
The Unofficial Newsletter
of Delphi Users
March 13th, 1995

by Robert Vivrette
CIS: 76416,1373

I would like to welcome all of you to the very first issue of The Unofficial Newsletter of Delphi
Users. It has been only a few short weeks since I received my final version of Delphi and I
must say, I dont think I have ever been as excited about a development platform as I am
today.
I am writing this newsletter initially to achieve the following results:

1. Disseminate my discoveries and ideas about Delphi
2. Share some programming tips and techniques.
3. Act as a forum for Delphi interest.

First, I want to make it clear that I do not consider myself a Delphi expert. However, I am
very fluent at writing Windows programs using BP7 and am making rapid progress at getting
proficient with Delphi. As a result I think that you will find the general thrust of this
newsletter will be from the angle of a BP7 Windows Programmer Moving To Delphi.
I also do not claim that everything I say here is gospel. If I make a wrong assumption about
something, please let me know, and I will let everyone know how stupid I am in the next
issue.
Contents

What You Can Do To Help!
Component Design
Sample Applications
The Bug Hunter Report
About The Editor (for those of you who actually care…)
The Walnut Creek Delphi Users Group

What You Can Do To Help
Ideally, this newsletter is for everyone to use. If you have something that you think others
would benefit from, be it a neat idea, programming tip or trick, piece of elegant code, bug
report (No! Never!), or whatever strikes your fancy, then I encourage you to forward it to me
at 76416,1373. Because of its electronic nature, this newsletter can be as large as necessary
to accommodate any print-worthy information its readers may submit. Actually, the more
assistance I get from all of you, the easier it will be for me!
Please also keep in mind that this is a completely volunteer effort on my part. The
newsletter will be free of charge to anyone who wants it. There will be no money changing
hands in any form, so no advertising, no compensation for articles submitted, etc.
I am going to try a publishing schedule of every two weeks, time permitting. The style will be
quite casual, so please excuse any lack of eloquence on my part.

Contents

Component Design
Component Design is one of the most fascinating aspects of Delphi. I hadnt even thought of
developing my own custom controls in BP7, VB, or C++, yet with Delphi I have already
created 4.
Below is my first custom control, so please be merciful. I needed a simple currency edit field,
and the MaskEdit field simply does not cut it. I feel the CurrencyEdit field is a small step
forward in usability. It isnt perfect and can definitely be improved on.
Essentially, the CurrencyEdit field is a modified memo field. I have put in keyboard
restrictions, so the user cannot enter invalid characters. When the user leaves the field, the
number is reformatted to display appropriately. You can left-, center-, or right-justify the field,
and you can also specify its display format - see the FormatFloat command. Since an
modifiable display format is used, it really doesnt even need to hold a currency value… It
could just as easily be a percentage, or a high-precision real value with fixed digits to the
right of the decimal. The field value is stored in a property called Value so you should read
and write to that in your program. This field is of type Extended.
If you like this control you can feel free to use it, however, if you modify it, I would like you to
send me whatever you did to it. If you send me your CIS ID, I will send you copies of my
custom controls that I develop in the future. Please feel free to send me anything you are
working on as well. Perhaps we can spark ideas!

CurrencyEdit Source Code
Contents

Source Code for TCurrencyEdit
Unit CurrEdit;

Interface

uses
    SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
    Menus, Forms, Dialogs, StdCtrls;

type
    TCurrencyEdit = class(TCustomMemo)
    private
        DispFormat: string;
        FieldValue: Extended;
        procedure SetFormat(A: string);
        procedure SetFieldValue(A: Extended);
        procedure CMEnter(var Message: TCMEnter);                      message CM_ENTER;
        procedure CMExit(var Message: TCMExit);                          message CM_EXIT;
        procedure FormatText;
        procedure UnFormatText;
    protected
        procedure KeyPress(var Key: Char); override;
        procedure CreateParams(var Params: TCreateParams); override;
    public
        constructor Create(AOwner: TComponent); override;
    published
        property Alignment default taRightJustify;
        property AutoSize default True;
        property BorderStyle;
        property Color;
        property Ctl3D;
        property DisplayFormat: string read DispFormat write SetFormat;
        property DragCursor;
        property DragMode;
        property Enabled;
        property Font;
        property HideSelection;
        property MaxLength;
        property ParentColor;
        property ParentCtl3D;
        property ParentFont;
        property ParentShowHint;
        property PopupMenu;
        property ReadOnly;
        property ShowHint;
        property TabOrder;
        property Value: Extended read FieldValue write SetFieldValue;
        property Visible;
        property OnChange;
        property OnClick;
        property OnDblClick;
        property OnDragDrop;
        property OnDragOver;
        property OnEndDrag;
        property OnEnter;
        property OnExit;
        property OnKeyDown;
        property OnKeyPress;
        property OnKeyUp;
        property OnMouseDown;
        property OnMouseMove;
        property OnMouseUp;
    end;

procedure Register;

implementation

procedure Register;
begin
    RegisterComponents('Additional', [TCurrencyEdit]);
end;

constructor TCurrencyEdit.Create(AOwner: TComponent);
begin
    inherited Create(AOwner);
    AutoSize := True;
    Alignment := taRightJustify;
    Width := 121;
    Height := 25;
    DispFormat := '$,0.00;($,0.00)';
    FieldValue := 0.0;
    AutoSelect := False;
    WantReturns := False;
    WordWrap := False;
    FormatText;
end;

procedure TCurrencyEdit.SetFormat(A: String);
begin
    if DispFormat <> A then
        begin
            DispFormat:= A;
            FormatText;
        end;
end;

procedure TCurrencyEdit.SetFieldValue(A: Extended);
begin
    if FieldValue <> A then
        begin
            FieldValue := A;
            FormatText;
        end;
end;

procedure TCurrencyEdit.UnFormatText;
var
    TmpText : String;
    Tmp          : Byte;
    IsNeg      : Boolean;
begin
    IsNeg := (Pos('-',Text) > 0) or (Pos('(',Text) > 0);
    TmpText := '';
    For Tmp := 1 to Length(Text) do
        if Text[Tmp] in ['0'..'9','.'] then
            TmpText := TmpText + Text[Tmp];
    try
        FieldValue := StrToFloat(TmpText);
        if IsNeg then FieldValue := -FieldValue;
    except
        MessageBeep(mb_IconAsterisk);
    end;
end;

procedure TCurrencyEdit.FormatText;
begin
    Text := FormatFloat(DispFormat,FieldValue);
end;

procedure TCurrencyEdit.CMEnter(var Message: TCMEnter);
begin
    SelectAll;
    inherited;
end;

procedure TCurrencyEdit.CMExit(var Message: TCMExit);
begin
    UnformatText;
    FormatText;
    Inherited;
end;

procedure TCurrencyEdit.KeyPress(var Key: Char);
begin
    if Not (Key in ['0'..'9','.','-']) Then Key := #0;
    inherited KeyPress(Key);
end;

procedure TCurrencyEdit.CreateParams(var Params: TCreateParams);
begin
    inherited CreateParams(Params);
    case Alignment of
        taLeftJustify    : Params.Style := Params.Style or ES_LEFT and Not ES_MULTILINE;
        taRightJustify : Params.Style := Params.Style or ES_RIGHT and Not ES_MULTILINE;
        taCenter              : Params.Style := Params.Style or ES_CENTER and Not ES_MULTILINE;
    end;
end;

End.

The Bug Hunter Report
Even the best programming language has them. But with a little bit of inter-communication
we can get around any limitations they impose. For the first release of Delphi, I find that the
environment and the compiler are remarkably solid. Yet, I have found a few things that I
thought I would pass on…

Speedbar and Component Palette
Resource Name Case Sensitivity
Lockups while Linking
Saving Files in the Image Editor
Contents

Speedbar and Component Palette
In case you are fiddling around with the ability to show and hide the Speedbar and the
Component Palette at the top of the Delphi IDE, try not to hide both of them at once. I did
and it took me over an hour to get them back. The reason is that there is an internal value
that holds the location of the dividing bar between the two. By some strange sequence of
events this bar located itself off of the screen (thereby making it unreachable by mouse).
Turning on the Speedbar or the Component Palette independently worked, but as soon as I
tried to get both of them up at once, the IDE placed the Speedbar and the dividing bar off
the screen to the left. I have had some difficulty reproducing this consistently, but it does
happen. The solution: In the DELPHI.INI file residing in your main Windows directory, there
is a item labeled Split in the [MainWindow] section. This is the location of the divider bar.
Simply alter this number to put it on the screen somewhere and restart Delphi.

Resource Name Case Sensitivity
There is an erroneous statement in the section Adding Palette Bitmaps in the CWG.HLP help
file (Component Writers Guide). Inside the Example hot link, it states: The resource names
are not case-sensitive, but by convention, they are usually in uppercase letters.
It turns out that they are case sensitive, and must be all in upper case. When defining a new
Bitmap for a custom component I had developed, I used mixed case on the name
TCurrencyEdit and for the life of me could not figure out why it was not loading the bitmap
correctly. It wasnt until I changed it to all upper case (TCURRENCYEDIT) that it worked
correctly. When you discover documentation errors like this, it is a good habit to use the
Annotate feature of the help system (under the Edit menu) to leave a note to yourself
about the problem and the workaround.

Lockups While Linking
This is an operating without a safety net issue. While working on a Delphi project, an
associate innocently named a form as Header. From that point on every time he tried to
compile the application, Delphi would get to the Linking… stage and then lockup Windows,
forcing a very messy restart. Finally, and after much frustration, he tracked the problem
back to this change and after rewording the form name, the fast and efficient compile
process was restored to health.
It turns out that when you enter a Form name, (and probably in other areas I have not yet
discovered) Delphi creates a Type declaration of the name with a T added to the front.
Unfortunately, adding a T to the Header name creates THeader causing a naming conflict
with the standard Delphi component THeader.
To see this behavior (as if we really need another excuse to see an operating system blow up
on us) simply start a new project. Name the form Header and then drop a THeader
component on it. Then look at the code and see why this is clearly a problem to be avoided!
In this example, the application apparently compiles cleanly, but watch the sparks fly when
you try to run it! (and make sure you have saved any other work before you do so, please).
I guess the solution to this is to pay close attention to your form, variable, and type names,
to make sure you dont generate a naming conflict like this. It would be nice if Borland can
resolve this with a compile-time error (some kind of Type Mismatch error would probably do).
However, I suspect it probably would not happen simply for the reason that the amount of
name and type checking involved might be far too costly to implement. The best solution for
now is simply to name with caution!

Saving Files in the Image Editor
Be very careful about saving files created with the Image Editor application provided with
Delphi (found under the Tool menu). I have encountered a number of bugs relating to the
saving of files. On one occasion I had a file with three bitmaps in it, I would delete one of the
bitmaps, pick Save, and then quit the Image Editor. Later, when I came back to the same
file, the one I deleted was still there! The only way I could get it to correctly remove the
image was to use Save As… and create an entirely new resource output file. As you can
imagine, it gets pretty annoying having to do this all the time.
Another seemingly related bug, occurred just recently as well. I started a new .RES resource
file, added 3 bitmaps and let them keep their default naming (BITMAP_#). After creating
each, I scribbled on the bitmap area so I could distinguish them. Then I saved the file, quit
the Image Editor, came back and reloaded the file. So far, everything is fine. Then I click on
BITMAP_2 and click the remove button, save the file, quit the Image Editor, start it up again
(I am quitting and restarting the editor for this test to make sure I am not introducing any
other issues). When I retrieve the file again, now BITMAP_2 is gone, but I have two identically
named BITMAP_3 bitmaps!
I have also seen occasions where I make a change to a resource file (such as deleting an
icon for example) and double-click on the Image Editors close box, assuming it will give me
the Would you like to save this file? dialog box. Nope. Apparently there are some conditions
where its internal I have been modified flag is not getting set properly causing some file
changes to be lost.
I am not too concerned about these problems, as Borland will likely release a new copy of
the editor and post it on the various on-line services. Until then, I think I will stick with
Resource Workshop, or continue to use the more convenient Image Editor, but just walk a bit
more gingerly…

About The Editor

For those of you who actually care, I thought I would tell a little bit about myself:
I have been a Pascal/VB/C++ programmer (in that skill order) for the past 8 years or so. For
most of that time I have been self-employed and have been designing and moderating Play-
By-Mail games. The language for these games has been Pascal from the very early stages
(OK, I used dBase for a while before that, but Im not too proud of that fact.) If memory
serves, I started with Turbo Pascal 3.0 and migrated through all of the ensuing versions until
getting to BP7.
And then, just when I figured there wasnt much more to learn… Delphi! I must admit that
programming in Pascal was looking like a dead-end street these past 2 years. It wasnt too
impressive on résumés and I got sour looks from people whenever I mentioned Pascal. It is
my opinion that Delphi will reverse quite a lot of that. I truly hope it has a long a fruitful life.
About a year ago, (after selling the games I had developed), I started doing some contract
programming work for a major utility company that needed a Pascal programmer (dont ask
me...). This has given me an excellent opportunity to expand my experience with Pascal,
and, because of their newly found desire to work with Delphi, to have the time to work with
Borlands latest toy.

Contents

The Walnut Creek Delphi Users Group
Since I have never formed a Users Group before, I figured the best thing to do would be to
just put the word out! I will be forming the Walnut Creek Delphi Users Group effective
immediately. The current roster indicates a membership of, hmmmm…let me see… (rustling
paper)… ONE! (Thats me in case you didnt get it...)
Walnut Creek is located in the San Francisco Bay Area, about 20 minutes East of Oakland.
Currently there is no official meeting schedule until I determine how many of you there are
in the vicinity. I have several places available for meeting locations, so that should not be a
problem.
If you are interested in getting together with other Delphi programmers in the Walnut Creek
area, please contact me via CompuServe. My CIS ID is 76416,1373. Please let me know
where you live, and the general level of experience you have with both Pascal and Delphi.
Initially, I will be contacting you via CompuServe, but later we might setup a phone list for
face-to-face (or rather ear-to-ear) communications.

Contents

Sample Applications
This is a simple little file viewer I whipped together in an hour or two after getting my Delphi.
It is able to display ICO, BMP, WMF files as well as playing WAV and AVI files via the
MediaPlayer control.
You will notice that there arent too many lines of code (about 25 it looks like). This attests to
the amazing power of Delphi applications. I would hate to have tackled this before Delphi
came out. I have written a number of pretty complex Windows apps using BP7 and the
amount of drudgery that Delphi alleviates is immense.
If you like this program you can feel free to use it, however, if you modify it, I would like you
to send me whatever you did to it. If you send me your CIS ID, I will send you copies of my
custom controls that I develop in the future. Please feel free to send me anything you are
working on as well. Perhaps we can spark ideas!

FilePeek Source Code
FilePeek Form Layout
Contents

FilePeek Source Code
Unit PeekUnit;

interface

uses
    SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
    Forms, Dialogs, ExtCtrls, StdCtrls, FileCtrl, MPlayer;

type
    TForm1 = class(TForm)
        LBHolder: TPanel;
        FL: TFileListBox;
        DL: TDirectoryListBox;
        DCB: TDriveComboBox;
        ImageHolder: TPanel;
        Image: TImage;
        MP: TMediaPlayer;
        AVIPanel: TPanel;
        procedure FLChange(Sender: TObject);
        procedure FLDblClick(Sender: TObject);
        procedure AVIPanelResize(Sender: TObject);
        procedure FormResize(Sender: TObject);
    private
        { Private declarations }
    public
        { Public declarations }
    end;

var
    Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FLChange(Sender: TObject);
begin
    if FL.ItemIndex >= 0 then
        begin
            {Close the Media Player}
            MP.Close;
            {Only stretch metafiles}
            Image.Stretch := (Pos('.wmf',FL.FileName) > 0);
            if (Pos('.bmp',FL.FileName) > 0) or
                  (Pos('.wmf',FL.FileName) > 0) or
                  (Pos('.ico',FL.FileName) > 0) then
                  begin
                      Cursor := crHourglass;
                      Image.Picture.LoadFromFile(FL.FileName);
                      AVIPanel.Hide;
                      Image.Show;
                      Cursor := crDefault;
                  end;
        end;
end;

procedure TForm1.FLDblClick(Sender: TObject);
begin
    {If the user double-clicks on any WAV or AVI file, it will load and
      activate the MediaPlayer control. AVI files are displayed on their own
      area (AVIPanel). I selectively hide and show the AVIPanel and the Image
      control based off of what is being displayed. This was because the
      MediaPlayer needs a Panel to display on, and the BMP's, ICO's, and WMF's
      needed an Image control to display on}
    if (Pos('.wav',FL.FileName) > 0) or (Pos('.avi',FL.FileName) > 0) then
        begin

            Screen.Cursor := crHourglass;
            MP.FileName := FL.FileName;
            MP.Open;
            if (Pos('.avi',FL.FileName) > 0) then
                begin
                    Image.Hide;
                    AVIPanel.Show;
                    MP.Display := AVIPanel;
                    {I don't know why I have to shift the AVI panels display rect, but
                    it was off center if I didn't. Oh well, someone out there will be
                    able to explain it I am sure.}
                    With AVIPanel.BoundsRect do
                        MP.DisplayRect := Rect(Left-3,Top-3,Right-3,Bottom-3);
                end;
            Screen.Cursor := crDefault;
            MP.Play;
        end;
end;

procedure TForm1.AVIPanelResize(Sender: TObject);
begin
    With AVIPanel.BoundsRect do
        MP.DisplayRect := Rect(Left-3,Top-3,Right-3,Bottom-3);
end;

procedure TForm1.FormResize(Sender: TObject);
begin
    {This procedure resizes the list boxes based off of the size of the main
      form. This allows the listboxes to always be as large as they can}
    MP.Top := Form1.ClientHeight-3-MP.Height;
    DCB.Top := (Form1.ClientHeight-DCB.Height) div 2;
    FL.Height := DCB.Top - 6;
    DL.Top := DCB.Top + DCB.Height + 3;
    DL.Height := Form1.ClientHeight - DL.Top - MP.Height - 6;
end;

end.

FilePeek Form Layout
Simply copy all of this text using the Edit/Copy command, and paste it into a new blank
document in the Delphi IDE. Then save the file choosing the File Type as a DFM file.
object Form1: TForm1
    Left = 201
    Top = 100
    Width = 435
    Height = 333
    ActiveControl = DL
    Caption = 'File Inspector'
    Font.Color = clGreen
    Font.Height = -12
    Font.Name = 'MS Sans Serif'
    Font.Pitch = fpVariable
    Font.Style = []
    PixelsPerInch = 96
    Position = poScreenCenter
    OnResize = FormResize
    TextHeight = 13
    object LBHolder: TPanel
        Left = 0
        Top = 0
        Width = 157
        Height = 306
        Align = alLeft
        TabOrder = 0
        object FL: TFileListBox
            Left = 3
            Top = 3
            Width = 151
            Height = 118
            ItemHeight = 16
            Mask = '*.wmf;*.bmp;*.ico;*.wav;*.avi'
            ShowGlyphs = True
            TabOrder = 0
            OnChange = FLChange
            OnDblClick = FLDblClick
        end
        object DL: TDirectoryListBox
            Left = 3
            Top = 149
            Width = 151
            Height = 126
            FileList = FL
            ItemHeight = 16
            TabOrder = 1
        end
        object DCB: TDriveComboBox
            Left = 3
            Top = 124
            Width = 151
            Height = 19
            DirList = DL
            TabOrder = 2
        end
        object MP: TMediaPlayer
            Left = 3
            Top = 278
            Width = 151
            Height = 25
            VisibleButtons = [btPlay, btStop, btNext, btPrev, btStep]
            ParentShowHint = False
            ShowHint = True
            TabOrder = 3
        end
    end

    object ImageHolder: TPanel
        Left = 157
        Top = 0
        Width = 270
        Height = 306
        Align = alClient
        BevelInner = bvLowered
        BorderWidth = 1
        TabOrder = 1
        object Image: TImage
            Left = 3
            Top = 3
            Width = 264
            Height = 300
            Align = alClient
            Stretch = True
        end
        object AVIPanel: TPanel
            Left = 3
            Top = 3
            Width = 264
            Height = 300
            Align = alClient
            BevelOuter = bvNone
            TabOrder = 0
            Visible = False
            OnResize = AVIPanelResize
        end
    end
end

