
Issue #2 - April 1st, 1995
By Robert Vivrette - CIS: 76416,1373

Well, it would appear that The Unofficial Newsletter of Delphi Users is a success! I received a number
of very favorable responses from many of you, and no one said they hated it, so I guess you get another
issue... If you missed the first issue, I suggest you obtain a copy from the Delphi-IDE section of the
Delphi forum. The filename is DN0315.ZIP.

I am going to make a real effort to not duplicate information, or to discuss material I have mentioned in
previous issues of the newsletter. What I am going to do is to link the topics in the current issues with
articles in the previous issues. Whenever you see a graphic like this , it indicates a link to a previous
issue of this newsletter. Clicking on such a graphic will move you to the linked issue (the one shown here
is not linked, so don't wear out your mouse clicking on it!). Once there, you can use the Back command
(Alt-B) to get you back to the current issue. The History button will also allow you to get back to the
current issue. If you want to navigate around that previous issue, simply click the Contents button, and
you will be taken to the front page of that issue. Starting with issue #2 I will include a banner on all pages
so that you can immediately identify the issue you are viewing. In order for this linking scheme to work, all
issues of the newsletter must be kept in the same directory.

Well, let’s get to it... We have a lot of material to cover!

Free Lear Jet - Click Here!

Books On The Way

Cooking Up Components

Making A Splash

When Things Go Wrong

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Hah! You Fell For It!
I just wanted to make sure you didn’t pass this by. Sorry for being so sneaky...

I really want to make this newsletter a cooperative effort. If its content is left up to just me, I will dry up
pretty soon and blow away. Therefore, I would like everyone be a part of this newsletter. If you have
something that you think might interest others, please pass it on to me. The kinds of things I am looking
for are:

1. Delphi Tips and Tricks
2. Code samples; Simple Applications
3. Custom Components (or just ideas for components)
4. Bug Reports
5. Reviews of Component Libraries
6. Reviews of Books/Publications

Don’t worry if you think that your contribution is too obvious or not interesting enough. I have
corresponded with a number of people who just got Delphi, but have little or no experience in
programming. Techniques or code samples that others might take for granted would really be appreciated
by those trying to get up to speed with the language. The important things are that the material is clear,
easy to understand, and useful.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Books On The Way
For the time being, many of us are patiently waiting for 3rd-party publications supporting Delphi. Each
week (okay, sometimes more frequently than that), I go down to Stacy’s (a large bookstore in San
Francisco on Market Street) and annoy the nice people who work there with Delphi questions. I know that
a lot of you have been doing the same, because they immediately know what I am talking about... (or,
maybe they just recognize me...)

Anyway, at last count there is at least a dozen books that are "on their way". Add to these the half-dozen
magazines and technical newsletters that are in the works, and I think you will see that we are going to
have some decisions to make pretty soon.

I would like to hear from those of you who have noticed a new book or magazine arrival, or who have
obtained such. Tell me what it covers or what the assumed user experience level the publication is aimed
at. Or, better yet, write up a brief review of the book and send it to me. This will allow me to include your
comments in the next issue of this newsletter, and therefore make it possible for everyone to make more
informed purchasing decisions

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

When Things Go Wrong...
Sometimes, things do go wrong. Fortunately the few problems/bugs I have found are easy to get around. I
even had to dig a bit to get the few bug reports that are mentioned in this issue. I suppose that for this
section, "No News is Good News!"

Problem with CurrEdit in last issue

Linking Lockup Revisited

Return Value of the ExtractFileExt Function

Minimizing Your Children

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Problem With CurrEdit
Some of you may have noticed a rather sporadic problem with my Currency Edit field included in the last
issue . Under some circumstances, the field would look like it has no text in it and would not accept the
input focus. I tracked this down to a problem with the AutoSize property in edit boxes. If the box is not big
enough vertically for the text to display, then Windows just doesn’t let you see it at all. When I unchecked
AutoSize, the problem went away which leads me to believe that AutoSize can sometimes resize the
field too small for the field data to display at runtime (oddly, it seems to look OK at design time...)

I have also not ruled out the possibility that the problem is with the font, since it works correctly with about
99% of the typefaces I have.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Making A Splash
Contributed by Boris Bosnjak

A splash screen is a little addition that can make a big impression on the users of your prized application.
The following is a summary of steps required:

1. Create a Splash Form, customizing it for special display
2. Modify the Project Source to display the Splash Form before anything else
3. Add code to the Main Form to hide the Splash Form
4. Additional notes.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Step 1: Create a splash form
Create a small form as you would normally. I recommend that you first add a panel with the Align property
set to alClient. Make sure the panel has a bevel of 2 or 3 and has a border style of bsSingle. This gives
the splash form an attractive beveled border. Then you can include a nifty graphic, the title, version, and
copyright information, and anything else you care to add.

Set the following form properties:

BorderIcons []
BorderStyle bsNone
Caption <blank>
FormStyle bsStayOnTop
Name SplashForm
Position poScreenCenter
Visible False

Note that the bsStayOnTop causes the form to be the topmost window on the Windows desktop. The
benefit is that your main form, when created, will appear behind the splash form during its initialization
procedures. However, it also means that you have to take this into account in the case of exception error
dialog boxes that pop up while the splash form is visible. In your exception handling code you'll need to
hide the splash form in the Finally part of your Try block before the exception dialog appears.

Under the Options menu, select Project. Move the SplashForm from the auto-created column to the
other column. This allows you to manually control the creation of the splash form.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Step 3: Modify the Project Source Code
Under the View menu, select 'Project Source Code'. Insert the necessary lines of code after the 'Begin'
and before any of the 'Application...' code. It should look like the sample below:

Begin
{ Display the splash form }
SplashForm := TSplashForm.Create(NIL);
SplashForm.Show;
SplashForm.Repaint;
{ continue application startup }
Application.Title := 'My Application';
Application.CreateForm(TMainForm, MainForm);

The NIL parameter is necessary here since there is no window yet that can act as a parent for the
SplashForm. Specifying NIL makes the SplashForm a child of the Windows desktop window.

The Show method displays the form modelessly so that application execution can continue right away.

The Repaint method is necessary to force a complete display of the form immediately after creation. My
experimentation proved that leaving out this line resulted in the display of only the outline of the splash
form while the application continued initializing. Later, when the application is idle, the form would finish
displaying itself. Repaint does this right away.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Step 3: Add code to hide the Splash Form
Here you have several options. In order of complexity, you can

1. Have the main form hide the Splash Form just before it becomes visible,
2. Have the Splash Form hide itself after a few seconds, or
3. Have the Main Form hide the Splash Form after all initialization is finished and the app is ready to

accept input from the user.

For this option, add the line
SplashForm.Free;

to the OnShow event of the main form. This event occurs just before the main form becomes visible. The
drawback of this approach is that, due to the paint time required for the main form, there may be a period
where nothing is on the screen.

For this option, you add a Timer component to the SplashForm, leaving it enabled and the timer interval
set to as many seconds you feel appropriate (e.g. 3000 for 3 seconds). In the OnTimer event, add the
following lines:

Timer1.Enable := false;
Close;

The first line prevents any more timer events from occurring. The second line closes the splash form. The
drawback here is similar to that of option #1, except it's even more out of touch with the state of the Main
Form. On slower and faster PC's, the main form may become visible later or sooner than on your
development PC. This approach leaves the two forms' visibility uncoordinated.

This option is my preferred approach, especially in database applications. I like to present a splash form,
and then the main form behind it. With the splash form still visible, I continue application startup
(connecting to the database, opening tables, performing other startup initializations) accompanied by
status line messages (e.g. "Connecting to database...", "Retrieving settings...", etc.). Then, when
everything is in place, I remove the splash form and allow the user to begin interacting with my
application.

This approach requires several steps to implement. First, add a timer component to the Main Form,
setting its Enabled property to false and the Interval property to a value between 250 and 500 (1/4 to 1/2
second). Second, in the OnShow event, add the line

Timer1.Enabled := True;
This activates the timer which will send its first event just after the Main Form has been displayed.

Third, in the OnTimer event, add the line
Timer1.Enabled := False;

to turn off the timer to prevent further events. Follow the line with any initialization calls you'd like to make.
These will execute with both the SplashForm and the Main Form visible.

Lastly, at the end of the OnTimer event add the line
SplashForm.Free;

to remove the Splash Form from the screen.

Additional notes:
In quick startup applications, you can augment the splash form with code in its OnCreate event to set a
timestamp variable and subsequent code in the OnQueryClose event to loop repeatedly until the current
time is a given number of seconds past the initial timestamp. This ensures that the splash form stays up a
minimum time on the screen, regardless of how long main form takes to display. The Splash Form is still
closed from the main form, but this is delayed by OnQueryClose if the minimum display time has not yet
elapsed.

For example:
Repeat

WaitMessage
Until Now > StartTime + 3*(1/24/60/60);
CanClose := True;

This ensures the splash form is visible for at least 3 seconds.

For questions and comments, contact Boris Bosnjak on Compuserve at 71564,733 or on the Internet at
boris.bosnjak@canrem.com

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Linking Lockup Revisited
In the last issue there was a discussion of a lockup situation while linking . As I look back on that section,
my explanation really had very little to do with the problem of lockups. The points discussed were still
valid though completely mislabeled.

Since the time of that issue, I have had some time to examine the original Linking Lockup issue in more
depth. As you can see in the previous article, the problem was that a program being developed by
someone I work with would occasionally get into a "state" where every compile would produce a lockup at
the "linking..." stage. When this occurred, his only recourse was to reboot the machine. When he came
back into Delphi after rebooting, he discovered that when he picked "compile" again, Delphi realized that
the code had already been compiled and linked and would immediately run, skipping the compiling
process. This indicated to us that the compile/link process was functioning correctly and that it was
something after this that was causing the lockup. The only things culprits we could think of was the auto-
saving of the program files, desktop settings, and symbol tables. Sure enough... As soon as we changed
the Desktop Contents radio group under Options | Environment to indicate Desktop Only, the problem
went away. Apparently something in his code confused the routine for saving the Symbol Tables. As soon
as I get a definitive answer on what it was that caused the problem, I will let you know in a future article.

Return Value of the ExtractFileExt Function
The documentation of the ExtractFileExt Function is a little misleading. It indicates that it "returns a string
containing the three-character extension". In actuality it is returning a string that includes the "dot"
separator, making the return-value up to 4 characters long.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Zoom Panel Component
The ZoomPanel is a funky little component. To be honest with you, I would be surprised if anyone found a
real use for it. However, I have included it here in the newsletter because it does illustrate a few
component design concepts that might be new to some of you.

In a nutshell, the ZoomPanel is normal panel that can zoom open or closed at variable speeds and
smoothness. It introduces three new properties to the Panel component:

ZoomSpeed controls the pacing of the zoom steps. The range for this value can be from 1 (slowest)
to 1000 (top speed). This property controls the Interval setting of the timer contained in this
component. When the ZoomPanel needs to open or close, it activates the timer with a interval equal
to 1000 div ZoomSpeed. This gives the timer a operating range of .001 of a second to a full
second.

ZoomSteps controls the number of steps that the ZoomPanel will take to get from one state
(open/closed) to the other. Typically, you would want this to be in the range of around 5 to 20. Higher
numbers will result in a smoother, but slower zoom effect.

ZoomStyle controls how the panel will zoom from open to close. Currently there are 5 states. One
allows zooming to/from the center of the panel, and the other four allow "wipes" from left to right, right
to left, top to bottom and bottom to top.

There are some very interesting behaviors of ZoomPanel. First, it will Zoom in design mode, allowing the
user to see the chosen zoom effect before the program even runs. Go look at the last line in
SetZoomStyle and note how you can achieve some effects in design mode, and others in run mode. The
styles available can easily be extended by adding a new case item in ZoomThePanel and
SetOpenClosedRects.

ZoomPanel also illustrates how a component can use a timer. I plan on using this technique for a few
component ideas I have. Keep in mind however, that each ZoomPanel has its own timer, which is a bit of
a no-no in windows programming, as there are limited timers to use. Rumor has it this will not be a
problem under Windows 95 however.

Take care when using the Align property. Setting it to alClient will completely defeat the zoom effect, as
each redraw will be overriden to snug the panel up against it's parent. The other Align options can
produce similar bad effects depending on the ZoomStyle you have chosen.

Also a bit of a problem with ZoomPanel is the screen redraws. Because the panel is redrawing itself each
zoom step, it will also redraw any children it posesses as well. Therefore, if you are using a ZoomPanel to
obscure buttons, labels, checkboxes, or whatever, you will notice that it can get quite jittery as it redraws.
It would take a fairly different approach to the component to avoid this issue.

Source Code for ZoomPanel

Source For ZoomPanel
Copy this code to the clipboard using the Edit | Copy command and then paste it into a new unit window
in Delphi.
Unit Zoom;

interface

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, Menus;

type
 TZoomStyles = (zsCenter,zsWipeRight,zsWipeLeft,zsWipeDown,zsWipeUp);
 TZoomStates = (stClosed,stOpen);
 TZoomPanel = class(TCustomPanel)
 private
 FTimer : TTimer;
 FZoomSpeed : Integer;
 FZoomSteps : Integer;
 FZoomStyle : TZoomStyles;
 FZoomState : TZoomStates;
 OpenRect : TRect;
 ClosedRect : TRect;
 {Left, top, width & height when open}
 OL,OT,OW,OH : Integer;
 {Left, top, width & height when closed}
 CL,CT,CW,CH : Integer;
 CurrStep : Integer;
 ZoomDir : Integer;
 procedure SetZoomSpeed(Value: Integer);
 procedure SetZoomSteps(Value: Integer);
 procedure SetZoomStyle(Value: TZoomStyles);
 protected
 procedure TimerTick(Sender: TObject);
 procedure ZoomThePanel;
 procedure RestartTimer;
 procedure CreateParams(var Params: TCreateParams); override;
 procedure SetOpenClosedRects(L,T,W,H: Integer);
 procedure OpenOrClose;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure OpenIt;
 procedure CloseIt;
 published
 property Align;
 property Alignment;
 property BevelInner;
 property BevelOuter;
 property BorderStyle;
 property BorderWidth;
 property Caption;
 property Color;
 property Ctl3D;
 property DragCursor;
 property DragMode;
 property Enabled;
 property Font;
 property Locked;
 property ParentColor;
 property ParentCtl3D;

 property ParentFont;
 property ParentShowHint;
 property PopupMenu;
 property ShowHint;
 property TabOrder;
 property TabStop;
 property Visible;
 property ZoomSpeed : Integer read FZoomSpeed write SetZoomSpeed default 1000;
 property ZoomSteps : Integer read FZoomSteps write SetZoomSteps default 5;
 property ZoomStyle : TZoomStyles read FZoomStyle write SetZoomStyle default
zsCenter;
 property OnClick;
 property OnDblClick;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnEnter;
 property OnExit;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 property OnResize;
 end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('Additional', [TZoomPanel]);
end;

constructor TZoomPanel.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 {ZoomSpeed controls the Speed at which the panel steps through its
 zooming. The actual millisecond delay used is 1000 divided by ZoomSpeed.
 Therefore setting ZoomSpeed to a higher number will result in less
 of a delay between steps and hence a faster zoom.}
 FZoomSpeed := 1000;
 {This defines the total number of steps that the panel will take to get
 to its final size and location}
 FZoomSteps := 5;
 CurrStep := -1;
 {ZoomStyle defines the effect used when zooming.}
 FZoomStyle := zsCenter;
 {Set the panel as Open}
 FZoomState := stOpen;
 {First, we need to create a timer that will control the pacing of the
 panel's Zoom effect.}
 FTimer := TTimer.Create(Self);
 {Set the procedure that will handle the timer. Every time the timer expires
 it will transfer control to this procedure. The procedure moves the panel a
 single step and then the timer starts over.}
 FTimer.OnTimer := TimerTick;
 {Set the timer as initially off. CreateParams turns it on}
 FTimer.Enabled := False;
 {Set the rate at which the panel opens or closes}
 FTimer.Interval := 1000 div ZoomSpeed;
end;

destructor TZoomPanel.Destroy;

begin
 {When the panel is destroyed, kill the timer}
 FTimer.Free;
 inherited Destroy;
end;

procedure TZoomPanel.TimerTick(Sender: TObject);
begin
 {Go and do a single zoom step}
 ZoomThePanel;
end;

procedure TZoomPanel.SetZoomSpeed(Value: Integer);
begin
 {ZoomSpeed must be at least 1 (slowest) and no greater than 1000 (top speed)}
 if FZoomSpeed <> Value then
 begin
 if Value > 1000 then FZoomSpeed := 1000
 else
 if Value < 1 then FZoomSpeed := 1
 else FZoomSpeed := Value;
 {Set the rate at which the panel opens or closes}
 If FTimer <> Nil then FTimer.Interval := 1000 div ZoomSpeed;
 end;
end;

procedure TZoomPanel.SetZoomSteps(Value: Integer);
begin
 {ZoomSteps must be at least 1 and no greater than 100}
 if FZoomSteps <> Value then
 if Value < 1 then FZoomSteps := 1
 else
 if Value > 100 then FZoomSteps := 100
 else FZoomSteps := Value;
end;

procedure TZoomPanel.SetZoomStyle(Value: TZoomStyles);
begin
 if FZoomStyle <> Value then
 begin
 FZoomStyle := Value;
 {Go set the sizes of the open and closed states of the panel}
 SetOpenClosedRects(Left,Top,Width,Height);
 {Do a Zoom in design mode so we can see the effect}
 If (csDesigning in ComponentState) and (CurrStep=-1) then OpenOrClose;
 end;
end;

procedure TZoomPanel.SetZoomState(Value: TZoomStates);
begin
 if FZoomState <> Value then FZoomState := Value;
end;

procedure TZoomPanel.ZoomThePanel;
var
 OW,OH,CW,HW : Integer;
begin
 If FZoomState = stOpen then Inc(CurrStep) else Dec(CurrStep);
 OW := OpenRect.Right-OpenRect.Left; {open width}
 OH := OpenRect.Bottom-OpenRect.Top; {open height}
 CW := Trunc(OW/ZoomSteps*CurrStep); {current width}
 CH := Trunc(OH/ZoomSteps*CurrStep); {current height}
 Case ZoomStyle of

 zsCenter : with ClosedRect do
 SetBounds(Left-CW div 2,Top-CH div 2,CW,CH);
 zsWipeRight : with ClosedRect do
 SetBounds(Left,Top,CW,OH);
 zsWipeLeft : with ClosedRect do
 SetBounds(Right-CW,Top,CW,OH);
 zsWipeUp : with ClosedRect do
 SetBounds(Left,Top-CH,OW,CH);
 zsWipeDown : with ClosedRect do
 SetBounds(Left,Top,OW,CH);
 end;
 {Disable the timer if we have done our last zoom step}
 If (CurrStep >= ZoomSteps) or (CurrStep <= 0) Then
 begin
 FTimer.Enabled := False;
 CurrStep := -1;
 end;
end;

procedure TZoomPanel.SetOpenClosedRects(L,T,W,H: Integer);
begin
 {Save the size that the panel should be when open. I had to do this in
 the CreateParams method because the size of the control is not set until
 after the Create is complete - so that users could override the size.}
 OpenRect := Rect(L,T,L+W,T+H);
 {Save the size that the panel should be when closed.}
 Case ZoomStyle of
 {This is the default zooming behavior. It picks a spot in the exact
 center of the control as the center of the zoom effect. The panel
 will open from and close into this point.}
 zsCenter : ClosedRect := Rect(L+W div 2,T+H div 2,L+W div 2,T+H div 2);
 {The panel will open like a "screen door" to the right}
 zsWipeRight : ClosedRect := Rect(L,T,L,T+H);
 {The panel will open like a "screen door" to the left}
 zsWipeLeft : ClosedRect := Rect(L+W,T,L+W,T+H);
 {The panel will open like a "window shade" going up}
 zsWipeUp : ClosedRect := Rect(L,T+H,L+W,T+H);
 {The panel will open like a "window shade" going down}
 zsWipeDown : ClosedRect := Rect(L,T,L+W,T);
 end;
end;

procedure TZoomPanel.CreateParams(var Params: TCreateParams);
begin
 inherited CreateParams(Params);
 {Go set the sizes of the open and closed states of the panel}
 with Params do SetOpenClosedRects(Left,Top,Width,Height);
 {Activate the timer to start the zoom open}
 OpenOrClose;
end;

Procedure TZoomPanel.OpenOrClose;
begin
 if (FZoomState = stOpen) then OpenIt else CloseIt;
end;

procedure TZoomPanel.OpenIt;
begin
 FZoomState := stOpen;
 RestartTimer;
end;

procedure TZoomPanel.CloseIt;

begin
 FZoomState := stClosed;
 RestartTimer;
end;

procedure TZoomPanel.RestartTimer;
begin
 If FZoomState = stOpen then CurrStep := 0 else CurrStep := ZoomSteps;
 {Turn the timer on}
 FTimer.Enabled := True;
end;

end.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Cooking Up Components
"Cooking Up Components" is going to be a regular section in this newsletter. Each issue I will present at
least one new component, either developed by myself, or contributed by one of you. It will include source-
code that you can copy out of the newsletter and incorporate into your Delphi Component Library. In
addition, I will endeavor to bring you articles on design and creation of components.

There is going to be one standing rule for all components distributed by means of this newsletter, whether
of my own design, or by that of another person. This policy is that you my freely use any code/work
presented here, but you may not sell the component on its own, or as part of a component library. You
can use a component as part of the normal development and distribution of an application, but the author
of the component reserves all rights to the component as "intellectual property". If you have any special
requirements for component code presented here that lies outside of the "spirit" of this policy, I
recommend you talk directly to the component author.

Custom Component - ZoomPanel

Creating Objects On The Fly

Minimizing Your Children
No really... I like kids. But Delphi has one little quirk when dealing with them. When writing an MDI
application, if you attempt to minimize one of the MDI child windows at design-time, you may get a GPF
(General Protection Fault). Borland acknowledges this as a problem and says that even though it only
occurs at design time, everything works normally at runtime. They say that you can choose to ignore the
GPF and continue development as usual, or you can just choose not to minimize an MDI child at design
time.

The Unofficial Newsletter of Delphi Users - Issue #2 - April 1st, 1995

Creating Objects On The Fly
Several people I have talked with have expressed some confusion about how they can create objects at
run-time. Typically, the issue is that they need some object, form or component created during program
execution that is not easily laid-out at design time. An example of this might be the creation of a timer to
control some unusual activity. Therefore, I am going to discuss the procedures involved with the help of
information presented in Borland's Section 5 FAQ sheet.

Let's assume you want to create a button on a form. Granted, you could simply place it in design mode on
the form, hide it, and then show it when you need it at runtime. However, sometimes, you might need to
create something dynamically in response to a users actions, and you don't want to have forms or
components created and lying around when they will only be used under rare circumstances. The
sections in bold italics are from the FAQ sheet Borland has provided and my comments will be added in
normal print.

1. Declare an instance variable of the component type that you wish to create {i.e. TButton }.
Note: instance variables are used to point to an actual instance of an object. They are not
objects themselves. This declaration would of course be done in a "Var" statement. Keep in
mind the scope that you need for the object. If you are simply creating something and then
disposing of it immediately, it is better to declare the instance of the object locally (like within a
procedure or function for example). If the object will be used in other portions of the program, you
will need to change where you define the instance of the object so that all segments of code can
have the appropriate access to it. From what I have learned, most (if not all) class declarations of
the pre-defined Delphi Objects are pointers to the object rather than the object itself. Therefore if
you declare a variable of type TButton, your variable is actually a pointer to a TButton. Not an
actual structure of all the TButton variables, methods, and procedures. Refer to line A of the
example below.

2. Use the component's Create constructor to create an instance of the component and
assign the instance to the instance variable declared in step 1. All components' Create
constructors take a parameter - the component's owner. Except in special circumstances,
you should always pass the form as the owner parameter of the component's Create
constructor. This part seems to throw a few people. Refer to line B of the example below. From
any previous experience with Pascal you might have had, you might be more inclined to do
something like this: TempButton.Create; This is saying: "I am a TButton and now I need to
create myself". Rather the appropriate style is to do as indicated on line B below which is saying.
"Yo... Delphi... Go create an instance of a TButton for me and give me a pointer to it." As for the
parameter used in the Create constructor, do make sure that you are using the form that will own
this component. The reason for this is that Delphi needs to know how to destroy the component
when it is done. This establishes a link to the owner so that when it is destroyed, the component
is destroyed. Only use something else if you really understand the ramifications of the change.

3. Assign a parent to the component's Parent property (i.e. Form1, Panel1, etc). The Parent
determines where the component will be displayed, and how the component's Top and
Left coordinates are interpreted. To place a component in a groupbox, set the
component's Parent property to the groupbox. For a component to be visible, it must
have a parent to display itself within. Interestingly some examples of code I have seen indicate
that you can switch around an object's parent. Visually, I think this would be interesting. I think I
may fiddle with it a bit to see what happens.

4. Set any other properties that are necessary (i.e. Width, Height).

5. Finally, make the component appear on the form by setting the component's Visible
property to True.

6. If you created the component with an owner, you don't need to do anything to free the
component - it will be freed when the owner is destroyed. If you did not give the
component an owner when you created it, you are responsible for making sure the
component is freed when it is no longer needed.

7. Something you may also wish to do that is not covered in the FAQ sheet (particularly for this
example) is to point the button's OnClick method to a procedure that will handle a user clicking on
on the button. This would look something like this: TempButton.OnClick := GoDoMyThing;

The following demonstrates how to add a TButton component to the current form at run-time:
 | var
A | TempButton : TButton; { This is only a pointer to a TButton }
 | begin
B | TempButton := TButton.Create(Self); { Self refers to the form }
C | TempButton.Parent := Self; { Must assign the Parent }
D | TempButton.Caption := 'Run-time'; { Assign properties now }
E | TempButton.Visible := True; { Show to button }
 | end;

