave object, the
parameter must be the full path to the object name.
RecFileFlag is the flag to identify whether the DataFile is a NewWave object or Ami Pro file. If it is a
NewWave object, the parameter must be set to 1. If it is an Ami Pro file, the RecFileFlag parameter
should be set to 0.
DescFile is the description file to use when the record file is not an Ami Pro file. If no description file is
needed, insert an empty string (""). If the DescFile is a NewWave object, the parameter must be the full
path to the object name.
DescFileFlag is the flag to identify whether the DescFile is a NewWave object or Ami Pro file. If it is a
NewWave object, the parameter must be set to 1. If it is an Ami Pro file, the DescFileFlag parameter
should be set to 0.

Return Value
This function returns:

1    (TRUE) if the record and description files are set.
-3    if invalid input.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
SetDataFile ("Testrel.sam", 0, "", 0)
InsertMerge()
END FUNCTION

See also:

InsertMerge

SetDefOptions
This function sets editing defaults for using Ami Pro. Choosing this function is equivalent to choosing
Tools/User Setup/Options.

Syntax
SetDefOptions(Options, HotZone)
Options is a flag containing default options and can be one or both of the following:

(1) - Use pair kerning
(2) - Control widows and orphans in the document
(4) - Print in background (speed option)
(8) - Flow in background (speed option)
(16) - Save for fast display (graphic display speed option - saves often)
(32) - Save while open (graphic display speed option - saves on open)
(64) - Conserve disk space (graphic display speed option - no auto save)
(128) - Hyphenate last word in paragraph
(256) - Hyphenate last word in column/page

To set more than one option, add the options together.
HotZone is the number of characters to use for the hyphenation hot zone.
To display the Defaults dialog box and allow the user to select his editing defaults: UserSetup

Return Value
This function returns:

1    (TRUE) if the default settings were successfully set.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
SetDefOptions(0, 5)
END FUNCTION

See also:

ViewPreferences, SetBackPath, SetDocPath, SetStylePath, UserSetup, LoadOptions

SetDefPaths
This function displays the Default Paths dialog box. It does not automatically set the default paths.
Choosing this function is equivalent to choosing Tools/User Setup/Paths.

Syntax
SetDefPaths()

Return Value
This function returns:

0.

Example
FUNCTION Example()
SetDefPaths()
END FUNCTION

See also:

UserSetup, SetDocPath, SetStylePath, SetBackPath, SetMacroPath

SetDlgCallBack
This function is used to flag a control in the next displayed dialog box as a call back. If the contents of the
control are modified once the dialog box is displayed, the specified macro is called.
A call back is a macro function that is initiated by a displayed dialog box and executes without closing that
box.

Syntax
SetDlgCallBack(ID, MacroName!Function)
ID is the ID of the control that you want to monitor.
Macroname is the filename of the macro file containing the function to be executed. If the macro file does
not exist in the current macros directory, the full path must be used.
Function is the name of the function to be executed if the specified object is modified. MacroName and
Function are separated by an exclamation mark.
You may not send any parameters or even use parenthesis with this parameter. The specified function is
called with three parameters: the windows handle for the dialog box, the ID specified, and the contents of
the specified object.

Return Value
This function does not return a value.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!Message1")
Box = DialogBox(".", "ExampleBox")
IF Box = -1
 Message("Could not find dialog box!")
 EXIT FUNCTION
ELSEIF Box = 0
 EXIT FUNCTION
ENDIF
TYPE(GetDialogField$(8002))
END FUNCTION

FUNCTION Message1(hdlg, id, text)
Name = GetDlgItemText(hdlg, 8000)
Message("The contents of the first box are {Name}.")
Message("We will now fill the second box with the inverse of {Name}.")
FOR I = len(Name) to 1 step -1
 Name2 = strcat$(Name2, MID$(Name, I, 1))
NEXT
SetDlgItemText(hdlg, 8002, Name2)
END FUNCTION

DIALOG ExampleBox
-2134376448 8 106 38 160 54 "" "" "Sample Dialog Box"
FONT 6 "Helv"
50 6 62 12 8000 1350631552 "edit" "" 0
4 6 44 10 1000 1342177280 "static" "Your Name:" 0
50 20 62 12 1003 1342177287 "static" "" 0
4 22 44 10 1002 1342177280 "static" "Reversed:" 0
52 22 58 8 8002 1342177280 "static" "" 0
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
100 36 56 14 50 1342242816 "button" "&Run Example..." 0

END DIALOG

See also:

GetDLGItem, GetDLGItemText, SetDLGItemText, DialogBox, FillEdit, FillList, GetDialogField$

SetDlgItemText
This function sets the contents of a specified control in a call back, while the dialog box is displayed.

Syntax
SetDlgItemText(Handle, ID, Text)
Handle is the windows handle to the dialog box to be modified and it was passed to the callback function.
ID is the control ID to set the contents of.
Text is the string data (if modifying an edit, combo, or list box, or static text), or a boolean TRUE or
FALSE value (if modifying a radio button or check box) to set the contents of the control to.

Return Value
This function returns:

1    (TRUE) if the function was successful.
0    (FALSE) if the function failed.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!Message1")
Box = DialogBox(".", "ExampleBox")
IF Box = -1
 Message("Could not find dialog box!")
 EXIT FUNCTION
ELSEIF Box = 0
 EXIT FUNCTION
ENDIF
TYPE(GetDialogField$(8002))
END FUNCTION

FUNCTION Message1(hdlg, id, text)
Name = GetDlgItemText(hdlg, 8000)
Message("The contents of the first box are {Name}.")
Message("We will now fill the second box with the inverse of {Name}.")
FOR I = len(Name) to 1 step -1
 Name2 = strcat$(Name2, MID$(Name, I, 1))
NEXT
SetDlgItemText(hdlg, 8002, Name2)
END FUNCTION

DIALOG ExampleBox
-2134376448 8 106 38 160 54 "" "" "Sample Dialog Box"
FONT 6 "Helv"
50 6 62 12 8000 1350631552 "edit" "" 0
4 6 44 10 1000 1342177280 "static" "Your Name:" 0
50 20 62 12 1003 1342177287 "static" "" 0
4 22 44 10 1002 1342177280 "static" "Reversed:" 0
52 22 58 8 8002 1342177280 "static" "" 0
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
100 36 56 14 50 1342242816 "button" "&Run Example..." 0
END DIALOG

See also:

GetDLGItem, GetDLGItemText, DialogBox, FillEdit, FillList, GetDialogField$

SetDocPath
This function sets the default path for document storage. Choosing this function is equivalent to choosing
Tools/User Setup/Paths.

Syntax
SetDocPath(NewPath)
NewPath is the desired new default document path.

Return Value
This function returns:

1    (TRUE) if the path was successfully set.
-2    (General Failure) if the path could not be set.

Example
FUNCTION Example()
Backup = Query$("Please enter the desired backup path:" GetBackPath$())
Docs = Query$("Please enter the desired document path:" GetDocPath$())
Styles = Query$("Please enter the desired styles path:" GetStylePath$())
SetDocPath(Docs)
SetStylePath(Styles)
SetBackPath(Backup)
END FUNCTION

See also:

ViewPreferences, GetBackPath$, GetDocPath$, GetStylePath$, SetBackPath, SetStylePath,
UserSetup, SetDefPaths

SetDocVar
This function creates or updates a document variable in the current document. A document variable is
used to store information in the document and may be retrieved by using the GetDocVar function.

Syntax
SetDocVar(Name, Text)
Name is the name for the document variable by which it may be accessed.
Text is the information that is stored in the document variable.
The two strings combined must not exceed 250 bytes in length.

Return Value
This function returns:

1.

Example
FUNCTION Example()

END FUNCTION

See also:

GetDocVar

SetFormula
This function inserts a formula into the current table cell. Choosing this function is equivalent to choosing
Table/Edit Formula.

Syntax
SetFormula(Formula)
Formula is the formula that is typed into the table cell.
To allow the user to type the formula for the cell: EditFormula

Return Value
This function returns:

1    (TRUE) if the formula was inserted.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
radius = Query$("What is the radius?")
SetFormula(3.1415926 * radius * radius)
END FUNCTION

See also:

EditFormula

SetFrameDefaults
This function sets the defaults for the frame. Choosing this function is equivalent to choosing
Frame/Modify Frame Layout/Make Default.
Do not call this function without having called the FrameModInit function previously.
The FrameModFinish function must be called after this function to accept the modifications.

Syntax
SetFrameDefaults(BorderWhere, ThickType, PosType, Units, ShadeType, BackType, DefType, LeftMargin,
BottomMargin, TopMargin, RightMargin, ShadowLeft, ShadowTop, ShadowRight, ShadowBottom,
ShadowColor, Rounded)
BorderWhere is the lines around a frame. It is one of the following values:

1 - All
2 - Left
4 - Right
8 - Top
16 - Bottom

ThickType is the thickness of the border. It is one of the following values:
Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule
FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rule
DoubleTwoPoint (9) - Parallel two point rule
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

PosType is the position of the border around a frame. It is one of the following values:
1 - Middle
2 - Inside
3 - Outside
5 - Close to outside

You can only choose one value for the Postype parameter.
Units is the type of measurement and can be one of the following:

Inches (1) - units set to inches
CM (2) - units set to centimeters
Picas (3) - units set to picas
Points (4) - units set to points

ShadeType is the line color.
BackType is the background color.
DefType is a setting based on: how the text should wrap around a frame, whether a frame is transparent
or opaque, has square or round corners, where it is placed on a page, and whether a macro is assigned
to a frame. It is one of the following values:

Opaque (64) - Hide text or picture behind frame

Wraparound (128) - Display text above, below, to the left, or to the right of the frame
RepeatFrame (256) - Repeat frame on multiple pages. To repeat on all pages, do not use in
combination with RepeatEven or RepeatOdd
NoWrapBeside (131072) - Display text above and below frame, but not to the left or right of the frame
AnchorFrame (524288) - Used to anchor frame in its current position or to a carriage return. You
cannot use any repeat values with this value
RepeatEven (4194304) - Repeat frame on even pages. Use with the RepeatFrame value
RepeatOdd (8192) - Repeat frame on odd pages. Use with the RepeatFrame value
RunMacro (134217728) - Run a macro each time the frame is selected
Borders (65536) - Use if frame has borders
TextFrame (512) - Always use in combination with other values. It is a required value.

You can add the values together to get the DefType parameter. The syntax is "N &0x300c0", where "N" is
the DefType value.
LeftMargin is the desired left margin of the frame.
TopMargin is the desired top margin of the frame.
RightMargin is the desired right margin of the frame.
BottomMargin is the desired bottom margin of the frame.
The value for all parameters except Units should be given in twips (1 inch=1440 twips). Multiply the
desired number of inches by 1440 to determine the value in twips.
Rounded is the amount that the corners are rounded, in percent. (100% = circle).
ShadowColor is the value assigned to the colors. It is one of the following values:

Red - 255
Orange - 33279
Yellow - 65535
Green - 65280
Cyan - 16776960
MedBlue - 16744448
Blue - 16727905
Purple - 16711809
Magenta - 16711935
Pink - 8388863
White - 16777215
Black - 0

The following four parameters determine the distance of the shadow from a specific side of the frame.
They are either zero or positive integers. Multiply the desired distance in inches by 1440 to determine the
value in twips. They are one of the following values or may be a custom value:

None (0) - No shadow
Shallow (57) - Shallow shadow
Normal (100) - Normal shadow
Deep (172) - Deep shadow

ShadowLeft is the distance that the shadow is offset from the left side of the frame in twips (1 inch=1440
twips).
ShadowTop is the distance that the shadow is offset from the top of the frame in twips (1 inch=1440
twips).
ShadowRight is the distance that the shadow is offset from the right side of the frame in twips (1
inch=1440 twips).
ShadowBottom is the distance that the shadow is offset from the bottom of the frame in twips (1
inch=1440 twips).

Return Value
This function returns:

1.

Example
FUNCTION Example()
SetFrameDefaults (1, 1, 1, 1, Black, White, 512, 140, 140, 140, 140, 50, Red, 0, 0, 100, 100)
END FUNCTION

See also:

FrameModInit, FrameModBorders, FrameModLines, FrameModType, FrameModFinish

SetGlobalArray
This function assigns a value stored in a local array variable element to a global array variable element.

Syntax
SetGlobalArray(Name, Index, Value)
Name is the name or the ID number of the global array to set.
Index is the element of the array in which to place the value.
Value is the value that should be stored in the array element.

Return Value
This function returns:

1    (TRUE) if the value was successfully set.
0    (FALSE) if the value could not be set. If you attempt to set a global variable thatn does not exist, a
run-time error results.

Example
FUNCTION Example()
AllocGlobalVar("Names", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("Numbers", 5)'Allocate space for a 5 element global variable
AllocGlobalVar("YourName", 1)'Allocate space for a single element global variable.
FOR I = 1 to 5'Do the following 5 times.
SetGlobalArray("Names", I, Query$("Enter Name Number {I}"))
'Fill a global array with the return from QUERY
SetGlobalArray("Numbers", I, (100/I))'Fill a global array with a number
NEXT
NewName = Query$("What is your name?")'Query the user for his/her name
SetGlobalVar("YourName", NewName)'Set a global variable to that value
CALL Example2()'Call the following function
END FUNCTION

FUNCTION Example2()
Name = GetGlobalVar$("YourName")'Get the value of the global variable
Message("Your name is {Name}.")'Message that value in a box.
FOR I = 1 to 5'Do the following 5 times.
TheirName = GetGlobalArray$("Names", I)'Get the value of the current element from the array
TheirNumber = GetGlobalArray$("Numbers", I)'Get the value of the current element from the array
TYPE("Name #{I} is {TheirName}, and the number is {TheirNumber}.[Enter]")
'Type the values to the screen.
NEXT
FreeGlobalVar("Names")'Clear the space for the first global array
FreeGlobalVar("Numbers")'Clear the space for the second global array
FreeGlobalVar("YourName")'Clear the space for the global variable
END FUNCTION

See also:

AllocGlobalVar, FreeGlobalVar, GetGlobalVar$, GetGlobalArray$, SetGlobalVar, Global Variables

SetGlobalVar
This function assigns the value stored in a single element local variable to a global variable.

Syntax
SetGlobalVar(Name, Value)
Name is the name or the ID number of the global variable to set.
Value is the value to store into the global variable.

Return Value
This function returns:

1    (TRUE) if the value was successfully set.
0    (FALSE) if the value could not be set. If you attempt to set a global variable that does not exist, a
run-time error results.

Example
FUNCTION Example()
Again:
Count = GetGlobalVarCount()
IF Count < 1
 Count = 1
ELSE
 DIM Globals(Count)
 GetGlobalVarNames(&Globals)
 FillEdit(9000, &Globals)
ENDIF
Box = DialogBox(".", "ExampleBox")
IF Box = 0
 EXIT FUNCTION
ELSEIF Box = 3 AND GetDialogField$(9000) != ""
 FreeGlobalVar(GetDialogField$(9000))
ELSEIF Box = 4 AND GetDialogField$(9000) != ""
 Message(GetGlobalVar$(GetDialogField$(9000)))
ELSEIF Box = 5
 AllocGlobalVar(Query$("Name for new global variable:"), Query$("Number of elements?"))
ELSEIF Box = 6 AND GetDialogField$(9000) != ""
 SetGlobalVar(GetDialogField$(9000), Query$("What do you want in it?"))
ENDIF
GoTo Again
END FUNCTION

DIALOG ExampleBox
-2134376448 7 98 20 160 102 "" "" "Global Variables"
FONT 6 "Helv"
116 4 40 14 2 1342242817 "button" "Done" 0
116 20 40 14 3 1342242816 "button" "Free" 0
116 36 40 14 4 1342242816 "button" "Show..." 0
116 52 40 14 5 1342242816 "button" "Allocate..." 0
116 68 40 14 6 1342242816 "button" "Set..." 0
6 14 102 82 9000 1352728579 "listbox" "" 0
8 4 98 8 1000 1342177280 "static" "Currently Allocated Globals:" 0
END DIALOG

See also:

AllocGlobalVar, FreeGlobalVar, GetGlobalVar$, GetGlobalArray$, SetGlobalArray, Global Variables

SetIconPath
This function sets the default path for the icon files. Choosing this function is equivalent to choosing
Tools/User Setup/Paths.

Syntax
SetIconPath(NewPath)
NewPath is the desired new path for the icon files.

Return Value
This function returns:

1 (TRUE) if the path was successfully set.
-2 (GeneralFailure) if the path could not be set.

Example
FUNCTION Example()
SetIconPath("c:\amipro\icons")
END FUNCTION

See also:

SetBackPath, SetDocPath,SetMacroPath, UserSetup

SetIconSize
This function sets the icon size of the icon set. Choosing this function is equivalent to choosing
Tools/SmartIcons/Icon Size. A macro must be edited to insert this non-recordable function.

Syntax
SetIconSize(Size)
Size is on of the following values:

(1) - Small (EGA)
(2) - Medium (VGA)
(3) - Large (Super VGA)

Return Value
This function returns:

1 (TRUE) if the icon size changes.
0 (NoAction) if no action is taken.

Example
FUNCTION Example()
SetIconSize(2)
END FUNCTION

See also:

ChangeIcons, IconBottom, IconFloating, IconRight, IconTop

SetIndexFile
This function sets the file name used to generate an index. It records the index file name for use in the
Tools/TOC, Index dialog box.    It also records index file name for use in the File/Master
Document/Options dialog box. Choosing this function is equivalent to choosing File/Master
Document/Options.
This function should be used prior to the Generate function when generating an index.

Syntax
SetIndexFile(Separators, IndexFile)
Separators indicates whether or not alphabetic separators are used in the index. It is one of the following
values:

Yes (1) - Include alphabetic separators.
No (2) - Do not include alphabetic separators.

IndexFile is the file name for the index file. For NewWave, the parameter must be the full path to the
object name.
To allow the user to view the TOC, Index dialog box and enter the index file name: Generate
To allow the user to view the Master Documents Options dialog box and enter the index file name:
MasterDocOpts

Return Value
This function returns:

1.

Example
FUNCTION Example()
SetIndexFile (2, "Test.sam")
END FUNCTION

See also:

Generate, SetTOCFile

SetMacroPath
This function sets the default path for macro storage. Choosing this function is equivalent to choosing
Tools/User Setup/Paths.

Syntax
SetMacroPath(NewPath)
NewPath is the desired new default path for macros.

Return Value
This function returns:

1    (TRUE) if the macro path was set.
-2    (GeneralFailure) if the macro path could not be set.

Example
FUNCTION Example()
SetMacroPath("C:\Amipro\Macros")
END FUNCTION

See also:

SetStylePath, SetDocPath, SetBackPath

SetMasterFiles
This function determines which files comprise a master document. It makes the current file a master
document. Choosing this function is equivalent to choosing File/Master Document    and including the files
for the master document.

Syntax
SetMasterFiles(Size, Count, File1[, File2...])
Size is the amount of buffer space allocated to hold the files. It is determined by adding up all of the
characters in each filename, plus the number of files, plus one.
Count is the number of files in the master document.
File1 is the name of the first file in the list of master documents. If the file does not exist in the current
documents directory, the full path to the file must be used. For NewWave, the parameter must be the full
path to the object name.
File2 and any other files are treated the same as file1, above.
To display the Master Document dialog box and allow the user to specify the files: MasterDoc

Return Value
This function returns:

1    (TRUE) if the master files list was set.
-2    (GeneralFailure) if the master files list could not be set.

Example
FUNCTION Example()
size = 1 + len("TEST.SAM") + 1
SetMasterFiles(size, 1, "TEST.SAM")
END FUNCTION

See also:

GetMasterFiles, GetMasterFilesCount

SetStyle
This function assigns the named paragraph style to the current paragraph. Choosing this function is
equivalent to selecting a paragraph style name from the status bar or the styles box.

Syntax
SetStyle(Style)
Style is the name of a paragraph style in the current paragraph style sheet or document.
To display the Styles Box and allow the user to select the name of the paragraph style to be used:
SelectStyle

Return Value
This function returns:

1.

Example
FUNCTION Example()
NewName = Query$("What do you want to name the new style?", "TestStyle")
BaseName = GetStyleName$()
CreateStyle(NewName, BaseName)
ModifySelect(NewName)
ModifyAlignment(AlignLeft, 0, 0, 0, 0, 0)
ModifyBreaks(4, 0, 0)
ModifyEffects("<·10>", SpaceIndent, ".20", 0, 0, 0, 0)
ModifySpacing(2, 0, 0, 0, 0, 0, 100)
ModifyTable(3, 2, ".", ",", "$", (8 + 16 + 128 + 256))
ModifyLines(1, 2, 180, 0, 0, 0, 0, 65535)
ModifyFont("TimesNewRomanPS", (20 * 20), 255, 1)
SetStyle(NewName)
ModifyReflow()
TYPE("This[Enter]is what the new[Enter]style looks[Enter]Like...[Enter]")
SetStyle(BaseName)
END FUNCTION

See also:

GetStyleName$, ModifyStyle, SelectStyle, ShowStylesBox, ToggleStylesBox

SetStylePath
This function sets the default path for style sheet storage. Choosing this function is equivalent to choosing
Tools/User Setup/Paths.

Syntax
SetStylePath(NewPath)
NewPath is the desired new path for paragraph style sheets.

Return Value
This function returns:

1    (TRUE) if the path was successfully set.
-2    (General Failure) if the path could not be set.

Example
FUNCTION Example()
Backup = Query$("Please enter the desired backup path:" GetBackPath$())
Docs = Query$("Please enter the desired document path:" GetDocPath$())
Styles = Query$("Please enter the desired styles path:" GetStylePath$())
SetDocPath(Docs)
SetStylePath(Styles)
SetBackPath(Backup)
END FUNCTION

See also:

GetBackPath$, GetDocPath$, GetStylePath$, SetBackPath, SetDocPath, UserSetup, SetDefPaths

SetTOCFile
This function sets the destination file for a table of contents that was generated from the current file. It
records the information for the TOC file name in the Tools/TOC, Index dialog box . It also records the
information for the File/Master Document/Options dialog box. Choosing this function is equivalent to
choosing File/Master Document/Options.
This function should be used prior to the Generate function when creating a table of contents.
This function does not check the path to see if it is valid.

Syntax
SetTOCFile(TOCFile)
TOCFile is the filename for the generated table of contents. For NewWave, the parameter must be the full
path to the object name. To allow the user to view the TOC, Index dialog box and enter the TOC file
name: Generate. To allow the user to view the Master Documents Options dialog box and enter the TOC
file name: MasterDocOpts

Return Value
This function returns:

1.

Example
FUNCTION Example()
SetTOCFile("TestToc.sam")
END FUNCTION

See also:

Generate, MasterDocOpts

ShowBar
This function displays a menu bar and its menus.

Syntax
ShowBar(BarID)
BarID is the identification number of the menu bar returned from the AddBar function. To use the default
Ami Pro menu bar, use 1.

Return Value
This function returns:

1    (TRUE) if the menu bar was successfully displayed.
0    (FALSE) if the bar could not be shown, or if an invalid BarID was used.

Example
FUNCTION Example()
StatusBarMsg("Adding menu bar and items....")'Notify the user what we are doing
MacFile = GetRunningMacroFile$()'Get the name of this macro file.
BarID = AddBar()'Add a new menu bar.
IF BarID > 0'If it was added,
AddMenu(BarID, "&File")'Add a File menu to it.
AddMenu(BarID, "&Macros")'Add a Macros menu to it
AddMenuItem(BarID, "&File", "&New", New, "Begin a new document")
'Add an item to the file menu
AddMenuItem(BarID, "&File", "&Long Menus", "{MacFile}!Back()", "Restore Ami Pro Menu Bar.")
'Add an item to the file menu.
AddMenuItem(BarID, "&Macros", "&Edit", MacroEdit, "Edit a macro file.")
'Add an item to the macros menu.
AddCascadeMenu(BarID, "&Macros", "&Run")'Add a cascade menu to the macros menu
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run current", "RUNCURR.SMM", "Run the displayed
macro")
'Add an item to the cascade menu on macros.
AddCascadeMenuItem(BarID, "&Macros", "&Run", "&Run another", MacroPlay, "Run another macro")
'Add an item to the cascade menu on macros.
AddMenuItem(BarID, "&Macros", "&Options", MacroOptions, "Choose Macro options.")
'Add an item to the macros menu.
SetGlobalVar("Set", 1)
ShowBar(BarID)'Show the newly created menu bar.
ENDIF
StatusBarMsg("")'Restore the status bar.
END FUNCTION

FUNCTION Back()
ShowBar(1)'Restore the original Ami Pro menu bar.
END FUNCTION

See also:

AddBar, AddMenu, AddMenuItem, AddMenuItemDDE, ChangeMenuAction, CheckMenuItem,
DeleteMenu, DeleteMenuItem, GrayMenuItem, RenameMenuItem

ShowIconBar
This function displays the set of SmartIcons in its default location on the screen. Choosing this function is
equivalent to choosing View/Show SmartIcons.

Syntax
ShowIconBar()

Return Value
This function returns:

1    (TRUE) if the icon bar is displayed.
0    (NoAction) if no action was taken because the icon bar was already displayed.

Example
FUNCTION Example()
ShowIconBar()
END FUNCTION

See also:

ViewPreferences, HideIconBar, ShowTabRuler, ToggleIconBar, IconBottom, IconCustomize,
IconFloating, IconLeft, IconRight, IconTop, ToggleIconBar

ShowStylesBox
This function displays the Styles Box. Choosing this function is equivalent to choosing View/Show Styles
Box.

Syntax
ShowStylesBox()

Return Value
This function returns:

1    (TRUE) if the Styles box is displayed.
0    (NoAction) if no action was taken because the Styles box was already displayed.

Example
FUNCTION Example()
ShowStylesBox()
END FUNCTION

See also:

ViewPreferences, HideStylesBox, ShowIconBar, ShowTabRuler, ToggleStylesBox

ShowTabRuler
This function displays the tab ruler at the top of the screen. Choosing this function is equivalent to
choosing View/Show Ruler.

Syntax
ShowTabRuler()

Return Value
This function returns:

1    (TRUE) if the tab ruler is displayed.
0    (NoAction) if no action was taken because the tab ruler was already displayed.

Example
FUNCTION Example()
ShowTabRuler()
END FUNCTION

See also:

ViewPreferences, HideTabRuler, ShowIconBar, ToggleTabRuler

SingleStep
This function allows the macro programmer to debug macros by stepping through each macro statement
one line at a time.
SingleStep uses two modes. In the first of these, if you have the macro to be debugged open in a window
and a SingleStep statement in it, the line currently executing is highlighted in the macro file and a
modeless dialog box displays. If the macro to be debugged is not open, a dialog box displays the
currently running statement.
If the macro is in a Multiple Document Interface (MDI) window you can:

Resume - Removes the dialog box and continues to the next break point, continues to the next
SingleStep(1), or goes to end of the macro.
Single Step - Executes the current instruction then pauses again.
Step Through - If a CALL statement is made, the macro from the CALL statement executes to
completion and control returns to the original macro.
Variables - This brings up a modal dialog box showing the list of local variables currently set in the
currently running macro. You may change the contents of a variable here at run time. If the variable is
an array, the number of elements in the array display and may not be changed.
Break Points - This brings up a modal dialog box showing the list of currently active breakpoints. The
Break Points list box lists the filename, an exclamation point, the function name, a period, and then
the line number within that function.
Set BP - This sets a break point on the current line. This assumes, of course, that you are still in the
macro window or in another window that contains a running macro.
Break points cannot be set on empty lines or commented lines or lines with ELSE, WEND, or ENDIF.
Break points may only be placed on a line with an executable code statement and it must be after a
SingleStep() function in the macro.
Cancel - This cancels the macro. If your macro has an ONCANCEL statement, it is executed.
If your macro modifies open documents, make sure these documents are not the currently executing
macros. Note that when the macro first pauses, the line about to be executed is selected and can
easily be deleted.

Syntax
SingleStep(State)
State determines whether single step mode is off (0) or on (1).

Return Value
This function does not return a value.

Example
FUNCTION Example()
SingleStep(1)
FOR I = 1 to 10
TYPE("Hello...")
NEXT
END FUNCTION

See also:

AnswerMsgBox, Messages, UserControl, IgnoreKeyboard, Debugging Macros

SizeColumnRow
This function sets the column and row width and height, along with the gutter width and height. Choosing
this function is equivalent to choosing Table/Column/Row Size. If the automatic row height option is set for
the table, the row height option is ignored.

Syntax
SizeColumnRow(ColWidth, ColGutter, RowHeight, RowGutter)
ColWidth is the width of the column in twips.
ColGutter is the width of the column gutter in twips.
RowHeight is the height of the row in twips.
RowGutter is the height of the row gutter in twips.
Multiply the desired number of inches by 1440 to determine the value in twips. (1 inch=1440 twips).
To display a dialog box to allow the user to size columns and rows: SizeColumnRow

Return Value
This function returns:

1    (TRUE) if the rows and columns were sized.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the rows and columns were not sized.

Example
FUNCTION Example()
SizeColumnRow(720, 0, 180, 0)
END FUNCTION

See also:

DeleteColumnRow, InsertColumnRow

SmallCaps
This function sets the small capitalization for selected text or for all following text if no text is selected. It
acts as a toggle, turning off small caps if it is currently on, and turning on small caps if it is currently
off.Choosing this function is equivalent to choosing Text/Caps/SmallCaps.

Syntax
SmallCaps()

Return Value
This function returns:

1    (TRUE) if the attribute was set.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
WHILE "" = CurShade$()
UserControl("Select the text to modify, then choose Resume...")
WEND
SmallCaps()
END FUNCTION

See also:

InitialCaps, LowerCase, UooerCase

Sort
This function sorts the selected text or the entire document. Choosing this function is equivalent to
choosing Tools/Sort.

Syntax
Sort(Key1, Key2, Key3, NumParas, Delimiter, Options)
Key1 is the field number of the first key.
Key2 is the field number of the second key.
Key3 is the field number of the third key.
Key1, Key2, and Key3 are the field numbers of the keys to use for the sort. If fewer than three keys are
used, the unused keys must have values, but they are ignored. The NumParas parameter is the number
of paragraphs (for rows, if sorting a table) that should be considered a single record.
NumParas is the number of paragraphs (or rows, if sorting a table) that should be considered a single
record.
Delimiter is the field delimiter. This parameter determines the field delimiter, if it is not a TAB symbol. If
the delimiter should be a TAB, this option should be set in the options, and the value of the delimiter is
ignored. If a quote mark is the delimiter, its ANSI value, 34, should be used (eg CHR$(34))
Options is a flag containing the sort options and may be one or more of the following:

Ascending (1) - Sort in ascending order. If this option is not set, the sort is in descending order
KeyOneAlpha (2) - Sort key 1 is alphanumeric. If this option is not set, key 1 is assumed to be
numeric
KeyTwoAlpha (4) - Sort key 2 is alphanumeric. If this option is not set, key 1 is assumed to be
numeric
KeyThreeAlpha (8) - Sort key 3 is alphanumeric. If this option is not set, key 1 is assumed to be
numeric
KeyOneFirst (16) - Sort using the first word of key 1
KeyOneSecond (32) - Sort using the second word of key 1
KeyTwoFirst (64) - Sort using the first word of key 2
KeyTwoSecond (128) - Sort using the second word of key 2
KeyThreeFirst (256) - Sort using the first word of key 3
KeyThreeSecond (512) - Sort using the second word of key 3

The KeyXFirst or KeyXSecond parameters should be used to only sort on the first or second words of the
key field. If these parameters are not used, the data is sorted based on the entire contents of the field.

UseKeyTwo (1024) - Use values for key 2, if not set parameters for key 2 are ignored
UseKeyThree (2048) - Use values for key 3, if not set, parameters for key 3 are ignored
AnsiSort (4096) - Sorts using ANSI sorting sequence. If not set, sorts using IBM PC sort sequence

This option should always be set for Ami Pro files.
TabDelimited (8192) - Sort fields are tab delimited
TableSort (16384) - Sort is in a table

These options should be added together. Options for keys 2 and 3 do not need to be set if they are not
going to be used. The ANSISort parameter should always be set for Ami Pro files. If the fields are tab
delimited, the TabDelimited parameter should be set. If it is set, the Delimiter parameter is ignored.
To display the Sort dialog box and allow the user to determine sort options: Sort

Return Value
This function returns:

1    (TRUE) if the sort was successful.

0    (UserCancel) if the user canceled the function.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
IF "" = CurShade$()
UserControl("Shade on the area to sort, or none for the entire stream, then choose Resume...")
ENDIF
Sort(1, 2, 3, 1, "", 1)
END FUNCTION

See also:

Merge

Spacing
This function sets line spacing for the current paragraph or selected paragraphs. Choosing this function is
equivalent to choosing Text/Spacing.

Syntax
Spacing(Amount)
Amount is the new spacing to set. The Amount parameter determines fixed line spacing according to the
following list:

SpaceStyle (0) - Use the line spacing specified in the paragraph style
SpaceSingle (-1) - Use single spacing
SpaceOneHalf (-2) - Use 1 1/2 line spacing
SpaceDouble (-3) - Use double spacing

To set custom line spacing, the Amount parameter should be a positive integer representing line spacing
in twips. To determine twips from points, multiply the point size by 20.
To display the Spacing dialog box and allow the user to determine the new spacing: Spacing

Return Value
This function returns:

1    (TRUE) if the line spacing was successfully changed.
0    (UserCancel) if the user canceled the function.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
Spacing(-2)
END FUNCTION

See also:

FontChange, NormalText, Center, Justify, LeftAlign, RightAlign

SpecialEffects
This function sets special effects for selected text or for all following text if no text is selected. Choosing
this function is equivalent to choosing Text/Special Effects.

Syntax
SpecialEffects(Which, OverStrikeChar)
Which is a flag representing the special effects to use and can be one of the following:

Superscript (64) - Superscript text
Subscript (128) - Subscript text
DoubleUnderline (256) - Double underline text
Strikethrough (512) - Strikethrough text
Overstrike (1024) - Overstrike text with character given in Overstrike parameter

OverStrikeChar is the character used to overstrike the text. The Overstrike value in the Which parameter
must also be set.

More than one special effect can be chosen by adding the values for the desired effects together.
To display the Special Effects dialog box and allow the user to determine special effects settings:
SpecialEffects

Return Value
This function returns:

1    (TRUE) if the special effects were applied.
0    (UserCancel) if the user canceled the function.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
SpecialEffects(Superscript + DoubleUnderline)
END FUNCTION

See also:

NormalText, Underline, WordUnderline

SpellCheck
This function allows you to check the spelling of words or documents. Choosing this function is equivalent
to choosing Tools/Spell Check.

Syntax
SpellCheck(Options)
Options is a flag representing the options to use for the spell check, and can be one or more of the
following:

SpellBegin (1) - Starts the spell checking from the beginning of the document.
CurrentStream (2) - Spell checks only the current stream. Do not set this flag if you want all streams
to be spell checked.
NoDoubleWord (4) - Ignores repeated words.
IgnoreNums (8) - Ignores words containing numbers.
IgnoreInitCaps (16) - Checks the spelling of words that do not begin with a capital letter.
TurboCheck (32) - Speeds up the spell checking by only checking the documents that have been
flagged as changed since the last spell check.
SpellAlt (64) - Checks for alternate spelling entered by the user.

To display the Spell Check dialog box and allow the user to select the parameters: SpellCheck

Return Value
This function returns:

1    (TRUE) if the spell check was done.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the spell check could not be done.

Example
FUNCTION Example()
SpellCheck(1)
END FUNCTION

See also:

Thesaurus

StandardView
This function changes the current view level to standard view. Choosing this function is equivalent to
choosing View/Standard.

Syntax
StandardView()

Return Value
This function returns:

1.

Example
FUNCTION Example()
Again:
View = Query$("Choose a view: (C)ustom, (E)nlarged, (F)acing Pages, Full (P)age, or (S)tandard.")
View = UCASE$(Left$(View, 1))
SWITCH View
CASE "C"
CustomView()
CASE "E"
EnlargedView()
CASE "F"
FullPageView()
CASE "P"
FacingView()
CASE "S"
StandardView()
default
Message("Please enter one of the following: ""C"", ""E"", ""F"", or ""S"")
GoTo again
ENDSWITCH
END FUNCTION

See also:

EnlargedView, FacingView, FullPageView, GetViewLevel, LayoutMode, CustomView

StatusBarMsg
This function displays a message in the Ami Pro status bar. The macro does not pause. The message can
be reset by calling this function with the null string ("") as its parameter.

Syntax
StatusBarMsg(Message)
Message is the string of text to be displayed in the program's status bar. If the null string ("") is sent, the
default Ami Pro status bar is restored.

Return Value
This function returns:

1    (TRUE) if the message was displayed.
-2    (GeneralFailure) if the message could not be displayed.

Example
FUNCTION Example()
IgnoreKeyboard(1)
HourGlass(1)
StatusBarMsg("Importing graphic file...")
ImportPicture("BMP", "C:\AMIPRO\ICONS\123W.BMP", ".BMP", 0)
StatusBarMsg("")
HourGlass(0)
IgnoreKeyboard(0)
END FUNCTION

See also:

HourGlass, IgnoreKeyboard, Messages

strcat$
This function concatenates strings together to make a longer string. Any number of strings can be
appended together at a time.

Syntax
strcat$(Text1, Text2[, Text3...])
Text1 is a string to which Text2 is appended.
Text2 is a string which ia appended to Text1.
Text3 is a string which is appended to Text1 and Text2.

Return Value
This function returns:

 the new string.

Example
FUNCTION Example()
MacFile = GetRunningMacroFile$()
SetDlgCallBack(50, "{MacFile}!Message1")
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not find dialog box!")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
TYPE(GetDialogField$(8002))
END FUNCTION

FUNCTION Message1(hdlg, id, text)
Name = GetDlgItemText(hdlg, 8000)
Message("The contents of the first box are {Name}.")
Message("We will now fill the second box with the inverse of {Name}.")
FOR I = len(Name) to 1 step -1
 Name2 = strcat$(Name2, MID$(Name, I, 1))
NEXT
SetDlgItemText(hdlg, 8002, Name2)
END FUNCTION

DIALOG ExampleBox
-2134376448 8 106 38 160 54 "" "" "Sample Dialog Box"
FONT 6 "Helv"
50 6 62 12 8000 1350631552 "edit" "" 0
4 6 44 10 1000 1342177280 "static" "Your Name:" 0
50 20 62 12 1003 1342177287 "static" "" 0
4 22 44 10 1002 1342177280 "static" "Reversed:" 0
52 22 58 8 8002 1342177280 "static" "" 0
116 4 40 14 1 1342242817 "button" "OK" 0
116 20 40 14 2 1342242816 "button" "Cancel" 0
100 36 56 14 50 1342242816 "button" "&Run Example..." 0
END DIALOG

See also:

ASC, strchr, LCASE$, UCASE$, strfield$, MID$, LEN, FormatNum$

strchr
This function searches the specified string for a character. It returns the location of the character within
the string.

Syntax
strchr(Offset, Text, Char)
Offset is the location in the string to begin searching. Offset is one based. To search from the beginning
of the string, use an offset of 1.
Text is a string that is searched for a specific character.
Char is the first character to be searched for.

Return Value
This function returns:

the number of characters into the string at which the desired character was found.
 -1 if the desired character is not found in the string, the function returns.

Example
FUNCTION Example()
String=Query$("Enter the string:")
Offset=0
Char=Query$("What char to search for?")
Position=Strchr(Offset, String, Char)
Message(Position)
END FUNCTION

See also:

ASC, CHR$, strcat$, LCASE$, UCASE$, strfield$, MID$, LEN, FormatNum$, Instr, Left$, Right$

strfield$
This function is used to extract individual fields from a field delimited string. The function assumes a
record format where variable length fields are separated from each other with a unique character.

Syntax
strfield$(Text, FieldNumber, Separator)
Text is the string from which the field is extracted.
FieldNumber is the number of the field to be extracted (1 = first field).
Separator is the character which separates the fields.

Return Value
This function returns:

returns the extracted field.
 -1 if there are not enough fields in the string.
 the null string ("") if the desired field is empty.

Example
FUNCTION Example()
LayoutMode()
IF not IsFrameSelected()
 Pos = CursorPosition$()
 x = strfield$(Pos, 1, ",")
 y = strfield$(Pos, 2, ",")
 AddFrame(x, y, (x + 1440), (y - 1440))
ENDIF
DrawingMode()
END FUNCTION

See also:

ASC, CHR$, strcat$, strchr, LCASE$, UCASE$, MID$, LEN, FormatNum$

StyleManageAction
This function is used to manage paragraph styles. Choosing this function is equivalent to choosing
Style/Style Management.
The StyleManageInit function must be used prior to this function. The StyleManageFinish function must
be used immediately after this function.

Syntax
StyleManageAction(Style, Action, FuncNo)
Style is the name of the managed paragraph style.
Action is used to select the desired action to perform on the paragraph style.
It is one of the following values:

FuncNo (1) - Assigns a function key to a paragraph style.
DocToSty (2) - Moves a paragraph style from the document to the style sheet.
StyToDoc (4) - Moves a paragraph style from the style sheet to the document.
Remove (8) - Removes a paragraph style. You can remove any paragraph style from the document
style list and any style except Body Text from the style sheet style list.
Revert (16) - Undo changes made to a paragraph style. The style reverts to the formatting information
stored in the style sheet.
StyList (32) - The paragraph style being affected in the style sheet. Use this value if removing,
reverting, or changing the function number of a style in the style sheet.

FuncNo is the function key assigned to the paragraph style in the StyleName parameter. The range for
this number is 2 - 16.

Return Value
This function returns:

1.

Example
FUNCTION Example()
StyleManageInit()
StyleManageAction("Body Single, Revert, 0)
StyleManageFinish
END FUNCTION

See also:

StyleManagement, StyleManageInit, StyleManageFinish

StyleManageFinish
This function must be used after the StyleManageAction function, which manages styles. Choosing this
function is equivalent to accepting changes entered by choosing Style/Style Management.
This function does not automatically manage styles.

Syntax
StyleManageFinish()
To display the StyleManagement dialog box and allow the user to manage paragraph styles:
StyleManagement

Return Value
This function returns:

1.

Example
FUNCTION Example()
StyleManageInit()
StyleManageAction("Body Single, Revert, 0)
StyleManageFinish
END FUNCTION

See also:

StyleManagement, StyleManageInit, StyleManageFinish

StyleManageInit
This function is used to prepare Ami Pro for style management changes. Choosing this function is
equivalent to initializing changes made when choosing Style/Style Management.
It must be used prior to the StyleManageAction function.

Syntax
StyleManageInit()

Return Value
This function returns:

1.

Example
FUNCTION Example()
StyleManageInit()
StyleManageAction("Body Single, Revert, 0)
StyleManageFinish
END FUNCTION

See also:

StyleManagement, StyleManageAction, StyleManageFinish

StyleManagement
This function allows the user to view the Style Management dialog box and manage paragraph styles.
Choosing this function is equivalent to choosing Style/Style Management.
This function does not manage paragraph styles automatically.

Syntax
StyleManagement()

Return Value
This function returns:

1    (TRUE) if the changes were accepted.
0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
StyleManagement()
END FUNCTION

See also:

ModifyStyle, SaveAsNewStyle, UseAnotherStyle, StyleManageInit, StyleManageAction,
StyleManageFinish

TableGetRange
This function returns the starting and ending rows if Ami Pro is in a table. If a single cell or no cell is
selected, the starting row equals the ending row. If you are not in a table, the passed variables are not
changed.

Syntax
TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
&StartRow contains the row the insertion point is in.
&StartCol contains the column the insertion point is in.
&EndRow contains the last selected row.
&EndCol contains the last selected column.
If a range is selected in the table, Startrow & Startcol are different from Endrow & Endcol.
If you are not in the    tables mode, Startrow, Startcol, Endrow, and Endcol are not changed.

Return Value
This function returns:

 1    (TRUE) if you are in    tables    mode, the variables are updated.
 0    (FALSE) if you are not in    tables mode.

Example
FUNCTION Example()
DEFSTR StartRow, StartCol, EndRow, EndCol;
Tables(1, TRUE, 4, 10)
'TableLayout(2, TRUE, 1440, 0, 0, 0, TRUE, TRUE, FivePoint, TRUE)
WHILE StartRow != 2
 TYPE("[Right]")
 TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
WEND
TYPE("[SHIFTRight][SHIFTRight]")
ConnectCells()
TableLines(AllSides, 0, 0, OnePoint, 0)
END FUNCTION

See also:

Tables, TableLayout

TableLayout
This function sets the layout of an existing table. Choosing this function is equivalent to choosing
Table/Modify Table Layout.

Syntax
TableLayout(ChangeLayout, AutoHeight, ColWidth, ColGutter, RowHeight, RowGutter, Center, LineAround,
LineStyle, HonorProtect, SpanPages, DisableMouse)
ChangeLayout is a flag indicating that this is a layout change. The ChangeLayout parameter should
always be set to 2.
AutoHeight is a flag indicating whether the automatic row height option is enabled. The AutoHeight
parameter should be set to 1 (On) if the height of rows should be allowed to grow automatically, or 0 (Off)
if the row height should be fixed.
ColWidth is the width of the columns in twips.
ColGutter is the width of the column gutters in twips.
RowHeight is the height of the rows in twips.
If the automatic row height option is set, the option for row height is ignored.
RowGutter is the height of the row gutters in twips.
ColWidth, ColGutter, RowHeight and RowGutter should be set to the appropriate width for columns, rows,
and gutters.
Multiply the desired number of inches by 1440 to determine the value in twips (1 inch=1440 twips).
Center is a flag indicating whether a page table should be centered between the margins and can be one
of the following:

1 (On) if the table should be centered on the page.
0 (Off) if the table is not to be centered on the page.

If the table is in a frame, this parameter is ignored, but should still be set.
LineAround is a flag indicating whether there should be a line around the table, and may be one of the
following:

1 (On) if a line should be drawn around the table.
0 (Off) if no line should be drawn around the table.

LineStyle is the paragraph style to use for the line around the table and may be one of the following:
Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule
FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rules
DoubleTwoPoint (9) - Parallel two point rules
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

If no line should be drawn around the table, this parameter must be set, but the value of the paragmeter is
ignored.
HonorProtect is a flag indicating whether protection should be honored in the table and may be one of
the following:

1 (On) if cells marked as protected should not be editable.
0 (Off) if protected cells can be edited.

SpanPages is a flag indicating whether data in a cell should continue to the next page without moving the
entire row to the next page. The AutoHeight parameter must also be set to 1 if SpanPages is set to 1.

1 (On) - If rows should span pages
0 (Off) - If rows should not span pages

DisableMouse is a flag indicating whether the mouse can change the size of rows and columns.
1 (Yes) if the mouse should be disabled
0 (No) if the mouse should be enabled

To display the Table Layout dialog box and allow the user to set the table layout: TableLayout

Return Value
This function returns:

1    (TRUE) if the table layout was changed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the layout could not be changed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
DEFSTR StartRow, StartCol, EndRow, EndCol;
Tables(1, TRUE, 4, 10)
'TableLayout(2, TRUE, 1440, 0, 0, 0, TRUE, TRUE, FivePoint, TRUE)
WHILE StartRow != 2
 TYPE("[Right]")
 TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
WEND
TYPE("[SHIFTRight][SHIFTRight]")
ConnectCells()
TableLines(AllSides, 0, 0, OnePoint, 0)
END FUNCTION

See also:

ProtectCells, Tables, TableLines

TableLines
This function sets the line and color options for a cell or group of cells. Choosing this function is
equivalent to choosing Table/Lines & colors.

Syntax
TableLines(LineOn, LineOff, NoChange, LineStyle, ShadeType)
LineOn is a flag indicating which sides of the cell should have the new lines/colors and may be one or
more of the following:

AllSides (1) - All sides of the cell
Outline (2) - The outline of the cell
LeftSide (4) - The left side of the cell
RightSide (8) - The right side of the cell
TopSide (16) - The top side of the cell
BottomSide (32) - The bottom side of the cell
CellShade (64) - The shading of the cell

Multiple sides of the cell can be specified by adding the individual values together.
LineOff is a flag indicating which sides of the cell should not have lines or colors and may be one or more
of the following:

AllSides (1) - All sides of the cell
Outline (2) - The outline of the cell
LeftSide (4) - The left side of the cell
RightSide (8) - The right side of the cell
TopSide (16) - The top side of the cell
BottomSide (32) - The bottom side of the cell
CellShade (64) - The shading of the cell

Multiple sides of the cell can be specified by adding the individual values together.
NoChange is a flag indicating which sides of the cell should remain the same and may be one or more of
the following:

None (0) - No sides of the cell
AllSides (1) - All sides of the cell
Outline (2) - The outline of the cell
LeftSide (4) - The left side of the cell
RightSide (8) - The right side of the cell
TopSide (16) - The top side of the cell
BottomSide (32) - The bottom side of the cell
CellShade (64) - The shading of the cell

Multiple sides of the cell can be specified by adding the individual values together.
The LineOn, LineOff, and NoChange parameters are equivalent to choosing check box states for each of
the sides of the cell. Using the menu function, a checked box indicates that the new lines/colors should be
applied to the element indicated by the box. An unchecked box indicates that no lines/colors should be
applied to an element. A grayed box indicates that lines or colors are already applied to the element and
that they should not be changed from what they already are.
LineStyle is a number representing the desired line paragraph style and may be one of the following:

Hairline (1) - Hairline
OnePoint (2) - One point rule
TwoPoint (3) - Two point rule
ThreePoint (4) - Three point rule

FourPoint (5) - Four point rule
FivePoint (6) - Five point rule
SixPoint (7) - Six point rule
DoubleOnePoint (8) - Parallel one point rules
DoubleTwoPoint (9) - Parallel two point rules
ThreeLines (10) - Hairline above and below a two point rule
HairBelow (11) - Hairline below a three point rule
HairAbove (12) - Hairline above a three point rule

ShadeType is a number representing the desired shading type and may be one of the following:
BlackShade (1) - Black background
SeventyFiveShade (2) - 75% black shading
FiftyShade (3) - 50% black shading
TwentyFiveShade (4) - 25% black shading
TenShade (5) - 10% black shading
BlueShade (6) - Blue background
RedShade (7) - Red background
MagentaShade (8) - Purple background
GreenShade (9) - Green background
YellowShade (10) - Yellow background
CyanShade (11) - Light blue background
WhiteShade (12) - White background

If no shading should be applied to the cell(s), this parameter should be set but the value of the parameter
is ignored.
To display the Lines dialog box and allow the user to set the table line options: TableLines

Return Value
This function returns:

1    (TRUE) if the cell lines and colors were changed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the lines could not be changed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
DEFSTR StartRow, StartCol, EndRow, EndCol;
Tables(1, TRUE, 4, 10)
'TableLayout(2, TRUE, 1440, 0, 0, 0, TRUE, TRUE, FivePoint, TRUE)
WHILE StartRow != 2
 TYPE("[Right]")
 TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
WEND
TYPE("[SHIFTRight][SHIFTRight]")
ConnectCells()
TableLines(AllSides, 0, 0, OnePoint, 0)
END FUNCTION

See also:

TableLayout, Tables

Tables
This function creates a table with the specified parameters. Choosing this function is equivalent to
choosing Tools/Tables.

Syntax
Tables(Which, AutoHeight[, ColWidth, GutWidth, RowHeight, GutHeight, Center, LineAround, LineStyle,
HonorProtect, SpanPages], NumCols, NumRows)
Which is a flag indicating what to do with this function and can be one of the following:

TableOnly (1) - Creates only the table
TableLayout (3) - Creates the table and includes the table layout information

AutoHeight is set if the height of the rows in the new table should be auto height. This function can be a
1 (On), or a 0 (Off).
ColWidth is the width of the columns to create, in twips.
GutWidth is the width of the column gutters to create, in twips.
RowHeight is the height of the rows to create, in twips.
This parameter is ignored if the AutoHeight parameter is set to 1.
GutHeight is the height of the row gutters to create, in twips.
Center is set if you want the table to be centered between the margins and may be a 1 (On) or a 0 (Off).
If this table is being placed in a frame, this parameter is ignored.
LineAround is used if you want a line to be placed around the table and may be a 1 (On) or a 0 (Off).
LineStyle is the style of the line to be placed around the table if the LineAround parameter is set to 1.
HonorProtect is set if you want honor protection set inside the table. It can be a 1 (On) or a 0 (Off).
SpanPages is set if you want rows to span pages (On) or if you want rows to be retained separately over
page breaks (Off).
NumCols is the number of columns to place in this table.
NumRows is the number of rows to place in this table.

Return Value
This function returns:

1    (TRUE) if the table was created.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the table could not be created.

Example
FUNCTION Example()
DEFSTR StartRow, StartCol, EndRow, EndCol;
Tables(1, TRUE, 4, 10)
'TableLayout(2, TRUE, 1440, 0, 0, 0, TRUE, TRUE, FivePoint, TRUE)
WHILE StartRow != 2
 TYPE("[Right]")
 TableGetRange(&StartRow, &StartCol, &EndRow, &EndCol)
WEND
TYPE("[SHIFTRight][SHIFTRight]")
ConnectCells()
TableLines(AllSides, 0, 0, OnePoint, 0)
END FUNCTION

See also:

AddFrame, TableLayout, TableLines

TabRuler
This function adds, deletes, or modifies tabs, and changes the number of columns, indentions, and
margins. Choosing this function is equivalent to specifying tab functions on the tab ruler.
The amount for indentions must be given in twips (1 inch=1440 twips). Multiply the desired number of
inches by 1440 to determine the value in twips.

Syntax
TabRuler(Command[, Parameters])
Command is the type of tab function to process and can be one of the following:

ChangeMargins (1) - Change the margins
ChangeAllIndent (2) - Change all the indents
ChangeFirstIndent (3) - Change the first indent
ChangeSecIndent (4) - Change the second indent
ChangeRightIndent (5) - Change the right indent
ChangeTabs (6) - Change the tabs
ChangeCols (7) - Change the number of columns

TabRuler(ChangeMargins, 1, Column, Offset1, Offset 2)
Column is the number of the column to modify in the horizontal ruler. To modify the vertical ruler set
column to zero.
Offset1 is the amount to offset from the left side, in twips, for the horizontal ruler. It is the amount to offset
from the top, in twips, for the vertical ruler. The offset on the horizontal ruler is the left margin and the
offset on the vertical ruler is the top margin.
Offset2 is the amount to offset from the left side, in twips, for the horizontal ruler. It is the amount to offset
from the top, in twips, for the vertical ruler. The offset on the horizontal ruler is the right margin and the
offset on the vertical ruler is the bottom margin.

TabRuler(ChangeAllIndent, Offset)
Offset is the amount to set indention from the left margin, in twips.

TabRuler(ChangeFirstIndent, Offset)
TabRuler(ChangeSecIndent, Offset)
Offset is the amount to set indention from the left margin plus the Indent All indention, in twips.

TabRuler(ChangeRightIndent, Offset)
Offset is the amount to set indention from the right margin, in twips.

TabRuler(ChangeTabs, TabNumber, Action[, Offset, Type])
TabNumber is a number indicating which tab to add, delete, or modify. The TabNumber begins at 0.
Action specifies what action to perform on the selected tab.

(-1) - Delete tab
(-2) - Add tab
(-3) - Delete all tabs
(Positive number) - the new offset for a tab, in twips, from the left margin

If adding a tab or deleting a single tab, the Offset and Type parameters are required.
Offset is the offset for each tab, in twips, from the left margin.

Type is type for each tab and can be one of the following:
TabLeft (1) - Left tab
TabCenter (2) - Center tab
TabRight (3) - Right tab
TabNumeric (4) - Numeric Tab

TabRuler(ChangeCols, NumCols)
This function changes the number of total columns for the ruler.
NumCols is the total number of columns.

Return Value
If Command is ChangeMargins, this function returns:

1 (TRUE) if successful.
0 (NoAction) if no margins are changed.

If Command is ChangeAllIndent, ChangeFirstIndent, ChangeSecIndent, or ChangeRightIndent, this
function returns:

1 (TRUE) if successful.
-6 (InsufficientMemory) if not enough memory.

If Command is ChangeTabs, this function returns:
0 (NoAction) if the incorrect tab number is used.
1 (TRUE) if successful.
-6 (InsufficientMemory) if not enough memory.

If Command is ChangeCols, this function returns:
1.

Example
FUNCTION Example()
' Delete all the tabs
TabRuler(ChangeTabs, 0, -3)
'Add tab 1 to be center tab at 2.5 inches
TabRuler(ChangeTabs, 0, -2, 2160, 2)
' Add tab 2 to be left tab at 3.5 inches
TabRuler(ChangeTabs, 1, -2, 3600, 1)
' Add tab 3 to be right tab at 5 inches
TabRuler(ChangeTabs, 2, -2, 5760, 3)
' Add tab 4 to be numeric tab at 6 inches
TabRuler(ChangeTabs, 3, -2, 7200, 4)
' Change the second tab to offset of 4 inches
TabRuler(ChangeTabs, 1, 4320)
' Change the top margin to start at 3 inches
' and bottom margin to start at 9 inches
TabRuler(ChangeMargins, 1, 0, 4320, 12960)
' Change the left margin to .5 inches
' and the right margin to start at 6 inches
TabRuler(ChangeMargins, 1, 1, 720, 8640)
' Change all indents .5 inches
TabRuler(ChangeAllIndent, 720)
' Change first indent to 1 inch
TabRuler(ChangeFirstIndent, 1440)
' Change second indent to .75 inches
TabRuler(ChangeSecIndent, 1080)
' Change right indent to 1 inch

TabRuler(ChangeRightIndent, 1440)
' Change the number of columns to 2
TabRuler(ChangeCols, 2)
END FUNCTION

See also:

ModifyStyle, ModifyLayout

TabRulerInsert
This function inserts a tab ruler. Choosing this function is equivalent to choosing Page/Ruler/Insert.

Syntax
TabRulerInsert()

Return Value
This function returns:

1    (TRUE) if the tab ruler was inserted.
If this function is called when Page/Ruler/Insert is grayed, the macro terminates and displays an error
message.

Example
FUNCTION Example()
TabRulerInsert()
END FUNCTION

See also:

ModifyLayout, FloatingHeader, TabRulerRemove

TabRulerRemove
This function removes a tab ruler. Choosing this function is equivalent to choosing Page/Ruler/Remove.

Syntax
TabRulerRemove()

Return Value
This function returns:

1    (TRUE) if the tab ruler was removed.
If this function is called when Page/Ruler/Remove is grayed, the macro terminates and displays an error
message.

Example
FUNCTION Example()
TabRulerRemove()
END FUNCTION

See also:

ModifyLayout, FloatingHeader, TabRulerInsert

Thesaurus
This function displays the Thesaurus dialog box and searches for the selected word in the Thesaurus.
Choosing this function is equivalent to choosing Tools/Thesaurus. This function does not automatically
use the thesaurus functions.

Syntax
Thesaurus()

Return Value
This function returns:

0.

Example
FUNCTION Example()
Thesaurus()
END FUNCTION

See also:

SpellCheck

TileWindow
This function allows you to tile Multiple Document Interface (MDI) windows without overlapping them.
Choosing this function is equivalent to choosing Window/Tile.

Syntax
TileWindow()

Return Value
This function does not return a value.

Example
FUNCTION Example()
Text = UCASE$(Left$(Query$("What action to take (Tile, Cascade, New, Select) on MDI Windows?"),
1))
SWITCH Text
CASE "T"
TileWindow()
CASE "C"
CascadeWindow()
CASE "N"
NewWindow()
CASE "S"
SelectWindow(Query$("Name of window to select (Name must match EXACTLY)?"))
default
Message("Only the proposed options are available.")
ENDSWITCH
END FUNCTION

See also:

CascadeWindow, NewWindow, NextWindow, SelectWindow

TOCOptions
This function sets the options for a generated table of contents for the current document. Choosing this
function is equivalent to choosing File/Master Document/Options/TOC Options. It is also equivalent to
choosing Tools/TOC, Index/TOC Options.
This function replaces the SetTOCOpts function that was available in Ami Pro 2.0.

Syntax
TOCOptions(Style, Separator, Flag[, Style, Separator, Flag...])
Style is the name of the paragraph style.
Separator is the character that separates the text from the page number. The separator that can be used
is dependent on the Flag parameter and can be one of the following:

("") None
(".") Dot
("-") Dash
("_") Underline
(",") Comma

Flag can be either page numbers, or right alignment and page numbers.
(1) - Use page numbers
(2) - Use right alignment (must combine with Use page numbers)

The rules for the Flag parameter:
If both page numbers and right align are used, the separator can be none, dot, dash or underline.
If only page numbers are used, the separator can be only none or comma.
If right align is used, it must be combined with the value for Use page numbers.
If page numbers are not used, the separator must be none.

To display the TOC Options dialog box: TOCOptions

Return Value
This function returns:

1.

Example
FUNCTION Example()
TOCOptions("Title" "." 3 "Subhead" ", " 1)
END FUNCTION

See also:

Generate, SetTOCFile

ToggleCleanScreen
This functions turns on Clean Screen mode if it is not already on. If Clean Screen mode is on, then it turns
off. Choosing this function is equivalent to choosing View/Show/Hide Clean Screen.

Syntax
ToggleCleanScreen()

Return Value
This function returns:

1.

Example
FUNCTION Example()
CleanScreenOptions(112) ' Display the scroll bars and return icon
ToggleCleanScreen()
END FUNCTION

See also:

CleanScreenOptions

ToggleIconBar
This function shows or hides the set of SmartIcons. If the set is displayed, it is removed. If the palette is
not displayed, it is displayed. Choosing this function is equivalent to choosing View/Show/Hide
SmartIcons.

Syntax
ToggleIconBar()

Return Value
This function returns:

1    (TRUE) if the icon bar toggled.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
ToggleIconBar()
END FUNCTION

See also:

ViewPreferences, HideIconBar, ShowIconBar, ToggleStylesBox, ToggleTabRuler, IconBottom,
IconCustomize, IconFloating, IconLeft, IconRight, IconTop, ShowIconBar

ToggleStylesBox
This function shows or hides the Styles Box. If the Styles Box is displayed, it is removed. If the Styles Box
is not displayed, it is displayed. Choosing this function is equivalent to choosing View/Show/Hide Styles
Box.

Syntax
ToggleStylesBox()

Return Value
This function returns:

1.

Example
FUNCTION Example()
ToggleStylesBox()
END FUNCTION

See also:

ViewPreferences, HideStylesBox, ShowStylesBox, ToggleIconBar, ToggleTabRuler

ToggleTabRuler
This function shows or hides the tab ruler. If the tab ruler is displayed, it is removed. If the tab ruler is not
displayed, it is displayed. Choosing this function is equivalent to choosing View/Show/Hide Ruler.

Syntax
ToggleTabRuler()

Return Value
This function returns:

1.

Example
FUNCTION Example()
ToggleTabRuler()
END FUNCTION

See also:

ViewPreferences, HideTabRuler, ShowTabRuler, ToggleIconBar, ToggleStylesBox

TopOfFile
This function scrolls the document to the beginning of the file without moving the insertion point. Choosing
this function is equivalent to dragging the elevator on the vertical scroll bar to the extreme top using the
mouse.

Syntax
TopOfFile()

Return Value
This function returns:

0.

Example
FUNCTION Example()
Action = Query$("Move to (T)op of file, or (E)nd of file?")
Action = UCASE$(Left$(Action, 1))
SWITCH Action
CASE "T"
message(TopOfFile())
CASE "E"
message(EndOfFile())
default
Message("""T"" or ""E"" will do just fine, please.")
ENDSWITCH
END FUNCTION

See also:

CharLeft, CharRight, EndOfFile, LeftEdge, LineDown, LineUp, RightEdge, ScreenDown, ScreenLeft,
ScreenRight, ScreenUp

Truncate
This function removes any fractional part of a number.

Syntax
Truncate(Value)
Value is the number to be evaluated.

Return Value
This function returns:

the integer portion of the passed value.

Example
FUNCTION Example()
Number = 123.4455682
Message(Truncate(Number))
END FUNCTION

See also:

Round, Mod, IsNumeric

TYPE
This function is used to type information into the current Ami Pro document. It is also used to type
insertion point movement and function keys.

Syntax
TYPE(Text)
Text is the string which is typed into the document.
Text can be any of the keyboard characters. Any attributes or variables within the string are not typed into
the document. To insert a left curly brace, type two curly braces ({{). To insert a left square brace, type two
square braces ([[). To insert a double quote mark, type two double quote marks (""). Text can contain a
variable name. If a variable name is used, enclose it in curly braces ({}) so that it can be recognized as a
variable name. Text can also contain an insertion point movement or function key. To type a key, surround
its name with square braces. An insertion point movement or function key can include the words CTRL,
SHIFT or ALT to indicate a shifted state. The following key names can be used:

[Home] - Home Key
[End] - End Key
[PgUp] - Page Up Key
[PgDn] - Page Down Key
[Ins] - Insert Key
[Del] - Delete Key
[Backspace] - Backspace Key
[Enter] - Enter or Return Key
[Tab] - Tab Key
[ESC] - Escape Key
[Up] - Up Arrow Key
[Down] - Down Arrow Key
[Left] - Left Arrow Key
[Right] - Right Arrow Key
[F1] - [F12] - Function Keys F1 through F12

Return Value
This function does not return a value.

Example
FUNCTION Example()
TYPE("NumberCharacter[Enter]")
FOR I = 1 to 255
Char = CHR$(I)
TYPE("{I}={Char}[Enter]")
NEXT
END FUNCTION

See also:

FormatNum$, CurChar$, CurWord$, CurShade$

TypeOver
This function turns Typeover mode on or off. It acts as a toggle, turning off the Typeover mode if it is
currently on or turning on the Typeover mode if it is currently off. Choosing this function is equivalent to
pressing the Insert key.

Syntax
TypeOver()

Return Value
This function returns:

1    (TRUE) if the typeover status was changed.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
TypeOver()
END FUNCTION

UCASE$
This function changes lowercase letters in the source string to upper case and returns the resulting string.
It does not change punctuation or numbers.

Syntax
UCASE$(Text)
Text is the string which changes to upper case.

Return Value
This function returns:

the string with all uppercase letters.

Example
FUNCTION Example()
Name = UCASE$(Query$("What is your name?"))
Message(Name)
END FUNCTION

See also:

ASC, CHR$, strcat$, LCASE$, strfield$, MID$, LEN, FormatNum$

Underline
This function sets the underline attribute for selected text or for all following text if no text is selected. It
acts as a toggle, turning off the attribute if it is currently on or    turning on the attribute if it is currently off.
Choosing this function is equivalent to choosing Text/Underline.

Syntax
Underline()

Return Value
This function returns:

0 if the underline attribute is toggled on and there are no attributes assigned to the text.
4 if the underline attribute is toggled on and the bold attribute is already assigned.
8 if the underline attribute is toggled on and the italic attribute is already assigned.
16 if the underline attribute is toggled off.
32 if the underline attribute is toggled on and the word underline attribute is already assigned.

The return values may be added together to identify the attributes that were preciously assigned.
-2    (GeneralFailure) if the attribute was not changed.

Example
FUNCTION Example()
String = "This is a line of text.[Enter]"
NormalText()
TYPE("Normal...[Enter]{String}")
BOLD(1)
TYPE("Bold...[Enter]{String}")
BOLD(0)
Italic(1)
TYPE("Italics...[Enter]{String}")
Italic(0)
Underline()
TYPE("Underline...[Enter]{String}")
Underline()
WordUnderline(1)
TYPE("Word Underline...[Enter]{String}")
WordUnderline(0)
Bold()
Underline(1)
Italic()
TYPE("Bold, Underline, Italics...[Enter]{String}")
NormalText()
TYPE("Normal...[Enter]{String}")
END FUNCTION

See also:

Bold, Italic, NormalText, WordUnderline

Undo
This function undoes the previous editing function. Choosing this function is equivalent to choosing
Edit/Undo.

Syntax
Undo()

Return Value
This function returns:

1    (TRUE) if the function was successfully undone.
0    (NoAction) if no action was taken.

Example
FUNCTION Example()
Undo()
END FUNCTION

See also:

UserSetup

UpgradeHelp
This function displays the online Help for Ami Pro. Choosing this function is equivalent to choosing
Help/Upgrade. This function does not select a Help topic automatically. Because Help displays in a
separate window, further macro functions which cause a repaint of the Ami Pro window force Ami Pro to
replace the Help window.
If this function is used, it should be the last function used in the macro.

Syntax
UpgradeHelp()

Return Value
This    Function Returns:

1    (TRUE) if the Help window was displayed.
-2    (GeneralFailure) if the Help window could not be displayed for some other reason.
 -6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
UpgradeHelp()
END FUNCTION

See also:

About, EnhancementProducts, HowDoIHelp, KeyboardHelp, MacroHelp, UsingHelp, Help

UpperCase
This function sets upper case for selected text or for all following text if no text is selected. It acts as a
toggle, turning off upper case if it is currently on or    turning on upper case if it is currently off. It is the
equivalent to choosing Text/Caps/Upper Case.

Syntax
UpperCase()

Return Value
This function returns:

1    (TRUE) if the attribute was changed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the attribute could not be changed.
-6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
UpperCase()
END FUNCTION

See also:

InitialCaps, SmallCaps, LowerCase

UseAnotherStyle
This function selects a new paragraph style sheet for the document on the screen. Choosing this function
is equivalent to choosing Style/Use Another Style Sheet.

Syntax
UseAnotherStyle(Name, Options)
Name is the name of the new paragraph style sheet to use.
Options is a flag indicating the format for displaying the style sheet name in the User Another Style Sheet
dialog box.

(1) - show the style sheets by (2) - show the style sheets by file name
To display a dialog box to allow the user to select the paragraph style sheet to use: UseAnotherStyle

Return Value
This function returns:

1    (TRUE) if the paragraph style sheet was changed.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the paragraph style sheet could not be changed.

Example
FUNCTION Example()
UseAnotherStyle("~MACRO.STY")
END FUNCTION

See also:

ModifyStyle, SaveAsNewStyle, SelectStyle, SetStyle

UserControl
This function displays a Windows Modeless Dialog Box titled "Macro Pause" with the specified prompt
string and Resume and Cancel push buttons. The user can click outside this dialog box to do any regular
Ami Pro function. When the user is done, he can click the Resume button to resume the macro or the
Cancel button to cancel the macro.
Press ALT+F6 to toggle between Ami Pro and the dialog box.

Syntax
UserControl(Prompt)
prompt    is a string used as a prompt to the user. It can be a maximum of 80 characters.

Return Value
This function does not return a value. If the user selects Cancel, control passes to the routine defined by
the ONCANCEL statement.

Example
FUNCTION Example()
UserControl("Click Resume to bring up Control Panel...")
ControlPanel
UserControl("Click Resume to shut down Control Panel...")
AppClose("Control Panel")
END FUNCTION

See also:

Decide, DialogBox, IgnoreKeyboard, Message, Messages, MultiDecide, Query$, SingleStep

UserSetup
This function sets defaults for using Ami Pro. Choosing this function is equivalent to choosing Tools/User
Setup.

Syntax
UserSetup(UndoLevel, SaveTime, Options, Flag, UserName, UserInitials, Color, LoadMacro, ExitMacro,
MacroOptions, RecentFiles)
UndoLevel is the desired undo level (0-4).
SaveTime is the time between saves, in minutes. If the autosave function is on.
Options is the flag containing other default options. It is one of the following values:

NoUndo (0) - No level set is undone
Undo1 (2) - Single undo level
Undo2 (4) - Two levels undone
Undo3 (8) - Three levels undone
Undo4 (16) - Four levels undone
DisableOneLine (32) - Disable one-line Help
DiableDragDrop (64) - Diable the Drag & Drop feature
BackupOn (128) - Automatic Backup turned on
TimedSaveOn (256) - Timed Save turned on
DisableWarn (2048) - Disable warning messages

Flag is currently unused, and is set to 0.
UserName is the name of the user for the document locking function.
UserInitials is the intials of the user for note functions.
Color is the color for notes. It is one of the following values:

White (16777215)
Cyan (16776960)
White (16777215)
Cyan (16776960)
Yellow (65535)
Magenta (16711935)
Green (65280)
Red (255)
Blue (16711680)
Black (0)

LoadMacro is the name of the macro to run automatically when Ami Pro is loaded.
ExitMacro is the name of the macro to run automatically when Ami Pro is exited.
MacroOptions is the options for running the load and exit macros. It is one of the following values:

NoMacroRun (0) - Do not run the load macro or exit macro.
MacroLoad (2) - Set the flag to run the macro given for LoadMacroName when Ami Pro is loaded.
MacroExit (4) - Set the flag to run the macro given for ExitMacroName when Ami Pro is exited.

RecentFiles is the number of recent files to list on the File menu.
To display a dialog box to allow the user to select his defaults: UserSetup

Return Value
This function returns:

1    (TRUE) if the setup defaults were set.

0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
UserSetup(4, 0, 0, 0, "Your Name", "YIN", 65535, "", "", 0, 0)
END FUNCTION

See also:

SetDefOptions, SetDefPaths, SetDocPath, SetStylePath, SetBackPath, SetMacroPath, LoadOptions,
ViewPreferences

UseWorkingDir
This function determines whether to use the last directory you selected when a file was opened or saved.
Choosing this function is equivalent to choosing Tools/User Setup/Paths and selecting or deselecting Use
working directory.

Syntax
UseWorkingDir(Flag)
Flag is one of the following:

(1) - remembers the last directory used when opening or saving a file.
(0) - doesn't remember the last directory used when opening or saving a file.

The directory used to open or save the next file is based on the default document path defined in the
Tools/User Setup/Paths/Document text box when the flag is set to zero. If the SetDocPath function is
used, the working directory path resets to the new path but the UseWorkingDir flag is still valid.
To display the Default Paths dialog box: SetDefPaths

Return Value
This function returns:

1.

Example
FUNCTION Example()
UseWorkingDirectory(1)
END FUNCTION

See also:

SetDefPaths, SetDocPath, UserSetupUSERSETUP

UsingHelp
This function displays the online Help for Ami Pro. Choosing this function is equivalent to choosing
Help/Using Help. This function does not select a Help topic automatically. Because Help displays in a
separate window, further macro functions that cause a repaint of the Ami Pro window force Ami Pro to
replace the Help window.
If this function is used, it should be the last function used in the macro.

Syntax
UsingHelp()

Return Value
This    Function Returns:

1    (TRUE) if the Help window was displayed.
-2    (GeneralFailure) if the Help window could not be displayed for some other reason.
 -6    (NoMemory) if the function failed because of insufficient memory.

Example
FUNCTION Example()
UsingHelp()
END FUNCTION

See also:

About, UpgradeHelp, EnhancementProducts, HowDoIHelp, KeyboardHelp, MacroHelp, Help

ViewPreferences
This function sets display preferences for using Ami Pro. Choosing this function is equivalent to choosing
View/View Preferences.

Syntax
ViewPreferences(Options, ViewLevel)
Options are the display preferences to use, and can be one or more of the following:

ColumnGuides (1) - Displays column guides.
ColorMargin (2) - Displays margins in color.
ShowPictures (4) - Shows pictures in layout mode.
ShowTabs (8) - Shows tabs and returns.
ShowInitials (32) - Shows the initials with the note marker.
ShowMarks (64) - Shows marks.
ShowGrid (128) - Shows gridlines in table mode.
ShowRowCol (256) - Shows Row/Column headings in table mode.
ShowVertRuler (512) - Shows vertical ruler in layout mode.
ShowHorzScroll (1024) - Displays the horizontal scroll bar.
ShowNotes (2048) - Shows note marks in layout mode.
ShowOutlineButtons (16384) - Shows outline buttons in outline mode.
NoDisplayAsPrint (4096) - Does not use display as printed option. Setting this option turns off the
display as printed option, unlike the other flags, which turn on the option.
ShowSysFont (32768) - Uses the system font in Draft and Outline mode.
To set multiple options, add the option values together before passing them to the function.

ViewLevel is the Custom View level to use for Custom View. The ViewLevel parameter should be set to
the desired view level for the Custom View level, between 10% and 400%.
To show the Display Preferences dialog box and allow the user to select his display preferences:
ViewPreferences

Return Value
This function returns:

1    (TRUE) if the display preferences were successfully set.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the preferences could not be set.

Example
FUNCTION Example()
ViewPreferences((1 + 2 + 4 + 8 + 64 + 128 + 256 + 512 + 2048 + 16384 + 4096), 91)
END FUNCTION

See also:

SetDefOptions

WordUnderline
This function sets word only underlining for selected text or for all following text if no text is selected. It
acts as a toggle, turning off word underline if it is currently on and turning on word underling if it is
currently off. Choosing this function is equivalent to choosing Text/Word Underline.

Syntax
WordUnderline()

Return Value
This function returns:

(0)    if the word underline is toggled on and there are no attributes assigned to the text.
(4)    if the word underline attribute is toggled on and the bold attribute is already assigned.
(8)    if the word underline attribute is toggled on and the italic attribute is already assigned.
(16)    if the word underline attribute is toggled on and the underline attribute is already assigned.
(32)    if the word underline attribute is toggled off.
(-2)    (GeneralFailure) if the attribute was not changed.

The return values may be added together to identify the attributes that were previously assigned.

Example
Example
FUNCTION Example()
String = "This is a line of text.[Enter]"
NormalText()
TYPE("Normal...[Enter]{String}")
BOLD(1)
TYPE("Bold...[Enter]{String}")
BOLD(0)
Italic(1)
TYPE("Italics...[Enter]{String}")
Italic(0)
Underline()
TYPE("Underline...[Enter]{String}")
Underline()
WordUnderline(1)
TYPE("Word Underline...[Enter]{String}")
WordUnderline(0)
Bold()
Underline(1)
Italic()
TYPE("Bold, Underline, Italics...[Enter]{String}")
NormalText()
TYPE("Normal...[Enter]{String}")
END FUNCTION

See also:

Bold, Italic, NormalText, Underline

WriteProfileString
This function writes an entry into a Windows .INI file.

Syntax
WriteProfileString(App, Item, Value[, FileName)
App is the name of the section in the .INI file. If the null string ("") is passed for this parameter, the
[AmiPro] section is used.
Item is the name of the entry to be added/changed.
Value is the data to be added/changed in the .INI file.
FileName is the filename to modify. If this parameter is not used or is passed the null string (""), the
Window's WIN.INI file is used. If the full path is not used, the file is assumed to be in the Windows
subdirectory.
If the file does not exist, a new file is created and this entry is placed into it.

Return Value
This function does not return a value.

Example
FUNCTION Example()
Name = GetProfileString$("AmiPro", "UserName", "AMIPRO.INI")
FillEdit(8000, Name)
DIM Filters(10)
FOR I = 1 to 10
Filters(I) = strfield$(GetProfileString$("AmiPro", "application{I}", "AMIPRO.INI"), 1, ",")
FillList(Filters(I))
NEXT
FOR I = 1 to 10
FillEdit(9500, Filters(I))
NEXT
FillEdit(50, TRUE)
FillEdit(55, TRUE)
Box = DialogBox(".", "ExampleBox")
IF Box = -1
Message("Could not open dialog box; Exiting macro.")
EXIT FUNCTION
ELSEIF Box = 0
EXIT FUNCTION
ENDIF
Name2 = GetDialogField$(8000)
IF Name != Name2
IF Decide("Do you want to save your changes?")
WriteProfileString("AmiPro", "UserName", Name2, "AMIPRO.INI")
ENDIF
ENDIF
END FUNCTION

DIALOG ExampleBox
-2134376448 14 104 36 198 90 "" "" "Sample Dialog Box"
FONT 6 "Helv"
4 6 42 10 1000 1342308352 "static" "&User Name:" 0
52 4 92 12 8000 1350631552 "edit" "" 0
4 24 34 8 1001 1342308352 "static" "&Filters:" 0
4 34 66 52 9000 1352728579 "listbox" "" 0
74 24 52 8 1002 1342308352 "static" "&More Filters:" 0
74 34 70 40 9500 1344339971 "combobox" "" 0

74 46 60 40 24 1342308359 "button" "Group Box #1" 0
78 58 50 10 50 1342242825 "button" "Radio #1" 0
78 70 50 10 51 1342177289 "button" "Radio #2" 0
138 46 56 40 25 1342308359 "button" "Group Box #2" 0
142 56 48 12 55 1342242819 "button" "Check #1" 0
142 68 48 12 56 1342177283 "button" "Check #2" 0
154 4 40 14 1 1342373889 "button" "OK" 0
154 20 40 14 2 1342373888 "button" "Cancel" 0
END DIALOG

See also:

GetProfileString$, Determining a Macro's Location

CreateANew
This function displays the Create A New dialog box and allows you to create a NewWave object.
Choosing this function is equivalent to choosing Objects/Create A New. This function does not
automatically create a new object.
If a frame is selected, it must be    empty to be able to insert the new object.

Syntax
CreateANew()

Return Value
This function returns:

1    (TRUE) if the new object was successfully created.
-2    (GeneralFailure) if the new object was not created.

Example
FUNCTION Example()
CreateANew
END FUNCTION

See also:

ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
Share, ShowLinks

NWGetContainerCount
This function is used to dimension arrays for the NWGetContainerNames function.

Syntax
NWGetContainerCount(Object)
Object is the NewWave name for a file and its application. It can be up to 32 characters in length.

Return Value
This function returns:

the number of containers.

See also:

NWGetContainerNames

NWGetContainerNames
This function loads the passed arrays with container names and references.

Syntax
NWGetContainerNames(Object, &Names, &Ref)
Object is the NewWave name for a file and its application. It can be up to 32 characters in length.
&Names is the container names for the object.
&Ref is reference number receiving the parent's reference number.

Return Value
This function returns:

the container names in the    names array and their reference numbers in the Refs array.

See also:

NWGetContainerCount

NWGetCurrentContainer
This function returns the current container name and reference.

Syntax
NWGetCurrentContainer(&Object, &Ref)
&Object is the object receiving the parent's name.
&Ref is reference number receiving the parent's reference number.

Return Value
This function returns:

the current container name and reference.

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames, 
NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames, NWGetParent,
NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share,
ShowLinks

NWGetCurrentObject$
This function returns the current object name.

Syntax
NWGetCurrentObject$()

Return Value
This function returns:

the current object name.

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer,    NWGetObjectCount, NWGetObjectNames, NWGetParent,
NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share,
ShowLinks

NWGetObjectCount
This function refers to a container and returns the number of objects in it. It is normally used to allocate
arrays for NWGetObjectNames.

Syntax
NWGetObjectCount(Object)
Object is the NewWave name for a file and its application. It can be up to 32 characters in length.

Return Value
This function returns:

the number of objects in the container.

See also:

NWGetObjectNames, CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount,
NWGetContainerNames, NWGetCurrentContainer, NWGetCurrentObject$,      NWGetParent,
NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share,
ShowLinks

NWGetObjectNames
This function loads the two arrays with the list of object names and reference numbers.

Syntax
NWGetObjectNames(Object, &ObjectArray, &RefArray)
Object is the NewWave name for a file and its application. It can be up to 32 characters in length.
&ObjectArray is the object names.
&RefArray is reference numbers.

Return Value
This function returns:

the number of objects in the container.

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetParent,
NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share,
ShowLinks

NWGetParent
This function returns the parent's name and reference number.

Syntax
NWGetParent(Ref, &Object, &Ref)
Ref is the reference number of an object.
&Obj is the object receiving the parent's name.
&Ref is reference number receiving the parent's reference number.

Return Value
This function returns:

the parent's name and reference.

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,   
NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share,
ShowLinks

ImportText
This function allows you to import text. Choosing this function is equivalent to choosing Action/Import Text.
If you import an Ami Pro object and the object is located on the NewWave Office, the path to the object
includes only the backslash.

Syntax
ImportText(FileName, Options, App)
FileName is the name of the file to import. For Ami Pro objects, this should be the object name.
Options is the type of action performed. It is one of the following values:

1 - Ami Pro file or object
8 - Import
16 - Non Ami Pro file or object
128 - Required

Values may be combined to create the Options parameter.
App is the name of the application. It is taken from the AMIPRO.INI file.
Note that Ami Pro Object is not listed in the AMIPRO.INI file when importing an Ami Pro object.
To show the ImportText dialog box and allow the user to select the parameters: ImportText

Return Value
This function returns:

1    (TRUE) if the file and object were imported.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the file or object was not imported.

Example
FUNCTION Example()
ImportText("\data2" 137 "Ami Pro Object") 'import another Ami pro object called data2
ImportText("c:\datafile.sam" 137 "") 'import an Ami Pro file
ImportText("c:\amipro\macros\count.smm" 137 "") 'import an Ami Pro macro file
END FUNCTION

See also:

CreateANew, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
Share, ShowLinks

ListObjects
This function either opens or prints an object. Choosing this function is equivalent to choosing Objects/List
Objects.

Syntax
ListObjects (Object, Which)
Object is the full path to the object.
Which is one of the following values:

0 - Open the object
1 - Print the object

To display the ListObjects dialog box and allow the user to select the parameters: ListObjects

Return Value
This function returns:

0    (UserCancel) if the user canceled the function.

Example
FUNCTION Example()
TYPE ("[CtrlHome]") 'go to top of doc
GoToCmd(4 2 1) 'select the frame
ListObjects("memo1" 0) 'opens the object "memo1"
ListObjects("memo1" 1) 'prints the object "memo1"
END FUNCTION

See also:

CreateANew, ImportText,    IsNewWave, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
Share, ShowLinks

ObjectAttributes
This function changes the attributes for an object. Choosing this function is equivalent to choosing either
Action/Doc Info/Attributes (for the open Ami Pro object) or Objects/Attributes of Object    (for the selected
object inside an Ami Pro object).

Syntax
ObjectAttributes(Which, Options, ObjectTitle, Comments)
Which is one of the following values:

0 - The open Ami Pro object
1 - The selected object in an Ami Pro frame

Options is one of the following values:
1 - Turn on autoshare
2 - Turn off autoshare
4 - Change the title of the object
8 - Change the comments
16 - Change autoshare (use if turn autoshare is on or off)

Values may be combined.
ObjectTitle is the title of the object.
Comments is the comments string.
To display the Attributes dialog box and allow the user to set the parameters: ObjectAttributes

Return Value
This function does not return a value.

Example
FUNCTION Example()
ObjectAttributes(0 4 "memo2" "") 'change the object name to memo2
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, OpenObject, SaveAsMaster, SaveAsObject, Share, ShowLinks

OpenObject
This function opens a NewWave object in the selected frame. Choosing this function is equivalent to
choosing Objects/Open.
A frame containing a NewWave object must be selected.

Syntax
OpenObject()

Return Value
This function returns:

1    (TRUE) if the object was opened.
-2    (GeneralFailure) if the object could not be opened.

Example
FUNCTION Example()
TYPE ("[CtrlHome]") 'go to start of doc
GoToCmd(4 2 1) 'go to first frame
OpenObject()
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, SaveAsMaster, SaveAsObject, Share,
ShowLinks

NWReferenceToFile$
This function returns the actual DOS file name from the reference number.

Syntax
NWReferenceToFile$(Ref)
Ref is the reference number of an object.

Return Value
This function returns:

the DOS filename for the object.

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject, Share, ShowLinks

SaveAsMaster
This function saves the current open Ami Pro object as an Ami Pro master. Choosing this function is
equivalent to choosing Action/Save As Master. After saving, the master is added to the list of Ami Pro
masters in the Create A New dialog box.

Syntax
SaveAsMaster(MasterName, Options)
MasterName is the name of the new master and can be up to 32 characters long.
Options is one of the following values:

NoContents (0) - Do not save the object's contents in the master
WithContents (1) - Save the object's contents in the master
To display the Save As Master dialog box and allow the user to select the parameters: SaveAsMaster

Return Value
This function returns:

1    (TRUE) if the object was saved.
0    (UserCancel/NoAction) if the user canceled the function or if no action was taken.
-2    (GeneralFailure) if the object was not saved.

Example
FUNCTION Example()
SaveAsMaster("Mastername", 1)
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsObject, Share,
ShowLinks

SaveAsObject
This function saves the current open Ami Pro object. Choosing this function is equivalent to choosing
Action/Save As.
To save as a non Ami Pro object, use the SaveAs function.

Syntax
SaveAsObject(ObjectName, Options, Path, Description)
ObjectName is the name of the new object saved.
Options is one of the following values:

32 - Keep format
64 - Use password protection
128 - Save as Ami Pro release 1.2 format

Path is the location where the object is to be saved.
Description is the document description string.

To display the Save As dialog box and allow the user to select the parameters: SaveAs

Return Value
This function returns:

1    (TRUE) if the object was saved.
0    (UserCancel) if the user canceled the function.
-2    (GeneralFailure) if the object was not saved.

Example
FUNCTION Example()
SaveAsObject("Objectname" 32 "\" "")
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, Share,
ShowLinks

Share
This function shares the NewWave object in the selected frame. Choosing this function is equivalent to
choosing Edit/Share.
A frame containing the NewWave object must be selected. The function shares the NewWave object in
the selected frame.

Syntax
Share()

Return Value
This function returns:

1    (TRUE) if the object was shared.
-2    (GeneralFailure) if the object was not shared.

Example
FUNCTION Example()
TYPE ("[CtrlHome]") 'go to top of doc
GoToCmd(4 2 1) 'select first frame
Share()
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
ShowLinks

ShowLinks
This function opens a container that has a linked copy of the selected object. Choosing this function is
equivalent to choosing Objects/Show Links.
An Ami Pro object must be open and a NewWave object must be selected.

Syntax
ShowLinks(Path)
Path is the full path to the NewWave container.
To display the Show Links dialog box and allow the user to select the parameters: ShowLinks

Return Value
This function returns:

1    (TRUE) if the container was opened.
0    (UserCancel/FALSE) if the user canceled the function.
-2    (GeneralFailure) if the container could not be opened.

Example
FUNCTION Example()
GoToCmd(4 2 1) 'select frame containing object
ShowLinks("Memo Folder") 'opens the Memo Folder
ShowLinks("January Folder\Memo Folder2") 'opens the memo folder which is inside the January
Folder
END FUNCTION

See also:

CreateANew, ImportText, IsNewWave, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
Share

IsNewWave
This functions checks if the current running copy of Ami Pro is running under NewWave.

Syntax
IsNewWave()

Return Value
This function returns:

1 (TRUE) if Ami Pro for NewWave is running
0 (FALSE) if Ami Pro for NewWave is not running

Example
FUNCTION Example()
IF IsNewWave()
' NewWave statements
ENDIF
END FUNCTION

See also:

CreateANew, ImportText, ListObjects, NWGetContainerCount, NWGetContainerNames,
NWGetCurrentContainer, NWGetCurrentObject$, NWGetObjectCount, NWGetObjectNames,
NWGetParent, NWReferenceToFile$, ObjectAttributes, OpenObject, SaveAsMaster, SaveAsObject,
Share, ShowLinks

Ami Pro Macro Language Contents
The macro documentation has the following major sections:
Introduction
Overview of the Ami Pro Macro Language
Dialog Editor
NewWave Functions
Macro Programming Statements
Macro Functions By Category
Ami Pro Functions By Menu Name
Macro Functions A - C
Macro Functions D - E
Macro Functions F - G
Macro Functions H - M
Macro Functions N - R
Macro Functions S - Z
Macro Errors
Macro Error Messages

Introduction
This online Ami Pro Macro Reference documents the Ami Pro Macro Language. Use this documentation
to create your own macros and to customize Record and Play macros.
You do not need this documentation to use the macro Record and Play functions. Record and Play
functions use the same macro and Ami Pro functions described here, but access these functions
automatically.
The Ami Pro Macro Language is similar to BASIC. If you are not a computer programmer and have not
written many macros, you may have difficulty with some of the concepts presented in this documentation. 
You should start with simple macros, skipping concepts that you do not understand. If you are an
experienced computer programmer and have written macros for other programs, use this documentation
to quickly become proficient in the Ami Pro macro language. Study the sections of the documentation that
explain advanced language concepts.
In addition to the macro functions you access when using power fields, you can use other macro functions
in power fields. The same parameters listed in this documentation must be used in the power field.

See also:

Ami Pro Macro Language Contents
How the Documentation is Organized
Macro Documentation Syntax
Understanding Macros
Understanding Power Fields

How the Documentation is Organized
The rest of the macro documentation is divided into the following seven sections:
Overview of the Ami Pro Macro Language: This section describes the macro language. Included is
information about typing and saving a macro, creating an expression, and assigning the result of an
expression to a variable.
Macro Statements: This section describes the programming statements available in the macro language.
It is organized by statement name.
Macro Functions Grouped By Category: This section lists each macro function, grouped by category.
Use this section to locate the functions you need when you know a function's purpose but not its name.
Review this section to learn which functions are available in the macro language. When you find the
function you want, click on the function name to go directly to its description.
Ami Pro Functions Grouped By Menu: This section lists each Ami Pro function you can use in a macro.
Functions are grouped according to the menu in which the user finds them. Ami Pro functions execute
Ami Pro commands within a macro. Use this section to locate the functions you need when you know the
Ami Pro function's menu equivalent, but not its name. When you find the function you want, click on the
function name to go directly to its description.
The Ami Pro Dialog Editor: This section describes how to create customized dialog boxes using the
Dialog Editor.
Macro Functions Listed Alphabetically: This section lists each macro and Ami Pro function in
alphabetical order. Use this section to go directly to the function's description. The description gives the
syntax, parameters required, and the return value of the function, as well as an example and a list of
related functions. Use this section to find details on using each function.
Macro Error Messages: This section lists error messages shown when compiling or playing a macro and
explains why they occur and what to do about them.
The macro documentation does not cover basic Record and Play macros. Refer to Chapter 31 of the Ami
Pro User's Guide for information on Record and Play macros.

See also:

Understanding Macros
Overview of the Ami Pro Macro Language
Macro Programming Statements
Macro Functions By Category
Ami Pro Functions By Menu Name
Dialog Editor
Macro Functions A - C
Macro Functions D - E
Macro Functions F - G
Macro Functions H - M
Macro Functions N - R
Macro Functions S - Z
Macro Error Message

Macro Documentation Syntax
Macro statements and functions are presented in a consistent manner throughout the documentation.
This syntax helps you understand how to use each statement or function. Each statement and function is
presented in prototype form like this:
Function(parm1[parm2[parm3...]])
Parm1 is a required parameter.
Parm2 is an optional parameter.
Parm3 is an optional parameter.
In this sample function, the function name is given first, followed by parameters, if any, for the function.
When you use the function in a macro, the parameter names are replaced by values you provide.
Parameters that are surrounded by square braces ([]) are optional unless otherwise stated. If you use an
optional parameter or group of parameters, you must include all of the information shown in the square
braces (do not type the square braces). In this example, Parm2 and Parm3 are both optional.
Parm3 is optional when using Parm2. It is enclosed within its own set of square braces inside the set
used for Parm2. You cannot use Parm3 unless you also use Parm2. You do not have to use Parm3 if you
use Parm2.
The three dots following Parm3 show that it can be repeated if needed. If a parameter or portion of a
function can be repeated, it is always shown followed by three dots. If you repeat a parameter, you must
repeat the entire portion of the function within the square braces.
Most functions and statements use examples to illustrate how the function is used in a macro. Example
macros are shown in the following paragraph style:
1    FUNCTION test()
2    TYPE ("This is a test.[ENTER]")
3    END FUNCTION
Line numbering is used in the example macros to make their explanation easier. Do not type the line
numbers when you type the macros. Most of the example macros illustrate more than one function or
programming concept. Many of the examples perform functions that you can use. Look at the examples
for ideas for your macros.

See also:

Ami Pro Macro Language Contents

Macro Functions Grouped By Category
This section lists each built-in macro function by type, so that you can easily find the function you need by
looking in the appropriate category.
Description of Function Categories
The categories available are:
Variables
Strings
Ami Pro Menus
Ami Pro Word Processing
Windows Applications
Frames
Modify Style
Page Layout
Dialog Box
Arrays
ASCII Files
NewWave
Macro Only Commands
DOS

See also:

Ami Pro Macro Language Contents

Variables
Most variables are local and private to the macro in which they are declared, and are deleted when the
macro completes. Ami Pro provides variables that are saved when a macro completes.
Strings
These functions manipulate strings of text. Many of these functions are similar to, and have the same
syntax as, BASIC language string functions.
Ami Pro Menus
These functions are used to create and change the Ami Pro menu bars and to add, remove, or change
pulldown menus displayed from these menu bars. There is also a function to assign a macro to a function
key.
Ami Pro Word Processing
These functions allow you to access the word processing features that are available in Ami Pro.
Windows Applications
These functions allow Ami Pro to use Windows Dynamic Data Exchange (DDE) to interact with other
Windows programs and access Windows Dynamic Link Libraries (DLL) and the routines built into these
DLL libraries.    a function is also included to execute another application.
Frames
These functions give you control over the frame position, frame type, lines around, background color, and
drop shadow color. With the frame control functions, you can change the frame's position, appearance,
and type.
Modify Style
These functions give you control over creating or modifying a paragraph style.
Page Layout
These functions give you control over creating or modifying the page layout.
Dialog Box
You can store dialog boxes within a macro. You can define a function or functions to run while the box is
displayed. These functions can change the components of the box while the box is displayed. Bitmaps
can be included as part of a dialog box. These bitmaps can be static or defined as a button. All
functionality of the Windows interface can be reproduced with the Ami Pro macro dialog box.
Arrays
These functions allow you to position insert, delete, and sort arrays.
ASCII Files
These functions allow a macro to read and write ASCII text files. Reading and writing binary files is not
supported. File operations on binary files may behave unpredictably.
These are low-level functions that require you to properly open and close files in use. Windows may
ultimately have difficulty if a macro does not close its files.
NewWave
These functions allow you to manipulate NewWave objects. They are only available in the NewWave
release of Ami Pro.
Macro Only Commands
These functions allow you to control the execution of a macro. This includes pausing and single stepping
through a macro, and reading from and writing to the AMIPRO.INI file.
DOS
The most common DOS commands are provided as macro functions.

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Variables
Most variables are local and private to the macro in which they are declared, and are deleted when the
macro completes. Ami Pro provides variables that are saved when a macro completes.
Assign
AllocGlobalVar
FreeGlobalVar
GetGlobalVar$
GetGlobalVarCount
GetGlobalVarNames
SetGlobalVar

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category
Global Variables

Strings
These functions manipulate strings of text. Many of these functions are similar to, and have the same
syntax as, BASIC language string functions.
ASC
BinToBrackets
BracketsToBin
CHR$
CurChar$
CurShade$
CursorPosition$
CurWord$
DateDiff
DOSGetEnv$
fgets$
FormatDate$
FormatNum$
FormatSeq$
FormatTime$
GetAmiDirectory$
GetBackPath$
GetCurrentDir$
GetDialogField$
GetDocInfo$
GetDocInfoKeywords$
GetDocPath$
GetFmtPageStr$
GetGlobalArray$
GetGlobalVar$
GetMacPath$
GetMarkText$
GetOpenFileName$
GetProfileString$
GetRunningMacroFile$
GetRunningMacroName$
GetSpecialEffects$
GetStylePath$
GetTextBeforeCursor$
GetWindowsDirectory$
Instr
IsNumeric
LCASE$
Left$

LEN
MID$
Mod
Right$
Round
strcat$
strchr
strfield$
Truncate
TYPE
UCASE$

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Ami Pro Menus
These functions are used to create and change the Ami Pro menu bars and to add, remove, or change
pulldown menus displayed from these menu bars. For a full description of each function refer to the
description for the macro function.
AddBar
AddCascadeMenu
AddCascadeMenuItem
AddMenu
AddMenuItem
AddMenuItemDDE
ChangeCascadeAction
ChangeMenuAction
CheckMenuItem
DeleteMenu
DeleteMenuItem
GrayMenuItem
InsertCascadeMenu
InsertCascadeMenuItem
InsertMenu
InsertMenuItem
RenameMenuItem
ShowBar

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Ami Pro Word Processing
These functions allow you to access the word processing features that are available in Ami Pro.
About
ASCIIOptions
AssignMacroToFile
Bold
CascadeWindow
Center
ChangeIcons
ChangeLanguage
ChangeShortcutKey
CharLeft
CharRight
ChartingMode
CleanScreenOptions
ClipboardRead
ClipboardWrite
ConnectCells
ControlPanel
Copy
CreateDataFile
CreateDescriptionFile
CreateStyle
CustomView
Cut
DeleteColumnRow
DeleteEntireTable
DocInfo
DocInfoFields
DocumentCompare
DraftMode
DrawingMode
EditFormula
ElevatorLeftRight
ElevatorUpDown
EndOfFile
EnhancementProducts
EnlargedView
Equations
EvalField
FacingView
FastFormat

FieldAdd
FieldAuto
FieldCommand
FieldEvaluate
FieldLock
FieldNext/FieldPrev
FieldRemove
FieldToggleDisplay
FieldUpdate
FieldUpdateAll
FileClose
FileManagement
FileOpen
FilePrint
FindReplace
FloatingHeader
FontChange
FontFaceChange
FontPointSizeChange
FontRevert
Footnotes
FormatDate$
FormatNum$
FormatSeq$
FormatTime$
FullPageView
Generate
Glossary
GlossaryAdd
GlossSet
GoToAgain
GoToCmd
GraphicsScaling
HeaderFooter
Heading
Help
HideIconBar
HideStylesBox
HideTabRuler
HowDoIHelp
IconBottom
IconCustomize
IconFloating

IconLeft
IconRight
IconTop
ImageProcessing
ImportPicture
Indent
IndentAll
IndentFirst
IndentRest
InitialCaps
InsertBullet
InsertColumnRow
InsertDate
InsertDocInfo
InsertDocInfoField
InsertLayout
InsertMerge
InsertNewObject
InsertNote
InsertVariable
Italic
Justify
KeyboardHelp
LayoutMode
LeaderDots
LeaderHyphs
LeaderLines
LeaderNone
LeftAlign
LeftEdge
LineDown
LineNumber
LineUp
LoadOptions
LowerCase
MacroEdit
MacroHelp
MacroOptions
MacroPlay
MarkBookMark
MarkIndexWord
MarkTOCEntry
MasterDoc

MasterDocOpts
Maximize
Merge
MergeAction
MergeMacro
MergeToFile
Minimize
MoveLeftOrPromote
MoveParagraphDown
MoveParagraphUp
MoveRightOrDemote
New
NewWindow
NextWindow
NoHyphenation
NormalText
Notes
OnKey
OpenDataFile
OpenMergeFile
OpenPreviousFile1
OpenPreviousFile2
OpenPreviousFile3
OpenPreviousFile4
OpenPreviousFile5
OutlineLevels
OutlineMode
OutlineStyle
PageBreak
PageDown
PageNumber
PageUp
Paste
PrintEnvelope
PrintOptions
PrintSetup
ProtectCells
ProtectedText
QuickAddCol
QuickAddRow
ReadMail
RemoveLayout
RenameDocInfoField

Replace
Restore
Revert
RevertLayout
ReviewRevisions
RevisionInsertion
RevisionMarking
RevisionMarkOpts
RightAlign
RightEdge
Save
SaveAs
SaveAsNewStyle
ScreenDown
ScreenLeft
ScreenRight
ScreenUp
SelectColumn
SelectEntireTable
SelectRow
SelectStyle
SelectWindow
SendMail
SetBackPath
SetDataFile
SetDefOptions
SetDefPaths
SetDocPath
SetFormula
SetIconPath
SetIconSize
SetIndexFile
SetMacroPath
SetMasterFiles
SetStyle
SetStylePath
SetTOCFile
ShowIconBar
ShowStylesBox
ShowTabRuler
SizeColumnRow
SmallCaps
Sort

Spacing
SpecialEffects
SpellCheck
StandardView
TableLayout
TableLines
Tables
TabRuler
TabRulerInsert
TabRulerRemove
Thesaurus
TileWindow
TOCOptions
ToggleCleanScreen
ToggleIconBar
ToggleStylesBox
ToggleTabRuler
TopOfFile
TypeOver
Underline
Undo
UpgradeHelp
UpperCase
UseAnotherStyle
UserSetup
UseWorkingDir
UsingHelp
ViewPreferences
WordUnderline

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Windows Applications
These functions allow Ami Pro to use Windows Dynamic Data Exchange (DDE) to interact with other
Windows programs and access Windows Dynamic Link Libraries (DLL) and the routines built into these
DLL libraries.    a function is also included to execute another application. For a full description of each
function refer to the individual description for the macro function.
ActivateApp
AddMenuItemDDE
AppClose
AppGetAppCount
AppGetAppNames
AppGetWindowPos
AppHide
AppIsRunning
AppMaximize
AppMinimize
AppMove
AppRestore
AppSendMessage
AppSize
ControlPanel
DDEAdvise
DDEExecute
DDEInitiate
DDELinks
DDEPoke
DDEReceive$
DDETerminate
DDEUnAdvise
DLLCall
DLLFreeLib
DLLLoadLib
DLLLocate
GetProfileString$
WriteProfileString

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Frames
These functions give you control over the frame position, frame type, lines around, background color, and
drop shadow color. With the frame control functions, you can change the frame's position, appearance,
and type.
AddFrame
AddFrameDlg
BringFrameToFront
FrameLayout
FrameModBorders
FrameModColumns
FrameModFinish
FrameModInit
FrameModLines
FrameModType
GetCurFrameBorders
GetCurFrameLines
GetCurFrameType
GroupFrames
IsFrameSelected
ManualFrame
SelectFrameByName
SendFrameToBack
SetFrameDefaults

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Modify Style
These functions give you control over creating or modifying a paragraph style.
CreateStyle
DefineStyle
ModifyAlignment
ModifyBreaks
ModifyEffects
ModifyFont
ModifyLines
ModifyReflow
ModifySelect
ModifySpacing
ModifyStyle
ModifyTable
StyleManageAction
StyleManageFinish
StyleManageInit
StyleManagement

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Page Layout
These functions give you control over creating or modifying the page layout.
GetLayoutLeftLines
GetLayoutPageSize
GetLayoutParameters
GetLayoutParmCnt
GetLayoutRightLines
GetLayoutType
ModLayoutFinish
ModLayoutInit
ModLayoutLeftFooter
ModLayoutLeftHeader
ModLayoutLeftLines
ModLayoutLeftPage
ModLayoutPageSize
ModLayoutRightFooter
ModLayoutRightHeader
ModLayoutRightLines
ModLayoutRightPage

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Dialog Box
You can store dialog boxes within a macro. You can define a function or functions to run while the box is
displayed. These functions can change the components of the box while the box is displayed. Bitmaps
can be included as part of a dialog box. These bitmaps can be static or defined as a button. All
functionality of the Windows interface can be reproduced with the Ami Pro macro dialog box.
DialogBox
DlgKeyInterrupt
FillEdit
FillList
GetDialogField$
GetDlgItem
GetDlgItemText
SetDlgCallBack
SetDlgItemText

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Arrays
These functions allow you to position insert, delete, and sort arrays.
ArrayDelete
ArrayInsert
ArrayInsertByKey
ArraySearch
ArraySize
ArraySort
GetGlobalArray$
SetGlobalArray

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

ASCII Files
These functions allow a macro to read and write ASCII text files. Reading and writing binary files is not
supported. File operations on binary files may behave unpredictably.
These are low-level functions that require you to properly open and close files in use. Windows may
ultimately have difficulty if a macro does not close its files.
fclose
fgets$
fopen
fputs
fread
fseek
ftell
fwrite

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

NewWave
These functions allow you to manipulate NewWave objects. They are only available in the NewWave
release of Ami Pro.
CreateANew
ImportText
IsNewWave
ListObjects
NWGetContainerCount
NWGetContainerNames
NWGetCurrentContainer
NWGetCurrentObject$
NWGetObjectCount
NWGetObjectNames
NWGetParent
NWReferenceToFile$
ObjectAttributes
OpenObject
SaveAsMaster
SaveAsObject
Share
ShowLinks

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Macro Only Commands
These functions allow you to control the execution of a macro. This includes pausing and single stepping
through a macro, and reading from and writing to the AMIPRO.INI file.
AmiProIndirect
AnswerMsgBox
ApplyFormat
AtEOF
DarkMode
DateDiff
Decide
DECLARE
Exec
FileChanged
FindFirst$
FindNext$
GetAmiDirectory$
GetBackPath$
GetBookMarkCount
GetBookMarkNames
GetBookMarkPage
GetCurFontInfo
GetCurrentDir$
GetDocInfo$
GetDocInfoKeywords$
GetDocPath$
GetDocVar
GetFmtPageStr$
GetIconPalette
GetMacPath$
GetMarkText$
GetMasterFilesCount
GetMasterFiles
GetMode
GetOpenFileCount
GetOpenFileName$
GetOpenFileNames
GetPageNo
GetPowerFieldCount
GetPowerFieldPage
GetPowerFields
GetProfileString$
GetRunningMacroFile$

GetRunningMacroName$
GetSpecialEffects$
GetStyleCount
GetStyleName$
GetStyleNames
GetStylePath$
GetTextBeforeCursor$
GetTime
GetViewLevel
GetViewPrefLevel
GetViewPrefOpts
GetWindowsDirectory$
GoToPowerField
GoToShade
HourGlass
IgnoreKeyboard
ImportExport
IsFrameSelected
IsNumeric
KeyInterrupt
Message
Messages
MouseInterrupt
MultiDecide
Now
OnMDIActivate
Pause
PhysicalToLogical
Query$
RecClose
RecFieldCount
RecFieldName$
RecGetField
RecNextRec
RecOpen
Round
RunLater
SelectFrameByName
SendKeys
SetDocVar
SingleStep
StatusBarMsg
TableGetRange

UserControl
WriteProfileString

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

DOS
The most common DOS commands are provided as macro functions.
Beep
DOSchdir
DOSCopyFile
DOSDelFile
DOSGetEnv$
DOSGetFileAttr
DOSmkdir
DOSRename
DOSrmdir
DOSSetFileAttr

See also:

Ami Pro Macro Language Contents
Macro Functions Grouped by Category

Ami Pro Functions Callable in Macros
This section contains Ami Pro functions you can use in a macro. Each function name is shown with its
Ami Pro menu equivalent. For a complete list of the parameters required by the function, click on the
function name. To learn how to use Ami Pro functions, refer to the Calling Ami Pro Functions section of
the documentation.
Functions By Menu Name:
Edit Menu
File Menu
Frame Menu
Help Menu
Other Functions
Page Menu
Style Menu
System Menu
Table Menu
Text Menu
Tools Menu
View Menu
Window Menu

See also:

Ami Pro Macro Language Contents
Calling Functions With and Without Parameters

Calling Functions With and Without Parameters
Most functions can be called with or without parameters. If no parameters are passed, Ami Pro acts as if
the user accessed the function through the menu system and the dialog box is displayed. Use
parentheses only if you enter parameters. For example:
1    FileOpen("DOC.SAM", 1, "") ' opens and displays the file DOC.SAM
2    FileOpen ' brings up the File/Open dialog box
Some functions can be accessed through Ami Pro commands, even though they are several levels deep
in the menu system. For example, there is a command to insert a glossary record. Executing this function
brings up the Insert Glossary Record dialog box so the user can enter a glossary record into a document.
The menu only commands have been included so that you can develop replacement menu bars for Ami
Pro. The menu only commands can be used in these macros.
Several functions    generate child processes of Ami Pro. These include the FileManagement, Help and
ControlPanel functions. When these functions are used, the appropriate window is created, and the
program is run. Additional statements in the macro executed after the generation can cause the Ami Pro
window to display on top of the window created for these functions. When using these functions, end the
macro immediately after the function call, or use one of the pausing functions.

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

System Menu
ActivateApp System/Switch To
AppClose System/Close
AppMove System/Move
AppSize System/AppSize
ControlPanel System/Control Panel
Maximize System/Maximize
Minimize System/Minimize
Restore System/Restore

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

File Menu
ASCIIOptions File/Open/ASCII Options
DocInfoFields File/Doc Info/Other Fields
DocInfo File/Doc Info
FileClose File/Close
FileManagement File/File Management
FileOpen File/Open
FilePrint File/Print
ImportPicture File/Import Picture
ImportText File/Open/Insert
MasterDoc File/Master Document
MasterDocOpts File/Master Document/Options
Merge File/Merge
New File/New
OpenPreviousFile1 File/1
OpenPreviousFile2 File/2
OpenPreviousFile3 File/3
OpenPreviousFile4 File/4
OpenPreviousFile5 File/5
PrintEnvelope File/Print Envelope
PrintOptions File/Print/Options
PrintSetup File/Printer Setup
RenameDocInfoField File/Doc Info/Other Fields/Rename Fields
Revert File/Revert to Saved
Save File/Save
SaveAs File/Save As
SendMail File/Send Mail
SetIndexFile File/Master Document/Options
SetMasterFiles File/Master Document
SetTOCFile File/Master Document/Options
TOCOptions

File/Master Document/Options/TOC Options

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Edit Menu
Copy Edit/Copy
Cut Edit/Cut
DDELinks Edit/Link Options
FieldAdd Edit/Power Fields/Insert
FieldAuto Edit/Power Fields/Insert/Auto run box
FieldCommand Edit/Power Fields/Insert
FieldEvaluate Edit/Power Fields/Update
FieldLock Edit/Power Fields/Insert/Lock box
FieldNext/FieldPrev Edit/Power Fields/Next Field or Edit/Power Fields/Prev Field
FieldUpdate Edit/Power Fields/Update
FieldUpdateAll Edit/Power Fields/Update All
FindReplace Edit/Find & Replace
Glossary Edit/Insert/Glossary Record
GlossaryAdd Edit/Mark Text/Glossary
GlossSet Edit/Insert/Glossary Record/Data File
GoToAgain Edit/Go To
GoToCmd Edit/Go To
InsertBullet Edit/Insert/Bullet
InsertDate Edit/Insert/Date/Time
InsertDocInfo Edit/Insert/Doc Info Field
InsertDocInfoField Edit/Insert/Doc Info Field/Insert (no dialog box is displayed).
InsertMerge Edit/Insert/Merge Field
FieldAdd Edit/Insert/Merge Field (no dialog box is displayed).
InsertNewObject Edit/Insert/New Object
InsertNote Edit/Insert/Note
InsertVariable Edit/Insert/Date/Time
MarkBookMark Edit/Bookmarks
MarkIndexWord Edit/Mark Text/Index Entry
MarkTOCEntry Edit/Mark Text/TOC Entry
NoHyphenation Edit/Mark Text/No Hyphenation
Notes Edit/Insert/Note
Paste Edit/Paste
ProtectedText Edit/Mark Text/Protected Text
Replace Edit/Find & Replace
RevisionInsertion Edit/Mark Text/Revision Insertion
Undo Edit/Undo

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

View Menu
CleanScreenOptions View/View Preferences/Clean Screen Options
CustomView View/Custom View
DraftMode View/Draft Mode
EnlargedView View/Enlarged
FacingView View/Facing Pages
FieldToggleDisplay View/Show/Hide Power Fields
FullPageView View/Full Page
HideIconBar View/Hide SmartIcons
HideStylesBox View/Hide Styles Box
HideTabRuler View/Hide Ruler
LayoutMode View/Layout Mode
OutlineMode View/Outline Mode   
ShowIconBar View/Show SmartIcons
ShowStylesBox View/Show Styles Box
ShowTabRuler View/Show Ruler
StandardView View/Standard
ToggleCleanScreen View/Show/Hide Clean Screen
ToggleIconBar View/Show/Hide SmartIcons
ToggleStylesBox View/Show/Hide Styles Box
ToggleTabRuler View/Show/Hide Ruler
ViewPreferences View/View Preferences

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Text Menu
Bold Text/Bold
Center Text/Alignment/Center
FastFormat Text/Fast Format
FontChange Text/Font
FontRevert Text/Font/Revert to style
Indent Text/Indention
IndentAll Text/Indention/Indent All
IndentFirst Text/Indention/Indent First
IndentRest Text/Indention/Indent Rest
InitialCaps Text/Caps/Initial Caps
Italic Text/Italic
Justify Text/Alignment/Justify
LeftAlign Text/Alignment/Left
LowerCase Text/Caps/Lower    case
NormalText Text/Normal
RightAlign Text/Alignment/Right
SmallCaps Text/Caps/Small Caps
Spacing Text/Spacing
SpecialEffects Text/Special Effects
Underline Text/Underline
UpperCase Text/Caps/Upper Case
WordUnderline Text/Word Underline

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Style Menu
CreateStyle Style/Create Style
DefineStyle Style/Define Style
ModifyAlignment Style/Modify Style/Alignment
ModifyBreaks Style/Modify Style/Breaks
ModifyEffects Style/Modify Style/Bullets & numbers
ModifyFont Style/Modify Style/Font
ModifyLines Style/Modify Style/Lines
ModifyReflow Style/Modify Style
ModifySelect Style/Modify Style/Select Paragraph Style
ModifySpacing Style/Modify Style/Spacing
ModifyStyle Style/Modify Styles
ModifyTable Style/Modify Style/Table Format
OutlineStyle Style/Outline Styles
SaveAsNewStyle Style/Save as a Style Sheet
SelectStyle Style/Select a Style
SetStyle Style/Select a Style
StyleManageAction Style/Style Management
StyleManageFinish Style/Style Management
StyleManageInit Style/Style Management
StyleManagement Style/Style Management
UseAnotherStyle Style/Use Another Style Sheet

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros
Using Style Modification Functions   

Using Style Modification Functions
The ModifySelect function selects a paragraph style to be modified for any of the other style modification
functions. The macro can use the other style modification functions to make changes to the selected
paragraph style. Call the ModifyReflow function to apply the paragraph style sheet changes to the
document. If ModifyReflow is not called, paragraph style changes do not appear until the next time the
document is displayed.

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Page Menu
FloatingHeader Page/Header/Footer/Floating Header/Footer
HeaderFooter Page/Header/Footer
InsertLayout Page/Insert Page Layout/Insert
LineNumber Page/Line Numbering
ModifyLayout Page/Modify Page Layout
ModLayoutFinish Page/Modify Page Layout
ModLayoutInit Page/Modify Page Layout
ModLayoutLeftFooter Page/Modify Page Layout/Footer
ModLayoutLeftHeader Page/Modify Page Layout/Header
ModLayoutLeftLines Page/Modify Page Layout/Lines
ModLayoutLeftPage Page/Modify Page Layout/Left Pages
ModLayoutPageSize Page/Modify Page Layout/Page settings
ModLayoutRightFooter Page/Modify Page Layout/Footer
ModLayoutRightHeaderPage/Modify Page Layout/Header
ModLayoutRightLines Page/Modify Page Layout/Lines
ModLayoutRightPage Page/Modify Page Layout/Right Pages
PageBreak Page/Breaks
PageNumber Page/Page Numbering
RemoveLayout Page/Insert Page Layout/Remove
RevertLayout Page/Insert Page Layout/Revert
TabRulerInsert Page/Ruler/Insert
TabRulerRemove Page/Ruler/Remove

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Frame Menu
AddFrame Frame/Create Frame    (NO DIALOG BOX IS DISPLAYED).
AddFrameDlg Frame/Create Frame
BringFrameToFront Frame/Bring to Front
FrameLayout Frame/Modify Frame Layout
FrameModBorders Frame/Modify Frame Layout/Size & position
FrameModColumns Frame/Modify Frame Layout/Columns & tabs
FrameModFinish Frame/Modify Frame Layout
FrameModInit Frame/Modify Frame Layout
FrameModLines Frame/Modify Frame Layout/Lines & shadows
FrameModType Frame/Modify Frame Layout/Type
GraphicsScaling Frame/Graphics Scaling
GroupFrames Frame/Group
ManualFrame Frame/Create Frame/Manual
SendFrameToBack Frame/Send to Back
SetFrameDefaults Frame/Modify Frame Layout/Make Default

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Tools Menu
AssignMacroToFile Tools/Macros/Edit/Assign
ChangeIcons Tools/SmartIcons
ChangeLanguage Tools/Spell Check/Language    options
ChangeShortcutKey Tools/Macros/Edit/Change Shortcut Key
ChartingMode Tools/Charting
DocumentCompare Tools/Doc Compare
DrawingMode Tools/Drawing
Equations Tools/Equations
Footnotes Tools/Footnotes
Generate Tools/TOC, Index/Generate
IconBottom Tools/SmartIcons/Position
IconCustomize Tools/SmartIcons
IconFloating Tools/SmartIcons/Position
IconLeft Tools/SmartIcons/Position
IconRight Tools/SmartIcons/Position
IconTop Tools/SmartIcons/Position
ImageProcessing Tools/Image Processing
LoadOptions Tools/User Setup/Load
MacroEdit Tools/Macros/Edit
MacroOptions Tools/Macros/Record/Options
MacroPlay Tools/Macros/Playback
OnKey Tools/Macros/Edit
ReviewRevisions Tools/Revision Marking/Review Rev
RevisionMarking Tools/Revision Marking
RevisionMarkOpts Tools/Revision Marking/Options
SetBackPath Tools/User Setup/Paths
SetDefOptions Tools/User Setup/Options
SetDefPaths Tools/User Setup/Paths
SetDocPath Tools/User Setup/Paths
SetIconPath Tools/User Setup/Paths
SetIconSize Tools/SmartIcons/Icon Size
SetMacroPath Tools/User Setup/Paths
SetStylePath Tools/User Setup/Paths
TOCOptions Tools/TOC, Index/TOC Options
ShowIconBar Tools/SmartIcons/Show
Sort Tools/Sort
SpellCheck Tools/Spell Check
Tables Tools/Tables
Thesaurus Tools/Thesaurus
UserSetup Tools/User Setup
UseWorkingDir Tools/User Setup/Paths

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Table Menu
ConnectCells Table/Connect Cells
DeleteColumnRow Table/Delete Column/Row
DeleteEntireTable Table/Delete Entire Table
EditFormula Table/Edit Formula
Heading Table/Headings
InsertColumnRow Table/Insert Column/Row
LeaderDots Table/Leaders/...
LeaderHyphs Table/Leaders/---
LeaderLines Table/Leaders/___
LeaderNone Table/Leaders/None
ProtectCells Table/Protect Cells
QuickAddCol Table/Quick Add/Column
QuickAddRow Table/Quick Add/Row
SelectColumn Table/Select Column
SelectEntireTable Table/Select Entire Table
SelectRow Table/Select Row
SetFormula Table/Edit Formula
SizeColumnRow Table/Column/Row Size
TableLayout Table/Modify Table Layout
TableLines Table/Lines & Color

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Window Menu
CascadeWindow Window/Cascade
NewWindow Window/New Window
TileWindow Window/Tile

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Help Menu
About Help/About Ami Pro
EnhancementProducts Help/Enhancement Products
Help Help/Contents
HowDoIHelp Help/How Do I?
KeyboardHelp Help/Keyboard
MacroHelp Help/Macro Doc
UpgradeHelp Help/For Upgraders
UsingHelp Help/Using Help

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Other Functions
ChangeIcons Equivalent to selecting the SmartIcons symbol on the status bar and selecting the
desired set.
CharLeft Equivalent to clicking on the right arrow key to the right of the scroll bar.
CharRight Equivalent to clicking on the left arrow key to the left of the scroll bar.
ElevatorLeftRight Equivalent to dragging the horizontal scroll box (elevator) to a new position on
the horizontal scroll bar. Does not reposition insertion point.
ElevatorUpDown Equivalent to dragging the vertical scroll box (elevator) to a new position on the
vertical scroll bar. Does not reposition insertion point.
EndOfFile Equivalent to dragging the vertical scroll box to the bottom of the scroll bar.
FontFaceChange Equivalent to selecting a font on the status bar.
FontPointSizeChange Equivalent to selecting a point size on the status bar.
LeftEdge Equivalent to dragging the horizontal scroll box to the left side of the scroll bar.
LineDown Equivalent to clicking on the up arrow key at the top of the scroll bar.
LineUp Equivalent to clicking on the down arrow key at the bottom of the scroll bar.
NextWindow Equivalent to pressing CTRL+TAB.
OutlineLevels Equivalent to clicking on the icon for the number of outline levels while in Outline
Mode.
PageDown Equivalent to clicking on the PageDown icon on the status bar.
PageUp Equivalent to clicking on the PageUp icon on the status bar.
ReadMail Equivalent to clicking on the Mail button on the status bar.
RightEdge Equivalent to dragging the horizontal scroll box to the right side of the scroll bar.
ScreenDown Equivalent to clicking above the vertical scroll box on the vertical scroll bar.
Scrolls down one screen.

ScreenLeft Equivalent to clicking on the right half of the horizontal scroll bar.
ScreenRight Equivalent to clicking on the left half of the horizontal scroll bar.
ScreenUp Equivalent to clicking below the vertical scroll box on the vertical scroll bar.
Scrolls up one screen.
SetStyle Equivalent to selecting a paragraph style name from the status bar or the Styles
Box.
TabRuler Equivalent to changing the margins, indention, tabs, and columns on the tab
ruler.
TopOfFile Equivalent to dragging the vertical scroll box to the top of the scroll bar.
TypeOver Insert Key (toggles insert/typeover mode)

See also:

Ami Pro Macro Language Contents
Ami Pro Functions Callable in Macros

Functions A - C
About
ActivateApp
AddBar
AddCascadeMenu
AddCascadeMenuItem
AddFrame
AddFrameDlg
AddMenu
AddMenuItem
AddMenuItemDDE
AllocGlobalVar
AmiProIndirect
AnswerMsgBox
AppClose
AppGetAppCount
AppGetAppNames
AppGetWindowPos
AppHide
AppIsRunning
ApplyFormat
AppMaximize
AppMinimize
AppMove
AppRestore
AppSendMessage
AppSize
ArrayDelete
ArrayInsert
ArrayInsertByKey
ArraySearch
ArraySize
ArraySort
ASC
ASCIIOptions
Assign
AssignMacroToFile
AtEOF
Beep
BinToBrackets
Bold
BracketsToBin

BringFrameToFront
CascadeWindow
Center
ChangeCascadeAction
ChangeIcons
ChangeLanguage
ChangeMenuAction
ChangeShortcutKey
CharLeft
CharRight
ChartingMode
CheckMenuItem
CHR$
CleanScreenOptions
ClipboardRead
ClipboardWrite
ConnectCells
ControlPanel
Copy
CreateANew (NewWave)
CreateDataFile
CreateDescriptionFile
CreateStyle
CurChar$
CurShade$
CursorPosition$
CurWord$
CustomView
Cut

See also:

Ami Pro Macro Language Contents
Functions D - E
Functions F - G
Functions H - M
Functions N - R
Functions S - Z

Functions D - E
DarkMode
DateDiff
DDEAdvise
DDEExecute
DDEInitiate
DDELinks
DDEPoke
DDEReceive$
DDETerminate
DDEUnAdvise
Decide
DECLARE
DefineStyle
DeleteColumnRow
DeleteEntireTable
DeleteMenu
DeleteMenuItem
DialogBox
DlgKeyInterrupt
DLLCall
DLLFreeLib
DLLLoadLib
DLLLocate
DocInfo
DocInfoFields
DocumentCompare
DOSchdir
DOSCopyFile
DOSDelFile
DOSGetEnv$
DOSGetFileAttr
DOSmkdir
DOSRename
DOSrmdir
DOSSetFileAttr
DraftMode
DrawingMode
EditFormula
ElevatorLeftRight
ElevatorUpDown
EndOfFile

EnhancementProducts
EnlargedView
Equations
EvalField
Exec

See also:

Ami Pro Macro Language Contents
Functions A - C
Functions F - G
Functions H - M
Functions N - R
Functions S - Z

Functions F - G
FacingView
FastFormat
fclose
fgets$
FieldAdd
FieldAuto
FieldCommand
FieldEvaluate
FieldLock
FieldNext/FieldPrev
FieldRemove
FieldToggleDisplay
FieldUpdate
FieldUpdateAll
FileChanged
FileClose
FileManagement
FileOpen
FilePrint
FillEdit
FillList
FindFirst$
FindNext$
FindReplace
FloatingHeader
FontChange
FontFaceChange
FontPointSizeChange
FontRevert
Footnotes
fopen
FormatDate$
FormatNum$
FormatSeq$
FormatTime$
fputs
FrameLayout
FrameModBorders
FrameModColumns
FrameModFinish
FrameModInit

FrameModLines
FrameModType
fread
FreeGlobalVar
fseek
ftell
FullPageView
fwrite
Generate
GetAmiDirectory$
GetBackPath$
GetBookMarkCount
GetBookMarkNames
GetBookMarkPage
GetCurFontInfo
GetCurFrameBorders
GetCurFrameLines
GetCurFrameType
GetCurrentDir$
GetDialogField$
GetDlgItem
GetDlgItemText
GetDocInfo$
GetDocInfoKeywords$
GetDocPath$
GetDocVar
GetFmtPageStr$
GetGlobalArray$
GetGlobalVar$
GetGlobalVarCount
GetGlobalVarNames
GetIconPalette
GetLayoutLeftLines
GetLayoutPageSize
GetLayoutParameters
GetLayoutParmCnt
GetLayoutRightLines
GetLayoutType
GetMacPath$
GetMarkText$
GetMasterFiles
GetMasterFilesCount
GetMode

GetOpenFileCount
GetOpenFileName$
GetOpenFileNames
GetPageNo
GetPowerFieldCount
GetPowerFieldPage
GetPowerFields
GetProfileString$
GetRunningMacroFile$
GetRunningMacroName$
GetSpecialEffects$
GetStyleCount
GetStyleName$
GetStyleNames
GetStylePath$
GetTextBeforeCursor$
GetTime
GetViewLevel
GetViewPrefLevel
GetViewPrefOpts
GetWindowsDirectory$
Glossary
GlossaryAdd
GlossSet
GoToAgain
GoToCmd
GoToPowerField
GoToShade
GraphicsScaling
GrayMenuItem
GroupFrames

See also:

Ami Pro Macro Language Contents
Functions A - C
Functions D - E
Functions H - M
Functions N - R
Functions S - Z

Functions H - M
HeaderFooter
Heading
Help
HideIconBar
HideStylesBox
HideTabRuler
HourGlass
HowDoIHelp
IconBottom
IconCustomize
IconFloating
IconLeft
IconRight
IconTop
IgnoreKeyboard
ImageProcessing
ImportExport
ImportPicture
ImportText (NewWave)
Indent
IndentAll
IndentFirst
IndentRest
InitialCaps
InsertBullet
InsertCascadeMenu
InsertCascadeMenuItem
InsertColumnRow
InsertDate
InsertDocInfo
InsertDocInfoField
InsertLayout
InsertMenu
InsertMenuItem
InsertMerge
InsertNewObject
InsertNote
InsertVariable
Instr
IsFrameSelected
IsNewWave (NewWave)

IsNumeric
Italic
Justify
KeyboardHelp
KeyInterrupt
LayoutMode
LCASE$
LeaderDots
LeaderHyphs
LeaderLines
LeaderNone
Left$
LeftAlign
LeftEdge
LEN
LineDown
LineNumber
LineUp
ListObjects (NewWave)
LoadOptions
LowerCase
MacroEdit
MacroHelp
MacroOptions
MacroPlay
ManualFrame
MarkBookMark
MarkIndexWord
MarkTOCEntry
MasterDoc
MasterDocOpts
Maximize
Merge
MergeAction
MergeMacro
MergeToFile
Message
Messages
MID$
Minimize
Mod
ModifyAlignment
ModifyBreaks

ModifyEffects
ModifyFont
ModifyLayout
ModifyLines
ModifyReflow
ModifySelect
ModifySpacing
ModifyStyle
ModifyTable
ModLayoutFinish
ModLayoutInit
ModLayoutLeftFooter
ModLayoutLeftHeader
ModLayoutLeftLines
ModLayoutLeftPage
ModLayoutPageSize
ModLayoutRightFooter
ModLayoutRightHeader
ModLayoutRightLines
ModLayoutRightPage
MouseInterrupt
MoveLeftOrPromote
MoveParagraphDown
MoveParagraphUp
MoveRightOrDemote
MultiDecide

See also:

Ami Pro Macro Language Contents
Functions A - C
Functions D - E
Functions F - G
Functions N - R
Functions S - Z

Functions N - R
New
NewWindow
NextWindow
NoHyphenation
NormalText
Notes
Now
NWGetContainerCount (NewWave)
NWGetContainerNames (NewWave)
NWGetCurrentContainer (NewWave)
NWGetCurrentObject$ (NewWave)
NWGetObjectCount (NewWave)
NWGetObjectNames (NewWave)
NWGetParent (NewWave)
NWReferenceToFile$ (NewWave)
ObjectAttributes (NewWave)
OnKey
OnMDIActivate
OpenDataFile
OpenMergeFile
OpenObject (NewWave)
OpenPreviousFile1
OpenPreviousFile2
OpenPreviousFile3
OpenPreviousFile4
OpenPreviousFile5
OutlineLevels
OutlineMode
OutlineStyle
PageBreak
PageDown
PageNumber
PageUp
Paste
Pause
PhysicalToLogical
PrintEnvelope
PrintOptions
PrintSetup
ProtectCells
ProtectedText

Query$
QuickAddCol
QuickAddRow
ReadMail
RecClose
RecFieldCount
RecFieldName$
RecGetField
RecNextRec
RecOpen
RemoveLayout
RenameDocInfoField
RenameMenuItem
Replace
Restore
Revert
RevertLayout
ReviewRevisions
RevisionInsertion
RevisionMarking
RevisionMarkOpts
Right$
RightAlign
RightEdge
Round
RunLater

See also:

Ami Pro Macro Language Contents
Functions A - C
Functions D - E
Functions F - G
Functions H - M
Functions S - Z

Functions S - Z
Save
SaveAs
SaveAsMaster (NewWave)
SaveAsNewStyle
SaveAsObject (NewWave)
ScreenDown
ScreenLeft
ScreenRight
ScreenUp
SelectColumn
SelectEntireTable
SelectFrameByName
SelectRow
SelectStyle
SelectWindow
SendFrameToBack
SendKeys
SendMail
SetBackPath
SetDataFile
SetDefOptions
SetDefPaths
SetDlgCallBack
SetDlgItemText
SetDocPath
SetDocVar
SetFormula
SetFrameDefaults
SetGlobalArray
SetGlobalVar
SetIconPath
SetIconSize
SetIndexFile
SetMacroPath
SetMasterFiles
SetStyle
SetStylePath
SetTOCFile
Share (NewWave)
ShowBar
ShowIconBar

ShowLinks (NewWave)
ShowStylesBox
ShowTabRuler
SingleStep
SizeColumnRow
SmallCaps
Sort
Spacing
SpecialEffects
SpellCheck
StandardView
StatusBarMsg
strcat$
strchr
strfield$
StyleManageAction
StyleManageFinish
StyleManageInit
StyleManagement
TableGetRange
TableLayout
TableLines
Tables
TabRuler
TabRulerInsert
TabRulerRemove
Thesaurus
TileWindow
TOCOptions
ToggleCleanScreen
ToggleIconBar
ToggleStylesBox
ToggleTabRuler
TopOfFile
Truncate
TYPE
TypeOver
UCASE$
Underline
Undo
UpgradeHelp
UpperCase
UseAnotherStyle

UserControl
UserSetup
UseWorkingDir
UsingHelp
ViewPreferences
WordUnderline
WriteProfileString

See also:

Ami Pro Macro Language Contents
Functions A - C
Functions D - E
Functions F - G
Functions H - M
Functions N - R

Overview of the Ami Pro Macro Language
The following topics are discussed in the Macro Language Reference. Click on a topic to read more about
it.
Language Elements
Typing and Saving Macros
Multiple Macros in a Single File
Variables
Variable Declaration
Identifying Variables in Strings
Lifetime and Visibility of Variables
Global Variables
Expressions
Mathematical Operators
Bitwise Operators
Relational Operators
Logical Operators
Operator Precedence
Variable Assignment
Constant Expressions
Predefined Constants
Comments in Macros
Calling Other Macros
Calling Built-In Functions
Calling Ami Pro Functions
Returning Values From Called Macros
Transferring Program Control
Handling Program Errors
Macro Control Statements

See also:

Ami Pro Macro Language Contents

Language Elements
The macro language consists of a rich variety of programming statements that control the action of the
macro. By combining the programming statements with the built-in macro functions and the Ami Pro
functions, you can create powerful tools for use with Ami Pro.
There are three components of the macro language: programming statements, macro functions, and Ami
Pro functions.
Macro Programming Statements control your macro. These control statements are documented in this
section.
Macro Functions allow you to interact with the macro user, interact with other applications, and get and
send information from and to Ami Pro. These functions are generally not available in Ami Pro menus.
Ami Pro Functions are those that you can execute in Ami Pro by using the menu bar and dialog boxes.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Typing and Saving Macros

Typing and Saving Macros
Type your macro as an Ami Pro document. Tell Ami Pro that your document is a macro file by saving the
file as an Ami Pro Macro type with an .SMM extension. Do not use the .SAM extension. Ami Pro can not
recognize and compile your macro. Your macro file can be created and edited using the File/New,
File/Open and File/Save As functions.
When you save a file as a macro, the path changes to the default macro path that you entered by
choosing Tools/User Setup/Paths. Although you can save macros to any directory, saving them to the
default directory makes them easier to locate, edit, or playback.
You can also use Tools/Macros/Edit from the menu to edit an existing macro file. Use the File/Save
function and select Ami Pro Macro file type to save the changed macro.
You can change a macro created with the Tools/Macros/Record menu function into an editable macro.
When you modify a record and play macro, you may see an Error 112 message indicating that one or
more of the functions in the record and play macro did not translate into editable form. A macro created in
a previous release of Ami Pro can contain functions that are no longer available, or are available by using
a different function name. The new function name must be used with the correct number of parameters.
You can identify untranslated functions easily, as they appear as commented numbers in the macro file.
When you save the changed macro file, the untranslated functions are lost. Do not save the changed
macro if you want to keep the original functionality of the macro.
Type your macro with any combination of fonts, paragraph styles, and text attributes you want to make
the macro more readable. Although attribute and paragraph style information is saved with the document
containing your macro, none of the attributes or paragraph styles affect how the macro plays. Note that
when you use numbers in a macro, you can also use the hexadecimal equivalent by preceding the
number with "0x" or "0X".
In many of the macro functions, length and size are in twips. There are 1440 twips to an inch (1
inch=1440 twips). Multiply the desired inches by 1440 to determine the size in twips.
Type each macro statement on a single line to improve readability. It is a good idea to use tabs or
indented paragraph styles to indent portions of a macro that are parts of a FOR/NEXT loop or an IF/THEN
statement.
You can use a double quote mark (") at the beginning and end of text to represent a string or two double
quote markes ("") to include a single double quote (") as part of the string.
When a macro file is saved, it is compiled into a special format that allows the macro to run faster when
used. During compilation, Ami Pro checks the macro for errors. If an error is found, compilation stops and
an error message is displayed. The insertion point is positioned to the error location so that the error can
be corrected. In some cases, the insertion point is placed on the line following the error. For example, if
you left a right parentheses off at the end of a line the insertion point appears on the next line. If you want
to reference your macro from other macros, do not place an exclamation point (!) in the file name when
you save your macro. The exclamation point is used in the syntax of some macro functions.
Ami Pro finds some types of macro errors when the macro runs. These are logic errors and can not be
detected when the macro is compiled. For example, your macro can try to create a frame in draft mode.
This is not allowed and results in an error.
For more information on error messages and diagnosing errors, see the Macro Error Messagessection.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

The FUNCTION and END FUNCTION Statements
Your macro must begin with a FUNCTION statement and end with an END FUNCTION statement.

The FUNCTION Statement
The FUNCTION statement defines the beginning of a macro, names the macro, and defines any
arguments that are passed to the macro. The syntax of a FUNCTION statement is:
FUNCTION Name ([Argument1][[,] Argument2...])
Name is the name of the macro. It must begin with a letter, but can contain both numbers and letters.
Argument1 and argument2 are variables that are passed to the macro when the macro runs.
You can pass as many arguments as needed to a macro, or none at all. You cannot pass arguments to a
macro that the user starts directly through the Tools/Macro/Play function, or through a shortcut key. You
can only pass arguments to macros to be called as functions of other macros. Argument names must be
character strings, numbers, or defined variable names as listed in the Variable Assignment section.

The END FUNCTION Statement
The END FUNCTION statement defines the end of a macro, and causes a return to the calling macro, or
the end of a macro play. The syntax of an END FUNCTION statement is:
END FUNCTION
Every macro must have an END FUNCTION statement as the last line of the macro. Only one END
FUNCTION statement can be used in each macro. If the macro has more than one exit point, the EXIT
FUNCTION statement can be used at the other exit points in the macro.
The following example is a macro to calculate the average of two numbers, and return the result to the
calling macro:
1    FUNCTION average (p1, p2)
2    average = ((p1 + p2) / 2)
3    END FUNCTION
Line 1 tells us that the name of this macro is average. It is passed the arguments p1 and p2 by the calling
macro. The second line of the macro calculates the average, and the last line ends the function. By
assigning the value of the calculation to the variable 'average', the result is passed back to the calling
macro. Whenever a result needs to be returned to a calling macro, assign the result to a variable with the
name of the macro that is being called, or use the RETURN statement.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Multiple Macros in a Single File
Returning Values From Called Macros

The EXIT FUNCTION Statement
The EXIT FUNCTION statement allows a macro to end before the physical end of the macro at the END
FUNCTION statement. The EXIT FUNCTION statement is used when there are several different exit
points to the same macro. While there can be only one END FUNCTION statement in a macro, there can
be multiple EXIT FUNCTION statements.
The syntax of the EXIT FUNCTION statement is:
EXIT FUNCTION
The following example macro uses the EXIT FUNCTION statement to exit the macro before the macro
ends:
1    FUNCTION saveit()
2    ' This macro saves a file only if the file has changed. Otherwise, it cancels the save
3    stat = FileChanged (0, 0) ' get file changed status
4    IF stat = false ' file hasn't changed
5                EXIT FUNCTION      ' quit; no need to save
6    ENDIF
7    save()    ' save file
8    END FUNCTION ' end it
In this example, the EXIT FUNCTION statement is used in line 5 to exit the macro if the file doesn't need
to be saved. The END FUNCTION statement in line 8 is used to exit the macro following the saving of the
file.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Returning Values From Called Macros

Multiple Macros in a Single File
You can have more than one macro in a macro file. Generally it is best to do this when one macro calls
another macro as part of its function, so that Ami Pro does not have to open another macro file to run the
called macro. Keeping related macros in the same file improves the speed of macro playback. To have
more than one macro in a macro file, use several FUNCTION and END FUNCTION pairs within a single
file. The primary macro function, that is executed when the user runs the macro from the
Tools/Macros/Play menu is the first macro within the macro file.
Any text that appears outside of the FUNCTION/END FUNCTION pair are considered to be COMMENTS,
and are ignored; however, the DECLARE and DEFINE statements are recognized. You can use the
comments format to describe the functionality of the macro so you (or someone else) can tell what the
macro does.
The following macros ask the user to provide two numbers. The numbers are then averaged, and the
result is given back to the user.
This macro asks the user for 2 numbers, then displays their average.
1    FUNCTION main()
2    num1 = Query$ ("Type the first number:")
3    num2 = Query$ ("Type the second number:")
4    result = CALL average (num1, num2)
5    message ("The average of the two numbers is {result}")
6    END FUNCTION

This subroutine calculates the average of two passed numbers.
1    FUNCTION average (p1, p2)
2    average = ((p1 + p2) / 2)
3    END FUNCTION
The main macro asks the user for the two numbers to be averaged using the Query$ function. It then calls
the average macro to determine the average, and displays the result back to the user with the Message
function. The result of the average macro is returned to the main macro by assigning the average to the
variable average within the called macro. The RETURN statement is used if the return value is different
from the name of the function.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Variables
Ami Pro supports both single element and array variables that can be used in macro programs. Variables
are used only in the macro in which they were created, although the macro language provides functions
that allow for creation and maintenance of global variables, or variables that can be used by any macro
during an Ami Pro session. In Ami Pro, you can access global variables by name instead of by number.
Rather than having different variable types, such as integers, floating point numbers and characters, Ami
Pro stores each variable as a string, and converts the string to the appropriate numeric type when the
macro is run.
Before you can use a variable in the Ami Pro macro language, it must be declared. Declaration is simply
telling the macro language that the variable exists. Single element variables can be declared either
through formal declaration, or through implicit declaration. Array variables must be formally declared. The
limit for string variables is 32K.
The "address" of a variable or array can be passed to a routine. This allows a subroutine to modify the
calling routine's variable. This is useful when a subroutine needs to "return" more than one thing. To pass
its address use the "&" directly before the variable, for example:
passvar(&myvar)
This would pass the "address" of the variable "myvar" to subroutine "passvar". Passvar does not declare
this variable in any special way: however, to access it the reference needs to have a "*" before the
variable. The asterisk (*) and the ampersand (&) denote indirection, for example:
1    FUNCTION passvar(pv)
2    *pv=*pv+1
3    END FUNCTION
Here, passvar increments the caller's variable by one.
To allow for variable indirection, use a semicolon to denote an end of statement. It is optional except when
you use indirection. For example:
y=2;
*p1="text"

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Variable Declaration
Lifetime and Visibility of Variables
Global Variables
Variable Assignment

Formal Variable Declaration with the DEFSTR and DIM Statements
Single element variables are formally declared using the DEFSTR statement. Array variables are formally
declared using the DIM statement. The syntax for the DEFSTR statement is:
DEFSTR Name1[, Name2]...
Name1 and name2 are the names of the variables you wish to define.
The following example illustrates the use of the DEFSTR statement:
1    FUNCTION typeami()
2    DEFSTR progname
3    progname = "Ami Pro"
4    TYPE ("The name of this program is {progname}.")
5    END FUNCTION
In this example, progname is defined as a single element variable in line 2. In line 3, it is assigned the
value "Ami Pro", and in the fourth line, the TYPE function is used to type a message to the screen with
the variable name and other text.
The DIM statement does the same thing that the DEFSTR statement does, except that it defines an array
variable, rather than a simple variable. The DIM statement can take an expression that allows you to
allocate the array to the size you need. Also, the DIM statement is evaluated each time it is encountered,
and the contents of the old array are discarded. The syntax of the DIM statement is:
DIM array1 (count1)[array2 (count2)]...
Array1 and array2 are the names of the arrays to be dimensioned.
Count1 is the maximum number of elements in array1.
Count2 is the maximum number of elements in array2.
The following example illustrates the use of the DIM statement to define an array:
1    FUNCTION typenames()
2    DIM names(4)
3    names(1) = "John White"
4    names(2) = "Bill Smith"
5    names(3) = "Doug Robinson"
6    names(4) = "Rob Miller"
7    FOR count = 1 to 4
8            curname = names(count)
9            TYPE ("Name number {count} is {curname}.[ENTER]")
10 NEXT
11 END FUNCTION
Line 2 of this macro dimensions the array names of which there are four elements. In lines 3-6, each
element of the array is assigned a string value. Line 7 sets up a FOR/NEXT loop with four iterations. Line
8 assigns the value of the current element in the names array to the variable curname. Then, the line is
typed into the current file, followed by the ENTER key, which ends the paragraph. Lines 10 and 11 end
the FOR loop, and the macro.

Implicit Declaration of Variables
Single element variables do not have to be explicitly declared. You can implicitly declare a single element
variable simply by assigning it a value within the macro. Array variables cannot be dimensioned implicitly,
since there is no way to tell the macro program how many elements to expect in the array.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Identifying Variables in Strings
Lifetime and Visibility of Variables

Identifying Variables in Strings
Many macro functions accept a string as their arguments. Single element variables can be incorporated
into strings by surrounding them with curly braces ({ }). Consider the following line of macro code:
TYPE ("The first item on the list is {item}")
In this example, the macro needs to know when to type the word 'item', and when to use the variable
referenced by the name 'item'. By placing curly braces around the variable name when it is used as part
of a string, you use the variable itself rather than its name.
You can also use curly braces around a single element variable name at any time to improve the clarity of
the macro. Using curly braces around variable names indicates that the word inside the braces is a
variable name rather than something else. You cannot use curly braces around array variables.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Lifetime and Visibility of Variables
The TYPE function

How Variables are Stored in a Macro Program
Within the macro program, all variables are stored as strings. When the variable is referenced in an
arithmetic expression, it is converted to integer or floating point format and then processed. Because
variable contents are not evaluated until they are needed, variables that do not contain numbers cause
run-time errors if they are used in arithmetic expressions.

Lifetime and Visibility of Variables
The lifetime of a variable is the time that the variable maintains its value while running a macro. The
visibility of a variable determines when it is recognized by other macro routines that have either called the
current macro or are called by the current macro.
Within Ami Pro, each variable is visible only to the macro that defined it and lasts only for the duration of
that macro. This means that if one macro calls another macro as a function, the variables in the calling
macro are not available to, and cannot be modified by, the called macro. In addition, if a macro finishes
running with certain values stored in variables, running the macro a second time reinitializes the variables,
and the previously existing values are lost.
When one macro calls another macro as a function, it can pass arguments to the called macro, which are
usually variables from the parent macro. When this happens, a copy of each variable is made, and the
copy is passed to the function. Since the function only receives a copy of the original, the original variable
cannot be modified by a function. The function can return a value to the calling macro, and that value can
be assigned to a variable within the calling macro. The following example illustrates passing variables to
functions:
1    FUNCTION main()
2    var1 = "original value, main macro"
3    TYPE ("{var1}[ENTER]")
4    CALL upcase (var1)
5    TYPE ("{var1}[ENTER]")
6    var1 = CALL upcase (var1)
7    TYPE ("{var1}[ENTER]")
8    END FUNCTION

9    FUNCTION upcase(var2)
10 TYPE("original value, upcase macro[ENTER]")
11 var3 = UCASE$(var2)
12 TYPE ("{ var2}[ENTER]")
13 upcase =    var3
14 END FUNCTION
The output from the above macro is as follows:
1    original value, main macro
2    original value, upcase macro
3    original value, main macro
4    original value, main macro
5    original value, upcase macro
6    original value, main macro
 7    ORIGINAL VALUE, MAIN MACRO
The first line of output comes from line 3 of the main macro, and displays the original value of var1 as
defined in the main macro. Line 3 of the output comes from line 13 of the upcase macro. Note that even

though var2 has been passed as an argument to the UCASE$ function (which uppercases the argument),
its value has not changed. Line 4 of the output is from line 5 of the main macro, and illustrates again that
passing an argument to another macro does not affect the value of that argument once it has returned to
the main macro.
Lines 5 and 6 of the output show another iteration of the upcase macro, and have the same results as
occurred the first time through. Line 7 of the output is from line 7 of the main macro, and shows that the
var1 string from the main macro was finally uppercased when it was assigned the result of the upcase
macro in line 6.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Global Variables
Multiple Macros in a Single File

Using Global Variables to Hold Values
Sometimes there is a need to retain a value from a macro even though the macro is complete. In addition,
sometimes a called macro needs to be able to modify more than one variable from the parent macro. This
can be achieved using the functions provided to create and manipulate global variables.
Global variables are like safety deposit boxes that can be used to store information when not in use.
When a macro needs to store information for later use, it creates a global variable and assigns the value
of the program variable to the global variable. Later, another macro, or another instance of the same
macro, can retrieve the value of the global variable, assign it to a variable name in the macro, and use or
change it as needed.
For more information on how to use global variables to hold values, refer to the Global Variable Functions
section of the documentation.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Lifetime and Visibility of Variables
Multiple Macros in a Single File

Expressions
An expression is a combination of numbers, strings, variables, and operators used to determine a result
which can be assigned to a variable, used as an argument to a function or macro, returned as the result
of a macro, or used to determine whether or not to execute a macro routine.
Some examples of expressions are:
1    var
2    var + var1
3    var | var1
4    var * 3 >var2
5    var < 10 AND var >0
In line 1, the expression is a single element variable. If no operators are used in the expression, the result
of the expression is the variable or constant. In line 2, the expression uses mathematical operator + to
add two variables together. Line 3 uses the bitwise OR operator | to "OR" the bit values of var1 and var2.
Line 4 uses the relational operator (greater than) to compare two values. Line 5 uses the logical operator
AND to compare two logical values to determine the result.
Operators are either mathematical, relational, or logical, and operate on the other elements of the
expression to determine its result.
The four types of operators are Mathematical Operators, Bitwise Operators, Relational Operators, and
Logical Operators.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Operator Precedence

Mathematical Operators
Mathematical operators include addition, subtraction, multiplication, and division. The mathematical
operators are:

Name (Character) - Definition
Multiplication (*) - Multiplies the value to the left of the operator by the value to the right of the
operator.
Division (/) - Divides the value to the left of the operator by the value to the right of the operator.
Addition (+) - Adds the value to the left of the operator to the value to the right of the operator.
Subtraction (-) - Subtracts the value to the right of the operator from the value to the left of the
operator.

Values used by mathematical operators must be numeric, otherwise, a run-time macro error can result.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Bitwise Operators
Bitwise operators include the bitwise AND and the bitwise OR. The bitwise operators are:
Name (Character) - Definition
Bitwise AND (&) - Performs a logical AND between each bit of the value to the left of the operator and the
value to the right of the operator.
Bitwise OR (|) - Performs a logical OR between each bit of the value to the left of the operator, and the
value to the right of the operator.
Values used by bitwise operators must be integers, or a run time macro error can result. Bitwise
operators, which compare each bit of a value, are not the same as logical operators, which compare the
entire value.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Relational Operators
Relational operators include equality, greater than, less than, greater than or equal to, less than or equal
to, or not equal to. The relational operators are:
Name (Character) - Definition
Equals (=) - Compares the value to the left of the operand and the value to the right of the operand. The
result of the comparison is TRUE if the values are equal.
Greater Than (>) - Compares the value to the left of the operand and the value to the right of the operand.
The result is TRUE if the value to the left is greater than the value to the right.
Less Than (<) - Compares the value to the left of the operand and the value to the right of the operand.
The result is TRUE if the value to the left is less than the value to the right.
Greater Than or Equal To (>=) - Compares the value to the left of the operand and the value to the right of
the operand. The result is TRUE if the value to the left is greater than or equal to the value to the right.
Less Than or Equal To (<=) - Compares the value to the left of the operand and the value to the right of
the operand. The result is TRUE if the value to the left is less than or equal to the value to the right.
Not Equal To (<> or !=)- Compares the value to the left of the operand and the value to the right of the
operand. The result is TRUE if the value to the left is not equal to the value to the right.
Values used by relational operators can be strings, numbers, or expressions.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Logical Operators
Logical operators are:
Logical And (AND) - Logically compares the value to the left of the operand with the value to the right of
the operand. The result is TRUE if both expressions evaluate to TRUE.
Logical Or (OR) - Logically compares the value to the left of the operand with the value to the right of the
operand. The result is TRUE if either expression evaluates to TRUE.
Logical Not (NOT) - Evaluates the value to the right of the operand. The result is TRUE if the expression
evaluates to FALSE. The result is FALSE if the expression evaluates to TRUE.
Values used by logical operators can be integers, numbers, strings or expressions. If the value is equal to
0 or to the null string (""), it is considered to be FALSE. If it is anything else, it is considered TRUE.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Operator Precedence
Expressions with multiple operators are evaluated by performing operations with a higher precedence
first, followed by operations with a lower order of precedence. If two operations have the same
precedence, they are evaluated from left to right. The precedence of operators is:

NOT
Multiplication and Division
Addition and Subtraction
Bitwise AND and Bitwise OR
Greater Than, Less Than, Greater Than or Equal To, Less Than or Equal To
Equal To and Not Equal To
AND and OR

Parentheses can be used to determine the order of expression evaluation. If parentheses are used,
expressions inside the innermost set of parentheses are evaluated first, followed by the next set of
parentheses, etc.
If two operators are used in a row, they must be separated by parentheses.
The following examples illustrate expression evaluation. Some of the examples use parentheses to
change the evaluation order.

var > var1 ' is true if var > var1
var = 4 ' is true if var = 4
name < "Jones" 'is true if name is anything besides Jones
var + var1 <= var2 * var3
var > var1 AND var1 < 10
var <>0 OR (NOT IsNumeric(var)) ' two operands in a row
' determines if the variable c is alphabetic
(c >= "A" AND c <= "Z") OR (c >= "a" AND c <= "z")
' true if var3 >0 or if var = 0 and either var1 or var2 is numeric
var = 0 AND (IsNumeric(var1) OR IsNumeric (var2)) OR var3 >0
' true if var = 0 and either var1 or var2 is numeric or var3 >0
var = 0 AND ((IsNumeric(var1) OR IsNumeric (var2)) OR var3 >0)

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Variable Assignment
The result of an expression can be assigned to a single element variable, or to an element of an array.
Variable assignment is accomplished using the LET statement. The syntax of the LET statement is:
[LET] Var = Expression
Var is the variable name receiving the assignment.
Expression is a valid expression as defined above.
The syntax of a variable assignment statement to an array variable is:
[LET] Array(Expr) = Expression
Array is the name of the array receiving the value of the expression.
Expr is an expression that evaluates to the number of the element of the array receiving the value of the
expression.
Expression is a valid expression as defined above.
The following are some examples of variable assignment:

' simple assignment to value
name = "string"
' assignment of one variable to another
name2 = name
' assignment of an array element to a value
array(1) = "String"
' assignment of variable to an array element determined with expression
array (i+5) = name
' assignment to result of a function
var = Query$ ("Type a value")
' assignment to result of a macro
var = CALL mac2()

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Using Constants and Comments

Constant Expressions
A constant expression is an expression whose value does not change for the duration of the macro
program. Normally, constants are expressed as strings of text that are used by the macro.
Because variable names and key names can be represented within strings, there are several characters
that need to be represented in a special manner to be recognized within strings. These characters are the
left curly brace ({), the left square brace ([), and the double quote mark (").
Because variable names used in strings are surrounded by curly braces, to type a curly brace within a
string, the user must type two curly braces. Key names are represented in strings while using the TYPE
function. Since a key name is surrounded by square braces, to represent a square brace within a string,
the user must type two square braces. Strings themselves are surrounded by double quote marks to
define their boundaries. In order to type a double quotation mark within a string, the user must type two
marks in a row. You do not need to type two right curly braces or two right square braces in a row when
you are using them in strings. The following macro illustrates the representation of strings within a macro:
1    FUNCTION strings()
2    ' a string assigned to a variable
3    var = "Variable"
4    'a typical string
5    TYPE ("This is a constant string of text. ")
6    'a string with a key name
7    TYPE ("This string has a key name inside it.[ENTER]")
8    'a string with a variable name
9    TYPE ("This string contains a variable with the value {var}. ")
10    'a string with curly braces embedded
11    TYPE ("The curly brace character, {{, is used to fence a variable. ")
12    'a string with a square brace character
13    TYPE ("The square brace character, [[, is used to fence a key name. ")
14    'a string with embedded quotes
15    TYPE ("Use quotation marks like this ""string"" to define a string.")
16    END FUNCTION
The output of the macro looks like the following:
This is a constant string of text. This string has a key name inside it.
This string contains a variable with the value Variable. The curly brace character, {, is used to fence a
variable. The square brace character, [, is used to fence a key name. Use quotation marks like this
"string" to define a string.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Predefined Constants

Predefined Constants
Frequently, it is helpful to use a name to represent a value that does not change in a macro program to
make the macro more readable. Ami Pro uses a list of defined constants to perform substitutions when
they are used in a macro. This list is most useful when using Ami Pro functions that require numeric
arguments given to them to be interpreted. When the macro is compiled, the compiler substitutes the
name typed in the macro with the number in the substitution list, unless the name is inside a string.
Many functions use flags as parameters to the function. Flags are numbers that, depending on their
value, convey different meanings to the function. Using binary arithmetic, a number can contain several
different values that are extracted by the function when it is run. To set a flag, the program adds the
appropriate value to the number passed to the function.
The following is an example of using predefined constants in a macro:
'This macro turns on line numbering in a file
1    FUNCTION lineson()
2    flag = NumberLines+NumberEveryOther+ResetEachPage
3    ' compiles as flag = 1+4+16, so flag = 21
4    LineNumber (flag, "Body Text")
5    message ("Line Numbering On")
6    END FUNCTION

'this macro turns off the line numbering
1    FUNCTION linesoff()
2    LineNumber (off, "Body Text")
3    ' compiles as LineNumber (0,"Body Text")
4    message ("Line Numbering Off")
5    END FUNCTION
In this example, two macros are used to turn line numbering on and off in a file. The    lineson macro turns
on line numbering every other page, with a reset of the numbering to 1 on each page. The    linesoff
macro turns off line numbering.
One of the parameters to the LineNumber function is a flag that specifies which line numbering options to
use. The numbers representing these options are added together and passed to the function. The option
to turn the numbering on is 1; the option to number every other line is 4, and the option to reset
numbering each page is 16. Rather than you adding these numbers together manually, and putting the
total in the function call, defined constants are used to do the job instead. This makes it clear exactly what
the macro is doing.
The same thing is done in the    linesoff macro. To turn numbering off, a flag of 0 is used. Since off is
defined as 0 in the substitution list, this substitution is used to make the macro more readable.
The replacement list is stored in an Ami Pro glossary file named MACDEFIN.SAM in the directory where
Ami Pro was installed (usually C:\AMIPRO). The file contains the substitutions that are listed for each
function in the Macro Functions Reference section. The glossary file can be added to if desired. The
glossary item name is the name that is typed into the macro and the item itself is substituted for the
defined name. Neither the defined name nor the replacement can contain spaces. The defined name
must begin with an alphabetic character, and can contain only letters and numbers.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

DEFINE
You can use the DEFINE statement to do a simple token replacement ("this" item for "that" item). The
syntax is:
DEFINE identifier replacement
This replacement allows you to define a descriptive name to a number. For example,
DEFINE ALL 1
DEFINE JUSTONE 2
MyFunction(ALL)
             
FUNCTION MyFunction(type)
             
if (type=ALL)
elseif(type=JUSTONE)
When the macro is run, ALL and JUSTONE are replaced by 1 and 2.
A more powerful use of the DEFINE statement is to replace parameters. The syntax is:
DEFINE identifier([optional descriptive parameters]) replacement([parameters])
You can use this format to use a Replace function. For example,
DEFINE Findit() Replace(0,0,4,%1,0)
Then you would enter the text to be replaced.
Findit("text")
When the macro is compiled, Findit("text") is replaced with Replace(0,0,4,"text",0). The replacement uses
the DOS batch file notation for parameters. If you have more than one parameter they would be named
%2, %3, etc. These can be used more than once and in any order. For more information about
parameters, see your DOS manual.
When the DEFINE is encountered the complete replacement is remembered. When the next occurrence
happens, the parameters are surrounded by parentheses and separated by white characters or commas.
Parameters can be either quoted strings, a string surrounded by parentheses, or any non white sequence
of characters. Once the parameters have been identified, the replacement is scanned for %1, %2, etc.,
which are replaced with those parameters. The whole string is then re-parsed. The total replacement,
after parameter substitution, must be less than 500 characters. An example of calling DLL functions would
be:
DllCall(Dllid,p1,p2)
or use DEFINE:
DEFINE LookUp() DLLCall(Dllid,%1,%2)
It could be:
LookUp(p1,p2)

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Comments in Macros
In addition to treating any text outside of a FUNCTION/END FUNCTION pair as a comment, Ami Pro
macros treat any text beyond a single quote mark as a comment. The single quote mark can be at the
beginning of a paragraph, causing the entire paragraph to be skipped, or can follow a statement in a
paragraph, causing the rest of the paragraph to be skipped.
The following macro illustrates the use of comments:
1    FUNCTION showcomment()
2    'This macro illustrates the use of comments in a macro
3    var = "Print Me" ' this line assigns a value to a variable
4    var1 = "Print Me, Too" ' this line also assigns a value to a variable, and this comment is longer than a
single line of text.
5    TYPE ("{var}") 'TYPE ("{var1}") var 1 is a comment and not printed.
6    END FUNCTION
The output of the macro is as follows.
"Print Me"
Note that the second TYPE function is not acted on, as it is part of a comment.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Calling Other Macros And Built In Functions
One macro can call another macro to execute a subroutine and then return a single value to the calling
macro. Before a macro can be called by another macro, it must either be identified prior to its first use
with the DECLARE statement, or it must be identified with each use by using either the CALL or CALLI
statement to access it.
It doesn't make any difference whether you use the DECLARE statement once at the beginning of a
calling macro, or whether you use the CALL or CALLI statement each time the subroutine is used.
When executing another macro, Ami Pro follows a search path to find the macro needed. This prevents
having to specify a full path to the macro being called. This path is indirectly available to the macro, so
that it can find other files, such as external menus.
Ami Pro and macro functions can also be called from within a macro. Built in functions do not need to be
declared or called specifically. To use a built in function, simply use its name. Ami Pro functions can
usually be called by providing the parameters required for the function and having the function execute.
An Ami Pro function can also be called by giving the function name, with or without parentheses, which
display the dialog box for the function, and then allow the macro user to choose the parameters for the
function.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Calling Built-In Functions
Determining a Macro's Location
Calling Ami Pro Functions
Returning Values From Called Macros

The DECLARE Statement
The DECLARE statement is used to identify other macros that can be called by a macro before they are
used. The syntax of the DECLARE statement is:
DECLARE MacroName([Parm1][[,] Parm2...])[ALIAS ShortName]
MacroName is the name of the macro that to be used later.    it may contain a file name. If it does not, the
macro must be in the current file.
Parm1 and parm2 are prototypes of the parameters that are be passed to the macro once it is called.
They must be variable names, but they do not need to be declared.
ALIAS ShortName is the name of the alias to use instead of the file name.
As an example, type the following statement:
DECLARE Heapsort.smm!Sort(p1,p2) ALIAS sort
When you need to sort later you would then just type:
Sort(&Names,Count)
Using the DECLARE statement does not cause the macro referenced to be executed; it simply identifies a
macro that can be used later within the calling macro. Once declared, a macro can be executed from
another macro by typing its name and parameters.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
The CALL and CALLI statements
Example of DECLARE, CALL and CALLI

The CALL And CALLI Statements
The CALL and CALLI statements are used to execute one macro from another macro. They differ in that
the CALL statement is used when you know the name of the macro to be executed when the macro is
compiled. The CALLI statement is used when the name is not known until the macro is run.
The syntax of the CALL statement is:
CALL [[Drive:Path\]MacroFile!]MacroName([Parm1][[,] Parm2...])
drive, path, and MacroFile are the drive letter, full path, and macro file name that contain the called
macro.
MacroName is the name of the macro that must be executed.
Parm1 and parm2 are the parameters to pass to the macro.
The syntax of the CALLI statement is:
CALLI Variable ([Parm1][[,] Parm2...])
variable is a string variable that evaluates to the name of a macro. The name of the macro may contain
the drive, path, and file name as outlined above for the CALL statement.
Parm1 and Parm2 are the parameters to pass to the macro.
The parameters given can be any expression.
The drive, path, and macrofilename, if given, must be followed by an exclamation point and the name of
the macro. They are not needed if the called macro is in the same file as the calling macro. If the path to
the macro is given, Ami Pro looks in that location for the macro. If no path is given, Ami Pro searchs the
macro directory, the document directory, and the Ami Pro directory for the called macro.
If the disk location of the called macro is not on one of the locations specified in the macro search path,
and must be determined at runtime, the CALLI statement should be used instead. The only difference
between the CALL and the CALLI statements is that the macro name and path can be specified in a
variable when the CALLI statement is used, while they must be specified explicitly when using the CALL
statement.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Example of DECLARE, CALL and CALLI

Example of Using DECLARE, CALL and CALLI
The following example macro illustrates the use of the DECLARE, CALL and CALLIC statements:
1    FUNCTION main()
2    DECLARE getopt() ' declare this variable so we can use it later
3    string = Query$ ("Type a word or a number:")
4    flag = getopt() ' since declared, do not have to use CALL statement
5    IF (flag = 6)
6                CALL sub1 (string) ' since macro is here, just use CALL statement
            message ("There are {result} letters in {string}.")
7    ELSE
8                path = GetMacPath$() ' find macro path
9                macname = strcat$ (path, "MACFILE.SMM!SUB2) ' put into var
10                CALLI macname (string) ' use variable cause do not know file
            message ("There are {result} digits in {string}.")
11    ENDIF
12    END FUNCTION

1    FUNCTION sub1 (string) ' this is in original file
2    sub1 = LEN(string)
3    END FUNCTION

1    FUNCTION getopt() ' this is in original file
2    getopt = MultiDecide ("Choose Yes for letters; No for numbers", 35)
3    END FUNCTION

1    FUNCTION sub2 (string) ' this is in MACFILE.SMM
2    numcount = 0
3    FOR count = 1 to LEN(string)
4                c = MID$(string, count, 1)
5              IF (isnumeric(c))
6                            numcount = numcount +1
7              ENDIF
8    NEXT
9    sub2 = numcount
10    END FUNCTION
This macro determines either the count of the letters in a word, or the number of digits in a number. The   
getopt macro is declared in line 2 with no parameters. The Query$ function is used in line 3 to determine
which word should be used. The    getopt macro is called in line 4 to ask the macro user whether to count
letters or numbers. If letters, the macro uses the CALL statement in line 6 to run the    sub1 macro in the
same file to determine the result. If numbers, the GetMacPath$ function is used in line 8 to determine the
location of the macro. This path is appended to the macro name, and the macname variable is used with
the CALLI statement to call the    sub2 macro, which determines the number count. Finally the result is
displayed in a message box.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Determining a Macro's Location
GetMacPath$

Determining the Location of a Macro When It Is Run
Ami Pro uses a search path to find macros that are to be executed. If a macro contains a full path
specification, Ami Pro looks there. If there is no path specified, Ami Pro first searches the directory
specified in the default macro directory. If the macro is not there, Ami Pro searches the directory specified
as the user's default document directory. If the macro is not there, Ami Pro looks in the directory where its
program files are stored (usually C:\AMIPRO). If the macro is not found in any of these locations, Ami Pro
displays an error message.
When Ami Pro is installed, the default macro path is set to a MACROS directory located off the directory
in which Ami Pro is installed (usually C:\AMIPRO\MACROS). Several example macros are installed into
this directory. Whenever the macros dialog box is displayed, it defaults to displaying macros in that path.
This path can be changed by changing the path in User Setup/Paths, by directly editing the AMIPRO.INI
file, or by using the macro functions GetProfileString$ and WriteProfileString.
If you write macros that other people may use, you may not know the ultimate location of the macro file
when it is run by the user. If the macro calls another macro, assigns a macro to a menu to be called later,
or uses an external dialog box, the you may not be able to specify the path to the desired file. The macro
search path allows you to specify only the file name and macro name, and allows Ami Pro to find the
macro file.
Ami Pro does not use this search path when other files need to be found to make the macro run. For
example, a macro can need an external dialog box, a dynamic link library, or other supporting files to run
the macro. As long as these supporting files are in the same directory as the macro that needs them, you
can use the GetMacPath$ function to determine the default macro directory path and use that path to
locate its supporting files. To determine the name of the macro that is running, use the macro function,
GetRunningMacroFile$.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Calling Built-In Functions
The Ami Pro macro language offers a variety of functions that can be called from within a macro.
Functions are provided to control the execution of the macro, to allow interaction with the user, to allow
interaction with the Ami Pro program itself, and to allow interaction with other programs using Windows'
Dynamic Data Exchange (DDE) protocol.
To call a built-in function use the syntax below:
[Result =]Function([Parm1][[,] [Parm2...])
Result is a variable that receives the return value of the function.
Function is the name of the function you want to use.
Parm1 and parm2 are the parameters required by the function, if any.
The following macro uses the built-in functions GetDocPath$, SetDocPath, Decide and Query$ to get the
user's default document path, display it, and to allow it to be changed:
1    FUNCTION changepath()
2    path = GetDocPath$() ' gets current path
3    response = Decide ("Change Document Path From {path}?")
4    IF (response) ' user said yes to dialog box
5                path = Query$ ("Type New Path:")
6                SetDocPath (path)
7    ENDIF
8    END FUNCTION
Line 2 of the macro uses the GetDocPath$ function to get the current path. The result of this function is
stored in the variable path. Line 3 of the macro uses the Decide function to display a dialog box and ask
the user if he wants to change his path. The Decide function requires one parameter, the prompt that
should be used in the dialog box. It returns either TRUE or FALSE, depending on whether the user chose
Yes or No in the dialog box. The return value from the Decide function is assigned to the variable
response. If the user decided to change the path, the Query$ function in line 5 displays an edit box for the
user to type the new path. It returns the typed value, which is assigned to the variable path. Finally, line 6
sets the new document path using the SetDocPath function.
A list of the built-in functions, along with their parameters and return codes, is listed in the Macro
Functions and the Ami Pro Functions sections of the documentation.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Calling Ami Pro Functions
Almost any Ami Pro function can be executed using a macro. Ami Pro functions that are accessed
through pulldown menus have equivalent functions in the macro language.
When using an Ami Pro function, the macro program can provide all the functions the program requires,
which causes the function to automatically execute, or the macro can start the function, and allow the
user to make choices for that function in the dialog box. The syntax for calling an Ami Pro function that
can execute without user intervention is:
[Result =]Function([Parm1][[,] [Parm2...])
Result is a variable that receives the return value of the function.
Parm1 and parm2 are the parameters required by the function, if any.
The syntax for calling an Ami Pro function that prompts the user for parameters is:
[Result =] Function
Function is the name of the function you want to use.
In general, Ami Pro functions return TRUE (1) if the function was successfully completed. They return
FALSE (0) if the function was not completed because the user cancelled the function. If the state of the
program prohibited the function at the time, or the function could not be completed for some other reason,
they return GENERALFAILURE (-2).
The following macro sets the line spacing in the current document to single spacing:
1    FUNCTION singlespace()
2    result = Spacing(SpaceSingle)
3    IF (result <> TRUE) ' the spacing was not equal to single
4                message ("Failed to set single spacing.")
5    ENDIF
6    END FUNCTION
In line 2, the Ami Pro function Spacing is called. The Spacing function takes a single argument, with the
desired spacing. SpaceSingle is defined to -1, which is the correct value for single spacing. The result of
the function is returned to the variable result. This variable is examined in line 4, and if the spacing
change did not occur, an error message is displayed for the user.
The following macro also sets line spacing, but allows the user to determine the desired spacing:
1    FUNCTION setspace()
2    result = Spacing
3    IF (result = false)
4                message ("Did not set spacing")
5    ENDIF
6    END FUNCTION
In line 2, the Spacing macro is called without any parentheses. This causes the Line Spacing dialog box
to be displayed on the screen so the user can set the spacing. As in the previous example, the result of
the function call is assigned to the variable result so that a message can be displayed if the spacing did
not change.
A complete list of the Ami Pro functions, along with their parameters, is provided in the Ami Pro Functions
section of the documentation.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Returning Values From Called Macros
A called macro can return a value to the calling macro. The returned value can be a number or a string or
it can be a status code to indicate the macro completed successfully.
The value to be returned to the calling macro should be assigned to a variable name with the same name
as the called macro. When the called macro ends at the END FUNCTION or EXIT FUNCTION statement,
the value of the variable with the same name as the called macro is returned to the calling macro.
The following is an example of returning a value from a called macro to the calling macro:
1    FUNCTION calc()
2    'this macro gets two numbers from the user, adds them together and displays the result.
3    num1 = Query$ ("Type the first number:")
4    num2 = Query$ ("Type the second number:")
5    result = CALL addit (num1, num2)
6    result2 = CALL subtractit (num1, num2)
7    message ("The sum of {num1} and {num2} is {result}.")
8    message("The difference between {num1} and {num2} is {result2}.")
9    END FUNCTION

10    FUNCTION addit(num1, num2)
11    addit = num1 + num2
12    END FUNCTION

13    FUNCTION subtractit(num1, num2)
14    Difference = num1 - num2
15    RETURN(Difference)
16    END FUNCTION
In lines 3 and 4, the    calc macro uses the Query$ function to get the two numbers from the user. It then
calls the    addit macro in line 5, and stores the return value in the variable result. Finally, the result is
displayed in the message function in line 6.
The    addit macro assigns the sum of the two variables to the variable addit, then ends. By assigning the
sum to the variable with the same name as the macro, its value is returned to the    calc macro.
The Subtractit macro assigns the difference of the two variables to the variable subtractit, then ends. Its
value is returned to the calc macro. By using the RETURN statement, the return value is assigned to a
variable name that is different from the name of the called macro.
If you need to have more than one value returned from a called function, use indirection (&). It passes the
memory address of a variable to the called function. The called function may then directly modify the
variable. When the called macro finishes, any modifications to the variable are reflected. Any number of
variables can be passed in this manner.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Transferring Program Control
The Ami Pro macro language provides a method of transferring control to another section of the same
macro. This is useful when the macro needs to continue from another location and it is not necessary to
return to the original location. In addition, special commands are provided to transfer control to an error
handling routine and a user cancel handling routine.
The LABEL statement
The location where control should be transferred to is called a label. It is defined using the following
syntax:
Label:
Label is a single word followed immediately by a colon. Labels cannot be function names or statement
names. The following examples show some permissible label names:
Topofloop:
Any1:
proceed:

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
The GOTO statement

The GOTO Statement
The GOTO statement is used to unconditionally transfer control to another location in a macro program.
The location that the GOTO statement transfers control to must be in the same macro as the GOTO
statement, and is defined as a LABEL. The syntax of the GOTO statement is:
GOTO Label
Label is a label name that is defined elsewhere in the macro program. When you use it in the GOTO
statement, do not type a colon following the label name.
The following example shows the use of the GOTO and LABEL statements:
1    FUNCTION main()
2    string = Query$ ("Type a word or a number:")
3    flag = (MultiDecide ("Choose Yes for letters; No for numbers", 35))
4    IF (flag = 6) GOTO letters
5    ELSEIF (flag = 7) GOTO numbers
6    ENDIF
7    letters:
8    result = LEN(string)
9    message ("There are {result} letters in {string}.")
10    GOTO endit
11    numbers:
12    numcount = 0
13    FOR count = 1 to LEN(string)
14                c = MID$ (string, count, 1)
15                IF (isnumeric(c))
16                            numcount = numcount +1
17                ENDIF
18    NEXT
19    message ("There are {numcount} digits in {string}.")
20    endit:
21    END FUNCTION
This macro is a variation of the example used to illustrate the CALL and DECLARE statements. Instead of
using subroutines to get the user's choice of counting letters and numbers and to do the count, this macro
first determines the user's choice by using the Query$ function in line 2. If the user chooses letters, the
GOTO statement in line 4 transfers control to the letters label in line 7. If the user chooses numbers, the
program uses the GOTO statement in line 5 to jump to the numbers label in line 11.
A GOTO statement is also required in line 10 to jump to the end of the macro so that the letters option
does not also execute the numbers option.
Using GOTO statements to control program flow makes a macro more difficult to read, and increases the
risk of causing an error if the macro is edited. These problems are minimized by using macro subroutines
and other program control statements.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language

Handling Program Errors
A macro runtime error can occur in several circumstances, including calling a macro that cannot be found,
or passing a non-numeric string to a function that requires a number. If this happens, the macro program
normally terminates with an error message that identifies the cause of the error. By using the ONERROR
statement, program control can be directed to an error handling routine that could inform the user of the
error, and suggest corrective action and/or perform a cleanup. The syntax of the ONERROR statement is:
ONERROR Label
Label is the name of a LABEL to which control should be transferred in case of error.
Another important function of the ONERROR statement is to allow the macro to clean up after itself. This
is particularly important if the macro uses Global Variable Functions, or ASCII File Functions. Exiting a
macro without clearing these routines could affect the later operation of Ami Pro and Windows.
Handling User Cancellation
The user can cancel the running of a macro by typing a key while the macro is playing back, or by
choosing Cancel in the Query$ function dialog box. Normally, cancelling the macro terminates the macro
with no notice to the macro user. By using the ONCANCEL statement, you can inform the user that the
macro has been cancelled or you can cause the execution of the macro to continue elsewhere. The
syntax of the ONCANCEL statement is:
ONCANCEL Label
Label is the name of a LABEL to which control should be transferred in case the user cancels the macro.
If an error or cancel condition is encountered, Ami Pro looks for an ONERROR or ONCANCEL statement
in the currently running macro function. If none is found, succeeding parent functions are searched for an
ONERROR or ONCANCEL statement, until the main function is encountered. This means that each
macro function can have its own error processing.
If an error occurs in a subroutine, and it is processed in that routine, Ami Pro does not search any further
for other ONERROR or ONCANCEL statements. You should ensure that parent functions correctly handle
error conditions.
The following macro gives an example of the ONERROR and ONCANCEL statements:
1    FUNCTION main()
2    ONERROR ErrorRoutine 'set error routine
3    ONCANCEL CancelRoutine 'set cancel routine
4    Query$ ("Choose OK or CANCEL.") ' set up routine
5    CALL notthere() ' this causes an error, since macro not there
6    GOTO endit
7    CancelRoutine:
8    message ("You cancelled the macro.")
9    GOTO endit
10    ErrorRoutine:
11    message ("There has been a macro error.")
12    endit:
13    END FUNCTION
This macro defines program locations for error and cancel handling in lines 2 and 3. It then asks the
macro user to type in a value using the Query$ function, which has OK and Cancel buttons. If the user
chooses OK, the macro attempts to call a non-existent macro named    notthere in line 5. This causes a
jump to the error routine in line 10. If the user chooses cancel in the Query$ function, the program jumps
to the cancel routine in line 7.
When using the ONERROR and ONCANCEL statements, make sure that they are at the beginning of the

macro. If an error occurs before these statements, control may not be transferred to the error or
cancellation routines.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
GOTO statement

Using Results of Evaluations to Control a Macro
Frequently, the next step a program should take is determined by the value of a variable. At other times, a
series of program steps should be completed a number of times and then the program should execute
other steps. The macro language provides several statements that can be used to control macro
execution based on the value of expressions.
The available statements include FOR/NEXT, which executes a loop a defined number of times;
IF/THEN, which executes statements only if an expression is TRUE; The SWITCH/CASE statements,
which execute a set of steps based on the value of a variable; and the WHILE/WEND Statement, which
repeatedly executes a series of steps as long as an expression evaluates to TRUE.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

Macro Programming Statements
This is a list of the statements used in the Ami Pro Macro Language.    Click on the
statement name to see how to use the statement.
BREAK
CALL
CALLI
DECLARE
DEFSTR
DIM
END FUNCTION
EXIT FUNCTION
FOR
FUNCTION
GOTO
IF
LABEL
LET
ONCANCEL
ONERROR
SWITCH
WHILE

The FOR Statement
The FOR statement is used to execute a series of program steps one or more times or to skip the
program steps. The syntax of the FOR statement is:
FOR Assignment TO Expression1
[STEP Expression2]
            Program statements
NEXT
Assignment is an assignment of value to a single element variable.
Expression1 is an expression to which the value of the single element variable is compared.
Expression2 is an expression that is added to the single element variable once for each loop iteration.
Program statements are the macro statements that are executed if the value of the single element
variable is less than expression1 at the beginning of each loop.
When the FOR statement is encountered, the variable specified in the assignment is initialized to the
value of the assignment. This variable is then compared to expression1. If the variable is less than or
equal to expression1, the program steps between the FOR statement and the NEXT statement are
executed. If the result of the comparison is false, the program continues with the first statement following
the NEXT statement.
When the NEXT statement is executed, control returns to the FOR statement. The variable is
incremented by the amount specified in expression2. If expression2 was not given, 1 is added to the
variable. The new value of the variable is compared again to expression1, and if the two values are not
equal, program steps are again executed. This process continues until the value of the variable is greater
than expression1, and program control passes to the first statement following the NEXT statement.
The following macro illustrates the use of the FOR and NEXT statements:
1    FUNCTION boldwords()
2    ' This macro asks the user how many words to bold, and then bolds them.
3    numwords = Query$ ("How many words to bold?")
4    FOR count = 1 TO numwords
5                TYPE ("[CtrlShiftRight]") ' shade word to right
6    NEXT
7    bold() ' bold it
8    TYPE ("[right][left]") 'unshade
9    END FUNCTION
Line 3 of the macro establishes the limit value for the FOR loop by asking the user how many words
should be bolded. Line 4 sets up the FOR loop, creating the variable count, and initializing it to 1. Since a
STEP statement was not used, the count is incremented by 1. Line 5 is the body of the FOR loop, which
selects the next word to the right. Line 6 is the NEXT statement, which causes a return to line 4 for the
next iteration of the loop. Once the proper number of words has been selected, lines 7 and 8 do the
bolding and cleanup, and line 9 ends the macro. If the execution of a FOR loop needs to end without
completing all of the iterations, use the BREAK statement.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

The IF/THEN Statement
The IF/THEN statement is used to execute a series of steps if a condition is TRUE. IF/THEN statements
can test several conditions and execute a particular series of steps for the appropriate condition. The
syntax of the IF/THEN statement is:
IF Condition1 [THEN]     
Program step 1
[ELSEIF Condition2 [THEN]     
Program step 2]...
[ELSE     
Program step 3]
ENDIF
Condition 1 is an expression that causes program step 1 to execute if it evaluates to TRUE.
Program step 1 is a series of macro statements that are executed if condition1 evaluates to TRUE.
Condition 2 is an expression, that causes program step 2 to execute if it evaluates to TRUE.
Program step 2 is a series of macro statements that are executed if condition2 evaluates to TRUE and
previous conditions are FALSE.
Program step 3 is a series of macro statements that are executed if none of the previous conditions were
TRUE.
When the IF statement is encountered, the macro evaluates the condition specified in condition1. If the
condition evaluates to TRUE, Program step 1 is executed, and control passes to the first program line
beyond the ENDIF. If the condition is FALSE, the macro evaluates to condition2.
If this condition is TRUE, then Program step 2 is executed, and control passes to the first program line
beyond the ENDIF. Subsequent ELSEIF's (if present) are evaluated until one of the ELSEIF conditions is
TRUE, and its statements are executed, or the ELSE statement, if present, is executed.
The following macro deletes two carriage returns in a row if they are encountered in a document. This
allows removal of the blank line between paragraphs. It uses the IF statement to detect when two carriage
returns in a row have been found.
1    FUNCTION delcrs()
2    TYPE ("[ctrlhome]") ' go to top of file
3    loop:
4    TYPE ("[ctrldown]") ' to next RETURN symbol
5    c = CurChar$()
6    TYPE ("[RIGHT]")
7    IF (AtEOF()) ' at end of file?
8                EXIT FUNCTION 'end macro execution
9    ELSEIF (c = CurChar$()) ' look for two in a row
10                TYPE ("[DEL]")
11    ENDIF
12                GOTO loop
13    END FUNCTION
The macro starts by going to the beginning of the file in line 2. It then moves to the end of the first
paragraph in line 4. In line 5, the value of the character under the insertion point is stored in the variable c.
The insertion point is then advanced one position in line 6. The IF statement in line 7 determines if the
end of the file has been reached. If so, the macro exits in line 8. If not, the ELSEIF statement in line 9
compares the value of the character at the insertion point position with the value of the previously stored

character c. If they are the same (the condition is TRUE), line 10 deletes the second return symbol. There
is no ELSE condition in this IF statement, since we aren't interested in any other characters besides
return symbols and the end of the file. Therefore, control passes through the ENDIF statement, and jumps
to the label LOOP in line 3, where the sequence repeats.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

The SWITCH and CASE Statements
The SWITCH and CASE statements work together to execute a series of program steps based on the
value of a single variable. These statements are similar to the IF/ELSEIF statements. The major
difference is that while you can execute different statements based on the values of different variables
using the IF statement (IF a = 1 then ... ELSEIF b = 2 ... ELSEIF c = 3 ...), all of the statements executed
with a CASE statement depend on the variable defined in the SWITCH statement. The syntax for the
SWITCH statement is:
SWITCH Variable
            CASE Expression1
                        Statements1
            [CASE Expression2
                        Statements2...]
            [DEFAULT
                        Statements3]
ENDSWITCH
Variable is a defined variable name that is compared to the expressions in the CASE statements.
Expression1 is an expression that is compared to Variable.
Statements1 are program statements that are executed if Variable is equal to Expression1.
Expression2 is an expression that is compared to Variable.
Statements2 are program statements that are executed if Variable is equal to Expression2.
Statements3 are program statements that are executed if none of the expressions in any CASE
statement are equal to Variable.
When the SWITCH statement is encountered in the macro, the value of Variable is stored. This value is
then compared against the expression in the first CASE statement. If they are equal, the statements
between that CASE statement and either the next CASE statement, the DEFAULT statement or the
ENDSWITCH statement, whichever comes first, is executed. Control then passes to the first statement
beyond the ENDSWITCH statement. If the variable and the CASE expression are not equal, the
statements are not executed. The program continues to the next CASE statement, which is evaluated in
the same way.
If none of the CASE expressions matched the variable by the time the DEFAULT statement is
encountered, the statements between the DEFAULT and ENDSWITCH statements are executed. If there
is no DEFAULT statement, control passes to the first statement beyond the ENDSWITCH statement.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements
Example of SWITCH and CASE

Example of SWITCH and CASE
The following macro counts the frequency of occurrence of four words in a document, and reports the
percentage of use of each word within a document:
1    FUNCTION wordfreq()
2    word1 = Query$ ("Type the first word:")
3    word2 = Query$ ("Type the second word:")
4    word3 = Query$ ("Type the third word:")
5    word4 = Query$ ("Type the fourth word:")
6    DraftMode()' put in DraftMode
7    TYPE ("[ctrlhome]") ' go to top of file
8    w1cnt = 0 ' initialize counters
9    w2cnt = 0
10    w3cnt = 0
11    w4cnt = 0
12    ocnt = 0
13    loop: 'loop point for each word
14    word = CurWord$()      ' get word contents
15    SWITCH word
16                CASE (word1) ' if a match
17                            w1cnt = w1cnt + 1 ' bump word count
18                CASE (word2)
19                            w2cnt = w2cnt + 1
20                CASE (word3)
21                            w3cnt = w3cnt + 1
22                CASE (word4)
23                            w4cnt = w4cnt +1
24                default
25                            ocnt = ocnt +1 ' didn't match our words
26    ENDSWITCH
27    TYPE ("[ctrlright]") ' to next word
28    IF (0 = AtEOF()) ' at the end of the file yet ?
29                GOTO loop ' no; continue
30    ENDIF
31    totcount = w1cnt + w2cnt + w3cnt + w4cnt + ocnt
32    p1 = (w1cnt / totcount) * 100
33    p1 = FormatNum$ ("", "", 2, p1)
34    p2 = (w2cnt / totcount) * 100
35    p2 = FormatNum$ ("", "", 2, p2)
36    p3 = (w3cnt / totcount) * 100
37    p3 = FormatNum$ ("", "", 2, p3)
38    p4 = (w4cnt / totcount) * 100
39    p4 = FormatNum$ ("", "", 2, p4)

40    message ("There are {w1cnt} cases of {word1}, or {p1}%")
41    message ("There are {w2cnt} cases of {word2}, or {p2}%")
42    message ("There are {w3cnt} cases of {word3}, or {p3}%")
43    message ("There are {w4cnt} cases of {word4}, or {p4}%")
44    message ("Total words in document: {totcount}")
45    END FUNCTION
Lines 2 - 5 of this macro ask the macro user for the four words to be counted using the Query$ function,
and assign their values to the variables word1 to word4. Line 6 uses the macro function DraftMode to put
Ami Pro in Draft Mode, which speeds up processing of the macro. Lines 8 through 12 define the variables
used for counters and initializes them to 0. After these setup statements, the body of the macro loop
begins with the macro function getword in line 14, which gets the current word in the document, and
places its value in the variable word.
Line 15 of the macro is the SWITCH statement. It sets the value of the variable the following CASE
statements use to compare to the value of word. The CASE statement in line 16 compares the value of
word to word1, the first word whose frequency we are trying to count. If there is a match, then the counter
for the first word is incremented, and control jumps to line 27 following the ENDSWITCH statement. If not,
control passes to the following line where the value of word is compared to the second word we are
counting, and so forth. If a match is not found by line 24, the default case, the program increments the
counter of other, non-matched words in the document. The ENDSWITCH statement in line 26 indicates
the end of the SWITCH statement.
Line 27 advances the insertion point to the next word, and lines 28 - 30 jump back to line 13, where the
process is repeated for the following word in the file until the entire file has been examined. Line 31 adds
the count of each word type together to determine the total number of words in the document. Lines 32 -
39 calculate the average for each of the words, and use the FormatNum$ macro function to format the
numbers as percentages. Finally, lines 40 - 44 display the result of the word frequency count to the user.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

The WHILE Statement
The WHILE statement repeatedly executes a series of statements as long as a condition evaluates to
TRUE. The WHILE statement is useful if you want to ensure that some condition has been fulfilled before
continuing with other steps in the macro.
The syntax of the WHILE statement is:
WHILE (Condition)
            Statements
WEND
Condition is a condition that evaluates to either TRUE or FALSE.
Statements are macro program statements.
When the WHILE statement is encountered in a macro program, the condition specified in condition is
evaluated. If the condition evaluates to TRUE, then the statements between the WHILE and WEND
statements are executed. If the condition is false, macro execution continues beyond the WEND
statement. Following execution of the statements, the program goes back to the WHILE statement and re-
evaluates the condition. As long as the condition remains TRUE, the statements through the WEND
statement continue to be executed.
The statements between a WHILE/WEND loop are not executed at all if the condition specified in the
WHILE statement is FALSE when first evaluated. It is also possible to create an infinite loop in a
WHILE/WEND loop if the statements between them do not affect the condition in the WHILE statement.
The following example illustrates using the WHILE loop in a macro to count the words in a document.
1    FUNCTION wc()
2    DraftMode() ' ensure we are in DraftMode
3    TYPE ("[ctrlhome]") ' go to top of file
4    counter = 0 ' initialize counter
5    WHILE (NOT(AtEOF())) ' as long as not at end of file
6                counter = counter +1
7                TYPE ("[ctrlright]") ' ahead a word
8    WEND
9    message ("There are {counter} words in the file.")
10    END FUNCTION
Line 2 of this macro changes Ami Pro to Draft Mode for faster operation, line 3 positions the insertion
point at the beginning of the file, and line 4 initializes the word counter variable to 0. Line 5, the WHILE
statement, tells the macro to execute the following statements as long as the insertion point is not at the
end of the file. Lines 6 and 7 form the loop of the WHILE statement, incrementing the counter and
advancing to the next word in the file. The WEND statement in line 8 tells the macro to go to the WHILE
statement and repeat the loop. Line 9 displays the word count to the user, and line 10 ends the macro.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

The BREAK Statement
When in a FOR/NEXT loop, there are times when the loop should be ended before the total number of
repetitions specified in the FOR statement. In a SWITCH/CASE loop, there are times when only certain
statements should be processed for a matching case, based on some other variable. Similarly, there are
times when the macro needs to break out of a WHILE/WEND loop.
The BREAK statement allows control to pass out of the loop, and ends the action of the FOR/NEXT,
SWITCH/CASESWITCH, and WHILE/WEND statements.
The syntax for the Break statement is
BREAK

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements
Example of the BREAK Statement

Example of the BREAK Statement
The BREAK statement is used in the following macro in both a FOR/NEXT loop and a SWITCH/CASE
statement. This macro extends the boldwords macro used to illustrate the FOR/NEXT statement, and
allows the user to pick multiple attributes.
1    FUNCTION attrwords()
2    ' This macro asks the user attributes to use, and then applies the attributes to a set number 3    of
words with the attributes.
4    boldon = 0 ' initialize variables
5    capson = 0
6    undon = 0
7    italicson = 0
8    flag = 0
9    loop: ' get no of attr, and set flags
10    attr = Query$ ("Type number of attribute:")
11    SWITCH attr
12                CASE "1"
13                        boldon = 1
14            CASE "2"
15                        IF (capson < 0) 'already picked one
16                                    message ("Already picked caps; ignored")
17                                    BREAK
18                        ENDIF
19                        capson = Uppercase
20            CASE "3"
21                        IF (capson < 0) 'already picked one
22                                    message ("Already picked caps; ignored")
23                                    BREAK
24                        ENDIF
25                        capson = SmallCaps
26            CASE "4"
27                        IF (capson < 0) 'already picked one
28                                    message ("Already picked caps; ignored")
29                                    BREAK
30                        ENDIF
31                        capson = InitialCaps
32            CASE "5"
33                        IF (capson < 0) 'already picked one
34                                    message ("Already picked caps; ignored")
35                                    BREAK
36                        ENDIF
37                        capson = Lowercase
38            CASE "6"

39                        italicson = 1
40            CASE "7"
41                        IF (undon < 0) 'already picked one
42                                    message ("Already picked underline; ignored")
43                                    BREAK
44                        ENDIF
45                        undon = 7
46            CASE "8"
47                        IF (undon < 0) 'already picked one
48                                    message ("Already picked underline; ignored")
49                                    BREAK
50                        ENDIF
51                        undon = 8
52            CASE "9"
53                        IF (undon < 0) 'already picked one
54                                    message ("Already picked underline; ignored")
55                                    BREAK
56                        ENDIF
57                        undon = 9
58            CASE "0"
59                        flag = 1
60            default ' incorrect choice; display help
61                        message ("Bold = 1, All Caps = 2, Small Caps = 3, Initial Caps = 4, Lowercase = 5")
62                        message ("Italics = 6, Underline = 7, Word Underline = 8, Double Underline = 9")
63                        message ("Type 0 to apply attributes")
64    ENDSWITCH
65    IF (flag = 0) ' may want another pick
66            GOTO loop
67    ENDIF
68    numwords =Query$ ("How many words?")
69    FOR count = 1 TO numwords ' shade desired words
70            IF (AtEOF())
71                          BREAK ' stop at end of file
72            ENDIF
73            TYPE ("[ctrlshiftright]") ' shade word to right
74    NEXT
75    IF (boldon) 'apply attrs
76            bold() ' bold it
77    ENDIF
78    IF (capson)
79            caps (capson)
80    ENDIF
81    IF (italicson)

82            italic()
83    ENDIF
84    IF (undon = 7)
85            Underline()
86    ENDIF
87    IF (undon = 8)
88            WordUnderline()
89    ENDIF
90    IF (undon = 9)
91            SpecialEffects (DoubleUnderline)
92    ENDIF
93    TYPE ("[right][left]") 'unshade
94    END FUNCTION
This macro starts out by initializing the variables in lines 3-7. Line 9 asks the user to type the number of
the attribute he wants to use. Following this, a SWITCH/CASE statement evaluates the number the user
typed, and sets the flags for the desired attributes. In line 16, a BREAK statement is used if the user had
already picked one of the capitalization attributes, since no more than one of these attributes can be
applied at one time. If the user had not picked a capitalization attribute, line 18 sets the flag for all caps.
The BREAK statement is also used for the underlining choices, since only one underline attribute can be
in effect at one time. The DEFAULT case in line 59 displays a Help message for the user if he picks an
invalid choice.
Line 64 checks to see if the macro user indicated he wanted to end picking attributes by typing 0. If not, a
GOTO statement loops to line 8, where the macro asks for another attribute. If the user is done picking
attributes, line 67 asks the user to select the number of words to apply the attributes. Lines 68-72 are a
FOR/NEXT loop used to select the desired number of words. Line 70 contains a BREAK statement that is
used to end the FOR/NEXT loop if the end of the file has been reached.
Finally, lines 74-91 apply the selected attributes, and line 92 unselects the words.

See also:

Ami Pro Macro Language Contents
Overview of the Ami Pro Macro Language
Macro Programming Statements

Macro Errors and Debugging Macros
This section of the documentation describes error messages that can appear when compiling or running
macros. It also discusses some of the techniques you can use to determine the cause of the errors, and
how you can test your macros to make sure they do what you want them to.

Error Messages When Macros Are Compiled
When an error occurs during macro compilation, the insertion point stops at the location of the error, and
the appropriate message displays. The macro is not saved.    You can determine the cause of the error,
make the change, and recompile the macro. Compilation stops at the first error found, so you may need
to compile the macro several times in order to find all the errors.

Error Messages While Macros Are Running
Runtime error handling is dependent on whether the SingleStep function has been used in the compiled
macro.    If a SingleStep function has been used, a runtime error displays a message box with the error
message as the title of the message box and the offending line inside the dialog box.    When the user
acknowledges the error, the macro is canceled.
If no SingleStep statement has been used, the error message displays on the screen without the line
information.    When the user acknowledges the error, the macro is canceled.
A run-time error, whether a macro error, or an Ami Pro or Windows error, stops macro execution unless an
ONERROR statement has been included in the macro.    If an ONERROR statement has been included,
control transfers to the location specified by that statement.

Determining the Cause of Runtime Errors
Runtime errors can be difficult to trace and debug.    If other people will be using your macros, you should
test them and make sure they work correctly before distributing them.    Ami Pro provides several tools
you can use to determine the cause of errors and trace the progress of your macro. These tools are:

SingleStep and IgnoreKeyboard
Message
Messages

See also:

Using the SingleStep and IgnoreKeyboard Functions
Using the Message Function
Using the Messages Function

Using the SingleStep and IgnoreKeyboard Functions
The SingleStep function is the most powerful tool you can use to help debug your macros.    If you use the
SingleStep function and an error occurs, you will see information about the line that caused the problem.   
If the SingleStep function is not used, all that is shown is the error message with no indication of where
the problem is.
The SingleStep function is also useful because it allows you to trace the progress of your macro.    When
you use control statements in your macro, it may do something you don't expect if the value tested by the
control statement is something you hadn't planned on.    In single step mode, each statement is displayed
as it is executed so that you can tell    what your macro is doing. You can verify that    the tests placed in
your control statements do what you planned.
Any variables defined before the SingleStep function will not be available for viewing or changing. Also,
any variable not yet defined when the macro is interrupted will not be available. When you use the
StepThrough feature of SingleStep and the next statement is a Call function, all statements in the macro
and any macros called will be executed without interruption. Once the called macro ends, the macro will
again be interrupted. If the next statement is not a macro call, then StepThrough acts just like SingleStep.
If a SingleStep(0) is encountered while stepping through the macro, it will not have an effect on the
macro. If a SingleStep(1) is encountered, the macro will be interrupted.
Other tools that can help you debug your macros are the IgnoreKeyboard, Message, and Messages
functions.    The IgnoreKeyboard function determines if any key will interrupt a macro or if only the Escape
key will interrupt the macro.    The Message function displays a message on the screen and then waits for
the user to acknowledge it.    The Messages function determines if messages issued by Ami Pro will be
shown to the user or if they will be accepted and the default action taken.
If the SingleStep function has not been used in your macro, the macro user can press a key to interrupt
macro play.    When a key is pressed, a message appears asking the user if macro play should be
continued or canceled.    The IgnoreKeyboard function determines if pressing any key pauses the macro
(the default) or if pressing only the Escape key pauses the macro.
If you use the SingleStep function, pausing the macro by pressing a key will cause the macro to enter
single step mode.    You will be able to continue macro play normally, continue in single step mode, or
cancel macro play completely.    This allows you to see what is happening in your macro if it appears to be
in an infinite loop.
The following macro illustrates using the SingleStep Function to determine the cause of an infinite loop:
FUNCTION debug   
SingleStep (Off)    ' allow debugging
var1 = 1    ' initialize var1
var2 = 2    ' initialize var2
while (var1 < 10)    ' set loop to continue until var1 = 10
            IF (var2 > 0)
                        var1 = var1 - 1    ' decrement var1 if var2 > 0
            ENDIF
            var1 = var1 + 1 ' increment var2
WEND
END FUNCTION
In this example, a while loop is used to execute program steps while var1 is less than 10.    The last
statement in the WHILE loop increments var1, so the macro should execute the loop 10 times and then
end.    The IF statement in line 6 decrements var1 if var2 is greater than 0.    Since var2 is equal to 2, this
means that var1 will always be decremented.    This means that var1 will never increase as it passes
through the loop, since it will be decremented in line 7 and then incremented in line 9.    This means the
loop will never end.
If this macro were run, Ami Pro would appear to freeze with the hourglass icon displayed.    By using
SingleStep mode, pressing a key while the macro was running would allow the programmer to view the

progress of the loop and determine the problem.

See also:   

Using the Message Function
Using the Messages Function

Using the Message Function
The Message function can also be used to display the value of a variable as your macro executes.    This
can assist you in determining if variable values stay within the range you expect.    Consider the following
example:
FUNCTION testswitch   
choice = Query$ ("Type a number between 1 and 3")
SWITCH choice
            CASE ("1")
                        ' statements for case 1
            CASE ("2")
                        ' statements for case 2
            CASE ("3")
                        ' statements for case 3
            DEFAULT
                        message ("Got back {choice} for user's choice")
ENDSWITCH
END FUNCTION
This example uses a SWITCH statement to execute some macro statements based on a value typed in
by the user.    The Message statement in line 11 displays a message indicating the value of the switch
variable if it wasn't one of the values expected.    While this example is simple, placing messages in your
macros can be helpful when debugging. This can be particularly true if the value being tested in a
SWITCH statement is determined by the macro or is the result of a function.

See also:

Using the SingleStep and IgnoreKeyboard Functions
Using the Messages Function

Using the Messages Function
The Messages function determines the action taken by a macro in response to unexpected Ami Pro
messages.    For instance, when a new file is opened, Ami Pro asks if the current file's changes should be
saved.    By using the Messages function, the macro can automatically take the default action for these
messages without interrupting the macro user.
In the early stages of developing a complicated macro, you may want to leave message display on. This
helps you determine that the functions in the macro do what you want them to.    Once you are sure that
the macro is working correctly, you can turn messages off.

See also:

Using the SingleStep and IgnoreKeyboard Functions
Using the Message Function

The macro has been interrupted
This message appears if the SingleStep function has been used and the macro is running in single step
mode. It also appears if the SingleStep function has been used and the macro user presses a key.   
The statement being executed appears in the dialog box along with three choices for continuing the
macro: Single-Step, Continue, and Cancel.    Choose Single-Step and the next statement is executed and
you are again asked    whether to continue single step mode.    Choose Continue and the macro continues
in normal run mode.    Choose Cancel and macro execution is canceled.

Internal Runtime Error Number
This is an internal error. It signifies an unexpected runtime error.    It should not appear.    If this message
does appear, note the number that is given and then call Ami Pro customer support for further assistance.

Do you want to cancel the macro?
This message appears when you did not use SingleStep mode and you pressed a key during macro
execution.
If you choose Yes and the label defined by the ONCANCEL statement was used, the control transfers to
the label. If the label was not used, the macro ends.
If you choose no, macro execution continues.

Error 1:    Incorrect format used for this function
The format used for this function is not the correct format.    Check for missing parentheses after the
function name or at the end of the function. Also check for improper characters within the parentheses.

Error 2:    Symbol Name not recognized
The character at the insertion point is not recognized by the macro compiler.    If it is a variable, check to
make sure it has been defined first.    If it is a function, check the spelling of the function name.

Error 3:    Memory not available
There is not enough memory available to compile the macro.    Reduce memory usage by exiting other
applications and then recompile the macro.

Error 4:    Name is already defined as an array
The array name used in this DIM statement is already defined as something else in this macro.    Use
another array name.

Error 5:    Array name must be followed by)
When using an array name, the element number of the array must be surrounded by parentheses.   
Check the parentheses and then recompile the macro.

Error 6:    Incorrect expression as array argument
The element number of this array is not a number or the expression you used doesn't evaluate to an
integer.    Correct the expression and then recompile the macro.

Error 7:    Incorrect expression, expecting)
The number of closing parentheses in this expression does not match the number of opening
parentheses.    Count the parentheses, correct errors, and then recompile the macro.

Error 8:    Incorrect parameter count
You did not provide the correct number of parameters for this function.    Check the requirements of this
function, correct errors, and then recompile the macro.

Error 9:    Misplaced keyword KeyWordName
The word KeyWordName does not belong at this point in the macro.    Check the syntax of what you were
trying to do, correct errors, and then recompile the macro.

Error 10:    Token file is unreadable
This indicates the file MACTOKEN.SAM in the AMIPRO directory is damaged or missing.    You cannot
compile the macro until it has been replaced.    Call Ami Pro support for instructions on how to replace this
file.

Error 11:    FUNCTION argument value is already defined
The arguments you used in the FUNCTION statement have already been defined and cannot be used at
that point.    You may have used a function name or a constant as the macro argument.    Check the
syntax, correct errors, and then recompile the macro.

Error 12:    FUNCTION statement has incorrect format
The format of the FUNCTION statement is incorrect.    The syntax of the FUNCTION statement is
FUNCTION macroname([arguments]).    Macroname cannot be a name of a statement or a function.   
Make sure that you have parentheses following the macro name and that the name is not a reserved
word. Correct errors and then recompile the macro.

Error 13:    DECLARE statement has incorrect format
The format of the DECLARE statement is not correct.    The syntax of the DECLARE statement is
DECLARE macroname([arguments]).    Make sure that you have parentheses following the macro name
and that you have not used function names for the arguments.    Correct errors and then recompile the
macro.

Error 14:    DECLARE or CALL statement has incorrect format
The format of the DECLARE or CALL statement is not correct.    The syntax of the DECLARE statement is
DECLARE macroname([arguments]).    The format of the CALL statement is CALL
macroname([arguments]).      Make sure that you have parentheses following the macro name and that
you have not used function names for the arguments.    Correct errors and then recompile the macro.

Error 15:    Variable name VariableName is not appropriate here
A variable name does not belong at this point in the macro.    The macro may be expecting an array name
instead of a variable name. You may have incorrectly used a variable name instead of a function or
statement name.    Correct errors and then recompile the macro.

Error 16:    Symbol String is not recognized
The character at the insertion point is not recognized by the macro compiler.    If it is a variable, check to
make sure it has been properly defined.    If it is a function, check the spelling of the function name.
Correct errors and then recompile the macro.

Error 17:    END FUNCTION statement was not found.
The macro does not have an END FUNCTION statement.    Insert an END FUNCTION statement and
then recompile the macro.

Error 18:    Expecting (instead of Statement here
The IF statement should be followed by an open parentheses and the condition to evaluate the IF
statement against.    Correct the IF statement and then recompile the macro.

Error 19:    Expecting ENDIF instead of Statement here
You cannot use an ELSEIF or ELSE statement following an ELSE statement.    Rearrange the order of
your ELSE and ELSEIF statements and    then recompile the macro.

Error 20:    Expecting Statement instead of ELSEIF here
The location of the ELSEIF statement is not correct or the macro is not being controlled by an IF
statement at this point.    The ELSEIF condition must be prior to the ELSE and ENDIF statements
governed by the IF statement.    Make sure the conditions are positioned correctly and then recompile the
macro.

Error 21:    Expecting Statement instead of ELSE here
The location of the ELSE statement is not correct, or the macro is not being controlled by an IF statement
at this time.    The ELSE condition must be the last condition before the ENDIF statement.    Make sure the
conditions are positioned correctly and then recompile the macro.

Error 22:    Expecting Statement instead of ENDIF here
The location of the ENDIF statement is not correct, or the macro is not being controlled by an IF
statement at this time.    The ENDIF statement should follow all ELSEIF statements. If the ELSE
statement is used, the ENDIF statement should also follow it.    Make sure the location of the ENDIF
statement is appropriate and then recompile the macro.

Error 23:    Expecting Statement instead of NEXT here
The location of the NEXT statement is not correct, or the macro is not being controlled by an FOR
statement at this time.    Make sure the location of the NEXT statement is appropriate and then recompile
the macro.

Error 24:    WHILE statement has incorrect format
The format of the WHILE statement is not correct.    The syntax of the WHILE statement is WHILE
(expression) statements WEND.    Make sure that the WHILE statement is formatted correctly and then
recompile the macro.

Error 25:    CASE statement must follow SWITCH statement
The location of the CASE statement is not correct.    All CASE statements must appear between a
SWITCH and an ENDSWITCH statement.    They cannot appear following the DEFAULT statement.   
Make sure the SWITCH loop is formatted correctly and then recompile the macro.

Error 26:    Variable name must follow SWITCH statement
The SWITCH statement must have a variable name immediately following it that can be evaluated against
the expressions used in the following CASE statements.    Insert a variable name following the SWITCH
statement and then recompile the macro.

Error 27:    Expecting Statement instead of CASE here
The location of the CASE statement is not correct.    All CASE statements must appear between a
SWITCH and an ENDSWITCH statement.    They cannot appear following the DEFAULT statement.   
Make sure the SWITCH loop is formatted correctly and then recompile the macro.

Error 28:    Expecting Statement instead of DEFAULT here
The location of the DEFAULT statement is not correct, or the macro is not evaluating a
SWITCH/ENDSWITCH condition at the location of the DEFAULT statement.    The DEFAULT statement
must appear following all CASE statements and just before the ENDSWITCH statement.    Check to make
sure the SWITCH loop is formatted correctly and then recompile the macro.

Error 29:    Expecting Statement instead of ENDSWITCH here
The location of the ENDSWITCH statement is not correct, or the macro is not evaluating a
SWITCH/ENDSWITCH condition at the location of the ENDSWITCH statement.    The ENDSWITCH
statement must appear following all CASE statements and the DEFAULT statement.    Make sure the
SWITCH loop is formatted correctly and then recompile the macro.

Error 30:    BREAK statement is inappropriate here
The location of the BREAK statement is not correct, or the macro is not evaluating a
SWITCH/ENDSWITCH, FOR/NEXT or WHILE/WEND condition at the location of the BREAK statement.   
Make sure the BREAK statement is in a FOR/NEXT, SWITCH/ENDSWITCH or WHILE/WEND loop and
then recompile the macro.

Error 31:    Expecting Statement instead of FUNCTION here
The location of the FUNCTION statement is not correct.    The FUNCTION statement must be the very
first thing in a macro.    If this is not the first macro in the file, make sure the previous macro is terminated
with an END FUNCTION statement.    Make corrections and then recompile the macro.

Error 32:    Expecting Statement instead of END FUNCTION here
The location of the END FUNCTION statement is not correct.    The END FUNCTION statement must be
the last statement in a macro.    Prior to the END FUNCTION statement, all IF/THEN, WHILE/WEND,
SWITCH/ENDSWITCH and FOR/NEXT loops must be terminated.    Correct errors and then recompile
the macro.

Error 33:    Incorrect format used for CALL statement
The syntax you used for the CALL statement is not correct.    The correct syntax is:    CALL
macroname([parameters]).    Make sure that the macroname is followed by parentheses and that the
arguments to the called macro are correct. Correct errors and then recompile the macro.

Error 34:    Label Name is not defined
You referenced the label name in a GOTO statement, and the LABEL was not found in the macro.   
Check the spelling of the label and make sure that the label is formatted correctly. Correct errors and then
recompile the macro.

Error 35:    LabelName is already defined
The LABEL name you used is already used as a label, or it is used as a variable name or function name.   
Select a unique name for the label and then recompile the macro.

Error 36:    Incorrect number of parameters: function
There are too few or too many parameters used for this function.    Check the required syntax, correct the
parameters, and then recompile the macro.

Error 37:    Incorrect format used for DIM statement
The syntax you used in the DIM statement is not correct.    The correct syntax is DIM arrayname(count),
[arrayname(count)...].    Check the statement, correct    errors, and then recompile the macro.

Error 38:    Incorrect format used for DEFSTR statement
The syntax you used in the DEFSTR statement is not correct.    The correct syntax is DEFSTR
variablename [, variablename...].    Check the statement, correct the errors, and then recompile the macro.

Error 39:    Incorrect array expression
Something is wrong with the array reference you used.    The array name must be followed by the element
number in parentheses.    The element number must be a number or the expression must evaluate to an
integer.    Correct the expression and then recompile the macro.

Error 40:    Assignment expected after FOR statement
You formatted the FOR statement incorrectly.    The correct syntax for the FOR statement is FOR
assignment TO expression [STEP expression].    Make sure you initialize the counting variable in the FOR
loop and then recompile the macro.

Error 41:    TO expected in FOR statement
You formatted the FOR statement incorrectly.    The correct syntax for the FOR statement is FOR
assignment TO expression [STEP expression].    Make sure you initialize the counting variable in the FOR
loop and then recompile the macro.

Error 42:    Improper label used in GOTO statement
The label name you used in the GOTO statement is not a LABEL.    Labels cannot be variable names,
function names, or expressions.    Make sure that the label name is correct and then recompile the macro.

Error 43:    Incorrect syntax used in DECLARE statement
The DECLARE statement is formatted incorrectly.    The correct syntax for the DECLARE statement is
DECLARE macroname([arguments]).    Make sure the macroname is followed by parentheses and any
arguments. Correct errors and then recompile the macro.

Error 44:    No macros found in file
The macro file you saved does not have any macros in it.    If the file is an Ami Pro document file, you
should save it with a .SAM extension.    If this file is a macro file, make sure that the FUNCTION statement
is spelled and formatted correctly. Correct errors and then recompile the macro.

Error 45:    Incorrect character Character used here
The character you typed here does not belong at this point in the macro.    Check the syntax for the
function you were trying to perform.    If the character should be part of a string, make sure that there are
quotation marks around it.    Correct the statement and then recompile the macro.

Error 46:    Macro line can't end like this
The line the insertion point is on cannot end the way it does.    Perhaps there are too few closing
parentheses on the line, or perhaps you forgot to end a string with quotation marks.    Check the
statement, make corrections, and then recompile the macro.

Error 47:    Token file has become damaged
This indicates the file MACTOKEN.SAM in the AMIPRO directory has become damaged or is missing.   
You cannot compile the macro until it has been replaced.    Call Ami Pro support for instructions on how to
replace this file.

Error 48:    String is an improper keyname
The keyname string is not the name of a key.    Either the keyname is misspelled or you used a square
brace ([) in this string.    Check the list of permissible keynames.    If you wanted to type a square brace in
the string, use two braces ([[) instead.    Correct errors and then recompile the macro.

Error 49:    Too many characters in this string
There is a limit of 80 characters that can be used in any single string.    You have exceeded this limit.   
Shorten the string or break it into two strings and then recompile the macro.

Error 50:    Called macro must have a filename or be in the current macro file
One of the macros in this file calls another macro that is not in this file and does not have the name of
another macro file associated with it.    Any called macros must either be in the macro file you are
executing or must have filenames supplied with the macro so they can be found.    Make sure the macro
name is spelled correctly and its location is identified correctly. Correct errors and then recompile the
macro.

Error 51:    Macro not found
One of the macros in this file should be in another macro file, but is not.    When a filename for an macro is
specified, Ami Pro searches the macpath directory, the documents directory, and the Ami Pro program
directory for the specified file.    If a full path to the macro is specified, Ami Pro only checks that path.   
Check the filename and paths for the called macro, and ensure that they are correct.    Make changes and
recompile the macro.

 See also:   

Determining a Macro's Location

Error 52:    Out of memory for variable space
There is not enough free memory available to allocate space for variables used in this macro.   

Error 53:    Insufficient memory to execute this macro
There is not enough free memory available to run this macro.    Close other open windows and try running
the macro again.

Error 54:    DDEReceive$ could not be executed
This message indicates that the DDEReceive$ function was not able to execute.    This could be because
the DDEInitiate function was not used to set up communications, or because the DDEInitiate function
failed to communicate with the other Windows application.    Make sure that you correctly started the DDE
conversation, and that the other application is responding before using the DDEReceive$ function.   
Correct errors and then recompile the macro.

Error 55:    DDEReceive$ did not get data back from the other program
This message indicates that the DDEReceive$ function was able to communicate with the other program,
but that no data was received from the application by the DDEReceive$ function.    This could be because
the other application was not initialized correctly prior to using the DDEReceive$ function.    Check the
parameters required by the other program, and make sure that the DDE conversation was set up
correctly.    Correct errors and then recompile the macro.

Error 56:    Incorrect parameters used for DDEReceive$ function
This message indicates that the DDEReceive$ function was not formatted using the correct parameters.   
This could be because the ChannelID was not correct, or because the data requested from the other
application was not presented in the format required by the other application.    Check the ChannelID and
the format required for DDE requests from the other application.    Correct errors and then recompile the
macro.

Error 57:    Insufficient memory to execute this macro
Unused.

Error 58:    Incorrect parameters used for DDEExecute function
This message indicates that the DDEExecute function was not able to    execute because the commands
used in the DDEExecute function were not correct for the other application.    Check the format required
for giving commands to the other application.    Correct and then recompile the macro.

Error 59:    Incorrect Parameters used    MacroStatement Line Number
One of the parameters you used for this function is not correct for the function.    Perhaps the function
requires a numeric parameter and you used a string instead.    Check the required parameters, make
corrections, and then recompile and rerun the macro.

Error 60:    Can't read macro file
This error message indicates that Ami Pro cannot read the coded instructions to execute the macro stored
in the macro file.    If this message should appear, you should display the macro file, and save it again to
regenerate the internal instructions.    If the file saves successfully, and the macro still will not run, call Ami
Pro Customer support for further instructions.    When calling support, make sure you have the error
number displayed, and any other parameters displayed in the error message.

Error 61:    Internal error, start address String
Error 62:    Internal error, opcode String
Error 63:    Internal error, function Number
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic that controls macro execution.    If an internal error should appear, you should first display
the macro file.    Save the file again to make sure that the file has not become damaged.    If the file saves
successfully and the macro still will not run, call Ami Pro Customer support for further instructions.    When
calling support, make sure you have the error number displayed and any other parameters displayed in
the error message.

Error 64:    Internal error, parm count    String Line Number
Error 65:    Internal error, no function number    String Line Number
Error 66:    Internal error, bad logop
Internal errors should not appear.    They indicate a problem with the way the macro was saved, or with
the Ami Pro logic which controls macro execution.    If an internal error should appear, you should first
display the macro file. Save the file again to make sure that the file has not become damaged.    If the file
saves successfully, and the macro still will not run, call Ami Pro Customer support for further instructions. 
When calling support, make sure you have the error number displayed and any other parameters
displayed in the error message.

Error 71:    Attempt to add non-numeric values MacroStatement Line Number
This message appears when a macro is running, and an assignment statement or evaluation of variables
attempts to add variables that are not numbers. This most frequently occurs when a variable which has a
string value is added to a number. Check to make sure that the variables in the statement evaluate to
numbers rather than strings. Remember that an uninitialized variable is equal to the null string (""), rather
than zero. You must specifically initialize variables in order to guarantee that they will be treated as
numeric.
Determine the value of the offending variable and correct its value to ensure it is numeric. Then recompile
the macro and run it again.

Error 72:    Attempt to divide by zero, MacroStatement Line Number
This message appears when a macro is running and a division operation attempts to divide by zero.   
Macro execution stops when this message appears.    Determine the variable that is zero at the time of
the statement execution.    Perhaps you can evaluate this variable before doing the division and allow the
user to change it, or skip the division if it is zero.    Make corrections, recompile, and then rerun the macro.

Error 73:    Attempted math function on non-numeric values, MacroStatement Line Number
This message appears when a macro is running, and an assignment statement or evaluation of variables
attempts to perform binary arithmetic or multiplication and division on    variables that are not numbers.   
This most frequently occurs when a variable that has a string value is divided or multiplied by a number.   
This message could also appear if a non-integral number was used as an operand in a binary operation.   
Check to make sure that the variables in the statement evaluate to numbers rather than strings.   
Remember that an uninitialized variable is equal to the null string (""), rather than zero.    You must
specifically initialize variables in order to guarantee that they will be treated as numeric.    Determine the
value of the offending variable and correct its value to ensure it is numeric.    Then recompile the macro
and run it again.

Error 70:    Internal error, bad mathop
Error 74:    Internal error, bad mulop
Error 75:    Internal error, POPVAR stack
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it    to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still will not run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 67:    Internal error, logop stack
Error 68:    Internal error, relop stack
Error 69:    Internal error, mathops stack
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it    to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still won't run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 76:    Internal error, JMPF stack
Error 77:    Internal error, JMPF stack
Error 78:    Internal error, POPRLT stack
Internal errors should not appear, and indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it    to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still will not run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 79:    Internal error, call address String
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still will not run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 80:    Array index out of range
The index value of an array is larger than the number of elements assigned to it using the DIM statement. 
This can occur when a FOR/NEXT loop or WHILE/WEND loop is used to increment the value of an array
index and the element limit in the DIM statement is exceeded.    Macro execution stops when this occurs.   
Determine the statement that is causing the index to grow too large, correct the problem or dimension the
array with more elements, and then recompile and rerun the macro.

Error 81:    Macro called Ami Pro Function that has been grayed
This error message will occur if an Ami Pro function is called at an inappropriate time.    An example of this
would be to display the tab ruler in draft mode, or to create a frame in draft mode.    This message also
appears when you call an Ami Pro function such as FileOpen that is not available under NewWave, or you
call a NewWave specific function, such as CreateANew, when not running NewWave.   
When this error appears, macro execution is canceled.    Determine the Ami Pro function that could not be
executed.    Perhaps you can use other Ami Pro commands to guarantee that the program is in the correct
operating mode to let the function run correctly, or you could jump over the function if the program is not
in the correct mode.    Correct the problem, recompile the macro, and then run it again.

Error 82:    ONERROR or ONCANCEL can't be in a called macro
This message appears when a macro is running, and an ONERROR or ONCANCEL statement is found in
a macro that is called by another macro.    This message is an internal error and should not occur.    If this
message displays, call Ami Pro customer support.

Error 83:    Macro referenced in CALL statement can't be found
The macro used a CALL statement to call another macro, but the called macro was not in the 'main'
macro file or the file referenced in the CALL statement.    Any called macros must either be in the macro
file executed by the user, or must have filenames supplied with the macro so they can be found.    Make
sure the macro name is spelled correctly and that its location is identified. Correct errors and then
recompile the macro.

Error 84:    Insufficient memory for AddMenu functions
There is not enough free memory available to run this macro.    Close other open windows to reduce
memory and try running the macro again.

Error 86:    Unable to complete CreateMenu function
The macro was unable to create the menu you requested.    This could be because you used an invalid
bar ID or because there was already a menu with the name you requested.    Check the AddMenu and
AddBar statements in the macro. Corect errors and then recompile the macro.

Error 87:    Maximum menu count reached in AddMenu function
No more menus could be added because the maximum number of menus on the menu bar had    been
reached.    You will need to rewrite the macro to include fewer menus, or use a different menu bar.    Make
corrections and then recompile the macro.

Error 89:    Unable to complete menu function, Lock failure
The menu function you wanted could not be completed because of an error communicating with the
Windows Menu Manager.    Try closing other windows you may have open, or exit Windows and restart.   
If you continue to have problems, call Ami Pro customer support.

Error 90:    Unable to create new menu
The macro was unable to create the menu item you requested.    This could be because you used an
invalid bar ID or menu ID, or because there was already a menu item with the name you requested.   
Check the AddMenu, AddBar, and AddMenuItem statements in the macro. Correct errors and then
recompile the macro.

Error 91:    Maximum count reached in AddMenuItem
No more menu items could be added to the menu because the maximum had already been reached.   
You will need to rewrite the macro to include more menus or fewer items.    Correct errors and then
recompile the macro.

Error 92:    Insufficient memory for menu functions.
There is not enough free memory available to run this macro.    Close other open windows to reduce
memory, and try running the macro again.

Error 93:    Internal Error, shrinking menus
Error 94:    Internal Error, symbol number
Error 95:    Internal Error, symbol number
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic that controls macro execution.    If an internal error should appear, first display the macro file
and then save it    to make sure that the file has not become damaged.    If the file saves successfully, and
the macro still will not run, call Ami Pro Customer support for further instructions.    When calling support,
make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 96:    Internal Error, grow strings
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still will not run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 97:    Internal Error, strings
Error 98:    Internal Error, grow strings
Error 99:    Internal Error, lock strings
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file and then save it to make sure that the file has not become damaged.    If the file saves successfully,
and the macro still will not run, call Ami Pro Customer support for further instructions.    When calling
support, make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 100:    Internal Error, realloc array
Error 101:    Internal Error, string frame
Error 102:    Internal Error, no stack
Internal errors should not appear. They indicate a problem with the way the macro was saved, or with the
Ami Pro logic which controls macro execution.    If an internal error should appear, first display the macro
file then save it to make sure that the file has not become damaged.    If the file saves successfully, and
the macro still will not run, call Ami Pro Customer support for further instructions.    When calling support,
make sure you have the error number displayed and any other parameters displayed in the error
message.

Error 103:    Index out of bounds in global array
The index value of a global array is larger than the number of elements assigned to it using the
AllocGlobalVar function.    This can occur when a FOR/NEXT loop or WHILE/WEND loop is used to
increment the value of an array index, and the limit set in the AllocGlobalVar function is exceeded.   
Macro execution stops when this occurs.    Determine the statement thet is causing the index to grow too
large or increase the size of the array in the AllocGlobalVar function. Correct errors and then recompile
and rerun the macro.

Error 104:    Insufficient memory to run this macro
There is not enough free memory available to run this macro.    Close other open windows to reduce
memory and try running the macro again.

Error 105:    Unknown global variable used
The global variable ID you used has not been defined.    Each global variable is assigned an ID when it is
created, and this ID must be used when that variable is accessed.    Check the ID to make sure it is valid.
Correct errors and then recompile and rerun the macro.

Error 106:    Incorrect parameter used for this function
One of the parameters you used for this function is not correct for the function.    Perhaps the function
requires a numeric parameter and you used a string instead.    Check the required parameters. Correct
errors and then recompile and rerun the macro.

Error 107:    Insufficient memory to run this macro
There is not enough free memory available to run this macro.    Close other open windows to reduce
memory and try running the macro again.

Error 108:    Filename is not a macro file
The macro you wanted to display or run is not an Ami Pro macro file.    If it is a document file, it should
have the extension .SAM.    If it is a macro file, it should have the extension .SMM.    Make sure the
contents of the file are correct.

Error 109:    Incorrect combination of keyword(s)
The line following an END FUNCTION statement does not have a FUNCTION statement, or you have
used a FUNCTION statement without having ended the previous function with an END FUNCTION
statement.    Check the macro, make corrections, and then recompile.

Error 110:    Incorrect offset for start of string
The offset you provided for a MID$ or strchr function argument is 0.    The minimum possible offset is 1,
which will begin the search with the first character in the string.    Change the argument and then
recompile the macro.

Error 111:    THEN statement is inappropriate here
The location of the THEN statement is not correct.    The THEN statement must follow the condition
specified in the IF statement.    Check the function, make corrections, and then recompile the macro.

Error 112:    Record Function(s) couldn't be translated
One of the functions you are translating from a Record/Play macro to an editable macro did not translate. 
Some Ami Pro functions, such as charting, can be recorded and played back, but cannot be edited.    You
can recognize these functions in the editable macro because they will appear as a series of numbers that
are commented out of the macro.    If you want to keep the original macro as it was, do not save the edited
version.

Error 113:    Unknown token number, is not a valid parameter.
You used the specified item as an argument to a macro function or to another macro.    The item is not a
valid variable name or definition substitution, and cannot be passed to a function.    Check the spelling of
the variable name or definition, recompile the macro, and try again.

Error 114:    Function FunctionName has not been declared.
You used FunctionName in your macro, and it is not a valid macro function or user defined function.   
Check the spelling of the built-in function, or make sure you have correctly declared your user-defined
function.    Recompile the macro and try again.

Error 115:    Failure to lock global memory.
Ami Pro was unable to access memory needed for the macro. Try running the macro again; if it fails, then
redisplay the macro, resave and run it again. If the problem continues call Ami Pro Customer Support.

Error 116:    Corrupt variable.
A string variable for the macro has been corrupted. Check string manipulations for errors.

Error 117:    Invalid variable type (Codeld).
Unable to obtain value of the variable due to unknown type. Converting to code:

2 - Integer
3 - Floating point
4 - String

Error 118:    Mismatch on assignment (Codeld).
Unable to assign value to a macro variable due to a type mismatch. Converting to code:

2 - Integer
3 - Floating point
4 - String

Error 119:    Memory allocation failure (CodeId).
Ami Pro was unable to obtain enough memory to store a macro variable. Trying closing one or more of
the other Windows applications and running the application again. Also check AllocGlobalVar calls to be
sure they are requesting reasonable amounts of memory.

Error 120:    Wrong data type for operation (Codeld).
The variable passed to a macro function could not be converted to the correct format for use.

Error 121:    GlobalLock failure (Codeld).
Internal error: Ami Pro could not access previously stored data. Call Ami Pro Customer Support.

Error 122:    Variable confusion.
Unable to determine the type of variable being substituted.

Error 123:    Unrecognized Field: %s.
Unused

Error 124:    Field does not end properly.
Power field is missing correct termination.

Error 125:    Field number out of range.
Macro attempted to reference a non existent field.

Error 126:    Quoted string not properly terminated.
The string was not correctly ended.

Error 127:    Call statement must reference a macroname.
Check to be sure the Call statement is not using a standard macro function name, and that the
MacroName in the Call statement is an existing Ami Pro macro. See the Call statement documentation for
information on syntax.

Error 129:    Invalid number for FormatDate.
The Style field of the FormatDate function call is invalid. Check to be sure that it is one of the
values listed in the FormatDate function documentation.

Error 130:    Failed to Exec ProgramNames.
Ami Pro was unable to execute the program. Be sure that the application exists on your path.

Error 131:    Indirect variable required. (Use &variable)
The variable used is a direct variable. Ami Pro needs an indirect variable that points to the intended
variable. Trying placing an ampersand (&) in front of the variable and resaving the macro.

Error 132:    Array variable required for this function.
An array variable is needed to run this function.

Error 133:    Incorrect number of parameters.
Check the function documentation for the correct number of parameters required for the function.

Error 134:    Only one macro may be paused at a time.
Use the pause function for only one macro at a time.

Error 135:    Invalid DIALOG BOX format.
The format of the dialog box is not correct. See the DialogBox Call information in the macro
documentation for format information.

Error 136:    Misplaced Keyword DIALOG. DIALOG boxes must be defined outside of functions.
DIALOG is reserved for use in Ami Pro macro. Change the name of the variable to correct the problem. If
you are trying to create a dialog box see the DialogBox function documentation.

Error 137:    Misplaced Keyword END DIALOG.
END DIALOG is a reserved string in Ami Pro macros.

Error 138:    Illegal use of indirection.
The ampersand character (&) is used illegally. Try deleting it and use the remaining variable name. See
the Variables section for further information.

Error 139:    Invalid argument to ALIAS.
The alias created in the DECLARE section for referencing another macro is not acceptable. See the
DECLARE section for further information.

Error 140:    Invalid argument.
Not Correct parameter or number of parameters in function call.

Error 141:    Misplaced ALIAS.
Unused.

Error 142:    DEFINE (Names) identifier must be undefined.
Name is a reserved word and can not be used in a DEFINE statement. Check the DEFINE statements
and be sure they each have two parameters and contain no reserved words.

Error 143:    DEFINE closing parenthesis expected.
The DEFINE statement includes an open parenthesis and expects a matching closing parenthesis.

Error 144:    Invalid syntax for DEFINE.
DEFINE statement syntax is not correct. Check the macro documentation for further documentation for
DEFINE.

Error 145:    Replacement too long for DEFINE.
The replacement string, including inserted parameters must be less than 500 characters.

Error 146:    Duplicate DEFINE/Variable name (Names).
The variable name is defined more than once.

Error 147:    Line too long.
Macro lines must be less than 255 characters in length.

Error 148:    NewWave Function called.
Macro called a NewWave function while not running the NewWave application. Note: NewWave functions
are not available in the Windows version of Ami Pro.

Error 149:    Open parenthesis unexpected.
Expected closing parenthesis in DEFINE statement.

Error 150:    Invalid Dll ID.
The DLL referenced in a DLLCall function was not previously loaded, or the load was unsuccessful.

Error 151:    Failed to load DLL.
The macro was unable to load the DLL. Check to be sure that either the DLL is in the Windows directory
or that a full path is used to reference it.

Error 152:    Failed to open control file.
Ami Pro could not open the macro control file, MACTOKEN.SAM. Check to be sure that it exists and that
it resides in the Ami Pro directory.

Macro Error Messages
This section of the macro documentation lists each of the error messages that could appear during macro
compilation and execution, along with suggestions for determining the cause of the problem, and how to
fix the problem.    It does not cover the regular Ami Pro or Windows error messages.    These are
documented in the User's Guide.
Each error message is numbered.    This lets you quickly identify the error, and look it up here.   
Messages in this section are listed in numerical order, except for the first few 'status messages'.
Italicized words in this section, such as string, number, and filename are replaced when the message is
displayed on screen by the actual statement, filename, number, etc. causing the problem.   
To read the suggestions for error correction, click on the error message number.

Macro Error Messages 1 - 40
Macro Error Messages 41 - 80
Macro Error Messages 81 - 120
Macro Error Messages 121 - End

UnNumbered Error Messages
The macro has been interrupted
Internal Runtime Error Number
Do you want to cancel the macro?

Error Messages 1 - 40
Error 1:    Incorrect format used for this function
Error 2:    Symbol Name not recognized
Error 3:    Memory not available
Error 4:    Name is already defined as an array
Error 5:    Array name must be followed by)
Error 6:    Incorrect expression as array argument
Error 7:    Incorrect expression, expecting)
Error 8:    Incorrect parameter count
Error 9:    Misplaced keyword KeyWordName
Error 10:    Token file is unreadable
Error 11:    FUNCTION argument value is already defined
Error 12:    FUNCTION statement has incorrect format
Error 13:    DECLARE statement has incorrect format
Error 14:    DECLARE or CALL statement has incorrect format
Error 15:    Variable name VariableName is not appropriate here
Error 16:    Symbol String is not recognized
Error 17:    END FUNCTION statement was not found.
Error 18:    Expecting (instead of Statement here
Error 19:    Expecting ENDIF instead of Statement here
Error 20:    Expecting Statement instead of ELSEIF here
Error 21:    Expecting Statement instead of ELSE here
Error 22:    Expecting Statement instead of ENDIF here
Error 23:    Expecting Statement instead of NEXT here
Error 24:    WHILE statement has incorrect format
Error 25:    CASE statement must follow SWITCH statement
Error 26:    Variable name must follow SWITCH statement
Error 27:    Expecting Statement instead of CASE here
Error 28:    Expecting Statement instead of DEFAULT here
Error 29:    Expecting Statement instead of ENDSWITCH here
Error 30:    BREAK statement is inappropriate here
Error 31:    Expecting Statement instead of FUNCTION here
Error 32:    Expecting Statement instead of END FUNCTION here
Error 33:    Incorrect format used for CALL statement
Error 34:    Label Name is not defined
Error 35:    LabelName is already defined
Error 36:    Incorrect number of parameters: function
Error 37:    Incorrect format used for DIM statement
Error 38:    Incorrect format used for DEFSTR statement
Error 39:    Incorrect array expression
Error 40:    Assignment expected after FOR statement

Error Messages 41- 80
Error 41:    TO expected in FOR statement
Error 42:    Improper label used in GOTO statement
Error 43:    Incorrect syntax used in DECLARE statement
Error 44:    No macros found in file
Error 45:    Incorrect character Character used here
Error 46:    Macro line can't end like this
Error 47:    Token file has become damaged
Error 48:    String is an improper keyname
Error 49:    Too many characters in this string
Error 50:    Called macro must have a filename or be in the current macro file
Error 51:    Macro not found
Error 52:    Out of memory for variable space
Error 53:    Insufficient memory to execute this macro
Error 54:    DDEReceive$ could not be executed
Error 55:    DDEReceive$ did not get data back from the other program
Error 56:    Incorrect parameters used for DDEReceive$ function
Error 57:    Insufficient memory to execute this macro
Error 58:    Incorrect parameters used for DDEExecute function
Error 59:    Incorrect Parameters used    MacroStatement Line Number
Error 60:    Can't read macro file
Error 61:    Internal error, start address String
Error 62:    Internal error, opcode String
Error 63:    Internal error, function Number
Error 64:    Internal error, parm count    String Line Number
Error 65:    Internal error, no function number    String Line Number
Error 66:    Internal error, bad logop
Error 67:    Internal error, logop stack
Error 68:    Internal error, relop stack
Error 69:    Internal error, mathops stack
Error 70:    Internal error, bad mathop
Error 71:    Attempt to add non-numeric values MacroStatement Line Number
Error 72:    Attempt to divide by zero, MacroStatement Line Number
Error 73:    Attempted math function on non-numeric values, MacroStatement Line Number
Error 74:    Internal error, bad mulop
Error 75:    Internal error, POPVAR stack
Error 76:    Internal error, JMPF stack
Error 77:    Internal error, JMPF stack
Error 78:    Internal error, POPRLT stack
Error 79:    Internal error, call address String
Error 80:    Array index out of range

Error Messages 81 - 120
Error 81:    Macro called Ami Pro Function that has been grayed
Error 82:    ONERROR    or ONCANCEL can't be in a called macro
Error 83:    Macro referenced in CALL statement can't be found
Error 84:    Insufficient memory for AddMenu functions
Error 86:    Unable to complete CreateMenu function
Error 87:    Maximum menu count reached in AddMenu function
Error 89:    Unable to complete menu function, Lock failure
Error 90:    Unable to create new menu
Error 91:    Maximum count reached in AddMenuItem
Error 92:    Insufficient memory for menu functions.
Error 93:    Internal Error, shrinking menus
Error 94:    Internal Error, symbol number
Error 95:    Internal Error, symbol number
Error 96:    Internal Error, grow strings
Error 97:    Internal Error, strings
Error 98:    Internal Error, grow strings
Error 99:    Internal Error, lock strings
Error 100:    Internal Error, realloc array
Error 101:    Internal Error, string frame
Error 102:    Internal Error, no stack
Error 103:    Index out of bounds in global array
Error 104:    Insufficient memory to run this macro
Error 105:    Unknown global variable used
Error 106:    Incorrect parameter used for this function
Error 107:    Insufficient memory to run this macro
Error 108:    Filename is not a macro file
Error 109:    Incorrect combination of keyword(s)
Error 110:    Incorrect offset for start of string
Error 111:    THEN statement is inappropriate here
Error 112:    Record function(s) couldn't be translated
Error 113:    Unknown token number is not a valid parameter.
Error 114:    Function FunctionName has not been declared.
Error 115:    Failure to lock global memory.
Error 116:    Corrupt variable.
Error 117:    Invalid variable type (%ld).
Error 118:    Mismatch on assignment (%ld).
Error 119:    Memory allocation failure (%ld).
Error 120:      Wrong data type for operation (%ld).

Error Messages 121 - End
Error 121:    GlobalLock failure (%ld).
Error 122:    Variable confusion.
Error 123:    Unrecognized Field: %s.
Error 124:    Field does not end properly.
Error 125:    Field number out of range.
Error 126:    Quoted string not properly terminated.
Error 127:    Call statement must reference a macroname.
Error 129:    Invalid number for FormatDate.
Error 130:    Failed to Exec %s.
Error 131:    Indirect variable required. (Use &variable)
Error 132:    Array variable required for this function.
Error 133:    Incorrect number of parameters.
Error 134:    Only one macro may be paused at a time.
Error 135:    Invalid DIALOG BOX format.
Error 136:    Misplaced Keyword DIALOG. DIALOG boxes must be defined outside of functions.
Error 137:    Misplaced Keyword END DIALOG.
Error 138:    Illegal use of indirection.
Error 139:    Invalid argument to ALIAS.
Error 140:    Invalid argument.
Error 141:    Misplaced ALIAS.
Error 142:    DEFINE (%s) identifier must be undefined.
Error 143:    DEFINE closing parenthesis expected.
Error 144:    Invalid syntax for DEFINE.
Error 145:    Replacement to long for DEFINE.
Error 146:    Duplicate DEFINE/Variable name (%s).
Error 147:    Line too long.
Error 148:    NewWave Function called.
Error 149:    Open parenthesis unexpected.
Error 150:    Invalid Dll ID.
Error 151:    Failed to load DLL.
Error 152:    Failed to open control file.

