
Overview
The Corel Visual CADD API provides an list of functions for users to implement in their applications. By combining and utilizing
these different functions, powerful, robust applications can be written. Corel Visual CADD is written on a completely open
architecture API structure. What this means to you is that you can create an almost limitless number of custom tools and
applications that will work with Corel Visual CADD to enhance your drawing abilities.
These applications can range from simple add-on tools, such as the new Midline tool that draws from the center of a line to its
endpoint, to a completely customized interface with limited tool sets, such as a “red liner” application. The Corel Visual CADD
API can be broken down into several categories based on functionality and purpose. The basic function categories provided with
this API Reference include:

· Entity Creation Functions
· Entity Editing Functions
· Environment Settings Functions
· User Data Functions
· Parsing Functions
· Calculation Functions
· Tool Functions
· Dialog Functions
· Query Functions
· 3D Functions
These categories briefly discuss issues related to the Corel Visual CADD programming environment and some of the difficulties
that you may encounter. In addition, this reference provides basic information on what is required to develop an application using
Corel Visual CADD, such as how to create new tools and how to create custom interfaces. For more specific information, please
refer to the code examples provided on the Numera Internet Home Page at http://www.numera.com or contact Numera about
joining the Third Party Developer’s Program.

Entity Creation Functions
The core of any CAD system is the ability to create and collect graphical entities with pre-defined properties to form a drawing.
The Corel Visual CADD API provides extensive commands for creating and adding entities to the drawing database. These
commands can add entities directly through the code or as a result of user interaction within an interface.
File translation, field data collection and database interaction are examples of situations when entities would be added directly
through code. Since the entire Corel Visual CADD database is accessible through the API, custom file translation routines can
easily be implemented. These translation routines allow a developer to store graphical entity information in a format required by
the developer. Graphical output for field data and database information can be created directly from that information. For
example, a file that contains point values from a COGO data reader or a spreadsheet that generates point values from an
internal macro operation can be used to create graphical output in a drawing. For more information, please see User Data.
Entities can also be added through user interaction and input. The Corel Visual CADD API provides several methods for
capturing and processing user interaction. By utilizing a tool command, an application can allow users to add entities to the
drawing database while Corel Visual CADD handles all messaging events ,such as key presses, mouse down or mouse move
events. In addition, the Visual CADD API offers powerful event handling routines to create custom tools not directly available
through the Corel Visual CADD interface. These applications are based on a set of user tool operations that allow the developer
to control every aspect of a tool. The external application processes the Window events and sends the appropriate response
back to Corel Visual CADD. These commands can be used to generate powerful processing and rubber banding techniques for
creating virtually any type of tool.
Note that no matter what method is used to create an entity, new entities are always appended to the end of the drawing
database. By utilizing the various parsing routines of the API, the newly created entity can be accessed quickly and efficiently.

Entity Editing Functions
The Corel Visual CADD API provides full editing capabilities for all existing entities. Entities can be modified by applying the
currently existing properties (such as line type, line width, color and layer information) to an existing entity or by recreating the
entity based on entirely new property values. These two methods offer a great deal of flexibility in modifying the entity.
The easiest way to change the properties of an existing entity is to apply the current property settings to the desired entity. This
can be done through the Corel Visual CADD API by simply changing the desired properties with the various settings commands
and then using the VCApplySettingsToCurrentEntity(). This, in effect, changes the properties of the entity in the database just as
if a user had used the “change” command in Corel Visual CADD.
A second method allows an existing entity to be duplicated to the end of the database using the VCDuplicate() routine, which
recreates the entity using all of the current entity properties . This method offers an advantage over the
VCApplySettingsToCurrentEntity() routine in that locating the newly-modified entity can be done quickly and easily by locating
the last entity in the database. In addition, the duplicate method offers the ability to use the “undo” command, while merely
applying the settings does not.

Environment Settings Functions
Corel Visual CADD maintains an extensive collection of user-defined environment settings. These settings range from system

settings, such as background color and cursor size, to specific default entity settings, such as line type and color. All of the
settings that are available through the normal Corel Visual CADD dialogs are also available through API routines.
When creating stand-alone applications, it is very important to be aware of the current settings for the Corel Visual CADD
environment. For example, when an entity is deleted in Corel Visual CADD, the entity is not really erased, but simply tagged as
erased and redrawn in the background color. The entity itself remains in the Corel Visual CADD database until a “pack data”
command is issued. This can present a problem in stand-alone applications where the Visual CADD background color is different
than that of the window being used as a drawing world. An erased entity may be drawn in blue if the Corel Visual CADD
background color is blue, but if the stand-alone drawing world has a white background, this would result in a blue entity that does
not appear to be erased.

User Data Functions
User data may be attached to any drawing entity or drawing header and used for the storage of entity information, drawing
information, custom settings, or indices to external tables. User data may be of type double, float, long, short or byte. In addition
to these types, a user-defined type of “chunk” may also be stored. A chunk can be declared to be any size and is simply a pointer
to a memory location. The size of the chunk is passed to Corel Visual CADD so that it can retrieve the appropriate amount of
data from the specified memory location.
Whenever using user data, an application must first set a user data name in order to protect private data and to ensure that
different applications do not interfere with another application’s data. The user data name must be set before adding any user
data to a drawing. By registering as a Numera Visual CADD 3rd Party developer, Numera will provide you with a unique user
data name to be used for this purpose.

Parsing Functions
Corel Visual CADD stores all drawing information in a database accessible only to the Visual CADD engine. While other file
formats typically require libraries or reverse engineering to access the data, the Corel Visual CADD database is fully accessible
through the Visual CADD API. This includes all of the entity properties, special data attached to entities and environment
settings.
When building a file converter for a format not directly supported by Corel Visual CADD, entities can be parsed and added to
another file without manually reading in and deciphering the Visual CADD file.
Several Corel Visual CADD API functions are specifically designed to parse through the database and extract information. They
are analogous to common database functions and provide the ability to move quickly to the beginning of the database
(VCFirstEntity)e, to the end of the database (VCLastEntity), to the next entity in the database (VCNextEntity) or to select a
specific entity by its index or handle (VCSetCurrentEntity). The Corel Visual CADD API can then be used to extract any entity
information desired.
As with any database file, it is often not desirable to parse through the entire database from one entity to the next. The Corel
Visual CADD API has several routines designed to limit the search criteria and to apply filters for certain entity properties. There
are routines to parse only selected items (VCFirstSelected, VCNextSelected), items that are currently on screen
(VCFirstOnScreen, VCNextOnScreen), Symbol Definitions (VCSetSymbolSection) and exploded entities (VCFirstEntityExpand,
VCNextEntityExpand).

Calculation Functions
Several calculation routines are available through the Corel Visual CADD API. These routines are provided to help calculate
some of the complicated CAD operations that an application may need. These routines range from converting distances and
angles into string values (VCDistToString(), VCAngleToString()), to complex operations for computing virtual intersections and
arc definition points (VCComputeIntersection(), VCGetCurrentEntityArcData()).

Tool Routines
The tool routines allow for quick access to all of the existing Corel Visual CADD tools. When called, they act just as they would if
a user had clicked on the tool while running Visual CADD normally. They offer advantages over the entity creation routines in that
Corel Visual CADD handles all of the messaging and creation events while allowing the end user to interact and draw normally.
The disadvantages are that the developer has little control over the sequence of events of the tool or of the user interaction
possibilities. Some examples of Corel Visual CADD tools include VCLine(), VCCircle2Pt() and VCEllipse().

Dialog Routines
Corel Visual CADD makes use of dialogs to display various settings and tool options. These dialogs are also available for use in
external applications. When utilizing the built-in Corel Visual CADD dialogs in a stand-alone application, it is first necessary to
initialize the dialogs with the VCInitDialogs() routine. Once initialized, you can call all of the normal dialog routines (such as
VCPrintDlg()) and they will be displayed just as if they had been called from Corel Visual CADD.
These dialog functions also give developers access to the positioning of the tool palette and main speed bar. By using the
returned screen coordinates, applications can effectively simulate a Corel Visual CADD speedbar anywhere they want to. This
allows an application to take advantage of the built-in features that users are already accustomed to in the Corel Visual CADD
interface.
Note that when you are done using the dialog routines, you must call the VCTerminateDialogs() routine to free up the memory
used by dialogs.

Query Functions

The query functions are used to retrieve various entity property information while parsing the drawing database. These routines
can be used to retrieve properties from the current entity or from the current overall property settings. These functions will return
current entity properties such as color (VCGetCurrentEntityColor ()) and line type (VCGetCurrentEntityLineType()), in addition to
calculated properties such as length (VCGetCurrentEntityLength()) and area (VCGetCurrentEntityArea()).

3D Functions
While the Corel Visual CADD interface is strictly two dimensional, there are 3D capabilities built into the Corel Visual CADD API.
These routines allow 3D points, lines and polygons to be added to the database. Perspective views with different target and eye
positions can be set to view the drawing. In addition, AutoCAD 3D drawings and blocks can be loaded directly into the Corel
Visual CADD interface. Some examples of 3D routines are VCAddLine3D(),VCAddPoint3D() and VCSetProjection3D().

Development Requirements
Corel Visual CADD is open to development with any Windows programming language. The programming language needs to
support calls to external libraries contained in Windows Dynamic Link Libraries (DLLs). Visual Basic for Applications, Visual
Basic Standard/Professional, C/C++ , FORTRAN, PASCAL, CA-Realizer and Delphi are a few languages that support external
Corel Visual CADD API routines.
This manual is designed to be as language-independent as possible. However, the exact declaration syntax for functions
changes for each different language. This manual provides declarations for some of the most common programming languages,
including Visual BASIC, Delphi and C/C++.
Certain methods of returning data from a few Corel Visual CADD routines are incompatible with some languages. In these
cases, a new routine has been created to provide the same functionality as the original routine, but in a way that is not quite as
elegant as the original routine. These new routines are nearly identical to the original call, but have the letters “BP” attached to
the end of them.
Visual Basic and Delphi are a good examples of this drawback since they require parameters of a user-defined type to be called
by reference. The group of commands to add entities directly to the drawing database, such as VCAddLineEnity(), require the
user-defined variable type, Point2D to be passed by value. Since Visual BASIC and Delphi will not allow the parameter to be
passed by value, the Corel Visual CADD API provides a companion function called VCAddLineEntityBP() which is functionally
identical to VCAddLineEnity(), but accepts the Point2D parameter passed by reference.
As a final note, all sample code was written in the current version of each respective language environment. Visual CADD 1.2.X
requires a 16 bit development language and Corel Visual CADD 2.0.X requires a 32 bit programming language. There is no
“thunking” layer between the versions, a 32 bit language must be used to develop with v2.0.X. No API routines have been
deleted form the 32 bit version, any code written on v1.2.X will function on the 32 bit Corel Visual CADD once recompiled. The
DLLs were renamed between the versions and the appropriate header files should be used. Please see the Parameter Detail
section for more information on the Corel Visual CADD engine.
Languages used for sample applications are:

Visual CADD 1.2.X Corel Visual CADD 2.0.X
Microsoft Visual Basic 4.0 - 16 bit Microsoft Visual Basic 4.0 - 32 bit
Microsoft Visual C++ 1.5.1 - 16 bit Microsoft Visual C++ 4.0 - 32 bit
Borland C++ 4.5.1 - 16/32 bit Borland C++ 4.5.1 - 16/32 bit
Borland Delphi 1.0 - 16 bit

Developing Corel Visual CADD Applications
There are two basic methods for developing applications through the Corel Visual CADD API. A developer can either use the
existing Corel Visual CADD interface to display and modify drawings, or they can design their own to allow an application to
utilize a separate interface while accessing commands from the Corel Visual CADD engine.
Each method presents different advantages that should be considered when writing an application based on the Corel Visual
CADD engine. The principle advantages for using the already existing Corel Visual CADD interface are that there will be less
development time in creating an interface and that the interface will already be familiar to an existing Corel Visual CADD user
base. The advantages for writing a custom interface are the availability of creating an application-specific interface with an
application-specific tool set, full control over the user’s interaction with the application and the ability to control every aspect of
the creation and implementation of the application.
If the external application is simply a drafting tool used specifically to enhance the functionality of Corel Visual CADD, the
standard interface should be used. If you require file conversion and display capabilities to build a red-liner, for example, and do
not want the user to modify the original drawing, use a custom interface with a specific tool set. Since the Corel Visual CADD
interface gives full control to the user, it would be preferable to provide a custom interface and only allow access to the
necessary functionality, such as loading and saving files.
· Developing Tools For Corel Visual CADD
· Creating A Custom Interface

Developing Tools For Corel Visual CADD
The easiest way to develop external applications is to utilize the Corel Visual CADD interface. Once Corel Visual CADD is
running, all the necessary DLLs are loaded into memory for use by any external application. An application can start Corel Visual
CADD as it is being launched or it can allow the user to start the application from within the Visual CADD interface (i.e., from the
toolbar). Please note that various application errors and General Protection Faults (GPFs) will probably occur if Corel Visual
CADD API calls are made to a DLL that has not been loaded into memory. See the Corel Visual CADD User Guide for details
about customizing tools, buttons and menus when allowing users to launch an application directly from the Visual CADD
interface.
All tools need an interface or some means of interaction with the drawing screen. This may be as simple as locating points in the
drawing area to construct a compound entity, or as complex as tracking a mouse drag across the drawing screen. It is therefore
necessary to establish a communication link between Corel Visual CADD and the external application in order to develop tools to
be used in the Visual CADD interface.
The Windows environment has a built-in messaging system which it uses to notify applications of changes in the environment or
circumstances that may require an application to respond. Corel Visual CADD has taken advantage of this built-in messaging

system and allows an external application to access what is happening within the drawing screen. This mechanism is provided
by the Corel Visual CADD VCSetAlertApp() routine.
By passing this routine the handle of the window (HWND) that you want to receive the messages and a parameter stating which
messages to receive, Corel Visual CADD will send event messages back to the window as the events occur. The
VCClearAlertApp() routine turns off these messaging events.
Any Windows programming language that you decide to use will support some form of Windows messaging since this is the
foundation on which Windows is based. All messages sent to the external application will be of exactly the same type and format
as those sent by the operating system itself.
In the case of C/C++ compliant languages, message handling is easily implemented through a specific procedure called a
WNDPROC which processes each message as it is sent to an application. New messages can be added or removed as needed
and processed however the programmer needs them to be processed.
Unfortunately with Visual BASIC and Delphi, the programmer cannot as easily add cases to handle all of the different messages
available from Corel Visual CADD since both languages contain pre-defined event handlers for each specific control or form.
With a little bit of planning, however, a suitable control can be found that handles most of the messages an application might
require. A simple example of this is a picture box which can handle mouse movement and click events. This will work just fine if
those are the only events that need to be processed. However, the best choice is actually to use the form itself, since it provides
almost every event procedure that Corel Visual CADD supports through the messaging system and requires no extra controls.
This is also convenient because the form will contain all your code for each individual event triggered by a message. By using
the Visual CADD API, it can also be minimized, closed or hidden based on a user’s actions in Corel Visual CADD to prevent the
user from seeing any interface at all.
One of the specific messages handled by VCSetAlertApp() is the key press. When a user presses a key in Corel Visual CADD, a
message is sent to the registered application through VCSetAlertApp(). In the message processing code, these key press events
can then be processed by using VCGetCmdStr() which returns any characters left on the command line or command string of
the last command initiated. If the command string is not one needed by the external application, it can then send the key press
message back to Corel Visual CADD with the VCSetCmdStr() routine, which will then simply execute the string as if the user had
typed it in. In the case of Visual BASIC, code can be put on the keypress event for the form or other control whose HWND is
registered with VCSetAlertApp(), and it will then execute each time a user enters a character into Corel Visual CADD.
Something else to consider when writing an external tool is the presentation of the prompts that a user sees in the status bar to
guide them through the task. The prompt for a user tool can be defined using the VCSetUserTool() routine. This establishes
which prompt will appear at the first stage of the user tool. The VCSetPrompt() routine allows each subsequent prompt to be
explicitly set for the current user tool.

Creating A Custom Interface
When using the functionality of Corel Visual CADD within a custom interface, the Visual CADD DLLs must first be initialized and
a drawing window established before any drawing can occur. The procedures for achieving these requirements vary depending
on the development environment and language used.
The first requirement is to activate the Corel Visual CADD engine. A simple call to the VCInit() function will initialize the DLLs and
prepare them for use. If this function is omitted and Corel Visual CADD is not running when an API call is made, you will receive
various error messages and possibly severe GPFs from Windows.
After the Corel Visual CADD engine has been initialized, the main drawing area (called a “world” by the Corel Visual CADD API)
must be established within the interface. This world is created by passing the handle of an existing window (the HWND) to the
VCNewWorld() routine. This function notifies Corel Visual CADD that the specified HWND is to be the container of a new
drawing world and sets up internal information required to handle the new world. The VCSetCurrWorld() command takes the
handle of the world that was returned from VCNewWorld() as a parameter and tells Corel Visual CADD that any further database
or drawing actions should take places within this world.
Depending on an application’s needs, various status message areas can be set up by passing the HWND of either an edit box or
a text field to the corresponding routines in Corel Visual CADD that handle the display of status messages. These areas are
used to display the current message prompts (VCSetMessageHandle()), the current drawing coordinates (VCSetXYHandle), the
current distance (VCSetDistanceHandle()) and the current angle (VCSetAngleHandle()). These are by no means necessary, but
are an easy-to-include user interface item that significantly adds to the functionality of the application.
Once the interface is set up and the drawing world created, any incoming Windows messages need to be relayed to Corel Visual
CADD in one form or another as they are received by the external application. This message transmittal can be done by either
directly relaying the message to Visual CADD if the external application could not process it, or by invoking a specific routine in
response to the message. For example, when the application receives a WM_PAINT message, instead of passing the message
on to Corel Visual CADD, it needs to invoke the VCPaintWorld() routine in order to tell Corel Visual CADD to repaint the drawing
area. If the application receives a message without a corresponding routine, the application can use VCPostMessage() or
VCSendMessage() to send the exact message back to Corel Visual CADD for processing.
Any tools used in the external application must be explicitly supported in the application code; i.e., there must be a button or
menu item for each command which is accessible by the user. All mouse events must also be relayed back to Corel Visual
CADD if you want the default behavior to be identical to that of Visual CADD. There are routines for processing each and every
mouse event, from double-clicks to mouse moves.
Finally, when the external application has completed execution, it must call VCTerminate() in order to de-allocate the memory
used internally for the drawing worlds and to free up memory for other applications.

Declarations
The Corel Visual CADD API contains four basic parts in the declaration: the Corel Visual CADD API Name, the
Library Location, the Parameter List, and the Return Value. The following routine will be used as an example for
description:

Declare Function VCGetCurEntAtbRecCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal iWhichAtb As Integer)
As Integer

Corel Visual CADD API Name: The Corel Visual CADD API has been simplified by providing descriptive names
for each of the routines. For example, VCGetCurEntAtbRecCount() indicates how many attributes are attached to
a symbol. Other calls, such as VCSetCurrentErased(), erase the current entity from a drawing.

Library Location: The declarations for the Corel Visual CADD API are contained in a set of four library files
called VCMAIN32, VCTRANS32, VCTOOL32 and VCDLG32. The names of these files correspond directly to the
DLL in which the routine itself is stored. Since all of these declarations are available for direct inclusion into your
application, the library locations are rarely a concern to the programmer, but are provided in case you wish to
include a minimal set of declarations in your application:

Note: The 16 bit versions of these DLL don't have the "32" in the DLL name.

· VCMAIN32 contains the majority of the database routines, such as entity creation and system settings, and
is a more-or-less a general purpose library.

· VCTRANS32 contains all the file reading and writing (translation) routines. For example, a call to load an
AutoCAD 3D file is represented in this library.

· VCTOOL32 contains tool commands that are available directly through the Corel Visual CADD interface, such
as 2-point lines and circles.

· VCDLG32 contains all of the built in dialogs that show up while working in Corel Visual CADD, such as the
Layer Manager and the Symbol Manager.

Parameter List: When working with the Corel Visual CADD API, it is necessary to pass information to Visual
CADD about the specific information you want to set or have returned. This is reflected in the parameter list for
each routine. Different routines will require different parameters. For example, in a sample declaration such as
VCGetCurEntAtbRecCount, you must specify the attribute index in order to retrieve the record count.

Return Value: The return value is the end result for the routine if it is declared as a function. For example, a
sample declaration like VCGetLineTypeIndex() returns the current line type property index number.. Other
routines may return information that is related in some way to the parameter information being passed by the
function. For example, the name of a drawing is passed back as a parameter with the VCGetDrawingName()
routine, and its return value is the number of characters in that name. Remember that procedures (sometimes
called subroutines) do not have a return value.
The one common ground for most of these routines (both functions and procedures) is the iError value. This
value represents the success or failure of the function. Some calls to set properties will only return an iError
value since no information is needed on return. An iError value of 0 is true or succeed, while all other values
other than 0 is failed or false.

Parameter Detail

Most of the functions listed utilize a specific set of parameters which are needed by the routine in order to return
the information requested. Please see the specific call for more information on the required parameters. The
following parameters are discussed in more detail and apply to all of the Corel Visual CADD API routines in one
way or another: iError, distances, angles, toggles, strings, user data, and special types.

iError - This is set depending on the success or failure of the function.
0 - Succeeded.
1 - Failed: Usually due to an invalid drawing world. Please see the specific routine for more detailed
information.

distance - All distances are stored in the Corel Visual CADD database in inches. When retrieving or setting
distance values, you need to convert them into the proper units. VCGetUnitConversionFactor() returns a
multiplier that can be used to convert the values based on the current unit setting in Corel Visual CADD.

angles- All angles are stored in radians in the Corel Visual CADD drawing database. When retrieving or setting
angle values, you need to convert to the appropriate display format, typically degrees.

toggle - Most of the Get/Set calls simply return a toggle state for the specified setting. The values returned are
1, indicating "on," "checked" or "true," and 0, indicating "off," "unchecked" or "false."

string - Calls to retrieve a string value also return the length of the string. Visual Basic requires fixed length
strings for return values. These can then be trimmed to the returned string length. In some languages, a "Null"
value can be passed into the routine in place of the string variable, allowing the call to only return the string
length. The string variable can then be allocated before call the function again.

User Data - Attaches or retrieves data of the specified type for the current entity. User data may be attached to
any drawing entity or a drawing header and used for storage of entity information, drawing information, custom
settings, or indices to external tables. User data can be of the variable types double, float, long, short, string or
byte. In addition to these types, a user defined type of "chunk" may also be stored. A chunk can be any size and
is simply a pointer to a memory location. The size of the chunk is also passed to Corel Visual CADD so that it can
retrieve the appropriate amount of data from the specified memory location.

Special Types - There are various special cases for calls which return either a double or a user-defined variable
type. Visual BASIC and Delphi do not allow user defined types to be passed by value, therefore they can not call
these routines. The solution is to utilize the "BP" routine which operates the same as the original routine, but
accepts the user-defined data type passed by pointer (or reference).

VCAbortOperation
Version 1.2.1
Description Ends the current operation and discards all undo information.
Declaration
C/C++: extern "C" void WINAPI VCAbortOperation(short* iError);
Visual Basic: Declare Sub VCAbortOperation Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCAbortOperation(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD provides a set of user tool functions to build and create tools not directly

supported in the interface. For example, a multi-line tool that automatically hatches or fills the
segments. Since this tool is not provided directly in the Corel Visual CADD interface, it must be
created through code to interact with the existing commands such as snaps and undo
operations. In order for the tools to respond appropriately to undo operations it should set undo
and redo levels during the operation. A complex entity tool, one that adds multiple entities such
as the multi-line example, can allow each individual entity or instead the entire operation to be
undone with a single user undo operation. This depends on the design criteria specified for the
application. The level of undo is set with the VCBeginOperation and VCEndOperation API
routines. An application should set the beginning of the undo level prior to adding any entities to
the drawing database and finish the tool with an end operation. In certain situations, the tool
may be aborted by the user typically by pressing the <ESC> key. An application should respond
appropriately by aborting the undo level to return it to the state prior to the user tool operation.
VCAbortOperation will handle this for the application. When used in conjunction with
VCBeginOperation and VCEndOperation, VCAbortOperation will discard all undo information
complied since the last VCBeginOperation. The VCEndOperation should be used to mark the end
of an undo level if the tool completes as designed, while the VCAbortOperation should be used
when the tool ends unexpectedly or if the user manually aborts the tool. VCAbortOperation
ensures that there is no residual undo information left.

See Also VCBeginOperation, VCEndOperation

{button ,AL(`Creating a User Tool;Modifying Existing Entities',0,`',`')} Task Guide Examples

VCAcadBlockRead
Version 1.2
Description Loads a file as an AutoCAD block.
Declaration
C/C++: extern "C" void WINAPI VCAcadBlockRead(char* pName);
Visual Basic: Declare Sub VCAcadBlockRead Lib "VCTRAN32.DLL" (ByVal pName As String)
Delphi: procedure VCAcadBlockRead(pName: PChar); far;
Parameters pName - path and filename for the file.
Notes The routine loads an AutoCAD file as a block, allowing Corel Visual CADD to treat the file as a

native symbol. Symbols act as a collection of entities that can be inserted repeatedly in a
drawing. The symbols can be inserted at different locations with different rotations and scales
while maintaining a unique identity separate from the objects composing the definition. When
working with AutoCAD file types it is necessary to provide settings for certain conversion
criteria. The criteria can be either set through code or as a result of user input to the application.
The AutoCAD conversion criteria include base units, color translation, X-Ref conversion and font
mapping. Corel Visual CADD provides a dialog for a user to edit these settings for conversion
operations. These settings may or may not correspond to those required by the application. In
situations where the application needs to control these settings the calls VCGetAcadImportUnit,
VCGetPreserveAcadColorNums and VCGetKeepAcadFontName can be used to set the desired
values.

See Also VCAcadRead, VCAcadReadWith3D, VCAcadWriteDWG, VCAcadWriteDXF, VCGetAcadImportUnit,
VCGetPreserveAcadColorNums, VCGetKeepAcadFontName

{button ,AL(`Loading a Symbol;Modifying a Symbol Definition;Parsing a Symbol Definition;Placing a
Symbol;Symbol Operations',0,`',`')} Task Guide Examples

VCAcadRead
Version 1.2
Description Loads an AutoCAD file into the current drawing world.
Declaration
C/C++: extern "C" void WINAPI VCAcadRead(char* pN);
Visual Basic: Declare Sub VCAcadRead Lib "VCTRAN32.DLL" (ByVal pN As String)
Delphi: procedure VCAcadRead(pN: PChar); far;
Parameters pName - path and filename for the file.
Notes VCAcadRead allows an AutoCAD file to be loaded and converted to a Corel Visual CADD drawing

in the current drawing session. VCAcadRead strips all 3D entity information from the drawing
while VCAcadReadWith3D allows a complete 3D file to be interpreted. VCAcadRead is a specific
load routine to work with AutoCAD files. An error will occur if attempting to load files other than
*.DWG files. In situations where other vector drawing formats such *.VCD, *.GCD or *.DXF will
also be used the routine VCLoadDrawing should be implemented which will load all these vector
file types. When working with AutoCAD file types it is necessary to provide settings for certain
conversion criteria. The criteria can be either set through code or as a result of user input to the
application. The AutoCAD conversion criteria include base units, color translation, X-Ref
conversion and font mapping. Corel Visual CADD provides a dialog for a user to edit these
settings for conversion operations. These settings may or may not correspond to those required
by the application. In situations where the application needs to control these settings the calls
VCGetAcadImportUnit, VCGetPreserveAcadColorNums and VCGetKeepAcadFontName can be
used to set the desired values.

See Also VCAcadBlockRead, VCAcadReadWith3D, VCAcadWriteDWG, VCAcadWriteDXF,
VCGetAcadImportUnit, VCLoadDrawing, VCAcadBlockRead3D, VCGetAcadImportUnit,
VCGetPreserveAcadColorNums, VCGetKeepAcadFontName

VCAcadReadWith3D
Version 1.2
Description Loads a 3D AutoCAD file into the current drawing world.
Declaration
C/C++: extern "C" void WINAPI VCAcadReadWith3D(char* pName);
Visual Basic: Declare Sub VCAcadReadWith3D Lib "VCTRAN32.DLL" (ByVal pName As String)
Delphi: procedure VCAcadReadWith3D(pName: PChar); far;
Parameters pName - path and filename for the file.
Notes VCAcadRead3D allows an AutoCAD file to be loaded and converted to a Corel Visual CADD

drawing in the current drawing session. VCAcadReadWith3D allows a complete 3D file to be
interpreted into Corel Visual CADD, while VCAcadRead strips all 3D entity information from the
drawing file. When working with block 3D block definitions an application should use
VCAcadBlockRead3D allowing Corel Visual CADD to treat the file as a native symbol. Symbols act
as a collection of entities that can be inserted repeatedly in a drawing. The symbols can be
inserted at different locations with different rotations and scales while maintaining a unique
identity separate from the objects composing the definition. When working with AutoCAD file
types it is necessary to provide settings for certain conversion criteria. The criteria can be either
set through code or as a result of user input to the application. The AutoCAD conversion criteria
include base units, color translation, X-Ref conversion and font mapping. Corel Visual CADD
provides a dialog for a user to edit these settings for conversion operations. These settings may
or may not correspond to those required by the application. In situations where the application
needs to control these settings the calls VCGetAcadImportUnit, VCGetPreserveAcadColorNums
and VCGetKeepAcadFontName can be used to set the desired values.

See Also VCAcadBlockRead, VCAcadRead, VCAcadWriteDWG, VCGetAcadImportUnit,VCAcadWriteDXF,
VCLoadDrawing, VCAcadBlockRead3D, VCGetAcadImportUnit, VCGetPreserveAcadColorNums,
VCGetKeepAcadFontName

VCAcadWriteDWG
Version 1.2
Description Saves an AutoCAD DWG file from the current drawing to the specified filename.
Declaration
C/C++: extern "C" void WINAPI VCAcadWriteDWG(char* pN);
Visual Basic: Declare Sub VCAcadWriteDWG Lib "VCTRAN32.DLL" (ByVal pN As String)
Delphi: procedure VCAcadWriteDWG(pN: PChar); far;
Parameters pN - path and filename for the file.
Notes VCAcadWriteDWG converts the current drawing to DWG format and writes to the specified file

and location. VCAcadWriteDWG is a specific load routine to work with AutoCAD files. An error will
occur if attempting to save files other than *.DWG files. In situations where other vector drawing
formats such *.VCD, *.GCD or *.DXF will be used the routine VCSaveDrawing should be
implemented which will save all these vector file types. When working with AutoCAD file types it
is necessary to provide settings for certain conversion criteria. The criteria can be either set
through code or as a result of user input to the application. The AutoCAD conversion criteria
include base units, color translation, X-Ref conversion and font mapping. Corel Visual CADD
provides a dialog for a user to edit these settings for conversion operations. These settings may
or may not correspond to those required by the application. In situations where the application
needs to control these settings the calls VCGetAcadImportUnit, VCGetPreserveAcadColorNums
and VCGetKeepAcadFontName can be used to set the desired values.

See Also VCAcadRead, VCAcadWriteDXF, VCAcadReadWith3D, VCSaveDrawing

VCAcadWriteDXF
Version 1.2
Description Saves an AutoCAD DXF file from the current drawing to the specified filename.
Declaration
C/C++: extern "C" void WINAPI VCAcadWriteDXF(char* pN);
Visual Basic: Declare Sub VCAcadWriteDXF Lib "VCTRAN32.DLL" (ByVal pN As String)
Delphi: procedure VCAcadWriteDXF(pN: PChar); far;
Parameters pN - path and filename for the file.
Notes VCAcadWriteDXF converts the current drawing to DXF format and writes to the specified file and

location. VCAcadWriteDXF is a specific load routine to work with AutoCAD files. An error will
occur if attempting to save files other than *.DWG files. In situations where other vector drawing
formats such *.VCD, *.GCD or *.DXF will be used the routine VCSaveDrawing should be
implemented which will save all these vector file types. When working with AutoCAD file types it
is necessary to provide settings for certain conversion criteria. The criteria can be either set
through code or as a result of user input to the application. The AutoCAD conversion criteria
include base units, color translation, X-Ref conversion and font mapping. Corel Visual CADD
provides a dialog for a user to edit these settings for conversion operations. These settings may
or may not correspond to those required by the application. In situations where the application
needs to control these settings the calls VCGetAcadImportUnit, VCGetPreserveAcadColorNums
and VCGetKeepAcadFontName can be used to set the desired values.

See Also VCAcadRead, VCAcadWriteDWG, VCAcadReadWith3D, VCSaveDrawing

VCAddAngularDimensionEntity
Version 1.2
Description Adds an angular dimension entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddAngularDimensionEntity(short* iError, short iSymbolIndex, Point2D

dpP0, Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddAngularDimensionEntityBP(short* iError, short iSymbolIndex,
Point2D* dpP0, Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddAngularDimensionEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iSymbolIndex As Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddAngularDimensionEntityBP(var iError: Integer; iSymbolIndex: Integer; var dpP0:
Point2D; var dpP1: Point2D; var dpP2: Point2D; var dpP3 Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first dimension point.
dpP1 - the Point2D structure containing the coordinates to place the second dimension point on
the first ray.
dpP2 - the Point2D structure containing the coordinates to place the second dimension point on
the second ray.
dpP3 - the Point2D structure containing the coordinates to place the dimension line.

Notes Any dimension added to the Corel Visual CADD drawing database or to a symbol definition
utilizes the current dimension settings from the dimension and dimension text tabs in the
settings dialog. These properties should be set before adding the entity or they may be changed
after creation with the change commands. All point locations including those within a symbol
definition are relative to the drawing origin. Each entity added will be appended to the end of
the database and take on the entity handle of one higher than the last entity in the drawing. To
add dimension entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddDiameterDimensionEntity, VCAddLinearDimensionEntity , VCCreateSymbolDef,
VCGetSymbolIndex

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Parsing the Database;Symbol Operations',0,`',`')}
Task Guide Examples

VCAddArcEntity
Version 1.2
Description Adds an arc entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddArcEntity(short* iError, short iSymbolIndex, Point2D dpP0, Point2D

dpP1, Point2D dpP2);
extern "C" void WINAPI VCAddArcEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0,
Point2D* dpP1, Point2D* dpP2);

Visual Basic: Declare Sub VCAddArcEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As
Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D)

Delphi: procedure VCAddArcEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D; var dpP1:
Point2D; var dpP2: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first endpoint of the arc.
dpP1 - the Point2D structure containing the coordinates to place the mid point on the arc.
dpP2 - the Point2D structure containing the coordinates to place the second endpoint.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add arc entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddEllipticalArcEntity, VCCreateSymbolDef, VCGetColorIndex, VCGetLayerIndex,
VCGetLineTypeIndex, VCGetLineWidthIndex, VCGetSymbolIndex

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Creating a
Symbol;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddAtbDef
Version 1.2
Description Adds an attribute definition to the drawing database and sets the value for the first field.
Declaration
C/C++: extern "C" void WINAPI VCAddAtbDef(short* iError, char* szName, char* Label0, char* Value0);
Visual Basic: Declare Sub VCAddAtbDef Lib "VCMAIN32.DLL" (iError As Integer, ByVal szName As String, ByVal

Label0 As String, ByVal Value0 As String)
Delphi: procedure VCAddAtbDef(var iError: Integer; szName: PChar; Label0: PChar; Value0: PChar); far;
Parameters szName - name of the attribute.

Label0 - label text for the first field.
Value0 - default value assigned to the first field.

Notes VCAddAtbDef must be used to create an attribute definition prior to attachment to a symbol
definition. Once the definition has been created, additional fields may be added using
VCSetAtbDefLabelValue.

See Also VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont, VCGetAtbInternalName,
VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attaching User Data;Attribute Manipulation;Creating a Symbol;Modifying a Symbol Definition;Parsing
a Symbol Definition;Retrieving Attributes',0,`',`')} Task Guide Examples

VCAddBezierEntity
Version 1.2
Description Adds a single Bezier entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddBezierEntity(short* iError, short iSymbolIndex, Point2D dpP0,

Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddBezierEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0,
Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddBezierEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As
Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddBezierEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D; var
dpP1: Point2D; var dpP2: Point2D; var dpP3: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first endpoint.
dpP1 - the Point2D structure containing the coordinates to place the second end point.
dpP2 - the Point2D structure containing the coordinates to place the first control point.
dpP3 - the Point2D structure containing the coordinates to place the second control point.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddSplineEntity, VCAddArcEntity, VCAddEllipticalArcEntity,
VCAddContinuousBezierEntity,VCGetColorIndex , VCGetLayerIndex,VCGetLineTypeIndex,
VCGetLineWidthIndex

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Modifying Existing
Entities;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddCircleEntity
Version 1.2
Description Adds a circle entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddCircleEntity(short* iError, short iSymbolIndex, Point2D dpP0,

Point2D dpP1);
extern "C" void WINAPI VCAddCircleEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0,
Point2D* dpP1);

Visual Basic: Declare Sub VCAddCircleEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As
Integer, dpP0 As Point2D, dpP1 As Point2D)

Delphi: procedure VCAddCircleEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D; var
dpP1: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the center of the circle.
dpP0 - the Point2D structure containing the coordinates to place a radius point of the circle.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing. To add entities to a symbol definition, the index of an
existing symbol is retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an
empty definition for a new symbol.

See Also VCAddEllipseEntity, VCAddArcEntity, VCCreateSymbolDef, VCGetSymbolIndex

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Retrieving Entity
Properties',0,`',`')} Task Guide Examples

VCAddContinuousBezierEntity
Version 1.2
Description Adds a continuous Bezier entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddContinuousBezierEntity(short* iError, short iSymbolIndex);
Visual Basic: Declare Sub VCAddContinuousBezierEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iSymbolIndex As Integer)
Delphi: procedure VCAddContinuousBezierEntity(var iError: Integer; iSymbolIndex: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes VCAddContinuousLineEntity, VCAddSplineEntity and VCAddContinuousBezierEntity allow for an
infinite number of points to be placed with the VCSetCurrentEntityPoint command instead of
through a parameter. Any entity added to the Corel Visual CADD drawing database or to a
symbol definition will take on the current properties for line type, color, layer, and width. These
properties should be set before adding the entity or they may be changed after creation with the
change commands. All point locations including those within a symbol definition are relative to
the drawing origin. Each entity added will be appended to the end of the database and take on
the entity handle of one higher than the last entity in the drawing before the addition. To add
entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddContinuousLineEntity, VCSetCurrentEntityPoint, VCAddBezierEntity, VCGetSymbolIndex,
VCCreateSymbolDef, VCAddSplineEntity

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing a Filtered
Entity List;Parsing an On Screen List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddContinuousLineEntity
Version 1.2
Description Adds a continuous line entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddContinuousLineEntity(short* iError, short iSymbolIndex);
Visual Basic: Declare Sub VCAddContinuousLineEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iSymbolIndex As Integer)
Delphi: procedure VCAddContinuousLineEntity(var iError: Integer; iSymbolIndex: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes AddContinuousLineEntity, VCAddSplineEntity and VCAddContinuousBezierEntity allow for an
infinite number of points to be placed with the VCSetCurrentEntityPoint command instead of
through a parameter. Any entity added to the Corel Visual CADD drawing database or to a
symbol definition will take on the current properties for line type, color, layer, and width. These
properties should be set before adding the entity or they may be changed after creation with the
change commands. All point locations including those within a symbol definition are relative to
the drawing origin Each entity added will be appended to the end of the database and take on
the entity handle of one higher than the last entity in the drawing before the addition. To add
entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddContinuousBezierEntity, VCSetCurrentEntityPoint, VCGetSymbolIndex,
VCCreateSymbolDef. VCAddSplineEntity, VCAddLineEntity

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing a Filtered
Entity List;Parsing an On Screen List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddContinuousLine3DEntity
Version 2.0
Description Adds a continuous 3D line to the drawing database.
Declaration
C/C++ extern "C" void WINAPI VCAddContinuousLine3DEntity(short* iError, short iSymbolIndex);
Visual Basic Declare Sub VCAddContinuousLine3DEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iSymbolIndex As Integer)
Delphi procedure VCAddContinuousLine3DEntity(var iError: Integer; iSymbolIndex: Integer);far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes VCAddContinuousLineEntity3D allow for an infinite number of points to be placed with the
VCSetCurrentEntityPoint3D command instead of through a parameter. Any entity added to the
Corel Visual CADD drawing database or to a symbol definition will take on the current properties
for line type, color, layer, and width. These properties should be set before adding the entity or
they may be changed after creation with the change commands. All point locations including
those within a symbol definition are relative to the drawing origin. Each entity added will be
appended to the end of the database and take on the entity handle of one higher than the last
entity in the drawing before the addition. To add entities to a symbol definition, the index of an
existing symbol is retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an
empty definition for a new symbol.

See Also VCAddLine3D, VCAddPoint3D, VCAddPolygon3D , VCSetCurrentEntityPoint3D

VCAddCurrentEntityUserDataByte
Version 1.2
Description Adds a byte to the end of the user data to the current entity.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataByte(short* iError, BYTE b);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataByte Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As

Integer)
Delphi: procedure VCAddCurrentEntityUserDataByte(var iError: Integer; b: Integer); far;
Parameters b - the byte of data to add.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataDouble,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort, VCGetUserDataName, VCGetCurrentEntityUID,
VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Attribute Manipulation;Database Operations;Parsing an Expanded List;Retrieving
Attributes',0,`',`')} Task Guide Examples

VCAddCurrentEntityUserDataChunk
Version 1.2
Description Adds a chunk record to the end of the user data to the current entity.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataChunk(short* iError, void* p, short iSize);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataChunk Lib "VCMAIN32.DLL" (iError As Integer, ByVal p

As String, ByVal iSize As Integer)
Delphi: procedure VCAddCurrentEntityUserDataChunk(var iError: Integer; var p: Pointer; iSize: Integer);

far;
Parameters p - a pointer to a memory location where the data chunk is stored.

iSize - the size of the data chunk.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataByte, VCAddCurrentEntityUserDataDouble,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Database Operations;Parsing a Filtered Entity List;Parsing the Database;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCAddCurrentEntityUserDataDouble
Version 1.2
Description Adds user data of the type floating point double precision to the current entity at the end of the

user data.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataDouble(short* iError, double dRet);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataDouble Lib "VCMAIN32.DLL" (iError As Integer, ByVal

dRet As Double)
Delphi: procedure VCAddCurrentEntityUserDataDouble(var iError: Integer; dRet: Double); far;
Parameters dRet - the double value to add.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Attribute Manipulation;Database Operations;Parsing an Expanded List;Retrieving
Attributes',0,`',`')} Task Guide Examples

VCAddCurrentEntityUserDataFloat
Version 1.2
Description Adds user data of the type float to the current entity at the end of the user data.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataFloat(short* iError, float f);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataFloat Lib "VCMAIN32.DLL" (iError As Integer, ByVal f As

Double)
Delphi: procedure VCAddCurrentEntityUserDataFloat(var iError: Integer; f: Double); far;
Parameters f - the float value to add.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Attribute Manipulation;Database Operations;Parsing an Expanded List;Retrieving
Attributes',0,`',`')} Task Guide Examples

VCAddCurrentEntityUserDataLong
Version 1.2
Description Adds user data of the type long for the current entity to the end of the user data.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataLong(short* iError, long l);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataLong Lib "VCMAIN32.DLL" (iError As Integer, ByVal l As

Long)
Delphi: procedure VCAddCurrentEntityUserDataLong(var iError: Integer; l: Longint); far;
Parameters l - the long integer value to add.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Attribute Manipulation;Database Operations;Parsing an Expanded List;Retrieving
Attributes',0,`',`')} Task Guide Examples

VCAddCurrentEntityUserDataShort
Version 1.2
Description Adds user data of the type short for the current entity to the end of the user data.
Declaration
C/C++: extern "C" void WINAPI VCAddCurrentEntityUserDataShort(short* iError, short s);
Visual Basic: Declare Sub VCAddCurrentEntityUserDataShort Lib "VCMAIN32.DLL" (iError As Integer, ByVal s

As Integer)
Delphi: procedure VCAddCurrentEntityUserDataShort(var iError: Integer; s: Integer); far;
Parameters s - the short integer value to add.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize

{button ,AL(`Attaching User Data;Attribute Manipulation;Database Operations;Parsing an Expanded List;Retrieving
Attributes',0,`',`')} Task Guide Examples

VCAddDiameterDimensionEntity
Version 1.2
Description Adds a diameter dimension entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddDiameterDimensionEntity(short* iError, short iSymbolIndex,

Point2D dpP0, Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddDiameterDimensionEntityBP(short* iError, short iSymbolIndex,
Point2D* dpP0, Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddDiameterDimensionEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iSymbolIndex As Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddDiameterDimensionEntityBP(var iError: Integer; Integer; var dpP0: Point2D; var
dpP1: Point2D; var dpP2: Point2D; var dpP3: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first point of the diameter.
dpP1 - the Point2D structure containing the coordinates to place the second point of the
diameter.
dpP2 - the Point2D structure containing the coordinates to place the dimension line.
dpP3 - currently unused and will be ignored.

Notes Any dimension added to the Corel Visual CADD drawing database or to a symbol definition
utilizes the current dimension settings from the dimension and dimension text tabs of the
settings dialog These properties should be set before adding the entity or they may be changed
after creation with the change commands. All point locations including those within a symbol
definition are relative to the drawing origin. Each entity added will be appended to the end of
the database and take on the entity handle of one higher than the last entity in the drawing
before the addition. To add entities to a symbol definition, the index of an existing symbol is
retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a
new symbol.

See Also VCAddAngularDimensionEntity, VCAddLinearDimensionEntity , VCGetSymbolIndex,
VCCreateSymbolDef

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing a Filtered
Entity List;Parsing an On Screen List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddEllipseEntity
Version 1.2
Description Adds an ellipse entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddEllipseEntity(short* iError, short iSymbolIndex, Point2D dpP0,

Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddEllipseEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0,
Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddEllipseEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As
Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddEllipseEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D; var
dpP1: Point2D; var dpP2: Point2D; var dpP3: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first end point on the major
axis.
dpP1 - the Point2D structure containing the coordinates to place the second end point on the
major axis.
dpP2 - the Point2D structure containing the coordinates to place the second end point on the
minor axis.
dpP3 - the Point2D structure containing the coordinates to place the second end point on the
minor axis.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddEllipticalArcEntity, VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing a Filtered
Entity List;Parsing an On Screen List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddEllipticalArcEntity
Version 1.2
Description Adds an elliptical arc entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddEllipticalArcEntity(short* iError, short iSymbolIndex, Point2D dpP0,

Point2D dpP1, Point2D dpP2, Point2D dpP3, Point2D dpP4, Point2D dpP5, Point2D dpP6);
extern "C" void WINAPI VCAddEllipticalArcEntityBP(short* iError, short iSymbolIndex, Point2D*
dpP0, Point2D* dpP1, Point2D* dpP2, Point2D* dpP3, Point2D* dpP4, Point2D* dpP5, Point2D*
dpP6);

Visual Basic: Declare Sub VCAddEllipticalArcEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iSymbolIndex As Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D,
dpP4 As Point2D, dpP5 As Point2D, dpP6 As Point2D)

Delphi: procedure VCAddEllipticalArcEntityBP(var iError: Integer; Integer; var dpP0: Point2D; var dpP1:
Point2D; var dpP2: Point2D; var dpP3 Point2D; var dpP4: Point2D; var dpP5: Point2D; var dpP6:
Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first end point on the major
axis on the ellipse.
dpP1 - the Point2D structure containing the coordinates to place the second end point on the
major axis on the ellipse.
dpP2 - the Point2D structure containing the coordinates to place the second end point on the
minor axis on the ellipse.
dpP3 - the Point2D structure containing the coordinates to place the second end point on the
minor axis on the ellipse.
dpP4 - the Point2D structure containing the coordinates to place the starting point for the arc
definition
dpP5 - the Point2D structure containing the coordinates to place the mid point for the arc
definition.
dpP6 - the Point2D structure containing the coordinates to place the second end point for the arc
definition

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddEllipseEntity, VCAddArcEntity, VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing a Filtered
Entity List;Parsing an On Screen List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddFillEntity
Version 1.2
Description Adds a fill entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddFillEntity(short* iError, short iSymbolIndex);
Visual Basic: Declare Sub VCAddFillEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer)
Delphi: procedure VCAddFillEntity(var iError: Integer; iSymbolIndex: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes VCAddFillEntity and VCAddHatchEntity allow hatch and fill boundaries to be specified by any
other entity types available in Corel Visual CADD. A hatch or fill entity is created by adding a
reference to the entity type, building the boundary from other entity types and the sorting the
boundary to finish the hatch or fill entity. VCSortCurrentHatchFillEntity forces Corel Visual CADD
to evaluate the input boundary entities for hatching or filling. The input entities must form a
closed boundary.

See Also VCAddHatchEntity, VCGetSymbolIndex, VCCreateSymbolDef, VCSetCurrentEntityPoint,
VCSetCurrentSelected. VCHatchSelected, VCFillSelected, VCSortCurrentHatchFillEntity

{button ,AL(`Adding a Continuous Entity;Adding a Hatch/Fill Entity;Database Operations;Duplicating an
Entity;Parsing a Filtered Entity List;Parsing the Database',0,`',`')} Task Guide Examples

VCAddHatchEntity
Version 1.2
Description Adds a hatch entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddHatchEntity(short* iError, short iSymbolIndex);
Visual Basic: Declare Sub VCAddHatchEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer)
Delphi: procedure VCAddHatchEntity(var iError: Integer; iSymbolIndex: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes VCAddFillEntity and VCAddHatchEntity allow hatch and fill boundaries to be specified by any
other entity types available in Corel Visual CADD. A hatch or fill entity is created by adding a
reference to the entity type, building the boundary from other entity types and the sorting the
boundary to finish the hatch or fill entity. VCSortCurrentHatchFillEntity forces Corel Visual CADD
to evaluate the input boundary entities for hatching or filling. The input entities must form a
closed boundary.

See Also VCAddFillEntity, VCGetSymbolIndex, VCCreateSymbolDef, VCSetCurrentEntityPoint,
VCSetCurrentSelected. VCHatchSelected, VCFillSelected , VCSortCurrentHatchFillEntity

{button ,AL(`Adding a Continuous Entity;Adding a Hatch/Fill Entity;Database Operations;Duplicating an
Entity;Parsing a Filtered Entity List;Parsing the Database',0,`',`')} Task Guide Examples

VCAddLeaderEntity
Version 1.2
Description Adds a leader entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddLeaderEntity(short* iError, short iSymbolIndex, Point2D* P, short

iPointCount);
Visual Basic: Declare Sub VCAddLeaderEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, P As Point2D, ByVal iPointCount As Integer)
Delphi: procedure VCAddLeaderEntity(var iError: Integer; iSymbolIndex: Integer; var P: Point2D;

iPointCount: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
P - a pointer to an array of Point2D structures containing the coordinates of each vertex on the
leader entity.
iPointCount - the number of items in the array P and the number of points contained in the
leader.

Notes Any leader added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current leader settings as found in the dimension and dimension text tabs of the settings
dialog for version prior to 2.0 or the leader tab in versions 2.0 and later. These properties should
be set before adding the entity or they may be changed after creation with the change
commands. All point locations including those within a symbol definition are relative to the
drawing origin. Each entity added will be appended to the end of the database and take on the
entity handle of one higher than the last entity in the drawing before the addition. To add
entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddAngularDimensionEntity, VCAddDiameterDimensionEntity , VCAddLinearDimensionEntity ,
VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Creating a Symbol;Loading a Symbol;Modifying a Symbol Definition',0,`',`')} Task Guide Examples

VCAddLine3D
Version 1.2
Description Add a 3D line to the drawing database that is not constrained to the z=0 plane.
Declaration
C/C++: extern "C" void WINAPI VCAddLine3D(short* iError, short iSymbolIndex, Point3D* dpP0, Point3D*

dpP1);
Visual Basic: Declare Sub VCAddLine3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As Integer,

dpP0 As Point3D, dpP1 As Point3D)
Delphi: procedure VCAddLine3D(var iError: Integer; iSymbolIndex: Integer; var dpP0: Point3D; var dpP1:

Point3D); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 -the Point3D structure containing the coordinates to place the starting point for the line
definition.
dpP1 - the Point3D structure containing the coordinates to place the ending point for the line
definition.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddLineEntity , VCAddPoint3D , VCAddPolygon3D, VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Parsing a Filtered Entity List;Parsing the
Database;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAddLinearDimensionEntity
Version 1.2
Description Adds a linear dimension entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddLinearDimensionEntity(short* iError, short iSymbolIndex, Point2D

dpP0, Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddLinearDimensionEntityBP(short* iError, short iSymbolIndex,
Point2D* dpP0, Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddLinearDimensionEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iSymbolIndex As Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddLinearDimensionEntityBP(var iError: Integer; Integer; var dpP0: Point2D; var
dpP1: Point2D; var dpP2: Point2D; var dpP3:Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the first dimension point.
dpP1 - the Point2D structure containing the coordinates to place the second dimension point.
dpP2 - the Point2D structure containing the coordinates to place the dimension line.
dpP3 - ignored.

Notes Any dimension added to the Corel Visual CADD drawing database or to a symbol definition
utilizes the current dimension settings from the dimension and dimension text tabs of the
settings dialog These properties should be set before adding the entity or they may be changed
after creation with the change commands. All point locations including those within a symbol
definition are relative to the drawing origin. Each entity added will be appended to the end of
the database and take on the entity handle of one higher than the last entity in the drawing
before the addition. To add entities to a symbol definition, the index of an existing symbol is
retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a
new symbol.

See Also VCAddAngularDimensionEntity, VCAddDiameterDimensionEntity , VCGetSymbolIndex,
VCCreateSymbolDef, VCDimGetDimMode

VCAddLineEntity
Version 1.2
Description Adds a line entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddLineEntity(short* iError, short iSymbolIndex, Point2D dpP0,

Point2D dpP1);
extern "C" void WINAPI VCAddLineEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0,
Point2D* dpP1);

Visual Basic: Declare Sub VCAddLineEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As
Integer, dpP0 As Point2D, dpP1 As Point2D)

Delphi: procedure VCAddLineEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D; var
dpP1: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates of the first endpoint.
dpP1 - the Point2D structure containing the coordinates of the second endpoint.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddLine3D, VCAddLineType, VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Applying Settings to an Entity;Parsing the
Database',0,`',`')} Task Guide Examples

VCAddLineType
Version 1.2
Description Creates a line type at the current line type index using the included array as the definition for

the line type as the specified line type name.
Declaration
C/C++: extern "C" short WINAPI VCAddLineType(short* iError, char* pName, short bCode, short

iDashCount, double* pDashes);
Visual Basic: Declare Function VCAddLineType Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName As String,

ByVal bCode As Integer, ByVal iDashCount As Integer, pDashes As Double) As Integer
Delphi: function VCAddLineType(var iError: Integer; pName: PChar; bCode: Integer; iDashCount: Integer;

var pDashes: Double):Integer; far;
Parameters pName - the name to be assigned to the line type.

bCode - determines whether the line a world scale or device scale.
1 - WORLD_SCALE.
2 - DEVICE_SCALE.
iDashCount - the number of dashes used and the size of the pDashes array.
pDashes - points to and array of double values representing each dash length.

Notes Corel Visual CADD line types use either a world scale or a device scale. Device line types will
always appear with the appropriate lengths regardless of the drawing view on screen or the print
size. World scale line types will always be displayed and printed to scale, that is a 1" dash
printed at ¼ scale will be ¼" long on paper. The pDashes array must contain dash lengths for
the line type in order they are to be drawn in the line. A positive value indicates a displayed (or
on) dash length while a negative value indicates a non-displayed (or off) dash length. These non-
displayed dash lengths can be thought of as an offset length from the end of the last dash
length to the beginning of the next dash length.

See Also VCAddLine3D, VCAddLineEntity

VCAddNamedLayer
Version 1.2
Description Names the current layer and returns the current layer index.
Declaration
C/C++: extern "C" short WINAPI VCAddNamedLayer(short* iError, char* pName);
Visual Basic: Declare Function VCAddNamedLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName As

String) As Integer
Delphi: function VCAddNamedLayer(var iError: Integer; pName: PChar):Integer; far;
Parameters pName - the name to assign to the current layer.

return - the layer index from 0 to 1024.
Notes The API provides two methods for naming layers in the active drawing. The first utilizes

VCAddNamedLayer and simply names the first layer in the list that has not already been named.
The function begins a parse on a 0 based layer index until the first non-named layer. It then
names the layer the given value and returns the index for the layer. This routine is generally
used when building a setup routine where the entire layer naming scheme is known up front.
The second method allows the application to apply a name to a specific layer. VCSetNamedLayer
takes a layer index as a parameter for naming. This operates more in hand with the Corel Visual
CADD interface since a user or application can pick the layer to name prior to the operation.

See Also VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetLayerIndex
VCGetLayerIndexFromName VCGetLayerNameFromIndex

VCAddPlotter
Version 2.0
Description Creates a new plotter definition for the direct plot list.
Declaration
C/C++: extern "C" void WINAPI VCAddPlotter(short* iError, char* szPlotterName);
Visual Basic: Declare Sub VCAddPlotter Lib "VCDLG32.DLL" (iError As Integer, ByVal szPlotterName As String)
Delphi: procedure VCAddPlotter(var iError: Integer; szPlotterName: PChar); far;
Parameters szPlotterName - the name of the plotter driver to add.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

If a plotter is not supported by drivers provided, an application or end user may create a new
driver form the plotters language control. This requires the user or application to name the new
driver being created. The actual plotter language strings are then defined through the API or
Corel Visual CADD interface.

See Also VCAddPlotterLanguageName, VCAddPlotterPageSize, VCAddPlotterPenMapName,
VCGetPlotterCount

VCAddPlotterLanguageName
Version 2.0
Description Adds a plotter language name to the direct plot routine.
Declaration
C/C++: extern "C" void WINAPI VCAddPlotterLanguageName(short* iError, char* szLanguageName);
Visual Basic: Declare Sub VCAddPlotterLanguageName Lib "VCDLG32.DLL" (iError As Integer, ByVal

szLanguageName As String)
Delphi: procedure VCAddPlotterLanguageName(var iError: Integer; szLanguageName: PChar); far;
Parameters szLanguageName - the plotter language name to add.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs to be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type

See Also VCAddPlotter, VCAddPlotterPageSize, VCAddPlotterPenMapName, VCGetPlotterCount

VCAddPlotterPageSize
Version 2.0
Description Adds a plotter page size from the direct plot options.
Declaration
C/C++: extern "C" void WINAPI VCAddPlotterPageSize(short* iError, Point2D* pPageSize);
Visual Basic: Declare Sub VCAddPlotterPageSize Lib "VCDLG32.DLL" (iError As Integer, pPageSize As Point2D)
Delphi: procedure VCAddPlotterPageSize(var iError: Integer; var pPageSize: Point2D); far;
Parameters szPageSize - the page size to add to the list.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine allows for custom page sizes to be defined with the VCAddPlotterPageSizeRoutine and
by the user through the Corel Visual CADD interface. These can be removed from the interface by the user or
through the API with VCRemovePlotterPageSize and added with VCAddPlotterPageSize. Custom page sizes
enhance the users control over vector output devices and allows the user or an application to set page
parameters suited to a desired output.

See Also VCAddPlotterLanguageName, VCAddPlotter, VCAddPlotterPenMapName, VCGetPlotterCount

VCAddPlotterPenMapName
Version 2.0
Description Adds a plotter pen map to the direct plot interface.
Declaration
C/C++: extern "C" void WINAPI VCAddPlotterPenMapName(short* iError, char* szPenMapName);
Visual Basic: Declare Sub VCAddPlotterPenMapName Lib "VCDLG32.DLL" (iError As Integer, ByVal

szPenMapName As String)
Delphi: procedure VCAddPlotterPenMapName(var iError: Integer; szPenMapName: PChar); far;
Parameters szPenMapName - the pen map name to add to the plotter list.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device. The pen map controls the color, speed and width setting for each pen used by
the plotter.

See Also VCAddPlotterLanguageName, VCAddPlotter, VCAddPlotterPageSize, VCGetPlotterCount

VCAddPoint3D
Version 1.2
Description Add a 3D point to the drawing database that is not constrained to the z=0 plane.
Declaration
C/C++: extern "C" void WINAPI VCAddPoint3D(short* iError, short iSymbolIndex, Point3D* dpP);
Visual Basic: Declare Sub VCAddPoint3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, dpP As Point3D)
Delphi: procedure VCAddPoint3D(var iError: Integer; iSymbolIndex: Integer; var dpP: Point3D); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point3D structure containing the coordinates to place the point definition.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAcadReadWith3D,VCAddLine3D, VCAddPolygon3D, VCGetSymbolIndex, VCCreateSymbolDef

VCAddPointEntity
Version 1.2
Description Adds a point entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddPointEntity(short* iError, short iSymbolIndex, Point2D dpP0);

extern "C" void WINAPI VCAddPointEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0);
Visual Basic: Declare Sub VCAddPointEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, dpP0 As Point2D)
Delphi: procedure VCAddPointEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the entity.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands.
Each entity added will be appended to the end of the database and take on the entity handle of
one higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddLineEntity, VCCreateSymbolDef, VCGetSymbolIndex, VCAddPoint3D

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity;Parsing an Expanded List;Parsing an On Screen
List;Parsing the Database',0,`',`')} Task Guide Examples

VCAddPolygon3D
Version 1.2
Description Add a 3D polygon to the drawing database that is not constrained to the z=0 plane.
Declaration
C/C++: extern "C" void WINAPI VCAddPolygon3D(short* iError, short iSymbolIndex, Point3D* dpP, short

iNumPnts);
Visual Basic: Declare Sub VCAddPolygon3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, dpP As Point3D, ByVal iNumPnts As Integer)
Delphi: procedure VCAddPolygon3D(var iError: Integer; iSymbolIndex: Integer; var dpP: Point3D;

iNumPnts: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP - a array of user defined Point3D structures.
lNumPnts - the number of points contained in the array.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. Once a polygon3D is added to the
drawing it contains no points and must have points added using VCSetCurrentEntityPoint3D. To
add entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef make an empty symbol definition for creating a
new symbol

See Also VCAddPoint3D , VCAddLine3D, VCCreateSymbolDef, VCGetSymbolIndex,
VCGetCurrentEntityPoint3D

VCAddPopupCommand
Version 1.2
Description Adds a command to right button pop-up menu used with the current tool.
Declaration
C/C++: extern "C" void WINAPI VCAddPopupCommand(char* szNativeCmd, short iPlacement);
Visual Basic: Declare Sub VCAddPopupCommand Lib "VCTOOL32.DLL" (ByVal szNativeCmd As String, ByVal

iPlacement As Integer)
Delphi: procedure VCAddPopupCommand(szNativeCmd: PChar; iPlacement: Integer); far;
Parameters szNativeCmd - the name of a command as defined in cmdext.def.

iPlacement - determines where in the menu to place the item.
0 - INSERT
1 - APPEND
2 - SEPARATOR

Notes While pop-up menus can be defined independently by the user, VCAddPopupCommand allows a
native command to be added to the pop-up of the currently active tool for only the current
session of that tool. When the tool is no longer active, any commands added to the tool will be
lost and need to be re-added if required for the next instance of that tool. If the pop-up needs to
be cleared of all default commands, VCDeletePopupMenu will remove all the existing defaults for
the current instance of the tool. VCDeletePopupMenu will not affect commands added with
VCAddPopupCommand. These commands only work on the current tool i.e. there must be a tool
active in order to add to or clear the contents of the pop-up menu.

See Also VCDeletePopupMenu

{button ,AL(`Creating a User Tool;Using the Corel Visual CADD Interface;Utilizing a Custom Interface',0,`',`')} Task
Guide Examples

VCAddRadialDimensionEntity
Version 1.2
Description Adds a radial dimension entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddRadialDimensionEntity(short* iError, short iSymbolIndex, Point2D

dpP0, Point2D dpP1, Point2D dpP2, Point2D dpP3);
extern "C" void WINAPI VCAddRadialDimensionEntityBP(short* iError, short iSymbolIndex,
Point2D* dpP0, Point2D* dpP1, Point2D* dpP2, Point2D* dpP3);

Visual Basic: Declare Sub VCAddRadialDimensionEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iSymbolIndex As Integer, dpP0 As Point2D, dpP1 As Point2D, dpP2 As Point2D, dpP3 As Point2D)

Delphi: procedure VCAddRadialDimensionEntityBP(var iError: Integer; Integer; var dpP0: Point2D; var
dpP1: Point2D; var dpP2: Point2D; var dpP3: Point2D); far;

Parameters iSymbolIndex - index location for adding the entity.
-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the center of the radius.
dpP1 - the Point2D structure containing the coordinates to place the endpoint of the radius.
dpP2 - the Point2D structure containing the coordinates to place the dimension line.
dpP3 - currently unused and will be ignored.

Notes Any dimension added to the Corel Visual CADD drawing database or to a symbol definition
utilizes the current dimension settings from the dimension and dimension text tabs of the
settings dialog These properties should be set before adding the entity or they may be changed
after creation with the change commands. All point locations including those within a symbol
definition are relative to the drawing origin. Each entity added will be appended to the end of
the database and take on the entity handle of one higher than the last entity in the drawing
before the addition. To add entities to a symbol definition, the index of an existing symbol is
retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a
new symbol.

See Also VCAddAngularDimensionEntity, VCAddDiameterDimensionEntity, VCAddLinearDimensionEntity ,
VCGetSymbolIndex, VCCreateSymbolDef

VCAddRefFrameEntity
Version 2.0
Description Adds a reference frame entity.
Declaration
C/C++ extern "C" void WINAPI VCAddRefFrameEntity(short* iError, short iSymbolIndex, Point2D* dpP0);
Visual Basic Declare Sub VCAddRefFrameEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, dpP0 As Point2D)
Delphi procedure VCAddRefFrameEntity(var iError: Integer; iSymbolIndex: Integer; var
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the reference frame.

Notes Reference frame entities enable a drawing file to be referenced or linked into another drawing.
The frames can be used to layout drawings for printing or to create overlay patterns. The
reference frame can be bound, data is not dynamic and is stored in the parent drawing, or
dynamic in which the referenced file is updated as changes are made to the original.

When linked, the files are represented by a relative path between the current file location and
the absolute path to the file. For example, if the current active drawing for an open VCD files is
"C:\VCADD\SAMPLES\THISFILE.VCD" and a file is referenced into this drawing located at an
absolute location of "C:\VCADD\LINKEDFILE.VCD" VCRelativePath will return the difference of the
paths. In this case it will return " ..\" or indication that the linked file is located back one
subdirectory.

The reference frame, the actual border around the linked file, behaves as a primitive entity with
color, rotation, scale and other properties. All these can be used to manipulate the frame for
displaying the desired data.

To add a reference frame, the application should first set a pointer to the file being referenced
with VCSetRefFrameName. VCAddRefFrameEntity will then reference this file in at the current
position.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

{button ,AL(`Adding a Reference Frame Entity',0,`',`')}    Task Guide Examples%!Alink(Adding a Reference Frame
Entity, , ,)

VCAddSplineEntity
Version 1.2
Description Add a spline entity to the drawing database without any points to allow data points to added

later.
Declaration
C/C++: extern "C" void WINAPI VCAddSplineEntity(short* iError, short iSymbolIndex);
Visual Basic: Declare Sub VCAddSplineEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer)
Delphi: procedure VCAddSplineEntity(var iError: Integer; iSymbolIndex: Integer); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.

Notes VCAddContinuousLineEntity, VCAddSplineEntity and VCAddContinuousBezierEntity allow for an
infinite number of points to be placed with the VCSetCurrentEntityPoint command instead of
through a parameter. Any entity added to the Corel Visual CADD drawing database or to a
symbol definition will take on the current properties for line type, color, layer, and width. These
properties should be set before adding the entity or they may be changed after creation with the
change commands. All point locations including those within a symbol definition are relative to
the drawing origin Each entity added will be appended to the end of the database and take on
the entity handle of one higher than the last entity in the drawing before the addition. To add
entities to a symbol definition, the index of an existing symbol is retrieved with
VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCAddArcEntity, VCAddBezierEntity, VCGetSymbolIndex, VCCreateSymbolDef,
VCAddContinuousBezierEntity

VCAddSymbolEntity
Version 1.2
Description Adds a symbol entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddSymbolEntity(short* iError, short iSymbolIndex, Point2D dpP0);

extern "C" void WINAPI VCAddSymbolEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0);
Visual Basic: Declare Sub VCAddSymbolEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex

As Integer, dpP0 As Point2D)
Delphi: procedure VCAddSymbolEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the entity.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCGetSymbolIndex, VCCreateSymbolDef VCGetSymName, VCGetSymbolName,
VCGetSymbolIndex

{button ,AL(`Creating a Symbol;Loading a Symbol;Parsing a Symbol Definition;Placing a Symbol;Symbol
Operations',0,`',`')} Task Guide Examples

VCAddSymbol3DEntity
Version 2.0
Description Adds a 3D symbol entity to the drawing or another symbol definition.
Declaration
C/C++ extern "C" void WINAPI VCAddSymbol3DEntity(short* iError, short iSymbolIndex, Point3D* dpP0);
Visual Basic Declare Sub VCAddSymbol3DEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex

As Integer, dpP0 As Point3D)
Delphi procedure VCAddSymbol3DEntity(var iError: Integer; iSymbolIndex: Integer; var
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point3D structure containing the coordinates to place the entity.

Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take
on the current properties for line type, color, layer, and width. These properties should be set
before adding the entity or they may be changed after creation with the change commands. All
point locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of one
higher than the last entity in the drawing before the addition. To add entities to a symbol
definition, the index of an existing symbol is retrieved with VCGetSymbolIndex while
VCCreateSymbolDef creates an empty definition for a new symbol.

See Also VCGetSym3DName , VCGetSym3DNormal , VCGetSym3DRot , VCGetSym3DScale

VCAddTextEntity
Version 1.2
Description Adds a text line entity to the drawing database or to a symbol definition.
Declaration
C/C++: extern "C" void WINAPI VCAddTextEntity(short* iError, short iSymbolIndex, Point2D dpP0);

extern "C" void WINAPI VCAddTextEntityBP(short* iError, short iSymbolIndex, Point2D* dpP0);
Visual Basic: Declare Sub VCAddTextEntityBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iSymbolIndex As

Integer, dpP0 As Point2D)
Delphi: procedure VCAddTextEntityBP(var iError: Integer; iSymbolIndex: Integer; dpP0: Point2D); far;
Parameters iSymbolIndex - index location for adding the entity.

-1 - NONDEFENTITY (Drawing)
-2 - HATCHFILLENTITY
> 0 - Use VCGetSymbolIndex to retrieve the symbol index for creating a symbol definition.
dpP0 - the Point2D structure containing the coordinates to place the text entity.

Notes Any text added to the Corel Visual CADD drawing database or to a symbol definition will take on
the current text properties for font, color, layer, size, spacing, justification, formatting and
aspect. The string to be added is set with VCSetTextString prior to placing the text line with
VCAddTextEntity. These all need to be set before creating these entities or may be changed after
creation with the text edit commands. All point locations including those within a symbol
definition are relative to the drawing origin. Each entity added will be appended to the end of
the database and take on the entity handle of one higher than the last entity in the drawing
before the addition. To add entities to a symbol definition, the index of an existing symbol is
retrieved with VCGetSymbolIndex while VCCreateSymbolDef creates an empty definition for a
new symbol.

See Also VCGetTextString, VCGetSymbolIndex, VCCreateSymbolDef

{button ,AL(`Adding a Text Entity;Applying Settings to an Entity;Parsing a Filtered Entity List;Parsing an On Screen
List;Retrieving Entity Properties',0,`',`')} Task Guide Examples

VCAngleToString
Version 1.2
Description Converts a supplied angle to a string formatted according to current angle display settings.
Declaration
C/C++ extern "C" short WINAPI VCAngleToString(short* iError, char* pS, double* pA);
Visual Basic Declare Function VCAngleToString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String, pA

As Double) As Integer
Delphi function VCAngleToString(var iError: Integer; pS: PChar; var pA: Double):Integer; far;
Parameters pS - the string returned by the function.

pA - the angle in radians to be formatted.
return - the number of characters in the formatted string.

Notes When displaying angles, the output must be in the same units as the user has set in the numeric
tab settings. This maintains a consistent look across applications and prevents user confusion
that may occur if several different display formats are used. The supplied angle must be in
radians, as is the case with all Corel Visual CADD API calls.

See Also VCStringToAngle, VCStringToAngle, VCDistToString, VCGetUnitConversionFactor

VCAppExit
Version 1.2
Description Alerts Corel Visual CADD that the application is exiting and initiates internal clean-up.
Declaration
C/C++ extern "C" void WINAPI VCAppExit(short* iError);
Visual Basic Declare Sub VCAppExit Lib "VCMAIN32.DLL" (iError As Integer)
Delphi procedure VCAppExit(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes VCAppExit is a general clean up routine utilized to free memory after the completion of a tool.

When running external application tool sets, memory from the API and the tool itself may not
always be cleared. For instance when creating a preview window with a drawing world one of the
five HDC available in Windows 3.1 will be used.    VCAppExit will alert Corel Visual CADD to
attempt any maintenance required to free up resources used by the external application.

See Also VCBeginOperation, VCEndOperation, VCAbortOperation, VCSetAlertApp, VCClearAlertApp

{button ,AL(`Creating a User Tool;Utilizing a Custom Interface',0,`',`')} Task Guide Examples

VCApplyPlotterLanguageDefaults
Version 2.0
Description Resets the direct plot language settings to the default values.
Declaration
C/C++ extern "C" void WINAPI VCApplyPlotterLanguageDefaults(short* iError);
Visual Basic Declare Sub VCApplyPlotterLanguageDefaults Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCApplyPlotterLanguageDefaults(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCGetPlotterLanguageCount, VCGetPlotterLanguageName, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMoveString,
VCGetPlotterPenUpString

VCApplyPlotterPenMapDefaults
Version 2.0
Description Resets the direct plot pen mapping settings to the default values.
Declaration
C/C++: extern "C" void WINAPI VCApplyPlotterPenMapDefaults(short* iError);
Visual Basic: Declare Sub VCApplyPlotterPenMapDefaultsLib "VCDLG32.DLL" (iError As Integer)
Delphi: procedure VCApplyPlotterPenMapDefaults(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCGetPlotterCurrentPenMapName

VCApplySettingsToCurrentEntity
Version 1.2.1
Description Forces all current applicable settings to be applied to the current entity.
Declaration
C/C++: extern "C" void WINAPI VCApplySettingsToCurrentEntity(short* iError);
Visual Basic: Declare Sub VCApplySettingsToCurrentEntity Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCApplySettingsToCurrentEntity(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes This subroutine provides an easy way to change the settings of the current entity without using

VCDuplicate. All settings that are used by the entity are applied while ignoring all others. The
current entity must first be set using VCFirstEntity, VCNextEntiy, VCFirstSelected,
VCNextSelected, VCFirstOnScreen, or VCNextOnScreen.

See Also VCDuplicate, VCFirstEntity, VCNextEntity, VCFirstSelected, VCNextSelected, VCFirstOnScreen,
VCNextOnScreen, VCChangeSelected, VCDuplicateWithTransform

{button ,AL(`Adding a Continuous Entity;Applying Settings to an Entity;Retrieving Entity Properties',0,`',`')} Task
Guide Examples

VCAuditUIDS
Version 2.0
Description Audits the Unique Entity Ids to ensure there are no duplicates.
Declaration
C/C++ extern "C" long WINAPI VCAuditUIDS(short* iError);
Visual Basic Declare Function VCAuditUIDS Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi function VCAuditUIDS(var iError: Integer):Longint; far;
Parameters No additional parameters are used with this subroutine.
Notes Each entity in Corel Visual CADD 2.0 maintains a unique entity identifier in order to track the

entity. This is in addition to the dynamic ENTITYHANDLE which changes as entities are deleted
and modified in the database. As entities are added to the drawing both an entity handle and a
UID are assigned to the entity. The entity handle will change as items are deleted and modified
on the database while the UID will remain constant. Whenever linking entities to external
databases or static arrays, the application should utilize the UID due to its unchanging value
with each entity. The entity handle is used when parsing the database or setting specific entities
within the drawing session. The UID can should be audited prior to any external storage in order
to ensure uniqueness in the ID.

See Also VCGetCurrentEntityUID

VCBeginOperation
Version 1.2
Description Marks the start of an operation where an undo level begins.
Declaration
C/C++: extern "C" void WINAPI VCBeginOperation(short* iError);
Visual Basic: Declare Sub VCBeginOperation Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCBeginOperation(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD provides a set of user tool functions to build and create tools not directly

supported in the interface. For example, a multi-line tool that automatically hatches or fills the
segments. Since this tool is not provided directly in the Corel Visual CADD interface, it must be
created through code to interact with the existing commands such as snaps and undo
operations. In order for the tools to respond appropriately to undo operations it should set undo
and redo levels during the operation. A complex entity tool, one that adds multiple entities such
as the multi-line example, can allow each individual entity or instead the entire operation to be
undone with a single user undo operation. This depends on the design criteria specified for the
application. The level of undo is set with the VCBeginOperation and VCEndOperation API
routines. An application should set the beginning of the undo level prior to adding any entities to
the drawing database and finish the tool with an end operation. In certain situations, the tool
may be aborted by the user typically by pressing the <ESC> key. An application should respond
appropriately by aborting the undo level to return it to the state prior to the user tool operation.
VCAbortOperation will handle this for the application. When used in conjunction with
VCBeginOperation and VCEndOperation, VCAbortOperation will discard all undo information
complied since the last VCBeginOperation. The VCEndOperation should be used to mark the end
of an undo level if the tool completes as designed, while the VCAbortOperation should be used
when the tool ends unexpectedly or if the user manually aborts the tool. VCAbortOperation
ensures that there is no residual undo information left.

See Also VCEndOperation, VCAbortOperation

{button ,AL(`Creating a User Tool',0,`',`')} Task Guide Examples

VCButton
Version 1.2
Description Send a mouse button click message to Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCButton(short iButton, short iState);
Visual Basic: Declare Sub VCButton Lib "VCMAIN32.DLL" (ByVal iButton As Integer, ByVal iState As Integer)
Delphi: procedure VCButton(iButton: Integer; iState: Integer); far;
Parameters iState - represents the up or down state, where 0 denotes and 1 denotes down.

iButton - the specific button number on the puck starting with 0 and ending with 15 to represent
a 16 button digitizer puck.

Notes This is analogous to the user pressing a button on the pointing device within Corel Visual CADD.
Depending on what script assignments have been made to each button, different events may
occur. Keep in mind that button 1 (number 0) and the right button (number 1 or 2 depending on
the mouse) have special meanings within Corel Visual CADD and will be interpreted as such.
These of course also depend on the cursor location in the drawing and the current, if any, active
commands.

See Also VCMouseMove, VCMouseMove2, VCLButtonDown, VCLButtonDown2

VCChangeSelected
Version 1.2
Description Changes all selected entities to the line attributes specified in EAttr
Declaration
C/C++: extern "C" void WINAPI VCChangeSelected(EAttr* ea);
Visual Basic: Declare Sub VCChangeSelected Lib "VCTOOL32.DLL" (ea As EAttr)
Delphi: procedure VCChangeSelected(var ea: EAttr); far;
Parameters EAttr - user defined type containing the entity properties.
Notes VCChangeSelected operates on all currently selected entities and immediately applies the line

properties defined in the EAttr parameter. For the structure of EAttr, see Appendix C.
See Also VCApplySettingsToCurrentEntity, VCDuplicate, VCDuplicateWithTransform, VCChangeSelected2

{button ,AL(`Duplicating an Entity with Transformation;Modifying Existing Entities',0,`',`')} Task Guide Examples

VCChangeSelected2
Version 2.0
Description Operate the same as VCChangeSelected except allows the current color setting to overwrite any

values.
Declaration
C/C++: extern "C" void WINAPI VCChangeSelected2(EAttr* ea, short iUseSymbolColor);
Visual Basic: Declare Sub VCChangeSelected2 Lib "VCTOOL32.DLL" (ea As EAttr, ByVal iUseSymbolColor As

Integer)
Delphi: procedure VCChangeSelected2(var ea: EAttr; iUseSymbolColor: Integer); far;
Parameters EAttr - user defined type containing the linetype properties used for the change.

IUseSymbolColor - determines if the current color setting is used or the setting in Eattr.
0 - do not change the color value.
1 - use the value supplied in EAttr.

Notes Symbols can be placed using the current color or maintain the colors used during creation.
VCChangeSelectd2 gives the option to adjust this color setting after the entity has been placed.
If on, the individual entity colors used when creating the symbol will be maintained otherwise
the current color setting is applied.

See Also VCApplySettingsToCurrentEntity, VCDuplicate, VCDuplicateWithTransformVCChangeSelected

{button ,AL(`Duplicating an Entity with Transformation;Modifying Existing Entities',0,`',`')} Task Guide Examples

VCChangeView
Version 2.0
Description Changes to another view of the active drawing.
Declaration
C/C++ extern "C" void WINAPI VCChangeView(short* iError, long hWnd_);
Visual Basic Declare Sub VCChangeView Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd_ As Long)
Delphi procedure VCChangeView(var iError: Integer; hWnd_: Longint); far;
Parameters hWnd - the Windows HWND containing the view.
Notes Corel Visual CADD allows for multiple views of a drawing. Each of these views is placed into a

separate MDI Window within the Corel Visual CADD frame. The view can be changed by moving
to the Window containing the desired view.

See Also VCNewView, VCFirstView , VCNextView

VCChangeView3D
Version 1.2
Description Moves the view eye position while maintaining the target position.
Declaration
C/C++: extern "C" void WINAPI VCChangeView3D(short* iError, short iCode, double dFact);
Visual Basic: Declare Sub VCChangeView3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iCode As Integer,

ByVal dFact As Double)
Delphi: procedure VCChangeView3D(var iError: Integer; iCode: Integer; dFact: Double);
Parameters iCode - determines the direction to move the viewers location.

0 - CHANGE_VIEW3D_LEFT
1 - CHANGE_VIEW3D_RIGHT
2 - CHANGE_VIEW3D_UP
3 - CHANGE_VIEW3D_DOWN
dFact - the distance to move in the specified direction.

Notes When creating 3D views of a drawing, three parameters are required: view type, eye location,
and viewed position. VCSetProjection3D determines the view type and thus how the lines will be
viewed in relation to each other, that is flat, parallel or perspective. VCSetView3D establishes
the absolute 3D coordinate of the viewers eye and thus the level of perspective exaggeration
used or the relative size of the view. VCChangeView3D can allow the users view point to be
moved incrementally in certain directions and thus creates a limited "walk-through"
functionality. 3D views can be viewed in wireframe or with Corel Visual CADD's built in quick
shading. VCSet3DDisplay provides the ability to view the drawing as a quick shade and
VCSet3DQShadeOptions determines the level of quick shade when the drawing is shaded.

See Also VCAddLine3D, VCAddPoint3D, VCAddPolygon3D, VCGetCurrentEntityNormal3D,
VCSet3DQShadeOptions, VCSet3DDisplay, VCSetView3D, VCSetProjection3D

VCChar
Version 1.2
Description Sends a text character to the Corel Visual CADD program to initiate two letter commands or for

coordinate entry. Acts as if user typed the characters directly through the Corel Visual CADD
interface.

Declaration
C/C++: extern "C" void WINAPI VCChar(short c);
Visual Basic: Declare Sub VCChar Lib "VCMAIN32.DLL" (ByVal c As Integer)
Delphi: procedure VCChar(c: Integer); far;
Parameters c - the ASCII equivalent of a character that is to be sent to the Corel Visual CADD command

parser.
Notes Any character sent to the command parser will be processed in whatever context it was

received. For example, two consecutive letters will be interpreted as a two letter key command,
a pair of coordinates will be seen as coordinate entry in the current tool and entry mode, and a
single number will be interpreted as a direct distance entry for the current tool. Be aware that
whatever has the focus at the time of the call will receive the character input, i.e. if a speedbar
is currently active, it will receive the input and not the command line.

See Also VCGetCMDStr

{button ,AL(`Creating a User Tool;Utilizing a Custom Interface',0,`',`')} Task Guide Examples

VCClearAlertApp
Version 1.2
Description Clears the hWnd from the messaging registry list.
Declaration
C/C++: extern "C" void WINAPI VCClearAlertApp(short* iError, HWND hWnd);
Visual Basic: Declare Sub VCClearAlertApp Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd As Integer)
Delphi: procedure VCClearAlertApp(var iError: Integer; hWnd: Integer); far;
Parameters hWnd - the HWND of the object to receive messages from Corel Visual CADD.
Notes To initialize the Windows messaging between Corel Visual CADD and an external application, the

hWnd of some control or object must be sent to Corel Visual CADD using VCSetAlertApp. When
registering the hWnd, the VCSetAlertApp code must specify which messages the application will
receive. These can be added together to get multiple messages. For example, a VCSetAlertApp
iCode of 12 would specify that the command line characters and abort messages would be sent
to Corel Visual CADD. To handle these messages, the application must have specific code to
handle a Windows message. In Visual BASIC this is handled by supplying code in the mousedown
event for the control for each mouse down message sent by Corel Visual CADD. Corel Visual
CADD is fairly intelligent about when to send this message and only send the message when a
drawing point has been selected. This means that the user can issue snaps or use tracking
without invoking the application code for the mousedown event. To retrieve the point the user
selected in the drawing area, use VCGetUserToolLBDown which sets a Point2D of the last point
picked. When trapping the user input, register the control with an iCode of either 0 (all
messages) or 8 and add code to the control for keypress. When the keypress code is activated
by the message from Corel Visual CADD, use VCGetCmdStr to retrieve the last keypress from
Corel Visual CADD. Once the keypress has been determined, the application can act according to
process the information or send it back for Corel Visual CADD to use with VCSetCmdStr. Once
the application has completed with the messaging, use VCClearAlertApp to remove the
application from the messaging registry.

See Also VCClearAlertApp, VCGetCmdStr, VCGetUserToolLBDown, VCSetAlertApp, VCSetUserTool

VCClearAlertAppDll
Version 2.0
Description Clears a DLL from the messaging registry.
Declaration
C/C++ extern "C" void WINAPI VCClearAlertAppDll(short* iError, char* DllName, char* NativeCmd);
Visual Basic Declare Sub VCClearAlertAppDll Lib "VCMAIN32.DLL" (iError As Integer, ByVal DllName As String,

ByVal NativeCmd As String)
Delphi procedure VCClearAlertAppDll(var iError: Integer; DllName: PChar; NativeCmd:
Parameters DLLName - the name of the DLL to register.

NativeCmd - the native command name used to reference the tool operation.
Notes A new option available to version 2.0 of Corel Visual CADD is to make tools and interfaces in

dynamic link libraries (DLL's). This interface to Corel Visual CADD provides all the functionality of
the message based EXE tools that were used with version 1.x. Some advantages to DLL's over
EXE are: a DLL shares the same memory space as Corel Visual CADD, once loaded into memory,
a DLL will stay in memory until Corel Visual CADD closes, code can be run on load and different
code can be run each time a function is called, no interface or HWND are required, no checking
is required to see if Corel Visual CADD is running since it is the one calling the DLL, and several
tools can be in one DLL without command line options necessary for EXE to achieve the same
functionality.

Any tool is made up of several functions that handle each of the events passed by Corel Visual
CADD. The old way was to use VCSetAlertApp to register a list of messages your user tool
needed in order to function properly. This was limiting in many development languages like
Visual BASIC because only certain controls could receive the needed messages and even those
controls were limited by the number of messages they could handle. Even if all the needed
messages were available they could accidentally be triggered if the interface was displayed on
screen. Now, VCSetAlertAppDLL registers a group of exported functions in a DLL to be used
instead relying on message handlers.

See Also VCClearAlertApp, VCSetAlertApp, VCSetAlertAppDll

VCClearDrawing
Version 1.2
Description Clears the referenced drawing world after prompting the user for verification.
Declaration
C/C++: extern "C" void WINAPI VCClearDrawing(WORLDHANDLE hW);
Visual Basic: Declare Sub VCClearDrawing Lib "VCTOOL32.DLL" (ByVal hW As Long)
Delphi: procedure VCClearDrawing(hW: Longint); far;
Parameters hW - the WORLDHANDLE to reference open drawing worlds.
Notes Clears the referenced drawing creating a "blank slate" for the user. The command erases all the

entities in the drawing but maintains the current settings. The user is prompted for verification
when VCClearDrawing is used, while with VCClearDrawingNoPrompt they are not. The drawing
handle can be retrieved with a VCGetCurrWorld function.

See Also VCClearDrawingNoPrompt, VCGetCurrWorld, VCNewWorld, VCIsDrawingDirty

VCClearDrawingNoPrompt
Version 1.2
Description Initiates command to clear the current drawing of all entities. Will not prompt user to verify the

command.
Declaration
C/C++: extern "C" void WINAPI VCClearDrawingNoPrompt(WORLDHANDLE hW);
Visual Basic: Declare Sub VCClearDrawingNoPrompt Lib "VCTOOL32.DLL" (ByVal hW As Long)
Delphi: procedure VCClearDrawingNoPrompt(hW: Longint); far;
Parameters hW - the WORLDHANDLE to reference open drawing worlds.
Notes Clears the referenced drawing creating a "blank slate" for the user. The command erases all the

entities in the drawing but maintains the current settings. Unlike the VCClearDrawing routine,
the user is not prompted for verification. The drawing handle can be retrieved with a
VCGetCurrWorld function.

See Also VCClearDrawing, VCGetCurrWorld, VCNewWorld, VCIsDrawingDirty, VCDestroyWorld

VCClearLayerProperties
Version 2.0.1
Description Clears all the layer property settings for the input layer.
Declaration
C/C++ extern "C" void WINAPI VCClearLayerProperties(short* iError, short iLayer);
Visual Basic Declare Sub VCClearLayerProperties Lib "VCMAIN32.DLL" (iError As Integer, ByVal iLayer As

Integer)
Delphi procedure VCClearLayerProperties(var iError: Integer; iLayer: Integer); far;
Parameters iLayer - the layer index to clear from 0 to 1023.
Notes Layer properties were introduced into v2.0.1 allowing properties to be assigned by layer rather

than by entity. For example, a layer can be set so all entities drawn on the layer will be a specific
color, line type and line width. This will override the current properties settings when active.
VCGetUseByLayerProperties is used to determine if the layer has active property settings while
VCSetUseByLayerProperties allows an application to choose which properties to use.
VCSetLayerProperties will set the values for the layer and VCClearLayerProperties turns the
capability off and clears all associated values. It is important to keep track of the state of layer
properties when modifying entities in the drawing. For example, if you set the color index using
VCSetColorIndex but the layer properties are enabled the proper color may not get applied.
Therefore when attempting to control the properties of entities as they are placed it is
imperative that the application monitor the setting for by layer control as the information is
being supplied by the API.

See Also VCGetLayerProperties, VCLayerHasProperties

VCClose
Version 1.2
Description Closes the drawing specified by the input handle.
Declaration
C/C++: extern "C" void WINAPI VCClose(WORLDHANDLE hW);
Visual Basic: Declare Sub VCClose Lib "VCMAIN32.DLL" (ByVal hW As Long)
Delphi: procedure VCClose(hW: Longint); far;
Parameters hW - the WORLDHANDLE to reference open drawing worlds.
Notes All opened drawings are referenced by an internal world handle. This handle can be retrieved by

VCGetCurrWorld as each drawing screens receive focus. VCClose utilizes this handle to prompt
the user if they want to save the file and then close the file with the current focus.

See Also VCGetCurrWorld, VCNewWorld, VCDestroyWorld

VCComputeArcMid
Version 1.2
Description Calculates the midpoint of an arc-length that lies on the arc.
Declaration
C/C++: extern "C" void WINAPI VCComputeArcMid(Point2D* dpC, Point2D* dpP0, Point2D* dpP2,

Point2D* dpPreviousMid, Point2D* dpRet);
Visual Basic: Declare Sub VCComputeArcMid Lib "VCMAIN32.DLL" (dpC As Point2D, dpP0 As Point2D, dpP2 As

Point2D, dpPreviousMid As Point2D, dpRet As Point2D)
Delphi: procedure VCComputeArcMid(var dpC: Point2D; var dpP0: Point2D; var dpP2: Point2D; var

dpPreviousMid: Point2D; var dpRet: Point2D); far;
Parameters dpC - the center point of the arc.

dpP0 - the first endpoint of the arc.
dpP1 - the second endpoint of the arc.
dpPreviousMid - a pick point for locating the midpoint.
dpRet - the returned midpoint

Notes When constructing an arc in code, the endpoint and midpoint of the arc are not always available.
VCComputeArcMid takes the endpoints and center point of the arc to calculate the midpoint
location. The resulting points can then be used directly by the VCAddArcEntity routine to add the
curve to the drawing database.

See Also VCAddArcEntity, VCAddEllipticalArcEntity, VCComputeIntersection

VCComputeIntersection
Version 1.2
Description Calculates the intersection of two entities closest to a specified point.
Declaration
C/C++: extern "C" void WINAPI VCComputeIntersection(short* iError, ENTITYHANDLE l0, ENTITYHANDLE

l1, Point2D* dpPick, Point2D* dpIntersect);
Visual Basic: Declare Sub VCComputeIntersection Lib "VCMAIN32.DLL" (iError As Integer, ByVal l0 As Long,

ByVal l1 As Long, dpPick As Point2D, dpIntersect As Point2D)
Delphi: procedure VCComputeIntersection(var iError: Integer; l0: Longint; l1: Longint; var dpPick:

Point2D; var dpIntersect: Point2D); far;
Parameters l0 - the entityhandle of the first entity.

l1 - the entityhandle of the second entity.
dpPick - the point close to the desired intersection.
dpIntersect - returned as the calculated intersection.

Notes VCComputeIntersection will calculate the intersection of any non-linear entities in the database.
The dpPick point is needed in order to narrow the search and to specify which intersection
should be returned in the case of entities such as circles and curves which may intersect in more
than one location.

See Also VCComputeArcMid, VCComputeSplineTangentPoints, VCSnapInt

VComputeSplineTangentPoints
Version 1.2
Description Calculates the spline tangent points given an array of points on the curve.
Declaration
C/C++: extern "C" void WINAPI VComputeSplineTangentPoints(short* iError, Point2D* pInput, short

iCount, Point2D* pOutput, short* iOutCount);
Visual Basic: Declare Sub VComputeSplineTangentPoints Lib "VCMAIN32.DLL" (iError As Integer, pInput As

Point2D, ByVal iCount As Integer, pOutput As Point2D, iOutCount As Integer)
Delphi: procedure VComputeSplineTangentPoints(var iError: Integer; var pInput Point2D; iCount: Integer;

var pOutput: Point2D; var iOutCount: Integer); far;
Parameters pInput-the input array of points on the curve.

ICount - the count for thenumber of input points.
POutput - the returned array of points for the spline curves.
IOutCount - the returned count number.

Notes To define a spline curve it is necessary to provide the tangent points corresponding to the vertex
points on the curve. VCComputeSplineTangentPoint calculates these tangent construction points
based on the input point array. The routine returns an array of points with two defined tangent
points for every input point on the curve.

See Also VCComputeArcMid, VCComputeIntersection

VCCreateGraphicsHandle
Version 2.0
Description Creates a GRAHICSHANDLE for parsing inside complex entities.
Declaration
C/C++ extern "C" GRAPHICHANDLE WINAPI VCCreateGraphicHandle(short* iError);
Visual Basic Declare Function VCCreateGraphicHandle Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi function VCCreateGraphicHandle(var iError: Integer):Longint; far;
Parameters return - the GRAPHICHANDLE created used for parsing operations.
Notes Some entities defined by several graphical objects, hatch patterns, fills, line types and fonts. For

instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also VCDeleteGraphicsHandle, VCIsGraphic, VCFirstGraphic, VCNextGraphic

VCCreateMDIWindow
Version 1.2
Description Creates a new MDI drawing window within the Corel Visual CADD program frame.
Declaration
C/C++: extern "C" vbool WINAPI VCCreateMDIWindow(short* iError, short iNewMDIWindow);
Visual Basic: Declare Function VCCreateMDIWindow Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iNewMDIWindow As Integer) As Integer
Delphi: function VCCreateMDIWindow(var iError: Integer; iNewMDIWindow: Integer):Boolean; far;
Parameters iNewMDIWindow - determines whether to force the creation of the window.

0 - create only if there is no existing window or if it already has drawing information.
1 - create new window regardless of current window or drawing state.

Notes When opening or creating a new drawing, it is necessary to create a new MDI window in which
Corel Visual CADD creates the new drawing world. If a new MDI window is not created, all edits or
drawings opened will be placed in or on top of any existing drawing information.

See Also VCLoadDrawing, VCNewWorld, VCDestroyWorld

{button ,AL(`Utilizing a Custom Interface',0,`',`')} Task Guide Examples

VCCreateOleClass
Version 2.0
Description Creates a class from an OLE DLL.
Declaration
C/C++ extern "C" long WINAPI VCCreateOleClass(short* iError, char* OleDllName, char* OleClassName);
Visual Basic Declare Function VCCreateOleClass Lib "VCMAIN32.DLL" (iError As Integer, ByVal OleDllName As

String, ByVal OleClassName As String) As Long
Delphi function VCCreateOleClass(var iError: Integer; OleDllName: PChar;OleClassName:

PChar):Longint; far;
Parameters OleDllName - the name of the OLE DLL.

OleClassName - the class name to create.
returns - an index for the created class.

Notes An application can be created as an EXE, a Windows DLL or an OLE DLL. Each has advantages in
functionality and interaction with the CAD engine. In addition, each is accessed through the
Corel Visual CADD interface in different methods. An OLE DLL is a specialized link library
containing methods and classes for controlling various operations. These DLL are specifically
related to Visual Basic programmers. The OLE class allows a developer to create a class member
function that can be directly run from the Corel Visual CADD interface allowing an application to
take advantage of the performance increase associated with a DLL. In order to access this
functionality the DLL and the class must be registered. VCCreateOLEClass registers the DLL and
class. VCInvokeMethod will invoke the DLL method and VCDeleteOleClass will delete the
registered DLL and class.

See Also VCDeleteOleClass, VCOleClassMethodInvoke

VCCreateSymbolDef
Version 1.2
Description Creates a new empty definition for building a symbol by adding entities.
Declaration
C/C++: extern "C" short WINAPI VCCreateSymbolDef(short* iError, char* pName);
Visual Basic: Declare Function VCCreateSymbolDef Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName As

String) As Integer
Delphi: function VCCreateSymbolDef(var iError: Integer; pName: PChar):Integer; far;
Parameters pName - the name of the symbol.

returns - the symbol index number.
Notes To create a new symbol from an external application, it is first necessary to create an empty

symbol definition using VCCreateSymbolDef. VCCreateSymbolDef returns a symbol index which
is be used by all the add entity routines that are used to build the symbol.

See Also VCGetSymbolIndex, VCGetSymName, VCGetSymbolName

{button ,AL(`Creating a Symbol;Loading a Symbol;Parsing a Symbol Definition;Placing a Symbol;Symbol
Operations',0,`',`')} Task Guide Examples

VCCreateSymbolFromSelection
Version 2.0
Description Creates a symbol from the selected entities.
Declaration
C/C++ extern "C" void WINAPI VCCreateSymbolFromSelection(short* iError, char* szName, Point2D

dpP);
Visual Basic Declare Sub VCCreateSymbolFromSelection Lib "VCMAIN32.DLL" (iError As Integer, ByVal

szName As String, dpP As Point2D)
Delphi procedure VCCreateSymbolFromSelection (var iError: Integer; pName: PChar; var dpP: Point2D);

far;
Parameters szName - the internal name to use for the symbol.

dpP - the handle point for the symbol.
Notes The API provides several methods for creating a symbol definition. The first method is to use

VCCreateSymbolDef and then add entities to the new definition. This works well in situations
where the symbol is being created externally from a set of parameters. In certain situation it is
necessary to build the symbol from entities already existing in the drawing database. In these
cases an application can actually parse the definition and recreate the symbol by adding the
appropriate entities. This generally is not desirable as the application must build cases for each
possible entity type. VCCreateSymbolFromSelection allows an application to directly build the
symbol form a selection set of existing entities. The application can select the entities through
code with VCSetCurrentSelected or as a result of user action. In either case the symbol is then
built internally with the given name and handle placement point.

See Also VCCreateSymbolDef

VCCrossingSelect
Version 1.2
Description Selects any objects passing through or contained entirely in the specified window.
Declaration
C/C++: extern "C" void WINAPI VCCrossingSelect(Point2D* dpP0, Point2D* dpP1);
Visual Basic: Declare Sub VCCrossingSelect Lib "VCMAIN32.DLL" (dpP0 As Point2d, dpP1 As Point2d)
Delphi: procedure VCCrossingSelect(var dpP0: Point2D; var dpP1: Point2D); far;
Parameters dpP0 - the coordinates of one corner of the window.

dpP1 - the coordinates of the second corner of the window.
Notes Operates the same as the select crossing tool except allows for input points from the external

application. The application can process the points from a mouse down event or code in the
coordinates for the selection routine.

See Also VCSelectCrossing, VCWindowSelect

VCDeInitPrintMode
Version 2.0
Description De-Initializes the print routines for use outside the Corel Visual CADD interface.
Declaration
C/C++ extern "C" void WINAPI VCDeInitPrintMode(short* iError);
Visual Basic Declare Sub VCDeInitPrintMode Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCDeInitPrintMode(var iError: Integer); far;
Parameters No additional parameters are used for this subroutine.
Notes When creating a custom interface that utilizes the Corel Visual CADD print routines, an

application must initialize the mode on start and terminate it on close. The API provides access
to the both the print and plot dialogs in which Corel Visual CADD handles all the output as if it
were part of the interface by simply displaying the built in dialogs. The second method allows
the application to create all the command and bypass the Corel Visual CADD interface. When
using the first dialog method simply use VCInitDialogs and VCTerminateDialogs. When using the
second method the initialization is handled by VCInitPrintMode and the de-initialization is
handled by VCDeInitPrintMode.

See Also VCInitPrintMode

VCDeleteCurrentEntityUserData
Version 1.2
Description Deletes the user data record at the specified index.
Declaration
C/C++: extern "C" void WINAPI VCDeleteCurrentEntityUserData(short* iError, short iIndex);
Visual Basic: Declare Sub VCDeleteCurrentEntityUserData Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex

As Integer)
Delphi: procedure VCDeleteCurrentEntityUserData(var iError: Integer; iIndex: Integer); far;
Parameters iIndex - the index number within the current entity where the data is stored.
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with other applications data. VCSetUserDataName is
provided for this purpose, while VCGetUserDataName checks the current user data name. The
name needs to be set only one time before adding any user data. The
VCAddCurrentEntityUserData* calls always append the new variable as the last user data
variable. The VCSetCurrentEntityUserData* calls add the user data variable to the index
specified in the call, provided that there are indeed that many indices already attached, and will
overwrite any existing user data at that index. User data may also be attached to the drawing
header by using VCSetHeaderUserData and then attaching the appropriate user data. Once
VCNextEntity or any other current entity selections are used, the user data calls will again be
used on the current entity. VCDeleteCurrentEntityUserData deletes the user data from the
current entity.

See Also VCAddCurrentEntityUserDataByte, VCAddCurrentEntityUserDataDouble ,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong ,
VCAddCurrentEntityUserDataShort, VCAddCurrentEntityUserDataChunk, VCSetCurrentEntity,
VCSetHeaderUserData, VCFirstEntity, VCNextEntity

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCDeleteGraphicsHandle
Version 2.0
Description Creates a GRAHICSHANDLE after parsing inside complex entities.
Declaration
C/C++ extern "C" void WINAPI VCDeleteGraphicHandle(short* iError, GRAPHICHANDLE hG);
Visual Basic Declare Sub VCDeleteGraphicHandle Lib "VCMAIN32.DLL" (iError As Integer, ByVal hG As Long)
Delphi procedure VCDeleteGraphicHandle(var iError: Integer; hG: Longint); far;
Parameters hG - the GRAPHICSHANDLE to delete.
Notes Some entities defined by several graphical objects, hatch patterns, fills, line types and fonts. For

instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also VCCreateGraphicsHandle, VCIsGraphic, VCFirstGraphic, VCNextGraphic

VCDeleteOleClass
Version 2.0
Description Creates a class from an OLE DLL.
Declaration
C/C++ extern "C" void WINAPI VCDeleteOleClass(short* iError, long id);
Visual Basic Declare Sub VCDeleteOleClass Lib "VCMAIN32.DLL" (iError As Integer, ByVal id As Long)
Delphi procedure VCDeleteOleClass(var iError: Integer; id: Longint); far;
Parameters id - the internal ID given to the OLE class with VCCreateOleClass.
Notes An application can be created as an EXE, a Windows DLL or an OLE DLL. Each has advantages in

functionality and interaction with the CAD engine. In addition, each is accessed through the
Corel Visual CADD interface in different methods. An OLE DLL is a specialized link library
containing methods and classes for controlling various operations. These DLL are specifically
related to Visual Basic programmers. The OLE class allows a developer to create a class member
function that can be directly run from the Corel Visual CADD interface allowing an application to
take advantage of the performance increase associated with a DLL. In order to access this
functionality the DLL and the class must be registered. VCCreateOLEClass registers the DLL and
class. VCInvokeMethod will invoke the DLL method and VCDeleteOleClass will delete the
registered DLL and class.

See Also VCCreateOleClass, VCOleClassMethodInvoke

VCDeletePopupMenu
Version 1.2
Description Toggles the display of the default commands on the current tools pop-up menu.
Declaration
C/C++: extern "C" void WINAPI VCDeletePopupMenu(vbool tf);
Visual Basic: Declare Sub VCDeletePopupMenu Lib "VCTOOL32.DLL" (ByVal tf As Integer)
Delphi: procedure VCDeletePopupMenu(tf: Boolean); far;
Parameters tf - set according to whether the default pop-up commands should be displayed.

0 - do not display.
1 - display the default commands.

Notes While pop-up menus can be defined independently by the user, VCAddPopupCommand allows a
native command to be added to the pop-up menu of the currently active tool for only the current
session of that tool. When the tool is no longer active, any commands added to the tool will be
lost and need to be re-added if required for the next instance of that tool. If the pop-up needs to
be cleared of all default commands, VCDeletePopupMenu will remove all the existing defaults for
the current instance of the tool. VCDeletePopupMenu will not affect commands added with
VCAddPopupCommand. Remember that these commands only work on the current tool i.e. there
must be a tool active in order to add to or delete the contents of the pop-up menu.

See Also VCAddPopupCommand, Custimizing Corel Visual CADD, Custimizing Mouse Menus

{button ,AL(`Creating a User Tool;Using the Corel Visual CADD Interface',0,`',`')} Task Guide Examples

VCDestroyWorld
Version 1.2
Description Destroys a drawing world and frees allocated memory.
Declaration
C/C++: extern "C" void WINAPI VCDestroyWorld(WORLDHANDLE hW);
Visual Basic: Declare Sub VCDestroyWorld Lib "VCMAIN32.DLL" (ByVal hW As Long)
Delphi: procedure VCDestroyWorld(hW: Longint); far;
Parameters hW - the worldhandle of the world to be destroyed.
Notes When a world is created, whether for another MDI window or for a window in another

application, a handle is created for referencing the drawing. When the window is removed the
world must be destroyed in order to free its memory by calling VCDestroyWorld. When a world is
created via VCNewWorld, a WORLDHANDLE is returned and should be used when you need to
destroy the drawing world.

See Also VCNewWorld, VCGetCurrWorld

{button ,AL(`Creating a User Tool;Using the Corel Visual CADD Interface;Utilizing a Custom Interface',0,`',`')} Task
Guide Examples

VCDimDirectionMode
Version 2.0
Description The dimension direction is the orientation used when measuring a distance and drawing a

dimension line.
Declaration
C/C++ extern "C" void WINAPI VCDimDirectionMode(short iMode);
Visual Basic Declare Sub VCDimDirectionMode Lib "VCMAIN32.DLL" (ByVal iMode As Integer)
Delphi procedure VCDimDirectionMode(iMode: Integer); far;
Parameters i - the value of the dimension line direction.

1 - DIMALIGNED
2 - DIMHORIZONTAL
3 - DIMVERTICAL
4 - DIMATANANGLE

Notes Measured distances are projected onto the dimension direction. Horizontal - Only the horizontal
component of the entity is measured. Vertical - Only the vertical component of the entity is
measured. Aligned - The dimension line is placed parallel to the entity. Aligned dimensions
always represent the true length of the entity. Angle - Sets the dimension to a specified angle.
The distance measured is the length of the entity projected onto the defined angle.

See Also VCGetDimLineAngleVCGetDimLineDirect

VCDimGetDimMode
VCDimSetDimMode

Version 1.2
Description Determine whether dimensions are to be placed as individual dimension, cumulative dimension,

or as a partitioned dimension, and how grouped dimensions are related.
Declaration
C/C++: extern "C" short WINAPI VCDimGetDimMode(short* iError);

extern "C" void WINAPI VCDimSetDimMode(short* iError, short b);
Visual Basic: Declare Function VCDimGetDimMode Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

Declare Sub VCDimSetDimMode Lib "VCMAIN32.DLL" (iErr As Integer, ByVal b As Integer)
Delphi: function VCDimGetDimMode(var iError: Integer):Integer; far;

procedure VCDimSetDimMode(var iError: Integer; b: Integer); far;
Parameters b - the mode value.

1 - DIMMODESINGLE
2 - DIMMODECUMULATIVE
3 - DIMMODEPARTITIONED

Notes Single dimensions are placed one at a time, as individual entities. Once a single dimension is
placed, the dimension command is completed. Cumulative places a sequence of dimensions,
each originating from the same point or baseline. Partitioned places a string or chain of
connected dimensions, placed end-to-end. Dimension lines are collinear for the entire chain.

See Also VCGetDimLineDirect, VCDimGetDimExtStretch, VCDimGetDimProximity,
VCAddLinearDimensionEntity, VCAddAngularDimensionEntity

VCDimGetDimExtStretch
VCDimSetDimExtStretch

Version 1.2
Description Stretches the below section of the extension line to fill the gap between the Offset distance and

the dimension line.
Declaration
C/C++: extern "C" short WINAPI VCDimGetDimExtStretch(short* iError);

extern "C" void WINAPI VCDimSetDimExtStretch(short* iError, short b);
Visual Basic: Declare Function VCDimGetDimExtStretch Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCDimSetDimExtStretch Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCDimGetDimExtStretch(var iError: Integer):Integer; far;

procedure VCDimSetDimExtStretch(var iError: Integer; b: Integer); far;
Parameters b - extension stretch status

0 - No Stretch
1 - Stretch

See Also VCAddLinearDimensionEntity, VCDimGetDimProximity, VCGetDimExtAbove, VCGetDimExtBelow,
VCGetDimExtOffset, VCGetUnitConversionFactor

VCDimGetDimProximity
VCDimSetDimProximity

Version 1.2
Description Once turned on, dimension lines are placed a fixed distance away from the dimensioned object

equal to the Below distance plus the Offset distance.
Declaration
C/C++: extern "C" short WINAPI VCDimGetDimProximity(short* iError);

extern "C" void WINAPI VCDimSetDimProximity(short* iError, short b);
Visual Basic: Declare Function VCDimGetDimProximity Lib "vcmain32.dll" (iError As Integer) As Integer

Declare Sub VCDimSetDimProximity Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCDimGetDimProximity(var iError: Integer):Integer; far;

procedure VCDimSetDimProximity(var iError: Integer; b: Integer); far;
Parameters b - dimension proximity status

0 - on.
1 - off.

See Also VCDimGetDimExtStretch, VCGetDimtExtAbove, VCGetDimExtBelow, VCGetDimExtOffset

VCDispatchCommand
Version 2.0
Description Sends the current command value to Corel Visual CADD.
Declaration
C/C++ extern "C" void WINAPI VCDispatchCommand();
Visual Basic Declare Sub VCDispatchCommand Lib "VCTOOL32.DLL" ()
Delphi procedure VCDispatchCommand; far;
Parameters No additional parameters are used in this routine.
Notes All command entries and direct entry point values are entered through the Corel Visual CADD

command line. Normally, as commands are entered in the interface Corel Visual CADD
automatically recognizes and dispatches these to the appropriate command sequence. When
working through the API an application can force the command through the event handler with
VCDispatchCommand and VCDispatchPoint. The application sets the command sequence with
VCSetCmdStr and then forces the entry with these commands. Typically, the API will recognize
the command entry and not need to be forced.

See Also VCDispatchNextPoint, VCGetCmdStr

VCDispatchNextPoint
Version 2.0
Description Sends the current point to Corel Visual CADD.
Declaration
C/C++ extern "C" void WINAPI VCDispatchNextPoint();
Visual Basic Declare Sub VCDispatchNextPoint Lib "VCTOOL32.DLL" ()
Delphi procedure VCDispatchNextPoint; far;
Parameters No additional parameters are used in this routine.
Notes All command entries and direct entry point values are entered through the Corel Visual CADD

command line. Normally, as commands are entered in the interface Corel Visual CADD
automatically recognizes and dispatches these to the appropriate command sequence. When
working through the API an application can force the command through the event handler with
VCDispatchCommand and VCDispatchPoint. The application sets the command sequence with
VCSetCmdStr and then forces the entry with these commands. Typically, the API will recognize
the command entry and not need to be forced.

See Also VCDispatchNextCommand, VCGetCmdStr

VCDistToString
Version 1.2
Description Converts a given distance to a formatted string.
Declaration
C/C++: extern "C" short WINAPI VCDistToString(short* iError, char* pS, double* pD);
Visual Basic: Declare Function VCDistToString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String, pD

As Double) As Integer
Delphi: function VCDistToString(var iError: Integer; pS: PChar; var pD: Double):Integer; far;
Parameters pS - the returned string.

pD - the distance.
Returns - the number of characters in the returned string.

Notes When displaying distances, the output must be in the same units as the user has set in the
numeric settings tab. This maintains a consistent look across applications and prevents user
confusion that may occur if several different display formats are used. The supplied distance
must be in inches, as is the case with all Corel Visual CADD API calls. Remember to use
VCGetUnitConversionFactor to return a multiplier that can be used to convert the values based
on the current unit setting in Corel Visual CADD. VCDistToString returns the number of
chararacters in a distance string.

See Also VCStringToAngle, VCStringToAngle, VCStringToDist, VCGetUnitConversionFactor

VCDllRun
Version 2.0
Description Runs the function in a specified DLL.
Declaration
C/C++ extern "C" void WINAPI VCDllRun(short* iError, char* DllName, char* FunctionName, char*

CommandLine);
Visual Basic Declare Sub VCDllRun Lib "VCMAIN32.DLL" (iError As Integer, ByVal DllName As String, ByVal

FunctionName As String, ByVal CommandLine As String)
Delphi procedure VCDllRun(var iError: Integer; DllName: PChar; FunctionName: PChar;
Parameters DllName - the name of the DLL

FunctionName - the name of the function within the DLL
CommandLine - the command line argument for the function. This can be NULL.

Notes Corel Visual CADD    supports applications written as a DLL directly in the interface. This allows
applications to be built as general tool sets into a DLL with exported functions. In the Corel
Visual CADD interface these routines can then be accessed by the end user through assigning a
script. The exported functions can have only a character string command line.

See Also VCGetExeName, VCRunNested, VCRun

VCDrawCurrentEntity

Version 1.2
Description Forces the current entity to be drawn.
Declaration
C/C++: extern "C" void WINAPI VCDrawCurrentEntity(short* iError);
Visual Basic: Declare Sub VCDrawCurrentEntity Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCDrawCurrentEntity(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes After adding a new entity to the database, it is necessary to draw the entity on screen so the

user may see the result. After the entity has been added it must be made current by using
VCLastEntity, as it will be the last entity in the drawing, then VCDrawCurrentEntity can be used
to draw the current entity.

See Also VCDrawCurrentEntityXOR, VCGetCurrentEntityHandle

{button ,AL(`Adding a Continuous Entity;Adding a Hatch/Fill Entity;Adding a Single Entity;Adding a Text
Entity;Applying Settings to an Entity',0,`',`')} Task Guide Examples

VCDrawCurrentEntityXOR
Version 1.2
Description Forces the current entity to be drawn in XOR mode thus enabling a rubberband effect.
Declaration
C/C++: extern "C" void WINAPI VCDrawCurrentEntityXOR(short* iError);
Visual Basic: Declare Sub VCDrawCurrentEntityXOR Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCDrawCurrentEntityXOR(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes When making tools that provide a rubberbanding preview of what the construction will look like,

a means by which to create this dynamic feedback is needed. An entity can be added to the
drawing database and edited according to mouse movements. After each of these updates the
entity must be redrawn using VCDrawCurrentEntityXOR so the old image will be removed and be
replaced with the updated image.

See Also VCDrawCurrentEntity,VCGetCurrentEntityHandle, VCTools

{button ,AL(`Creating a User Tool',0,`',`')} Task Guide Examples

VCDrawToDC
Version 2.0
Description Sets a DC for displaying the current drawing zoom.
Declaration
C/C++ extern "C" void WINAPI VCDrawToDC(short* iError, short hDC_, long bottom, long left, long right,

long top);
Visual Basic Declare Sub VCDrawToDC Lib "VCMAIN32.DLL" (iError As Integer, ByVal hDC_ As Integer, ByVal

bottom As Long, ByVal left As Long, ByVal right As Long, ByVal top As Long)
Delphi procedure VCDrawToDC(var iError: Integer; hDC_: Integer; bottom: Longint; left: Longint; right:

Longint; top: Longint); far;
Parameters hDC - the handle for the Windows device context.

bottom - the screen value for the bottom edge of the DC.
top - the screen value for the top edge of the DC.
left - the screen value for the left edge of the DC.
right - the screen value for the right edge of the DC.

Notes Provides a quick and direct method for displaying the current view to a Window device context.
The API will draw the current view in the active world or viewport and display the vectors in a
device context. The routine requires the application to define the device context along with a
bounding rect for the device boundary. These are passed in screen coordinates as separate
parameters.

See Also VCNewWorld

VCDuplicate
Version 1.2
Description Makes a copy of the specified entity, replicating its current settings.
Declaration
C/C++: extern "C" void WINAPI VCDuplicate(short* iError, ENTITYHANDLE lH);
Visual Basic: Declare Sub VCDuplicate Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long)
Delphi Declare Sub VCDuplicate Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long)
Parameters lH - the handle of the entity to be duplicated.
Notes Normally when changing or editing entities in Corel Visual CADD it would be necessary to first

query for each of the coordinates of the entity and then reintroduce the entity into the database
with those coordinates. VCDuplicate does this by copying the specified entity with all its data
points while still adopting all the current applicable settings. VCDuplicateWithTransform allows
for scaling, movement and rotation of the copied entity without the need for other routines.

See Also VCAddArcEntity, VCAddTextEntity, VCAddBezierEntity, VCAddCircleEntity, VCAddLineEntity,
VCAddEllipseEntity, VCDuplicateWithTransformVCDuplicateToWorld

{button ,AL(`Duplicating an Entity;Duplicating an Entity with Transformation',0,`',`')} Task Guide Examples

VCDuplicateToWorld
Version 2.0
Description Duplicates an entity to a new drawing world.
Declaration
C/C++ extern "C" void WINAPI VCDuplicateToWorld(short* iError, ENTITYHANDLE hE, WORLDHANDLE

TargetWorld);
Visual Basic Declare Sub VCDuplicateToWorld Lib "VCMAIN32.DLL" (iError As Integer, ByVal hE As Long, ByVal

TargetWorld As Long)
Delphi procedure VCDuplicateToWorld(var iError: Integer; hE: Longint; TargetWorld:
Parameters hE - handle for the entity to duplicate

TargetWorld - world handle for the drawing to place the duplicated entity.
Notes Normally when changing or editing entities in Corel Visual CADD it would be necessary to first

query for each of the coordinates of the entity and the re-introduce the entity into the database
with those coordinates. VCDuplicate does this by copying the specified entity using all its data
points while still adopting all the current applicable settings. VCDuplicateWithTransform allows
for scaling, movement and rotation of the copied entity without the need for other routines.
VCDuplicateToWorld effectively copies one entity to a new drawing within the current setting.

See Also VCDuplicate, VCDuplicateWithTransformation

VCDuplicateWithTransform
Version 1.2.1
Description Makes a copy of the specified entity, replicating its current settings while allowing for scaling,

movement and rotation of the copied entity directly.
Declaration
C/C++: extern "C" void WINAPI VCDuplicateWithTransform(short* iError, ENTITYHANDLE lH, Point2D*

dpTrans, Point2D* dpScale, double dAngle);
Visual Basic: Declare Sub VCDuplicateWithTransform Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long,

dpTrans As Point2D, dpScale As Point2D, ByVal dAngle As Double)
Delphi procedure VCDuplicateWithTransform(var iError: Integer; lH: Longint; var dpTrans: Point2D; var

dpScale: Point2D; dAngle: Double); far;
Parameters lH - the handle of the entity to be duplicated.

dpTrans - the coordinate pair distance to move the duplicated entity. Use 0,0 to keep same
position.
dpScale - the X and Y scale factors to apply to the duplicated entity. Use X=1, Y=1 to keep the
same scale.
dAngle - the angle to rotate the duplicate entity from the horizontal.

Notes Normally when changing or editing entities in Corel Visual CADD it would be necessary to first
query for the coordinates of the entity and the re-introduce the entity into the database with
those coordinates. VCDuplicate does this by copying the specified entity using all its data points
while still adopting all the current applicable settings. VCDuplicateWithTransform allows for
scaling, movement and rotation of the copied entity without the need for other routines. In order
to control the rotation angle, the entity should first be transposed to the drawing origin. A
rotation angle is then set by duplicating the new entity and finally transposing the entity back to
the desired location.

See Also VCAddArcEntity, VCAddTextEntity, VCAddBezierEntity, VCAddCircleEntity, VCAddLineEntity,
VCAddEllipseEntity, VCDuplicateVCDuplicateToWorld

{button ,AL(`Duplicating an Entity;Duplicating an Entity with Transformation',0,`',`')} Task Guide Examples

VCEditAbort
VCEditChange
VCEditComplete

Version 1.2
Description VCEditAbort is used to abort the current text edit and revert to the pre-edit text. VCEditChange

sends a message to the drawing area to redraw the bounding box to approximate the new text
line. VCEditComplete sends a message to the drawing area to replace the old text with the new
text.

Declaration
C/C++: extern "C" void WINAPI VCEditAbort();

extern "C" void WINAPI VCEditChange();
extern "C" void WINAPI VCEditComplete();

Visual Basic: Declare Sub VCEditAbort Lib "VCTOOL32.DLL" ()
Declare Sub VCEditChange Lib "VCTOOL32.DLL" ()
Declare Sub VCEditComplete Lib "VCTOOL32.DLL" ()

Delphi: procedure VCEditAbort; far;
procedure VCEditChange; far;
procedure VCEditComplete; far;

Parameters No additional parameters are used with this subroutine.
Notes Text is the only entity requiring editing or creation outside of the world context. Because of this,

it requires special considerations when aborting, ending or changing occurs. VCEditAbort,
VCEditComplete, and VCEditChange provide these functions and will update the screen
accordingly.

See Also VCAddTextEntity, VCTools

VCEndOperation
Version 1.2
Description Marks an operation where an undo level ends.
Declaration
C/C++: extern "C" void WINAPI VCEndOperation(short* iError);
Visual Basic: Declare Sub VCEndOperation Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCEndOperation(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD provides a set of user tool functions to build and create tools not directly

supported in the interface. For example, a multi-line tool that automatically hatches or fills the
segments. Since this tool is not provided directly in the Corel Visual CADD interface, it must be
created through code to interact with the existing commands such as snaps and undo
operations. In order for the tools to respond appropriately to undo operations it should set undo
and redo levels during the operation. A complex entity tool, one that adds multiple entities such
as the multi-line example, can allow each individual entity or instead the entire operation to be
undone with a single user undo operation. This depends on the design criteria specified for the
application. The level of undo is set with the VCBeginOperation and VCEndOperation API
routines. An application should set the beginning of the undo level prior to adding any entities to
the drawing database and finish the tool with an end operation. In certain situations, the tool
may be aborted by the user typically by pressing the <ESC> key. An application should respond
appropriately by aborting the undo level to return it to the state prior to the user tool operation.
VCAbortOperation will handle this for the application. When used in conjunction with
VCBeginOperation and VCEndOperation, VCAbortOperation will discard all undo information
complied since the last VCBeginOperation. The VCEndOperation should be used to mark the end
of an undo level if the tool completes as designed, while the VCAbortOperation should be used
when the tool ends unexpectedly or if the user manually aborts the tool. VCAbortOperation
ensures that there is no residual undo information left.

See Also VCBeginOperation

{button ,AL(`Creating a User Tool',0,`',`')} Task Guide Examples

VCEntityBreak
Version 1.2
Description Breaks the specified entity between the included points.
Declaration
C/C++: extern "C" void WINAPI VCEntityBreak(short* iError, ENTITYHANDLE lH, Point2D* dpP0, Point2D*

dpP1);
Visual Basic: Declare Sub VCEntityBreak Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long, dpP0 As

Point2D, dpP1 As Point2D)
Delphi: procedure VCEntityBreak(var iError: Integer; lH: Longint; var dpP0: Point2D; var dpP1: Point2D);

far;
Parameters lH - the entity handle of the object to break.

dpP0 - the coordinates of the first break point.
dpP1 - the coordinates of the second break point.

Notes Entity break actually erases the specified entity and recreates two entities with the same
properties. If the specified points don't actually lie on the entity, the break points will be
calculated as the closest two points to those locations.

See Also VCGetCurrentEntityHandle

{button ,AL(`Database Operations',0,`',`')} Task Guide Examples

VCEntityExtents
Version 1.2
Description Returns the bounding rectangle of the specified entity.
Declaration
C/C++: extern "C" void WINAPI VCEntityExtents(short* iError, ENTITYHANDLE lH, Point2D* dpMin,

Point2D* dpMax);
Visual Basic: Declare Sub VCEntityExtents Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long, dpMin As

Point2D, dpMax As Point2D)
Delphi: procedure VCEntityExtents(var iError: Integer; lH: Longint; var dpMin: Point2D; var dpMax:

Point2D); far;
Parameters lH - the Corel Visual CADD entity Handle of desired entity.

dpMin - the coordinates of the lower left corner of the entity bounding rectangle.
dpMax - the coordinates of the upper right corner of the entity bounding rectangle.

Notes The extents of an entity can be useful in determining where overlapping objects should be
trimmed to prevent extraneous lines from obstructing the entity. The bounding box is also used
by Corel Visual CADD to determine when an object has been clicked on to be selected. This can
also be useful to determine if an entity would be selected if the user clicks within a certain
drawing area.

See Also VCGetCurrentEntityPoint

{button ,AL(`Database Operations;Parsing the Database',0,`',`')} Task Guide Examples

VCEraseCursor
Version 1.2
Description Erases the drawing cursor to eliminate cursor remnants from prior focus.
Declaration
C/C++: extern "C" void WINAPI VCEraseCursor(void);
Visual Basic: Declare Sub VCEraseCursor Lib "VCMAIN32.DLL" ()
Delphi: procedure VCEraseCursor; far;
Parameters No additional parameters are used with this subroutine.
Notes Whenever a dialog or other application captures focus from the drawing area, the drawing

cursor would remain in the drawing area unless the original cursor is erased. Using
VCEraseCursor before returning to the drawing area will eliminate the extra "ghost" cursor that
would be present from the previous cursor.

See Also VCEraseRubber

VCEraseRubber
Version 1.2
Description Removes the current rubberband or XOR image from the drawing area.
Declaration
C/C++: extern "C" void WINAPI VCEraseRubber();
Visual Basic: Declare Sub VCEraseRubber Lib "VCMAIN32.DLL" ()
Delphi: procedure VCEraseRubber; far;
Parameters No additional parameters are used with this subroutine.
Notes While dragging an construction image in the drawing area the user may move the cursor outside

the drawing area. In an window external to Corel Visual CADD the rubberband image will remain
where the cursor last was in the drawing area. To erase this image call VCEraseRubber.

See Also VCEraseCursor

VCFilterReset
Version 1.2
Description Resets the entity filter so it will accept all entities.
Declaration
C/C++: extern "C" void WINAPI VCFilterReset(short* iError);
Visual Basic: Declare Sub VCFilterReset Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCFilterReset(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes When using the entity filter to select particular entities or attributes it should be returned to it's

default state with VCFilterReset so that the user can select entities normally.
See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName,

VCGetFilterWidth, VCSetFilterMatch, VCSetFilterActive

{button ,AL(`Database Operations;Parsing a Filtered Entity List;Parsing a Symbol Definition;Parsing an Expanded
List;Parsing an On Screen List;Parsing the Database',0,`',`')} Task Guide Examples

VCFirstEntity
Version 1.2
Description Positions a pointer for entity operations to the first entity in the database.
Declaration
C/C++: extern "C" vbool WINAPI VCFirstEntity(short* iError, short* bKind);
Visual Basic: Declare Function VCFirstEntity Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCFirstEntity(var iError: Integer; var bKind: Integer):Boolean; far;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offers several utility parsing methods for flexibility in locating entities in the database. Each
offers advantages in certain situations. VCFirst/NextEntity moves to the first entity in the
database and then to each entity in the drawing database. VCFirst/NextEntityExpand parses the
database as if the drawing file had been exploded. Every entity, including those in symbol
definitions and hatch patterns are included in the VCFirst/NextEntityExpand search.
VCFirst/NextOnScreen clips the drawing and allows for quick entity access to only those entities
found on the screen at the present time. VCFirst/NextSelected parses only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be 0.

See Also VCNextEntity, VCLastEntity, VCFirstEntityExpand, VCNextEntityExpand, VCFirstOnScreen,
VCNextOnScreen, VCFirstSelected, VCNextSelected, VCSetCurrentEntity,
VCGetCurrentEntityHandle

{button ,AL(`Database Operations;Parsing a Filtered Entity List;Parsing a Symbol Definition;Parsing an Expanded
List;Parsing an On Screen List;Parsing the Database',0,`',`')} Task Guide Examples

VCFirstEntityExpand
Version 1.2
Description Locates the first entity, even those within hatch and symbol definitions, in the drawing and

makes it current.
Declaration
C/C++: extern "C" vbool WINAPI VCFirstEntityExpand(short* iError, short* bKind);
Visual Basic: Declare Function VCFirstEntityExpand Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer)

As Integer
Delphi: function VCFirstEntityExpand(var iError: Integer; var bKind: Integer):Boolean; far;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offers several utility parsing methods for flexibility in locating entities in the database. Each
offers advantages in certain situations. VCFirst/NextEntity moves to the first entity in the
database and then to each entity in the drawing database. VCFirst/NextEntityExpand parses the
database as if the drawing file had been exploded. Every entity, including those in symbol
definitions and hatch patterns are included in the VCFirst/NextEntityExpand search.
VCFirst/NextOnScreen clips the drawing and allows for quick entity access to only those entities
found on the screen at the present time. VCFirst/NextSelected parses only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be 0.

See Also VCNextEntity, VCLastEntity, VCFirstEntity, VCNextEntityExpand, VCFirstOnScreen,
VCNextOnScreen, VCFirstSelected, VCNextSelected, VCSetCurrentEntity

{button ,AL(`Database Operations;Parsing a Filtered Entity List;Parsing a Symbol Definition;Parsing an Expanded
List;Parsing an On Screen List;Parsing the Database',0,`',`')} Task Guide Examples

VCFirstGraphic
Version 2.0
Description Positions a pointer for entity operations to the first graphic in the entity.
Declaration
C/C++ extern "C" vbool WINAPI VCFirstGraphic(short* iError, GRAPHICHANDLE hG);
Visual Basic Declare Function VCFirstGraphic Lib "VCMAIN32.DLL" (iError As Integer, ByVal hG As Long) As

Integer
Delphi function VCFirstGraphic(var iError: Integer; hG: Longint):Boolean; far;
Parameters hG - the returned GRAPHICHANDLE for the current entity

Returns - 0 if not successful and 1 otherwise.
Notes Some entities are defined by several graphical objects, hatch patterns, fills, line types and fonts.

For instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also VCCreateGraphicsHandle, VCDeleteGraphicsHandle, VCIsGraphic, VCNextGraphic

VCFirstOnScreen
Version 1.2
Description Locates the first entity in the current zoom and makes it current.
Declaration
C/C++: extern "C" vbool WINAPI VCFirstOnScreen(short* iError, short* bKind);
Visual Basic: Declare Function VCFirstOnScreen Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCFirstOnScreen(var iError: Integer; var bKind: Integer):Boolean; far;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offers several utility parsing methods for flexibility in locating entities in the database. Each
offers advantages in certain situations. VCFirst/NextEntity moves to the first entity in the
database and then to each entity in the drawing database. VCFirst/NextEntityExpand parses the
database as if the drawing file had been exploded. Every entity, including those in symbol
definitions and hatch patterns are included in the VCFirst/NextEntityExpand search.
VCFirst/NextOnScreen clips the drawing and allows for quick entity access to only those entities
found on the screen at the present time. VCFirst/NextSelected parses only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be 0.

See Also VCNextEntity, VCLastEntity, VCFirstEntityExpand, VCNextEntityExpand, VCFirstEntity,
VCNextOnScreen, VCFirstSelected, VCNextSelected, VCSetCurrentEntity

{button ,AL(`Database Operations;Parsing a Filtered Entity List;Parsing a Symbol Definition;Parsing an Expanded
List;Parsing an On Screen List;Parsing the Database',0,`',`')} Task Guide Examples

VCFirstSelected
Version 1.2
Description Locates the first selected entity and makes it current.
Declaration
C/C++: extern "C" vbool WINAPI VCFirstSelected(short* iError, short* bKind);
Visual Basic: Declare Function VCFirstSelected Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCFirstSelected(var iError: Integer; var bKind: Integer):Boolean; far;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offers several utility parsing methods for flexibility in locating entities in the database. Each
offers advantages in certain situations. VCFirst/NextEntity moves to the first entity in the
database and then to each entity in the drawing database. VCFirst/NextEntityExpand parses the
database as if the drawing file had been exploded. Every entity, including those in symbol
definitions and hatch patterns are included in the VCFirst/NextEntityExpand search.
VCFirst/NextOnScreen clips the drawing and allows for quick entity access to only those entities
found on the screen at the present time. VCFirst/NextSelected parses only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be 0.

See Also VCNextEntity, VCLastEntity, VCFirstEntityExpand, VCNextEntityExpand, VCFirstOnScreen,
VCNextOnScreen, VCFirstEntity, VCGetCurrentEntityHandle, VCNextSelected, VCSetCurrentEntity

{button ,AL(`Database Operations;Parsing a Filtered Entity List;Parsing a Symbol Definition;Parsing an Expanded
List;Parsing an On Screen List;Parsing the Database',0,`',`')} Task Guide Examples

VCFirstSelectedRF
Version 2.0
Description Positions a pointer to the first entity in the given reference frame.
Declaration
C/C++ extern "C" vbool WINAPI VCFirstSelectedRF(short* iError, long* hE);
Visual Basic Declare Function VCFirstSelectedRF Lib "VCMAIN32.DLL" (iError As Integer, hE As Long) As

Integer
Delphi function VCFirstSelectedRF(var iError: Integer; var hE: Longint):Boolean;
Parameters hE - the entity handle for the reference frame to parse.

Returns - 0 if not successful and 1 otherwise.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

VCFirstSelectedRF and VCNextSelectedRF allow an application to parse the entities inside the
reference frame. Any values returned for coordinates, using routines such as
VCGetCurrentEntityPoint, are returned in values corresponding to the active drawing not the
frame entity. For example if a real world drawing is referenced into a paper space drawing, the
values returned will represent the coordinates for the entity in the paper space drawing not the
absolute coordinates from the real world drawing. When the absolute coordinates are desired
the referenced file must be opened and parsed with other standard database routines.

See Also VCNextSelectedRF, VCGetCurrentEntityPoint

VCFirstView
Version 2.0
Description Positions a pointer to the first view of the active drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCFirstView(short* iError);
Visual Basic Declare Function VCFirstView Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCFirstView(var iError: Integer):Boolean; far;
Parameters Returns - 0 if not successful and 1 otherwise.
Notes Corel Visual CADD supports multiple viewports for drawings and displays the views in separate

Window frames. These views are created through the API with VCNewView. When working with
drawings utilizing multiple viewports, an application can parse through the views to update
specific views as needed. The viewports are treated as separate MDI windows are managed by
the Corel Visual CADD frame.

See Also VCNewView, VCNextView, VCZoomAllViews, VCZoomRegenAllViews ,

VCForceWidthOnAllEntities
Version 1.2
Description Changes the line width for each entity in the drawing database to the specified value.
Declaration
C/C++: extern "C" void WINAPI VCForceWidthOnAllEntities(short* iError, short iNewWidth);
Visual Basic: Declare Sub VCForceWidthOnAllEntities Lib "VCMAIN32.DLL" (iError As Integer, ByVal iNewWidth

As Integer)
Delphi: procedure VCForceWidthOnAllEntities(var iError: Integer; iNewWidth: Integer); far;
Parameters iNewWidth - the new width index for the entities.
Notes Several utilitiy routines to accomplish specifics tasks are available directly in the API. Instead of

parsing the database for each entity and then resetting the line width,
VCForceWidthOnAllEntities will automatically change the line width to specified value. When
outputting to certain printers it is desireable to increase the line width in order to improve the
output quality. VCForceWidthOnAllEntities and VcIncremetnWidthOnAllEntities both facilitate this
operation under a single routine.

See Also VCIncrementWidthOnAllEntities

VCGeneratePointsFromCurrentEntity
Version 1.2
Description Generates the specified number of points on a entity to an array's Point2D.
Declaration
C/C++: extern "C" void WINAPI VCGeneratePointsFromCurrentEntity(short* iError, Point2D* P, short*

iCount, short iMax, double dStep);
Visual Basic: Declare Sub VCGeneratePointsFromCurrentEntity Lib "VCMAIN32.DLL" (iError As Integer, P As

Point2D, iCount As Integer, ByVal iMax As Integer, ByVal dStep As Double)
Delphi: procedure VCGeneratePointsFromCurrentEntity(var iError: Integer; var P: Point2D; var iCount:

Integer; iMax: Integer; dStep: Double); far;
Parameters P - a returned pointer to an array of Point2D's containing all the points of the current entity.

iCount - returned as the number of items in the P array as well as the number of points in the
entity.
dStep - a parameter between 0 and 1 that specifies how many steps along the entity path to use
for the calculation.
iMax - the size of the array passed to prevent an overflow of the array.

Notes Unlike the function VCGetCurrentEntityPoint, which retrieves the actual construction points of an
entity, VCGeneratePointsFromCurrentEntity generates points on the entity. This function will
generate as many points as are specified by the parameter iMax. These points are useful for
generating bounds of entities as well as approximate intersections of complex entities such as
Bezier and ellipses. The number of points calculated is determined by the fractional value of
dStep, i.e. .10 would mean 10 steps while .50 would be two steps. iMax is a safeguard to prevent
the overflow of the array.

See Also VCGetCurrentEntityPoint

VCGetAcadImportUnit
VCSetAcadImportUnit

Version 1.2
Description The default unit used when converting AutoCAD files.
Declaration
C/C++: extern "C" BYTE WINAPI VCGetAcadImportUnit(short* iError);

extern "C" void WINAPI VCSetAcadImportUnit(short* iError, BYTE b);
Visual Basic: Declare Function VCGetAcadImportUnit Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

Declare Sub VCSetAcadImportUnit Lib "VCMAIN32.DLL" (iErr As Integer, ByVal b As Integer)
Delphi: function VCGetAcadImportUnit(var iError: Integer):Integer; far;

procedure VCSetAcadImportUnit(var iError: Integer; b: Integer); far;
Parameters b - the units for conversion.

0 - ACAD_UNIT_INCH
1 - ACAD_UNIT_FEET
2 - ACAD_UNIT_MILL
3 - ACAD_UNIT_CENT
4 - ACAD_UNIT_METER

Notes The Corel Visual CADD database stores values in inches while other formats such as AutoCAD
use a unit-less database. When converting drawings from the DWG format it is necessary to
specify the desired units in Corel Visual CADD.

See Also VCAcadRead, VCAcadReadWith3D, VCGetKeepAcadFontName, VCGetKeepGCDFontName,
VCGetGCDDefaultHatchName

VCGetAllLayersEd
VCSetAllLayersEd

Version 1.2
Description Controls how Corel Visual CADD treats visible layers other than the current layer. Specifies if

objects on all visible layers can be edited or only those on the current layer can be edited.
Declaration
C/C++: extern "C" vbool WINAPI VCGetAllLayersEd(short* iError);

extern "C" void WINAPI VCSetAllLayersEd(short* iError, vbool tf);
Visual Basic: Declare Function VCGetAllLayersEd Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAllLayersEd Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetAllLayersEd(var iError: Integer):Integer; far;

procedure VCSetAllLayersEd(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

1 - On (Checked)
0- Off (Unchecked)

See Also VCGetAllLayersSnap, VCGetLayerDisplay

VCGetAllLayersSnap
VCSetAllLayersSnap

Version 1.2
Description Controls how Corel Visual CADD treats visible layers other than the current layer. Specifies if

snaps are made to all visible objects or to only those on the current layer.
Declaration
C/C++: extern "C" vbool WINAPI VCGetAllLayersSnap(short* iError);

extern "C" void WINAPI VCSetAllLayersSnap(short* iError, vbool tf);
Visual Basic: Declare Function VCGetAllLayersSnap Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAllLayersSnap Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetAllLayersSnap(var iError: Integer):Integer; far;

procedure VCSetAllLayersSnap(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetAllLayersEd, VCGetLayerDisplay

VCGetAngle
VCSetAngle

Version 1.2
Description Rotation angle setting for the rotate command. As with all angle settings, the angle value is

specified in radians.
Declaration
C/C++: extern "C" double WINAPI VCGetAngle(short* iError);

extern "C" void WINAPI VCSetAngle(short* iError, double dRet);
Visual Basic: Declare Sub VCGetAngleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)

Declare Sub VCSetAngle Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double))
Delphi: procedure VCGetAngleBP(var iError: Integer; var dRet: Double); far;

procedure VCSetAngle(var iError: Integer; dRet: Double); far;
Parameters dRet - double value representing the angle setting in radians
See Also VCRotate

VCGetArrowScreenStep
VCSetArrowScreenStep

Version 1.2
Description The cursor can be moved from both mouse and keyboard arrow keys. When using the arrow

keys, the movement distance can be relative to the world or screen units. Specifies the screen
distance that each arrow key will advance the cursor.

Declaration
C/C++: extern "C" short WINAPI VCGetArrowScreenStep(short* iError);

extern "C" void WINAPI VCSetArrowScreenStep(short* iError, short i);
Visual Basic: Declare Function VCGetArrowScreenStep Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetArrowScreenStep Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer))
Delphi: function VCGetArrowScreenStep(var iError: Integer):Integer; far;

procedure VCSetArrowScreenStep(var iError: Integer; i: Integer); far;
Parameters I -the screen distance to move in pixels
See Also VCGetArrowWorld, VCGetArrowWorldStep

VCGetArrowWorld
VCSetArrowWorld

Version 1.2
Description Determines whether screen units or world units are used to move the cursor when the arrow

keys are used.
Declaration
C/C++: extern "C" vbool WINAPI VCGetArrowWorld(short* iError);

extern "C" void WINAPI VCSetArrowWorld(short* iError, vbool tf);
Visual Basic: Declare Function VCGetArrowWorld Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetArrowWorld Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetArrowWorld(var iError: Integer):Boolean; far;

procedure VCSetArrowWorld(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Uses World Distance
1 - Uses Screen Distance

See Also VCGetArrowScreenStep, VCGetArrowWorldStep

VCGetArrowWorldStep
VCSetArrowWorldStep

Version 1.2
Description The cursor can be moved from both mouse and keyboard arrow keys. When using the arrow

keys, the movement distance can be relative to the world or screen units. Specifies the "real
world" incremental distance that each arrow key will advance the cursor.

Declaration
C/C++: extern "C" double WINAPI VCGetArrowWorldStep(short* iError);

extern "C" void WINAPI VCGetArrowWorldStepBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetArrowWorldStep(short* iError, double dRet);

Visual Basic: Declare Sub VCGetArrowWorldStepBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetArrowWorldStep Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetArrowWorldStepBP(var iError: Integer; var dRet: Double); far;
procedure VCSetArrowWorldStep(var iError: Integer; dRet: Double); far;

Parameters d - the distance settings for movement
See Also VCGetArrowWorld, VCGetArrowScreenStep

VCGetAskZoomCenter
VCSetAskZoomCenter

Version 1.2
Description Determines if the user is prompted to pick a center point on screen before initiating the Zoom In

or Zoom Out commands. The point becomes the center of the new view on the screen.
Declaration
C/C++: extern "C" vbool WINAPI VCGetAskZoomCenter(short* iError);

extern "C" void WINAPI VCSetAskZoomCenter(short* iError, vbool tf);
Visual Basic: Declare Function VCGetAskZoomCenter Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAskZoomCenter Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetAskZoomCenter(var iError: Integer):Integer; far;

procedure VCSetAskZoomCenter(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCZoomIn, VCZoomOut, VCGetZoomFactor

VCGetAtbDefLabel
Version 1.2
Description Attributes are non-graphical data that can be attached to a symbol. The attributes are made up

of fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. VCGetAtbDefLabel returns the label at the specified field
index.

Declaration
C/C++: extern "C" short WINAPI VCGetAtbDefLabel(short* iError, char* szName, char* szLabel, short

iRec);
Visual Basic: Declare Function VCGetAtbDefLabel Lib "VCMAIN32.DLL" (iError As Integer, ByVal szName As

String, ByVal szLabel As String, ByVal iRec As Integer) As Integer
Delphi: function VCGetAtbDefLabel(var iError: Integer; var szName: PChar; var szLabel: PChar; iRec:

Integer):Integer; far;
Parameters szName - the internal name of the attribute

szLabel - the returned label name
iRec - the field index for the label

See Also VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont, VCGetAtbInternalName,
VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAtbDefRecordCount
Version 1.2
Description Attributes are non-graphical data that can be attached to a symbol. The attribute are made up of

fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. VCGetAtbDefRecordCount returns the number of fields in the
attribute definition.

Declaration
C/C++: extern "C" short WINAPI VCGetAtbDefRecordCount(short* iError, char* szName);
Visual Basic: Declare Function VCGetAtbDefRecordCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal

szName As String) As Integer
Delphi: function VCGetAtbDefRecordCount(var iError: Integer; var szName:String):Integer; far;
Parameters szName - the internal name of the attribute
See Also VCGetAtbDefLabel, VCGetAtbDefValue, VCGetAtbFont, VCGetAtbInternalName,

VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAtbDefValue
Version 1.2
Description Attributes are non-graphical data that can be attached to a symbol. The attribute are made up of

fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value of the attribute field and can be edited after
creating the attribute. VCGetAtbDefValue returns the value at the specified field index.

Declaration
C/C++: extern "C" short WINAPI VCGetAtbDefValue(short* iError, char* szName, char* Value, short iRec);
Visual Basic: Declare Function VCGetAtbDefValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal szName As

String, ByVal Value As String, ByVal iRec As Integer) As Integer
Delphi: function VCGetAtbDefValue(var iError: Integer; var szName: PChar; var Value: PChar; iRec:

Integer):Integer; far;
Parameters szName - the internal name of the attribute

szLabel - the label name
Value - the string value for the field
iRec - the field index for the label

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbFont, VCGetAtbInternalName,
VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAtbFont
VCSetAtbFont

Version 1.2
Description Sets the font that will be used for attributes. Special font characteristics, such as bold, italic and

underline, are not available for attributes.
Declaration
C/C++: extern "C" short WINAPI VCGetAtbFont(short* iError, char* pS);

extern "C" void WINAPI VCSetAtbFont(short* iError, char* pS);
Visual Basic: Declare Function VCGetAtbFont Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String) As

Integer
Declare Sub VCSetAtbFont Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

Delphi: function VCGetAtbFont(var iError: Integer; var pS: PChar):Integer; far;
procedure VCSetAtbFont(var iError: Integer; var pS: PChar); far;

Parameters pS - the attribute font name
See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbInternalName,

VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAtbHeight
VCSetAtbHeight

Version 2.0
Description Specifies the attribute text height.
Declaration
C/C++ extern "C" void WINAPI VCGetAtbHeight(short* iError, double* dRet);

extern "C" void WINAPI VCSetAtbHeight(short* iError, double dRet);
Visual Basic Declare Sub VCGetAtbHeight Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)

Declare Sub VCSetAtbHeight Lib "VCMAIN32.DLL" (iError As Integer, ByVal dRet As Double)
Delphi procedure VCGetAtbHeight(var iError: Integer; var dRet: Double); far;

procedure VCSetAtbHeight(var iError: Integer; dRet: Double); far;
Parameters
Notes Unlike many other Windows programs, Corel Visual CADD measures text height in real world

units, specifically inches, instead of points.
See Also VCGetUnitConversionFactor, VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbFont,

VCGetAtbInternalName, VCGetCurEntAtbCount, VCGetCurEntAtbRecCount,
VCGetCurEntAtbRecLabel, VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAtbInternalName
Version 1.2.1
Description In order to access the attribute labels and values, the internal name of the attribute must be

known. VCGetAtbInternalName returns the internal name from the file name.
Declaration
C/C++: extern "C" short WINAPI VCGetAtbInternalName(short* iError, char* pFileName, char* pReturn);
Visual Basic: Declare Function VCGetAtbInternalName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pFileName

As String, ByVal pReturn As String) As Integer
Delphi: function VCGetAtbInternalName(var iError: Integer; var pFileName: PChar; var pReturn:

PChar):Integer; far;
Parameters pFileName - the path and name for the attribute file

pReturn - the internal name for the attribute
Notes Attributes are non-graphical data that can be attached to a symbol. The attribute are made up of

fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. Attributes, like symbols, can be saved to disk for use in other
drawings.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetCurEntAtbCount, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue

{button ,AL(`Attribute Manipulation;Retrieving Attributes',0,`',`')} Task Guide Examples

VCGetAutoFillet
VCSetAutoFillet

Version 1.2
Description Specifies if corners are filleted automatically when the continuous line and continuous double

line commands are used. In double line commands, the current radius at the interior intersection
of each inside corner is used.

Declaration
C/C++: extern "C" vbool WINAPI VCGetAutoFillet(short* iError);

extern "C" void WINAPI VCSetAutoFillet(short* iError, vbool tf);
Visual Basic: Declare Function VCGetAutoFillet Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAutoFillet Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetAutoFillet(var iError: Integer):Integer; far;

procedure VCSetAutoFillet(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCFillet, VCLineContinuous, VCGetFilletPreview,VCGetFilletRad

VCGetAutoSave
VCSetAutoSave

Version 1.2
Description When auto save is active, Corel Visual CADD will save the drawing to a backup file at specified

intervals. It will not overwrite the current file with new information, instead it will save the file
with a .VBK file extension. To load a file with a .VBK extension on it, change the extension
to .VCD, then load the file into Corel Visual CADD.

Declaration
C/C++: extern "C" vbool WINAPI VCGetAutoSave(short* iError);

extern "C" void WINAPI VCSetAutoSave(short* iError, vbool tf);
Visual Basic: Declare Function VCGetAutoSave Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAutoSave Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetAutoSave(var iError: Integer):Integer; far;

procedure VCSetAutoSave(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetAutoSaveSec

VCGetAutoSaveSec
VCSetAutoSaveSec

Version 1.2
Description The number of seconds between automatic backup. Corel Visual CADD will not back up at the

specified interval if a dialog box is open or a tool is active. The backup will be postponed until
the dialog is closed or the tool is inactive.

Declaration
C/C++: extern "C" short WINAPI VCGetAutoSaveSecs(short* iError);

extern "C" void WINAPI VCSetAutoSaveSecs(short* iError, short i);
Visual Basic: Declare Function VCGetAutoSaveSecs Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetAutoSaveSecs Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetAutoSaveSecs(var iError: Integer):Integer; far;

procedure VCSetAutoSaveSecs(var iError: Integer; i: Integer); far;
Parameters i - seconds between saves
See Also VCGetAutoSave

VCGetBackgroundColor
VCSetBackgroundColor

Version 1.2
Description Specifies the drawing environment background color. Choosing a background color changes only

the way the drawing appears on screen. Because Corel Visual CADD does not print or plot the
background, the output is unaffected.

Declaration
C/C++: extern "C" short WINAPI VCGetBackgroundColor(short* iError);

extern "C" void WINAPI VCSetBackgroundColor(short* iError, short i);
Visual Basic: Declare Function VCGetBackgroundColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetBackgroundColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetBackgroundColor(var iError: Integer):Integer; far;

procedure VCSetBackgroundColor(var iError: Integer; i: Integer); far;
Parameters i- color setting for background between 0 and 15
See Also VCGetColorIndex, VCGetCursorColor

VCGetBackwardsRedraw
VCSetBackwardsRedraw

Version 1.2
Description When redrawing the display after a zoom or redraw command, Corel Visual CADD draws the

entities in the order they were placed in the database. By utilizing backwards redraw, the
objects will be redrawn last to first. This also changes the order for database parsing commands
such as VCFirstEntity and VCNextEntity. They will parse the database in reverse order.

Declaration
C/C++: extern "C" vbool WINAPI VCGetBackwardsRedraw(short* iError);

extern "C" void WINAPI VCSetBackwardsRedraw(short* iError, vbool tfBRD);
Visual Basic: Declare Function VCGetBackwardsRedraw Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetBackwardsRedraw Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfBRD As
Integer)

Delphi: function VCGetBackwardsRedraw(var iError: Integer):Integer; far;
procedure VCSetBackwardsRedraw(var iError: Integer; tfBRD: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also VCFirstEntity, VCNextEntity, VCZoomRegen

VCGetChamferDist1
VCSetChamferDist1

Version 1.2
Description A chamfer creates a line from a point on one line to a point on another line a specified distance

from the real or projected intersection of those lines and trims each line to this additional line.
Sets the first chamfer distance.

Declaration
C/C++: extern "C" double WINAPI VCGetChamferDist1(short* iError);

extern "C" void WINAPI VCGetChamferDist1BP(short* iError, double* dRet);
extern "C" void WINAPI VCSetChamferDist1(short* iError, double dRet);

Visual Basic: Declare Sub VCGetChamferDist1BP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetChamferDist1 Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetChamferDist1BP(var iError: Integer; var dRet: Double); far;
procedure VCSetChamferDist1(var iError: Integer; dRet: Double); far;

Parameters dRet - double value representing the distance
See Also VCGetChamferDist2, VCAutoFillet, VCFillet, VCGetFilletRad

VCGetChamferDist2
VCSetChamferDist2

Version 1.2
Description A chamfer creates a line from a point on one line to a point on another line a specified distance

from the real or projected intersection of those lines, and trims each line to this additional lines.
Sets the second chamfer distance.

Declaration
C/C++: extern "C" double WINAPI VCGetChamferDist2(short* iError);

extern "C" void WINAPI VCGetChamferDist2BP(short* iError, double* dRet);
extern "C" void WINAPI VCSetChamferDist2(short* iError, double dRet);

Visual Basic: Declare Sub VCGetChamferDist2BP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetChamferDist2 Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetChamferDist2BP(var iError: Integer; var dRet: Double); far;
procedure VCSetChamferDist2(var iError: Integer; dRet: Double); far;

Parameters dRet - double value representing the distance
See Also VCGetChamferDist1, VCGetAutoFillet, VCFillet, VCGetFilletRad

VCGetClosestSegment
Version 1.2
Description Finds the closest line segment to a specified point on a given entity.
Declaration
C/C++: extern "C" void WINAPI VCGetClosestSegment(short* iError, Point2D* p2d, ENTITYHANDLE lH,

Point2D* dpP0, Point2D* dpP1);
Visual Basic: Declare Sub VCGetClosestSegment Lib "VCMAIN32.DLL" (iError As Integer, p2d As Point2D, ByVal

lH As Long, dpP0 As Point2D, dpP1 As Point2D)
Delphi: procedure VCGetClosestSegment(var iError: Integer; var p2d: Point2D; lH: Longint; var dpP0:

Point2D; var dpP1: Point2D); far;
Parameters p2d - the point from which to find the closest segment.

lH - the entityhandle of the entity containing multiple segments.
dpP0 - the coordinates of the first end of the line.
dpP1 - the coordinates of the second end of the line.

Notes To reference the geometry of a continuous line, for example, it is sometimes necessary to know
which segment of the entity to which the reference are made. Finding the perpendicular, for
instance, with VCLinePerpPoint requires the two endpoints of the segment for which the
perpendicular is to reference. VCGetClosestSegment provides this line segment and will allow
these endpoints to be used in other calculations.

See Also VCGetUserToolLBDown, VCLinePerpPoint,

VCGetCMDId
Version 1.2
Description Returns the command id for a given native command.
Declaration
C/C++: extern "C" long WINAPI VCGetCMDId(short* iError, char* pNative);
Visual Basic: Declare Function VCGetCMDId Lib "VCMAIN32.DLL" (iError As Integer, ByVal pNative As String)

As Long
Delphi: function VCGetCMDId(var iError: Integer; var pNative: PChar):Longint; far;
Parameters pNative - the native command name.

Returns - the command id.
Notes Many API calls require the command id of a command. If the native command name is known,

then VCGetCMDId will return that value. The command id may change from one version of Corel
Visual CADD to the next, so it is a good idea to always determine the command id at run time for
any API calls. For a list of native commands, look in the NATIVE.CMD file or in Appendix A.

See Also VCGetCmdName, Corel Visual CADD Tool IDs

VCGetCmdName
Version 1.2.1
Description Returns the native command name for a given command id.
Declaration
C/C++: extern "C" short WINAPI VCGetCmdName(short* iError, short iCmdId, char* pName);
Visual Basic: Declare Function VCGetCmdName Lib "VCMAIN32.DLL" (iError As Integer, ByVal iCmdId As

Integer, ByVal pName As String) As Integer
Delphi: function VCGetCmdName(var iError: Integer; iCmdId: Integer; var pName:
Parameters iCmdId - the command id.

pName - the returned native command name.
Returns - the number of characters in the returned pName.

Notes Many API calls return the command id of a command. However most command id's don't mean a
lot to the average user. VCGetCmdName will return a more user friendly native command name.

See Also VCGetCMDId, Corel Visual CADD Tool IDs

VCGetCmdStr
VCSetCmdStr

Version 1.2
Description Retrieves the last command line input.
Declaration
C/C++: extern "C" short WINAPI VCGetCmdStr(short* iError, char* pS);

extern "C" void WINAPI VCSetCmdStr(short* iError, char* pS);
Visual Basic: Declare Sub VCGetCmdStr Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

Declare Sub VCSetCmdStr Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)
Delphi: function VCGetCmdStr(var iError: Integer; var pS: String):Integer; far;

procedure VCSetCmdStr(var iError: Integer; var pS: PChar); far;
Parameters pS - the last command or coordinate entry processed by the Corel Visual CADD command parser.
Notes To initialize Windows messaging between Corel Visual CADD and an external application, the

hWnd of some control or object must be sent to Visual CADD using VCSetAlertApp. When
registering the hWnd the code must specify which messages the application will receive. These
can be added together to get multiple messages. For example, an iCode of 12 would specify that
the command line characters and abort messages would be sent to the external application. To
handle these messages, the application must have code to handle a Windows message being
sent whose hWnd is registered with VCSetAlertApp. In Visual BASIC, this is handled by supplying
code in the mouse down event for the control specified for each mouse down message sent by
Visual CADD. Corel Visual CADD is fairly intelligent about when to send this message and only
send the message when a drawing point has been selected. This means that the user can issue
snaps or use tracking without invoking the application code for the mouse down event. To
retrieve the point the user selected in the drawing area, use VCGetUserToolLBDown, which sets
a Point2D of the last point picked. When trapping the user input, register the control with an
iCode of either 0 (all messages) or 8 (mouse down only) and add code to the external
application for key press. When the key press code is activated, use VCGetCmdStr to retrieve
the last command string from Corel Visual CADD. Once the key press has been determined, the
application can act according to process the information or send it back for Corel Visual CADD to
use with VCSetCmdStr. Once the application has completed the messaging, use VCClearAlertApp
to remove the application from the messaging registry. For more information on iCode, please
see Appendix C.

See Also VCClearAlertApp, VCGetUserToolLBDown, VCSetAlertApp, iCode, VCLButtonDown

{button ,AL(`Command Line Interaction;Creating a User Tool',0,`',`')} Task Guide Examples

VCGetCMPPath
VCSetCMPPath

Version 1.2
Description The default path for loading and saving Generic CADD components.
Declaration
C/C++: extern "C" short WINAPI VCGetCMPPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetCMPPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetCMPPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetCMPPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetCMPPath(var iError: Integer; var szPath: PChar):Integer; far;
procedure VCSetCMPPath(var iError: Integer; var szPath: PChar); far;

Parameters sz - string value for the path settings
See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath,

VCGetVCFPath

VCGetColorIndex
VCSetColorIndex

Version 1.2
Description The color for primary entity placements. Text, dimensions, hatches and fills each have their own

property settings and are not affected by this subroutine.
Declaration
C/C++: extern "C" short WINAPI VCGetColorIndex(short* iError);

extern "C" void WINAPI VCSetColorIndex(short* iError, short i);
Visual Basic: Declare Function VCGetColorIndex Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetColorIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetColorIndex(var iError: Integer):Integer; far;

procedure VCSetColorIndex(var iError: Integer; i: Integer); far;
Parameters i - color index from 0 to 255
See Also VCGetLineTypeIndex, VCGetLineWidthIndex, VCGetLayerIndex, VCGetTextColor,

VCGetDimItemColor,VCGetFillColor, VCGetHatchColor, VCGetDimItemColor

VCGetCommandAlias
Version 1.2
Description Returns the two-letter command for the specified command.
Declaration
C/C++: extern "C" short WINAPI VCGetCommandAlias(short i, char* szAlias);
Visual Basic: Declare Function VCGetCommandAlias Lib "VCMAIN32.DLL" (ByVal i As Integer, ByVal szAlias As

String) As Integer
Delphi: function VCGetCommandAlias(i: Integer; var szAlias: String):Integer; far;
Parameters i - the command index of the desired command.

szAlias - the alias name of the command.
Notes Command aliases are simply the two-letter commands assigned to execute the command. While

there is a default set of two-letter commands, they are user customizable by editing the text file
ALIAS.CMD found in the Corel Visual CADD directory. Because of this, whenever sending
commands to the command parser using VCChar it is generally a good idea to check the
command alias of the command to prevent undesirable results. Although the aliases are
traditionally called two-letter commands they can actually be up to three letters long as long as
the first two letters do not conflict with an existing two-letter command.

See Also VCGetCommandCount, VCGetCommandDescription, VCGetCommandNative

{button ,AL(`Creating Command Aliases',0,`',`')} Task Guide Examples

VCGetCommandCount
Version 1.2
Description Returns a count of all the available commands or tools.
Declaration
C/C++: extern "C" short WINAPI VCGetCommandCount();
Visual Basic: Declare Function VCGetCommandCount Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetCommandCount:Integer; far;
Parameters Returns - an integer representing the number of commands.
Notes This can be used to determine the number of available commands at any time and to parse

through each of them to determine their function.
See Also VCGetCommandCount, VCGetCommandDescription, VCGetCommandNative

VCGetCommandDescription
Version 1.2
Description Returns the command description that appears in the status bar when the mouse moves over

the command icon or menu item.
Declaration
C/C++: extern "C" short WINAPI VCGetCommandDescription(short i, char* szNative);
Visual Basic: Declare Function VCGetCommandDescription Lib "VCMAIN32.DLL" (ByVal i As Integer, ByVal

szNative As String) As Integer
Delphi: function VCGetCommandDescription(i: Integer; var szNative: String):Integer; far;
Parameters i - the command index of the desired command.

szNative - the native command name.
Notes In Corel Visual CADD a prompt appears in the prompt area whenever the cursor passes over a

button or a menu item describing what the command is or does. While these command
descriptions will automatically be displayed in the prompt area, it may be helpful to retrieve the
command description and display it elsewhere if a users may have a hard time seeing the
prompt area.

See Also VCGetCommandCount, VCGetCommandDescription, VCGetCommandNative

VCGetCommandNative
Version 1.2
Description Returns the native command for the specified command.
Declaration
C/C++: extern "C" short WINAPI VCGetCommandNative(short i, char* szNative);
Visual Basic: Declare Function VCGetCommandNative Lib "VCMAIN32.DLL" (ByVal i As Integer, ByVal szNative

As String) As Integer
Delphi: function VCGetCommandNative(i: Integer; var szNative: String):Integer; far;
Parameters

i - the command id of the desired command.
szNative - the native command name.

Notes Native commands are used in several user customizable files to specify which command is
desired. These files include TOOLPAL.CST, MAINSBAR.CST, ALAIS.CMD, and all mouse popup
menus. The native commands are not generally not used when programming with the API.
However, they can be sent as macro commands in VCMacro or in VCSetFunkeyCmdString and
can be useful to the Corel Visual CADD tool native command names.

See Also VCGetCommandCount, VCGetCommandDescription, VCGetCommandNative

{button ,AL(`Creating Command Aliases;Custom Commands;Custom Menus;Custom Mouse Menus;Custom
Toolbars',0,`',`')} Task Guide Examples

VCGetConstPt
VCSetConstPt

Version 1.2
Description Option for displaying construction points. When working with entities, it is sometimes convenient

to display the entity construction points to aid in snapping. Turning off the display will reduce the
visual clutter and increase the speed of redraws. The number of construction points for an entity
depend on the type of entity. A single line has two construction points, while a continuous Bezier
curve can have many different construction points.

Declaration
C/C++: extern "C" vbool WINAPI VCGetConstPt(short* iError);

extern "C" void WINAPI VCSetConstPt(short* iError, vbool tf);
Visual Basic: Declare Function VCGetConstPt Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetConstPt Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetConstPt(var iError: Integer):Integer; far;

procedure VCSetConstPt(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetHandlePt

{button ,AL(`Adding a Continuous Entity;Adding a Hatch/Fill Entity;Adding a Single Entity;Adding a Text
Entity',0,`',`')} Task Guide Examples

VCGetCurEntAtbCount
Version 1.2
Description Attributes are non-graphical data that can be attached to a symbol. The attributes are made up

of fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. VCGetCurEntAtbCount returns the number of attributes
attached to the current entity. To modify the attribute definition, use VCGetAtbDef* and
VCSetAtbDefLabelValue.

Declaration
C/C++: extern "C" short WINAPI VCGetCurEntAtbCount(short* iError);
Visual Basic: Declare Function VCGetCurEntAtbCount Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurEntAtbCount(var iError: Integer):Integer; far;
Parameters Return - a count for the number of attached or embedded attributes.
See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,

VCGetAtbInternalName, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue, VCSetAtbDefLabelValue

{button ,AL(`Attribute Manipulation;Database Operations;Retrieving Attributes;Retrieving Entity Properties;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurEntAtbName
Version 1.2
Description Retrieves the internal name for the attached attribute on the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurEntAtbName(short* iError, short iWhichAtb, char* pStr);
Visual Basic: Declare Function VCGetCurEntAtbName Lib "VCMAIN32.DLL" (iError As Integer, ByVal iWhichAtb

As Integer, ByVal pStr As String) As Integer
Delphi:

Parameters iWhichAtb - the index for the attribute.
PStr - the name of the attribute.
Returns - the length of the name.

Notes Several different attributes may be attached a symbol definition. This is reflected in the routine
VCGetCurEntAtbCount, which counts the number of attributes attached to the current entity.
VCGetCurEntAtbName allows an application to reference the name of each of these attached
attributes. The information can then be modified or changed based on the attribute definition. To
modify the attribute definition, use VCGetAtbDef* and VCSetAtbDefLabelValue.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetAtbInternalName, VCGetCurEntAtbRecCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue, VCSetAtbDefLabelValue

{button ,AL(`Attribute Manipulation;Database Operations;Retrieving Attributes;Retrieving Entity Properties;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurEntAtbRecCount
Version 1.2
Description VCGetCurEntAtbRecCount returns the number of records in the attribute.
Declaration
C/C++: extern "C" short WINAPI VCGetCurEntAtbRecCount(short* iError, short iWhichAtb);
Visual Basic: Declare Function VCGetCurEntAtbRecCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iWhichAtb As Integer) As Integer
Delphi: function VCGetCurEntAtbRecCount(var iError: Integer; iWhichAtb: Integer):Integer; far;
Parameters iWhichAtb - the index for the attribute

Returns - a count for the number of records defining the attribute
Notes Attributes are non-graphical data that can be attached to a symbol. The attributes are made up

of fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. To modify the attribute definition, use VCGetAtbDef* and
VCSetAtbDefLabelValue.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetAtbInternalName, VCGetCurEntAtbCount, VCGetCurEntAtbRecLabel,
VCGetCurEntAtbRecValue, VCSetAtbDefLabelValue

{button ,AL(`Attribute Manipulation;Database Operations;Retrieving Attributes;Retrieving Entity Properties;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurEntAtbRecLabel
Version 1.2
Description VCGetCurEntAtbRecLabel returns the label for the attribute at the field index.
Declaration
C/C++: extern "C" short WINAPI VCGetCurEntAtbRecLabel(short* iError, short iWhichAtb, short

iWhichRec, char* pLabel);

Visual Basic: Declare Function VCGetCurEntAtbRecLabel Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iWhichAtb As Integer, ByVal iWhichRec As Integer, ByVal pLabel As String) As Integer

Delphi: function VCGetCurEntAtbRecLabel(var iError: Integer; iWhichAtb: Integer; iWhichRec: Integer;
var pLabel: PChar):Integer; far;

Parameters iWhichAtb - attribute index
iWhichRec - the field index for the label
pLabel - the returned label

Notes Attributes are non-graphical data that can be attached to a symbol. The attributes are made up
of fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. To modify the attribute definition, use VCGetAtbDef* and
VCSetAtbDefLabelValue.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetAtbInternalName, VCGetCurEntAtbCount, VCGetCurEntAtbRecCount,
VCGetCurEntAtbRecValue , VCSetAtbDefLabelValue

{button ,AL(`Attribute Manipulation;Database Operations;Retrieving Attributes;Retrieving Entity Properties;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurEntAtbRecValue
VCSetCurEntAtbRecValue

Version 1.2
Description VCGetCurEntAtbRecValue returns the value for the attribute at the field index.
Declaration
C/C++: extern "C" short WINAPI VCGetCurEntAtbRecValue(short* iError, short iWhichAtb, short

iWhichRec, char* pValue);
extern "C" void WINAPI VCSetCurEntAtbRecValue(short* iError, short iWhichAtb, short iWhichRec,
char* pValue);

Visual Basic: Declare Function VCGetCurEntAtbRecValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iWhichAtb As Integer, ByVal iWhichRec As Integer, ByVal pValue As String) As Integer

Delphi: function VCGetCurEntAtbRecValue(var iError: Integer; iWhichAtb: Integer; iWhichRec: Integer;
var pValue: PChar):Integer; far;

Parameters iWhichAtb - attribute index
iWhichRec - the field index for the label
pValue - the returned value

Notes Attributes are non-graphical data that can be attached to a symbol. The attributes are made up
of fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute. To modify the attribute definition, use VCGetAtbDef* and
VCSetAtbDefLabelValue.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetAtbInternalName, VCGetCurEntAtbCount, VCGetCurEntAtbRecCount,
VCGetCurEntAtbRecLabel, VCSetAtbDefLabelValue

{button ,AL(`Attribute Manipulation;Database Operations;Retrieving Attributes;Retrieving Entity Properties;User
Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurEntUserDataChunkSize
Version 1.2
Description Returns the size of the user data chunk specified by the index.
Declaration
C/C++: extern "C" short WINAPI VCGetCurEntUserDataChunkSize(short* iError, short iIndex);
Visual Basic: Declare Function VCGetCurEntUserDataChunkSize Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer) As Integer
Delphi: function VCGetCurEntUserDataChunkSize(var iError: Integer; iIndex:
Parameters iIndex - the index of the chunk user data.

Returns - the size in bytes of the specified chunk.
Notes When retrieving user data from drawing entities, the type of user data must be determined

using VCGetCurrentEntityUserDataKind. If it happens to be a chunk it could be data of any size.
To determine the size of the data in order to provide a correctly sized variable use
VCGetCurEntUserDataChunkSize. After the variable has been created at the right size, the data
can be retrieved with VCGetCurrentEntityUserDataChunk.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrEntUserDataName
Version 1.2
Description Returns the User Data name for the entity information at the specified location.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrEntUserDataName(short* iError, short iIndex, char* pName);
Visual Basic: Declare Function VCGetCurrEntUserDataName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer, ByVal pName As String) As Integer
Delphi: function VCGetCurrEntUserDataName(var iError: Integer; iIndex: Integer; pName: PChar):Integer;

far;
Parameters iIndex - the index for the attached user data.

pName - the user data name.
Returns - the length of the string.

Notes User data may be attached to any drawing entity or a drawing header and used for storage of
entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
needs to be set only one time before adding any user data. The VCAddCurrentEntityUserData*
calls always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurEntUserDataStringSize
Version 2.0
Description Retrieves the string size of a user data string value.
Declaration
C/C++ extern "C" short WINAPI VCGetCurEntUserDataStringSize(short* iError, short iIndex);
Visual Basic Declare Function VCGetCurEntUserDataStringSize Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer) As Integer
Delphi function VCGetCurEntUserDataStringSize(var iError: Integer; iIndex: Integer):Integer; far;
Parameters iIndex - the index of the chunk user data.

Returns - the size in bytes of the specified chunk.
Notes When retrieving user data from drawing entities, the type of user data must be determined

using VCGetCurrentEntityUserDataKind. If it happens to be a chunk or string, it could be data of
any size. To determine the size of the data in order to provide a correctly sized variable use
VCGetCurEntUserDataChunkSize or VCGetCurEntUserDataStringSize. After the variable has been
created at the right size, the data can be retrieved with VCGetCurrentEntityUserDataChunk or
VCGetCurrentEntityUserDataString.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

VCGetCurrentEntity3DFlag0
Version 1.2.1
Description Determines if the current entity is a 3D entity.
Declaration
C/C++ extern "C" short WINAPI VCGetCurrentEntity3DFlag0(short* iError);
Visual Basic Declare Function VCGetCurrentEntity3DFlag0 Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCGetCurrentEntity3DFlag0(var iError: Integer):Integer; far;
Parameters Returns - a flag whether the current entity is a 3D entity.

0 - it is not a 3D entity.
1 - it is a 3D entity.

Notes The Corel Visual CADD database supports several 3D entity types such as points, lines,
continuous lines, polygons, symbols and blocks. When parsing the database an application can
check if the active entity is a 3D entity.

See Also VCAcadReadWith3D, VCAddContinuousLine3DEntity, VCAddPoint3D, VCAddPolygon3D,
VCAddSymbol3DEntity,

VCGetCurrentEntityArcData
Version 1.2
Description Retrieves relevant information about the geometry of an arc.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityArcData(short* iError, Point2D* dpC, double* dRad,

double* dStart, double* dSpan, double* dArcLength);
Visual Basic: Declare Sub VCGetCurrentEntityArcData Lib "VCMAIN32.DLL" (iError As Integer, dpC As Point2D,

dRad As Double, dStart As Double, dSpan As Double, dArcLength As Double)
Delphi: procedure VCGetCurrentEntityArcData(var iError: Integer; var dpC: Point2D; var dRad: Double;

var dStart: Double; var dSpan: Double; var dArcLength: Double); far;
Parameters dpC - retrieves the center point of the arc.

dRad - retrieves the radius of the arc.
dStart - retrieves the start point as a radian measured from the 3 o'clock position.
dSpan - retrieves the end point as a radian measured from the 3 o'clock position.
dArcLength - retrieves the arc length of the arc span.

Notes Without this API it would be a matter of doing all the geometry calculations for arcs within
external code routines. This provides all the basic geometry which would normally be provided in
from the object information dialog. All angles in Corel Visual CADD are represented as radians
not degrees. Therefor all angles will have to be converted to degrees if that is the applications
preferred display format.

See Also VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType,
VCGetCurrentEntityLineWidth, VCSetCurrentEntity, VCAddArcEntity

VCGetCurrentEntityArea
Version 1.2
Description Calculates the area of the current entity using small differential line segments. In order to use

VCGetCurrentEntityArea, the entity must be a closed bound entity, such as an unexploded
rectangle, polygon, circle, or other object.

Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityArea(short* iError, double dStep, double* dArea);
Visual Basic: Declare Sub VCGetCurrentEntityArea Lib "VCMAIN32.DLL" (iError As Integer, ByVal dStep As

Double, dArea As Double)
Delphi: procedure VCGetCurrentEntityArea(var iError: Integer; dStep: Double; var
Parameters dStep - the length of the line segments to be used in calculating the area.

dArea - returned as the area of the entity.
Notes In cases where the area of an entity can't be easily calculated, VCGetCurrentEntityArea can

calculate the area by constructing a polygon with sides of length dStep which approximates the
area of the current entity. Obviously the smaller the step, the better the approximation however
the slower the calculation will be.

See Also VCGetCurrentEntityDist, VCGetCurrentEntityLength, VCLineLength, VCMeasureArea,
VCMeasureDistance,

VCGetCurrentEntityCloseContour
VCSetCurrentEntityCloseContour

Version 1.2
Description Joins the starting and ending points of continuous lines, double lines, and curves.
Declaration
C/C++: extern "C" vbool WINAPI VCGetCurrentEntityCloseContour(short* iError);

extern "C" void WINAPI VCSetCurrentEntityCloseContour(short* iError, vbool tf);
Visual Basic: Declare Function VCGetCurrentEntityCloseContour Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetCurrentEntityCloseContour Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi: function VCGetCurrentEntityCloseContour(var iError: Integer):Boolean; far;
procedure VCSetCurrentEntityCloseContour(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
1 - On (Checked)
0- Off (Unchecked)

Notes Use the Close Contour command to join the starting and ending points of multi-segmented lines
or curves, when you want the connection to be trimmed (for straight segment objects) or
smooth (for curves). For double lines, Close Contour joins and trims the starting and ending
segments. For curves, the beginning and endpoints are joined, and the curve is made smooth at
the joint. This command will also terminate a drawing command after the countour has been
closed.

See Also VCGetAutoFillet

VCGetCurrentEntityColor
Version 1.2
Description Retrieves the color index for the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityColor(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurrentEntityColor(var iError: Integer):Integer; far;
Parameters Returns - the color index of the entity.
Notes The entity is set as the current entity with VCSetCurrentEntity, VCFirstEntity, or VCNextEntity

and will then allow the use of the VCGetCurrentEntity functions.
See Also VCGetCurrentEntityHandle, VCGetCurrentEntityKind, VCGetCurrentEntityLayer,

VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType, VCGetCurrentEntityLineWidth,
VCSetCurrentEntity, VCGetColorIndex

VCGetCurrentEntityDist
Version 1.2
Description Calculates the length of the current entity using line segments.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityDist(short* iError, double dStep, double* dDist);
Visual Basic: Declare Sub VCGetCurrentEntityDist Lib "VCMAIN32.DLL" (iError As Integer, ByVal dStep As

Double, dDist As Double)
Delphi: procedure VCGetCurrentEntityDist(var iError: Integer; dStep: Double; var
Parameters dStep - the length of the line segments to be used in calculating the area.

dDist - the returned length of the current entity.
Notes In cases where the length of an entity can't be easily calculated, VCGetCurrentEntityDist can

calculate the area by constructing a continuous line with segments of length dStep which
approximates the length of the current entity. The smaller the step, the better the
approximation, however the slower the calculation will be.

See Also VCGetCurrentEntityArea, VCGetCurrentEntityArea, VCLineLenght, VCMeasureArea,
VCMeasureDistance,

VCGetCurrentEntityHandle
Version 1.2
Description Retrieves a Corel Visual CADD entity handle so it may be retrieved at a later time.
Declaration
C/C++: extern "C" ENTITYHANDLE WINAPI VCGetCurrentEntityHandle(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityHandle Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi: function VCGetCurrentEntityHandle(var iError: Integer):Long; far;
Parameters Returns - the Corel Visual CADD entityhandle for the desired entity.
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.

Each entity in Corel Visual CADD    maintains a unique entity identifier (VCGetCurrentEntityUID)
in order to track the entity. This is in addition to the dynamic entity handle
(VCGetCurrentEntityHandle) which changes as entities are deleted and modified in the
database. As entities are added to the drawing, both an entity handle and a UID are assigned to
the entity. The entity handle will change as items are deleted and modified on the database
while the UID will remain constant. Whenever linking entities to external databases or arrays,
the application should utilize the UID due to its unchanging value with each entity. The entity
handle is used when parsing the database or setting specific entities within the drawing session.
The UID can should be audited prior to any external storage in order to ensure uniqueness in the
ID.

See Also VCGetCurrentEntityColor, VCGetCurrentEntityUID, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType,
VCGetCurrentEntityLineWidth, VCGetCurrentEntityLineWidthValue, VCLastEntity,
VCSetCurrentEntity

{button ,AL(`Duplicating an Entity;Duplicating an Entity with Transformation',0,`',`')} Task Guide Examples

VCGetCurrentEntityKind
Version 1.2
Description Retrieves the entity type from the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityKind(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityKind Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurrentEntityKind(var iError: Integer):Integer; far;
Parameters Returns - integer value representing the type of entity as follows. See Appendix A for a listing of

entity types.
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity
See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityUID, VCGetCurrentEntityHandle,

VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType,
VCGetCurrentEntityLineWidth, VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity,
VCSetCurrentEntity

{button ,AL(`Database Operations;Duplicating an Entity;Duplicating an Entity with Transformation;Parsing the
Database',0,`',`')} Task Guide Examples

VCGetCurrentEntityLayer
Version 1.2
Description Retrieves the layer number of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityLayer(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityLayer Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurrentEntityLayer(var iError: Integer):Integer; far;
Parameters Returns - the layer number.
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.
See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityUID, VCGetCurrentEntityHandle,

VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType,
VCGetCurrentEntityLineWidth, VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity,
VCSetCurrentEntity

{button ,AL(`Database Operations;Duplicating an Entity;Duplicating an Entity with Transformation;Parsing the
Database',0,`',`')} Task Guide Examples

VCGetCurrentEntityLayerName
Version 1.2
Description Retrieves the layer name of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityLayerName(short* iError, char* pName);
Visual Basic: Declare Function VCGetCurrentEntityLayerName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

pName As String) As Integer
Delphi: function VCGetCurrentEntityLayerName(var iError: Integer; var pName: String):Integer; far;
Parameters pName - set by the subroutine to be the name of the layer containing the entity.
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, VCNextEntity or VCLastEntity.

This allows subsequent use of the VCGetCurrentEntity* functions. If the current entity's layer is
named, then VCGetCurrentEntityLayerName will return that string. If not, then
VCGetCurrentEntityLayerName will return a 1 for iError and VCGetCurrentEntityLayer can be
used to retrieve the layer index number.

See Also VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer,VCGetCurrentEntityLineType, VCGetCurrentEntityLineWidth,
VCGetCurrentEntityLineWidthValue, VCLastEntity, VCSetCurrentEntity

VCGetCurrentEntityLength
Version 1.2
Description Retrieves the length of the current entity without point entry.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityLength(short* iError, double dStep, double* dLength);
Visual Basic: Declare Sub VCGetCurrentEntityLength Lib "VCMAIN32.DLL" (iError As Integer, ByVal dStep As

Double, dLength As Double)
Delphi: procedure VCGetCurrentEntityLength(var iError: Integer; dStep: Double; var dLength: Double);

far;
Parameters dStep - the number of steps along the path.

dLength - the length of the entity as returned by Corel Visual CADD.
Notes In the case or non-linear entities, VCGetCurrentEntityLength provides an easy alternative to

determine the path length of the entity without developing specific methods in external code for
each entity. The length is actually calculated from small line segments that are calculated along
the length of the entity at dStep increments. Although it is more accurate, more steps will also
take more computation time and the accuracy required should be considered when determining
a dStep value to be used. This routine differs from VCLineLength in that it does not accept input
argument points and only calculates the length of the current entity measured directly from the
first point to the last point of the entity.

See Also VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineType,
VCGetCurrentEntityLineWidth, VCGetCurrentEntityLineWidthValue, VCLineLength,
VCSetCurrentEntity

VCGetCurrentEntityLineType
Version 1.2
Description Retrieves the line type number of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityLineType(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityLineType Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurrentEntityLineType(var iError: Integer):Integer; far;
Parameters Returns - the line type number.
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.
See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,

VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineWidth,
VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity, VCSetCurrentEntity

VCGetCurrentEntityLineTypeName
Version 1.2
Description Retrieves the line type name of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityLineTypeName(short* iError, char* pName);
Visual Basic: Declare Function VCGetCurrentEntityLineTypeName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

pName As String) As Integer
Delphi: function VCGetCurrentEntityLineTypeName(var iError: Integer; var pName: String):Integer; far;
Parameters pName - set by the subroutine to be the name of the line type of the entity.
Notes If the current entity's line type is named, VCGetCurrentEntityLineTypeName will return that

string. If not, then VCGetCurrentEntityLineTypeName will return a 1 for iError and
VCGetCurrentEntityLineType can be used to retrieve just the line type index number.

See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineWidth,
VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity, VCSetCurrentEntity

VCGetCurrentEntityLineWidth
Version 1.2
Description Retrieves the line width of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityLineWidth(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityLineWidth Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetCurrentEntityLineWidth(var iError: Integer):Integer; far;
Parameters Returns - the line width of the entity.
Notes The entity whose information is desired must first be set. The current entity is set with

VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity. This allows subsequent use of
the VCGetCurrentEntity functions.

See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineWidth,
VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity, VCSetCurrentEntity

VCGetCurrentEntityLineWidthValue
Version 2.0
Description Specifies the real world line width for the current entity.
Declaration
C/C++ extern "C" void WINAPI VCGetCurrentEntityLineWidthValue(short* iError, float* dV);
Visual Basic Declare Sub VCGetCurrentEntityLineWidthValue Lib "VCMAIN32.DLL" (iError As Integer, dV As

Double)
Delphi procedure VCGetCurrentEntityLineWidthValue(var iError: Integer; var dV:
Parameters dV - the real world line width
Notes The entity whose information is desired must first be set. The current entity is set with

VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity. This allows subsequent use of
the VCGetCurrentEntity functions. VCGetCurrentEntityLineWidthValue retrieves the real world
value

See Also VCFirstEntity, VCGetCurrentEntityColor, VCGetCurrentEntityHandle, VCGetCurrentEntityKind,
VCGetCurrentEntityLayer, VCGetCurrentEntityLayerName, VCGetCurrentEntityLineWidth,
VCGetCurrentEntityLineWidthValue, VCLastEntity, VCNextEntity, VCSetCurrentEntity

VCGetCurrentEntityNormal3D
Version 1.2
Description Returns the normal vector to the current 3D entity.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityNormal3D(short* iError, Point3D* nV);
Visual Basic: Declare Sub VCGetCurrentEntityNormal3D Lib "VCMAIN32.DLL" (iError As Integer, nV As Point3D)
Delphi: procedure VCGetCurrentEntityNormal3D(var iError: Integer; var nV: Point3D); far;
Parameters nV - the normal vector to the current entity.
Notes Many calculations based on 3D geometry require the use of the normal vector. The normal

vector is a perpendicular to the 3D face and is represented by x, y and z coordinates that define
the direction of the vector.

See Also VCChangeView3D, VCAddLine3D, VCAddPoint3D, VCSet3DDisplay, VCSet3DQShadeOptions

VCGetCurrentEntityPoint
Version 1.2
Description Retrieves the specified point from the current entity.
Declaration
C/C++: extern "C" Point2D WINAPI VCGetCurrentEntityPoint(short* iError, short iIndex);

extern "C" void WINAPI VCGetCurrentEntityPointBP(short* iError, short iIndex, Point2D* dpRet);
Visual Basic: Declare Sub VCGetCurrentEntityPointBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer, dpRet As Point2d)
Delphi: proc function VCGetCurrentEntityPointCount(var iError: Integer):Integer; far; edure

VCGetCurrentEntityPointBP(var iError: Integer; iIndex: Integer; var dpRet: Point2D); far;
Parameters Returns - the number of points defining the current entity.
Notes Any drawing entity is made up of construction points placed while constructing the entity or

calculated from these placements. In order to retrieve any of these values from existing entities
for use with any other constructions or external cataloging it may be necessary to use
VCGetCurrentEntityPoint in order to retrieve this information. The current entity is set with
VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.

See Also VCFirstEntity, VCGetCurrentEntityPoint3D, VCLastEntity, VCSetCurrentEntity

VCGetCurrentEntityPoint3D
Version 1.2
Description Returns the specified point on a 3D entity.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityPoint3D(short* iError, short iIndex, Point3D* dpRet);
Visual Basic: Declare Sub VCGetCurrentEntityPoint3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer, dpRet As Point3D)
Delphi: procedure VCGetCurrentEntityPoint3D(var iError: Integer; iIndex: Integer; var dpRet: Point3D);

far;
Parameters iIndex - the index for the point to retrieve.

DpRet - the returned 3D point.
Notes Any drawing entity is made up of construction points placed while constructing the entity or

calculated from these placements. In order to retrieve any of these values from existing entities
for use with any other constructions or external cataloging it may be necessary to use
VCGetCurrentEntityPoint in order to retrieve this information. The current entity is set with
VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.

See Also VCAddLine3D, VCAddPoint3D, VCChangeView3D, VCFirstEntity, VCGetCurrentEntityPoint,
VCGetCurrentEntityPointCount, VCLastEntity, VCNextEntity, VCSetCurrentEntity,
VCSet3DDisplay, VCSet3DQShadeOptions

VCGetCurrentEntityPointCount
Version 1.2
Description Returns the number of points used in the definition of the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityPointCount(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityPointCount Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Delphi: function VCGetCurrentEntityPointCount(var iError: Integer):Integer; far;
Parameters Returns - the number of points used to define the entity.
Notes Since continuous entities can be comprised of several construction points and not a preset

amount of points, VCGetCurrentEntityPointCount provides the ability to determine the number of
points prior to calling VCGetCurrentEntityPoint or VCGetCurrentEntityPoint3D which need a point
index number in order to return the coordinates at each point. The current entity is set with
VCSetCurrentEntity, VCFirstEntity, VCNextEntity, or VCLastEntity.

See Also VCFirstEntity, VCGetCurrentEntityPoint3D, VCGetCurrentEntityPoint,VCLastEntity, VCNextEntity,
VCSetCurrentEntity

VCGetCurrentEntityUID
VCSetCurrentEntityUID

Version 2.0
Description Specifies the current entities UID(unique identifier).
Declaration
C/C++ extern "C" UID WINAPI VCGetCurrentEntityUID(short* iError);

extern "C" void WINAPI VCSetCurrentEntityUID(short* iError, UID uid);
Visual Basic Declare Function VCGetCurrentEntityUID Lib "VCMAIN32.DLL" (iError As Integer) As Long

Declare Sub VCSetCurrentEntityUID Lib "VCMAIN32.DLL" (iError As Integer, ByVal uid As Long)
Delphi function VCGetCurrentEntityUID(var iError: Integer):Longint; far;

procedure VCSetCurrentEntity3DFlag0(var iError: Integer; iFlag: Integer);
Parameters uid - the unique identifier for the current entiy
Notes Each entity in Corel Visual CADD maintains a unique entity identifier in order to track the entity.

This is in addition to the dynamic entity handle which changes as entities are deleted and
modified in the database. As entities are added to the drawing both an entity handle and a UID
are assigned to the entity. The entity handle will change as items are deleted and modified on
the database while the UID will remain constant. Whenever linking entities to external databases
or arrays, the application should utilize the UID due to its unchanging value with each entity. The
entity handle is used when parsing the database or setting specific entities within the drawing
session. The UID can should be audited prior to any external storage in order to ensure
uniqueness in the ID.

See Also VCGetCurrentEntityHandle, VCAddCurrentEntityUserDataChunk,
VCAddCurrentEntityUserDataByte, VCAddCurrentEntityUserDataDouble,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort, VCGetUserDataName, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurrentEntiytUserDataString, VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide Examples

VCGetCurrentEntityUserDataByte
VCSetCurrentEntityUserDataByte

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++: extern "C" BYTE WINAPI VCGetCurrentEntityUserDataByte(short* iError, short iIndex);

extern "C" void WINAPI VCSetCurrentEntityUserDataByte(short* iError, short iIndex, BYTE b);
Visual Basic: Declare Function VCGetCurrentEntityUserDataByte Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer) As Integer
Declare Sub VCSetCurrentEntityUserDataByte Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, ByVal b As Integer)

Delphi: function VCGetCurrentEntityUserDataByte(var iError: Integer; iIndex: Integer):Integer; far;
procedure VCSetCurrentEntityUserDataByte(var iError: Integer; iIndex: Integer; b: Integer); far;

Parameters iIndex - the index number within the current entity where the chunk should be stored.
b - Byte attached to the entity

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataChunk, VCGetCurrentEntityUserDataCount,
VCGetCurrentEntityUserDataDouble, VCGetCurrentEntityUserDataKind,
VCGetCurrentEntityUserDataLong, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataChunk
VCSetCurrentEntityUserDataChunk

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.
A Chunk is a piece of data un-associated with any data type. Chunks are most useful for
assigning string data to an entities user data. The size of the chuck must be predetermined prior
to calling this function in order for the function to know how much data to pull out of memory at
the location specified by the pointer.

Declaration
C/C++: extern "C" void WINAPI VCGetCurrentEntityUserDataChunk(short* iError, short iIndex, char* p);

extern "C" void WINAPI VCSetCurrentEntityUserDataChunk(short* iError, short iIndex, void* p,
short iSize);

Visual Basic: Declare Sub VCSetCurrentEntityUserDataChunk Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, p As Any, ByVal iSize As Integer)
Declare Sub VCSetCurrentEntityUserDataChunk Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, p As Any, ByVal iSize As Integer)

Delphi: procedure VCGetCurrentEntityUserDataChunk(var iError: Integer; iIndex: Integer; var p: String);
far;
procedure VCSetCurrentEntityUserDataChunk(var iError: Integer; iIndex: Integer; var p: Pointer;
iSize: Integer); far;

Parameters Index - the index number within the current entity where the chunk should be stored.
p - a pointer to a memory location where the data chunk is stored.
iSize - the size of the data chunk in bytes.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataCount,
VCGetCurrentEntityUserDataDouble, VCGetCurrentEntityUserDataKind,
VCGetCurrentEntityUserDataLong, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataCount
Version 1.2
Description Retrieves the count or number of indices of user data attached to the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityUserDataCount(short* iError);
Visual Basic: Declare Function VCGetCurrentEntityUserDataCount Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Delphi: function VCGetCurrentEntityUserDataCount(var iError: Integer):Integer; far;
Parameters Returns - a count of the attached User Data types
Notes The current entity is set with VCSetCurrentEntity, VCFirstEntity, or VCNextEntity.
See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,

VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataDouble, VCGetCurrentEntityUserDataKind,
VCGetCurrentEntityUserDataLong, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataDouble
VCSetCurrentEntityUserDataDouble

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++: extern "C" double WINAPI VCGetCurrentEntityUserDataDouble(short* iError, short iIndex);

extern "C" void WINAPI VCSetCurrentEntityUserDataDouble(short* iError, short iIndex, double
dRet);

Visual Basic: Declare Sub VCGetCurrentEntUserDataDoubleBP Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, dRet As Double)
Declare Sub VCSetCurrentEntityUserDataDouble Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, ByVal d As Double)

Delphi: procedure VCGetCurrentEntUserDataDoubleBP(var iError: Integer; iIndex: Integer; var dRet:
Double); far;
procedure VCSetCurrentEntityUserDataDouble(var iError: Integer; iIndex: Integer; dRet: Double);
far;

Parameters iIndex - the index number within the current entity where the chunk should be stored.
d - double value attached to the entity

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataKind,
VCGetCurrentEntityUserDataLong, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataFloat
VCSetCurrentEntityUserDataFloat

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++: extern "C" float WINAPI VCGetCurrentEntityUserDataFloat(short* iError, short iIndex);

extern "C" void WINAPI VCSetCurrentEntityUserDataFloat(short* iError, short iIndex, float f);
Visual Basic: Declare Function VCGetCurrentEntityUserDataFloat Lib "VCMAIN32.DLL" (iError As Integer,

ByVal iIndex As Integer) As single
Declare Sub VCSetCurrentEntityUserDataFloat Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, ByVal f As Single)

Delphi:

Parameters iIndex - the index number within the current entity where the chunk should be stored.
d - value attached to the entity

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataKind
Version 1.2
Description Determines the record type of the specified index attached to the current entity.
Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityUserDataKind(short* iError, short iIndex);
Visual Basic: Declare Function VCGetCurrentEntityUserDataKind Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer) As Integer
Delphi: function VCGetCurrentEntityUserDataKind(var iError: Integer; iIndex: Integer):Integer; far;
Parameters iIndex - the user data index to retrieve.

Returns - the data type for the specified user data.
1 - Byte
2 - Short
3 - Long
4 - Double
5 - Float
6 - Chunk

Notes User data may be attached to any drawing entity or a drawing header and used for storage of
entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. The VCAddCurrentEntityUserData* calls
always append the new variable as the last user data variable. The
VCSetCurrentEntityUserData* calls add the user data variable at the index specified in the call,
provided that there are indeed that many indices already attached, and overwrite any existing
user data at that index. As previously mentioned, user data may be attached to the drawing
header. This is achieved by using VCSetHeaderUserData and then attaching the appropriate user
data. Once VCNextEntity or any other current entity selections are used, the user data calls will
again be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataLong, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize,VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataLong
VCSetCurrentEntityUserDataLong

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++: extern "C" long WINAPI VCGetCurrentEntityUserDataLong(short* iError, short iIndex);

extern "C" void WINAPI VCSetCurrentEntityUserDataLong(short* iError, short iIndex, long l);
Visual Basic: Declare Function VCGetCurrentEntityUserDataLong Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer) As long
Declare Sub VCSetCurrentEntityUserDataLong Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, ByVal l As Long)

Delphi: function VCGetCurrentEntityUserDataLong(var iError: Integer; iIndex: Integer):Long; far;
procedure VCSetCurrentEntityUserDataLong(var iError: Integer; iIndex: Integer; l: Longint); far;

Parameters iIndex - the index number within the current entity where the chunk should be stored.
d - value attached to the entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataFloat,
VCGetCurrentEntityUserDataShort, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataShort
VCSetCurrentEntityUserDataShort

Version 1.2
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++: extern "C" short WINAPI VCGetCurrentEntityUserDataShort(short* iError, short iIndex);

extern "C" void WINAPI VCSetCurrentEntityUserDataShort(short* iError, short iIndex, short s);
Visual Basic: Declare Function VCGetCurrentEntityUserDataShort Lib "VCMAIN32.DLL" (iError As Integer,

ByVal iIndex As Integer) As Integer
Declare Sub VCSetCurrentEntityUserDataShort Lib "VCMAIN32.DLL" (iError As Integer, ByVal
iIndex As Integer, ByVal s As Integer)

Delphi: function VCGetCurrentEntityUserDataShort(var iError: Integer; iIndex:Integer):Integer; far;
procedure VCSetCurrentEntityUserDataShort(var iError: Integer; iIndex:Integer; s: Integer); far;

Parameters iIndex - the index number within the current entity where the chunk should be stored.
s - value attached to the entity

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID, VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntiytUserDataString,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentEntityUserDataString
VCSetCurrentEntityUserDataString

Version 2.0
Description User data may be attached to any drawing entity or to the drawing header and used for storage

of entity information, drawing information, custom settings, or indices to external tables. This
data can be assigned and retrieved from entities based on the data type and the specified index.

Declaration
C/C++ extern "C" void WINAPI VCGetCurrentEntityUserDataString(short* iError, short iIndex, char* str);
Visual Basic Declare Sub VCGetCurrentEntityUserDataString Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer, ByVal str As String)
Delphi procedure VCGetCurrentEntityUserDataString(var iError: Integer; iIndex: Integer; str: PChar); far;
Parameters iIndex - the index number within the current entity where the stiring should be stored.

Str - the attached string
Notes
See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataByte,

VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort, VCGetUserDataName,
VCGetCurrentEntityUID,VCGetCurrentEntityUserDataByte, VCGetCurrentEntityUserDataChunk,
VCGetCurrentEntityUserDataCount, VCGetCurrentEntityUserDataDouble,
VCGetCurrentEntityUserDataKind, VCGetCurrentEntityUserDataLong,
VCGetCurrentEntityUserDataFloat, VCGetCurrentEntityUserDataShort,
VCGetCurEntUserDataChunkSize, VCSetHeaderUserData

{button ,AL(`Attaching User Data;Database Operations;User Data Retrieval;User Data Tasks',0,`',`')} Task Guide
Examples

VCGetCurrentOleClassId
Version 2.0
Description Retrieves the current OLE class ID.
Declaration
C/C++ extern "C" long WINAPI VCGetCurentOleClassId(short* iError);
Visual Basic Declare Function VCGetCurentOleClassId Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi function VCGetCurentOleClassId(var iError: Integer):Longint; far;
Parameters returns - the current OLE class id.
Notes An application can be created as an EXE, a Windows DLL or an OLE DLL. Each has advantages in

functionality and interaction with the CAD engine. In addition, each is accessed through the
Corel Visual CADD interface in different methods. An OLE DLL is a specialized link library
containing methods and classes for controlling various operations. These DLL are specifically
related to Visual Basic programmers. The OLE class allows a developer to create a class member
function that can be directly run from the Corel Visual CADD interface allowing an application to
take advantage of the performance increase associated with a DLL. In order to access this
functionality the DLL and the class must be registered. VCCreateOLEClass registers the DLL and
class. VCInvokeMethod will invoke the DLL method and VCDeleteOleClass will delete the
registered DLL and class.

See Also VCDeleteOleClass, VCOleClassMethodInvoke,VCCreateOleClass

VCGetCurrentPrinter
Version 2.0
Description Specifies the current printer for the print routine.
Declaration
C/C++ extern "C" short WINAPI VCGetCurrentPrinter(short* iError, char* szPrinter);
Visual Basic Declare Function VCGetCurrentPrinter Lib "VCDLG32.DLL" (iError As Integer, ByVal szPrinter As

String) As Integer
Delphi function VCGetCurrentPrinter(var iError: Integer; szPrinter: PChar):Integer; far;
Parameters returns - the lenght of the returned string.

szPrinter - the printer name.
See Also VCGetPrinterName, VCGetPrinterNameCount, VCGetPrintSettings

VCGetCurrentPoint
Version 1.2
Description Returns the current point.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrentPoint(short* iError, Point2D* dpP);
Visual Basic: Declare Sub VCGetCurrentPoint Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)
Delphi: procedure VCGetCurrentPoint(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - the current location of the drag rubberband.
Notes When a user is constructing or modifying entities, Corel Visual CADD displays a dynamic

feedback to preview what the change would look like if the point was placed where the cursor is
currently sitting. This is called rubberbanding. In order to retrieve the current rubberband point
while a user is constructing or editing any entities, VCGetCurrentPoint can be called and will
return the current location of the rubberbanding cursor.

See Also VCGetCurrentEntityPointCount, VCGetCurrentEntityPoint

VCGetCurrentUID
Version 2.0
Description Retrieves the current UID for the next entity added to the database.
Declaration
C/C++ extern "C" UID WINAPI VCGetCurrentUID(short* iError);
Visual Basic Declare Function VCGetCurrentUID Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi function VCGetCurrentUID(var iError: Integer):Longint; far;

procedure VCSetCurrentEntityUserDataString(var iError: Integer; iIndex:
Parameters Returns the next UID.
Notes Each entity in Corel Visual CADD maintains a unique entity identifier in order to track the entity.

This is in addition to the dynamic entity handle which changes as entities are deleted and
modified in the database. As entities are added to the drawing both an entity handle and a UID
are assigned to the entity. The entity handle will change as items are deleted and modified on
the database while the UID will remain constant. Whenever linking entities to external databases
or arrays, the application should utilize the UID due to its unchanging value with each entity. The
entity handle is used when parsing the database or setting specific entities within the drawing
session. The UID can should be audited prior to any external storage in order to ensure
uniqueness in the ID. VCGetCurrentUID differs from VCGetCurrentEntityUID in that
VCGetCurrentUID give you the next available unique entity identifier available.

See Also VCGetCurrentEntityHandle, VCGetCurrentEntityUID, VCGetUserDataName

VCGetCurrentUndoLevel
Version 2.0
Description Retrieves the current undo level for placing entities.
Declaration
C/C++ extern "C" short WINAPI VCGetCurrentUndoLevel(short* iError);
Visual Basic Declare Function VCGetCurrentUndoLevel Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCGetCurrentUndoLevel(var iError: Integer):Integer; far;
Parameters Returns the current entity undo level.
Notes Corel Visual CADD maintains a complete undo level for all entities added to the database. This

information is then used when undo or redo operations are activated. Corel Visual CADD
automatically increments the undo level as each command is completed the entity then takes
on the last level after the operation is complete. When adding entities directly through the API,
an application can monitor the undo level allowing for custom undo operations. Entities added
using the API take on the active undo level but do not increment the level. This allow multiple
add operation to be undone with a single operation. An application can bypass this functionality
by utilizing VCBeginOperation and VCEndOperation to set application specific undo levels. The
application can also monitor the current undo level in order to track the sequence an entity is
added.

See Also VCBeginOperation, VCAbortOperation

{button ,AL(`Creating a User Tool;Duplicating an Entity;Duplicating an Entity with Transformation',0,`',`')} Task
Guide Examples

VCGetCurrentView
VCSetCurrentView

Version 2.0
Description Returns or sets the Corel Visual CADD view handle of the current drawing world
Declaration
C/C++ extern "C" void WINAPI VCGetCurrentView(short* iError, short* iView);

extern "C" void WINAPI VCSetCurrentView(short* iError, short iView);
Visual Basic Declare Sub VCGetCurrentView Lib "VCMAIN32.DLL" (iError As Integer, iView As Integer)

Declare Sub VCSetCurrentView Lib "VCMAIN32.DLL" (iError As Integer, ByVal iView As Integer)
Delphi procedure VCGetCurrentView(var iError: Integer; var iView: Integer); far;

procedure VCSetCurrentView(var iError: Integer; iView: Integer); far;
Parameters iView - the Corel Visual CADD world handle returned when VCNewWorld is used.
Notes Corel Visual CADD allows multiple views of the same drawing to appear. VCGetCurrentView helps

you keep track of the number of instances of multiple views that are running. Returns a value
between 0 and 63.

See Also VCIsCurrentWorldValid, VCNewWorld, VCDestroyWorld

VCGetCurrEntRFAbsName
Version 2.0
Description Returns the absolute file path and name for the current reference frame entity.
Declaration
C/C++ extern "C" short WINAPI VCGetCurrEntRFAbsName(short* iError, char* RetPath);
Visual Basic Declare Function VCGetCurrEntRFAbsName Lib "VCMAIN32.DLL" (iError As Integer, ByVal RetPath

As String) As Integer
Delphi function VCGetCurrEntRFAbsName(var iError: Integer; RetPath: PChar):Integer;far;
Parameters returns - the length of the returned string.

RetPath - the absolute file name and path for the referenced entity.
Notes Reference frames allow external files to be linked into an existing drawing. When linked, the files

are represented by a relative path between the current file location and the absolute path to the
file. For example, if the current active drawing for an open VCD files is "C:\VCADD\SAMPLES\
THISFILE.VCD" and a file is referenced into this drawing located at an absolute location of "C:\
VCADD\LINKEDFILE.VCD" this routine will return the difference of the paths. In this case it will
return " ..\" or indication that the linked file is located back one subdirectory. The routine can be
used to retrieve the relative path for any given directory. Simply pass in a current
directory(where the active drawing is) and the absolute path the linked file(file that is being
referenced) and the routine will return the relative path for the directories.

See Also VCGetCurrEntRFAbsShortName, VCRelativePath

VCGetCurrEntRFAbsShortName
Version 2.0
Description Returns the absolute file path and name for the current reference frame entity.
Declaration
C/C++ extern "C" short WINAPI VCGetCurrEntRFAbsName(short* iError, char* RetPath);
Visual Basic Declare Function VCGetCurrEntRFAbsName Lib "VCMAIN32.DLL" (iError As Integer, ByVal RetPath

As String) As Integer
Delphi function VCGetCurrEntRFAbsName(var iError: Integer; RetPath: PChar):Integer;far;
Parameters returns - the length of the returned string.

RetPath - the absolute file name and path for the referenced entity.
Notes Reference frames allow external files to be linked into an existing drawing. When linked, the files

are represented by a relative path between the current file location and the absolute path to the
file. For example, if the current active drawing for an open VCD files is "C:\VCADD\SAMPLES\
THISFILE.VCD" and a file is referenced into this drawing located at an absolute location of "C:\
VCADD\LINKEDFILE.VCD" this routine will return the difference of the paths. In this case it will
return " ..\" or indication that the linked file is located back one subdirectory. The routine can be
used to retrieve the relative path for any given directory. Simply pass in a current
directory(where the active drawing is) and the absolute path the linked file(file that is being
referenced) and the routine will return the relative path for the directories.

See Also VCGetCurrEntRFAbsName, VCRelativePath

VCGetCurrWorld
VCSetCurrWorld

Version 1.2
Description Returns or sets the Corel Visual CADD world handle of the current drawing world.
Declaration
C/C++: extern "C" WORLDHANDLE WINAPI VCGetCurrWorld(void);

extern "C" void WINAPI VCSetCurrWorld(WORLDHANDLE hW);
Visual Basic: Declare Function VCGetCurrWorld Lib "VCMAIN32.DLL" () As Long

Declare Sub VCSetCurrWorld Lib "VCMAIN32.DLL" (ByVal hW As Long)
Delphi:

Parameters hW - the Corel Visual CADD world handle returned when VCNewWorld is used.
Notes When using multiple drawings, particularly with MDI windows, it is necessary to know which

world is current. Before making any changes to a drawing in which the current world is not
explicitly known, VCGetCurrWorld should be used to verify that intended world is active and if
not VCSetCurrWorld should be used to set the current world accordingly. The values for
VCGetCurrWorld will range from 0 to 63.

See Also VCGetCurrentView, VCIsCurrentWorldValid, VCNewWorld, VCDestroyWorld

{button ,AL(`Creating a User Tool;Valid World Checking',0,`',`')} Task Guide Examples

VCGetCurrZoom
Version 1.2
Description Returns the lower left and upper right coordinates of the current drawing view.
Declaration
C/C++: extern "C" void WINAPI VCGetCurrZoom(short* iError, Point2D* dpMin, Point2D* dpMax);
Visual Basic: Declare Sub VCGetCurrZoom Lib "VCMAIN32.DLL" (iError As Integer, dpMin As Point2D, dpMax

As Point2D)
Delphi: procedure VCGetCurrZoom(var iError: Integer; var dpMin: Point2D; var dpMax:
Parameters dpMin - the lower left corner of the view.

dpMax - the upper right corner of the view.
Notes If an application needs to determine the bounds of the current view in relation to coordinates in

the drawing VCGetCurrrZoom will return two Point2D's containing the lower left and upper right
corners of the drawing view.

See Also VCZoomWindow

VCGetCursorFree
VCSetCursorFree

Version 1.2
Description Cursor free allows the cursor be free to move in any direction in ortho mode and allows the

cursor to move unconstrained on the screen.
Declaration
C/C++: extern "C" vbool WINAPI VCGetCursorFree(short* iError);

extern "C" void WINAPI VCSetCursorFree(short* iError, vbool tf);
Visual Basic: Declare Function VCGetCursorFree Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetCursorFree Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetCursorFree(var iError: Integer):Integer; far;

procedure VCSetCursorFree(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetOrthoMode

VCGetCursorColor
VCSetCursorColor

Version 1.2
Description The sets or gets the cursor color.
Declaration
C/C++: extern "C" short WINAPI VCGetCursorColor(short* iError);

extern "C" void WINAPI VCSetCursorColor(short* iError, short i);
Visual Basic: Declare Function VCGetCursorColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetCursorColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetCursorColor(var iError: Integer):Integer; far;

procedure VCSetCursorColor(var iError: Integer; i: Integer); far;
Parameters i - the cursor color index from 0 to 15.
See Also VCGetBackgroundColor, VCGetCursorSize

VCGetCursorSize
VCSetCursorSize

Version 1.2
Description The cursor size in pixels.
Declaration
C/C++: extern "C" short WINAPI VCGetCursorSize(short* iError);

extern "C" void WINAPI VCSetCursorSize(short* iError, short i);
Visual Basic: Declare Function VCGetCursorSize Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetCursorSize Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetCursorSize(var iError: Integer): Integer; far;

procedure VCSetCursorSize(var iError: Integer; i: Integer); far;
Parameters i - the cursor size in pixels
See Also VCGetVidTolerance

VCGetDatumMode
VCSetDatumMode

Version 2.0
Description Species the datum dimension mode. Datum dimensions are leader with X and Y coordinates

attached for a location.
Declaration
C/C++ extern "C" short WINAPI VCGetDatumMode(short* iError);

extern "C" void WINAPI VCSetDatumMode(short* iError, short iMode);
Visual Basic Declare Function VCGetDatumMode Lib "VCTOOL32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDatumMode Lib "VCTOOL32.DLL" (iError As Integer, ByVal iMode As Integer)
Delphi function VCGetDatumMode(var iError: Integer):Integer; far;

procedure VCSetDatumMode(var iError: Integer; iMode: Integer); far;
Parameters iMode - the datum dimension mode.

0 - DATUMNONE
1 - DATUMXY
2 - DATUMX
3 - DATUMY

See Also VCGetDatumType, VCGetDatumBasePt

VCGetDatumType
VCSetDatumType

Version 2.0
Description Species the datum dimension mode. Datum dimensions are leader with X and Y coordinates

attached for a location.
Declaration
C/C++ extern "C" short WINAPI VCGetDatumType(short* iError);

extern "C" void WINAPI VCSetDatumType(short* iError, short iDatumType);
Visual Basic Declare Function VCGetDatumType Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDatumType Lib "VCMAIN32.DLL" (iError As Integer, ByVal iDatumType As
Integer)

Delphi function VCGetDatumType(var iError: Integer):Integer; far;
procedure VCSetDatumType(var iError: Integer; iDatumType: Integer); far;

Parameters iDatumType - the datum dimension type
0 - OFF
1 - XY
2 - X Only
3 - Y Only

See Also VCGetDatumBasePt, VCGetDatumMode

VCGetDefaultPrinter
VCSetDefaultPrinter

Version 2.0
Description Specifies the default printer.
Declaration
C/C++ extern "C" short WINAPI VCGetDefaultPrinter(short* iError, char* szDefaultPrinter);

extern "C" void WINAPI VCSetDefaultPrinter(short* iError, char* szDefaultPrinter);
Visual Basic Declare Function VCGetDefaultPrinter Lib "VCDLG32.DLL" (iError As Integer, ByVal

szDefaultPrinter As String) As Integer
Declare Sub VCSetDefaultPrinter Lib "VCDLG32.DLL" (iError As Integer, ByVal szDefaultPrinter As
String)

Delphi function VCGetDefaultPrinter(var iError: Integer; szDefaultPrinter: PChar):Integer; far;
procedure VCSetDefaultPrinter(var iError: Integer; szDefaultPrinter: PChar); far;

Parameters returns - the length of the returned string.
szDefaultPriner - the name of the default printer.

See Also VCGetCurrentPrinter, VCGetPrinterName, VCGetPrinterNameCount, VCGetPrintSettings

VCGetDefaultTool
VCSetDefaultTool

Version 1.2
Description The default drawing tool is pre-configured by the user and can be set to Single Line, Continuous

Line or Selection.
Declaration
C/C++: extern "C" WORD WINAPI VCGetDefaultTool(short* iError);

extern "C" void WINAPI VCSetDefaultTool(short* iError, WORD w);
Visual Basic: Declare Function VCGetDefaultTool Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDefaultTool Lib "VCMAIN32.DLL" (iError As Integer, ByVal w As Integer)
Delphi: function VCGetDefaultTool(var iError: Integer):Integer; far;

procedure VCSetDefaultTool(var iError: Integer; w: Integer); far;
Parameters w - the tool index

2102 - Single Line
2103 - Continuous Line
2449 - Select

See Also VCGetCursorSize, VCLineSingle, VCSelect

VCGetDimAngleFormat
VCSetDimAngleFormat

Version 2.0
Description Format for displaying angles as decimal degrees or degrees:minutes:seconds. If decimal degrees

format is used, the number is decimal places displayed is determined by
VCGetDimDecimalValue.

Declaration
C/C++ extern "C" short WINAPI VCGetDimAngleFormat(short* iError);

extern "C" void WINAPI VCSetDimAngleFormat(short* iError, short iF_);
Visual Basic Declare Function VCGetDimAngleFormat Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimAngleFormat Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As Integer)
Delphi function VCGetDimAngleFormat(var iError: Integer):Integer; far;

procedure VCSetDimAngleFormat(var iError: Integer; iF_: Integer); far;
Parameters iF - determines angular format to be used.

9 - Angle and Degrees.
10 - Degrees Minutes Seconds.

Notes
See Also VCGetDimDecimalValue, VCGetDisplayAngleFormat

VCGetDimArrowAngle
VCSetDimArrowAngle

Version 1.2
Description The dimension angle setting is used by all dimension arrow types except circular. As with all

angular settings in Corel Visual CADD the value should be expressed in radians.
Declaration
C/C++: extern "C" double WINAPI VCGetDimArrowAngle(short* iError);

extern "C" void WINAPI VCGetDimArrowAngleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimArrowAngle(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimArrowAngleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimArrowAngle Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimArrowAngleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimArrowAngle(var iError: Integer; dRet: Double); far;

Parameters dRet - double value representing the angle setting in radians
See Also VCGetDimArrowFlipDists, VCGetDimArrowLength, VCGetDimArrowMode, VCGetDimArrowType

VCGetDimArrowFlipDists
VCSetDimArrowFlipDists

Version 1.2
Description The length of the dimension line segment when arrowheads have been reversed. Flip reverses

the direction of the dimension arrowheads so they point inward instead of outward. The
dimension line is split and flipped to the outside of the dimensioned area.

Declaration
C/C++: extern "C" void WINAPI VCGetDimArrowFlipDists(short* iError, double* d0, double* d1);

extern "C" void WINAPI VCSetDimArrowFlipDists(short* iError, double d0, double d1);
Visual Basic: Declare Sub VCGetDimArrowFlipDists Lib "VCMAIN32.DLL" (iError As Integer, d0 As Double, d1

As Double)
Declare Sub VCSetDimArrowFlipDists Lib "VCMAIN32.DLL" (iError As Integer, ByVal d0 As Double,
ByVal d1 As Double)

Delphi: procedure VCGetDimArrowFlipDists(var iError: Integer; var d0: Double; var d1: Double); far;
procedure VCSetDimArrowFlipDists(var iError: Integer; d0: Double; d1: Double); far;

Parameters d0 - left side flip distance
d1 - right side flip distance

See Also VCGetDimArrowAngle, VCGetDimArrowLength, VCGetDimArrowMode, VCGetDimArrowType

VCGetDimArrowLength
VCSetDimArrowLength

Version 1.2
Description Several settings are available for dimension arrows. These need to be set prior to placing the

dimension into the drawing. The arrow length is analogous to the arrow size or scale.
Declaration
C/C++: extern "C" double WINAPI VCGetDimArrowLength(short* iError);

extern "C" void WINAPI VCGetDimArrowLengthBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimArrowLength(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimArrowLengthBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimArrowLength Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimArrowLengthBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimArrowLength(var iError: Integer; dRet: Double); far;

Parameters dRet - the dimension arrow length
See Also VCGetDimArrowFlipDists, VCGetDimArrowAngle, VCGetDimArrowMode, VCGetDimArrowType

VCGetDimArrowMode
VCSetDimArrowMode

Version 1.2
Description Several settings are available for dimension arrows. These need to be set prior to placing the

dimension into the drawing The arrow mode determines if the arrows are flipped to the outside
or the inside of the extension lines.

Declaration
C/C++: extern "C" short WINAPI VCGetDimArrowMode(short* iError);

extern "C" void WINAPI VCSetDimArrowMode(short* iError, short b);
Visual Basic: Declare Function VCGetDimArrowMode Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimArrowMode Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimArrowMode(var iError: Integer):Integer; far;

procedure VCSetDimArrowMode(var iError: Integer; b: Integer); far;
Parameters b - the state of the arrow flip.

0 - do not flip the dimension arrows to the outside of the dimension.
1 - flip the dimension arrows to the outside of the dimension.

See Also VCGetDimArrowFlipDists, VCGetDimArrowLength, VCGetDimArrowAngle, VCGetDimArrowType

VCGetDimArrowType
VCSetDimArrowType

Version 1.2
Description Several settings are available for dimension arrows. These need to be set prior to placing the

dimension into the drawing. Corel Visual CADD allows several options for the dimension arrow
type setting.

Declaration
C/C++: extern "C" short WINAPI VCGetDimArrowType(short* iError);

extern "C" void WINAPI VCSetDimArrowType(short* iError, short b);
Visual Basic: Declare Function VCGetDimArrowType Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimArrowType Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimArrowType(var iError: Integer):Integer; far;

procedure VCSetDimArrowType(var iError: Integer; b: Integer); far;
Parameters b - the value of the arrow type.

0 - DIMARROWREGNOFILL
1 - DIMARROWREGFILLED
2 - DIMARROWREGOPEN
3 - DIMARROWNOTCHED
4 - DIMARROWSLASH
5 - DIMARROWCIRCLENOFILL
6 - DIMARROWCIRCLEFILL

See Also VCGetDimArrowFlipDists, VCGetDimArrowLength, VCGetDimArrowMode

VCGetDimDecimalValue
VCSetDimDecimalValue

Version 2.0
Description The number of digits displayed to the right of the decimal point.
Declaration
C/C++ extern "C" short WINAPI VCGetDimDecimalValue(short* iError);

extern "C" void WINAPI VCSetDimDecimalValue(short* iError, short iF_);
Visual Basic Declare Function VCGetDimDecimalValue Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimDecimalValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As Integer)
Delphi function VCGetDimDecimalValue(var iError: Integer):Integer; far;

procedure VCSetDimDecimalValue(var iError: Integer; iF_: Integer); far;
Parameters iF - the number of digits to use in the display. The valid range is 0 -8.
Notes Corel Visual CADD calculates and stores real numbers to a precision of 16 significant digits.

Setting decimal places or fractions affects only how the numbers are displayed, not how they
are calculated or stored.

See Also VCGetDisplayAngleFormat, VCGetDisplayDecimalValue, VCGetDisplayDistFormat,
VCGetDisplayFractionalValue, VCGetDisplayShowLeadingZeros, VCGetDisplayShowUnits

VCGetDimDisplayItemCount
Version 1.2
Description Used to get the Dimension display item count.
Declaration
C/C++: extern "C" short WINAPI VCGetDimDisplayItemCount(short* iError);
Visual Basic: Declare Function VCGetDimDisplayItemCount Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetDimDisplayItemCount(var iError: Integer):Integer; far;
Parameters returns a count for the number of display items
Notes The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions.
VCGetDimDisplayItemName returns the element name at the specified index. All dimension and
leader extension settings must be set prior to creation of the dimension or leader. See the Corel
Visual CADD reference manual for specific settings and what they do. Each setting has a "set"
function to set/get API function call. For example, you can use VCGetDimItemColor to set the
different dimension properties.    Another use for the get functions is when querying specific
settings of a dimension or leader. If you want to match all the dimension elements,
VCMatchCurrentEntity is used to set all settings identical to the current entity. Each setting can
then be extracted from the system settings.    All dimension and leader settings must be set prior
to creation of the dimension or leader. See the Corel Visual CADD reference manual for specific
settings and what they do. Each setting has a "set" function to set the value and a "get" function
to retrieve.

See Also VCGetDimDisplayItemName, VCGetDimItemColor, VCGetDimItemLineWidth,
VCGetDimItemLineType, VCGetDimDisplayItemName, VCMatchCurrentEntity

VCGetDimDisplayItemName
Version 1.2
Description Returns the dimension display item name.
Declaration
C/C++: extern "C" short WINAPI VCGetDimDisplayItemName(short* iError, short i, char* pS);
Visual Basic: Declare Function VCGetDimDisplayItemName Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As

Integer, ByVal pS As String) As Integer
Delphi: function VCGetDimDisplayItemName(var iError: Integer; i: Integer; pS PChar):Integer; far;
Parameters w - the item index

pS - the dimension item name
Notes The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions.
VCGetDimDisplayItemName returns the element name at the specified index.

See Also VCGetDimItemLineType, VCGetDimItemLineWidth, VCGetDimItemShow, VCGetDimItemColor

VCGetDimDistFormat
VCSetDimDistFormat

Version 2.0
Description Option to set or get the display dimension units.
Declaration
C/C++ extern "C" short WINAPI VCGetDimDistFormat(short* iError);

extern "C" void WINAPI VCSetDimDistFormat(short* iError, short iF_);
Visual Basic Declare Function VCGetDimDistFormat Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimDistFormat Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As Integer)
Delphi function VCGetDimDistFormat(var iError: Integer):Integer; far;

procedure VCSetDimDistFormat(var iError: Integer; iF_: Integer); far;
Parameters if - the display format

0 - Decimal Inches
1 - Decimal Feet
2 - Decimal Feet & Inches
3 - Fractional Inches
4 - Fractional Feet
5 - Fractional Feet & Inches
6 - Millimeter
7 - Centimeter
8 - Meter

Notes In Corel Visual CADD 2.0, you can modify what units you want the dimensions to be displayed in
by calling VCGetDimDistFormat. If you want top have multiple units displayed, such as decimal
inches a meters, VCGetSecondaryDistFormat will allow you to specify what you want the
secondary units to be.

See Also VCGetDimDecimalValue, VCGetDimFractionalValue, VCGetDisplayShowUnits,
VCGetDisplayShowLeadingZeros, VCGetDisplayFractionalValue, VCGetDisplayDecimalValue,
VCGetSecondaryDistFormat, VCGetUnitConversionFactor

VCGetDimFractionalValue
VCSetDimFractionalValue

Version 2.0
Description Returns an integer representing the denominator of the fractional display value. All decimal

values will be rounded to the nearest fractional values represented by this denominator when
displayed. This does not affect stored values, only the display of these values.

Declaration
C/C++ extern "C" short WINAPI VCGetDimFractionalValue(short* iError);

extern "C" void WINAPI VCSetDimFractionalValue(short* iError, short iF_);
Visual Basic Declare Function VCGetDimFractionalValue Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimFractionalValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi function VCGetDimFractionalValue(var iError: Integer):Integer; far;
procedure VCSetDimFractionalValue(var iError: Integer; iF_: Integer); far;

Parameters iF - determines the denominator of the fractional value to be used.
2 - 1/2.
4 - 1/4.
8 - 1/8.
16 - 1/16.
32 - 1/32.
64 - 1/64.

Notes The fractional values need to be used in conjunction with VCGetDimDistFormat: the units in
VCGetDimDistFormat must be in Fractional Feet, Fractional Inches, or Fractional Feet & Inches.

See Also VCGetDimDistFormat, VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros,
VCGetDisplayFractionalValue, VCGetDisplayDecimalValue, VCGetUnitConversionFactor

VCGetDimShowDash
VCSetDimShowDash

Version 2.0
Description Specifies if a dash is placed between fractional feet and inches values.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimShowDash(short* iError);

extern "C" void WINAPI VCSetDimShowDash(short* iError, vbool tf);
Visual Basic Declare Function VCGetDimShowDash Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimShowDash Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetDimShowDash(var iError: Integer):Boolean; far;

procedure VCSetDimShowDash(var iError: Integer; tf: Boolean); far;
Parameters tf - show the dash in the dimension

0 - do not show the dash
1 - show the dash

See Also VCGetDimDistFormat, VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros,
VCGetDisplayFractionalValue, VCGetDisplayDecimalValue, VCGetUnitConversionFactor,
VCGetSecondaryDistFormat

VCGetDimShowFractions
VCSetDimShowFractions

Version 2.0
Description Dimension fractions can be displayed as a single character (¼) or multiple characters separated

by a slash (1/4).
Declaration
C/C++ extern "C" short WINAPI VCGetDimShowFractions(short* iError);

extern "C" void WINAPI VCSetDimShowFractions(short* iError, short iF_);
Visual Basic Declare Function VCGetDimShowFractions Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimShowFractions Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi function VCGetDimShowFractions(var iError: Integer):Integer; far;
procedure VCSetDimShowFractions(var iError: Integer; iF_: Integer); far;

Parameters tf - show the dimension fraction
0 - do not show the fraction
1 - show the fraction

Notes This option is available only for vector fonts which is determined with VCIsFontNameVT. Corel
Visual CADD has more control over vector fonts than it does over True type fonts, so therefore it
is best to use vector fonts when possible.

See Also VCGetDimFont, VCGetTextFontName, VCIsFontNameVText, VCIsTextFontVText

VCGetDimShowLeadingZeros
VCSetDimShowLeadingZeros

Version 2.0
Description When displaying decimal values between 1 and -1, it may be preferred to not display the leading

zero - the single zero before the decimal point.
Declaration
C/C++ extern "C" short WINAPI VCGetDimShowLeadingZeros(short* iError);

extern "C" void WINAPI VCSetDimShowLeadingZeros(short* iError, short iF_);
Visual Basic Declare Function VCGetDimShowLeadingZeros Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimShowLeadingZeros Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi function VCGetDimShowLeadingZeros(var iError: Integer):Integer; far;
procedure VCSetDimShowLeadingZeros(var iError: Integer; iF_: Integer); far;

Parameters tf - show leading zeros
0 - do not show leading zeros.
1 - show leading zeros.

See Also VCGetDimFont, VCGetTextFontName, VCIsFontNameVText, VCIsTextFontVText

VCGetDimShowUnits
VCSetDimShowUnits

Version 2.0
Description Specifies if the abbreviation for the unit type is displayed after the number. If the units are Feet

and Inches, the units are displayed regardless of this setting.
Declaration
C/C++ extern "C" short WINAPI VCGetDimShowUnits(short* iError);

extern "C" void WINAPI VCSetDimShowUnits(short* iError, short iF_);
Visual Basic Declare Function VCGetDimShowUnits Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimShowUnits Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As Integer)
Delphi function VCGetDimShowUnits(var iError: Integer):Integer; far;

procedure VCSetDimShowUnits(var iError: Integer; iF_: Integer); far;
Parameters tf - show dimension units

0 - do not show dimesnion units.
1 - show dimension units.

Notes With Corel Visual CADD, you can specify if you want the units to be displayed or if you only want
the dimension numbers to be displayed. The current units are set by VCGetDimDistFormat, such
as meters, inches, or Fraction Feet. Remember that the units for feet and inches automatically
appear, no matter what the settings are for VCGetDimShowUnits.

See Also VCGetDimDistFormat, VCGetDimShowDash, VCGetSecondaryDistFormat, VCGetDimFont,
VCGetDimShowLeadingZeros, VCGetTextFontName

VCGetDimTextAspect
VCSetDimTextAspect

Version 2.0
Description Specifies the current text aspect ratio setting for dimensions. The text aspect ratio is the

proportion of the text height to the text width.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextAspect(short* iError);

extern "C" void WINAPI VCGetDImTextAspectBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextAspect(short* iError, double d);

Visual Basic: Declare Sub VCGetDImTextAspectBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDImTextAspect Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDImTextAspectBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDImTextAspect(var iError: Integer; dRet: Double); far;

Parameters dRet - the current text aspect ratio.
See Also VCGetDimTextBold, VCGetDimTextCharSpace, VCGetDimTextColor, VCGetDimTextFontName,

VCGetDimTextHeight, VCGetDimTextItalic, VCGetDimTextItalicValue, VCGetDimTextLayer,
VCGetDimTextLineSpace, VCGetDimTextProSpacing, VCGetDimTextRot, VCGetDimTextString,
VCGetDimTextUnderline

VCGetDimTextBold
VCSetDimTextBold

Version 2.0
Description Specifies if the dimension text is to be bold. The bold command only works with True type fonts.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimTextBold(short* iError);

extern "C" void WINAPI VCSetDimTextBold(short* iErrors, short i);
Visual Basic Declare Function VCGetDimTextBold Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextBold Lib "VCMAIN32.DLL" (iErrors As Integer, ByVal i As Integer)
Delphi function VCGetDimTextBold(var iError: Integer):Boolean; far;

procedure VCSetDimTextBold(var iErrors: Integer; i: Integer); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Depending on what type of font is being used and how the font is defined, then you might be
able to make the text look bold. Corel Visual CADD utilizes both TrueType Fonts and built in
vector fonts. The vector fonts can be converted from other font formats such as .SHX and .FNT.
When working with text entities it is important to understand the type of font being used.
Certain settings such as Bold, Italic and Underline only effect TrueType Fonts while others such
as Italic value are designed for vector fonts. To make a vector font look bold, change its line
width to a large value. Therefore, when altering the settings of an existing text entity it is
necessary to determine the type of font in order to apply the appropriate settings.
VCIsFontNameVText determines if the specified font is a Corel Visual CADD vector font.

See Also VCGetDimFont, VCGetDimTextItalic, VCGetDimTextUnderline, VCIsFontNameVText

VCGetDimTextCharSpace
VCSetDimTextCharSpace

Version 2.0
Description Character spacing is the amount of space that appears between characters in a text string. It

determines if the characters in a word are crowded or spread out. The value is a percentage of
the characters height and applies only to vector fonts.

Declaration
C/C++: extern "C" double WINAPI VCGetDimTextCharSpace(short* iError);

extern "C" void WINAPI VCGetDimTextCharSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextCharSpace(short* iError, double dCharSpacing);

Visual Basic: Declare Sub VCGetDimTextCharSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimTextCharSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal
dCharSpacing As Double)

Delphi: procedure VCGetDimTextCharSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimTextCharSpace(var iError: Integer; dCharSpacing: Double); far;

Parameters dCharSpacing - the charcter spacing as a decimal percentage (i.e. 1.5 is 150%)
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetDimTextFillVText
VCSetDimTextFillVText

Version 2.0
Description Specifies if vector fonts are filled in dimensions.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimTextFillVText(short* iError);

extern "C" void WINAPI VCSetDimTextFillVText(short* iError, vbool tf);
Visual Basic Declare Function VCGetDimTextFillVText Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextFillVText Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetDimTextFillVText(var iError: Integer):Boolean; far;

procedure VCSetDimTextFillVText(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Depending on what type of font is being used and how the font is defined, then you might be
able to modify its appearance. Corel Visual CADD utilizes both TrueType Fonts and built in vector
fonts. The vector fonts can be converted from other font formats such as .SHX and .FNT. When
working with text entities it is important to understand the type of font being used. Certain
settings such as Bold, Italic and Underline only effect TrueType Fonts while others such as Italic
value are designed for vector fonts. VCGetDimTextFillVText will fill vector fonts that are closed
outline fonts. Therefore, when altering the settings of an existing text entity it is necessary to
determine the type of font in order to apply the appropriate settings. VCIsFontNameVText
determines if the specified font is a Corel Visual CADD vector font.

See Also VCIsFontNameVText, VCGetDimFont

VCGetDimTextItalic
VCSetDimTextItalic

Version 2.0
Description Specifies if the test is to have an italic appearance. Will only work with True type fonts.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimTextItalic(short* iError);

extern "C" void WINAPI VCSetDimTextFillVText(short* iError, vbool tf);
Visual Basic Declare Function VCGetDimTextItalic Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextItalic Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetDimTextItalic(var iError: Integer):Boolean; far;

procedure VCSetDimTextFillVText(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Depending on what type of font is being used and how the font is defined, then you might be
able to modify its appearance. Corel Visual CADD utilizes both TrueType Fonts and built in vector
fonts. The vector fonts can be converted from other font formats such as .SHX and .FNT. When
working with text entities it is important to understand the type of font being used. Certain
settings such as Bold, Italic and Underline only effect TrueType Fonts while others such as Italic
value are designed for vector fonts. VCGetDimTextItalic determines if the specified font is to be
italicized or not (Remember that VCGetDimTextItalic only works with True type fonts). Therefore,
when altering the settings of an existing text entity it is necessary to determine the type of font
in order to apply the appropriate settings. VCIsFontNameVText determines if the specified font is
a Corel Visual CADD vector font. To italicize vector fonts, use VCGetDimTextItalicAng.

See Also VCGetDimFont, VCGetDimTextBold, VCGetDimTextItalicAng, VCGetDimTextUnderline,
VCIsFontNameVText

VCGetDimTextItalicAng
VCSetDimTextItalicAng

Version 2.0
Description Vector fonts can be slanted to emulate italics.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextItalicValue(short* iError, double* dI);

extern "C" void WINAPI VCGetDimTextItalicValueBP(short* iError, double* dI);
extern "C" void WINAPI VCSetDimTextItalicValue(short* iError, double dI);

Visual Basic: Declare Sub VCGetDimTextItalicValueBP Lib "VCMAIN32.DLL" (iError As Integer, dI As Double)
Declare Sub VCSetDimTextItalicValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal dI As Double)

Delphi: procedure VCGetDimTextItalicValueBP(var iError: Integer; var dI: Double); far;
procedure VCSetDimTextItalicValue(var iError: Integer; dI: Double); far;

Parameters dI - the angle in radians for the slant
Notes The number must range between 45 and -45 degrees. As with all angle functions, the angle is

specified in radians. A negative number will slant the text backwards.
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetDimTextProSpacing
VCSetDimTextProSpacing

Version 2.0
Description Vector text character spacing can be forced to monospace or proportional spacing. Monospace is

a characteristic of typewriter output and all characters will use the same amount of space
regardless of their width and height.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetDimTextProSpacing(short* iError);

extern "C" void WINAPI VCSetDimTextProSpacing(short* iError, BOOL b);
Visual Basic: Declare Function VCGetDimTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextProSpacing(var iError: Integer):Boolean; far; external'VCMAIN';

procedure VCSetDimTextProSpacing(var iError: Integer; b: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,
VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetDimTextLineSpace
VCSetDimTextLineSpace

Version 2.0
Description The between text line spacing as a percentage of current text height.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextLineSpace(short* iError);

extern "C" void WINAPI VCGetDimTextLineSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextLineSpace(short* iError, double dLineSpacing);

Visual Basic: Declare Sub VCGetDimTextLineSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimTextLineSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal dLineSpacing
As Double)

Delphi: procedure VCGetDimTextLineSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimTextLineSpace(var iError: Integer; dLineSpacing: Double); far;

Parameters dRet - spacing between the lines.
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetDimTextUnderline
VCSetDimTextUnderline

Version 2.0
Description Specifies if the dimension text is to be underline. Only works with True type fonts.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimTextUnderline(short* iError);

extern "C" void WINAPI VCSetDimTextUnderline(short* iError, vbool tf);
Visual Basic Declare Function VCGetDimTextUnderline Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextUnderline Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetDimTextUnderline(var iError: Integer):Boolean; far;

procedure VCSetDimTextUnderline(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Depending on what type of font is being used and how the font is defined, then you might be
able to modify its appearance. Corel Visual CADD utilizes both TrueType Fonts and built in vector
fonts. The vector fonts can be converted from other font formats such as .SHX and .FNT. When
working with text entities it is important to understand the type of font being used. Certain
settings such as Bold, Italic and Underline only effect TrueType Fonts while others such as Italic
value are designed for vector fonts. VCGetDimTextUnderline determines if the specified font is
underlined or not (Remember that VCGetDimTextUnderline only works with True type fonts).
Therefore, when altering the settings of an existing text entity it is necessary to determine the
type of font in order to apply the appropriate settings. VCIsFontNameVText determines if the
specified font is a Corel Visual CADD vector font.

See Also VCGetDimFont, VCGetDimTextBold, VCGetDimTextItalic, VCIsFontNameVText

VCGetDimExtAbove
VCSetDimExtAbove

Version 1.2
Description The dimension extension above distance is the length of the extension lines above the

dimension line.
Declaration
C/C++: extern "C" double WINAPI VCGetDimExtAbove(short* iError);

extern "C" void WINAPI VCGetDimExtAboveBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimExtAbove(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimExtAboveBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimExtAbove Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimExtAboveBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimExtAbove(var iError: Integer; dRet: Double); far;

Parameters d - the offset distance value.
See Also VCDimGetDimMode, VCGetDimUnitConversionFactor, VCDimGetDimExtStrerch,

VCDimGetDimProximity, VCGetDimExtBelow, VCGetDimExtOffset

VCGetDimExtBelow
VCSetDimExtBelow

Version 1.2
Description The dimension extension below distance is the length of the extension lines below the

dimension line when utilizing proximity fixed.
Declaration
C/C++: extern "C" double WINAPI VCGetDimExtBelow(short* iError);

extern "C" void WINAPI VCGetDimExtBelowBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimExtBelow(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimExtBelowBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimExtBelow Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimExtBelowBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimExtBelow(var iError: Integer; dRet: Double); far;

Parameters d - the offset distance value.
See Also VCGetDimUnitConversionFactor, VCGetDimExtAbove, VCDimGetDimProximity,

VCGetDimExtOffset

VCGetDimExtOffset
VCSetDimExtOffset

Version 1.2
Description The offset distance is the distance from the dimensioned point or object to the start of the

extension line. Applies only if proximity fixed is on, then the dimension line is placed a fixed
distance from the dimensioned object equal to the Below distance plus the Offset distance.

Declaration
C/C++: extern "C" double WINAPI VCGetDimExtOffset(short* iError);

extern "C" void WINAPI VCGetDimExtOffsetBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimExtOffset(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimExtOffsetBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimExtOffset Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimExtOffsetBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimExtOffset(var iError: Integer; dRet: Double); far;

Parameters d - the offset distance value.
See Also VCGetDimUnitConversionFactor, VCGetDimExtAbove, VCGetDimExtBelow,

VCDimGetDimProximity

VCGetDimFont
VCSetDimFont

Version 1.2
Description The font used for dimension placements.
Declaration
C/C++: extern "C" short WINAPI VCGetDimFont(short* iError, char* pS);

extern "C" void WINAPI VCSetDimFont(short* iError, char* pS);
Visual Basic: Declare Function VCGetDimFont Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String) As

Integer
Declare Sub VCSetDimFont Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

Delphi: function VCGetDimFont(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetDimFont(var iError: Integer; pS: PChar); far;

Parameters pS - the font name
Notes The available font names can be determined with VCGetFontName and VCGetFontNameCount.
See Also VCGetDimTextCentered, VCGetDimTextHeight, VCGetFontName, VCGetFontNameCount

VCGetDimItemColor
VCSetDimItemColor

Version 1.2
Description The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions.

Declaration
C/C++: extern "C" short WINAPI VCGetDimItemColor(short* iError, short i);

extern "C" void WINAPI VCSetDimItemColor(short* iError, short i, short j);
Visual Basic: Declare Function VCGetDimItemColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)

As Integer
Declare Sub VCSetDimItemColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer, ByVal
j As Integer)

Delphi: function VCGetDimItemColor(var iError: Integer; i: Integer):Integer; far;
procedure VCSetDimItemColor(var iError: Integer; i: Integer; j: Integer);far;

Parameters i - the dimension item number.
0 - Dimension Line
1- Left Arrow
2 - Right Arrow
3 - Left Extension
4 - Right Extension
5 - Dim Text
j - the color value from 0 to 255.

See Also VCGetDimItemLineWidth, VCGetDimItemLineType, VCGetDimDisplayItemName

VCGetDimItemLineType
VCSetDimItemLineType

Version 1.2
Description Used to get the line type of the selected dimension item. Each dimension item can be have a

The elements that make up a dimension include the dimension line, left and right extension
lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions.

Declaration
C/C++: extern "C" short WINAPI VCGetDimItemLineType(short* iError, short i);

extern "C" void WINAPI VCSetDimItemLineType(short* iError, short i, short j);
Visual Basic: Declare Function VCGetDimItemLineType Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As

Integer) As Integer
Declare Sub VCSetDimItemLineType Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer,
ByVal j As Integer)

Delphi: function VCGetDimItemLineType(var iError: Integer; i: Integer):Integer; far;
procedure VCSetDimItemLineType(var iError: Integer; i: Integer; j: Integer); far;

Parameters i - the dimension item number.
0 - Dimension Line
1- Left Arrow
2 - Right Arrow
3 - Left Extension
4 - Right Extension
5 - Dim Text
j - the linetype value.

See Also VCGetDimItemLineWidth, VCGetDimDisplayItemName, VCGetDimItemShow,
VCGetDimItemLineType, VCGetDimItemColor

VCGetDimItemLineWidth
VCSetDimItemLineWidth

Version 1.2
Description The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions.

Declaration
C/C++: extern "C" short WINAPI VCGetDimItemLineWidth(short* iError, short i);

extern "C" void WINAPI VCSetDimItemLineWidth(short* iError, short i, short j);
Visual Basic: Declare Function VCGetDimItemLineWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As

Integer) As Integer
Declare Sub VCSetDimItemLineWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer,
ByVal j As Integer)

Delphi: function VCGetDimItemLineWidth(var iError: Integer; i: Integer):Integer; far;
procedure VCSetDimItemLineWidth(var iError: Integer; i: Integer; j: Integer); far;

Parameters i - the dimension item number.
0 - Dimension Line
1 - Left Arrow
2 - Right Arrow
3 - Left Extension
4 - Right Extension
5 - Dim Text
j - the width value.

See Also VCGetDimDisplayItemName, VCGetDimItemLineType, VCGetDimItemShow,
VCGetDimItemLineType, VCGetDimItemColor

VCGetDimItemShow
VCSetDimItemShow

Version 1.2
Description The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API gives complete control over the visual
properties of each of the dimension elements independent of each other. Changing the
properties of dimension elements will not effect previously drawn dimensions. Specifies if the
selected dimension item is shown when placing or editing the dimension.

Declaration
C/C++: extern "C" vbool WINAPI VCGetDimItemShow(short* iError, short i);

extern "C" void WINAPI VCSetDimItemShow(short* iError, short i, vbool tf);
Visual Basic: Declare Function VCGetDimItemShow Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)

As Integer
Declare Sub VCSetDimItemShow Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer, ByVal
tf As Integer)

Delphi: function VCGetDimItemShow(var iError: Integer; i: Integer):Boolean; far;
procedure VCSetDimItemShow(var iError: Integer; i: Integer; tf: Boolean); far;

Parameters i - the dimension item number.
0 - Dimension Line
1 - Left Arrow
2 - Right Arrow
3 - Left Extension
4 - Right Extension
5 - Dim Text
tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimItemLineWidth, VCGetDimItemLineType, VCGetDimDisplayItemName,
VCGetDimItemColor

VCGetDimLayer
VCSetDimLayer

Version 1.2
Description Corel Visual CADD will maintain a layer index for dimensions independent of the current layer.

Even though the layer dimension may be specified, VCGetDimUseDimLayer must be specified to
activate the dimension layer.

Declaration
C/C++: extern "C" short WINAPI VCGetDimLayer(short* iError);

extern "C" void WINAPI VCSetDimLayer(short* iError, short i);
Visual Basic: Declare Function VCGetDimLayer Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetDimLayer(var iError: Integer):Integer; far;

procedure VCSetDimLayer(var iError: Integer; i: Integer); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimUseDimLayer

VCGetDimLineAngle
VCSetDimLineAngle

Version 1.2
Description The dimension direction is the orientation used when measuring a distance and drawing a

dimension line.
Declaration
C/C++: extern "C" double WINAPI VCGetDimLineAngle(short* iError);

extern "C" void WINAPI VCGetDimLineAngleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimLineAngle(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimLineAngleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimLineAngle Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimLineAngleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimLineAngle(var iError: Integer; dRet: Double); far;

Parameters d - the value of the dimension line angle in radians.
Notes Measured distances are projected onto the dimension direction. Horizontal - Only the horizontal

component of the entity is measured. Vertical - Only the vertical component of the entity is
measured. Aligned - The dimension line is placed parallel to the entity. Aligned dimensions
always represent the true length of the entity. Angle - Sets the dimension to a specified angle.
The distance measured is the length of the entity projected onto the defined angle.
VCGetDimLineAngle specifies the dimension angle.

See Also VCGetDimLineDirect

VCGetDimLineDirect
VCSetDimLineDirect

Version 1.2
Description The dimension direction is the orientation used when measuring a distance and drawing a

dimension line.
Declaration
C/C++: extern "C" short WINAPI VCGetDimLineDirect(short* iError);

extern "C" void WINAPI VCSetDimLineDirect(short* iError, short b);
Visual Basic: Declare Function VCGetDimLineDirect Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimLineDirect Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimLineDirect(var iError: Integer):Integer; far;

procedure VCSetDimLineDirect(var iError: Integer; b: Integer); far;
Parameters b - the value of the dimension line direction.

1 - DIMALIGNED
2 - DIMHORIZONTAL
3 - DIMVERTICAL
4 - DIMATANANGLE

Notes Measured distances are projected onto the dimension direction. Horizontal - Only the horizontal
component of the entity is measured. Vertical - Only the vertical component of the entity is
measured. Aligned - The dimension line is placed parallel to the entity. Aligned dimensions
always represent the true length of the entity. Angle - Sets the dimension to a specified angle.
The distance measured is the length of the entity projected onto the defined angle.

See Also VCGetDimLineAngleVCDimDirectionMode

VCGetDimLineText
VCSetDimLineText

Version 1.2
Description The location of the dimension line text.
Declaration
C/C++: extern "C" short WINAPI VCGetDimLineText(short* iError);

extern "C" void WINAPI VCSetDimLineText(short* iError, short b);
Visual Basic: Declare Function VCGetDimLineText Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimLineText Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimLineText(var iError: Integer):Integer; far;

procedure VCSetDimLineText(var iError: Integer; b: Integer); far;
Parameters b - the value of the dimension line text.

0 - DIMTEXTINLINE
1 - DIMTEXTABOVELINE
2 - DIMTEXTFREEFLOAT

Notes In Line - Dimension text is inserted and centered in a break in the dimension line. The gap from
the dimension line to the dimension text is equal to the Offset distance. Above Line - The
dimension text is placed parallel to and offset from the dimension line. Automatically sets the
dimension mode to Aligned mode. Free Float - Places the dimension text at the point specified in
the VCAdd routines.

See Also VCGetDimTextOverwriteString, VCGetDimTextSuffixString, VCGetDimTextPrefixString,
VCGetDimTextOverwrite, VCGetDimTextSuffix, VCGetDimTextPrefix, VCGetDimTextCentered,
VCGetDimTextRotationType, VCGetDimTextSuffixString

VCGetDimTextCentered
VCSetDimTextCentered

Version 1.2
Description Dimension text is placed at the midpoint of the dimension line, regardless of the orientation or

mode.
Declaration
C/C++: extern "C" vbool WINAPI VCGetDimTextCentered(short* iError);

extern "C" void WINAPI VCSetDimTextCentered(short* iError, vbool tf);
Visual Basic: Declare Function VCGetDimTextCentered Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextCentered Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetDimTextCentered(var iError: Integer):Boolean; far;

procedure VCSetDimTextCentered(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimTextHeight, VCGetDimFont, VCGetDimTextVertSpace, VCGetDimTextRotationType

VCGetDimTextHeight
VCSetDimTextHeight

Version 1.2
Description The dimension text height in inches.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextHeight(short* iError);

extern "C" void WINAPI VCGetDimTextHeightBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextHeight(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimTextHeightBP Lib "VCMAIN32.DLL" (iError As Integer, d As Double)
Declare Sub VCSetDimTextHeight Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimTextHeightBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimTextHeight(var iError: Integer; dRet: Double); far;

Parameters d - the value of the text height in inches.
See Also VCGetDimTextCentered, VCGetDimFont, VCGetDimTextVertSpace, VCGetDimHorizSpace,

VCGetDimTextRotationType

VCGetDimTextHorizSpace
VCSetDimTextHorizSpace

Version 1.2
Description The dimension text horizontal spacing.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextHorizSpace(short* iError);

extern "C" void WINAPI VCGetDimTextHorizSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextHorizSpace(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimTextHorizSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, d As Double)
Declare Sub VCSetDimTextHorizSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimTextHorizSpaceBP(var iError: Integer; var dRet: Double);
procedure VCSetDimTextHorizSpace(var iError: Integer; dRet: Double); far;

Parameters d - the value of the inline spacing.
See Also VCGetDimTextCentered, VCGetDimTextHeight, VCGetDimFont, VCGetDimTextVertSpace,

VCGetDimTextRotationType

VCGetDimTextOverwrite
VCSetDimTextOverwrite

Version 1.2
Description The dimension value is calculated automatically by Corel Visual CADD. The "Overwrite" option

allows an application to completely replace the calculated dimension with an input string.
VCSetDimTextOverwriteString sets the string while VCSetDimTextOverwrite tells Corel Visual
CADD to replace the calculated value with the string.

Declaration
C/C++: extern "C" vbool WINAPI VCGetDimTextOverwrite(short* iError);

extern "C" void WINAPI VCSetDimTextOverwrite(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextOverwrite Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextOverwrite Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextOverwrite(var iError: Integer):Boolean; far;

procedure VCSetDimTextOverwrite(var iError: Integer; b: Integer); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimTextOverwriteString, VCGetDimTextSuffixString, VCGetDimTextPrefixString,
VCGetDimTextOverwrite, VCGetDimTextSuffix, VCGetDimTextPrefix, VCGetDimTextCentered,
VCGetDimTextRotationType, VCGetDimTextSuffixString

VCGetDimTextOverwriteString
VCSetDimTextOverwriteString

Version 1.2
Description The dimension value is calculated automatically by Corel Visual CADD. The "Overwrite" option

allows an application to completely replace the calculated dimension with an input string.
VCSetDimTextOverwriteString sets the string while VCSetDimTextOverwrite tells Corel Visual
CADD to replace the calculated value with the string.

Declaration
C/C++: extern "C" short WINAPI VCGetDimTextOverwriteString(short* iError, char* pB);

extern "C" void WINAPI VCSetDimTextOverwriteString(short* iError, char* pB);
Visual Basic: Declare Function VCGetDimTextOverwriteString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB

As String) As Integer
Declare Sub VCSetDimTextOverwriteString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB As
String)

Delphi: function VCGetDimTextOverwriteString(var iError: Integer; pB: PChar):Integer;
procedure VCSetDimTextOverwriteString(var iError: Integer; pB: PChar); far

Parameters pB - the value of the overwrite string.
See Also VCGetDimTextOverwriteString, VCGetDimTextSuffixString, VCGetDimTextPrefixString,

VCGetDimTextOverwrite, VCGetDimTextSuffix, VCGetDimTextPrefix, VCGetDimTextCentered,
VCGetDimTextRotationType, VCGetDimTextSuffixString

VCGetDimTextPrefix
VCSetDimTextPrefix

Version 1.2
Description The dimension settings allow a custom prefix or suffix to be added to the calculated dimension

angle or distance without losing the associative property of the dimension.
Declaration
C/C++: extern "C" vbool WINAPI VCGetDimTextPrefix(short* iError);

extern "C" void WINAPI VCSetDimTextPrefix(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextPrefix Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextPrefix Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextPrefix(var iError: Integer):Boolean; far;

procedure VCSetDimTextPrefix(var iError: Integer; b: Integer); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes The Strings can be set with VCSetDimTextSuffixString and VCSetDimTextPrefixString, while
VCSetDimTextSuffix and VCSetDimTextPrefix indicate to use the strings in the dimension text.

See Also VCGetLeaderString, VCGetDimTextSuffixString, VCGetDimTextPrefixString,
VCGetDimTextOverwrite, VCGetDimTextSuffix, VCGetDimTextPrefix

VCGetDimTextPrefixString
VCSetDimTextPrefixString

Version 1.2
Description The dimension settings allow a custom prefix or suffix to be added to the calculated dimension

angle or distance without losing the associative property of the dimension.
Declaration
C/C++: extern "C" short WINAPI VCGetDimTextPrefixString(short* iError, char* pB);

extern "C" void WINAPI VCSetDimTextPrefixString(short* iError, char* pB);
Visual Basic: Declare Function VCGetDimTextPrefixString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB As

String) As Integer
Declare Sub VCSetDimTextPrefixString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB As
String)

Delphi: function VCGetDimTextPrefixString(var iError: Integer; pB: PChar):Integer;
procedure VCSetDimTextPrefixString(var iError: Integer; pB: PChar); far;

Parameters pB - the value of the prefix string.
Notes The Strings can be set with VCSetDimTextSuffixString and VCSetDimTextPrefixString, while

VCSetDimTextSuffix and VCSetDimTextPrefix indicate to use the strings in the dimension text.
See Also VCGetLeaderString, VCGetDimTextSuffixString, VCGetDimTextPrefixString,

VCGetDimTextOverwrite, VCGetDimTextSuffix, VCGetDimTextPrefix

VCGetDimTextRotationType
VCSetDimTextRotationType

Version 1.2
Description The dimension text orientation with respect to the dimension line.
Declaration
C/C++: extern "C" short WINAPI VCGetDimTextRotationType(short* iError);

extern "C" void WINAPI VCSetDimTextRotationType(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextRotationType Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextRotationType Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As
Integer)

Delphi: function VCGetDimTextRotationType(var iError: Integer):Integer; far;
procedure VCSetDimTextRotationType(var iError: Integer; b: Integer); far;

Parameters b - the value of the rotation type.
0 - Aligned
1 - Horizontal

Notes Aligned - The dimension text will be orientated parallel to the dimension line. This option is set
automatically if the dimension text relationship to the dimension line is set to "Above".
Horizontal - The dimension text is placed horizontal regardless of the orientation of the
dimension line. Applies only if the dimension text placement option is set to the "In Line" option.

See Also VCGetDimTextCentered, VCGetDimTextHeight, VCGetDimFont, VCGetDimTextVertSpace,
VCGetDimTextHorizSpace

VCGetDimTextScale
VCSetDimTextScale

Version 1.2
Description A scaling factor that is applied to all dimensions to set the dimension text value.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextScale(short* iError);

extern "C" void WINAPI VCGetDimTextScaleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextScale(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimTextScaleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetDimTextScale Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimTextScaleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetDimTextScale(var iError: Integer; dRet: Double); far

Parameters d - the value of text scale.
Notes Can be used when details or drawings of mixed scales are plotted on the same sheet. This factor

allows details to be blown up beyond "real world" size, and dimensioned correctly without
having to reset the size related dimension properties.

See Also VCGetDimTextCentered, VCGetDimTextHeight, VCGetDimFont, VCGetDimTextVertSpace,
VCGetDimTextHorizSpace, VCGetDimTextRotationType

VCGetDimTextSuffix
VCSetDimTextSuffix

Version 1.2
Description The dimension settings allow a custom prefix or suffix to be added to the calculated dimension

angle or distance without losing the associative property of the dimension..
Declaration
C/C++: extern "C" vbool WINAPI VCGetDimTextSuffix(short* iError);

extern "C" void WINAPI VCSetDimTextSuffix(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextSuffix Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextSuffix Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextSuffix(var iError: Integer):Boolean; far;

procedure VCSetDimTextSuffix(var iError: Integer; b: Integer); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes The Strings can be set with VCSetDimTextSuffixString and VCSetDimTextPrefixString, while
VCSetDimTextSuffix and VCSetDimTextPrefix indicate to use the strings in the dimension text

See Also VCGetLeaderString, VCGetDimTextOverwrite, VCGetDimTextPrefix, VCGetDimTextPrefixString,
VCGetDimTextSuffixString

VCGetDimTextSuffixString
VCSetDimTextSuffixString

Version 1.2
Description The dimension settings allow a custom prefix or suffix to be added to the calculated dimension

angle or distance without losing the associative property of the dimension.
Declaration
C/C++: extern "C" short WINAPI VCGetDimTextSuffixString(short* iError, char* pB);

extern "C" void WINAPI VCSetDimTextSuffixString(short* iError, char* pB);
Visual Basic: Declare Function VCGetDimTextSuffixString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB As

String) As Integer
Declare Sub VCSetDimTextSuffixString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pB As
String)

Delphi: function VCGetDimTextSuffixString(var iError: Integer; pB: PChar):Integer;
procedure VCSetDimTextSuffixString(var iError: Integer; pB: PChar); far

Parameters pB - the value of the suffix string.
Notes The Strings can be set with VCSetDimTextSuffixString and VCSetDimTextPrefixString, while

VCSetDimTextSuffix and VCSetDimTextPrefix indicate to use the strings in the dimension text.
See Also VCGetLeaderString, VCGetDimTextOverwrite, VCGetDimTextPrefix, VCGetDimTextPrefixString,

VCGetDimTextSuffix

VCGetDimTextTolDecimal
VCSetDimTextTolDecimal

Version 1.2
Description The number of decimal places to display on dimension tolerance values. Tolerances specify the

allowable variations in a dimension and are often used in high precision work.
Declaration
C/C++: extern "C" short WINAPI VCGetDimTextTolDecimal(short* iError);

extern "C" void WINAPI VCSetDimTextTolDecimal(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextTolDecimal Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextTolDecimal Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextTolDecimal(var iError: Integer):Integer; far;

procedure VCSetDimTextTolDecimal(var iError: Integer; b: Integer); far
Parameters b - the number of decimal places
See Also VCGetDimTextTolLowerVal, VCGetDimTextTolType, VCGetDimTextTolUpperVal

VCGetDimTextTolLowerVal
VCSetDimTextTolLowerVal

Version 1.2
Description The maximum distance permitted for a lower tolerance variation in a dimension .Tolerances

specify the allowable variations in a dimension and are often used in high precision work.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextTolLowerVal(short* iError);

extern "C" void WINAPI VCGetDimTextTolLowerValBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetDimTextTolLowerVal(short* iError, double dRet);

Visual Basic: Declare Sub VCGetDimTextTolLowerValBP Lib "VCMAIN32.DLL" (iError As Integer, d As Double)
Declare Sub VCSetDimTextTolLowerVal Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimTextTolLowerValBP(var iError: Integer; var dRet: Double);
procedure VCSetDimTextTolLowerVal(var iError: Integer; dRet: Double); far;

Parameters d - the value of the tolerance lower value setting.
See Also VCGetDimTextTolType, VCGetDimTextTolUpperVal, VCGetDimTextTolDecimal

VCGetDimTextTolType
VCSetDimTextTolType

Version 1.2
Description Tolerances specify the allowable variations in a dimension and are often used in high precision

work. VCGetDimTextTolType sets what type of tolerance display is to be used.
Declaration
C/C++: extern "C" short WINAPI VCGetDimTextTolType(short* iError);

extern "C" void WINAPI VCSetDimTextTolType(short* iError, short b);
Visual Basic: Declare Function VCGetDimTextTolType Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimTextTolType Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetDimTextTolType(var iError: Integer):Integer; far;

procedure VCSetDimTextTolType(var iError: Integer; b: Integer); far;
Parameters b - the type of tolerance to be used on subsequent dimension placements.

0 - DIMNOTOLERANCE
1 - DIMSTACKEDMINMAX
2 - DIMSTACKEDVARIANCE
3 - DIMFIXEDVARIANCE

Notes The tolerance values can be shown in several methods: Stacked Variance - The calculated
dimension is shown followed by allowable oversize tolerance "stacked" on top of the allowable
undersize tolerance. Stacked min/max - The maximum allowable distance is stacked on top of
the minimum allowable distance. The measured distance is not shown.

See Also VCGetDimTextTolLowerVal, VCGetDimTextTolUpperVal, VCGetDimTextTolDecimal

VCGetDimTextTolUpperVal
VCSetDimTextTolUpperVal

Version 1.2
Description The maximum distance permitted for a upper tolerance variation in a dimension .Tolerances

specify the allowable variations in a dimension and are often used in high precision work.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextTolUpperVal(short* iError);

extern "C" void WINAPI VCGetDimTextTolUpperValBP(short* iError, double* d);
extern "C" void WINAPI VCSetDimTextTolUpperVal(short* iError, double d);

Visual Basic: Declare Sub VCGetDimTextTolUpperValBP Lib "VCMAIN32.DLL" (iError As Integer, d As Double)
Declare Sub VCSetDimTextTolUpperVal Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As
Double)

Delphi: procedure VCGetDimTextTolUpperValBP(var iError: Integer; var dRet: Double);
procedure VCSetDimTextTolUpperVal(var iError: Integer; dRet: Double); far;

Parameters d - the value of the tolerance upper value setting.
See Also VCGetDimTextTolLowerVal, VCGetDimTextTolType, VCGetDimTextTolDecimal

VCGetDimTextVertSpace
VCSetDimTextVertSpace

Version 1.2
Description The vertical spacing for dimension text display.
Declaration
C/C++: extern "C" double WINAPI VCGetDimTextVertSpace(short* iError);

extern "C" void WINAPI VCGetDimTextVertSpaceBP(short* iError, double* d);
extern "C" void WINAPI VCSetDimTextVertSpace(short* iError, double d);

Visual Basic: Declare Sub VCGetDimTextVertSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, d As Double)
Declare Sub VCSetDimTextVertSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetDimTextVertSpaceBP(var iError: Integer; var dRet: Double);
procedure VCSetDimTextVertSpace(var iError: Integer; dRet: Double); far

Parameters d - the value of the vertical spacing.
See Also VCGetDimTextCentered, VCGetDimTextHeight, VCGetDimFont, VCGetDimTextHorizSpace,

VCGetDimTextRotationType

VCGetDimUnitConversionFactor
Version 2.0
Description Returns the conversion factor used by Corel Visual CADD to convert from the "inch" database to

the current unit setting.
Declaration
C/C++ extern "C" void WINAPI VCGetDimUnitConversionFactor(short* iError, double* dRet);
Visual Basic Declare Sub VCGetDimUnitConversionFactor Lib "VCMAIN32.DLL" (iError As Integer, dRet As

Double)
Delphi procedure VCGetDimUnitConversionFactor(var iError: Integer; var dRet: Double);
Parameters
Notes Since all data is currently stored in the Corel Visual CADD drawing database as inches, it is

necessary to format any distances or areas in the units currently set in the program.
VCGetDimUnitConversionFactor will find what the current units are and return a simple multiplier
which will enable the conversion without having to case out each unit conversion in code.

See Also VCGetDisplayDistFormat, VCGetUnitConversionFactor

VCGetDimUseDimLayer
VCSetDimUseDimLayer

Version 1.2
Description Corel Visual CADD will maintain a layer index for dimensions independent of the current layer.

Even though the layer dimension may be specified, VCGetDimUseDimLayer must be specified to
activate the dimension layer. The dimension layer is set with VCSetDimLayer.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetDimUseDimLayer(short* iError);

extern "C" void WINAPI VCSetDimUseDimLayer(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetDimUseDimLayer Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDimUseDimLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetDimUseDimLayer(var iError: Integer):Boolean; far;

procedure VCSetDimUseDimLayer(var iError: Integer; tf: Boolean); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDimLayer

VCGetDisplayAngleFormat
VCSetDisplayAngleFormat

Version 1.2
Description Format for displaying angles as decimal degrees or degrees:minutes:seconds. If decimal degrees

format is used, the number is decimal places displayed is determined by
VCGetDisplayDecimalValue.

Declaration
C/C++: extern "C" short WINAPI VCGetDisplayAngleFormat(short* iError);

extern "C" void WINAPI VCSetDisplayAngleFormat(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayAngleFormat Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayAngleFormat Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayAngleFormat(var iError: Integer):Integer; far;
procedure VCSetDisplayAngleFormat(var iError: Integer; iF_: Integer); far

Parameters iF - determines angular format to be used.
9 - Angle and Degrees.
10 - Degrees Minutes Seconds.

See Also VCGetDisplayDistFormat, VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros,
VCGetDisplayFractionalValue, VCGetDisplayDecimalValue

VCGetDisplayDecimalValue
VCSetDisplayDecimalValue

Version 1.2
Description The number of digits displayed to the right of the decimal point.
Declaration
C/C++: extern "C" short WINAPI VCGetDisplayDecimalValue(short* iError);

extern "C" void WINAPI VCSetDisplayDecimalValue(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayDecimalValue Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayDecimalValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayDecimalValue(var iError: Integer):Integer; far;
procedure VCSetDisplayDecimalValue(var iError: Integer; iF_: Integer); far

Parameters iF - the number of decimal places to be displayed.
Notes The valid range is 0 -8. Corel Visual CADD calculates and stores real numbers to a precision of

16 significant digits. Setting decimal places or fractions affects only how the numbers are
displayed, not how they are calculated or stored. Corel Visual CADD seperates the number of
decimals that are displayed and the number of decimals that are used in theVCGetDimDeci

See Also VCGetDimDecimalValue, VCGetDisplayDistFormat, VCGetDisplayAngleFormat,
VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros, VCGetDisplayFractionalValue

VCGetDisplayDistFormat
VCSetDisplayDistFormat

Version 1.2
Description Option to set the units to display coordinates and distances on the screen and to draw

dimensions.
Declaration
C/C++: extern "C" short WINAPI VCGetDisplayDistFormat(short* iError);

extern "C" void WINAPI VCSetDisplayDistFormat(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayDistFormat Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayDistFormat Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayDistFormat(var iError: Integer):Integer; far;
procedure VCSetDisplayDistFormat(var iError: Integer; iF_: Integer); far;

Parameters if - the display format
0 - Decimal Inches
1 - Decimal Feet
2 - Decimal Feet & Inches
3 - Fractional Inches
4 - Fractional Feet
5 - Fractional Feet & Inches
6 - Millimeter
7 - Centimeter
8 - Meter

See Also VCGetDisplayAngleFormat, VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros,
VCGetDisplayFractionalValue, VCGetDisplayDecimalValue

VCGetDisplayFractionalValue
VCSetDisplayFractionalValue

Version 1.2
Description Returns an integer representing the denominator of the fractional display value. All decimal

values will be rounded to the nearest fractional values represented by this denominator when
displayed. This does not affect stored values, only the display of these values.

Declaration
C/C++: extern "C" short WINAPI VCGetDisplayFractionalValue(short* iError);

extern "C" void WINAPI VCSetDisplayFractionalValue(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayFractionalValue Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayFractionalValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayFractionalValue(var iError: Integer):Integer; far;
procedure VCSetDisplayFractionalValue(var iError: Integer; iF_: Integer);far

Parameters iF - determines the denominator of the fractional value to be used.
2 - 1/2.
4 - 1/4.
8 - 1/8.
16 - 1/16.
32 - 1/32.
64 - 1/64.

See Also VCGetDisplayDistFormat, VCGetDisplayAngleFormat, VCGetDisplayShowUnits,
VCGetDisplayShowLeadingZeros, VCGetDisplayDecimalValue

VCGetDisplayShowFractions
VCSetDisplayShowFractions

Version 1.2
Description Dimension fractions can be displayed as a single character (¼) or multiple characters separated

by a slash (1/4).
Declaration
C/C++: extern "C" short WINAPI VCGetDisplayShowFractions(short* iError);

extern "C" void WINAPI VCSetDisplayShowFractions(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayShowFractions Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayShowFractions Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayShowFractions(var iError: Integer):Integer; far;
procedure VCSetDisplayShowFractions(var iError: Integer; iF_: Integer); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes This option is available only for vector fonts which is determined with VCIsFontNameVText.
See Also VCGetDisplayDistFormat, VCGetDisplayShowUnits, VCGetDisplayShowLeadingZeros,

VCGetDisplayFractionalValue, VCGetDisplayDecimalValue

VCGetDisplayShowLeadingZeros
VCSetDisplayShowLeadingZeros

Version 1.2
Description When displaying decimal values between 1 and -1, it may be preferred to not display the leading

zero - the single zero before the decimal point.
Declaration
C/C++: extern "C" short WINAPI VCGetDisplayShowLeadingZeros(short* iError);

extern "C" void WINAPI VCSetDisplayShowLeadingZeros(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayShowLeadingZeros Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetDisplayShowLeadingZeros Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi: function VCGetDisplayShowLeadingZeros(var iError: Integer):Integer; far;
procedure VCSetDisplayShowLeadingZeros(var iError: Integer; iF_: Integer);far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDisplayDistFormat, VCGetDisplayAngleFormat, VCGetDisplayShowUnits,
VCGetDisplayFractionalValue, VCGetDisplayDecimalValue

VCGetDisplayShowUnits
VCSetDisplayShowUnits

Version 1.2
Description Specifies if the abbreviation for the unit type is displayed after the number. If the units are Feet

and Inches, the units are displayed regardless of this setting.
Declaration
C/C++: extern "C" short WINAPI VCGetDisplayShowUnits(short* iError);

extern "C" void WINAPI VCSetDisplayShowUnits(short* iError, short iF_);
Visual Basic: Declare Function VCGetDisplayShowUnits Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDisplayShowUnits Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As Integer)
Delphi: function VCGetDisplayShowUnits(var iError: Integer):Integer; far;

procedure VCSetDisplayShowUnits(var iError: Integer; iF_: Integer); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDisplayDistFormat, VCGetDisplayAngleFormat, VCGetDisplayShowLeadingZeros,
VCGetDisplayFractionalValue, , VCGetDisplayDecimalValue

VCGetDistanceHandle
VCSetDistanceHandle

Version 2.0
Description Specifies to which window handle is to display the current distance display values from Corel

Visual CADD.
Declaration
C/C++ extern "C" long WINAPI VCGetDistanceHandle();

extern "C" void WINAPI VCSetDistanceHandle(long hWnd_);
Visual Basic Declare Function VCGetDistanceHandle Lib "VCMAIN32.DLL" () As Long

Declare Sub VCSetDistanceHandle Lib "VCMAIN32.DLL" (ByVal hWnd_ As Long)
Delphi function VCGetDistanceHandle:Longint; far;

procedure VCSetDistanceHandle(hWnd_: Longint); far;
Parameters hWnd - the Windows handle to display the distance entries.
Notes The Corel Visual CADD interface utilizes several status displays for the current user. These

include the command prompt. An X Y display, a distance and angle value along with a selection
count. When building a custom interface it is often desired to present this same information to
the user. Instead of creating the status display in the application, the API allows for any Windows
handle to be used to display the data. By Using the routines VCSetDistanceHandle,
VCSetXYHandle and VCSetMessageHandle the application can quickly include the information
into a custom interface.

See Also VCGetXYHandle, VCGetMessageHandle

VCGetDllRunCmdLine
VCSetDllRunCmdLine

Version 2.0
Description The command line for the DLL function.
Declaration
C/C++ extern "C" short WINAPI VCGetDllRunCmdLine(short* iError, char* szPath);

extern "C" void WINAPI VCSetDllRunCmdLine(short* iError, char* szPath);
Visual Basic Declare Function VCGetDllRunCmdLine Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As

Declare Sub VCSetDllRunCmdLine Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As
String)String) As Integer

Delphi function VCGetDllRunCmdLine(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetDllRunCmdLine(var iError: Integer; szPath: PChar); far;

Parameters return - the length of the return string.
szPath - the command line argument to pass to the DLL.

Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This
allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Visual CADD interface
with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel Visual
CADD for more information this. An application can also launch the routines through the API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

See Also VCGetDllRunFunction, VCGetDllRunName, VCGetOleDllClassName,
VCGetOleDllFunctionCmdLine, VCGetOleDllFunctionName, VCGetOleDllName

VCGetDllRunFunction
VCSetDllRunFunction

Version 2.0
Description Specifies the DLL function name to be run.
Declaration
C/C++ extern "C" short WINAPI VCGetDllRunFunction(short* iError, char* szPath);

extern "C" void WINAPI VCSetDllRunFunction(short* iError, char* szPath);
Visual Basic Declare Function VCGetDllRunFunction Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As

Declare Sub VCSetDllRunFunction Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As
String)String) As Integer

Delphi function VCGetDllRunFunction(var iError: Integer; szPath: PChar):Integer;
procedure VCSetDllRunFunction(var iError: Integer; szPath: PChar); far;

Parameters return - the length of the return string.
szPath - the command line argument to pass to the DLL.

Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This
allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Visual CADD interface
with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel Visual
CADD for more information this. An application can also launch the routines through the API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

See Also VCGetDllRunCmdLine, VCGetDllRunName, VCGetOleDllClassName,
VCGetOleDllFunctionCmdLine, VCGetOleDllFunctionName, VCGetOleDllName

VCGetDllRunName
VCSetDllRunName

Version 2.0
Description Specifies the DLL name where the function is located.
Declaration
C/C++ extern "C" short WINAPI VCGetDllRunName(short* iError, char* szPath);

extern "C" void WINAPI VCSetDllRunName(short* iError, char* szPath);
Visual Basic Declare Function VCGetDllRunName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As

String)
Declare Sub VCSetDllRunName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)As
Integer

Delphi function VCGetDllRunName(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetDllRunFunction(var iError: Integer; szPath: PChar); far;

Parameters return - the length of the return string.
szPath - the command line argument to pass to the DLL.

Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This
allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Visual CADD will load the DLL into memory and access
the specified function. Generally, this is simply done through the Corel Visual CADD interface
with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel Visual
CADD for more information this. An application can also launch the routines through the API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

See Also VCGetDllRunCmdLine, VCGetDllRunFunction, VCGetOleDllClassName,
VCGetOleDllFunctionCmdLine, VCGetOleDllFunctionName, VCGetOleDllName

VCGetDrawFBoundary
VCSetDrawFBoundary

Version 1.2
Description The fill boundary option determines whether the boundary that contains the hatch should be

displayed as part of the hatch or be invisible.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetDrawFBoundary(short* iError);

extern "C" void WINAPI VCSetDrawFBoundary(short* iError, BOOL tfB);
Visual Basic: Declare Function VCGetDrawFBoundary Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDrawFBoundary Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfB As Integer)
Delphi: function VCGetDrawFBoundary(var iError: Integer):Boolean; far;

procedure VCSetDrawFBoundary(var iError: Integer; tfB: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDrawHBoundary, VCGetFillColor, VCGetHatchColor, VCGetFillDisplay, VCGetHatchDisplay

VCGetDrawHBoundary
VCSetDrawHBoundary

Version 1.2
Description The hatch boundary option determines whether the boundary that contains the hatch should be

displayed as part of the hatch or be invisible.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetDrawHBoundary(short* iError);

extern "C" void WINAPI VCSetDrawHBoundary(short* iError, BOOL tfB);
Visual Basic: Declare Function VCGetDrawHBoundary Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetDrawHBoundary Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfB As Integer)
Delphi: function VCGetDrawHBoundary(var iError: Integer):Boolean; far;

procedure VCSetDrawHBoundary(var iError: Integer; tfB: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

 See Also VCGetDrawFBoundary, VCGetFillColor, VCGetHatchColor, VCGetFillDisplay, VCGetHatchDisplay

VCGetDrawingName
VCSetDrawingName

Version 1.2
Description The active drawing name as presented in the Corel Visual CADD caption bar.
Declaration
C/C++: extern "C" short WINAPI VCGetDrawingName(char* pName);

extern "C" void WINAPI VCSetDrawingName(char* pName);
Visual Basic: Declare Function VCGetDrawingName Lib "VCMAIN32.DLL" (ByVal pName As String) As Integer

Declare Sub VCSetDrawingName Lib "VCMAIN32.DLL" (ByVal pName As String)
Delphi: function VCGetDrawingName(pName: PChar):Integer; far;

procedure VCSetDrawingName(pName: PChar); far;
Parameters pName - a string representing the path and name of the current drawing.
See Also VCSaveDrawing, VCLoadDrawing

VCGetDWGPath
VCSetDWGPath

Version 1.2
Description The default file path for opening and saving AutoCAD DWG drawing files.
Declaration
C/C++: extern "C" short WINAPI VCGetDWGPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetDWGPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetDWGPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetDWGPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetDWGPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetDWGPath(var iError: Integer; szPath: PChar); far;

Parameters szPath - the file path
See Also VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath, VCGetCMPPath,

VCGetVCFPath

VCGetDXFPath
VCSetDXFPath

Version 1.2
Description The default file path for opening and saving DXF drawing files.
Declaration
C/C++: extern "C" short WINAPI VCGetDXFPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetDXFPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetDXFPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetDXFPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetDXFPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetDXFPath(var iError: Integer; szPath: PChar); far;

Parameters szPath - the file path
See Also VCGetDWGPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath, VCGetCMPPath,

VCGetVCFPath

VCGetEntityContourCount
Version 1.2
Description Returns the number of contours contained in the specified entity definition.
Declaration
C/C++: extern "C" short WINAPI VCGetEntityContourCount(short* iError, ENTITYHANDLE lH);
Visual Basic: Declare Function VCGetEntityContourCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As

Long) As Integer
Delphi: function VCGetEntityContourCount(var iError: Integer; lH: Longint):Integer;
Parameters lH - the Corel Visual CADD entity handle used to reference each entity in the drawing.

Returns - the number of contours contained in the entity definition.
Notes VCGetEntityContourCount provides a method to determine the number of contours that define

the boundary for a hatch or fill. VCGetEntitySubEntityCount gives you the number of entities
that are in each contour. For example, say you have an exploded rectangle with a hatch inside it.
The VCGetEntityContourCount would return 1(the number of contours that define the hatch
boundary), while VCGetEntitySubEntityCount will return a value of 4 (the number of entities that
make up the contour boundary).

See Also VCGetEntitySubEntityCount

VCGetEntitySubEntityCount
Version 1.2
Description Returns the number of entities within the specified contour of the specified entity.
Declaration
C/C++: extern "C" short FAR WINAPI VCGetEntitySubEntityCount(short* iError, ENTITYHANDLE lH, short

iContour);
Visual Basic: Declare Function VCGetEntitySubEntityCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As

Long, ByVal iContour As Integer) As Integer
Delphi: function VCGetEntitySubEntityCount(var iError: Integer; lH: Longint; iContour Integer):Integer;

far;
Parameters lH - the Corel Visual CADD entity handle used to reference each entity in the drawing.

iContour - the contour containing the desired entity count.
Returns - the number of entities within the contour.

Notes VCGetEntityContourCount provides a method to determine the number of contours that define
the boundary for a hatch or fill. VCGetEntitySubEntityCount gives you the number of entities
that are in each contour. For example, say you have an exploded rectangle with a hatch inside it.
The VCGetEntityContourCount would return 1(the number of contours that define the hatch
boundary), while VCGetEntitySubEntityCount will return a value of 4 (the number of entities that
make up the contour boundary).

See Also VCGetEntityContourCount

VCGetEntityUndoLevel
Version 2.0
Description Retrieves the undo level for the current entity.
Declaration
C/C++ extern "C" short WINAPI VCGetEntityUndoLevel(short* iError, ENTITYHANDLE hE);
Visual Basic Declare Function VCGetEntityUndoLevel Lib "VCMAIN32.DLL" (iError As Integer, ByVal hE As

Long) As Integer
Delphi function VCGetEntityUndoLevel(var iError: Integer; hE: Longint):Integer; far;
Parameters hE- handle to the entity
Notes Each entity in the database maintains a flag indicating the level of undo. Corel Visual CADD

supports unlimited undo operations and maintains this capability through this flag. The flag
value changes with any modification done on the entity, for example moving the entity. An
application can check this flag prior to an operation to ensure the user has not changed or
altered an entity outside the applications control.

See Also VCAppExit, VCBeginOperation, VCEndOperation, VCIsRedoable, VCUndo

VCGetErasedEntityCount
Version 2.0
Description Returns the number of erased entities in the drawing.
Declaration
C/C++ extern "C" long WINAPI VCGetErasedEntityCount(short* iError);
Visual Basic Declare Function VCGetErasedEntityCount Lib "VCMAIN32.DLL" (iError As Integer) As Long
Delphi function VCGetErasedEntityCount(var iError: Integer):Longint; far;
Parameters Returns the number of erased entities in the drawing.
Notes Entities erased from the drawing are tagged but remain in the database to allow for undo levels.

These entities are removed with a drawing save or pack data command.

See Also

VCGetExeName
VCSetExeName

Version 1.2
Description The current executable setting to be run when using the script "run" command or the API call

VCRun. VCRun is used to run any external application from Corel Visual CADD.
Declaration
C/C++: extern "C" short WINAPI VCGetExeName(short* iError, char* pS);

extern "C" void WINAPI VCSetExeName(short* iError, char* sz);
Visual Basic: Declare Function VCGetExeName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String) As

Integer
Declare Sub VCSetExeName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String)

Delphi: function VCGetExeName(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetExeName(var iError: Integer; sz: PChar); far;

Parameters z - the executable string to be set.
See Also VCGetDllRunCmdLine, VCGetDllRunName, VCGetDllRunFunction, VCDllRun, VCRun

VCGetExplodeContinuousLines
VCSetExplodeContinuousLines

Version 1.2
Description Certain entities can be exploded or broken into individual segments as they are placed. Not all

shapes or entities can be exploded into component parts. A circle, for example, would not be
affected by this command.

Declaration
C/C++: extern "C" BYTE WINAPI VCGetExplodeContinuousLines(short* iError);

extern "C" void WINAPI VCSetExplodeContinuousLines(short* iError, BYTE tf);
Visual Basic: Declare Function VCGetExplodeContinuousLines Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetExplodeContinuousLines Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi: function VCGetExplodeContinuousLines(var iError: Integer):Integer; far;
procedure VCSetExplodeContinuousLines(var iError: Integer; tf: Integer); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also VCExplode, VCGetAutoFillet, VCLineContinuous

VCGetFillColor
VCSetFillColor

Version 1.2
Description The fill color used when filling a boundary.
Declaration
C/C++: extern "C" short WINAPI VCGetFillColor(short* iError);

extern "C" void WINAPI VCSetFillColor(short* iError, short i);
Visual Basic: Declare Function VCGetFillColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFillColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetFillColor(var iError: Integer):Integer; far;

procedure VCSetFillColor(var iError: Integer; i: Integer); far
Parameters i - the color setting.
See Also VCGetDrawFBoundary, VCGetDrawHBoundary, VCGetHatchColor, VCGetFillDisplay,

VCGetHatchDisplay

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetFillDisplay
VCSetFillDisplay

Version 1.2
Description Determine whether fill entities are displayed on the screen as well as in print and plot routines.

Turning off the display will reduce the visual clutter and increase the speed of redraws.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetFillDisplay(short* iError);

extern "C" void WINAPI VCSetFillDisplay(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetFillDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFillDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetFillDisplay(var iError: Integer):Boolean; far;

procedure VCSetFillDisplay(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDrawFBoundary, VCGetDrawHBoundary, VCGetFillColor, VCGetHatchColor,
VCGetHatchDisplay

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetFillVText
VCSetFillVText

Version 1.2
Description Specifies if the vector outline fonts are to be filled with the current text color.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetFillVText(short* iError);

extern "C" void WINAPI VCSetFillVText(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetFillVText Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFillVText Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetFillVText(var iError: Integer):Boolean; far;

procedure VCSetFillVText(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetFontList, VCGetFontName, VCGetFontNameCount, VCGetTextColor, VCIsTextFontVText,
VCIsFontNameVText

VCGetFilterColor
VCSetFilterColor

Version 1.2
Description Specifies the filter color index.
Declaration
C/C++: extern "C" short WINAPI VCGetFilterColor(short* iError);

extern "C" void WINAPI VCSetFilterColor(short* iError, short i);
Visual Basic: Declare Function VCGetFilterColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFilterColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetFilterColor(var iError: Integer):Integer; far;

procedure VCSetFilterColor(var iError: Integer; i: Integer); far;
Parameters I - color index
Notes The API allows an application to filter entities prior to making selections. can be set based on

entity kind, layer, color, line type and line width.
See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName,

VCGetFilterWidth, VCSetFilterMatch, VCSetFilterActive

VCGetFilterKind
VCSetFilterKind

Version 1.2
Description The filter entity kind.
Declaration
C/C++: extern "C" BYTE WINAPI VCGetFilterKind(short* iError);

extern "C" void WINAPI VCSetFilterKind(short* iError, BYTE b);
Visual Basic: Declare Function VCGetFilterKind Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFilterKind Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetFilterKind(var iError: Integer):Integer; far;

procedure VCSetFilterKind(var iError: Integer; b: Integer); far;
Parameters b - the filter kind. See Appendix A for the Entity Type.
Notes The API allows you to filter entities prior to making selections. By setting a selection criteria

based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName, VCGetFilterWidth,
VCSetFilterMatch, VCSetFilterActive

VCGetFilterKind2
VCSetFilterKind2

Version 1.2
Description The second filter kind allows a more detailed search set for arcs and lines byspecifying elliptical

arcs or continuous lines for example.
Declaration
C/C++: extern "C" BYTE WINAPI VCGetFilterKind2(short* iError);

extern "C" void WINAPI VCSetFilterKind2(short* iError, BYTE b);
Visual Basic: Declare Function VCGetFilterKind2 Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFilterKind2 Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetFilterKind2(var iError: Integer):Integer; far;

procedure VCSetFilterKind2(var iError: Integer; b: Integer); far;
Parameters b - the filter kind.
Notes The API allows you to filter entities prior to making selections. By setting a selection criteria

based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCGetFilterKind, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName, VCGetFilterWidth,
VCSetFilterMatch, VCSetFilterActive

VCGetFilterLayer
VCSetFilterLayer

Version 1.2
Description The selection filter layer.
Declaration
C/C++: extern "C" short WINAPI VCGetFilterLayer(short* iError);

extern "C" void WINAPI VCSetFilterLayer(short* iError, short i);
Visual Basic: Declare Function VCGetFilterLayer Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFilterLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetFilterLayer(var iError: Integer):Integer; far;

procedure VCSetFilterLayer(var iError: Integer; i: Integer); far
Parameters I - the layer index
Notes The API allows you to filter entities prior to making selections. By setting a selection criteria

based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLineType, VCGetFilterName, VCGetFilterWidth,
VCSetFilterMatch, VCSetFilterActive

VCGetFilterLineType
VCSetFilterLineType

Version 1.2
Description The selection filter line type.
Declaration
C/C++: extern "C" void WINAPI VCSetFilterLineType(short* iError, short I);

extern "C" void WINAPI VCSetFilterLineType(short* iError, short i);
Visual Basic: Declare Sub VCSetFilterLineType Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)

Declare Sub VCSetFilterLineType Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetFilterLineType(var iError: Integer):Integer; far; external 'VCMAIN'

procedure VCSetFilterLineType(var iError: Integer; i: Integer); far;
Parameters I - the line type index
Notes The API allows an application to filter entities prior to making selections. can be set based on

entity kind, layer, color, line type and line width.
See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterName, VCGetFilterWidth,

VCSetFilterMatch, VCSetFilterActive

VCGetFilterName
VCSetFilterName

Version 1.2
Description Certain filter entity types, symbols and text, allow a name for the exact symbol or font to be

specified.
Declaration
C/C++: extern "C" short WINAPI VCGetFilterName(short* iError, char* sz);

extern "C" void WINAPI VCSetFilterName(short* iError, char* sz);
Visual Basic: Declare Function VCGetFilterName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String) As

Integer
Declare Sub VCSetFilterName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String)

Delphi: function VCGetFilterName(var iError: Integer; sz: PChar):Integer; far;
procedure VCSetFilterName(var iError: Integer; sz: PChar); far;

Parameters sz - the filter name
Notes The API allows you to filter entities prior to making selections. By setting a selection criteria

based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCGetFilterColor, VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType,
VCGetFilterWidth

VCGetFilterWidth
VCSetFilterWidth

Version 1.2
Description The selection filter line width.
Declaration
C/C++: extern "C" void WINAPI VCSetFilterWidth(short* iError, short I);

extern "C" void WINAPI VCSetFilterWidth(short* iError, short i);
Visual Basic: Declare Sub VCSetFilterWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)

Declare Sub VCSetFilterWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetFilterWidth(var iError: Integer):Integer; far;

procedure VCSetFilterWidth(var iError: Integer; i: Integer); far;
Parameters I- the filter line width
Notes The API allows you to filter entities prior to making selections. By setting a selection criteria

based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName,
VCSetFilterMatch, VCSetFilterActive

VCGetFilletPreview
VCSetFilletPreview

Version 1.2
Description Specifies the current state of the fillet preview toggle.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetFilletPreview(short* iError);

extern "C" void WINAPI VCSetFilletPreview(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetFilletPreview Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetFilletPreview Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetFilletPreview(var iError: Integer):Boolean; far;

procedure VCSetFilletPreview(var iError: Integer; tf: Boolean); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes When manually filleting intersections of lines, Corel Visual CADD can dynamically preview all
available fillets. While this is a user-friendly device, it can be unacceptably slow on some
machines. Moreover, some external applications may not want the mechanics of the operation
to be visible to the user.

See Also VCGetFilletPreview, VCGetFilletRad

VCGetFilletRad
VCSetFilletRad

Version 1.2
Description The fillet radius affects both the fillet command which fillets two non-parallel lines and the auto

fillet command which fillets double lines and continuous lines as they are constructed.
Declaration
C/C++: extern "C" double WINAPI VCGetFilletRad(short* iError);

extern "C" void WINAPI VCGetFilletRadBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetFilletRad(short* iError, double d);

Visual Basic: Declare Sub VCGetFilletRadBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetFilletRad Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetFilletRadBP(var iError: Integer; var dRet: Double); far;
procedure VCSetFilletRad(var iError: Integer; dRet: Double); far;

Parameters d - the desired fillet radius.
See Also VCGetFilletPreview, VCGetAutoFillet

VCGetFontList
Version 1.2
Description Returns all of the available fonts as one comma delimited string.
Declaration
C/C++: extern "C" long WINAPI VCGetFontList(short* iError, char* list);
Visual Basic: Declare Function VCGetFontList Lib "VCMAIN32.DLL" (iError As Integer, ByVal list As String) As

Long
Delphi: function VCGetFontList(var iError: Integer; list: PChar):Longint; far;
Parameters list - the returned font list.

Returns the number of characters in the font list.
Notes Since it can be time consuming to cycle through all the fonts available and determine the names

of each of them, VCGetFontList was provided so the entire list can be retrieved at one time and
then parsed by internal code to separate individual names. The names are separated by
commas.

See Also VCGetFontName, VCGetFontNameCount

{button ,AL(`Adding a Text Entity',0,`',`')} Task Guide Examples

VCGetFontName
Version 1.2
Description Retrieves the name of the font specified by the supplied index.
Declaration
C/C++: extern "C" short WINAPI VCGetFontName(short* iError, short iIndex, char* s);
Visual Basic: Declare Function VCGetFontName Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer, ByVal s As String) As Integer
Delphi: function VCGetFontName(var iError: Integer; iIndex: Integer; s PChar):Integer; far;
Parameters iIndex - the index number of the font whose name you want.

s - the string containing the name of the specified font.
Notes When determining all the fonts available to the user, the program must first determine how

many fonts exist and then parse though each index to retrieve the font name with
VCGetFontName.

See Also VCGetFontList, VCGetFontNameCount

VCGetFontNameCount
Version 1.2
Description Retrieves the number of fonts currently loaded into Corel Visual CADD including vector fonts and

True Type fonts.
Declaration
C/C++: extern "C" short WINAPI VCGetFontNameCount(short* iError);
Visual Basic: Declare Function VCGetFontNameCount Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetFontNameCount(var iError: Integer):Integer; far;
Parameters Returns - the number of fonts currently available to Corel Visual CADD.
Notes When determining all the fonts available to the user, the program must first determine how

many fonts exist and then parse though each index to retrieve the font name with
VCGetFontName.

See Also VCGetFontList, VCGetFontName

VCGetFunkeyCmdString
VCSetFunkeyCmdString

Version 1.2
Description Once it has been determined using VCIsScriptAssigned if a script has been assigned to a key

sequence, VCGetFunkeyCmdString will retrieve that string, allowing the application to append or
edit the string and reassign it to the same key or an unused one using VCSetFunkeyCmdString.

Declaration
C/C++: extern "C" short WINAPI VCGetFunkeyCmdString(char* szCmd, short iShift, short nVKey);

extern "C" BOOL WINAPI VCSetFunkeyCmdString(char* szCmd, short iShift, short nVKey);
Visual Basic: Declare Function VCGetFunkeyCmdString Lib "VCMAIN32.DLL" (ByVal szCmd As String, ByVal

iShift As Integer, ByVal nVKey As Integer) As Integer
Declare Function VCSetFunkeyCmdString Lib "VCMAIN32.DLL" (ByVal szCmd As String, ByVal
iShift As Integer, ByVal nVKey As Integer) As Integer

Delphi: function VCGetFunkeyCmdString(szCmd: PChar; iShift: Integer; nVKey Integer):Integer; far;
function VCSetFunkeyCmdString(szCmd: PChar; iShift: Integer; nVKey: Integer):Boolean; far;

Parameters szCmd - set by the procedure to be the script text.
iShift - determines the state of the modifier keys.
0 - none.
1 - shift.
2 - ctrl.
3 - alt.
nVKey - the ASCII code representing the desired key.

See Also VCGetCmdStr, VCIsScriptAssigned, VCMacro

VCGetGCDDefaultHatchName
VCSetGCDDefaultHatchName

Version 1.2
Description The default Corel Visual CADD hatch pattern name used to convert GCD hatch entities.
Declaration
C/C++: extern "C" short WINAPI VCGetGCDDefaultHatchName(short* iError, char* szName);

extern "C" void WINAPI VCSetGCDDefaultHatchName(short* iError, char* szName);
Visual Basic: Declare Function VCGetGCDDefaultHatchName Lib "VCMAIN32.DLL" (iErr As Integer, ByVal

szName As String) As Integer
Declare Sub VCSetGCDDefaultHatchName Lib "VCMAIN32.DLL" (iErr As Integer, ByVal szName
As String)

Delphi: function VCGetGCDDefaultHatchName(var iError: Integer; szName: PChar):Integer;
procedure VCSetGCDDefaultHatchName(var iError: Integer; szName: PChar); far;

Parameters szName - the default hatch pattern name.
Returns - the length of the current setting.

Notes The hatch patterns from the GCD format cannot be used directly in Corel Visual CADD. These
patterns must converted to either symbols or to a default hatch pattern and changed in Corel
Visual CADD. VCGetKeepGCDHatch specifies if hatches are converted to a default hatch or
recreated as a symbol definition.

See Also VCAddHatchEntity, VCGetKeepGCDHatch, VCGetKeepGCDFontName, VCGetKeepAcadFontName

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetGCDPath
VCSetGCDPath

Version 1.2
Description The default path for loading and saving Generic CADD .GCD Drawings.
Declaration
C/C++: extern "C" short WINAPI VCGetGCDPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetGCDPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetGCDPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetGCDPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetGCDPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetGCDPath(var iError: Integer; szPath: PChar); far

Parameters sz - string value for the path settings
See Also VCGetDWGPath, VCGetDXFPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath, VCGetCMPPath,

VCGetVCFPath

VCGetGridDisplay
VCSetGridDisplay

Version 1.2
Description A reference grid can displayed and set as a snap to aid the in placing entities. The grid can have

specified distances between horizontally and vertically placed grid points. VCGetGridDisplay
specifies the grid points are visible on the screen.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetGridDisplay(short* iError);

extern "C" void WINAPI VCSetGridDisplay(short* iError, BOOL tfDisp);
Visual Basic: Declare Function VCGetGridDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetGridDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfDisp As Integer)
Delphi: function VCGetGridDisplay(var iError: Integer):Boolean; far;

procedure VCSetGridDisplay(var iError: Integer; tfDisp: Boolean); far;
Parameters f - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetGridOrigin, VCGetGridSize, VCGetGridSnap

VCGetGridOrigin
VCSetGridOrigin

Version 1.2
Description A reference grid can displayed and set as a snap to aid the in placing entities.
Declaration
C/C++: extern "C" Point2D WINAPI VCGetGridOrigin(short* iError);

extern "C" void WINAPI VCGetGridOriginBP(short* iError, Point2D* pRet);
extern "C" void WINAPI VCSetGridOrigin(short* iError, Point2D dpOrg);
extern "C" void WINAPI VCSetGridOriginBP(short* iError, Point2D* dpOrg_);

Visual Basic: Declare Sub VCGetGridOriginBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Point2d)
Declare Sub VCSetGridOriginBP Lib "VCMAIN32.DLL" (iError As Integer, dpOrg_ As Point2d)

Delphi: procedure VCGetGridOriginBP(var iError: Integer; var pRet: Point2D); far;
procedure VCSetGridOriginBP(var iError: Integer; var dpOrg_: Point2D); far;

Parameters dpOrg - the packed coordinate pair representing the desired grid setting
Notes The grid can have specified distances between horizontally and vertically placed grid points. The

grid is aligned to the point set with VCSetGridOrigin or by default to the drawing origin.
See Also VCGetGridDisplay, VCGetGridSize, VCGetGridSnap

VCGetGridSize
VCSetGridSize

Version 1.2
Description A reference grid can displayed and set as a snap to aid the in placing entities.
Declaration
C/C++: extern "C" Point2D WINAPI VCGetGridSize(short* iError);

extern "C" void WINAPI VCGetGridSizeBP(short* iError, Point2D* pRet);
extern "C" void WINAPI VCSetGridSize(short* iError, Point2D dpSize);
extern "C" void WINAPI VCSetGridSizeBP(short* iError, Point2D* dpSize_);

Visual Basic: Declare Sub VCGetGridSizeBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Point2d)
Declare Sub VCSetGridSizeBP Lib "VCMAIN32.DLL" (iError As Integer, dpSize_ As Point2d)

Delphi: procedure VCGetGridSizeBP(var iError: Integer; var pRet: Point2D); far;
procedure VCSetGridSizeBP(var iError: Integer; var dpSize_: Point2D); far;

Parameters dpSize - the Point2D structure containing the desired x and y scale
Notes The grid can have specified distances between horizontally and vertically placed grid points. The

grid size or distance can be set to the desired value in both the X and Y direction with
VCSetGridSize

See Also VCGetGridDisplay, VCGetGridOrigin, VCGetGridSnap

VCGetGridSnap
VCSetGridSnap

Version 1.2
Description A reference grid can be displayed and set as a snap to aid in the placing of entities.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetGridSnap(short* iError);

extern "C" void WINAPI VCSetGridSnap(short* iError, BOOL tfSnap);
Visual Basic: Declare Function VCGetGridSnap Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetGridSnap Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfSnap As Integer)
Delphi: function VCGetGridSnap(var iError: Integer):Boolean; far;

procedure VCSetGridSnap(var iError: Integer; tfSnap: Boolean); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes The grid can have specified distances between horizontally and vertically placed grid points.
When Snap Grid is ON, the cursor can move only from one grid point to another . The grid does
not have to be visible for Snap Grid to be in effect.

See Also VCGetGridDisplay, VCGetGridOrigin, VCGetGridSize

VCGetHandlePt
VCSetHandlePt

Version 1.2
Description Option for displaying handle points.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetHandlePt(short* iError);

extern "C" void WINAPI VCSetHandlePt(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetHandlePt Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetHandlePt Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetHandlePt(var iError: Integer):Boolean; far;

procedure VCSetHandlePt(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Each entity has handle points, which are essentially the endpoints. When working with entities it
is sometimes convenient to display the entity handle points to aid in snapping. Turning off the
display will reduce the visual clutter and increase the speed of redraws.

See Also VCGetConstPt

VCGetHatchColor
VCSetHatchColor

Version 1.2
Description The hatch color used when hatching a boundary.
Declaration
C/C++: extern "C" short WINAPI VCGetHatchColor(short* iError);

extern "C" void WINAPI VCSetHatchColor(short* iError, short i);
Visual Basic: Declare Function VCGetHatchColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetHatchColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetHatchColor(var iError: Integer):Integer; far;

procedure VCSetHatchColor(var iError: Integer; i: Integer); far;
Parameters i - the color setting.
See Also VCGetFillColor, VCGetHatchName, VCGetDrawHBoundary,VCGetHatchRot

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetHatchDisplay
VCSetHatchDisplay

Version 1.2
Description Determine whether hatch entities are displayed on the screen as well as in print and plot

routines. Turning off the display will reduce the visual clutter and increase the speed of redraws.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetHatchDisplay(short* iError);

extern "C" void WINAPI VCSetHatchDisplay(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetHatchDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetHatchDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetHatchDisplay(var iError: Integer):Boolean; far;

procedure VCSetHatchDisplay(var iError: Integer; tf: Boolean); far; external'VCMAIN';
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetHatchName, VCGetDrawHBoundary,VCGetHatchRot

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetHatchName
VCSetHatchName

Version 1.2
Description The current hatch pattern name from the settings. VCGetHatchName retrieves the current hatch

pattern setting. This call differs from VCGetSystemHatchName which returns the pattern name
at the specified index.

Declaration
C/C++: extern "C" short WINAPI VCGetHatchName(short* iError, char* s);

extern "C" void WINAPI VCSetHatchName(short* iError, char* s);
Visual Basic: Declare Function VCGetHatchName Lib "VCMAIN32.DLL" (iError As Integer, ByVal s As String) As

Integer
Declare Sub VCSetHatchName Lib "VCMAIN32.DLL" (iError As Integer, ByVal s As String)

Delphi: function VCGetHatchName(var iError: Integer; s: PChar):Integer; far;
procedure VCSetHatchName(var iError: Integer; s: PChar); far;

Parameters s - the string representing the current hatch pattern.
See Also VCGetSystemHatchName, VCGetDrawHBoundary,VCGetHatchRot

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetHatchRot
VCSetHatchRot

Version 1.2
Description The hatch rotation angle. As with all the angle settings, the angle value is in radians.
Declaration
C/C++: extern "C" double WINAPI VCGetHatchRot(short* iError);

extern "C" void WINAPI VCGetHatchRotBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetHatchRot(short* iError, double d);

Visual Basic: Declare Sub VCGetHatchRotBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetHatchRot Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetHatchRotBP(var iError: Integer; var dRet: Double); far;
procedure VCSetHatchRot(var iError: Integer; dRet: Double); far;

Parameters d - a double representing the hatch rotation angle in radians.
See Also VCGetHatchName, VCGetDrawHBoundary, VCGetHatchScale

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetHatchScale
VCSetHatchScale

Version 1.2
Description The multiplier used to scale the hatch definition to determine the size of the displayed hatch.
Declaration
C/C++: extern "C" double WINAPI VCGetHatchScale(short* iError);

extern "C" void WINAPI VCGetHatchScaleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetHatchScale(short* iError, double d);

Visual Basic: Declare Sub VCGetHatchScaleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetHatchScale Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetHatchScaleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetHatchScale(var iError: Integer; dRet: Double); far;

Parameters d - a double representing the scale value.
See Also VCGetHatchName, VCGetDrawHBoundary,VCGetHatchRot

{button ,AL(`Adding a Hatch/Fill Entity',0,`',`')} Task Guide Examples

VCGetHighlight
VCSetHighlight

Version 1.2
Description Specifies if selected objects are highlighted in the selection color .
Declaration
C/C++: extern "C" BOOL WINAPI VCGetHighlight(short* iError);

extern "C" void WINAPI VCSetHighlight(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetHighlight Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetHighlight Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetHighlight(var iError: Integer):Boolean; far;

procedure VCSetHighlight(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

{button ,AL(`Parsing a Filtered Entity List;Parsing an On Screen List',0,`',`')} Task Guide Examples

VCGethWnd
Version 2.0
Description Returns the Window handle for the given drawing.
Declaration
C/C++ extern "C" long WINAPI VCGethWnd(WORLDHANDLE hW);
Visual Basic Declare Function VCGethWnd Lib "VCMAIN32.DLL" (ByVal hW As Long) As Long
Delphi function VCGethWnd(hW: Longint):Longint; far;
Parameters hW - the WORLDHANDLE for the drawing.

Return - the Window HWND for the window.
Notes The API provides access to the Window handles for both the frame and the drawing. These

handles can e used by other API to provide information to the window such as creating a child
window from the Windows API. VCGethWnd returns the handle for individual MDI Windows based
on the drawing index while VCGethWndFrame returns the handle for the entire Corel Visual
CADD frame.

See Also VCGetCurrWorld, VCGethWndFrame

VCGethWndFrame
VCSethWndFrame

Version 2.0
Description Returns the Window handle for the Corel Visual CADD frame.
Declaration
C/C++ extern "C" long WINAPI VCGethWndFrame();

extern "C" void WINAPI VCSethWndFrame(long hWnd);
Visual Basic Declare Function VCGethWndFrame Lib "VCMAIN32.DLL" () As Long

Declare Sub VCSethWndFrame Lib "VCMAIN32.DLL" (ByVal hWnd As Long)
Delphi function VCGethWndFrame:Longint; far;

procedure VCSethWndFrame(hWnd: Longint); far;
Parameters Return - the Window HWND for the window.
Notes The API provides access to the Window handles for both the frame and the drawing. These

handles can e used by other API to provide information to the window such as creating a child
window from the Windows API. VCGethWnd returns the handle for individual MDI Windows based
on the drawing index while VCGethWndFrame returns the handle for the entire Corel Visual
CADD frame.

See Also VCGetCurrWorld, VCGethWnd

VCGetIncSnap
VCSetIncSnap

Version 1.2
Description Specifies the increment snap option during ortho constrained operations..
Declaration
C/C++: extern "C" BOOL WINAPI VCGetIncSnap(short* iError);

extern "C" void WINAPI VCSetIncSnap(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetIncSnap Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetIncSnap Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetIncSnap(var iError: Integer):Integer; far;

procedure VCSetIncSnap(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes While in ortho mode there is the capability to have the cursor jump specific increments along
the rubberband or drag line (ortho mode must be turned on for this call to work). This is called
increment snap. This has an advantage over snap grid because it measures along the
rubberband or drag line which will be at the ortho angle, not just along the horizontal and
vertical

See Also VCGetIncSnapSize, VCGetOrthoMode,

VCGetIncSnapSize
VCSetIncSnapSize

Version 1.2
Description Specifies the distance between increment snaps during ortho constrained operations.
Declaration
C/C++: extern "C" double WINAPI VCGetIncSnapSize(short* iError);

extern "C" void WINAPI VCGetIncSnapSizeBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetIncSnapSize(short* iError, double d);

Visual Basic: Declare Sub VCGetIncSnapSizeBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetIncSnapSize Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetIncSnapSizeBP(var iError: Integer; var dRet: Double); far;
procedure VCSetIncSnapSize(var iError: Integer; dRet: Double); far;

Parameters d - the distance between increment snaps.
Notes While in ortho mode there is the capability to have the cursor jump specific increments along

the rubberband or drag line (ortho mode must be turned on for this API call to work). This is
called increment snap. This has an advantage over snap grid because it measures along the
rubberband or drag line which will be at the ortho angle not just along the horizontal and
vertical.

See Also VCGetIncSnap, VCGetOrthoMode

VCGetInitCount
Version 1.2
Description Returns the number of times that Corel Visual CADD has been initialized but not terminated.
Declaration
C/C++: extern "C" short WINAPI VCGetInitCount(void);
Visual Basic: Declare Function VCGetInitCount Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetInitCount:Integer; far;
Parameters Returns - the number of currently active instances of Corel Visual CADD.
Notes When making tools or external applications that need Corel Visual CADD running, it is a good

idea to check to see if any instances are currently available. VCGetInitCount will return the
number of currently running instances of Corel Visual CADD, which a program can then use to
decide if it should rely on one of the preexisting instances or spawn a new instance using VCInit.

See Also VCInit, VCTerminate

{button ,AL(`Initialization Check',0,`',`')} Task Guide Examples

VCGetIsoMode
VCSetIsoMode

Version 2.0.1
Description Specifies the isometric grid mode.
Declaration

C/C++ extern "C" vbool WINAPI VCGetIsoMode(short* iError);
extern "C" void WINAPI VCSetIsoMode(short* iError, vbool tf);

Visual Basic Declare Function VCGetIsoMode Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Declare Sub VCSetIsoMode Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)

Delphi function VCGetIsoMode(var iError: Integer):Boolean; far;
procedure VCSetIsoMode(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes The IsoPlane will change the cursor to reflect the current plane and restrict the cursor movement
to that 30/60/90 plane. This command is available only through the API.

See Also VCGetIsoPlane

VCGetIsoPlane
VCSetIsoPlane

Version 2.0.1
Description Specifies the isometric grid plane.
Declaration

C/C++ extern "C" short WINAPI VCGetIsoPlane(short* iError);
extern "C" void WINAPI VCSetIsoPlane(short* iError, short iPlane);

Visual Basic Declare Function VCGetIsoPlane Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Declare Sub VCSetIsoPlane Lib "VCMAIN32.DLL" (iError As Integer, ByVal iPlane As Integer)

Delphi function VCGetIsoPlane(var iError: Integer):Integer; far;
procedure VCSetIsoPlane(var iError: Integer; iPlane: Integer); far;

Parameters iPlane - the plane for the isometric grid mode
0 - LEFT
1 - RIGHT
2 - TOP

Notes The IsoPlane will change the cursor to reflect the current plane and restrict the cursor movement
to that 30/60/90 plane. This command is available only through the API.

See Also VCGetIsoMode

VCGetKeepAcadFontName
VCSetKeepAcadFontName

Version 1.2
Description When active, the current font mapping in the DWG Font tabs is overridden.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetKeepAcadFontName(short* iError);

extern "C" void WINAPI VCSetKeepAcadFontName(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetKeepAcadFontName Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

extern "C" void WINAPI VCSetKeepAcadFontName(short* iError, BOOL tf);
Delphi: function VCGetKeepAcadFontName(var iError: Integer):Boolean; far;

procedure VCSetKeepAcadFontName(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes All fonts are mapped to existing fonts of the same name. If a font of the same name does not
exist, Corel Visual CADD will map the font to the default font.

See Also VCGetKeepGCDFontName, VCGetKeepGCDHatch, VCGetGCDDefaultHatchName,
VCGetAcadImportUnit, VCSaveDrawing

VCGetKeepGCDFontName
VCSetKeepGCDFontName

Version 1.2
Description When active, the current font mapping in the GCD Font tabs is overridden.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetKeepGCDFontName(short* iError);

extern "C" void WINAPI VCSetKeepGCDFontName(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetKeepGCDFontName Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

extern "C" void WINAPI VCSetKeepGCDFontName(short* iError, BOOL tf);
Delphi: function VCGetKeepGCDFontName(var iError: Integer):Boolean; far;

procedure VCSetKeepGCDFontName(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes All fonts are mapped to existing fonts of the same name. If a font of the same name does not
exist, Corel Visual CADD will map the font to the default font.

See Also VCGetKeepAcadFontName, VCGetKeepGCDHatch, VCGetGCDDefaultHatchName,
VCGetAcadImportUnit

VCGetKeepGCDHatch
VCSetKeepGCDHatch

Version 1.2
Description Specifies if the Generic CAD hatch patterns are converted to symbols or to a default pattern.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetKeepGCDHatch(short* iError);

extern "C" void WINAPI VCSetKeepGCDHatch(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetKeepGCDHatch Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

extern "C" void WINAPI VCSetKeepGCDHatch(short* iError, BOOL tf);
Delphi: function VCGetKeepGCDHatch(var iError: Integer):Boolean; far;

procedure VCSetKeepGCDHatch(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - use a default hatch pattern.
1- convert to a symbol definition.

Notes The hatch patterns from the GCD format can not be used directly in Corel Visual CADD. These
patterns must be converted to either symbols or to a default hatch pattern when importing
drawings into Corel Visual CADD. VCGetKeepGCDHatch specifies whether hatches are converted
to a default hatch pattern or recreated as a symbol definition.

See Also VCGetKeepGCDFontName, VCGetKeepAcadFontName, VCGetGCDDefaultHatchName,
VCGetAcadImportUnit

VCGetLastPoint
VCSetLastPoint

Version 1.2.1
Description Returns the last point used in the construction of any entity.
Declaration
C/C++: extern "C" void FAR WINAPI VCGetLastPoint(short* iError, Point2D* dpP);

extern "C" void WINAPI VCSetLastPoint(short* iError, Point2D* dpP);
Visual Basic: Declare Sub VCGetLastPoint Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)

Declare Sub VCSetLastPoint Lib "VCMAIN32.DLL" (iErr As Integer, dpP As Point2D)
Delphi: procedure VCGetLastPoint(var iError: Integer; var dpP: Point2D); far;

procedure VCSetLastPoint(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - set to contain the coordinates of the last point selected.
Notes Similar to the Last Point snap and can be used from the API when constructing geometry, to

reference the last mouse down point placed in the drawing.
See Also VCGetCurrentEntityPoint, VCGetCurrentPoint

VCGetLayerDisplay
VCSetLayerDisplay

Version 1.2
Description Drawing layers can be turned "off" to eliminate the layer from the screen.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetLayerDisplay(short* iError, short iIndex);

extern "C" void WINAPI VCSetLayerDisplay(short* iError, short iIndex, BOOL tf);
Visual Basic: Declare Function VCGetLayerDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer) As Integer
Declare Sub VCSetLayerDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As Integer,
ByVal tf As Integer)

Delphi: function VCGetLayerDisplay(var iError: Integer; iIndex: Integer):Boolean; far;
procedure VCSetLayerDisplay(var iError: Integer; iIndex: Integer; tf: Boolean); far;

Parameters iIndex - the layer index
tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes The entity data is still stored in the drawing and can be turned "on" to re-show the entities. By
hiding layers, redraw times can be improved for only the desired details or layers.

See Also VCGetLayerRedraw, VCGetLayerDisplay, VCGetLayerIndex

VCGetLayerHasData
Version 1.2
Description Determines whether the specified layer contains any drawing data.
Declaration
C/C++: extern "C" vbool WINAPI VCGetLayerHasData(short* iError, short iIndex);
Visual Basic: Declare Function VCGetLayerHasData Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer) As Integer
Delphi: function VCGetLayerHasData(var iError: Integer; iIndex: Integer):Boolean; far;
Parameters iIndex - the layer number in question.

Returns - whether the layer contains data
0 - no data on layer.
1 - data on layer.

Notes When displaying layer information to the user, an application may need to display information
about what is on the layer. This subroutine provides a mechanism for determining if anything is
on a particular layer. This can also be useful in situations where a short layer list is required as in
the Corel Visual CADD layer manager.

See Also VCGetLayerRedraw, VCGetLayerDisplay, VCGetLayerIndex

VCGetLayerIndex
VCSetLayerIndex

Version 1.2
Description Specifies the current layer property for all subsequent primary entity placements.
Declaration
C/C++: extern "C" short WINAPI VCGetLayerIndex(short* iError);

extern "C" void WINAPI VCSetLayerIndex(short* iError, short i);
Visual Basic: Declare Function VCGetLayerIndex Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLayerIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetLayerIndex(var iError: Integer):Integer; far;

procedure VCSetLayerIndex(var iError: Integer; i: Integer); far;
Parameters i - the desired layer index.
Notes All primary drawing entities have four specific properties associated with them. These are: color,

layer, line type and line width. Each of these are set by an index, not by name. Text and
Dimensions each have their own properties and as such are not set or retrieved using these
functions but instead have their own similar functions.

See Also VCGetLineTypeIndex, VCGetLineWidthIndex, VCGetColorIndex, VCGetTextLayer, VCGetDimLayer

{button ,AL(`Adding a Single Entity',0,`',`')} Task Guide Examples

VCGetLayerIndexFromName
Version 1.2
Description Given a layer name, returns the index number for the named layer.
Declaration
C/C++: extern "C" short WINAPI VCGetLayerIndexFromName(short* iError, char* pName);
Visual Basic: Declare Function VCGetLayerIndexFromName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

pName As String) As Integer
Delphi: function VCGetLayerIndexFromName(var iError: Integer; pName: PChar):Integer;
Parameters pName - the layer name of an existing layer.

Returns an integer from 0 to 511 representing the layer index number.
Notes In Corel Visual CADD, it is possible to name any of the 1024 supported layers. If an application

requires a unknown layer number to be named a specific name, such as "electrical" this allows
the application to locate that layer and retrieve the index of that layer for use in other functions
requiring a layer number.

See Also VCGetLayerNameFromIndex, VCGetLayerIndex

VCGetLayerProperties
VCSetLayerProperties

Version 2.0.1
Description Specifies the layer properties for the given layer.
Declaration
C/C++ extern "C" vbool WINAPI VCGetLayerProperties(short* iError, short iLayer, short* iColor, short*

iLtype, short* iWidth, float* fWidth);
extern "C" vbool WINAPI VCSetLayerProperties(short* iError, short iLayer, short iColor, short
iLtype, short iWidth, float fWidth);

Visual Basic Declare Function VCGetLayerProperties Lib "VCMAIN32.DLL" (iError As Integer, ByVal iLayer As
Integer, iColor As Integer, iLtype As Integer, iWidth As Integer, fWidth As Double) As Integer
Declare Function VCSetLayerProperties Lib "VCMAIN32.DLL" (iError As Integer, ByVal iLayer As
Integer, ByVal iColor As Integer, ByVal iLtype As Integer, ByVal iWidth As Integer, ByVal fWidth As
Double) As Integer

Delphi function VCGetLayerProperties(var iError: Integer; iLayer: Integer; var iColor: Integer; var iLtype:
Integer; var iWidth: Integer; var fWidth: Double):Boolean; far;
function VCSetLayerProperties(var iError: Integer; iLayer: Integer; iColor:Integer; iLtype: Integer;
iWidth: Integer; fWidth: Double):Boolean; far;

Parameters iLayer - the index for the layer.
iColor - the color property assigned to the layer.
iLType - the line type assigned to the layer
iWidth - the line width index assigned to the layer.
fWidth - the real world line width for the layer.
returns - the success of the function.
0 - FAILED
1 - PASSED

Notes Layer properties were introduced into v2.0.1 allowing properties to be assigned by layer rather
than by entity. For example, a layer can be set so all entities drawn on the layer will be a specific
color, line type and line width. This will override the current properties settings when active.
VCGetUseByLayerProperties is used to determine if the layer has active property settings while
VCSetUseByLayerProperties allows an application to choose which properties to use.
VCSetLayerProperties will set the values for the layer and VCClearLayerProperties turns the
capability off and clears all associated values. It is important to keep track of the state of layer
properties when modifying entities in the drawing. For example, if you set the color index using
VCSetColorIndex but the layer properties are enabled the proper color may not get applied.
Therefore when attempting to control the properties of entities as they are placed it is
imperative that the application monitor the setting for by layer control as the information is
being supplied by the API.

See Also VCLayerHasProperties

VCGetLayerNameFromIndex
Version 1.2
Description Given a layer index number, retrieves the name associated with that layer.
Declaration
C/C++: extern "C" short WINAPI VCGetLayerNameFromIndex(short* iError, short iIndex, char* pName);
Visual Basic: Declare Sub VCGetLayerNameFromIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer, ByVal pName As String)
Delphi: function VCGetLayerNameFromIndex(var iError: Integer; iIndex: Integer; pName PChar):Integer;

far;
Parameters iIndex - the number of the layer.

pName - set by the procedure as the name of the layer.
Notes Whenever displaying layers for user selection, it is important to display all named layers by their

name as people recognize and will look for the named layers. VCGetLayerNameFromIndex
provides this while allowing the internal code to still use the layer indices.

See Also VCGetLayerIndex, VCGetLayerIndexFromName

VCGetLayerRedraw
VCSetLayerRedraw

Version 1.2
Description Turning Redraw off causes Corel Visual CADD to wait for the Layer Manager Dialog box to be

closed before it will hide or display the chosen layers.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetLayerRedraw(short* iError);

extern "C" void WINAPI VCSetLayerRedraw(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetLayerRedraw Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLayerRedraw Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetLayerRedraw(var iError: Integer):Boolean; far;

procedure VCSetLayerRedraw(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Layer redraw provides visual feedback to the user as layers are displayed or hidden but can time
consuming to wait for layer redraws before picking new layers.

See Also VCGetLayerRedraw, VCGetLayerDisplay, VCGetLayerIndex

VCGetLeaderArrowAngle
VCSetLeaderArrowAngle

Version 2.0
Description The dimension angle setting is used by all dimension arrow types except circular. As with all

angular settings in Corel Visual CADD the value should be expressed in radians.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderArrowAngle(short* iError);

extern "C" void WINAPI VCGetLeaderArrowAngleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderArrowAngle(short* iError, double dRet);

Visual Basic: Declare Sub VCGetLeaderArrowAngleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetLeaderArrowAngle Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetLeaderArrowAngleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderArrowAngle(var iError: Integer; dRet: Double); far;

Parameters dRet - double value representing the angle setting in radians
See Also VCGetLeaderArrowLength, VCGetLeaderArrowMode, VCGetLeaderArrowType

VCGetLeaderArrowLength
VCSetLeaderArrowLength

Version 2.0
Description Several settings are available for dimension arrows. These need to be set prior to placing the

dimension into the drawing. The arrow length is analogous to the arrow size or scale.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderArrowLength(short* iError);

extern "C" void WINAPI VCGetLeaderArrowLengthBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderArrowLength(short* iError, double dRet);

Visual Basic: Declare Sub VCGetLeaderArrowLengthBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetLeaderArrowLength Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetLeaderArrowLengthBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderArrowLength(var iError: Integer; dRet: Double); far;

Parameters dRet - the dimension arrow length
See Also VCGetLeaderArrowAngle, VCGetLeaderArrowMode, VCGetLeaderArrowType

VCGetLeaderArrowMode
VCSetLeaderArrowMode

Version 2.0
Description Several settings are available for dimension arrows. These need to be set prior to placing the

dimension into the drawing The arrow mode determines if the arrows are flipped to the outside
or the inside of the extension lines.

Declaration
C/C++: extern "C" short WINAPI VCGetLeaderArrowMode(short* iError);

extern "C" void WINAPI VCSetLeaderArrowMode(short* iError, short b);
Visual Basic: Declare Function VCGetLeaderArrowMode Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderArrowMode Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetLeaderArrowMode(var iError: Integer):Integer; far;

procedure VCSetLeaderArrowMode(var iError: Integer; b: Integer); far;
Parameters b - the state of the arrow flip.

0 - do not flip the dimension arrows to the outside of the dimension.
1 - flip the dimension arrows to the outside of the dimension.

See Also VCGetLeaderArrowLength, VCGetLeaderArrowAngle, VCGetLeaderArrowType

VCGetLeaderArrowType
VCSetLeaderArrowType

Version 2.0
Description Corel Visual CADD allows several options for the dimension arrow type setting.
Declaration
C/C++ extern "C" short WINAPI VCGetLeaderArrowType(short* iError);

extern "C" void WINAPI VCSetLeaderArrowType(short* iError, short b);
Visual Basic Declare Function VCGetLeaderArrowType Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderArrowType Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi function VCGetLeaderArrowType(var iError: Integer):Integer; far;

procedure VCSetLeaderArrowType(var iError: Integer; b: Integer); far;
Parameters b - the value of the arrow type.

0 - DIMARROWREGNOFILL
1 - DIMARROWREGFILLED
2 - DIMARROWREGOPEN
3 - DIMARROWNOTCHED
4 - DIMARROWSLASH
5 - DIMARROWCIRCLENOFILL
6 - DIMARROWCIRCLEFILL

Notes Corel Visual CADD allows different dimension and leader sections to be edited.
VCGetLeaderArrowType changes the arrow type that is used on the leader.

See Also VCGetLeaderArrowAngle, VCGetLeaderArrowLength, VCGetLeaderArrowMode,
VCGetLeaderArrowType, VCGetLeaderShoulderLength

VCGetLeaderFontName
VCSetLeaderFontName

Version 2.0
Description The name of the font to be used for all for all subsequent text placements.
Declaration
C/C++: extern "C" short WINAPI VCGetLeaderTextFontName(short* iError, char* pS);

extern "C" void WINAPI VCSetLeaderTextFontName(short* iError, char* sz);
Visual Basic: Declare Function VCGetLeaderTextFontName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As

String) As Integer
Declare Sub VCSetLeaderTextFontName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As
String)

Delphi: function VCGetLeaderTextFontName(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetLeaderTextFontName(var iError: Integer; sz: PChar); far

Parameters pS - the name of the current font.
See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,

VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderShoulderLength
VCSetLeaderShoulderLength

Version 1.2
Description The shoulder length of the leader specifies the length of the segment from the last placed leader

point to the leader text.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderShoulderLength(short* iError);

extern "C" void WINAPI VCGetLeaderShoulderLengthBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderShoulderLength(short* iError, double d);

Visual Basic: Declare Sub VCGetLeaderShoulderLengthBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As
Double)
Declare Sub VCSetLeaderShoulderLength Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As
Double)

Delphi: procedure VCGetLeaderShoulderLengthBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderShoulderLength(var iError: Integer; dRet: Double); far;

Parameters d - the shoulder length.
See Also VCGetLeaderString, VCGetLeaderTextOffset

VCGetLeaderString
VCSetLeaderString

Version 1.2
Description The leader string value for the current leader entity.
Declaration
C/C++: extern "C" short WINAPI VCGetLeaderString(short* iError, char* s);

extern "C" void WINAPI VCSetLeaderString(short* iError, char* s);
Visual Basic: Declare Function VCGetLeaderString Lib "VCMAIN32.DLL" (iError As Integer, ByVal s As String) As

Integer
Declare Sub VCSetLeaderString Lib "VCMAIN32.DLL" (iError As Integer, ByVal s As String)

Delphi: function VCGetLeaderString(var iError: Integer; s: PChar):Integer; far;
procedure VCSetLeaderString(var iError: Integer; s: PChar); far;

Parameters s - the text string passed to the leader entity.
See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,

VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextAspect
VCSetLeaderTextAspect

Version 2.0
Description Specifies the current text aspect ratio setting. The text aspect ratio is the proportion of the text

height to the text width.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderTextAspect(short* iError);

extern "C" void WINAPI VCGetLeaderTextAspectBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderTextAspect(short* iError, double d);

Visual Basic: Declare Sub VCGetLeaderTextAspectBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetLeaderTextAspect Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetLeaderTextAspectBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderTextAspect(var iError: Integer; dRet: Double); far;

Parameters dRet - the current text aspect ratio.
See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,

VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextBold
VCSetLeaderTextBold

Version 2.0
Description Specifies the bold display option for TT Fonts with the leader command.
Declaration
C/C++ extern "C" vbool WINAPI VCGetLeaderTextBold(short* iError);

extern "C" void WINAPI VCSetLeaderTextBold(short* iErrors, short i);
Visual Basic Declare Function VCGetLeaderTextBold Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderTextBold Lib "VCMAIN32.DLL" (iErrors As Integer, ByVal i As Integer)
Delphi function VCGetLeaderTextBold(var iError: Integer):Boolean; far;

procedure VCSetLeaderTextBold(var iErrors: Integer; i: Integer); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,
VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextCharSpace
VCSetLeaderTextCharSpace

Version 2.0
Description Character spacing is the amount of space that appears between characters in a text string. It

determines if the characters in a word are crowded or spread out. The value is a percentage of
the characters height and applies only to vector fonts.

Declaration
C/C++: extern "C" double WINAPI VCGetLeaderTextCharSpace(short* iError);

extern "C" void WINAPI VCGetLeaderTextCharSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderTextCharSpace(short* iError, double dCharSpacing);

Visual Basic: Declare Sub VCGetLeaderTextCharSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As
Double)
Declare Sub VCSetLeaderTextCharSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal
dCharSpacing As Double)

Delphi: procedure VCGetLeaderTextCharSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderTextCharSpace(var iError: Integer; dCharSpacing: Double); far;

Parameters dCharSpacing - the charcter spacing as a decimal percentage (i.e. 1.5 is 150%)
See Also VCGetLeaderTextAspect, VCGetLeaderTextBold, VCGetLeaderTextFontName,

VCGetLeaderTextHeight, VCGetLeaderTextItalic, VCGetLeaderTextItalicValue,
VCGetLeaderTextJustify, VCGetLeaderTextLineSpace, VCGetLeaderTextProSpacing,
VCGetLeaderTextRot, VCGetLeaderString, VCGetLeaderTextUnderline

VCGetLeaderTextFillVText
VCSetLeaderTextFillVText

Version 2.0
Description Specifies if vector fonts are filled in dimensions.
Declaration
C/C++ extern "C" vbool WINAPI VCGetDimLeaderTextFillVLeaderText(short* iError);

extern "C" void WINAPI VCSetDimLeaderTextFillVLeaderText(short* iError, vbool tf);
Visual Basic Declare Function VCGetDimLeaderTextFillVLeaderText Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetDimLeaderTextFillVLeaderText Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf
As Integer)

Delphi function VCGetDimLeaderTextFillVLeaderText(var iError: Integer):Boolean; far;
procedure VCSetDimLeaderTextFillVLeaderText(var iError: Integer; tf: Boolean); far;

Parameters
Notes Depending on what type of font is being used and how the font is defined, then you might be

able to modify its appearance. Corel Visual CADD utilizes both TrueType Fonts and built in vector
fonts. The vector fonts can be converted from other font formats such as .SHX and .FNT. When
working with text entities it is important to understand the type of font being used. Certain
settings such as Bold, Italic and Underline only effect TrueType Fonts while others such as Italic
value are designed for vector fonts. VCGetDimTextFillVText will fill vector fonts that are closed
outline fonts. Therefore, when altering the settings of an existing text entity it is necessary to
determine the type of font in order to apply the appropriate settings. VCIsFontNameVText
determines if the specified font is a Corel Visual CADD vector font.

See Also VCIsFontNameVLeaderText, VCGetDimFont

VCGetLeaderTextHeight
VCSetLeaderTextHeight

Version 2.0
Description Unlike most other Windows programs, Corel Visual CADD measures text height in real world

units, specifically inches, instead of points.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderTextHeight(short* iError);

extern "C" void WINAPI VCGetLeaderTextHeightBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderTextHeight(short* iError, double d);

Visual Basic: Declare Sub VCGetLeaderTextHeightBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetLeaderTextHeight Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetLeaderTextHeightBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderTextHeight(var iError: Integer; dRet: Double); far;

Parameters dRet - the text height.
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetLeaderTextItalic
VCSetLeaderTextItalic

Version 2.0
Description Specifies the italic display option for TT Fonts with the leader command.
Declaration
C/C++ extern "C" vbool WINAPI VCGetLeaderTextItalic(short* iError);

extern "C" void WINAPI VCSetLeaderTextFillVText(short* iError, vbool tf);
Visual Basic Declare Function VCGetLeaderTextItalic Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderTextItalic Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetLeaderTextItalic(var iError: Integer):Boolean; far;

procedure VCSetLeaderTextFillVText(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes
See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,

VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextItalicAng
VCSetLeaderTextItalicAng

Version 2.0
C/C++: extern "C" double WINAPI VCGetLeaderTextItalicAng(short* iError, double* dI);

extern "C" void WINAPI VCGetLeaderTextItalicAngBP(short* iError, double* dI);
extern "C" void WINAPI VCSetLeaderTextItalicAng(short* iError, double dI);

Visual Basic: Declare Sub VCGetLeaderTextItalicAngBP Lib "VCMAIN32.DLL" (iError As Integer, dI As Double)
Declare Sub VCSetLeaderTextItalicAng Lib "VCMAIN32.DLL" (iError As Integer, ByVal dI As
Double)

Delphi: procedure VCGetLeaderTextItalicAngBP(var iError: Integer; var dI: Double); far;
procedure VCSetLeaderTextItalicAng(var iError: Integer; dI: Double); far;

Parameters dI - the angle in radians for the slant
Notes The number must range between 45 and -45 degrees. As with all angle functions, the angle is

specified in radians. A negative number will slant the text backwards.
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetLeaderTextLineSpace
VCSetLeaderTextLineSpace

Version 2.0
Description The between text line VCGetDimTextLineSpacespacing as a percentage of current text height.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderTextLineSpace(short* iError);

extern "C" void WINAPI VCGetLeaderTextLineSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetLeaderTextLineSpace(short* iError, double dLineSpacing);

Visual Basic: Declare Sub VCGetLeaderTextLineSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As
Double)
Declare Sub VCSetLeaderTextLineSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal
dLineSpacing As Double)

Delphi: procedure VCGetLeaderTextLineSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetLeaderTextLineSpace(var iError: Integer; dLineSpacing: Double); far;

Parameters dRet - spacing between the lines.
See Also VCGetDimTextAspect, VCGetDimTextBold, VCGetDimTextHeight, VCGetDimTextItalic,

VCGetDimTextItalicValue, VCGetDimTextLineSpace, VCGetDimTextProSpacing,
VCGetDimTextRotationType, VCGetDimTextUnderline

VCGetLeaderTextProSpacing
VCSetLeaderTextProSpacing

Version 2.0
Description Vector text character spacing can be forced to monospace or proportional spacing. Monospace is

a characteristic of typewriter output and all characters will use the same amount of space
regardless of their width and height.

Declaration
C/C++ extern "C" vbool WINAPI VCGetLeaderTextProSpacing(short* iError);

extern "C" void WINAPI VCSetLeaderTextProSpacing(short* iError, vbool b);
Visual Basic Declare Function VCGetLeaderTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As
Integer)

Delphi function VCGetLeaderTextProSpacing(var iError: Integer):Boolean; far;
procedure VCSetLeaderTextProSpacing(var iError: Integer; b: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,
VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextUnderline
VCSetLeaderTextUnderline

Version 2.0
Description Specifies the underline display option for TT Fonts with the leader command.
Declaration
C/C++ extern "C" vbool WINAPI VCGetLeaderTextUnderline(short* iError);

extern "C" void WINAPI VCSetLeaderTextUnderline(short* iError, vbool tf);
Visual Basic Declare Function VCGetLeaderTextUnderline Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLeaderTextUnderline Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi function VCGetLeaderTextUnderline(var iError: Integer):Boolean; far;
procedure VCSetLeaderTextUnderline(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,
VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLeaderTextOffset
VCSetLeaderTextOffset

Version 1.2
Description The distance leader text is offset from the leader shoulder.
Declaration
C/C++: extern "C" double WINAPI VCGetLeaderTextOffset(short* iError);

extern "C" void WINAPI VCSetLeaderTextOffset(short* iError, double d);
Visual Basic: Declare Sub VCGetLeaderTextOffsetBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)

Declare Sub VCSetLeaderTextOffset Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)
Delphi: procedure VCGetLeaderTextOffsetBP(var iError: Integer; var dRet: Double); far;

procedure VCSetLeaderTextOffset(var iError: Integer; dRet: Double); far;
Parameters d - the offset distance.
See Also CGetLeaderFontName, VCGetLeaderString, VCGetLeaderTextAspect, VCGetLeaderTextBold,

VCGetLeaderTextCharSpace, VCGetLeaderTextFillVText, VCGetLeadertTextHeight,
VCGetLeaderTextItalic, VCGetLeaderTextItalicAng, VCGetLeaderTextLineSpace,
VCGetLeaderTextProSpacing, VCGetLeaderTextUnderline, VCGetLeaderTextOffset

VCGetLineTypeDisplay
VCSetLineTypeDisplay

Version 1.2
Description Determine whether line types are displayed on the screen or if the entities are shown as solid

lines. Turning off the display will reduce the visual clutter and increase the speed of redraws.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetLineTypeDisplay(short* iError);

extern "C" void WINAPI VCSetLineTypeDisplay(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetLineTypeDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLineTypeDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetLineTypeDisplay(var iError: Integer):Boolean; far;

procedure VCSetLineTypeDisplay(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetLineWidthDisplay, VCGetHandlePt, VCGetConstPt

VCGetLineTypeFromIndex
Version 1.2
Description Returns a line type definition array containing all segment lengths and its size.
Declaration
C/C++: extern "C" void WINAPI VCGetLineTypeFromIndex(short* iError, short iIndex, char* pName, short*

bCode, short* iDashCount, double* pDashes);
Visual Basic: Declare Sub VCGetLineTypeFromIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As

Integer, ByVal pName As String, bCode As Integer, iDashCount As Integer, pDashes As Double)
Delphi: procedure VCGetLineTypeFromIndex(var iError: Integer; iIndex: Integer; pName PChar; var

bCode: Integer; var iDashCount: Integer; var pDashes: Double);
Parameters iIndex - the line type number.

pName - assigned by the procedure as the line type name.
bCode determines whether the line is a world scale or device scale.
1 - world scale.
2 - device scale.
iDashCount - the number of dashes used and is the size of the pDashes array.
pDashes points to and array of doubles representing each dash length.

Notes Corel Visual CADD line types use either a world scale or a device scale. Device line types will
always appear with the appropriate lengths regardless of the drawing view on screen or the print
size. World scale line types will always be displayed and printed to scale, that is a 1" dash
printed at ¼ scale will be ¼" long on paper. The pDashes array must contain dash lengths for
the line type in order they are to be drawn in the line. A positive value indicates a displayed (or
on) dash length while a negative value indicates a non-displayed (or off) dash length. These non-
displayed dash lengths can be thought of as an offset length from the end of the last dash
length to the beginning of the next dash length.

See Also VCAddLineType, VCGetLineTypeIndexFromName, VCGetLineTypeNameFromIndex

{button ,AL(`Adding a Single Entity',0,`',`')} Task Guide Examples

VCGetLineTypeIndex
VCSetLineTypeIndex

Version 1.2
Description Specifies the current line type property for all subsequent primary entity placements..
Declaration
C/C++: extern "C" short WINAPI VCGetLineTypeIndex(short* iError);

extern "C" void WINAPI VCSetLineTypeIndex(short* iError, short i);
Visual Basic: Declare Function VCGetLineTypeIndex Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLineTypeIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetLineTypeIndex(var iError: Integer):Integer; far;

procedure VCSetLineTypeIndex(var iError: Integer; i: Integer); far;
Parameters i - the desired line type index.
Notes All primary drawing entities have four specific properties associated with them. These are: color,

layer, line type and line width. Each of these are set by an index, not by name. Text and
Dimensions each have their own properties and as such are not set or retrieved using these
functions but instead have their own similar functions

See Also VCGetLineWidthIndex, VCGetLayerIndex, VCGetColorIndex

VCGetLineTypeIndexFromName
Version 1.2
Description Given a line type name, returns the index number for the named line type.
Declaration
C/C++: extern "C" short WINAPI VCGetLineTypeIndexFromName(short* iError, char* pName);
Visual Basic: Declare Function VCGetLineTypeIndexFromName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

pName As String) As Integer
Delphi: function VCGetLineTypeIndexFromName(var iError: Integer; pName PChar):Integer; far;
Parameters pName - the line type name of an existing line type.

Returns an integer from 0 to 255 representing the line type index number.
Notes Using the LINETYPE.DEF text file present in the Corel Visual CADD directory, it is possible for the

user to create and assign any line type definition to any line type index number. An application
can also do the same thing by using VCAddLineType. Once a line type has been assigned, that
line type number takes on the defining line type name. Using VCGetLineTypeIndexFromName,
any application can retrieve the index number for use with other functions requiring a line type
index.

See Also VCAddLineType, VCGetLineTypeFromIndex, VCGetLineTypeNameFromIndex

{button ,AL(`Adding a Single Entity',0,`',`')} Task Guide Examples

VCGetLineTypeNameFromIndex
Version 1.2
Description Given a line type index number, VCGetLineTypeNameFromIndex will return the name associated

with that line type.
Declaration
C/C++: extern "C" short WINAPI VCGetLineTypeNameFromIndex(short* iError, short iIndex, char*

pName);
Visual Basic: Declare Function VCGetLineTypeNameFromIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIndex As Integer, ByVal pName As String) As Integer
Delphi: function VCGetLineTypeNameFromIndex(var iError: Integer; iIndex: Integer;
Parameters iIndex - the line type number.

pName - assigned by the procedure as the line type name.
Notes Since line types are customizable by the user, there is often a significance to the names given to

the lines. All line type names should be used whenever the user is given an option to choose line
types.

See Also VCAddLIneType, VCGetLineTypeIndexFromName, VCGetLineTypeFromIndex

{button ,AL(`Adding a Single Entity',0,`',`')} Task Guide Examples

VCGetLineWidthDisplay
VCSetLineWidthDisplay

Version 1.2
Description Determine whether line widths are displayed on the screen or if the entities are shown as line

width 0. Turning off the display will reduce the visual clutter and increase the speed of redraws.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetLineWidthDisplay(short* iError);

extern "C" void WINAPI VCSetLineWidthDisplay(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetLineWidthDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLineWidthDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetLineWidthDisplay(var iError: Integer):Boolean; far;

procedure VCSetLineWidthDisplay(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetLineTypeDisplay, VCGetHandlePt, VCGetConstPt, VCGetLineTypeNameFromIndex

VCGetLineWidthIndex
VCSetLineWidthIndex

Version 1.2
Description Specifies the current line width property for all subsequent primary entity placements.
Declaration
C/C++: extern "C" short WINAPI VCGetLineWidthIndex(short* iError);

extern "C" void WINAPI VCSetLineWidthIndex(short* iError, short i);
Visual Basic: Declare Function VCGetLineWidthIndex Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetLineWidthIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetLineWidthIndex(var iError: Integer):Integer; far;

procedure VCSetLineWidthIndex(var iError: Integer; i: Integer); far;
Parameters i - the desired line width index.
Notes All primary drawing entities have four specific properties associated with them. These are: color,

layer, line type and line width. Each of these are set by an index, not by name. Text and
Dimensions each have their own properties and as such are not set or retrieved using these
functions but instead have their own similar functions.

See Also VCGetLineTypeIndex, VCGetLayerIndex, VCGetColorIndex

{button ,AL(`Adding a Continuous Entity;Adding a Single Entity',0,`',`')} Task Guide Examples

VCGetLineWidthValue
VCSetLineWidthValue

Version 2.0
Description Specifies the line width value for real world line weights.
Declaration
C/C++ extern "C" void WINAPI VCGetLineWidthValue(short* iError, float* dV);

extern "C" void WINAPI VCSetLineWidthValue(short* iError, float dV);
Visual Basic Declare Sub VCGetLineWidthValue Lib "VCMAIN32.DLL" (iError As Integer, dV As Double)

Declare Sub VCSetLineWidthValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal dV As Double)
Delphi procedure VCGetLineWidthValue(var iError: Integer; var dV: Double); far;

procedure VCSetLineWidthValue(var iError: Integer; dV: Double); far;
Parameters dV - the value for the real world line width defintion.
Notes Corel Visual CADD provides a set of 16 predefined line widths based on screen units. Line widths

can also be set in real world coordinates to reflect exact line weights for output. The real world
line widths print and display at the width entered regardless of the scale.

See Also VCGetLineWidthIndex, VCGetLineTypeIndex, VCGetLayerIndex, VCGetColorIndex

VCGetLTScaleDevice
VCSetLTScaleDevice

Version 1.2
Description Specifies the line scale reference frame.
Declaration
C/C++: extern "C" double WINAPI VCGetLTScaleDevice(short* iError);

extern "C" void WINAPI VCSetLTScaleDevice(short* iError, double dRet);
Visual Basic: Declare Sub VCGetLTScaleDeviceBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Double)

Declare Sub VCSetLTScaleDevice Lib "VCMAIN32.DLL" (iError As Integer, ByVal dRet As Double)
Delphi: procedure VCGetLTScaleDeviceBP(var iError: Integer; var pRet: Double); far;

procedure VCSetLTScaleDevice(var iError: Integer; dRet: Double); far;
Parameters dRet - the scaling factor to apply
Notes There are two linetype reference frames for measuring the lengths of the solid and blank

segments that make up a custom line type called World and Device. If the World option is
chosen, then the segment lengths are measured in the same reference frame as the drawing
objects themselves. Thus the apparent size of a world-reference pattern will change when you
zoom in or out on-screen, or when you plot or print at different scales. If the Device option is
chosen, then the segment lengths are measured in the reference frame of the computer screen,
printer, or plotter. The apparent size of a device-reference pattern will remain constant on-
screen and on paper regardless of the zoom factor or print scale. Both of these reference frames
can be scaled to alter the line type from it's original definition.

See Also VCGetLTScaleWorld

VCGetLTScaleWorld
VCSetLTScaleWorld

Version 1.2
Description Specifies the line scale reference frame.
Declaration
C/C++: extern "C" double WINAPI VCGetLTScaleWorld(short* iError);

extern "C" void WINAPI VCSetLTScaleWorld(short* iError, double dRet);
Visual Basic: Declare Sub VCGetLTScaleWorldBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Double)

Declare Sub VCSetLTScaleWorld Lib "VCMAIN32.DLL" (iError As Integer, ByVal dRet As Double)
Delphi: procedure VCGetLTScaleWorldBP(var iError: Integer; var pRet: Double); far;

procedure VCSetLTScaleWorld(var iError: Integer; dRet: Double); far;
Parameters dRet - the scaling factor to apply
Notes There are two linetype reference frames for measuring the lengths of the solid and blank

segments that make up a custom line type called World and Device. If the World option is
chosen, then the segment lengths are measured in the same reference frame as the drawing
objects themselves. Thus the apparent size of a world-reference pattern will change when you
zoom in or out on-screen, or when you plot or print at different scales. If the Device option is
chosen, then the segment lengths are measured in the reference frame of the computer screen,
printer, or plotter. The apparent size of a device-reference pattern will remain constant on-
screen and on paper regardless of the zoom factor or print scale. Both of these reference frames
can be scaled to alter the line type from it's original definition.

See Also VCGetLTScaleDevice

VCGetMajorVersion
Version 1.2
Description Returns the major version number of the current Corel Visual CADD program files.
Declaration
C/C++: extern "C" short WINAPI VCGetMajorVersion(void);
Visual Basic: Declare Function VCGetMajorVersion Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetMajorVersion:Integer; far;
Parameters Returns - major version number.
Notes When running external applications with copies of Corel Visual CADD not provided with the

application, it is a good idea to check the version to be sure that all API‘s needed by the
application are supported in the version in use. Corel Visual CADD version numbers are broken
into four parts. These are from most to least significance; Major, Minor, Dot and Internal. Major
and minor are the most important and should always be checked. For example this API
document was designed around Corel Visual CADD 2.0.1(major version 2, minor version 0, minor
dot version 1).

See Also VCGetMinorVersion, VCGetMinorDotVersion, VCGetMinorInternalVersion

{button ,AL(`Error Checking;Version checking',0,`',`')} Task Guide Examples

VCGetMDICount
Version 2.0
Description Returns the number of active MDI(Multiple Document Interface) windows.
Declaration
C/C++ extern "C" short WINAPI VCGetMDICount(short* iError);
Visual Basic Declare Function VCGetMDICount Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCGetMDICount(var iError: Integer):Integer; far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD supports the Multiple Document Interface(MDI) feature of Windows. MDI

allows for multiple drawings to be opened in the same session. Each new drawing and each new
drawing view are opened into their own active Window. These can then be manipulated as any
other Window. However, Corel Visual CADD supports only 64 active drawing Windows whether
they contain separate drawings or simply new views. VCGetMDICount returns the number of
currently active worlds in the drawing session.

See Also VCCreateMDIWindow

VCGetMenu
VCSetMenu

Version 1.2
Description Custom pull down menus are saved as ASCII text files with a *.MNU extension. These menus can

be loaded into Corel Visual CADD.
Declaration
C/C++: extern "C" short WINAPI VCGetMenu(short* iError, char* sz);

extern "C" void WINAPI VCSetMenu(short* iError, char* sz);
Visual Basic: Declare Function VCGetMenu Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String) As

Integer
Declare Sub VCSetMenu Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String)

Delphi: function VCGetMenu(var iError: Integer; sz: PChar):Integer; far;
procedure VCSetMenu(var iError: Integer; sz: PChar); far;

Parameters sz - the path and file name for the menu
See Also VCGetPopupButton

{button ,AL(`Custom Menus',0,`',`')} Task Guide Examples

VCGetMessageHandle
VCSetMessageHandle

Version 1.2
Description Specifies the location by hWnd where Corel Visual CADD is to place the message string for each

command.
Declaration

C/C++: extern "C" void WINAPI VCSetMessageHandle(HWND hWnd_);
Visual Basic: Declare Sub VCSetMessageHandle Lib "VCMAIN32.DLL" (ByVal hWnd_ As Integer)
Delphi: procedure VCSetMessageHandle(hWnd_: Integer); far;
Parameters hWnd - the hWnd handle for the object to be used as the message area.
Notes Every Windows object is reference by Windows using its hWnd. This is an integer and must be

supplied to Corel Visual CADD in order for the messages to be routed to an external application.
See Also VCSetDistanceHandle, VCSetAngleHandle, VCSetXYHandle

{button ,AL(`Utilizing a Custom Interface',0,`',`')} Task Guide Examples

VCGetMinorDotVersion
Version 1.2
Description Returns the minor dot version number of the current Visual CADD program files.
Declaration
C/C++: extern "C" short WINAPI VCGetMinorDotVersion(void);
Visual Basic: Declare Function VCGetMinorDotVersion Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetMinorDotVersion:Integer; far;
Parameters returns - minor dot version number.
Notes When running applications with Corel Visual CADD, it is a good idea to check the version to be

sure that all API‘s needed by the application are supported in the version in use. Visual CADD
version numbers are broken into four parts. These are from most to least significance; Major,
Minor, Dot and Internal. Major and minor are the most important and should always be checked.
For example this API document was designed around Numera Visual CADD 2.0.1(major version
2, minor version 0, minor dot version 1).

See Also VCGetMinorVersion, VCGetMajorVersion, VCGetMinorInternalVersion

{button ,AL(`Error Checking;Valid World Checking',0,`',`')} Task Guide Examples

VCGetMinorInternalVersion
Version 1.2
Description Returns the minor internal version number of the current Visual CADD program files.
Declaration
C/C++: extern "C" short WINAPI VCGetMinorInternalVersion(void);
Visual Basic: Declare Function VCGetMinorInternalVersion Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetMinorInternalVersion:Integer; far;
Parameters returns - minor internal version number.
Notes When running applications with copies of Corel Visual CADD, it is a good idea to check the

version to be sure that all API‘s needed by the application are supported in the version in use.
Visual CADD version numbers are broken into four parts. These are from most to least
significance; Major, Minor, Dot and Internal. Major and minor are the most important and should
always be checked. For example this API document was designed around Numera Visual CADD
2.0.1(major version 2, minor version 0, minor dot version 1).

See Also VCGetMinorVersion, VCGetMinorDotVersion, VCGetMajorVersion

{button ,AL(`Error Checking;Version checking',0,`',`')} Task Guide Examples

VCGetMinorVersion
Version 1.2
Description Returns the minor version number of the current Visual CADD program files.
Declaration
C/C++: extern "C" short WINAPI VCGetMinorVersion(void);
Visual Basic: Declare Function VCGetMinorVersion Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetMinorVersion:Integer; far;
Parameters returns - minor version number.
Notes When running applications with Corel Visual CADD, it is a good idea to check the version to be

sure that all API‘s needed by the application are supported in the version in use. Visual CADD
version numbers are broken into four parts. These are from most to least significance; Major,
Minor, Dot and Internal. Major and minor are the most important and should always be checked.
For example this API document was designed around Numera Visual CADD 2.0.1(major version
2, minor version 0, minor dot version 1).

See Also VCGetMajorVersion, VCGetMinorDotVersion, VCGetMinorInternalVersion

{button ,AL(`Error Checking;Version checking',0,`',`')} Task Guide Examples

VCGetNumCopies
VCSetNumCopies

Version 1.2
Description Sets or receives the number of copies for the linear copy command.
Declaration
C/C++: extern "C" double WINAPI VCGetNumCopies(short* iError);

extern "C" void WINAPI VCSetNumCopies(short* iError, short i);
Visual Basic: Declare Sub VCGetNumCopiesBP Lib "VCMAIN32.DLL" (iErr As Integer, dRet As Double)

Declare Sub VCSetNumCopies Lib "VCMAIN32.DLL" (iErr As Integer, ByVal i As Integer)
Delphi: procedure VCGetNumCopiesBP(var iError: Integer; var dRet: Double); far;

procedure VCSetNumCopies(var iError: Integer; i: Integer); far;
Parameters I - the number of copies.
See Also VCGetNumRows, VCLinearCopy

VCGetNumRows
VCSetNumRows

Version 1.2
Description The number of rows used by the array copy command.
Declaration
C/C++: extern "C" short WINAPI VCGetNumRows(short* iError);

extern "C" void WINAPI VCSetNumRows(short* iError, short i);
Visual Basic: Declare Function VCGetNumRows Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetNumRows Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetNumRows(var iError: Integer):Integer; far;

procedure VCSetNumRows(var iError: Integer; i: Integer); far;
Parameters i - the default number of rows.
See Also VCArrayCopy

VCGetOffsetDist
VCSetOffsetDist

Version 1.2
Description Specifies a fixed distance for the offset command.
Declaration
C/C++: extern "C" double WINAPI VCGetOffsetDist(short* iError);

extern "C" void WINAPI VCSetOffsetDist(short* iError, double d);
Visual Basic: Declare Sub VCGetOffsetDistBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)

Declare Sub VCSetOffsetDist Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)
Delphi: procedure VCGetOffsetDistBP(var iError: Integer; var dRet: Double); far;

procedure VCSetOffsetDist(var iError: Integer; dRet: Double); far;
Parameters d - the desired offset distance.
Notes External applications that use the offset command possibly do not want the offset distance

rubberband dynamically. When offset fixed is on the user simply picks which side of the entity to
place the offset instead of side and distance. Specifies the distance to construct an offset from
the entity if offset fixed is off.

See Also VCGetOffsetFixed, VCOffset

VCGetOffsetFixed
VCSetOffsetFixed

Version 1.2
Description Specifies the fixed distance offset setting.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetOffsetFixed(short* iError);

extern "C" void WINAPI VCSetOffsetFixed(short* iError, BOOL tf);
Visual Basic:

Declare Function VCGetOffsetFixed Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Declare Sub VCSetOffsetFixed Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)

Delphi: function VCGetOffsetFixed(var iError: Integer):Integer; far;
procedure VCSetOffsetFixed(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes External applications that use the offset command possibly do not want the offset distance
rubberband dynamically. When offset fixed is off the user simply picks which side of the entity to
place the offset instead of side and distance.

See Also VCGetOffsetDist, VCOffset

VCGetOleDllClassName
VCSetOleDllClassName

Version 2.0
Description Specifies the class name containing the function to execute from an OLE DLL.
Declaration
C/C++ extern "C" short WINAPI VCGetOleDllClassName(short* iError, char* szPath);

extern "C" void WINAPI VCSetOleDllClassName(short* iError, char* szPath);
Visual Basic Declare Function VCGetOleDllClassName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As

String) As Integer
Declare Sub VCSetOleDllClassName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As
String)

Delphi function VCGetOleDllClassName(var iError: Integer; szPath: PChar):Integer;
Parameters szPath - the OLE class name.

Return - the length of the returned string.
Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This

allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Corel Visual CADD
interface with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel
Visual CADD for more information this. An application can also launch the routines through the
API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

OLE DLL are special cases of the standard DLL method. OLE DLL are created as exported class
routines. Corel Visual CADD must handle this differently when accessing the functionality built
into the DLL. This information is provided by an OLE DLL name, a class name containing the
function, the function name and the command line argument for the function.

See Also VCGetDllRunCmdLine, VCGetDllRunFunction, VCGetDllRunName, VCGetOleDllFunctionCmdLine,
VCGetOleDllFunctionName, VCGetOleDllName

VCGetOleDllFunctionCmdLine
VCSetOleDllFunctionCmdLine

Version 2.0
Description Specifies the command line for a function contained in the OLE DLL.
Declaration
C/C++ extern "C" short WINAPI VCGetOleDllFunctionCmdLine(short* iError, char* szPath);

extern "C" void WINAPI VCSetOleDllFunctionCmdLine(short* iError, char* szPath);
Visual Basic Declare Function VCGetOleDllFunctionCmdLine Lib "VCMAIN32.DLL" (iError As Integer, ByVal

szPath as String) As Integer
Declare Sub VCSetOleDllFunctionCmdLine Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath
As String)

Delphi function VCGetOleDllFunctionCmdLine(var iError: Integer; szPath:
Parameters szPath - the command line for the function.

Return - the length of the returned string.
Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This

allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Corel Visual CADD
interface with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel
Visual CADD for more information this. An application can also launch the routines through the
API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

OLE DLL are special cases of the standard DLL method. OLE DLL are created as exported class
routines. Corel Visual CADD must handle this differently when accessing the functionality built
into the DLL. This information is provided by an OLE DLL name, a class name containing the
function, the function name and the command line argument for the function.

See Also VCGetDllRunCmdLine, VCGetDllRunFunction, VCGetDllRunName, VCGetOleDllClassName,
VCGetOleDllFunctionName, VCGetOleDllName

VCGetOleDllFunctionName
VCSetOleDllFunctionName

Version 2.0
Description The function name contained in the OLE DLL.
Declaration
C/C++ extern "C" short WINAPI VCGetOleDllFunctionName(short* iError, char* szPath);

extern "C" void WINAPI VCSetOleDllFunctionName(short* iError, char* szPath);
Visual Basic Declare Function VCGetOleDllFunctionName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

szPathAs String) As Integer
Declare Sub VCSetOleDllFunctionName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As
String)

Delphi function VCGetOleDllFunctionName(var iError: Integer; szPath: PChar):Integer;
Parameters szPath - the name of the function.

Return - the lenght of the returned string.
Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This

allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Corel Visual CADD
interface with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel
Visual CADD for more information this. An application can also launch the routines through the
API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

OLE DLL are special cases of the standard DLL method. OLE DLL are created as exported class
routines. Corel Visual CADD must handle this differently when accessing the functionality built
into the DLL. This information is provided by an OLE DLL name, a class name containing the
function, the function name and the command line argument for the function.

See Also VCGetDllRunCmdLine, VCGetDllRunFunction, VCGetDllRunName, VCGetOleDllClassName,
VCGetOleDllFunctionCmdLine, VCGetOleDllName

VCGetOleDllName
VCSetOleDllName

Version 2.0
Description The OLE DLL name.
Declaration
C/C++ extern "C" short WINAPI VCGetOleDllName(short* iError, char* szPath);

extern "C" void WINAPI VCSetOleDllName(short* iError, char* szPath);
Visual Basic Declare Function VCGetOleDllName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As

String) As Integer
Declare Sub VCSetOleDllName Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String

Delphi function VCGetOleDllName(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetOleDllClassName(var iError: Integer; szPath: PChar); far;

Parameters szPath - the OLE DLL name.
Return - the length of the returned string.

Notes Corel Visual CADD can run functions from within a DLL through the scripting language. This
allows developers to create add on applications in a Windows DLL format and then simply
reference functions contained in the DLL. Corel Visual CADD will load the DLL into memory and
access the specified function. Generally, this is simply done through the Corel Visual CADD
interface with the Assign Script command or the CMDEXT file. Please refer to Customizing Corel
Visual CADD for more information this. An application can also launch the routines through the
API.

In order to access the DLL function, Corel Visual CADD must know the DLL name, the name of
the function and any command line arguments required. The command line arguments can only
be passed as a character string. The engine then uses this information to launch the specified
function.

OLE DLL are special cases of the standard DLL method. OLE DLL are created as exported class
routines. Corel Visual CADD must handle this differently when accessing the functionality built
into the DLL. This information is provided by an OLE DLL name, a class name containing the
function, the function name and the command line argument for the function.

See Also VCGetDllRunCmdLine, VCGetDllRunFunction, VCGetDllRunName, VCGetOleDllClassName,
VCGetOleDllFunctionCmdLine, VCGetOleDllFunctionName

VCGetOrthoAng
VCSetOrthoAng

Version 1.2
Description Specifies the ortho angle setting.
Declaration
C/C++: extern "C" double WINAPI VCGetOrthoAng(short* iError);

extern "C" void WINAPI VCGetOrthoAngBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetOrthoAng(short* iError, double d);

Visual Basic: Declare Sub VCGetOrthoAngBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetOrthoAng Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetOrthoAngBP(var iError: Integer; var dRet: Double); far;
procedure VCSetOrthoAng(var iError: Integer; dRet: Double); far;

Parameters d - ortho angle setting in radians
Notes Ortho mode is one the more useful features of Corel Visual CADD that constrains many

construction and editing tools. This constraint only allows point placements along lines that lie at
90° increments from, or on, the ortho angle, from the first point placed in the command.

See Also VCGetOrthoMode

VCGetOrthoMode
VCSetOrthoMode

Version 1.2
Description Specifies the state of the ortho toggle.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetOrthoMode(short* iError);

extern "C" void WINAPI VCSetOrthoMode(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetOrthoMode Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetOrthoMode Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetOrthoMode(var iError: Integer):Integer; far;

procedure VCSetOrthoMode(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes Ortho mode is one the more useful features of Corel Visual CADD that constrains many
construction and editing tools. This constraint only allows point placements along lines that lie at
90° increments from, or on, the ortho angle, from the first point placed in the command.

See Also VCGetOrthoAng

VCGetPlotterCount
Version 2.0
Description Retrieves the number of plotters currently available for the direct plot command.
Declaration
C/C++ extern "C" short WINAPI VCGetPlotterCount(short* iError);
Visual Basic Declare Function VCGetPlotterCount Lib "VCDLG32.DLL" (iError As Integer) As Integer
Delphi function VCGetPlotterCount(var iError: Integer):Integer; far;
Parameters returns - a count for the number of installed plotters.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

If a plotter is not supported by drivers provided, an application or end user may create a new
driver form the plotters language control. This requires the user or application to name the new
driver being created. The actual plotter language strings are then defined through the API or
Corel Visual CADD interface.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterCurrentLanguageName
VCSetPlotterCurrentLanguageName

Version 2.0
Description Specifies the current plotter language name.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterCurrentLanguageName(short* iError, char*
szLanguageName);

Visual Basic Declare Sub VCSetPlotterCurrentLanguageName Lib "VCDLG32.DLL" (iError As Integer, ByVal
szLanguageName As String)

Delphi procedure VCSetPlotterCurrentLanguageName(var iError: Integer; szLanguageName:
Parameters szLanguage - the name for the current plotter language
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs to be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterCurrentPageSize
VCSetPlotterCurrentPageSize

Version 2.0
Description Sets the current page size for the direct plot routine.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterCurrentPageSize(short* iError, short iIndex);
Visual Basic Declare Sub VCSetPlotterCurrentPageSize Lib "VCDLG32.DLL" (iError As Integer, ByVal iIndex As

Integer)
Delphi procedure VCSetPlotterCurrentPageSize(var iError: Integer; iIndex: Integer);
Parameters iIndex - the index specifying the current page size values
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine allows for custom page sizes to be defined with the VCAddPlotterPageSizeRoutine and
by the user through the Corel Visual CADD interface. These can be removed from the interface by the user or
through the API with VCRemovePLotterPageSize. Custom page sizes enhance the users control over vector
output devices and allows the user or an application to set page parameters suited to a desired output.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterCurrentPenMapName
VCSetPlotterCurrentPenMapName

Version 2.0
Description Specifies the current pen map name.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterCurrentPenMapName(short* iError, char* szPenMapName);
Visual Basic Declare Sub VCSetPlotterCurrentPenMapName Lib "VCDLG32.DLL" (iError As Integer, ByVal

szPenMapName As String)
Delphi procedure VCSetPlotterCurrentPenMapName(var iError: Integer; szPenMapName:
Parameters szName - the name of the current plotter pen map
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterDeInitString
VCSetPlotterDeInitString

Version 2.0
Description Describes the commands that are sent to the plotter after the plot is complete.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterDeInitString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterDeInitString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As String)
Delphi procedure VCSetPlotterDeInitString(var iError: Integer; sz: PChar); far;
Parameters sz - the de-initialization string for the plotter.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterDelimiter
VCSetPlotterDelimiter

Version 2.0
Description Specifies the character that separates commands sent to the plotter. This field can be left blank.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterDelimiter(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterDelimiter Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As String)
Delphi procedure VCSetPlotterDelimiter(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter delimiter string
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterInitString
VCSetPlotterInitString

Version 2.0
Description Specifies the commands sent to the plotter to initialize the plot.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterInitString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterInitString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As String)
Delphi procedure VCSetPlotterInitString(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter initialization string.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenChangeString
VCSetPlotterPenChangeString

Version 2.0
Description Specifies the characters that signal the plotter to change to a different pen.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterPenChangeString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterPenChangeString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String)
Delphi procedure VCSetPlotterPenChangeString(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter pen change string.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenDownString
VCSetPlotterPenDownString

Version 2.0
Description Specifies which characters lower the pen to the paper.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterPenDownString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterPenDownString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String)
Delphi procedure VCSetPlotterPenDownString(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter pen down string.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenDrawString
VCSetPlotterPenDrawString

Version 2.0
Description Specifies the characters that signal the plotter to move the pen from one location to anther in

the down position.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterPenDrawString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterPenDrawString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String)
Delphi procedure VCSetPlotterPenDrawString(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter pen draw string.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenMoveString
VCSetPlotterPenMoveString

Version 2.0
Description Specifies the characters that signal the plotter to move from one location to another in the up

position.
Declaration

C/C++ extern "C" void WINAPI VCSetPlotterPenMoveString(short* iError, char* sz);
Visual Basic Declare Sub VCSetPlotterPenMoveString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String)
Delphi procedure VCSetPlotterPenMoveString(var iError: Integer; sz: PChar); far;
Parameters sz - the plotter pen move string.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs t be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenSpeedString
VCSetPlotterPenSpeedString

Version 2.0
Description Sets the speed at which a pen moves across the paper.
Declaration
C/C++ extern "C" short WINAPI VCGetPlotterPenSpeedString(short* iError, char* sz);

extern "C" void WINAPI VCSetPlotterPenUpString(short* iError, char* sz);
Visual Basic Declare Function VCGetPlotterPenSpeedString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String) As Integer
Declare Sub VCSetPlotterPenSpeedString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As
String)

Delphi function VCGetPlotterPenSpeedString(var iError: Integer; sz: PChar):Integer;far;
procedure VCSetPlotterPenSpeedString(var iError: Integer; sz: PChar); far;

Parameters szString - the plotter speed in millimeters per second
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device. Pen speed is measured in millimeters per second. Specifying a high pen speed
may result in damage to the pen tip.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPlotterPenUpString
VCSetPlotterPenUpString

Version 2.0
Description Specifies which characters raise the pen from the paper.
Declaration
C/C++ extern "C" short WINAPI VCGetPlotterPenUpString(short* iError, char* sz);

extern "C" void WINAPI VCSetPlotterPenUpString(short* iError, char* sz);
Visual Basic Declare Function VCGetPlotterPenUpString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As

String) As Integer
Declare Sub VCSetPlotterPenUpString Lib "VCDLG32.DLL" (iError As Integer, ByVal sz As String)

Delphi function VCGetPlotterPenUpString(var iError: Integer; sz: PChar):Integer;far;
procedure VCSetPlotterPenUpString(var iError: Integer; sz: PChar); far;

Parameters sz - string for the languages pen up commad
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

Corel Visual CADD ships with support for many common plotter languages. However, if the
desired language is not available, an application can create a language directly through the API.
A plotter language consists of a delimiter, initialization string, de-initialization string, pen up, pen
move, pen draw, pen speed and pen change commands. Each of these needs to be specified
when creating a language. The required control codes are generally listed in the output devices
documentation and set to a specific plotter type.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName, VCGetPlotterDeInitString, VCGetPlotterDelimiter,
VCGetPlotterInitString, VCGetPlotterLanguageCount, VCGetPlotterLanguageName,
VCGetPlotterPageSize, VCGetPlotterPageSizeCount, VCGetPlotterPenChangeString,
VCGetPlotterPenDownString, VCGetPlotterPenDrawString, VCGetPlotterPenMapCount,
VCGetPlotterPenMapName, VCGetPlotterPenMapping, VCGetPlotterPenMoveString,
VCGetPlotterPenSpeedString, VCGetPlotterPenUpString

VCGetPointDisplay
VCSetPointDisplay

Version 1.2
Description Determines if point entities are displayed on the screen. Turning off the display will reduce the

visual clutter and increase the speed of redraws.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetPointDisplay(short* iError);

extern "C" void WINAPI VCSetPointDisplay(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetPointDisplay Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetPointDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetPointDisplay(var iError: Integer):Boolean; far;

procedure VCSetPointDisplay(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetConstPt, VCGetLinetypeDisplay, VCGetLinewidthDisplay

VCGetPopupButton
VCSetPopupButton

Version 1.2
Description Determines which button is used to activate the context sensitive pop-up menus.
Declaration
C/C++: extern "C" short WINAPI VCGetPopupButton(short* iError);

extern "C" void WINAPI VCSetPopupButton(short* iError, short i);
Visual Basic: Declare Function VCGetPopupButton Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetPopupButton Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetPopupButton(var iError: Integer):Integer; far;

procedure VCSetPopupButton(var iError: Integer; i: Integer); far
Parameters No additional parameters are used with this subroutine.
See Also VCAddPopupCommand, VCDeletePopupMenu, VCGetMenu

{button ,AL(`Custom Mouse Menus',0,`',`')} Task Guide Examples

VCGetPreserveAcadColorNums
VCSetPreserveAcadColorNums

Version 1.2
Description Color translation variable for AutoCAD file conversion.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetPreserveAcadColorNums(short* iError);

extern "C" void WINAPI VCSetPreserveAcadColorNums(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetPreserveAcadColorNums Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetPreserveAcadColorNums Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi: function VCGetPreserveAcadColorNums(var iError: Integer):Boolean; far;
procedure VCSetPreserveAcadColorNums(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes Corel Visual CADD allows color numbers to be preserved in the translations (this option may be
more important for users of pen plotters, even though this may cause object colors to change)
or if the colors numbers should be changed so that the on-screen colors are preserved during
the translation (this option should be selected if it is more important for the drawing to look the
same after translation).

See Also VCAcadRead, VCGetKeepGCDFontName, VCGetKeepAcadFontName,
VCGetGCDDefaultHatchName, VCGetAcadImportUnit

VCGetPrintSettings
VCSetPrintSettings

Version 2.0
Description Specifies the current print settings used by the Print command.
Declaration
C/C++ extern "C" void WINAPI VCGetPrintSettings(short* iError, PrintStruct* pSettings);

extern "C" void WINAPI VCSetPrintSettings(short* iError, PrintStruct* pSettings);
Visual Basic Declare Sub VCGetPrintSettings Lib "VCDLG32.DLL" (iError As Integer, pSettings As PrintStruct)

Declare Sub VCSetPrintSettings Lib "VCDLG32.DLL" (iError As Integer, pSettings As PrintStruct)
Delphi procedure VCGetPrintSettings(var iError: Integer; var pSettings: PrintStruct);far;

procedure VCSetPrintSettings(var iError: Integer; var pSettings: PrintStruct);far;
Parameters pSettings - the structure containing the print settings. See the Common Types Section for a

detail on the Corel Visual CADD structure types.
Notes Corel Visual CADD contains both a Print and Plot command. The print command utilizes the

standard Windows drivers for output to the device. The plot command is an internal routine
allowing more control over vector output devices by bypassing the Windows drivers. Each of
these commands maintain separate default settings for the print output such as scale,
orientation and page size. These settings are maintained in a structure defined for Corel Visual
CADD.

See Also VCGetPrinterName, VCGetPrinterNameCount, VCLoadPlotterDriver

VCGetPrinterName
Version 2.0
Description Returns the name of the printer at the specified index.
Declaration
C/C++ extern "C" short WINAPI VCGetPrinterName(short* iError, short iIndex, char* szPrinter);
Visual Basic Declare Function VCGetPrinterName Lib "VCDLG32.DLL" (iError As Integer, ByVal iIndex As

Integer, ByVal szPrinter As String) As Integer
Delphi function VCGetPrinterName(var iError: Integer; iIndex: Integer; szPrinter:
Parameters iIndex - index for the printer name to retrieve

szPrinter - returned printer name
Notes
See Also VCGetPrintSettings, VCGetPrinterNameCount, VCLoadPlotterDriver

VCGetPrinterNameCount
Version 2.0
Description Returns a count of the currently installed printers.
Declaration
C/C++ extern "C" short WINAPI VCGetPrinterNameCount(short* iError);
Visual Basic Declare Function VCGetPrinterNameCount Lib "VCDLG32.DLL" (iError As Integer) As Integer
Delphi function VCGetPrinterNameCount(var iError: Integer):Integer; far;
Parameters Returns a count for the number of installed printers.
Notes
See Also VCGetPrintSettings, VCGetPrinterNameCount, VCLoadPlotterDriver

VCGetPrompt
VCSetPrompt

Version 1.2
Description Specifies the prompt for a User Tool.
Declaration
C/C++: extern "C" short WINAPI VCGetPrompt(short iPromptIndex, char* szPrompt);

extern "C" BOOL WINAPI VCSetPrompt(short iPromptIndex, char* szPrompt);
Visual Basic: Declare Function VCGetPrompt Lib "VCTOOL32.DLL" (ByVal iPromptIndex As Integer, ByVal

szPrompt As String) As Integer
Declare Function VCSetPrompt Lib "VCTOOL32.DLL" (ByVal iPromptIndex As Integer, ByVal
szPrompt As String) As Integer

Delphi: function VCGetPrompt(iPromptIndex: Integer; szPrompt: PChar):Integer; far;
function VCSetPrompt(iPromptIndex: Integer; szPrompt: Pchar); Integer; far;

Parameters iPromptIndex - the step number to which the prompt is assigned.
szPrompt - a string representing the prompt to be displayed.

Notes When custom tools are created, prompts should always be displayed to the user in order to
explain what steps or input is required at each step. The first prompt is set with VCSetUserTool
and all subsequent prompts should be set with VCSetPrompt. VCGetPrompt will conversely
return any of the existing prompts.

See Also VCSetAlertApp, VCGetUserToolLBDown

VCGetQuickSearch
VCSetQuickSearch

Version 1.2
Description The Quick Search toggle enables a faster search method for objects in the drawing..
Declaration
C/C++: extern "C" BOOL WINAPI VCGetQuickSearch(short* iError);

extern "C" void WINAPI VCSetQuickSearch(short* iError, BOOL tfQS);
Visual Basic: Declare Function VCGetQuickSearch Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetQuickSearch Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfQS As Integer)
Delphi: function VCGetQuickSearch(var iError: Integer):Boolean; far;

procedure VCSetQuickSearch(var iError: Integer; tfQS: Boolean); far
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes With Quick Search toggled ON Corel Visual CADD will select the first object it finds within the
search tolerance - not necessarily the nearest object but the first object in the database that is
within the tolerance. Quick Search is most useful when your drawing is very large and you are
zoomed in far enough not to have too many competing points in the area around the cursor. If
Backward Redraw is ON, the first object that Quick Search will find will actually be the most
recent object placed within the tolerance

See Also VCGetCursorSize

VCGetRadCopies
VCSetRadCopies

Version 1.2
Description Specifies the number of copies used in a radial copy command.
Declaration
C/C++: extern "C" short WINAPI VCGetRadCopies(short* iError);

extern "C" void WINAPI VCSetRadCopies(short* iError, short i);
Visual Basic: Declare Function VCGetRadCopies Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRadCopies Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetRadCopies(var iError: Integer):Integer; far;

procedure VCSetRadCopies(var iError: Integer; i: Integer); far;
Parameters I - number of radial copies.
See Also VCGetNumCopies

VCGetReadOnly
VCSetReadOnly

Version 2.0
Description Specifies the read only property for the active drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCGetReadOnly(short* iError, short* iReadOnly);

extern "C" void WINAPI VCSetReadOnly(short* iError, short iReadOnly);
Visual Basic Declare Function VCGetReadOnly Lib "VCMAIN32.DLL" (iError As Integer, iReadOnly As Integer)

As Integer
Declare Sub VCSetReadOnly Lib "VCMAIN32.DLL" (iError As Integer, ByVal iReadOnly As Integer)

Delphi function VCGetReadOnly(var iError: Integer; var iReadOnly: Integer):Boolean;
Parameters iReadOnly - toggle indicating the read only state of the active drawing

0 - drawing is read only
1 - drawing is not read only

Notes Corel Visual CADD supports file locking an read only access for enhanced network support. This
toggle sets or retrieves the current Read Only state for the active drawing.

See Also

VCGetRefFrame
VCSetRefFrame

Version 2.0
Description Specifies the frame coordinates of the bounding rectangle.
Declaration
C/C++ extern "C" void WINAPI VCGetRefFrame(short* iError, Point2D* dpLL, Point2D* dpUR);

extern "C" void WINAPI VCSetRefFrameNameDlg(short* iError);
Visual Basic Declare Sub VCGetRefFrame Lib "VCMAIN32.DLL" (iError As Integer, dpLL As Point2D, dpUR As

Point2D)
Declare Sub VCSetRefFrameNameDlg Lib "VCDLG32.DLL" (iError As Integer)

Delphi procedure VCGetRefFrame(var iError: Integer; var dpLL: Point2D; var dpUR:
Parameters dpLL - the Point2D coordinate pair containing the lower left corner of the reference frame

dpUR - the Point2D coordinate pair containing the upper right corner of the reference frame
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameColor
VCSetRefFrameColor

Version 2.0
Description Specifies the reference frame color.
Declaration
C/C++ extern "C" short WINAPI VCGetRefFrameColor(short* iError);

extern "C" void WINAPI VCSetRefFrameColor(short* iError, short iC);
Visual Basic Declare Function VCGetRefFrameColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRefFrameColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal iC As Integer)
Delphi function VCGetRefFrameColor(var iError: Integer):Integer; far;

procedure VCSetReadOnly(var iError: Integer; iReadOnly: Integer); far;
Parameters iC - the color of the reference frame boundary
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameDrawBoundary
VCSetRefFrameDrawBoundary

Version 2.0
Description Specifies if the reference frame boundary is displayed and printed in the drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCGetRefFrameDrawBoundary(short* iError);

extern "C" void WINAPI VCSetRefFrameDrawBoundary(short* iError, vbool vb);
Visual Basic Declare Function VCGetRefFrameDrawBoundary Lib "VCMAIN32.DLL" (iError As Integer) As

Integer
Declare Sub VCSetRefFrameDrawBoundary Lib "VCMAIN32.DLL" (iError As Integer, ByVal vb As
Integer)

Delphi function VCGetRefFrameDrawBoundary(var iError: Integer):Boolean; far;
procedure VCSetRefFrameDrawBoundary(var iError: Integer; vb: Boolean); far;

Parameters vb - flag for displaying the reference frame boundary.
0 - do not show the boundary.
1 - show the boundary.

Notes Reference Frame entities enable you to display the contents of one file within another. You can
use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameIsDataBound
VCSetRefFrameIsDataBound

Version 2.0
Description Specifies if the reference frame information is bound to the current drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCGetRefFrameIsDataBound(short* iError);

extern "C" void WINAPI VCSetRefFrameIsDataBound(short* iError, BOOL tf);
Visual Basic Declare Function VCGetRefFrameIsDataBound Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRefFrameIsDataBound Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi function VCGetRefFrameIsDataBound(var iError: Integer):Boolean; far;
procedure VCSetRefFrameIsDataBound(var iError: Integer; tf: Boolean); far;

Parameters tf - determines if data in the reference is bound to the active file.
0 - the data is not bound.
1 - the data is bound.

Notes Reference Frame entities enable you to display the contents of one file within another. You can
use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameIsDynamic
Version 2.0
Description Determines if the reference frame is dynamic.
Declaration
C/C++ extern "C" vbool WINAPI VCGetRefFrameIsDynamic(short* iError);
Visual Basic Declare Function VCGetRefFrameIsDynamic Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCGetRefFrameIsDynamic(var iError: Integer):Boolean; far;
Parameters return - value for the reference frame.

0 - the reference frame is not dynamic.
1 - the reference frame is dynamic.

Notes Reference Frame entities enable you to display the contents of one file within another. You can
use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameLineWidth
VCSetRefFrameLineWidth

Version 2.0
Description Specifies the line width for the reference frame.
Declaration
C/C++ extern "C" short WINAPI VCGetRefFrameLineWidth(short* iError);

extern "C" void WINAPI VCSetRefFrameLineWidth(short* iError, short iC);
Visual Basic Declare Function VCGetRefFrameLineWidth Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRefFrameLineWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal iC As
Integer)

Delphi function VCGetRefFrameLineWidth(var iError: Integer):Integer; far;
procedure VCSetRefFrameLineWidth(var iError: Integer; iC: Integer); far;

Parameters iC - the line width index value from 0 - 16.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameName
VCSetRefFrameName

Version 2.0
Description Specifies the file pointed to by the reference frame entity.
Declaration
C/C++ extern "C" short WINAPI VCGetRefFrameName(short* iError, char* s);

extern "C" void WINAPI VCSetRefFrameNameDlg(short* iError);
Visual Basic Declare Function VCGetRefFrameName Lib "VCMAIN32.DLL" (iError As Integer, ByVal s As String)

As Integer
Declare Sub VCSetRefFrameNameDlg Lib "VCDLG32.DLL" (iError As Integer)

Delphi function VCGetRefFrameName(var iError: Integer; s: PChar):Integer; far;
procedure VCSetRefFrameNameDlg(var iError: Integer); far;

Parameters s - the name of the reference frame.
returns - the length of the returned string.

Notes Reference Frame entities enable you to display the contents of one file within another. You can
use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameOffset
VCSetRefFrameOffset

Version 2.0
Description Specifies the reference frame offset.
Declaration
C/C++ extern "C" void WINAPI VCGetRefFrameOffset(short* iError, Point2D* dpOffset);

extern "C" void WINAPI VCSetRefFrameOffset(short* iError, Point2D* dpOffset);
Visual Basic Declare Sub VCGetRefFrameOffset Lib "VCMAIN32.DLL" (iError As Integer, dpOffset As Point2D)

Declare Sub VCSetRefFrameOffset Lib "VCMAIN32.DLL" (iError As Integer, dpOffset As Point2D)
Delphi procedure VCGetRefFrameOffset(var iError: Integer; var dpOffset: Point2D);
Parameters dpOffset -
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameRot
VCSetRefFrameRot

Version 2.0
Description Specifies the reference frame rotation relative to the x plane.
Declaration
C/C++ extern "C" void WINAPI VCGetRefFrameRot(short* iError, double* dR);

extern "C" void WINAPI VCSetRefFrameRot(short* iError, double* dR);
Visual Basic Declare Sub VCGetRefFrameRot Lib "VCMAIN32.DLL" (iError As Integer, dR As Double)

Declare Sub VCSetRefFrameRot Lib "VCMAIN32.DLL" (iError As Integer, dR As Double)
Delphi procedure VCGetRefFrameRot(var iError: Integer; var dR: Double); far;

procedure VCSetRefFrameOffset(var iError: Integer; var dpOffset: Point2D);
Parameters dR - the rotation for the reference frame in radians.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameScale
VCSetRefFrameScale

Version 2.0
Description Specifies the reference frame scale.
Declaration
C/C++ extern "C" void WINAPI VCGetRefFrameScale(short* iError, Point2D* dpP);

extern "C" void WINAPI VCSetRefFrameScale(short* iError, Point2D* dpP);
Visual Basic Declare Sub VCGetRefFrameScale Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)

Declare Sub VCSetRefFrameScale Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)
Delphi procedure VCGetRefFrameScale(var iError: Integer; var dpP: Point2D); far;

procedure VCSetRefFrameScale(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - the Point2D structure containing the X and Y scale values.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetRefFrameViewWidthHeight
VCSetRefFrameViewWidthHeight

Version 2.0
Description Specifies the reference frame height and width of a reference frame.
Declaration
C/C++ extern "C" void WINAPI VCGetRefFrameViewWidthHeight(short* iError, Point2D* dpWidthHeight);

extern "C" void WINAPI VCSetRefFrameViewWidthHeight(short* iError, Point2D* dpWidthHeight);
Visual Basic Declare Sub VCGetRefFrameViewWidthHeight Lib "VCMAIN32.DLL" (iError As Integer,

dpWidthHeight As Point2D)
Declare Sub VCSetRefFrameViewWidthHeight Lib "VCMAIN32.DLL" (iError As Integer,
dpWidthHeight As Point2D)

Delphi procedure VCGetRefFrameViewWidthHeight(var iError: Integer; var dpWidthHeight:
Parameters dpP - the Point2D structure containing the Widht (X) and Height (Y) values.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

See Also VCGetRefFrameName, VCGetRefFrame, VCGetRefFrameColor, VCGetRefFrameDrawBoundary,
VCGetRefFrameIsDynamic, VCGetRefFrameLineWidth, VCGetRefFrameOffset, VCGetRefFrameRot,
VCGetRefFrameScale, VCGetRefFrameViewWidthHeight

VCGetReplaceWithSymbol
VCSetReplaceWithSymbol

Version 1.2
Description In creating a symbol entity, the selected entities can be replaced by the newly defined symbol

definition.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetReplaceWithSymbol(short* iError);

extern "C" void WINAPI VCSetReplaceWithSymbol(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetReplaceWithSymbol Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetReplaceWithSymbol Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As
Integer)

Delphi: function VCGetReplaceWithSymbol(var iError: Integer):Boolean; far;
procedure VCSetReplaceWithSymbol(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

See Also VCSymbolCreate

VCGetRibalogSize
Version 1.2
Description Returns the upper left corner and height width of the ribalogs area.
Declaration
C/C++: extern "C" void WINAPI VCGetRibalogSize(short* iError, iPoint2D* ipOrg, iPoint2D* ipSize);
Visual Basic: Declare Sub VCGetRibalogSize Lib "VCDLG32.DLL" (iError As Integer, ipOrg As iPoint2D, ipSize As

iPoint2D)
Delphi: procedure VCGetRibalogSize(var iError: Integer; var ipOrg: iPoint2D; ipSize: iPoint2D); far;
Parameters ipOrg - screen coordinates for upper left corner.

iPSize - height and width in screen coordinates for the ribalog area.
Notes Corel Visual CADD uses ribalogs to gather user input during the drawing session. In order to

create a look and feel similar to the Corel Visual CADD interface, an application can create
ribalogs for displaying information. VCGetRibalogSize returns the screen coordinates for the
upper left corner and the height and width available for display. A form or dialog can then be
formatted to fit inside the space.

See Also VCGetStatusBarSize

VCGetRPolyInscribe
VCSetRPolyInscribe

Version 1.2
Description Specifies the state of the inscribe toggle for regular polygons.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetRPolyInscribe(short* iError);

extern "C" void WINAPI VCSetRPolyInscribe(short* iError, BOOL tf);
Visual Basic:

Declare Function VCGetRPolyInscribe Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Declare Sub VCSetRPolyInscribe Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)

Delphi: function VCGetRPolyInscribe(var iError: Integer):Integer; far;
procedure VCSetRPolyInscribe(var iError: Integer; tf: Boolean); far;

Parameters tf - toggle setting
0 - Off (Unchecked)
1- On(Checked)

Notes Regular polygons can be created one of two ways, either inscribed or circumscribed. Inscribed
creation forces the second placement point on one of the vertices and circumscribed creation
forces the second placement point on the middle of one of the sides.

See Also VCGetRPolySides

VCGetRPolySides
VCSetRPolySides

Version 1.2
Description Specifies the default setting for the number of sides in a regular polygon construction..
Declaration
C/C++: extern "C" short WINAPI VCGetRPolySides(short* iError);

extern "C" void WINAPI VCSetRPolySides(short* iError, short i);
Visual Basic: Declare Function VCGetRPolySides Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRPolySides Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetRPolySides(var iError: Integer):Integer; far;

procedure VCSetRPolySides(var iError: Integer; i: Integer); far;
Parameters I - setting for number of regular polygon sides.
Notes Regular polygons are actually continuous lines and are not considered polygons by Corel Visual

CADD once created. Because of this, it is not possible to change the number of sides without
recreating the polygon. It is therefore necessary to set the number of sides before creating the
polygon

See Also VCGetRPolyInscribe

VCGetRubberBandColor
VCSetRubberBandColor

Version 1.2
Description The rubberbanding display color.
Declaration
C/C++: extern "C" short WINAPI VCGetRubberBandColor(short* iError);

extern "C" void WINAPI VCSetRubberBandColor(short* iError, short i);
Visual Basic: Declare Function VCGetRubberBandColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRubberBandColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)
Delphi: function VCGetRubberBandColor(var iError: Integer):Integer; far;

procedure VCSetRubberBandColor(var iError: Integer; i: Integer); far;
Parameters i - the rubberbanding color
See Also VCGetCursorColor, VCGetBackgroundColor

VCGetSaveEnvOnExit
VCSetSaveEnvOnExit

Version 1.2
Description Specifies if the current settings are to be saved as the default for other drawing session on

close.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetSaveEnvOnExit(short* iError);

extern "C" void WINAPI VCSetSaveEnvOnExit(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetSaveEnvOnExit Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSaveEnvOnExit Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetSaveEnvOnExit(var iError: Integer):Boolean; far;

procedure VCSetSaveEnvOnExit(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCSaveStyle

VCGetSavePaths
VCSetSavePaths

Version 1.2
Description Determines if the same file paths are used the next time a file is opened.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetSavePaths(short* iError);

extern "C" void WINAPI VCSetSavePaths(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetSavePaths Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSavePaths Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetSavePaths(var iError: Integer):Boolean; far;

procedure VCSetSavePaths(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath,
VCGetCMPPath, VCGetVCFPath

VCGetScaleX
VCSetScaleX

Version 1.2
Description Specifies x scale factor for the scale modify command. The scale modify command uses both a x

and y scale factor to differentially scale a selected entity or group of entities.
Declaration
C/C++: extern "C" double WINAPI VCGetScaleX(short* iError);

extern "C" void WINAPI VCGetScaleXBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetScaleX(short* iError, double d);

Visual Basic: Declare Sub VCGetScaleXBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetScaleX Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetScaleXBP(var iError: Integer; var dRet: Double); far;
procedure VCSetScaleX(var iError: Integer; dRet: Double); far;

Parameters d - the x scale factor currently set.
See Also VCGetScaleXY, VCGetScaleY

VCGetScaleXY
VCSetScaleXY

Version 1.2
Description Specifies both the x and y scale factor for the scale modify command. The scale modify

command uses both a x and y scale factor to differentially scale a selected entity or group of
entities.

Declaration
C/C++: extern "C" Point2D WINAPI VCGetScaleXY(short* iError);

extern "C" void WINAPI VCGetScaleXYBP(short* iError, Point2D* pRet);
extern "C" void WINAPI VCSetScaleXY(short* iError, Point2D p);

Visual Basic: Declare Sub VCGetScaleXYBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Point2d)
Declare Sub VCSetScaleXY Lib "VCMAIN32.DLL" (iError As Integer, p As Point2d)

Delphi: procedure VCGetScaleXYBP(var iError: Integer; var pRet: Point2D); far;
procedure VCSetScaleXY(var iError: Integer; dRet: Poin2D); far;

Parameters p contains the x and y values for the x and y scale.
See Also VCGetScaleX, VCGetScaleY

VCGetScaleY
VCSetScaleY

Version 1.2
Description Specifies y scale factor for the scale modify command. The scale modify command uses both a x

and y scale factor to differentially scale a selected entity or group of entities.
Declaration
C/C++: extern "C" double WINAPI VCGetScaleY(short* iError);

extern "C" void WINAPI VCGetScaleYBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetScaleY(short* iError, double d);

Visual Basic: Declare Sub VCGetScaleYBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetScaleY Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetScaleYBP(var iError: Integer; var dRet: Double); far;
procedure VCSetScaleY(var iError: Integer; dRet: Double); far;

Parameters d - the y scale factor to be set.
See Also VCGetScaleX, VCGetScaleXY

VCGetSCRPath
VCSetSCRPath

Version 1.2
Description The default file path for the script files. Scripts are macros used in the Corel Visual CADD

interface to automate common tasks. The scripts are saved in a text file SCRIPT.DEF located in
the script path.

Declaration
C/C++: extern "C" short WINAPI VCGetSCRPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetSCRPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetSCRPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
procedure VCSetSCRPath(var iError: Integer; szPath: PChar); far;

Delphi: function VCGetSCRPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetSCRPath(var iError: Integer; szPath: PChar); far;

Parameters Path - string returned containing the current symbol path.
See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath,

VCGetCMPPath, VCGetVCFPath

VCGetSecondaryDistFormat
VCSetSecondaryDistFormat

Version 2.0
Description Specifies dimensions are displayed using both the primary and secondary units.
Declaration
C/C++ extern "C" short WINAPI VCGetSecondaryDistFormat(short* iError);

extern "C" void WINAPI VCSetSecondaryDistFormat(short* iError, short iF_);
Visual Basic Declare Function VCGetSecondaryDistFormat Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSecondaryDistFormat Lib "VCMAIN32.DLL" (iError As Integer, ByVal iF_ As
Integer)

Delphi function VCGetSecondaryDistFormat(var iError: Integer):Integer; far;

Parameters iF - flag indicating the distance display format.
0 - do not use both the primary and secondary units in the dimension string.
1 - use both the primary and secondary units in the dimension string.

Notes
See Also

VCGetShiftClick
VCSetShiftClick

Version 1.2
Description Specifies whether or not pressing the Shift key while clicking the right mouse button activates

the pop-up menus.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetShiftClick(short* iError);

extern "C" void WINAPI VCSetShiftClick(short* iError, BOOL tfShift);
Visual Basic: Declare Function VCGetShiftClick Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

Declare Sub VCSetShiftClick Lib "VCMAIN32.DLL" (iErr As Integer, ByVal tfShift As Integer)
Delphi: function VCGetShiftClick(var iError: Integer):Boolean; far;

procedure VCSetShiftClick(var iError: Integer; tfShift: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetPopupButton

VCGetShortLayerList
VCSetShortLayerList

Version 1.2
Description Displays only layers that have been named or have data on them in Layer Manager.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetShortLayerList(short* iError);

extern "C" void WINAPI VCSetShortLayerList(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetShortLayerList Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetShortLayerList Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetShortLayerList(var iError: Integer):Boolean; far;

procedure VCSetShortLayerList(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetLayerDisplay, VCGetAllLayerEd, VCGetAllLayerSnap, VCGetLayerIndex

VCGetShowDrag
VCSetShowDrag

Version 1.2
Description Specifies if selected objects will visually drag across the screen during movement, placement

and copy operations.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetShowDrag(short* iError);

extern "C" void WINAPI VCSetShowDrag(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetShowDrag Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetShowDrag Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetShowDrag(var iError: Integer):Boolean; far;

procedure VCSetShowDrag(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetConstPt, VCGetShowTangentPoints

VCGetShowTangentPoints
VCSetShowTangentPoints

Version 1.2
Description Option for displaying tangent points.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetShowTangentPoints(short* iError);

extern "C" void WINAPI VCSetShowTangentPoints(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetShowTangentPoints Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

Declare Sub VCSetShowTangentPoints Lib "VCMAIN32.DLL" (iErr As Integer, ByVal tf As Integer)
Delphi: function VCGetShowTangentPoints(var iError: Integer):Boolean; far;

procedure VCSetShowTangentPoints(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

Notes When working with entities, it is sometimes convenient to display the entity construction points
to aid in snapping. Turning off the display will reduce the visual clutter and increase the speed of
redraws.

See Also VCGetConstPt

VCGetSingleUnitFrac
VCSetSingleUnitFrac

Version 1.2
Description Dimension fractions can be displayed as a single character (¼) or multiple characters separated

by a slash (1/4). This option is available only for vector fonts which is determined with
VCIsFontNameVText.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetSingleUnitFrac(short* iError);

extern "C" void WINAPI VCSetSingleUnitFrac(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetSingleUnitFrac Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSingleUnitFrac Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetSingleUnitFrac(var iError: Integer):Boolean; far;

procedure VCSetSingleUnitFrac(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetDisplayFractionalValue

VCGetSnapPercentVal
VCSetSnapPercentVal

Version 1.2
Description The default value for the snap percent command.
Declaration
C/C++: extern "C" double WINAPI VCGetSnapPercentVal(short* iError);

extern "C" void WINAPI VCGetSnapPercentValBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetSnapPercentVal(short* iError, double d);

Visual Basic: Declare Sub VCGetSnapPercentValBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetSnapPercentVal Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetSnapPercentValBP(var iError: Integer; var dRet: Double); far;
procedure VCSetSnapPercentVal(var iError: Integer; dRet: Double); far;

Parameters d - the desired snap percentage value.
Notes Snap percent typically requires the user to enter a percentage value along the entity selected to

snap. However, as with many commands, the interface is not available through the API. It is
therefor necessary to preset this value using VCSetSnapPercentVal. This setting can also be
retrieved with VCGetSnapPercentVal. This value can be above 100 or below 0 and will thus snap
beyond the end of the entity. The end selected closest to is the 0 percent end.

See Also VCSnapPercent

VCGetSolid
VCSetSolid

Version 1.2
Description Specifies the current state of the auto fill of double lines. It is possible to automatically fill

between double lines as they are placed using the current fill color.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetSolid(short* iError);

extern "C" void WINAPI VCSetSolid(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetSolid Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSolid Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetSolid(var iError: Integer):Integer; far;

procedure VCSetSolid(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetFillColor, VCGetAutoFillet

VCGetSpanAngle
VCSetSpanAngle

Version 1.2
Description Specifies the default span angle for the radial copy command.
Declaration
C/C++: extern "C" double WINAPI VCGetSpanAngle(short* iError);

extern "C" void WINAPI VCGetSpanAngleBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetSpanAngle(short* iError, double d);

Visual Basic: Declare Sub VCGetSpanAngleBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetSpanAngle Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetSpanAngleBP(var iError: Integer; var dRet: Double); far;
procedure VCSetSpanAngle(var iError: Integer; dRet: Double); far;

Parameters dRet - the current default span angle
Notes Many of the modify commands require user input in order for them to function correctly. In order

to allow modifications to entities without displaying the interface, it was necessary to allow
preset values for all the modify prompts.

See Also VCGetRadCopies

VCGetSpecificPrinter
VCSetSpecificPrinter

Version 2.0
Description Specifies a specific plotter or printer.
Declaration
C/C++ extern "C" short WINAPI VCGetSpecificPrinter(short* iError, char* szSpecificPrinter);

extern "C" void WINAPI VCSetSpecificPrinter(short* iError, char* szSpecificPrinter);
Visual Basic Declare Function VCGetSpecificPrinter Lib "VCDLG32.DLL" (iError As Integer, ByVal

szSpecificPrinter As String) As Integer
Declare Sub VCSetSpecificPrinter Lib "VCDLG32.DLL" (iError As Integer, ByVal szSpecificPrinter
As String)

Delphi function VCGetSpecificPrinter(var iError: Integer; szSpecificPrinter:PChar):Integer; far;
procedure VCSetSpecificPrinter(var iError: Integer; szSpecificPrinter: PChar);far;

Parameters szSpecificPrinter - the name of the printer.
Returns an the length of the string.

Notes
See Also

VCGetStatusBarSize
Version 1.2
Description Return the upper left and height and width of the status bar in screen coordinates.
Declaration
C/C++: extern "C" void WINAPI VCGetStatusBarSize(short* iError, iPoint2D* ipOrg, iPoint2D* ipSize);
Visual Basic: Declare Sub VCGetStatusBarSize Lib "VCDLG32.DLL" (iError As Integer, ipOrg As iPoint2D, ipSize

As iPoint2D)
Delphi: procedure VCGetStatusBarSize(var iError: Integer; var ipOrg: iPoint2D; ipSize: iPoint2D); far;
Parameters iPOrg - screen coordinate for the upper left corner.

iPSize - screen units for the height and width.
Notes Corel Visual CADD utilizes the status bar to display details during the drawing session.

VCGetStatusBarSize returns the size of the bar allowing the external application to create a
custom status bar displaying information relevant to the application.

See Also VCGetRibalogSize

VCGetSymAutoExplode
VCSetSymAutoExplode

Version 1.2
Description Specifies if a symbol is automatically exploded when placed.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetSymAutoExplode(short* iError);

extern "C" void WINAPI VCSetSymAutoExplode(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetSymAutoExplode Lib "VCMAIN32.DLL" (iErr As Integer) As Integer

Declare Sub VCSetSymAutoExplode Lib "VCMAIN32.DLL" (iErr As Integer, ByVal tf As Integer
Delphi: function VCGetSymAutoExplode(var iError: Integer):Boolean; far;

procedure VCSetSymAutoExplode(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetSymExplode

VCGetSymExplode
VCSetSymExplode

Version 1.2
Description Returns the option for layer control when exploding a symbol.
Declaration
C/C++: extern "C" short WINAPI VCGetSymExplode(short* iError);

extern "C" void WINAPI VCSetSymExplode(short* iError, short iEx);
Visual Basic: Declare Function VCGetSymExplode Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetSymExplode Lib "VCMAIN32.DLL" (iError As Integer, ByVal iEx As Integer)
Delphi: function VCGetSymExplode(var iError: Integer):Integer; far;

procedure VCSetSymExplode(var iError: Integer; iEx: Integer); far;
Parameters iEx - index for placement of symbol entities

0 - Individual Layer
1 - Placement Layer
2 - Current Layer

Notes When a symbol is exploded, three options are available for placing the resulting entities.
Placement Layer - all objects that make up exploded symbols are placed on the same layer in
the drawing as the symbol. Current Layer - all objects that make up exploded symbols are
assigned to the layer that is current when the symbol is exploded. Individual Layers - each
object within exploded symbols revert to the layer that was current when the object was drawn,
prior to creation of the symbol

See Also VCGetSymName, VCGetSymbolName, VCGetSymScale, VCGetSymRot

VCGetSymName
VCSetSymName

Version 1.2
Description The symbol name for a symbol creation or the name of the currently selected symbol.
Declaration
C/C++: extern "C" short WINAPI VCGetSymName(short* iError, char* pS);

extern "C" void WINAPI VCSetSymName(short* iErroR, char* pS);
Visual Basic: Declare Sub VCSetSymName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String)

Declare Function VCGetSymName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String) As
Integer

Delphi: function VCGetSymName(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetSymName(var iError: Integer; sz: PChar); far;

Parameters pS - the current symbol name.
See Also VCGetSymbolName, VCGetSymScale, VCGetSymRot, VCGetSymExplode

VCGetSymRot
VCSetSymRot

Version 1.2
Description Specifies the currently set symbol rotation.
Declaration
C/C++: extern "C" double WINAPI VCGetSymRot(short* iError);

extern "C" void WINAPI VCGetSymRotBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetSymRot(short* iError, double d);

Visual Basic: Declare Sub VCGetSymRotBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetSymRot Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetSymRotBP(var iError: Integer; var dRet: Double); far;
procedure VCSetSymRot(var iError: Integer; dRet: Double); far;

Parameters dRet - the current symbol rotation in radians
Notes When placing symbol via the API, it may be necessary to adjust the symbol rotation before

placement. If an external symbol interface is provided these also allow the interface to adjust
the symbol rotation.

See Also VCGetSymName, VCGetSymbolName, VCGetSymScale, VCGetSymExplode

VCGetSymScale
VCSetSymScale

Version 1.2
Description Specifies the x and y symbol scale factor.
Declaration
C/C++: extern "C" Point2D WINAPI VCGetSymScale(short* iError);

extern "C" void WINAPI VCGetSymScaleBP(short* iError, Point2D* pRet);
extern "C" void WINAPI VCSetSymScale(short* iError, Point2D p);

Visual Basic: Declare Sub VCGetSymScaleBP Lib "VCMAIN32.DLL" (iError As Integer, pRet As Point2d)
Declare Sub VCSetSymScale Lib "VCMAIN32.DLL" (iError As Integer, p As Point2d)

Delphi: procedure VCGetSymScaleBP(var iError: Integer; var pRet: Point2D); far;
procedure VCsetSymScale(var iError: Integer; dRet: Point2D); far;

Parameters p - the x and y values for the x and y scale
Notes When placing symbol via the API, it may be necessary to adjust the symbol scale before

placement. If an external symbol interface is provided these also allow the interface to adjust
the symbol scale.

See Also VCGetSymName, VCGetSymbolName, VCGetSymRot, VCGetSymExplode, VCGetSymScaleX,
VCGetSymScaleY

VCGetSymScaleX
VCSetSymScaleX

Version 1.2
Description Specifies the x symbol scale factor.
Declaration
C/C++: extern "C" double WINAPI VCGetSymScaleX(short* iError);

extern "C" void WINAPI VCGetSymScaleXBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetSymScaleX(short* iError, double d);

Visual Basic: Declare Sub VCGetSymScaleXBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetSymScaleX Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetSymScaleXBP(var iError: Integer; var dRet: Double); far;
procedure VCSetSymScaleX(var iError: Integer; dRet: Double); far;

Parameters dRet - the current x symbol scale factor.
Notes When placing symbol via the API, it may be necessary to adjust the symbol scale before

placement. If an external symbol interface is provided these also allow the interface to adjust
the symbol scale.

See Also VCGetSymName, VCGetSymbolName, VCGetSymScale, VCGetSymRot, VCGetSymExplode,
VCGetSymScaleY

VCGetSymScaleY
VCSetSymScaleY

Version 1.2
Description Specifies the y symbol scale factor.
Declaration
C/C++: extern "C" double WINAPI VCGetSymScaleY(short* iError);

extern "C" void WINAPI VCGetSymScaleYBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetSymScaleY(short* iError, double d);

Visual Basic: Declare Sub VCGetSymScaleYBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetSymScaleY Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetSymScaleYBP(var iError: Integer; var dRet: Double); far;
procedure VCSetSymScaleY(var iError: Integer; dRet: Double); far;

Parameters dRet - the current y symbol scale factor.
Notes When placing symbol via the API, it may be necessary to adjust the symbol scale before

placement. If an external symbol interface is provided these also allow the interface to adjust
the symbol scale.

See Also VCGetSymAutoExplode, VCGetSymName, VCGetSymbolName, VCGetSymScale, VCGetSymRot,
VCGetSymExplode, VCGetSymScaleX

VCGetSymSnap
VCSetSymSnap

Version 1.2
Description Although symbol are considered a single entity, the ability to snap near point and closest point is

still provided if desired via the symbol snap toggle. When on, the user can snap to entities within
a symbol definition without exploding the symbol.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetSymSnap(short* iError);

extern "C" void WINAPI VCSetSymSnap(short* iError, BOOL tf);
Visual Basic: Declare Sub VCSetSymSnap Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)

Declare Function VCGetSymSnap Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetSymSnap(var iError: Integer):Integer; far;

procedure VCSetSymSnap(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetSymAutoExplode, VCGetSymName, VCGetSymbolName, VCGetSymScale, VCGetSymRot,
VCGetSymExplode, VCGetSymScaleX, VCGetSymScaleY

VCGetSymbolDefCount
Version 1.2
Description Returns the number of symbol definitions in the current Corel Visual CADD session regardless of

placements.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolDefCount(void);
Visual Basic: Declare Function VCGetSymbolDefCount Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetSymbolDefCount:Integer; far;
Parameters Returns - the number of symbol definitions loaded.
Notes Often it is necessary to directly access each symbol, and to do this the application must know

how many symbol definitions exist in order to parse through each definition.
VCGetSymbolDefCount will return how many definitions but not how many placements of each.

See Also VCGetSymbolDefEntityCount, VCGetSymbolIndex

VCGetSymbolDefEntityCount
Version 1.2
Description Retrieves the number of entities in a symbol definition.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolDefEntityCount(short i);
Visual Basic: Declare Function VCGetSymbolDefEntityCount Lib "VCMAIN32.DLL" (ByVal i As Integer) As

Integer
Delphi: function VCGetSymbolDefEntityCount(i: Integer):Integer; far;
Parameters Returns - the number of entities.
Notes A symbol definition is simply a set of entities with their own properties that are defined as part

of a symbol definition. This function will return the number of entities contained within the
symbol definition whether for informational purposes or for an index to use in another
procedure.

See Also VCGetSymbolDefCount, VCGetSymbolIndex, VCSetSymbolSection

VCGetSymbolIndex
Version 1.2
Description Returns an index of the specified symbol name for use in other symbol functions or subroutines.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolIndex(short* iError, char* pName);
Visual Basic: Declare Function VCGetSymbolIndex Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName As

String) As Integer
Delphi: function VCGetSymbolIndex(var iError: Integer; pName: PChar):Integer; far;
Parameters pName - the name of the symbol.

Returns - the symbol index number.
Notes Several subroutines use the symbol index in order to add entities to a symbol definition. These

include VCAddLineEntity, VCAddCircleEntity, VCAddPointEntity as well as several others. In order
to add these entities into a symbol definition and thus create a symbol from the external
application, it is necessary to know the symbol index. VCGetSymbolIndex provides this.
VCCreateSymbolDef must first be used to create a symbol definition to get a index or add
entities, unless the symbol is loaded previously via Corel Visual CADD.

See Also VCGetSymbolDefCount, VCGetSymbolIndex, VCGetSymbolName, VCGetSymName, VCSaveVCS

VCGetSymbolInternalName
Version 1.2.1
Description Returns the internal name of a symbol name.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolInternalName(short* iError, char* pFileName, char*

pReturn);
Visual Basic: Declare Function VCGetSymbolInternalName Lib "VCMAIN32.DLL" (iError As Integer, ByVal

pFileName As String, ByVal pReturn As String) As Integer
Delphi: function VCGetSymbolInternalName(var iError: Integer; pFileName: PChar; pReturn:

PChar):Integer; far;
Parameters pFileName - the filename of the desired symbol.

pReturn - the returned internal symbol name.
Returns - the number of characters in pReturn.

Notes Although symbol filenames can only be eight characters long internal names can be larger.
These internal names are stored in the symbol files and are what is displayed when selecting
symbols to be placed within the drawing

See Also VCGetSymName, VCGetSymbolName

VCGetSymbolName
Version 1.2
Description Retrieves a symbol name from its symbol index.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolName(char* pName, short i);
Visual Basic: Declare Function VCGetSymbolName Lib "VCMAIN32.DLL" (ByVal pName As String, ByVal i As

Integer) As Integer
Delphi: function VCGetSymbolName(pName: PChar; i: Integer):Integer; far;
Parameters pName - the name of the symbol.

i - the index number of the symbol.
Returns - the number of characters in the name string

Notes When parsing through a set of symbol definitions, the symbol name is not used by many of the
Corel Visual CADD procedures. When an application is interfacing with people however, it is
typically required that the user know the name of a symbol. VCGetSymbolName will retrieve this
information. Also whenever a symbol is loaded or created in a Corel Visual CADD session it is
indexed in order of creation or loading. This may be fine if an application loads symbols in a
specific order, but it may be necessary to parse through the loaded symbols to retrieve the
name and compare it with a symbol name used by the application.

See Also VCGetSymName, VCGetSymbolIndex

VCGetSymbolPlacementCount
Version 1.2
Description Returns the number of placements of the symbol definition in the current drawing.
Declaration
C/C++: extern "C" short WINAPI VCGetSymbolPlacementCount(short i);
Visual Basic: Declare Function VCGetSymbolPlacementCount Lib "VCMAIN32.DLL" (ByVal i As Integer) As

Integer
Delphi: function VCGetSymbolPlacementCount(i: Integer):Integer; far;
Parameters i - the index number of the symbol.

Returns - an integer value of number of placements, 0 if none.
Notes Bill of Materials programs quite often need to count symbol placements. This allows a simple

BOM by counting for instance the number of phones placed in a floor plan or number of IC's in a
circuit board.

See Also VCGetSymbolName, VCGetSymName, VCGetSymbolIndex

VCGetSYSPath
VCSetSYSPath

Version 1.2
Description The default path for loading custom files.
Declaration
C/C++: extern "C" short WINAPI VCGetSYSPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetSYSPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetSYSPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetSYSPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetSYSPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetSYSPath(var iError: Integer; szPath: PChar); far;

Parameters sz - pth for the system files
Notes Corel Visual CADD reads several custom files on startup. These files range from linetype and

hatch definitions to user defined scripts and menus. The system path should point to the
location of these files or default values will be implemented.

See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetVCDPath, VCGetVCSPath,
VCGetCMPPath, VCGetVCFPath, VCGetSCRPath

VCGetSystemHatchName
Version 1.2
Description Used to retrieve the pattern name from the system hatch file at corresponding input index.
Declaration
C/C++: extern "C" short WINAPI VCGetSystemHatchName(short* iError, char* pName, short i);
Visual Basic: Declare Function VCGetSystemHatchName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName

As String, ByVal i As Integer) As Integer
Delphi: function VCGetSystemHatchName(var iError: Integer; pName: PChar; i Integer):Integer; far;
Parameters pName - the returned string representing the hatch pattern.

i - the index for the hatch pattern defined in hatches.hat.
Returns - integer representing the length of the string.

Notes With Corel Visual CADD, the user can modify existing or create custom hatch patterns. All the
hatch patterns are contained in the text file HATCHES.HAT. VCGetSystemHatchName is used to
retrieve the hatch names defined in the text file.

See Also VCGetSystemHatchName, VCGetSystemHatchNameCount, on-line Help: Customizing Hatch
Patterns

VCGetSystemHatchNameCount
Version 1.2
Description Returns the number of hatch patterns defined in the system hatch file.
Declaration
C/C++: extern "C" short WINAPI VCGetSystemHatchNameCount(void);
Visual Basic: Declare Function VCGetSystemHatchNameCount Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCGetSystemHatchNameCount:Integer; far;
Parameters Returns - the number of defined hatch patterns.
Notes With Corel Visual CADD, the user can modify existing or create custom hatch patterns. All the

hatch patterns are contained in the text file HATCHES.HAT. VCGetSystemHatchNameCount
returns a count of the valid patterns defined in this file.

See Also VCGetSystemHatchName, On-Line Help: Customizing Hatch Patterns

VCGetTextAspect
VCSetTextAspect

Version 1.2
Description Specifies the current text aspect ratio setting. The text aspect ratio is the proportion of the text

height to the text width.
Declaration
C/C++: extern "C" double WINAPI VCGetTextAspect(short* iError);

extern "C" void WINAPI VCGetTextAspectBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetTextAspect(short* iError, double d);

Visual Basic: Declare Sub VCGetTextAspectBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetTextAspect Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetTextAspectBP(var iError: Integer; var dRet: Double); far;
procedure VCSetTextAspect(var iError: Integer; dRet: Double); far;

Parameters dRet - the current text aspect ratio.
See Also VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName, VCGetTextHeight,

VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextBold
VCSetTextBold

Version 1.2
Description Specifies the bold display option for TT Fonts in Corel Visual CADD.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetTextBold(short* iError);

extern "C" void WINAPI VCSetTextBold(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetTextBold Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextBold Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetTextBold(var iError: Integer):Integer; far;

procedure VCSetTextBold(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetTextAspect, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName, VCGetTextHeight,
VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextCharSpace
VCSetTextCharSpace

Version 1.2
Description Character spacing is the amount of space that appears between characters in a text string. It

determines if the characters in a word are crowded or spread out. The value is a percentage of
the characters height and applies only to vector fonts.

Declaration
C/C++: extern "C" double WINAPI VCGetTextCharSpace(short* iError);

extern "C" void WINAPI VCGetTextCharSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetTextCharSpace(short* iError, double dCharSpacing);

Visual Basic: Declare Sub VCGetTextCharSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetTextCharSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal dCharSpacing As
Double)

Delphi: procedure VCGetTextCharSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetTextCharSpace(var iError: Integer; dCharSpacing: Double); far;

Parameters dCharSpacing - the charcter spacing as a decimal percentage (i.e. 1.5 is 150%)
See Also VCGetTextAspect, VCGetTextBold, VCGetTextColor, VCGetTextFontName, VCGetTextHeight,

VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextColor
VCSetTextColor

Version 1.2
Description Specifies the current color setting for subsequent text placements. Text and dimensions have

their own color and layer settings and are not affected by VCSetColorIndex.
Declaration
C/C++: extern "C" short WINAPI VCGetTextColor(short* iError);

extern "C" void WINAPI VCSetTextColor(short* iError, short i);
Visual Basic: Declare Sub VCSetTextColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer)

Declare Function VCGetTextColor Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCGetTextColor(var iError: Integer):Integer; far;

procedure VCSetTextColor(var iError: Integer; i: Integer); far;
Parameters i - the current text color index.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextFontName, VCGetTextHeight,

VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline, VCGetDimItemColor,
VCGetColorIndex

VCGetTextFontName
VCSetTextFontName

Version 1.2
Description The name of the font to be used for all for all subsequent text placements.
Declaration
C/C++: extern "C" short WINAPI VCGetTextFontName(short* iError, char* pS);

extern "C" void WINAPI VCSetTextFontName(short* iError, char* sz);
Visual Basic: Declare Function VCGetTextFontName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

As Integer
Declare Sub VCSetTextFontName Lib "VCMAIN32.DLL" (iError As Integer, ByVal sz As String)

Delphi: function VCGetTextFontName(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetTextFontName(var iError: Integer; sz: PChar); far

Parameters pS - the name of the current font.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextHeight,

VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextHeight
VCSetTextHeight

Version 1.2
Description Unlike most other Windows programs, Corel Visual CADD measures text height in real world

units, specifically inches, instead of points.
Declaration
C/C++: extern "C" double WINAPI VCGetTextHeight(short* iError);

extern "C" void WINAPI VCGetTextHeightBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetTextHeight(short* iError, double d);

Visual Basic: Declare Sub VCGetTextHeightBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetTextHeight Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetTextHeightBP(var iError: Integer; var dRet: Double); far;
procedure VCSetTextHeight(var iError: Integer; dRet: Double); far;

Parameters dRet - the text height.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextItalic
VCSetTextItalic

Version 1.2
Description Specifies the italic display option for TT Fonts in Corel Visual CADD.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetTextItalic(short* iError);

extern "C" void WINAPI VCSetTextItalic(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetTextItalic Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextItalic Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetTextItalic(var iError: Integer):Integer; far;

procedure VCSetTextItalic(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetTextItalic, VCGetTextBold, VCGetTextItalic, VCGetTextBold

VCGetTextItalicValue
VCSetTextItalicValue

Version 1.2
Description Vector fonts can be slanted to emulate italics.
Declaration
C/C++: extern "C" double WINAPI VCGetTextItalicValue(short* iError, double* dI);

extern "C" void WINAPI VCGetTextItalicValueBP(short* iError, double* dI);
extern "C" void WINAPI VCSetTextItalicValue(short* iError, double dI);

Visual Basic: Declare Sub VCGetTextItalicValueBP Lib "VCMAIN32.DLL" (iError As Integer, dI As Double)
Declare Sub VCSetTextItalicValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal dI As Double)

Delphi: procedure VCGetTextItalicValueBP(var iError: Integer; var dI: Double); far;
procedure VCSetTextItalicValue(var iError: Integer; dI: Double); far;

Parameters dI - the angle in radians for the slant
Notes The number must range between 45 and -45 degrees. As with all angle functions, the angle is

specified in radians. A negative number will slant the text backwards.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextLineSpace, VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextJustify
VCSetTextJustify

Version 1.2
Description The text justification setting. Text can be justified left, right or centered horizontally relative to

the placement point.
Declaration
C/C++: extern "C" short WINAPI VCGetTextJustify(short* iError);

extern "C" void WINAPI VCSetTextJustify(short* iError, short j);
Visual Basic: Declare Function VCGetTextJustify Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextJustify Lib "VCMAIN32.DLL" (iError As Integer, ByVal j As Integer)
Delphi: function VCGetTextJustify(var iError: Integer):Integer; far;

procedure VCSetTextJustify(var iError: Integer; j: Integer); far;
Parameters j - the ASCII equivalent for the following characters.

‘C'- center.
‘L' - left.
‘R' - right.

See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,
VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextLayer, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextLayer
VCSetTextLayer

Version 1.2
Description Text can be placed on a separate layer independent of the current layer.
Declaration
C/C++: extern "C" short WINAPI VCGetTextLayer(short* iError);

extern "C" void WINAPI VCSetTextLayer(short* iError, short iTextLayer);
Visual Basic: Declare Function VCGetTextLayer Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal iTextLayer As Integer)
Delphi: function VCGetTextLayer(var iError: Integer):Integer; far;

procedure VCSetTextLayer(var iError: Integer; iTextLayer: Integer); far;
Parameters iTextLayer - layer index setting from 0 to 1023
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLineSpace,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextLineSpace
VCSetTextLineSpace

Version 1.2
Description The between text line VCGetDimTextLineSpace spacing as a percentage of current text height.
Declaration
C/C++: extern "C" double WINAPI VCGetTextLineSpace(short* iError);

extern "C" void WINAPI VCGetTextLineSpaceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetTextLineSpace(short* iError, double dLineSpacing);

Visual Basic: Declare Sub VCGetTextLineSpaceBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetTextLineSpace Lib "VCMAIN32.DLL" (iError As Integer, ByVal dLineSpacing As
Double)

Delphi: procedure VCGetTextLineSpaceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetTextLineSpace(var iError: Integer; dLineSpacing: Double); far;

Parameters dRet - spacing between the lines.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextProSpacing, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextProSpacing
VCSetTextProSpacing

Version 1.2
Description Vector text character spacing can be forced to monospace or proportional spacing. Monospace is

a characteristic of typewriter output and all characters will use the same amount of space
regardless of their width and height.

Declaration
C/C++: extern "C" BOOL WINAPI VCGetTextProSpacing(short* iError);

extern "C" void WINAPI VCSetTextProSpacing(short* iError, BOOL b);
Visual Basic: Declare Function VCGetTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextProSpacing Lib "VCMAIN32.DLL" (iError As Integer, ByVal b As Integer)
Delphi: function VCGetTextProSpacing(var iError: Integer):Boolean; far; external'VCMAIN';

procedure VCSetTextProSpacing(var iError: Integer; b: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,
VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextLineSpace, VCGetTextRot, VCGetTextString, VCGetTextUnderline

VCGetTextRot
VCSetTextRot

Version 1.2
Description The current text angle setting for font placement.
Declaration
C/C++: extern "C" double WINAPI VCGetTextRot(short* iError);

extern "C" void WINAPI VCGetTextRotBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetTextRot(short* iError, double d);

Visual Basic: Declare Sub VCGetTextRotBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetTextRot Lib "VCMAIN32.DLL" (iError As Integer, ByVal d As Double)

Delphi: procedure VCGetTextRotBP(var iError: Integer; var dRet: Double); far;
procedure VCSetTextRot(var iError: Integer; dRet: Double); far;

Parameters dRet - the angle setting in radians
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextLineSpace, VCGetTextProSpacing, VCGetTextString, VCGetTextUnderline

VCGetTextString
VCSetTextString

Version 1.2
Description When placing text via the API, the user interface is not available to enter the required line of

text, therefore it is necessary to set the text string before creating the placement.
Declaration
C/C++: extern "C" short FAR WINAPI VCGetTextString(short* iError, char* pS);

extern "C" void FAR WINAPI VCSetTextString(short* iErroR, char* pS);
Visual Basic: Declare Function VCGetTextString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String) As

Integer
Declare Sub VCSetTextString Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

Delphi: function VCGetTextString(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetTextString(var iError: Integer; pS: PChar); far;

Parameters s - the text string.
See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,

VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextLineSpace, VCGetTextProSpacing, VCGetTextRot, VCGetTextUnderline

VCGetTextUnderline
VCSetTextUnderline

Version 1.2
Description Specifies the underline display option for TT Fonts in Corel Visual CADD.
Declaration
C/C++: extern "C" BOOL WINAPI VCGetTextUnderline(short* iError);

extern "C" void WINAPI VCSetTextUnderline(short* iError, BOOL tf);
Visual Basic: Declare Function VCGetTextUnderline Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetTextUnderline Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: function VCGetTextUnderline(var iError: Integer):Boolean; far;

procedure VCSetTextUnderline(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle setting

0 - Off (Unchecked)
1- On(Checked)

See Also VCGetTextAspect, VCGetTextBold, VCGetTextCharSpace, VCGetTextColor, VCGetTextFontName,
VCGetTextHeight, VCGetTextItalic, VCGetTextItalicValue, VCGetTextJustify, VCGetTextLayer,
VCGetTextLineSpace, VCGetTextProSpacing, VCGetTextRot

VCGetToolID
Version 1.2
Description Returns the tool id for the currently active tool or command.
Declaration
C/C++: extern "C" WORD WINAPI VCGetToolID();
Visual Basic: Declare Function VCGetToolID Lib "VCTOOL32.DLL" () As Integer
Delphi: function VCGetToolID:Integer; far;
Parameters No additional parameters are used with this subroutine.
Notes As it may be necessary to display the two-letter or native commands with each tool in a custom

interface, VCGetToolID is provided in order to retrieve the id to pass to these functions.
See Also Tool ID

VCGetUnitConversionFactor
Version 1.2
Description Returns the conversion factor used by Corel Visual CADD to convert from the "inch" database to

the current unit setting.
Declaration
C/C++: extern "C" void WINAPI VCGetUnitConversionFactor(short* iError, double* dRet);
Visual Basic: Declare Sub VCGetUnitConversionFactor Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Delphi: procedure VCGetUnitConversionFactor(var iError: Integer; var dRet: Double);
Parameters d - the multiplier used to arrive at the current unit settings.
Notes Since all data is currently stored in the Corel Visual CADD drawing database as inches, it is

necessary to format any distances or areas in the units currently set in the program. This will
return a simple multiplier which will enable the conversion without having to case out each unit
conversion in code.

See Also VCGetDisplayDistFormat

VCGetUseByLayerProperties
VCSetUseByLayerProperties

Version 2.0
Description Determines if a layer is using layer properties for entities drawn on that layer.
Declaration
C/C++ extern "C" void WINAPI VCGetUseByLayerProperties(short* iError, vbool* tfColor, vbool*

tfLineType, vbool* tfLineWidth);
extern "C" void WINAPI VCSetUseByLayerProperties(short* iError, vbool tfColor, vbool tfLineType,
vbool tfLineWidth);

Visual Basic Declare Sub VCGetUseByLayerProperties Lib "VCMAIN32.DLL" (iError As Integer, tfColor As
Integer, tfLineType As Integer, tfLineWidth As Integer)
Declare Sub VCSetUseByLayerProperties Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfColor As
Integer, ByVal tfLineType As Integer, ByVal tfLineWidth As Integer)

Delphi procedure VCGetUseByLayerProperties(var iError: Integer; var tfColor: Boolean; var tfLineType:
Boolean; var tfLineWidth: Boolean); far;
procedure VCSetUseByLayerProperties(var iError: Integer; tfColor: Boolean; tfLineType: Boolean;
tfLineWidth: Boolean); far;

Parameters tfColor - flag indicating if color is used in Layer Properties.
0 - color is not used.
1 - color is used.
tfLineType - flag indicating if line type is used in Layer Properties.
0 -    line typeis not used.
1 -    line typeis used.
tfLineWidth - flag indicating if line width is used in Layer Properties.
0 - line widthis not used.
1 - line widthis used.

Notes Layer properties were introduced into v2.0.1 allowing properties to be assigned by layer rather
than by entity. For example, a layer can be set so all entities drawn on the layer will be a specific
color, line type and line width. This will override the current properties settings when active.
VCGetUseByLayerProperties is used to determine if the layer has active property settings while
VCSetUseByLayerProperties allows an application to choose which properties to use.
VCSetLayerProperties will set the values for the layer and VCClearLayerProperties turns the
capability off and clears all associated values. It is important to keep track of the state of layer
properties when modifying entities in the drawing. For example, if you set the color index using
VCSetColorIndex but the layer properties are enabled the proper color may not get applied.
Therefore when attempting to control the properties of entities as they are placed it is
imperative that the application monitor the setting for by layer control as the information is
being supplied by the API.

See Also VCClearLayerProperties, VCLayerHasProperties

VCGetUseFileLocking
VCSetUseFileLocking

Version 2.0
Description Locks a file for read only mode by users other than the current.
Declaration
C/C++ extern "C" vbool WINAPI VCGetUseFileLocking(short* iError);

extern "C" void WINAPI VCSetUseFileLocking(short* iError, vbool tf);
Visual Basic Declare Function VCGetUseFileLocking Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetUseFileLocking Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetUseFileLocking(var iError: Integer):Boolean; far;

function VCSetUseFileLocking(var iError: Integer, tf:Boolean):Boolean; far;
Parameters tf - flag for setting file locking.

0 - do not lock files.
1 - lock files.

Notes Locked files can not be modified by another Corel Visual CADD user on a network until the
drawing is saved or closed. Other users can only open, view and copy the drawing. The user
name is taken form the registered user name stored in the registry for the installed machine.

See Also VCIsFileLockedByCurrentUser, VCLockFile

VCGetUseHPGL2
VCSetUseHPGL2

Version 2.0
Description Enables the use of HPGL/2 optimization for output vector devices.
Declaration
C/C++ extern "C" vbool WINAPI VCGetUseHPGL2(short* iError);

extern "C" void WINAPI VCSetUseHPGL2(short* iError, vbool tf);
Visual Basic Declare Function VCGetUseHPGL2 Lib "VCDLG32.DLL" (iError As Integer) As Integer

Declare Sub VCSetUseHPGL2 Lib "VCDLG32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi function VCGetUseHPGL2(var iError: Integer):Boolean; far;

procedure VCSetUseHPGL2(var iError: Integer; tf: Boolean); far;
Parameters tf - toggle indicasting whether to use HPGL/2 optimization

0 - do not use the optimization
1 - use the optimization

Notes Using HPGL/2 optimization when outputting to a vector plotter will improve the quality of arcs
and circles and decrease plot time if the plotter supports HPGL/2 graphics language. If this
option is used then an Init String for the language must be provided to tell the plotter to
recognize the HPGL/2 commands.

See Also VCApplyPlotterLanguageDefaults, VCApplyPlotterPenMapDefaults

VCGetUserDataName
VCSetUserDataName

Version 1.2
Description User Data requires an application name to define a storage segment for the attached data.
Declaration
C/C++: extern "C" short WINAPI VCGetUserDataName(short* iError, char* pS);

extern "C" void WINAPI VCSetUserDataName(short* iError, char* pS);
Visual Basic: Declare Function VCGetUserDataName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As

String) As Integer
Declare Sub VCSetUserDataName Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

Delphi: function VCGetUserDataName(var iError: Integer; pS: PChar):Integer; far;
procedure VCSetUserDataName(var iError: Integer; pS: PChar); far;

Parameters S - the name returned as the current registered user data name.
Notes This name must be used in order to retrieve or edit the attached data. Once a name has been

set using VCSetUserDataName, the corresponding data can only be retrieved using the current
User Data name. This prevent unauthorized use of another applications User Data and
accidental misuse or editing of another applications User Data. VCGetUserDataName returns the
currently active User Data segment.

See Also VCAddCurrentEntityUserDataByte, VCAddCurrentEntityUserDataChunk,
VCAddCurrentEntityUserDataDouble, VCAddCurrentEntityUserDataFloat,
VCAddCurrentEntityUserDataLong, VCAddCurrentEntityUserDataShort

VCGetUserToolLBDown
Version 1.2
Description Retrieves the last point selected within the drawing area. Used with VCSetAlertApp.
Declaration
C/C++: extern "C" void WINAPI VCGetUserToolLBDown(short* iError, Point2D* dpP);
Visual Basic: Declare Sub VCGetUserToolLBDown Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)
Delphi: procedure VCGetUserToolLBDown(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - set to reflect the last drawing coordinates picked by the user.
Notes To initialize Windows messaging between Corel Visual CADD and an external application, the

hWnd of some control or object must be sent to Visual CADD using VCSetAlertApp. When
registering the hWnd a code must also be included which specifies which messages an
application will receive. These can be added together to get multiple messages. For example
iCode of 12 would specify that the command line characters and abort messages would be sent.
To handle these messages, an application code must have code specifically to handle a Windows
message sent to the control whose hWnd is registered with VCSetAlertApp. In Visual BASIC,
handle this by supplying code in the mouse down event for the control specified for each mouse
down message sent by Visual CADD. Corel Visual CADD is fairly intelligent about when to send
this message and only send the message when a drawing point has been selected. This means
that the user can issue snaps or use tracking without invoking the application code for the
mouse down event. To retrieve the point the user selected in the drawing area, use
VCGetUserToolLBDown which sets a Point2D of the last point picked. When trapping the user
input, register the control with an iCode of either 0 (all messages) or 8 (mouse down messages)
and add code to the control for key press. When the key press code is activated by the message
from Corel Visual CADD, use VCGetCmdStr to retrieve the last key press from Corel Visual CADD.
Once the key press has been determined through code can act according to process the
information or send it back for Corel Visual CADD to use with VCSetCmdStr. Once the application
has completed with the messaging, use VCClearAlertApp to remove an application from the
messaging registry.

See Also VCSetAlertApp, VCSetCmdStr, VCGetCmdStr, VCSetAlertApp

VCGetUserToolLBUp
Version 2.0.1
Description Returns a left button up message to a user tool.
Declaration
C/C++: extern "C" void WINAPI VCGetUserToolLBUp(short* iError, Point2D* dpP);
Visual Basic: Declare Sub VCGetUserToolLBUp Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)
Delphi: procedure VCGetUserToolLBUp(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - set to reflect the last drawing coordinates picked by the user.
Notes To initialize Windows messaging between Corel Visual CADD and an external application, the

hWnd of some control or object must be sent to Corel Visual CADD using VCSetAlertApp. When
registering the hWnd a code must also be included which specifies which messages an
application will receive. These can be added together to get multiple messages. For example
iCode of 12 would specify that the command line characters and abort messages would be sent.
To handle these messages, an application code must have code specifically to handle a Windows
message sent to the control whose hWnd is registered with VCSetAlertApp. In Visual BASIC,
handle this by supplying code in the mouse down event for the control specified for each mouse
down message sent by Visual CADD. Corel Visual CADD is fairly intelligent about when to send
this message and only send the message when a drawing point has been selected. This means
that the user can issue snaps or use tracking without invoking the application code for the
mouse down event. To retrieve the point the user selected in the drawing area, use
VCGetUserToolLBDown which sets a Point2D of the last point picked. When trapping the user
input, register the control with an iCode of either 0 (all messages) or 8 (mouse down messages)
and add code to the control for key press. When the key press code is activated by the message
from Corel Visual CADD, use VCGetCmdStr to retrieve the last key press from Corel Visual CADD.
Once the key press has been determined through code can act according to process the
information or send it back for Corel Visual CADD to use with VCSetCmdStr. Once the application
has completed with the messaging, use VCClearAlertApp to remove an application from the
messaging registry.

See Also VCSetAlertApp, VCSetCmdStr, VCGetCmdStr, VCSetAlertApp,VCLButtonUpTimerReset

VCGetUserToolMouseMove
Version 1.2
Description Retrieves the position the user has moved the mouse to within the drawing area. Used with

VCSetAlertApp.
Declaration
C/C++: extern "C" void WINAPI VCGetUserToolMouseMove(short* iError, Point2D* dpP);
Visual Basic: Declare Sub VCGetUserToolMouseMove Lib "VCMAIN32.DLL" (iError As Integer, dpP As Point2D)
Delphi: procedure VCGetUserToolMouseMove(var iError: Integer; var dpP: Point2D); far;
Parameters dpP - set to reflect the last drawing coordinates picked by the user.
Notes Once mouse move messaging has been established with VCSetAlertApp,

VCGetUserToolMouseMove allows each mouse movement to be retrieved from Corel Visual
CADD. For example, in Visual BASIC, the hWnd for the main form can be passed to
VCSetAlertApp with 0 as the iCode. Code can be added to the mouse move event of the form.
Each time the mouse is moved in the Corel Visual CADD drawing area, a windows message will
be sent to the form which will activate the form1_mousemove subroutine. In this subroutine,
VCGetUserToolMouseMove can be used to retrieve the point that the mouse last moved over and
code can be executed when the mouse passes over a certain region of the drawing. Be aware
that processing additional code in an external application can require a great deal of processor
overhead. Make sure that this is truly necessary before building code that uses this message.

See Also VCSetAlertApp, VCClearAlertApp, VCGetUserToolLBDown

VCGetVCDPath
VCSetVCDPath

Version 1.2
Description The default file path for opening and saving Corel Visual CADD VCD drawing files.
Declaration
C/C++: extern "C" short WINAPI VCGetVCDPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetVCDPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetVCDPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetVCDPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetVCDPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetVCDPath(var iError: Integer; szPath: PChar); far;

Parameters szPath - the file path
See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCSPath, VCGetCMPPath,

VCGetVCFPath

VCGetVCFPath
VCSetVCFPath

Version 1.2
Description The default file path for opening and saving Corel Visual CADD font files.
Declaration
C/C++: extern "C" short WINAPI VCGetVCFPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetVCFPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetVCFPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetVCFPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetVCFPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetVCFPath(var iError: Integer; szPath: PChar); far;

Parameters szPath - the file path
See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetCMPPath,

VCGetVCFPath

VCGetVCSPath
VCSetVCSPath

Version 1.2
Description The default file path for opening and saving Corel Visual CADD symbol files.
Declaration
C/C++: extern "C" short WINAPI VCGetVCSPath(short* iError, char* szPath);

extern "C" void WINAPI VCSetVCSPath(short* iError, char* szPath);
Visual Basic: Declare Function VCGetVCSPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

As Integer
Declare Sub VCSetVCSPath Lib "VCMAIN32.DLL" (iError As Integer, ByVal szPath As String)

Delphi: function VCGetVCSPath(var iError: Integer; szPath: PChar):Integer; far;
procedure VCSetVCSPath(var iError: Integer; szPath: PChar); far;

Parameters Path - string returned containing the current symbol path.
See Also VCGetDWGPath, VCGetDXFPath, VCGetGCDPath, VCGetSYSPath, VCGetVCDPath, VCGetVCSPath,

VCGetCMPPath, VCGetVCFPath

VCGetVidTolerance
VCSetVidTolerance

Version 1.2
Description Sets the maximum distance in on-screen inches the cursor may be from an object for Corel

Visual CADD to snap or select it.
Declaration
C/C++: extern "C" double WINAPI VCGetVideoTolerance(short* iError);

extern "C" void WINAPI VCGetVideoToleranceBP(short* iError, double* dRet);
extern "C" void WINAPI VCSetVidTolerance(short* iError, double dRet);

Visual Basic: procedure VCGetVideoToleranceBP(var iError: Integer; var dRet: Double); far
Declare Sub VCSetVidTolerance Lib "VCMAIN32.DLL" (iError As Integer, ByVal dRet As Double

Delphi: procedure VCGetVideoToleranceBP(var iError: Integer; var dRet: Double); far;
procedure VCSetVidTolerance(var iError: Integer; dRet: Double); far

Parameters dRet - the distance to search.
See Also Tool Reference

VCGetViewCount
Version 2.0
Description Returns the number of viewports for the input drawing world.
Declaration
C/C++ extern "C" vbool WINAPI VCGetViewCount(short* iError, WORLDHANDLE hW, short* iVCnt);
Visual Basic Declare Function VCGetViewCount Lib "VCMAIN32.DLL" (iError As Integer, ByVal hW As Long,

iVCnt As Integer) As Integer
Delphi function VCGetViewCount(var iError: Integer; hW: Longint; var iVCnt:
Parameters hw - the WORLDHANDLE for the drawing.

IVCnt - the number of viewports for the drawing.
returns - a flag indicating if the world has multiple viewports open.

Notes Corel Visual CADD allows for multiple views of a drawing. Each of these views is placed into a
separate MDI Window within the Visual CADD frame. The view can be changed by moving to the
Window containing the desired view.

See Also VCNewView, VCFirstView , VCNextView,VCChangeView

VCGetWallWidth1
VCSetWallWidth1

Version 1.2
Description Sets the offset, relative to the cursor movement, of the left line for the double line tool.
Declaration
C/C++: extern "C" double WINAPI VCGetWallWidth1(short* iError);

extern "C" void WINAPI VCGetWallWidth1BP(short* iError, double* dRet);
extern "C" void WINAPI VCSetWallWidth1(short* iError, double d1);

Visual Basic: Declare Sub VCGetWallWidth1BP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetWallWidth1 Lib "VCMAIN32.DLL" (iError As Integer, ByVal d1 As Double)

Delphi: procedure VCGetWallWidth1BP(var iError: Integer; var dRet: Double); far;
procedure VCSetWallWidth1(var iError: Integer; d1: Double); far;

Parameters dRet - the distance.
See Also VCGetWallWidth2

VCGetWallWidth2
VCSetWallWidth2

Version 1.2
Description Sets the offset, relative to the cursor movement, of the right line for the double line tool.
Declaration
C/C++: extern "C" double WINAPI VCGetWallWidth2(short* iError);

extern "C" void WINAPI VCGetWallWidth2BP(short* iError, double* dRet);
extern "C" void WINAPI VCSetWallWidth2(short* iError, double d1);

Visual Basic: Declare Sub VCGetWallWidth2BP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)
Declare Sub VCSetWallWidth2 Lib "VCMAIN32.DLL" (iError As Integer, ByVal d1 As Double)

Delphi: procedure VCGetWallWidth2BP(var iError: Integer; var dRet: Double); far;
procedure VCSetWallWidth2(var iError: Integer; d1: Double); far;

Pameters dRet - the distance.
See Also VCGetWallWidth1

VCGetWorldByHWND
Version 2.0
Description Retrieves the WORLDHANDLE for a drawing from the displaying Window.
Declaration
C/C++ extern "C" WORLDHANDLE WINAPI VCGetWorldByHWND(short* iError, long hwnd);
Visual Basic Declare Function VCGetWorldByHWND Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd As

Long) As Long
Delphi function VCGetWorldByHWND(var iError: Integer; hwnd: Longint):Longint; far;
Parameters hWnd - the HWND for the window containg the drawing.

HW - the returned WORLDHANDLE.
Notes Drawing world are referenced by an internal 0 based WORLDHANDLE index or a windows HWND

for the control displaying the drawing. Typically, the API utilizes the internal WORLDHANDLE
when referencing the drawing. VCGetWorldIndexByHWND is used to retrieve the internal index
from a Windows HWND.

See Also VCChangeView, VCGetCurrWorld, VCGetWorldIndexByHWND

VCGetWorldExtents
Version 2.0
Description Retrieves the drawing extents for the active drawing.
Declaration
C/C++ extern "C" void WINAPI VCGetWorldExtents(short* iError, Point2D* dpMin, Point2D* dpMax);
Visual Basic Declare Sub VCGetWorldExtents Lib "VCMAIN32.DLL" (iError As Integer, dpMin As Point2D,

dpMax As Point2D)
Delphi procedure VCGetWorldExtents(var iError: Integer; var dpMin: Point2D; var
Parameters dpMin - the Point2D structure containing the lower left corner of a bounding rectangle.

dpMax - the Point2D structure containing the upper right corner of a bounding rectangle.
Notes The drawing extents reflect a bounding box placed around the entire drawing. Corel Visual CADD

displays the information to the user for reference within the file.
See Also VCGetWorldSize, VCEntityExtents

VCGetWorldIndexByHWND
Version 2.0
Description Retrieves the WORLDHANDLE for a drawing from the displaying Window.
Declaration
C/C++ extern "C" void WINAPI VCGetWorldIndexByHWND(short* iError, long hWnd, WORLDHANDLE*

hW);
Visual Basic Declare Sub VCGetWorldIndexByHWND Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd As

Long, hW As Long)
Delphi procedure VCGetWorldIndexByHWND(var iError: Integer; hWnd: Longint; var hW: Longint); far;
Parameters hWnd - the HWND for the window containg the drawing.

HW - the returned WORLDHANDLE.
Notes Drawing world are referenced by an internal 0 based WORLDHANDLE index or a windows HWND

for the control displaying the drawing. Typically, the API utilizes the internal WORLDHANDLE
when referencing the drawing. VCGetWorldIndexByHWND is used to retrieve the internal index
from a Windows HWND.

See Also VCChangeView, VCGetCurrWorld, VCGetWorldByHWND

VCGetXYHandle
VCSetXYHandle

Version 2.0
Description The XY handle displays the cursor coordinates in the interface.
Declaration
C/C++ extern "C" long WINAPI VCGetXYHandle();

extern "C" void WINAPI VCSetXYHandle(HWND hWnd);
Visual Basic Declare Function VCGetXYHandle Lib "VCMAIN32.DLL" () As Long

Declare Sub VCSetXYHandle Lib "VCMAIN32.DLL" (ByVal hWnd As Integer)
Delphi function VCGetXYHandle:Longint; far;

procedure VCSetXYHandle(hWnd: Integer); far;
Parameters hWnd - the HWND handle for the object to be used as the message area.
Notes Like VCSetMessageHandle, VCSetXYHandle sets a message handle of a Windows object to

display a text message. However in this case the message is x and y coordinates of the current
cursor position as related to the current manual entry mode. This also reflects the current units
and decimal or fractional settings. This is normally displayed in the status bar at the bottom of
the Corel Visual CADD screen.

See Also VCSetAngleHandle, VCSetDistanceHandle

VCGetZoomFactor
VCSetZoomFactor

Version 1.2
Description The multiplier to used to change the drawing magnification when the Zoom In command is used.

The factor for the Zoom Out command is the reciprocal of this.
Declaration
C/C++: extern "C" double WINAPI VCGetZoomFactor(short* iError);

extern "C" void WINAPI VCSetZoomFactor(short* iError, double dRet);
Visual Basic: Declare Sub VCGetZoomFactorBP Lib "VCMAIN32.DLL" (iError As Integer, dRet As Double)

Declare Sub VCSetZoomFactor Lib "VCMAIN32.DLL" (iError As Integer, ByVal dRet As Double)
Delphi: procedure VCGetZoomFactorBP(var iError: Integer; var dRet: Double); far;

procedure VCSetZoomFactor(var iError: Integer; dRet: Double); far;
Parameters dRet - the zoom factor
See Also VCGetAskZoomCenter

VCIncrementWidthOnAllEntities
Version 1.2
Description Changes the line width for all entities in the drawing database a specified amount.
Declaration
C/C++: extern "C" void WINAPI VCIncrementWidthOnAllEntities(short* iError, short iIncrement);
Visual Basic: Declare Sub VCIncrementWidthOnAllEntities Lib "VCMAIN32.DLL" (iError As Integer, ByVal

iIncrement As Integer)
Delphi: procedure VCIncrementWidthOnAllEntities(var iError: Integer; iIncrement Integer); far;
Parameters iIncrement - the value to increment.
Notes Several utility routines to accomplish specifics tasks are available directly in the API. Instead of

parsing the database for each entity and then resetting the line width, this routine will
automatically force the line width to an input value. When outputting to certain printers it is
desirable to increase the line width in order to improve the output quality.
VCForceWidthOnAllEntities and VCIncrementWidthOnAllEntities facilitate this operation under a
single routine.

See Also VCForceWidthOnAllEntities

VCInit
Version 1.2
Description Initializes the Corel Visual CADD DLLs so they may be used by another application.
Declaration
C/C++: extern "C" void WINAPI VCInit(void);
Visual Basic: Declare Sub VCInit Lib "VCMAIN32.DLL" ()
Delphi: procedure VCInitDialogs; far;
Parameters No parameters are used for this subroutine.
Notes Whenever the CADD drawing is to be loaded independent of the Corel Visual CADD program

itself, the DLL's must be initialized in order set up a drawing database and establish all the
drawing settings. This allows the program to access the internal subroutines and functions and
to display the drawing in a Visual BASIC picture box, or similar drawing area. When completed
with a Corel Visual CADD session be sure to end it with a VCTerminate. VCGetInitCount will
return the number of instances of current Corel Visual CADD sessions.

See Also VCGetInitCount, VCTerminate, VCTerminate, VCPaint, VCGetInitCount

VCInitDialogs
Version 1.2
Description Initializes the Corel Visual CADD dialogs so they may be used by an external application.
Declaration
C/C++: extern "C" void WINAPI VCInitDialogs(void);
Visual Basic: Declare Sub VCInitDialogs Lib "VCDLG32.DLL" ()
Delphi: procedure VCInitDialogs; far;
Parameters No parameters are used with this subroutine.
Notes When building an external application based on the Corel Visual CADD engine, it may, or may

not, be desirable to display Corel Visual CADD's internal dialogs. If the external application uses
it's own dialogs and passes the values or settings to Corel Visual CADD manually than it
probably will not be necessary to use the internal dialogs. If however the external application
requires the internal dialogs for consistency, or ease of programming, VCInitDialogs will initialize
the dialogs for use while VCTerminateDialogs will terminate their use.

See Also VCTerminateDialogs

VCInitPrintMode
Version 2.0
Description Initializes the print routines for use outside the Corel Visual CADD interface.
Declaration
C/C++ extern "C" void WINAPI VCInitPrintMode(short* iError, short iPrintMode);
Visual Basic Declare Sub VCInitPrintMode Lib "VCDLG32.DLL" (iError As Integer, ByVal iPrintMode As Integer)
Delphi procedure VCInitPrintMode(var iError: Integer; iPrintMode: Integer); far;
Parameters iPrintMode - which mode to initialize.

0 - PRINTMODE
1 - PLOTMODE

Notes When creating a custom interface that utilizes the Corel Visual CADD print routines, an
application must initialize the mode on start and terminate it on close. The API provides access
to the both the print and plot dialogs in which Corel Visual CADD handles all the output as if it
were part of the interface by simply displaying the built in dialogs. The second method allows
the application to create all the command and bypass the Corel Visual CADD interface. When
using the first dialog method simply use VCInitDialogs and VCTerminateDialogs. When using the
second method the initialization is handled by VCInitPrintMode and the de-initialization is
handled by VCDeInitPrintMode.

See Also VCDeInitPrintMode

VCInvalidateRect
Version 1.2
Description Sets a flag for Corel Visual CADD that tells the system to redraw the drawing window.
Declaration
C/C++: extern "C" void WINAPI VCInvalidateRect();
Visual Basic: Declare Sub VCInvalidateRect Lib "VCMAIN32.DLL" ()
Delphi: procedure VCInvalidateRect; far;
Parameters No parameters are used for this subroutine.
Notes VCInvalidateRect is analogous to the Windows API call InvalidateRect, except that the rect is the

entire drawing area, hWnd is assumed to be the current drawing window, and erase background
is assumed to be true. When a WM_PAINT message is processed by Windows, the rect will be
redrawn.

See Also Windows 3.1 SDK - InvalidateRect, VCPaint, VCPaintWorld

VCIsAnythingSelected
Version 1.2
Description Returns a value to determine if anything in the current drawing is selected.
Declaration
C/C++: extern "C" vbool WINAPI VCIsAnythingSelected(void);
Visual Basic: Declare Function VCIsAnythingSelected Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsAnythingSelected:Boolean; far;
Parameters Returns - an integer value representing true or false.

0 is false.
1 is true.

Notes Whenever a modify command, for example, is issued it is always a good idea to check if any
objects have been selected as this will be the modified set of entities. In the case of single entity
modifiers such as break, it as also good practice to clear the selection set prior to issuing that
tool. Corel Visual CADD will do most of this automatically but to provide the most consistent
results it is best to keep the selection set monitored.

See Also VCIsCurrentErased, VCIsCurrentSelected

VCIsCurrentErased
Version 1.2
Description Determines if the current entity has been erased.
Declaration
C/C++: extern "C" vbool WINAPI VCIsCurrentErased(short* iError);
Visual Basic: Declare Function VCIsCurrentErased Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCIsCurrentErased(var iError: Integer):Boolean; far;
Parameters Returns - an integer value representing true or false.

0 - entity is not erased.
1 - entity is erased.

Notes When stepping through the database entities in a drawing, all entities will become current at
some point even those which have been erased. To eliminate problems that may occur in
database consistency when erased entities are brought back through an applications
negligence, each entity should be checked to determine whether it has been previously erased.
Unless the applications purpose is to bring back erased entities, erased entities should be
skipped when parsing the database and making edits to the drawing.

See Also VCSetCurrentErased, VCNextEntity, VCFirstEntity, VCSetCurrentEntity

VCIsCurrentSelected
Version 1.2
Description Checks the selection state of the current entity.
Declaration
C/C++: extern "C" vbool WINAPI VCIsCurrentSelected(short* iError);
Visual Basic: Declare Function VCIsCurrentSelected Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCIsCurrentSelected(var iError: Integer):Boolean; far;
Parameters Returns - an integer value representing true or false.

0 - entity is not selected.
1 - entity is selected.

Notes Each entity maintains a flag relating to its current selection state. This flag can be checked to
determine whether an application should ignore the entity or process a routine.

See Also VCNextEntity, VCFirstEntity, VCSetCurrentEntity, VCSetCurrentSelected

VCIsCurrentWorldValid
Version 1.2
Description Verifies whether or not the currently set world is valid for displaying Corel Visual CADD graphical

information and if the world still exists.
Declaration
C/C++: extern "C" vbool WINAPI VCIsCurrentWorldValid();
Visual Basic: Declare Function VCIsCurrentWorldValid Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsCurrentWorldValid:Boolean; far;
Parameters Returns - an integer value representing true or false.

0 is false.
1 is true.

Notes When a world is established it still can be closed out by the user. While Corel Visual CADD does a
good job of making sure the current world is valid, it is good practice to verify the validity of a
world before trying to set it as current, as it may have been closed since its creation. Most
Windows objects are not suitable viewing areas for graphics. VCIsCurrentWorldValid checks to
see if the previously established object is valid or not and returns a true or false.

See Also VCIsDrawingDirty

VCIsDrawingDirty
Version 1.2
Description Returns a value determining whether the drawing has been changed.
Declaration
C/C++: extern "C" vbool WINAPI VCIsDrawingDirty(void);
Visual Basic: Declare Function VCIsDrawingDirty Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsDrawingDirty:Boolean; far;
Parameters Returns - value determining whether the drawing has changed.

0 - no changes made.
1 - changes have been made.

Notes When closing a drawing changes may have occurred since it was opened. In order to determine
if changes have occurred, the function VCIsDrawingDirty should be called. If there are changes
to the drawing the application will probably want to save the changes before closing the
drawing.

See Also VCIsCurrentWorldValid

VCIsFileLocked
Version 2.0
Description Specifies if the file is locked by a user.
Declaration
C/C++ extern "C" vbool WINAPI VCIsFileLocked(char* szFilename, char* szLockedByName, char*

szTimeLocked);
Visual Basic Declare Function VCIsFileLocked Lib "VCMAIN32.DLL" (ByVal szFileName As String, ByVal

szLockedByName As String, ByVal szTimeLocked As String) As Integer
Delphi function VCIsFileLocked(szFilename: PChar; szLockedByName: PChar;
Parameters Return - whether the file is currently locked.

0 - it is not locked.
1 - it is locked.
szFileName - the file in question.
szLockedBy - if the file is locked the function returns the user name with the open file.
szTimeLocked - if the file is locked the function returns the system time the file was locked.

Notes Locked files can not be modified by another Corel Visual CADD user on a network until the
drawing is saved or closed. Other users can only open, view and copy the drawing. The user
name is taken form the registered user name stored in the registry for the installed machine.

See Also VCIsFileLockedByCurrentUser, VCLockFile

VCIsFileLockedByCurrentUser
Version 2.0
Description Specifies if the active drawing is locked by the current user.
Declaration
C/C++ extern "C" vbool WINAPI VCIsFileLockedByCurrentUser();
Visual Basic Declare Function VCIsFileLockedByCurrentUser Lib "VCMAIN32.DLL" () As Integer
Delphi function VCIsFileLockedByCurrentUser:Boolean; far;
Parameters Return - if the current user has locked the file.

0 - the current user has not locked the file.
1 - the current user has locked the file.

Notes Locked files can not be modified by another Corel Visual CADD user on a network until the
drawing is saved or closed. Other users can only open, view and copy the drawing. The user
name is taken form the registered user name stored in the registry for the installed machine.

See Also VCIsFileLockedr, VCLockFile

VCIsFilterActive
Version 1.2
Description Specifies the state of the selection filter.
Declaration
C/C++: extern "C" vbool WINAPI VCIsFilterActive(short* iError);
Visual Basic: Declare Function VCIsFilterActive Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCIsFilterActive(var iError: Integer):Boolean; far;
Parameters Returns - value determining whether the selection filter is active.

0 - the filter is not active.
1 - the filter is active.

Notes The API allows a filter setting entities prior to making selections. By setting a selection criteria
based on entity properties and settings, the selection routine will only "capture" those objects
meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color, line
type and line width.

See Also VCIsCurrentWorldValid

VCIsFontNameVText
Version 1.2
Description Determines if the specified font is a Corel Visual CADD vector font.
Declaration
C/C++: extern "C" vbool WINAPI VCIsFontNameVText(short* iError, char* pS);
Visual Basic: Declare Function VCIsFontNameVText Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS As String)

As Integer
Delphi: function VCIsFontNameVText(var iError: Integer; pS: PChar):Boolean; far;
Parameters Returns - value determining whether the font is vector.

0 - the font is not a vector font.
1 - the font is a vector font.

Notes Corel Visual CADD utilizes both TrueType Fonts and built in vector fonts. The vector fonts can be
converted from other font formats such as .SHX and .FNT. When working with text entities it is
important to understand the type of font being used. Certain settings such as Bold, Italic and
Underline only effect TrueType Fonts while others such as Italic value are designed for vector
fonts. Therefore, when altering the settings of an existing text entity it is necessary to determine
the type of font in order to apply the appropriate settings.

See Also VCIsCurrentWorldValid, VCGetTextFontName,

VCIsGraphic
Version 2.0
Description Determines if the current entity is a graphic entity, only hatches, fills, line types and text are

considered graphic entities.
Declaration
C/C++ extern "C" vbool WINAPI VCIsGraphic(short* iError);
Visual Basic Declare Function VCIsGraphic Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCIsGraphic(var iError: Integer):Boolean; far;
Parameters iReturn - whether the current entity is a graphic entity.
Notes Some entities are defined by several graphical objects, hatch patterns, fills, line types and fonts.

For instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also VCDeleteGraphicsHandle, VCFirstGraphic, VCNextGraphic

VCIsOleWorld
Version 1.2
Description Determines if the current world is contained within an OLE container.
Declaration
C/C++: extern "C" vbool WINAPI VCIsOleWorld();
Visual Basic: Declare Function VCIsOleWorld Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsOleWorld:Boolean; far;
Parameters iReturn - value determining whether the drawing is a OLE object.

0 - the world is not an OLE world.
1 - the world is an OLE world.

Notes When a Corel Visual CADD drawing is linked to other applications, the drawing world receives a
flag for notification. By using this value an application can determine if the drawing is inside the
Corel Visual CADD frame or if it an OLE object in another application.

See Also VCIsCurrentWorldValid

VCIsRedoable
Version 1.2
Description Determines if the last command is redoable.
Declaration
C/C++: extern "C" vbool WINAPI VCIsRedoable(void);
Visual Basic: Declare Function VCIsRedoable Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsRedoable:Boolean; far;
Parameters No additional parameters are used in this subroutine.
Notes Commands are only redoable immediately after an undo and before any modifications or

drawing additions are made.
See Also VCBeginOperation, VCEndOperation

VCIsScriptAssigned
Version 1.2
Description Verifies whether a script has been assigned to a key sequence.
Declaration
C/C++: extern "C" vbool WINAPI VCIsScriptAssigned(short iShift, short iKey);
Visual Basic: Declare Function VCIsScriptAssigned Lib "VCMAIN32.DLL" (ByVal iShift As Integer, ByVal iKey As

Integer) As Integer
Delphi: function VCIsScriptAssigned(iShift: Integer; iKey: Integer):Boolean; far;
Parameters iShift - determines the state of the modifier keys.

0 - none.
1 - shift.
2 - ctrl.
3 - alt.
iKey - the ASCII code representing the desired key.
returns an integer representing true or false.
0 - false.
1 - true.

Notes When assigning scripts it is often necessary to determine if a script has already been assigned
to a key sequence. VCIsScriptAssigned determines this, letting the application determine
whether to edit the existing script or overwrite it.

See Also VCMacro

VCIsSymbolLoaded
Version 1.2
Description Determines if the specified symbol has been loaded into the Corel Visual CADD symbol pool.
Declaration
C/C++: extern "C" vbool WINAPI VCIsSymbolLoaded(char* szSymbolName);
Visual Basic: Declare Function VCIsSymbolLoaded Lib "VCMAIN32.DLL" (ByVal szSymbolName As String) As

Integer
Delphi: function VCIsSymbolLoaded(szSymbolName: PChar):Boolean; far;
Parameters zSymbolName - is the name of the symbol.

Returns - an integer value representing true or false.
0 - symbol is not loaded.
1 - symbol is loaded.

Notes When using symbols in applications, they must first be loaded into memory. However before
loading a new symbol into memory it is a good idea to check if the symbol is already loaded.
This prevents any conflicts in symbol names between symbols already existing in memory and
those that may be loaded from disk or those that may be created with an external application.

See Also VCGetSymbolName, VCGetSymbolIndex, VCOpenVCS

VCIsTextFontVText
Version 1.2
Description An extension of VCIsFontNameVText that permits checking an existing text entity.
Declaration
C/C++: extern "C" vbool WINAPI VCIsTextFontVText(short* iError);
Visual Basic: Declare Function VCIsTextFontVText Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi: function VCIsTextFontVText(var iError: Integer):Boolean; far;
Parameters Returns - value determining whether the font is vector.

0 - the font is not a vector font.
1 - the font is a vector font.

Notes Corel Visual CADD utilizes both TrueType Fonts and built in vector fonts. The vector fonts can be
converted from other font formats such as .SHX and .FNT. When working with text entities it is
important to understand the type of font being used. Certain settings such as Bold, Italic and
Underline only effect TrueType Fonts while others such as Italic value are designed for vector
fonts. Therefore, when altering the settings of an existing text entity it is necessary to determine
the type of font in order to apply the appropriate settings.

See Also VCIsFontNameVText

VCIsToggle
Version 1.2
Description Returns a true or false value based on whether the command is a toggle setting.
Declaration
C/C++: extern "C" vbool WINAPI VCIsToggle(WORD id);
Visual Basic: Declare Function VCIsToggle Lib "VCMAIN32.DLL" (ByVal id As Integer) As Integer
Delphi: function VCIsToggle(id: Integer):Boolean; far;
Parameters id - the command id for which the inquiry is made (see Appendix A for command id's).

returns - integer representing true or false.
0 is false.
1 is true.

Notes Several settings in Corel Visual CADD are toggles, that is they are either on or off. VCIsToggle
checks the command to verify whether it is a toggle or not.

See Also VCToggle

VCIsUndoable
Version 1.2
Description Determines if the last command is undoable.
Declaration
C/C++: extern "C" vbool WINAPI VCIsUndoable(void);
Visual Basic: Declare Function VCIsUndoable Lib "VCMAIN32.DLL" () As Integer
Delphi: function VCIsUndoable:Boolean; far;
Parameters returns - integer representing true or false.

0 is false.
1 is true

Notes Corel Visual CADD modifies entities by erasing them and then recreating them with the changes.
This allows Corel Visual CADD to maintain undo capabilities by erasing the new entity and
returning the original. Whenever an entity is modified or added to the drawing database, it is
undoable. This function checks to see if the last command is undoable. If there has been nothing
added to the drawing then there is nothing to undo. Operations that do affect the drawing
database such as zooms are not undoable. In addition, after a pack data command has been
performed, no modifications prior to the operation are undoable.

See Also VCBeginOperation, VCEndOperation

VCIsWorldEmpty
Version 1.2
Description Checks to see if an existing drawing world contains any drawing entities.
Declaration
C/C++: extern "C" vbool WINAPI VCIsWorldEmpty(WORLDHANDLE hW);
Visual Basic: Declare Function VCIsWorldEmpty Lib "VCMAIN32.DLL" (ByVal hW As Long) As Integer
Delphi: function VCIsWorldEmpty(hW: Longint):Boolean; far;
Parameters hW - the Corel Visual CADD worldhandle used internally to reference each open drawing world.

Returns - an integer value representing true or false.
0 is false.
1 is true..

Notes Often before destroying or opening a new world is it useful to know whether the current world is
empty.

See Also VCDestroyWorld, VCNewWorld, VCSetCurrWorld, VCIsCurrentWorldValid, VCGetCurrWorld

VCIsWorldValid
Version 1.2
Description Verifies whether or not the currently set world is valid for displaying Corel Visual CADD graphical

information.
Declaration
C/C++: extern "C" vbool WINAPI VCIsWorldValid(WORLDHANDLE hW);
Visual Basic: Declare Function VCIsWorldValid Lib "VCMAIN32.DLL" (ByVal hW As Long) As Integer
Delphi: function VCIsWorldValid(hW: Longint):Boolean; far;
Parameters hW is the Corel Visual CADD world handle used to reference drawing areas.

Returns - an integer value representing true or false.
0 is false.
1 is true.

Notes While and Windows object has a hWnd and thus can be established as the current world. Most
Windows objects are not suitable viewing areas for graphics. VCIsCurrentWorldValid checks to
see if the previously established object is valid and returns a true or false.

See Also VCIsCurrentWorldValid, VCIsWorldEmpty

VCLastEntity
Version 1.2
Description Makes the last entity in the drawing database the current entity.
Declaration
C/C++: extern "C" void WINAPI VCLastEntity(short* iError, ENTITYHANDLE* lH);
Visual Basic: Declare Sub VCLastEntity Lib "VCMAIN32.DLL" (iError As Integer, lH As Long)
Delphi: procedure VCLastEntity(var iError: Integer; var lH: Longint); far;
Parameters lH - entity handle for the last entity in the database.
Notes After creating new objects in the Corel Visual CADD database it must be drawn before it appears

on the screen. This can be done by the user doing a zoom all or through code using
VCDrawCurrentEntity. However the entity must first be current VCLastEntity will make the last
entity current so it can be displayed. All entities added to the drawing database are added to the
end and will thus be the last entity.

See Also VCNextEntity, VCFirstEntity, VCFirstSelected, VCNextSelected, VCFirstSelected, VCNextSelected

VCLayerHasProperties
Version 2.0.1
Description Determines if the given layer has layer properties assigned.
Declaration
C/C++ extern "C" vbool WINAPI VCLayerHasProperties(short* iError, short iLayer);
Visual Basic Declare Function VCLayerHasProperties Lib "VCMAIN32.DLL" (iError As Integer, ByVal iLayer As

Integer) As Integer
Delphi function VCLayerHasProperties(var iError: Integer; iLayer: Integer):Boolean; far;
Parameters iLayer - the layer index in question.

returns - value indicating layer property status.
0 - does not have layer properties.
1 - has layer properties.

Notes Layer properties were introduced into v2.0.1 allowing properties to be assigned by layer rather
than by entity. For example, a layer can be set so all entities drawn on the layer will be a specific
color, line type and line width. This will override the current properties settings when active.
VCGetUseByLayerProperties is used to determine if the layer has active property settings while
VCSetUseByLayerProperties allows an application to choose which properties to use.
VCSetLayerProperties will set the values for the layer and VCClearLayerProperties turns the
capability off and clears all associated values. It is important to keep track of the state of layer
properties when modifying entities in the drawing. For example, if you set the color index using
VCSetColorIndex but the layer properties are enabled the proper color may not get applied.
Therefore when attempting to control the properties of entities as they are placed it is
imperative that the application monitor the setting for by layer control as the information is
being supplied by the API.

See Also VCGetLayerProperties

VCLButtonDblClk
Version 1.2
Description Issues a left button double click in the drawing area. Ends a continuous entity placement by

placing a point at the specified location.
Declaration
C/C++: extern "C" void WINAPI VCLButtonDblClk(long lParam, WORD wParam);
Visual Basic: Declare Sub VCLButtonDblClk Lib "VCMAIN32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCLButtonDblClk(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys. These may or may not be
used by Corel Visual CADD to modify the results of the mouse movements depending on the
current context in the application. Whenever an external application receives a left button
double click message in the drawing area, the application should send the VCLButtonDblClk
message to Corel Visual CADD in order to invoke the expected response. This makes if behave
as if it were in the Corel Visual CADD drawing area.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCLButtonDown, VCLButtonDown2

VCLButtonDown
Version 1.2
Description Sends a left button down message to Corel Visual CADD effectively selecting a coordinate for a

tool, or selecting an entity.
Declaration
C/C++: extern "C" void WINAPI VCLButtonDown(long lParam, WORD wParam);
Visual Basic: Declare Sub VCLButtonDown Lib "VCMAIN32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCLButtonDown(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys. These may or may not be
used by Corel Visual CADD to modify the results of the mouse movements depending on the
current context in the application. Whenever an external application receives a left button down
message in the drawing area, the application should send the VCLButtonDown message to Corel
Visual CADD in order to invoke the expected response. This makes if behave as if it were in the
Corel Visual CADD drawing area.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCLButtonDown2, VCRButtondown, VCMButtonDown

VCLButtonDown2
Version 1.2
Description Invokes a left button down at the specified screen coordinates.
Declaration
C/C++: extern "C" void WINAPI VCLButtonDown2(short cx, short cy);
Visual Basic: Declare Sub VCLButtonDown2 Lib "VCMAIN32.DLL" (ByVal cx As Integer, ByVal cy As Integer)
Delphi: procedure VCLButtonDown2(cx: Integer; cy: Integer); far;
Parameters cx - the screen coordinate from 0 to the current number or horizontal screen pixels.

cy - the screen coordinate from 0 to the current number of vertical screen pixels.
Notes Similar to the VCLButtonDownWorldPoint sub routine except that the coordinates specified are

screen coordinates and is completely unrelated to drawing size. Various zooms and views will
affect the location of the clicks. Corel Visual CADD will convert these click points into drawing
coordinates when used to locate points for a drawing or editing tool. This command can be used
to select drawing entities or to locate points of a drawing or editing tool in the drawing area. This
behaves exactly as the user clicking in the drawing area to select drawing coordinates.

See Also VCLButtonDown, VCRButtondown, VCMButtonDown

VCLButtonDownWorldPoint
Version 1.2
Description Invokes a left button down message at the specified "real world" drawing coordinates.
Declaration
C/C++: extern "C" void WINAPI VCLButtonDownWorldPoint(Point2D* dpW);
Visual Basic: Declare Sub VCLButtonDownWorldPoint Lib "VCMAIN32.DLL" (dpW As Point2D)
Delphi: procedure VCLButtonDownWorldPoint(var dpW: Point2D); far;
Parameters dpW is the Point2D structure specifying where in the drawing area the left click is to take place.
Notes VCLButtonDownWorldPoint issues a click at the real world position in the drawing. This is related

to the drawing area and size. If a click is needed in a specific screen area use VCLButtonDown2
instead. This command can be used to select drawing entities or to locate points of a drawing or
editing tool in the drawing area. This behaves exactly as the user clicking in the drawing area to
select drawing coordinates.

See Also VCLButtonDown, VCLButtonDown2, VCRButtondown, VCMButtonDown

VCLButtonUp
Version 1.2
Description Issues a left mouse button up command to Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCLButtonUp(long lParam, WORD wParam);
Visual Basic: Declare Sub VCLButtonUp Lib "VCMAIN32.DLL" (ByVal lParam As Long, ByVal wParam As Integer)
Delphi: procedure VCLButtonUp(lParam: Longint; wParam: Integer); far;
Parameters lParam is a packed coordinate pair as used by Windows.

wParam is passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys. These may or may not be
used by Corel Visual CADD to modify the results of the mouse movements depending on the
current context in the application. Whenever an external application receives a left button up
message in the drawing area, the application should send the VCLButtonUp message to Corel
Visual CADD in order to invoke the expected response. This makes if behave as if it were in the
Corel Visual CADD drawing area.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCLButtonDown, VCLButtonDown2, VCRButtondown, VCMButtonDown

VCLButtonUpTimerReset
Version 2.0.1
Description Enables a user tools to simulate a button up event for "Drag-n-Drop".
Declaration
C/C++ extern "C" void WINAPI VCLButtonUpTimerReset(short* iError);
Visual Basic Declare Sub VCLButtonUpTimerReset Lib "VCMAIN32.DLL" (iError As Integer)
Delphi procedure VCLButtonUpTimerReset(var iError: Integer); far;
Parameters No additional parameters are used in this subroutine.
Notes This function resets the "Drag-n-Drop" timer so the next LButtonUp will send a LButtonDown message to the

current tool. This is how VCADD works internally, tools never handle LButtonUP messages. For example, the
Symbol Manager calls VCLButtonUpTimerReset when a symbol is dragged off the listbox then creates a
SymbolPlace tool. SymbolPlace is sent a LButtonDown message from Corel Visual CADD when the button is
let up allowing a user tool to simulate Drag-n-Drop.

See Also VCGetUserToolLBUp

VCLineAngle
Version 1.2
Description Returns the angle between the line defined by the included points and the horizontal.
Declaration
C/C++: extern "C" void WINAPI VCLineAngle(short* iError, double* dAngle, Point2D* dpP0, Point2D*

dpP1);
Visual Basic: Declare Sub VCLineAngle Lib "VCMAIN32.DLL" (iError As Integer, dAngle As Double, dpP0 As

Point2D, dpP1 As Point2D)
Delphi: procedure VCLineAngle(var iError: Integer; var dAngle: Double; var dpP0 Point2D; var dpP1:

Point2D); far;
Parameters dAngle - the resultant angle of the line.

dpP0 - the coordinates of the first end of the line.
dpP1 - the coordinates of the second end of the line.

Notes Provides basic ability to determine the angle of a line defined by two provided points to the
horizontal.

See Also VCLineLength, VCLinePerpPoint, VCLineAngle

VCLineLength
Version 1.2
Description Returns the length of the line defined by the two points.
Declaration
C/C++: extern "C" void WINAPI VCLineLength(short* iError, double* dAngle, Point2D* dpP0, Point2D*

dpP1);
Visual Basic: Declare Sub VCLineLength Lib "VCMAIN32.DLL" (iError As Integer, dAngle As Double, dpP0 As

Point2D, dpP1 As Point2D)
Delphi: procedure VCLineLength(var iError: Integer; var dAngle: Double; var dpP0 Point2D; var dpP1:

Point2D); far;
Parameters dAngle - the result 2pt angle of the line.

dpP0 - the coordinates of the first end of the line.
dpP1 - the coordinates of the second end of the line.

Notes Provides basic ability to determine distance between two points.
See Also VCLineLength, VCLinePerpPoint, VCLineAngle

VCLinePerpPoint
Version 1.2
Description Calculates the perpendicular projection from a specified point to a the defined line.
Declaration
C/C++: extern "C" void WINAPI VCLinePerpPoint(short* iError, Point2D* dpC, Point2D* dpP0, Point2D*

dpP1, Point2D* dpOff);
Visual Basic: Declare Sub VCLinePerpPoint Lib "VCMAIN32.DLL" (iError As Integer, dpC As Point2D, dpP0 As

Point2D, dpP1 As Point2D, dpOff As Point2D)
Delphi: procedure VCLinePerpPoint(var iError: Integer; var dpC: Point2D; var dpP0 Point2D; var dpP1:

Point2D; var dpOff: Point2D); far;
Parameters dpC - returned by Corel Visual CADD as the calculated point on the line.

dpP0 - the first point defining the line.
dpP1 - the second point defining the line.
pOff - the point to calculate the perpendicular projection from.

Notes Snap perpendicular typically supplies the functionality to snap geometry perpendicular to
existing linear geometry, however through the API this is not necessarily convenient. This
function provides that functionality to the API and thus allows perpendicular constructions to
existing or even simply defined lines.

See Also VCLineLength, VCLinePerpPoint, VCLineAngle

VCLinePointCompute
Version 1.2
Description Calculates the coordinates of a point a specified angle and distance from the given line.
Declaration
C/C++: extern "C" void WINAPI VCLinePointCompute(short* iError, Point2D* dpC, Point2D* dpP0,

Point2D* dpP1, double dDist, double dAngle);
Visual Basic: Declare Sub VCLinePointCompute Lib "VCMAIN32.DLL" (iError As Integer, dpC As Point2D, dpP0

As Point2D, dpP1 As Point2D, ByVal dDist As Double, ByVal dAngle As Double)
Delphi: procedure VCLinePointCompute(var iError: Integer; var dpC: Point2D; var dpP0 Point2D; var

dpP1: Point2D; dDist: Double; dAngle: Double); far;
Parameters dpC - returned by Corel Visual CADD as the calculated point on the line.

dpP0 - the first point defining the line.
dpP1 - the second point defining the line.
Dist - the distance out the projection.
dAngle - the angle from the defined line at the dpP0 point.

Notes Using existing lines or line definitions, this function allows a point to be located a specified
distance and angle from the first vertex of the line. Imagine standing at point dpP0 looking at
dpP1, if a user were to turn dAngle radians in the clockwise direction and look Dist distance out
at that angle dpC is the coordinates of the location now being viewed.

See Also VCLinePointCompute

VCLoadAlias
Version 1.2
Description Loads a custom file containing two-letter command structures.
Declaration
C/C++: extern "C" void WINAPI VCLoadAlias(char* szFile, short* iError);
Visual Basic: Declare Sub VCLoadAlias Lib "VCDLG32.DLL" (ByVal szFile As String, iError As Integer)
Delphi: procedure VCLoadAlias(szFile: PChar; var iError: Integer); far;
Parameters szFile - the path and file name for the new commands.
Notes The Corel Visual CADD interface can be customized to fit an applications specific task. This

customization includes loading new menus, tool palettes, speedbars and two-letter commands.
All the custom files are contained in text files located in the system path. These files can be
edited to create the interface desired and then loaded directly through the API.

See Also VCLoadCmdExt,VCLoadMainSpeedbar, VCLoadToolPalette

VCLoadAscii
Version 2.0
Description Loads an ASCII text file and initiate a placement tool for the file.
Declaration
C/C++ extern "C" void WINAPI VCLoadAscii(short* iError, char* szAscii);
Visual Basic Declare Sub VCLoadAscii Lib "VCTOOL32.DLL" (iError As Integer, ByVal szAscii As String)
Delphi procedure VCLoadAscii(var iError: Integer; szAscii: PChar); far;
Parameters szAscii - the file to load.
Notes An ASCII text file can be directly loaded and placed into a drawing. The command will load the

text file using the current text settings.
See Also VCLoadDrawing

VCLoadCmdExt
Version 1.2
Description Loads a file containing custom commands.
Declaration
C/C++: extern "C" void WINAPI VCLoadCmdExt(char* szFile, short* iError);
Visual Basic: Declare Sub VCLoadCmdExt Lib "VCDLG32.DLL" (ByVal szFile As String, iError As Integer)
Delphi: procedure VCLoadCmdExt(szFile: PChar; var iError: Integer); far;
Parameters szFile - the path and file name for the new commands.
Notes Custom commands are user-defined commands that can optimize the work environment. They

are base on scripts. More details are available in the User Manual. The Corel Visual CADD
interface can be customized to fit an applications specific task. This customization includes
loading new menus, tool palettes, speedbars and two-letter commands. All the custom files are
contained in text files located in the system path. These files can be edited to create the
interface desired and then loaded directly through the API.

See Also VCLoadAlias ,VCLoadMainSpeedbar, VCLoadToolPalette

VCLoadDrawing
Version 1.2
Description Loads a drawing and converts it if necessary.
Declaration
C/C++: extern "C" void WINAPI VCLoadDrawing(short* iError, char* pName, short iFileType);
Visual Basic: Declare Sub VCLoadDrawing Lib "VCTRAN32.DLL" (iError As Integer, ByVal pName As String,

ByVal iFileType As Integer)
Delphi: procedure VCLoadDrawing(var iError: Integer; pName: PChar; iFileType Integer); far;
Parameters pName - the name and path of the file to be loaded

iFileType - represents the type of drawing file that is to be loaded.
-1 - Determine By Extension
0 - FILE_VCD
 3 - FILE_GCD
5 - FILE_DWG
6 - FILE_DXF

Notes Corel Visual CADD will load all the for-mentioned file types. However, be aware that Visual CADD
has limited 3D support and may not be able to convert all file information from AutoCAD
drawings. Also note that if using the iFileType of -1, the extension is the sole classification for the
file type to be converted. This can be a problem with pre-Generic CADD 6.0 drawings as these
were *.DWG files but not the same *.DWG files as AutoCAD. This can be a problem and may
cause the program to crash.

See Also VCACADReadWith3D, VCOpenVCS, VCOpenCMP

VCLoadMainSpeedbar
Version 1.2
Description Loads a file containing a custom speedbar.
Declaration
C/C++: extern "C" void WINAPI VCLoadMainSpeedbar(char* szFile, short* iError);
Visual Basic: Declare Sub VCLoadMainSpeedbar Lib "VCDLG32.DLL" (ByVal szFile As String, iError As Integer)
Delphi: procedure VCLoadMainSpeedbar(szFile: PChar; var iError: Integer); far;
Parameters szFile - the path and file name for the new commands.
Notes The Corel Visual CADD interface can be customized to fit an applications specific task. This

customization includes loading new menus, tool palettes, speedbars and two-letter commands.
All the custom files are contained in text files located in the system path. These files can be
edited to create the interface desired and then loaded directly through the API.

See Also VCLoadAlias ,VCLoadCmdExt, VCLoadToolPalette

VCLoadPlotterDriver
Version 2.0
Description Loads a plotter driver for the direct plot routine.
Declaration
C/C++ extern "C" void WINAPI VCLoadPlotterDriver(short* iError, char* szName);
Visual Basic Declare Sub VCLoadPlotterDriver Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As String)
Delphi procedure VCLoadPlotterDriver(var iError: Integer; szName: PChar); far;
Parameters szName - the name of the plotter driver language.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCLoadPlotterLanguage, VCLoadPlotterPenMap

VCLoadPlotterLanguage
Version 2.0
Description Loads a plotter language for the direct plot routine.
Declaration
C/C++ extern "C" void WINAPI VCLoadPlotterLanguage(short* iError, char* szName);
Visual Basic Declare Sub VCLoadPlotterLanguage Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As

String)
Delphi procedure VCLoadPlotterLanguage(var iError: Integer; szName: PChar); far;
Parameters szName - the name of the plotter language
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

Corel Visual CADD ships with support for many common plotter languages. However, if the
desired language is not available, an application can create a language directly through the API.
A plotter language consists of a delimiter, initialization string, de-initialization string, pen up, pen
move, pen draw, pen speed and pen change commands. Each of these needs to be specified
when creating a language. The required control codes are generally listed in the output devices
documentation and set to a specific plotter type.

See Also VCLoadPlotterDriver, VCLoadPlotterPenMap

VCLoadPlotterPenMap
Version 2.0
Description Loads a pen map for the direct plot routine.
Declaration
C/C++ extern "C" void WINAPI VCLoadPlotterPenMap(short* iError, char* szName);
Visual Basic Declare Sub VCLoadPlotterPenMap Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As

String)
Delphi procedure VCLoadPlotterPenMap(var iError: Integer; szName: PChar); far;
Parameters szName - the name of the pen map to load
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCLoadPlotterDriver, VCLoadPlotterLanguage

VCLoadToolPalette
Version 1.2
Description Loads a file containing a custom speedbar.
Declaration
C/C++: extern "C" void WINAPI VCLoadToolPalette(char* szFile, short* iError);
Visual Basic: Declare Sub VCLoadToolPalette Lib "VCDLG32.DLL" (ByVal szFile As String, iError As Integer)
Delphi: procedure VCLoadToolPalette(szFile: PChar; var iError: Integer); far;
Parameters szFile - the path and file name for the new commands.
Notes The Corel Visual CADD interface can be customized to fit an applications specific task. This

customization includes loading new menus, tool palettes, speedbars and two-letter commands.
All the custom files are contained in text files located in the system path. These files can be
edited to create the interface desired and then loaded directly through the API.

See Also VCLoadAlias ,VCLoadCmdExt,VCLoadMainSpeedbar

VCLoadVCDFromFile
Version 2.0
Description Loads a Corel Visual CADD native file.
Declaration
C/C++ extern "C" void WINAPI VCLoadVCDFromFile(short* iError, char* pS_);
Visual Basic Declare Sub VCLoadVCDFromFile Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS_ As String)
Delphi procedure VCLoadVCDFromFile(var iError: Integer; pS_: PChar); far;
Parameters pS- the path and file name for saving the drawing.
Notes VCLoadVCDFromFile is a specific load routine to work with Corel Visual CADD native files. An

error will occur if attempting to load files other than *.VCD files. In situations where other vector
drawing formats such *.DWG, *.GCD or *.DXF will also be used the routine VCLoadDrawing
should be implemented which will load all these vector file types.

See Also VCSaveVCDToStream, VCSaveVCDToFile, VCLoadVCDFromStream

VCLoadVCDFromStream
Version 2.0
Description Loads a Corel Visual CADD drawing from an OLE stream.
Declaration
C/C++ extern "C" void WINAPI VCLoadVCDFromStream(short* iError, void* pS_);
Visual Basic Declare Sub VCLoadVCDFromStream Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS_ As String)
Delphi procedure VCLoadVCDFromStream(var iError: Integer; var pS_: Pointer); far;
Parameters pS - a pointer to the data stream for storing the information.
Notes All of the Corel Visual CADD OLE handler routines are available to create an OLE server. This

routine will write the file to stream for the application to handle in its OLE event. Please see the
documentation for creating an OLE application in your compiler help for details on a stream.

See Also VCSaveVCDToStream, VCSaveVCDToFile, VCLoadVCDFromFile

VCLockFile
Version 2.0
Description Locks the given file name for read only capabilities.
Declaration
C/C++ extern "C" vbool WINAPI VCLockFile(char* szFileName, vbool tfFileReadOnly, vbool tfLoading);
Visual Basic Declare Function VCLockFile Lib "VCMAIN32.DLL" (ByVal szFileName As String, ByVal

tfFileReadOnly As Integer, ByVal tfLoading As Integer) As Integer
Delphi function VCLockFile(szFileName: PChar; tfFileReadOnly: Boolean; tfLoading:
Parameters tfFileReadOnly - flag for setting the file read0only.

0 - do not set as read-only.
1 - set as read-only.
tfLoading - flag for allowing other users to load the file.
0 - do not let others open the file.
1 - let others open the file.

Notes Locked files can not be modified by another Corel Visual CADD user on a network until the
drawing is saved or closed. Other users can only open, view and copy the drawing. The user
name is taken form the registered user name stored in the registry for the installed machine.

See Also VCIsFileLocked, VCIsFileLockedByCurrentUser

VCLockMessage
Version 2.0
Description Locks the status bar message to display the given message.
Declaration
C/C++ extern "C" void WINAPI VCLockMessage(short* iError, char* szMess, vbool tfLock);
Visual Basic Declare Sub VCLockMessage Lib "VCMAIN32.DLL" (iError As Integer, ByVal szMess As String,

ByVal tfLock As Integer)
Delphi procedure VCLockMessage(var iError: Integer; szMess: PChar; tfLock: Boolean);
Parameters szMess - the message to display, should be set to NULL when unlocking.

tfLock - locks or unlocks the status display.
0 - unlocks the display.
1 - locks the display.

Notes The status bar is used to display the current tool position and guide a user through the tool
operation. An application can set and change this displayed message with VCSetPrompt. Once
the applications tool is complete however the default Corel Visual CADD messages will show.
VCLockMessage allows an application to lock all messages from the display and provide a single
instruction for a user. For example, an application may never utilize prompts but instead only
requires a user to make settings in an application dialog. The application can lock the message
and provide a prompt such as "Enter the settings". This prompt will not be overwritten by the
Corel Visual CADD messaging system. The application then calls the VCLockMessage routine
again to reset the prompt and allow Corel Visual CADD to show the prompts.

See Also VCGetCmdStr

VCLParamToPoint2D
Version 1.2
Description Converts a lParam as passed from a Windows function to a Point2D.
Declaration
C/C++: extern "C" Point2D WINAPI VCLParamToPoint2D(long lParam);

extern "C" void WINAPI VCLParamToPoint2DBP(long lParam, Point2D* pRet);
Visual Basic: Declare Sub VCLParamToPoint2DBP Lib "VCMAIN32.DLL" (ByVal lParam As Long, pRet As Point2D)
Delphi: procedure VCLParamToPoint2DBP(lParam: Longint; var pRet: Point2D); far;
Parameters lParam - a packed coordinate pair as used by Windows.

Returns - Point2D structure composed of a double x and double y coordinate pair.
Notes Windows functions for mouse movement in particular passes the coordinate values as lParams.

While these may be passed directly to many of the Corel Visual CADD functions, it may be
necessary to convert these to Point2D's. This function will make that conversion. This function
uses a Point2D structure which must be previously defined as a structure of x and y coordinate
values both defined as doubles.

See Also VCLButtonDown, VCLButtonDown2, VCLButtonDownWorldPoint

VCMacro
Version 1.2
Description Issues a command to Corel Visual CADD to execute the included macro string.
Declaration
C/C++: extern "C" void WINAPI VCMacro(char* sz);
Visual Basic: Declare Sub VCMacro Lib "VCMAIN32.DLL" (ByVal sz As String)
Delphi: procedure VCMacro(sz: PChar); far;
Parameters sz - the string of Corel Visual CADD native or two letter commands.
Notes Any two letter command or native Corel Visual CADD can be used to issue a macro or script

command. Sequences of commands can also be sent but must be separated by semicolons.
Each macro must also be concluded with a semicolon.

See Also VCIsScriptAssigned

VCMakeValidDosFilenameForSave
Version 1.2
Description Modifies the proposed filename and checks to see if valid.
Declaration
C/C++: extern "C" vbool WINAPI VCMakeValidDosFilenameForSave(char* pFilename);
Visual Basic: Declare Function VCMakeValidDosFilenameForSave Lib "VCMAIN32.DLL" (ByVal pFilename As

String) As Integer
Delphi: function VCMakeValidDosFilenameForSave(pFilename: PChar):Boolean; far;
Parameters pFilename - the proposed filename to change.

Returns - a 0 if successful.
Notes While this function will modify pFilename to eliminate spaces and invalid characters, it also

attempts to open the file to see if it exists or is read only. If there is a problem, it will prompt the
user and return a 1 if the user cancels.

See Also VCSaveDrawing, VCSaveVCS, VCSaveStyle, VCSaveVCA

VCManualEntryMode
Version 1.2
Description Sets how Corel Visual CADD interprets coordinates entered by the user.
Declaration
C/C++: extern "C" void WINAPI VCManualEntryMode(short ID);
Visual Basic: Declare Sub VCManualEntryMode Lib "VCMAIN32.DLL" (ByVal ID As Integer)
Delphi: procedure VCManualEntryMode(ID: Integer); far;
Parameters ID - an index representing the mode for Manual Entry. This mode is passed through the

appropriate command sequence for Manual Entry Mode.
Notes Use the Manual Entry Relative command to set the operating mode to the relative manual entry

mode. The manual entry mode determines how Corel Visual CADD interprets coordinates
(whether Cartesian or polar) that a user types. In the relative mode, each point placed or
referenced through a snap or other command becomes a temporary origin for the next
operation. This mode is particularly useful when distances are measured in sequence, with the
end of one measurement being the beginning of the next. In the absolute mode, coordinates are
interpreted as relative to the drawing origin. This mode is particularly useful when locations are
calculated or imported through external programs or macros. In basepoint mode, specify a
temporary origin that remains in effect until a user changes its location or change modes. This
mode is particularly useful when locations are known in relation to one specific point.

See Also VCSetMBMode, VCSetMOMOde, VCSetMRMode

VCMatchCurrentEntity
Version 1.2
Description Sets all appropriate settings to the same as the current entity.
Declaration
C/C++: extern "C" void WINAPI VCMatchCurrentEntity(short* iError);
Visual Basic: Declare Sub VCMatchCurrentEntity Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCMatchCurrentEntity(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine..
Notes When retrieving settings associated with entities such as dimensions, not all properties are

available through direct queries to the entity. VCMatchCurrentEntity allows an external
application to set all the drawing settings that relate to the entity the same as the current entity.
This allows the API to get the specific properties of the entity from the settings rather than from
each entity. While this does upset the desired settings set by the user or application,
VCSaveSettings will temporarily save them all prior to matching the current entity and
VCRestoreSettings will bring the desired settings back again. The current entity is set with
VCSetCurrentEntity, VCFirstEntity, or VCNextEntity.

See Also VCRestoreSettings, VCNextEntity, VCEndOperation, VCSetCurrentErased, VCSetCurrentEntity,
VCDrawCurrentEntity, VCLastEntity, VCDuplicate, VCBeginOperation, VCGetCurrentEntityHandle,
VCIsCurrentSelected, VCFirstEntity, VCSaveSettings, VCNextEntity, VCFirstEntity,
VCSetCurrentEntity, VCRestoreSettings, VCSaveSettings

VCMButtonDown
Version 1.2
Description Sends a middle button down message to Corel Visual CADD effectively selecting a coordinate for

a tool, or selecting an entity.
Declaration
C/C++: extern "C" void WINAPI VCMButtonDown(long lParam, WORD wParam);
Visual Basic: Declare Sub VCMButtonDown Lib "VCTOOL32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCMButtonDown(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys. These may or may not be
used by Corel Visual CADD to modify the results of the mouse movements depending on the
current context in the application. Whenever an external application receives a middle button
down message in the drawing area, the application should send the VCMButtonDown message
to Corel Visual CADD in order to invoke the expected response. This makes if behave as if it were
in the Visual CADD drawing area.

See Also VCLButtonDown2, VCLButtondown, VCRButtonDown

VCMerge
Version 1.2
Description Loads a copy of an existing drawing into the current drawing without renaming or erasing the

current drawing contents or environment. Does not delete or modify the file being merged into
the current drawing.

Declaration
C/C++: extern "C" void WINAPI VCMerge(char* pName);
Visual Basic: Declare Sub VCMerge Lib "VCTOOL32.DLL" (ByVal pName As String)
Delphi: procedure VCMerge(pName: PChar); far;
Parameters pName - the drawing path and file name.
Notes Use the Merge command to combine the contents of two drawings. The name and drawing

environment of the first drawing loaded are preserved, although symbols and attributes of the
second drawing are added to those of the first (conflicts such as duplicate symbol names are
resolved in favor of the first drawing).

See Also VCLoadDrawing, VCCopy, VCMergeDrawing, VCMergeVCDNoPaint

VCMergeDrawing
Version 1.2
Description Loads and merges the specified file into the current drawing.
Declaration
C/C++: extern "C" void WINAPI VCMergeDrawing(short* iError, char* pName, short iFileType);
Visual Basic: Declare Sub VCMergeDrawing Lib "VCTRAN32.DLL" (iError As Integer, ByVal pName As String,

ByVal iFileType As Integer)
Delphi: procedure VCMergeDrawing(var iError: Integer; pName: PChar; iFileType Integer); far;
Parameters pName - the path and name of the file to be merged.

iFileType - represents the type of drawing file that is to be loaded.
-1 - Determine By Extension
0 - FILE_VCD
 3 - FILE_GCD
5 - FILE_DWG
6 - FILE_DXF

Notes Merging a drawing will load the new drawing into the drawing already active. If there are any
named layer conflicts the first drawing will retain the layer names and the merged drawing will
lose the layer name where the conflict exists. The same is true of loaded symbols. If there is a
conflict between names, the previous drawing will retain the symbol definitions and the merged
drawing will be forced to adopt the new symbols. This is the case for any conflicts: whichever
drawing is first wins.

See Also VCLoadDrawing, VCMergeVCDNoPaint

VCMergeVCDNoPaint
Version 1.2
Description Loads and merges the specified Corel Visual CADD drawing into the current drawing, but does

not repaint the screen upon completion.
Declaration
C/C++: extern "C" void WINAPI VCMergeVCDNoPaint(short* iError, char* pInputName);
Visual Basic: Declare Sub VCMergeVCDNoPaint Lib "VCTRAN32.DLL" (iError As Integer, ByVal pInputName As

String)
Delphi: procedure VCMergeVCDNoPaint(var iError: Integer; pInputName: PChar); far;
Parameters pInputName - the path and filename of the drawing to be merged.
Notes Merging a drawing will load the new drawing into the drawing already active. If there are any

named layer conflicts the first drawing will retain the layer names and the merged drawing will
lose the layer name where the conflict exists. The same is true of loaded symbols. If there is a
conflict between names, the previous drawing will retain the symbol definitions and the merged
drawing will be forced to adopt the new symbols. This is the case for any conflicts: whichever
drawing is first wins. In this case, the drawing is not painted, or redrawn, after the merge is
completed. When a repaint is initiated by another event the merged drawing will then appear.

See Also VCLoadDrawing, VCMergeDrawing

VCModalDlg
Version 2.0
Description Initiates the dialog for the input command as modal dialog.
Declaration
C/C++ extern "C" void WINAPI VCModalDlg(short* iError, long cmd_id);
Visual Basic Declare Sub VCModalDlg Lib "VCDLG32.DLL" (iError As Integer, ByVal cmd_id As Long)
Delphi procedure VCModalDlg(var iError: Integer; cmd_id: Longint); far;
Parameters cmd_id - the command ID for the dialog.
Notes Most dialogs can be launched directly through the API with a dialog routine. These dialogs can

also be launched with VCModalDlg by passing the command id.
See Also Dialog Reference

VCMouseMove
Version 1.2
Description Used to send mouse movements to Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCMouseMove(long lParam, WORD wParam);
Visual Basic: Declare Sub VCMouseMove Lib "VCMAIN32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCMouseMove(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys. These may or may not be
used by Corel Visual CADD to modify the results of the mouse movements depending on the
current context in the application. For example, holding the ctrl key while dragging objects
toggles the state of the ortho mode.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCMouseMoveWorldPoint, VCMouseMove2, VCGetUserToolMouseMove

VCMouseMove2
Version 1.2
Description Moves the Corel Visual CADD cursor to the specified position in screen coordinates.
Declaration
C/C++: extern "C" void WINAPI VCMouseMove2(short cx, short cy);
Visual Basic: Declare Sub VCMouseMove2 Lib "VCMAIN32.DLL" (ByVal cx As Integer, ByVal cy As Integer)
Delphi: procedure VCMouseMove2(cx: Integer; cy: Integer); far;
Parameters cx - the screen coordinate from 0 to the current number or horizontal screen pixels.

cy - the screen coordinate from 0 to the current number of vertical screen pixels.
Notes This subroutine is similar to the VCMouseMoveWorldPoint except it uses screen coordinates.
See Also VCMouseMoveWorldPoint, VCMouseMoveWorldPoint, VCMouseMove

VCMouseMoveWorldPoint
Version 1.2
Description Moves the Corel Visual CADD cursor to the specified position in the "real world" drawing

coordinates.
Declaration
C/C++: extern "C" void WINAPI VCMouseMoveWorldPoint(Point2D dpW);
Visual Basic: Declare Sub VCMouseMoveWorldPoint Lib "VCMAIN32.DLL" (dpW As Point2d)
Delphi: procedure VCMouseMoveWorldPoint(dpPW : Point2D); far;
Parameters dpW - the coordinate which the cursor is to be moved.
Notes This function uses a Point2D structure which must be previously defined as a structure of x and

y coordinate values both defined as doubles.
See Also VCMouseMove, VCMouseMove2

VCMoveCursor
Version 1.2
Description Moves the cursor as if the user had pressed an arrow key.
Declaration
C/C++: extern "C" void WINAPI VCMoveCursor(short nVKey);
Visual Basic: Declare Sub VCMoveCursor Lib "VCMAIN32.DLL" (ByVal nVKey As Integer)
Delphi: procedure VCMoveCursor(nVKey: Integer); far;
Parameters nVKey - the Windows constant for the arrow keys as follows.

VK_DOWN moves the cursor down.
VK_RIGHT moves the cursor right.
VK_UP moves the cursor up.
VK_LEFT moves the cursor left.
VK_HOME moves the cursor up and left.
VK_END moves the cursor down and left.
VK_PRIOR moves the cursor left up and right.
VK_NEXT moves the cursor down and right.

Notes All arrow key movement is determined by the setting in the system tab regarding screen or
world scale increments and the number assigned therein.

See Also VCGetCursorSize, VCGetCursorColor

VCNameView
Version 1.2
Description Names the current view for later display.
Declaration
C/C++: extern "C" void WINAPI VCNameView(char* szView);
Visual Basic: Declare Sub VCNameView Lib "VCMAIN32.DLL" (ByVal szView As String)
Delphi: procedure VCNameView(szView: PChar); far;
Parameters szView - the name for the view.
Notes Named views are useful whenever a specific screen view needs to be accessed repeatedly for

drawing or editing. The view is returned with VCZoomView.
See Also VCZoomView

VCNewView
Version 2.0
Description Creates a new view for the input drawing handle.
Declaration
C/C++ extern "C" void WINAPI VCNewView(short* iError, long hWnd_);
Visual Basic Declare Sub VCNewView Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd_ As Long)
Delphi procedure VCNewView(var iError: Integer; hWnd_: Longint); far;
Parameters hWnd - the windows handle for the control to display the viewport.
Notes Corel Visual CADD supports multiple viewports for drawings and displays the views in separate

Window frames. These views are created through the API with VCNewView. When working with
drawings utilizing multiple viewports, an application can parse through the views to update
specific views as needed. The viewports are treated as separate MDI windows are managed by
the Corel Visual CADD frame.

See Also VCFirstView, VCNextView, VCZoomAllViews, VCZoomRegenAllViews

VCNewWorld
Version 1.2
Description Creates another instance of a "world" for Corel Visual CADD to create or modify a drawing.
Declaration
C/C++: extern "C" WORLDHANDLE WINAPI VCNewWorld(HWND hWnd_);
Visual Basic: Declare Function VCNewWorld Lib "VCMAIN32.DLL" (ByVal hWnd_ As Integer) As Long
Delphi: function VCNewWorld(hWnd_: Integer):Longint; far;
Parameters hWnd - the hWnd handle for the object to be used as the new world.

Returns - a long representing a Corel Visual CADD worldhandle.
Notes Whenever the application needs to create a new drawing area, such as in an MDI window, Corel

Visual CADD needs to know the hWnd value for the object which is to contain the new drawing
space. This creates a new environment for the drawing and exists entirely outside any other
current drawings or worlds. The returned long is used by other Corel Visual CADD API calls to
reference which world the call be affecting.

See Also VCDestroyWorld, VCIsWorldEmpty, VCIsWorldValid, VCGetCurrWorld, VCClearDrawing,
VCClearDrawingNoPrompt, VCPackDataVCDrawToDC

VCNextEntity
Version 1.2
Description Positions a pointer for entity operations to the next entity in the database after the current one.
Declaration
C/C++: extern "C" vbool WINAPI VCNextEntity(short* iError, short* bKind);
Visual Basic: Declare Function VCNextEntity Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCNextEntity(var iError: Integer; var bKind: Integer):Boolean; far;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offer several utility parsing methods for flexibility in locating entities in the database. Each offers
advantages in certain situations. VCFirst/NextEntity move through each entity in the drawing
database. VCFirst/NextEntityExpand parses the database as if the drawing file had been
exploded. Every entity, including those in symbol definition and hatch patterns are included in
the search. VCFirst/NextOnScreen clip the drawing and allow for quick entity access to only
those entities found in the current zoom. VCFirst/NextSelected parse only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be a 0 and the code can handle this case accordingly.

See Also VCFirstEntity, VCGetCurrentEntityHandle, VCLastEntity, VCFirstEntityExpand,
VCNextEntityExpand, VCFirstEntity, VCNextOnScreen, VCFirstSelected, VCNextSelected,
VCSetCurrentEntity

VCNextEntityExpand
Version 1.2
Description Positions a pointer for entity operations to the next entity in the database after the current one.
Declaration
C/C++: extern "C" vbool WINAPI VCNextEntityExpand(short* iError, short* bKind);
Visual Basic: Declare Function VCNextEntityExpand Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer)

As Integer
Delphi: function VCNextEntityExpand(var iError: Integer; var bKind: Integer):Boolean;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offer several utility parsing methods for flexibility in locating entities in the database. Each offers
advantages in certain situations. VCFirst/NextEntity move through each entity in the drawing
database. VCFirst/NextEntityExpand parses the database as if the drawing file had been
exploded. Every entity, including those in symbol definition and hatch patterns are included in
the search. VCFirst/NextOnScreen clip the drawing and allow for quick entity access to only
those entities found in the current zoom. VCFirst/NextSelected parse only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be a 0 and the code can handle this case accordingly.

See Also VCFirstEntity, VCLastEntity, VCFirstEntityExpand, VCFirstEntity, VCNextOnScreen,
VCFirstSelected, VCNextSelected, VCSetCurrentEntity

VCNextGraphic
Version 2.0
Description Positions a pointer for entity operations to the next graphic in the entity.
Declaration
C/C++ extern "C" vbool WINAPI VCNextGraphic(short* iError, GRAPHICHANDLE hG);
Visual Basic Declare Function VCNextGraphic Lib "VCMAIN32.DLL" (iError As Integer, ByVal hG As Long) As

Integer
Delphi function VCNextGraphic(var iError: Integer; hG: Longint):Boolean; far;
Parameters hG - the returned GRAPHICHANDLE for the current entity

Returns - 0 if not successful and 1 otherwise.
Notes Some entities are defined by several graphical objects, hatch patterns, fills, line types and fonts.

For instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also

VCNextOnScreen
Version 1.2
Description Determines the next entity on screen and makes it current.
Declaration
C/C++: extern "C" vbool WINAPI VCNextOnScreen(short* iError, short* bKind);
Visual Basic: Declare Function VCNextOnScreen Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCNextOnScreen(var iError: Integer; var bKind: Integer):Boolean;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offer several utility parsing methods for flexibility in locating entities in the database. Each offers
advantages in certain situations. VCFirst/NextEntity move through each entity in the drawing
database. VCFirst/NextEntityExpand parses the database as if the drawing file had been
exploded. Every entity, including those in symbol definition and hatch patterns are included in
the search. VCFirst/NextOnScreen clip the drawing and allow for quick entity access to only
those entities found in the current zoom. VCFirst/NextSelected parse only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be a 0 and the code can handle this case accordingly.

See Also VCFirstEntity, VCLastEntity, VCFirstEntityExpand, VCNextEntityExpand, VCFirstEntity,
VCFirstOnScreen, VCFirstSelected, VCNextSelected, VCSetCurrentEntity

VCNextSelected
Version 1.2
Description Determines the next selected entity and makes it current.
Declaration
C/C++: extern "C" vbool WINAPI VCNextSelected(short* iError, short* bKind);
Visual Basic: Declare Function VCNextSelected Lib "VCMAIN32.DLL" (iError As Integer, bKind As Integer) As

Integer
Delphi: function VCNextSelected(var iError: Integer; var bKind: Integer):Boolean;
Parameters bKind - set by the function to what type of entity is now current.

Returns - 0 if not successful and 1 otherwise.
Notes Whenever querying entities for their particular properties, it is necessary to have a method to

step through the drawing database and select which entity a given query will focus on. The API
offer several utility parsing methods for flexibility in locating entities in the database. Each offers
advantages in certain situations. VCFirst/NextEntity move through each entity in the drawing
database. VCFirst/NextEntityExpand parses the database as if the drawing file had been
exploded. Every entity, including those in symbol definition and hatch patterns are included in
the search. VCFirst/NextOnScreen clip the drawing and allow for quick entity access to only
those entities found in the current zoom. VCFirst/NextSelected parse only through the selection
set. This method combined with a selection filter allow access to specific entities meeting a set
of criteria quickly in the drawing database. If no entities exist for the method, the return value
will be a 0 and the code can handle this case accordingly.

See Also VCGetCurrentEntityHandle, VCNextEntity, VCLastEntity, VCFirstEntityExpand,
VCNextEntityExpand, VCFirstEntity, VCNextOnScreen, VCFirstSelected, VCFirstEntity,
VCSetCurrentEntity

VCNextSelectedRF
Version 2.0
Description Positions a pointer to the next entity in the given reference frame.
Declaration
C/C++ extern "C" vbool WINAPI VCFirstSelectedRF(short* iError, long* hE);
Visual Basic Declare Function VCFirstSelectedRF Lib "VCMAIN32.DLL" (iError As Integer, hE As Long) As

Integer
Delphi function VCFirstSelectedRF(var iError: Integer; var hE: Longint):Boolean;
Parameters hE - the entity handle for the reference frame to parse.

Returns - 0 if not successful and 1 otherwise.
Notes Reference Frame entities enable you to display the contents of one file within another. You can

use the frames to layout drawings for printing or to create overlays. In order to add a reference
frame entity an application must first set the drawing name to add as a reference entity with
VCSetRefFrameName.

VCFirstSelectedRF and VCNextSelectedRF allow an application to parse the entities inside the
reference frame. Any values returned for coordinates, using routines such as
VCGetCurrentEntityPoint, are returned in values corresponding to the active drawing not the
frame entity. For example if a real world drawing is referenced into a paper space drawing, the
values returned will represent the coordinates for the entity in the paper space drawing not the
absolute coordinates from the real world drawing. When the absolute coordinates are desired
the referenced file must be opened and parsed with other standard database routines.

See Also VCFirstSelectedRF, VCGetCurrentEntityPoint

VCNextView
Version 2.0
Description Moves to the next viewport for the active drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCNextView(short* iError);
Visual Basic Declare Function VCNextView Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCNextView(var iError: Integer):Boolean; far;
Parameters hWnd - the windows handle for the control to display the viewport.
Notes Corel Visual CADD supports multiple viewports for drawings and displays the views in separate

Window frames. These views are created through the API with VCNewView. When working with
drawings utilizing multiple viewports, an application can parse through the views to update
specific views as needed. The viewports are treated as separate MDI windows are managed by
the Corel Visual CADD frame.

See Also VCFirstView, VCNextView, VCZoomAllViews, VCZoomRegenAllViews

VCNoDrawingSpeedbar
Version 2.0
Description Turns the display of the speedbar off.
Declaration
C/C++ extern "C" void WINAPI VCNoDrawingSpeedbar(short* iError);
Visual Basic Declare Sub VCNoDrawingSpeedbar Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCNoDrawingSpeedbar(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes The Corel Visual CADD interface is enhanced with context sensitive ribalogs. These ribalogs

display setting information and prompt for input during a tool operation. An application can
override the display of the ribalogs allowing for no user input during the tool operation. This
allows the application to control the complete operation of the tool. For example, a copy tool
may always need to make three (3) copies of the entity. Instead of ,launching the tool and
hoping the user inputs the correct number, the application can set the number of copies through
the API and turn off the display so the user can not override the values.

See Also

VCObjectSelect
Version 1.2
Description Selects the object located at the designated point.
Declaration
C/C++: extern "C" void WINAPI VCObjectSelect(Point2D* dpP0);
Visual Basic: Declare Sub VCObjectSelect Lib "VCMAIN32.DLL" (dpP0 As Point2D)
Delphi: procedure VCObjectSelect(var dpP0: Point2D); far;
Parameters pP0 - the coordinates of the point from which to select an object.
Notes Behaves exactly as the object select tool, however it can be called from the API.
See Also VCSetCurrentSelected

VCOpenCMP
Version 1.2
Description Loads a Generic CADD component definition into the drawing session.
Declaration
C/C++: extern "C" void WINAPI VCOpenCMP(char* szFile);
Visual Basic: Declare Sub VCOpenCMP Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi: procedure VCOpenCMP(szFile: PChar); far;
Parameters szFile - a string representing the path and name of the symbol to load.
Notes This subroutine only loads symbols with the .CMP file extension. This offers advantages over

VCOpenSymbol since the file type does not have to be passed as a parameter. This call only
loads the symbol into memory, the symbol is not placed until a place symbol command is
executed. Loaded symbols are available to all drawings created in that session.

See Also VCOpenVCD, VCOpenVCA, VCOpenVCS, VCSaveVCS

VCOpenGCD
Version 1.2
Description Opens a Generic CADD drawing into the current drawing session.
Declaration
C/C++: extern "C" void WINAPI VCOpenGCD(char* szFile);
Visual Basic: Declare Sub VCOpenGCD Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi: procedure VCOpenGCD(szFile: PChar); far;
Parameters fname - a string representing the path and name of the file to open.
Notes This subroutine only loads files with the GCD extension into the current drawing session. This

offers advantages over VCLoadDrawing since the file type does not have to be passed as a
parameter.

See Also VCLoadDrawing, VCOpenVCD, VCOpenVCS, VCOpenVCA, VCLoadDrawing

VCOpenStyle
Version 1.2
Description Loads a style file into the current drawing session.
Declaration
C/C++: extern "C" void WINAPI VCOpenStyle(char* fname);
Visual Basic: Declare Sub VCOpenStyle Lib "VCMAIN32.DLL" (ByVal fname As String)
Delphi: procedure VCOpenStyle(fname: PChar); far;
Parameters fname - a string representing the path and name for the style.
Notes Styles are groups of settings stored in files for quick access. All the format settings included in

this file are applied to any subsequent draw commands. This differs from VCSaveEnvironment in
that the settings are not restored until a VCOpenStyle call.

See Also VCSaveEnvironment, VCSaveStyle,

VCOpenVCA
Version 1.2
Description Loads an attribute definition into Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCOpenVCA(char* szFile);
Visual Basic: Declare Sub VCOpenVCA Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi: procedure VCOpenVCA(szFile: PChar); far;
Parameters fname - a string representing the path and name of the attribute to load.
Notes This subroutine only loads attributes with the VCA file extension The attributes are not placed

until an Attach or Embed Attribute command. This offers advantages over VCOpenAtb since the
file type does not have to be passed as a parameter.

See Also VCOpenVCA, VCOpenVCD, VCOpenVCS, VCSaveVCA

VCOpenVCD
Version 1.2
Description Loads the specified Corel Visual CADD drawing into the current drawing session.
Declaration
C/C++: extern "C" void WINAPI VCOpenVCD(char* szFile);
Visual Basic: Declare Sub VCOpenVCD Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi: procedure VCOpenVCD(szFile: PChar); far;
Parameters fname - a string representing the path and name of the file to open.
Notes This subroutine only loads files with the .VCD extension. This offers advantages over

VCLoadDrawing since the file type does not have to be passed as a parameter.
See Also VCLoadDrawing, VCOpenVCD, VCOpenGCD, VCOpenVCS, VCOpenVCA

VCOpenVCS
Version 1.2
Description Loads a symbol definition into Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCOpenVCS(char* szFile);
Visual Basic: Declare Sub VCOpenVCS Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi: procedure VCOpenVCS(szFile: PChar); far;
Parameters fname - a string representing the path and name of the symbol to load.
Notes This subroutine only loads symbols with the VCS file extension. This offers advantages over

VCOpenSymbol since the file type does not have to be passed as a parameter. This call only
loads the symbol into memory, the symbol is not placed until a place symbol command is
executed. Loaded symbols are available to all drawings created in that session.

See Also VCOpenVCS, VCOpenVCS, VCOpenVCD, VCOpenCMP, VCOpenVCA, VCSaveVCS

VCOleClassMethodInvoke
Version 2.0
Description Registers and invokes a function from an OLE DLL.
Declaration
C/C++ extern "C" void WINAPI VCOleClassMethodInvoke(short* iError, char* DllName, char* ClassName,

char* MethodName, char* CmdLine);
Visual Basic Declare Sub VCOleClassMethodInvoke Lib "VCMAIN32.DLL" (iError As Integer, ByVal DllName As

String, ByVal ClassName As String, ByVal MethodName As String, ByVal CmdLine As String)
Delphi procedure VCOleClassMethodInvoke(var iError: Integer; DllName: PChar; ClassName: PChar;

MethodName: PChar; CmdLine: PChar); far;
Parameters DllName - the name of the DLL containing the OLE class.

ClassName - the name of the class contained in the DLL.
MethodName - the member function name contained in the DLL.
CmdLine - a command line string for any input arguments.

Notes An application can be created as an EXE, a Windows DLL or an OLE DLL. Each has advantages in
functionality and interaction with the CAD engine. In addition, each is accessed through the
Corel Visual CADD interface in different methods. An OLE DLL is a specialized link library
containing methods and classes for controlling various operations. These DLL are specifically
related to Visual Basic programmers. The OLE class allows a developer to create a class member
function that can be directly run from the Corel Visual CADD interface allowing an application to
take advantage of the performance increase associated with a DLL. In order to access this
functionality the DLL and the class must be registered. VCCreateOLEClass registers the DLL and
class. VCInvokeMethod will invoke the DLL method and VCDeleteOleClass will delete the
registered DLL and class.

See Also VCCreateOleClass, VCDeleteOleClass

VCPackData
Version 1.2
Description Removes all erased entities or unused definitions from the drawing database.
Declaration
C/C++: extern "C" void WINAPI VCPackData(WORLDHANDLE hW);
Visual Basic: Declare Sub VCPackData Lib "VCTOOL32.DLL" (ByVal hW As Long)
Delphi: procedure VCPackData(hW: Longint); far;
Parameters hW - the Corel Visual CADD worldhandle of the drawing to remove erased entities.
Notes Simply executes the command as if the user had selected it from the menu. Any entities erased

or marked as erased by a modify command remains in the drawing to enable the undo and redo
commands. While maintaining these can get quite cumbersome with limited memory resources,
using pack data will remove these erased entities from the database and free up the memory
taken by them. Immediately after a pack data, undo will have nothing to undo.

See Also VCClearDrawingNoPrompt, VCPurgeErasedEntities

VCPaint
Version 1.2
Description Repaints the area enclosed by the specified rectangle.
Declaration
C/C++: extern "C" void WINAPI VCPaint(HWND hWnd, RECT rc);
Visual Basic: Declare Sub VCPaintWorld Lib "VCMAIN32.DLL" ()
Delphi: procedure VCPaintWorld; far;
Parameters hWnd - the hWnd handle for the object to be used as the new world.

Rc - a Windows RECT structure used to define the boundary area.
Notes Similar to VCPaintWorld except that it only paints a specified rectangle. This is particularly

helpful when a portion of the screen has been covered by a dialog box and now needs to be
repainted.

See Also VCPaintWorld, VCPaintWorld, VCInvalidateRect

VCPaintWorld
Version 1.2
Description Forces Corel Visual CADD to repaint the current world immediately.
Declaration
C/C++: extern "C" void WINAPI VCPaintWorld(void);
Visual Basic: Declare Sub VCPaintWorld Lib "VCMAIN32.DLL" ()
Delphi: procedure VCPaintWorld; far;
Parameters No parameters are used for this subroutine.
Notes Unlike VCInvalidateRect, VCPaintWorld forces a repaint of the drawing area immediately instead

of waiting for the next WM_PAINT message.
See Also VCInvalidateRect, VCPaint, VCInvalidateRect

VCPastable
Version 1.2
Description Determines if the current selection in the Windows clipboard is suitable for pasting into Corel

Visual CADD.
Declaration
C/C++: extern "C" vbool WINAPI VCPastable();
Visual Basic: Declare Function VCPastable Lib "VCTOOL32.DLL" () As Integer
Delphi: function VCPastable:Boolean; far;
Parameters Returns -a true or false representing whether the clipboard contents can be pasted into Corel

Visual CADD.
0 - false.
1 - true.

See Also VCCopy, VCPaste

VCPopupButton
Version 1.2
Description Pops the context sensitive mouse menu at a specified location on screen.
Declaration
C/C++: extern "C" void WINAPI VCPopupButton(long lParam, WORD wParam);
Visual Basic: Declare Sub VCPopupButton Lib "VCTOOL32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCPopupButton(lParam: Longint; wParam: Integer); far;
Parameters lParam - a Windows parameter containing the coordinates where the menu should appear.

wParam - the corresponding message.
Notes In cases where the mouse menu is required but not available via the second mouse button,

VCPopupButton will display the menu without having to use the mouse buttons.
See Also

VCPostMessage
Version 1.2
Description The PostMessage function posts (places) a message in a Windows message queue and then

returns without waiting for Corel Visual CADD to process the message.
Declaration
C/C++: extern "C" vbool WINAPI VCPostMessage(WORD iMessage, WORD wParam, LPARAM lParam);
Visual Basic: Declare Function VCPostMessage Lib "VCMAIN32.DLL" (ByVal iMessage As Integer, ByVal wParam

As Integer, ByVal lParam As Long) As Integer
Delphi: function VCPostMessage(iMessage: Integer; wParam: Integer; lParam Longint):Boolean; far;
Parameters iMessage - the message to post.

wParam - Specifies 16 bits of additional message-dependent information.
lParam - Specifies 32 bits of additional message-dependent information.
Returns - value is nonzero if the function is successful. Otherwise, it is zero.

Notes Windows frequently sends or posts messages to any running application depending on current
focus, windows positioning, or current system activity. When programming an external
application, these messages will be received from the system and need to be passed on to the
Corel Visual CADD engine. In many cases there is a specific API call to do this, such as VCTimer,
but there are many more that may need to be sent or relayed to Corel Visual CADD. This is the
function used to do this. The wParam and lParam context will come from the message received
from the system and typically be the message received. If the message is being posted to
another application, and the wParam or lParam parameters are used to pass a handle or pointer
to a global memory object, the memory should be allocated by the GlobalAlloc function, using
the GMEM_SHARE flag. The PostMessage function fails if the message queue for the receiving
application is full. This is especially likely if an application posts several messages without
allowing the receiving task to run.

See Also VCTimer

VCPurgeErasedEntities
Version 1.2
Description Removes all erased entities from the drawing.
Declaration
C/C++: extern "C" void WINAPI VCPurgeErasedEntities(WORLDHANDLE hW);
Visual Basic: Declare Sub VCPurgeErasedEntities Lib "VCMAIN32.DLL" (ByVal hW As Long)
Delphi: procedure VCPurgeErasedEntities(hW: Longint); far;
Parameters hW - the Corel Visual CADD worldhandle used internally to reference each open drawing world.
Notes Any draw or modify command changes the Corel Visual CADD drawing database. Visual CADD

keeps track of these changes by "marking" the items that have been changed but does not
remove them from the database. This allows the Undo and Redo operations to restore the
drawing. Maintaining the copies of the entities however takes up memory in the database.
VCPurgeErasedEntities should be used to "clean" out these copies and free up memory
resources.

See Also VCPackData

VCRButtonDown
Version 1.2
Description Sends a right button down message to Corel Visual CADD effectively selecting a coordinate for a

tool, or selecting an entity.
Declaration
C/C++: extern "C" void WINAPI VCRButtonDown(long lParam, WORD wParam);
Visual Basic: Declare Sub VCRButtonDown Lib "VCTOOL32.DLL" (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi: procedure VCRButtonDown(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys These may or may not be used
by Visual CADD to modify the results of the mouse movements depending on the current
context in the application. Whenever an external application receives a right button down
message in the drawing area, the application should send the VCRButtonDown message to Corel
Visual CADD in order to invoke the expected response. This makes if behave as if it were in the
Corel Visual CADD drawing area.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCButton, VCLButtonDblClk, VCLButtonDown, VCLButtonDown2, VCLButtonDownWorldPoint,
VCLButtonUpVCRButtonUp

VCRButtonUp
Version 1.2
Description Issues a right mouse button up message to Corel Visual CADD.
Declaration
C/C++: extern "C" void WINAPI VCRButtonUp(long lParam, WORD wParam);
Visual Basic: Declare Sub VCRButtonUp Lib "VCMAIN32.DLL" (ByVal lParam As Long, ByVal wParam As Integer)
Delphi: procedure VCRButtonUp(lParam: Longint; wParam: Integer); far;
Parameters lParam - a packed coordinate pair as used by Windows.

wParam - passed by Windows functions to represent the identifier of the mouse message.
Notes All mouse subroutines as passed by Windows function pass the coordinate values through a

lParam structure which contains the x and y coordinates and other pertinent information not
used by Corel Visual CADD. Also included is a wParam which contains any modifiers to the
mouse movement such as the state of the shift, ctrl, and alt keys These may or may not be used
by Visual CADD to modify the results of the mouse movements depending on the current
context in the application. Whenever an external application receives a right button up message
in the drawing area, the application should send the VCRButtonUp message to Corel Visual
CADD in order to invoke the expected response. This makes if behave as if it were in the Corel
Visual CADD drawing area.

The MFC Class Library in MS Visual C++ references mouse movements and points through a
CPoint class structure. The macro MAKELPARAM can be used to convert the given CPoint
structure to a LPARAM compatible with the Corel Visual CADD API.

See Also VCButton, VCLButtonDblClk, VCLButtonDown, VCLButtonDown2, VCLButtonDownWorldPoint,
VCLButtonUp

VCRelativePath
Version 2.0
Description Returns the relative path defining the location of a reference frame entity file.
Declaration
C/C++ extern "C" void WINAPI VCRelativePath(short* iError, char* ReturnPath, char* CurrPath, char*

AbsPath);
Visual Basic Declare Sub VCRelativePath Lib "VCMAIN32.DLL" (iError As Integer, ByVal ReturnPath As String,

ByVal CurrPath As String, ByVal AbsPath As String)
Delphi procedure VCRelativePath(var iError: Integer; ReturnPath: PChar; CurrPath:
Parameters ReturnPath - the returned relative path.

CurrPath - the path for the current drawing that is to have the reference frame.
AbsPath - the absolute path to the file being referenced.

Notes Reference frames allow external files to be linked into an existing drawing. When linked, the files
are represented by a relative path between the current file location and the absolute path to the
file. For example, if the current active drawing for an open VCD files is "C:\VCADD\SAMPLES\
THISFILE.VCD" and a file is referenced into this drawing located at an absolute location of "C:\
VCADD\LINKEDFILE.VCD" this routine will return the difference of the paths. In this case it will
return " ..\" or indication that the linked file is located back one subdirectory. The routine can be
used to retrieve the relative path for any given directory. Simply pass in a current
directory(where the active drawing is) and the absolute path the linked file(file that is being
referenced) and the routine will return the relative path for the directories.

See Also VCAddRefFrameEntityVCChangeRefFrameName, VCGetRefFrameName, VCGetRefFrame,
VCGetRefFrameIsDataBound, VCGetRefFrameIsDynamic

VCRemoveAllViews
Version 2.0
Description Removes all multiple viewports for the given drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCRemoveAllViews(short* iError, WORLDHANDLE hW);
Visual Basic Declare Function VCRemoveAllViews Lib "VCMAIN32.DLL" (iError As Integer, ByVal hW As Long)

As Integer
Delphi function VCRemoveAllViews(var iError: Integer; hW: Longint):Boolean; far;
Parameters hW - the WORLDHANDLE for the drawing with multiple viewports.
Notes Drawing worlds are referenced by a WORLDHANDLE which is an internal 0 based index for

managing the drawing worlds. When working with any command to affect a drawing world you
will pass this index to the routine. The active drawing index can be determined with
VCGetCurrWorld and set with VCSetCurrWorld.

See Also VCGetCurrWorld, VCRemoveView, VCNewView

VCRemoveFileLock
Version 2.0
Description Removes all file locking for the given file.
Declaration
C/C++ extern "C" void WINAPI VCRemoveFileLock(char* szFile);
Visual Basic Declare Sub VCRemoveFileLock Lib "VCMAIN32.DLL" (ByVal szFile As String)
Delphi procedure VCRemoveFileLock(szFile: PChar); far;
Parameters szFile - the path and file name for the file to unlock.
Notes Locked files can not be modified by another Corel Visual CADD user on a network until the

drawing is saved or closed. Other users can only open, view and copy the drawing. The user
name is taken form the registered user name stored in the registry for the installed machine.

See Also VCIsFileLocked, VCIsFileLockedByCurrentUser, VCLockFile

VCRemovePlotterPageSize
Version 2.0
Description Removes a plotter page size from the direct plot options.
Declaration
C/C++ extern "C" void WINAPI VCRemovePlotterPageSize(short* iError, short iIndex);
Visual Basic Declare Sub VCRemovePlotterPageSize Lib "VCDLG32.DLL" (iError As Integer, ByVal iIndex As

Integer)
Delphi procedure VCRemovePlotterPageSize(var iError: Integer; iIndex: Integer); far;
Parameters iIndex - the zero based index for the page size item to remove.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine allows for custom page sizes to be defined with the VCAddPlotterPageSizeRoutine and
by the user through the Corel Visual CADD interface. These can be removed from the interface by the user or
through the API with VCRemovePlotterPageSize and added with VCAddPlotterPageSize. Custom page sizes
enhance the users control over vector output devices and allows the user or an application to set page
parameters suited to a desired output.

See Also VCAddPlotterPageSize, VCAddPlotterPenMapName, VCAddPlotterLanguageName, VCAddPlotter

VCRemoveSymbols
Version 1.2
Description Removes the list of symbols from the drawing database, including all placements.
Declaration
C/C++: extern "C" void WINAPI VCRemoveSymbols(short* iError, char* pNames, short iCnt);
Visual Basic: Declare Sub VCRemoveSymbols Lib "VCMAIN32.DLL" (iError As Integer, ByVal pNames As String,

ByVal iCnt As Integer)
Delphi: procedure VCRemoveSymbols(var iError: Integer; pNames: PChar; iCnt: Integer);
Parameters pNames - a pointer to a delimited string of names of symbols names to be removed. The

delimeter is the "|" character.
iCnt - the count of symbols to be removed and the size of the array.

Notes As a user or external application loads several symbols into Corel Visual CADD, it may become
increasingly low on memory. To alleviate this problem it may be necessary to remove unused
symbol definitions from memory. It is also possible to remove all placements of a symbol by
using this subroutine. A symbol definition can have two unique naming conventions. An on disk
name used when saved to file(limited to the characters defined by the operating system) and an
internal name used to store the name in a Corel Visual CADD drawing session.
VCRemoveSymbols require the internal name not the on disk name. The internal name can be
determined from the saved name with VCGetSymbolInternalName.

See Also VCReplaceSymbol VCUnloadUnusedSymDefs

VCRemoveView
Version 2.0
Description Removes a specific viewport from a drawing world.
Declaration
C/C++ extern "C" vbool WINAPI VCRemoveView(short* iError, WORLDHANDLE hW, long hWnd);
Visual Basic Declare Function VCRemoveView Lib "VCMAIN32.DLL" (iError As Integer, ByVal hW As Long,

ByVal hWnd As Long) As Integer
Delphi function VCRemoveView(var iError: Integer; hW: Longint; hWnd:
Parameters hW - the WORLDHANDLE for the drawing.

HWnd - the Windows handle for the viewport to remove.
Notes Drawing world are referenced by a WORLDHANDLE which is an internal 0 based index for

managing the drawing worlds. When working with any command to affect a drawing world you
will pass this index to the routine. The active drawing index can be determined with
VCGetCurrWorld and set with VCSetCurrWorld.

See Also VCNewView, VCFirstView, VCNextView

VCReplaceSymbol
Version 1.2
Description Replaces all placements of a symbol with another loaded symbol.
Declaration
C/C++: extern "C" void WINAPI VCReplaceSymbol(char* szFrom, char* szTo, vbool tfSelectedOnly);
Visual Basic: Declare Sub VCReplaceSymbol Lib "VCTOOL32.DLL" (ByVal szFrom As String, ByVal szTo As

String, ByVal tfSelectedOnly As Integer)
Delphi: procedure VCReplaceSymbol(szFrom: PChar; szTo: PChar; tfSelectedOnly Boolean); far;
Parameters szFrom - the name of the symbol to be replaced.

szTo - the name of the symbol to replace with.
tfSelectedOnly - states whether to replace all placements or just those that are selected.
0 - all placements.
1 - selected placements.

Notes VCReplaceSymbol conveniently replaces all symbols with another symbol definition while
leaving rotation, scale factors and layer information all intact from the original symbol
placement. A symbol definition can have two unique naming conventions. An on disk name used
when saved to file(limited to the characters defined by the operating system) and an internal
name used to store the name in a Corel Visual CADD drawing session. VCReplaceSymbol require
the internal name not the on disk name. The internal name can be determined from the saved
name with VCGetSymbolInternalName.

See Also VCRemoveSymbolsVCDuplicate

VCResetCmdExt
Version 2.0
Description Reloads the CMDEXT.DEF containing Corel Visual CADD custom commands.
Declaration
C/C++ extern "C" void WINAPI VCResetCmdExt(short* iError);
Visual Basic Declare Sub VCResetCmdExt Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCResetCmdExt(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD utilizes a custom command file CMDEXT.DEF to load custom commands not

directly available through the Corel Visual CADD interface. This file is described in detail in the
Customizing Corel Visual CADD section. The file is read on application startup and must b
"forced" to update by an external application using this command.

See Also VCLoadAlias, VCLoadCmdExt

VCResetOnScreenList
Version 1.2
Description Resets the parsing list for the VCFirstOnScreen and VCNextOnScreen routines.
Declaration
C/C++: extern "C" void WINAPI VCResetOnScreenList(short* iError);
Visual Basic: Declare Sub VCResetOnScreenList Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCResetOnScreenList(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine..
Notes When using the VCFirstOnScreen and VCNextOnScreen commands to parse the database, it is

necessary to update the list when the view changes during an operation. This resets the list and
the parsing can continue based on the new entities.

See Also VCNextEntity, VCLastEntity, VCFirstEntityExpand, VCNextEntityExpand, VCFirstOnScreen,
VCNextOnScreen, VCFirstSelected, VCNextSelected, VCSetCurrentEntity

VCResetPrintMargins
Version 2.0
Description Resets the print margins to the default values read from the Windows driver.
Declaration
C/C++ extern "C" void WINAPI VCResetPrintMargins(short* iError);
Visual Basic Declare Sub VCResetPrintMargins Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCResetPrintMargins(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes The Corel Visual CADD print routine utilizes the standard Windows print/plot drivers. These

drivers are set with default values based on specifications by the plotter manufacturer. A user or
an application can modify these margins in order to achieve a desired output. These can then be
reset to the default values with VCResetPrintMargins.

See Also VCGetPrintSettings

VCResizeChildWindow
Version 1.2
Description Resize the current child (MDI) window within Corel Visual CADD. Used when the application

receives a WM_SIZE message.
Declaration
C/C++: extern "C" void WINAPI VCResizeChildWindow();
Visual Basic: Declare Sub VCResizeChildWindow Lib "VCMAIN32.DLL" ()
Delphi: procedure VCResizeChildWindow; far;
Parameters No Parameters are used in this subroutine.
Notes Whenever an applications window is resized, the system passes a WM_SIZE message to the

application. In order for Corel Visual CADD to resize and calculate the drawing view an
application needs to use Corel Visual CADD VCResizeChildWindow subroutine.

See Also Windows SDK

VCRestoreSettings
Version 1.2
Description Restores all of the current settings from a temporary memory buffer.
Declaration
C/C++: extern "C" void WINAPI VCRestoreSettings();
Visual Basic: Declare Sub VCRestoreSettings Lib "VCMAIN32.DLL" ()
Delphi: procedure VCRestoreSettings; far;
Parameters No additional parameters are used with this subroutine.
Notes Before using the VCMatchCurrentEntity command, save the current settings with

VCSaveSettings and restore them with VCRestoreSettings.
See Also VCSaveSettings, VCSaveSysSettings, VCRestoreSysSettings

VCRestoreSysSettings
Version 1.2.1
Description Restores all of the system settings (everything but the entity-specific data) from a temporary

memory buffer.
Declaration
C/C++: extern "C" void WINAPI VCRestoreSysSettings(void);
Visual Basic: Declare Sub VCRestoreSysSettings Lib "VCMAIN32.DLL" ()
Delphi: procedure VCRestoreSysSettings; far;
Parameters No parameters are used with this subroutine.
Notes After retrieving all relevant information from the system settings following a

VCMatchCurrentEntity, it is necessary to retrieve all the valid current settings and re-establish all
the user settings as current.

See Also VCSaveSettings, VCSaveSysSettings, VCRestoreSettings

VCRFGetDrawBoundary
VCRefFrameSetDrawBoundary

Version 2.0
Description Reference frames can be identified with a bounding rectangle.
Declaration
C/C++ extern "C" vbool WINAPI VCRFGetDrawBoundary(short* iError);

extern "C" void WINAPI VCSetRefFrameDrawBoundary(short* iError, vbool vb);
Visual Basic Declare Function VCRFGetDrawBoundary Lib "VCMAIN32.DLL" (iError As Integer) As Integer

Declare Sub VCSetRefFrameDrawBoundary Lib "VCMAIN32.DLL" (iError As Integer, ByVal vb As
Integer)

Delphi function VCRFGetDrawBoundary(var iError: Integer):Boolean; far;
procedure VCSetRefFrameDrawBoundary(var iError: Integer; vb: Boolean); far;

Parameters vb - determines if the reference frame boundary is shown.
0 - the boundary is not displayed.
1 - the boundary is displayed.

Notes Reference frame entities enable a drawing file to be referenced or linked into another drawing.
The frames can be used to layout drawings for printing or to create overlay patterns. The
reference frame can be bound, data is not dynamic and is stored in the parent drawing, or
dynamic in which the referenced file is updated as changes are made to the original.

When linked, the files are represented by a relative path between the current file location and
the absolute path to the file. For example, if the current active drawing for an open VCD files is
"C:\VCADD\SAMPLES\THISFILE.VCD" and a file is referenced into this drawing located at an
absolute location of "C:\VCADD\LINKEDFILE.VCD" VCRelativePath will return the difference of the
paths. In this case it will return " ..\" or indication that the linked file is located back one
subdirectory.

The reference frame, the actual border around the linked file, behaves as a primitive entity with
color, rotation, scale and other properties. All these can be used to manipulate the frame for
displaying the desired data.

To add a reference frame, the application should first set a pointer to the file being referenced
with VCSetRefFrameName. VCAddRefFrameEntity will then reference this file in at the current
position.

See Also VCRFGetTransparent, VCAddRefFrameEntityVCGetRefFrameDrawBoundary, VCGetRefFrameColor,
VCGetRefFrame

VCRFGetTransparent
VCRFSetTransparent

Version 2.0
Description Transparent reference frames allow grids and other entities to be viewed through the reference

frame.
Declaration
C/C++ extern "C" vbool WINAPI VCRFGetTransparent(short* iError);
Visual Basic Declare Function VCRFGetTransparent Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCRFGetTransparent(var iError: Integer):Boolean; far;
Parameters vb - determines if the reference frame is transparent.

0 - the boundary is not displayed.
1 - the boundary is displayed.

Notes Reference frame entities enable a drawing file to be referenced or linked into another drawing. The frames
can be used to layout drawings for printing or to create overlay patterns. The reference frame can be bound,
data is not dynamic and is stored in the parent drawing, or dynamic in which the referenced file is updated as
changes are made to the original.

When linked, the files are represented by a relative path between the current file location and the absolute
path to the file. For example, if the current active drawing for an open VCD files is "C:\VCADD\SAMPLES\
THISFILE.VCD" and a file is referenced into this drawing located at an absolute location of "C:\VCADD\
LINKEDFILE.VCD" VCRelativePath will return the difference of the paths. In this case it will return " ..\" or
indication that the linked file is located back one subdirectory.

The reference frame, the actual border around the linked file, behaves as a primitive entity with color, rotation,
scale and other properties. All these can be used to manipulate the frame for displaying the desired data.

To add a reference frame, the application should first set a pointer to the file being referenced with
VCSetRefFrameName. VCAddRefFrameEntity will then reference this file in at the current position.

See Also VCRFGetDrawBoundary, VCAddRefFrameEntityVCGetRefFrameDrawBoundary,
VCGetRefFrameColor, VCGetRefFrame

VCRFUpdateFileLink
Version 2.0
Description Forces a reference frame entity to update file information.
Declaration
C/C++ extern "C" void WINAPI VCRFUpdateFileLink(short* iError);
Visual Basic Declare Sub VCRFUpdateFileLink Lib "VCMAIN32.DLL" (iError As Integer)
Delphi procedure VCRFUpdateFileLink(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Reference frame entities enable a drawing file to be referenced or linked into another drawing.

The frames can be used to layout drawings for printing or to create overlay patterns. The
reference frame can be bound, data is not dynamic and is stored in the parent drawing, or
dynamic in which the referenced file is updated as changes are made to the original.

When linked, the files are represented by a relative path between the current file location and
the absolute path to the file. For example, if the current active drawing for an open VCD files is
"C:\VCADD\SAMPLES\THISFILE.VCD" and a file is referenced into this drawing located at an
absolute location of "C:\VCADD\LINKEDFILE.VCD" VCRelativePath will return the difference of the
paths. In this case it will return " ..\" or indication that the linked file is located back one
subdirectory.

The reference frame, the actual border around the linked file, behaves as a primitive entity with
color, rotation, scale and other properties. All these can be used to manipulate the frame for
displaying the desired data.

To add a reference frame, the application should first set a pointer to the file being referenced
with VCSetRefFrameName. VCAddRefFrameEntity will then reference this file in at the current
position.

Binding a reference frame entity into a drawing inserts the contents directly into the file. The
referenced data may not be updated to reflect changes. Linking a reference frame into a
drawing keeps the file size to a minimum and updates the contents of the frame based on
changes to the contents of the origin. Corel Visual CADD automatically updates these links when
the file is loaded and saved. An application may however need to force the reference file to
update to reflect changes immediately.

See Also VCAddRefFrameEntity, VCGetRefFrame, VCGetRefFrameName

VCRIsButtonDown
Version 2.0
Description Used to determine the toggle state for a control.
Declaration
C/C++ extern "C" vbool WINAPI VCRIsButtonDown(short* iError, char* szNative, WORD id);
Visual Basic Declare Function VCRIsButtonDown Lib "VCDLG32.DLL" (iError As Integer, ByVal szNative As

String, ByVal id As Integer) As Integer
Delphi function VCRIsButtonDown(var iError: Integer; szNative: PChar; id: Integer):Integer;far;
Parameters szNative - native command name for the tool - currently ignored.

Id - the Tool ID for the toggle control.
Notes Returns a value indicating if the control is on. Generally there are specific routines for retrieving

the state of a toggle setting.
See Also VCToggle

VCRun
Version 1.2
Description Runs the specified application.
Declaration
C/C++: extern "C" void WINAPI VCRun(char* szName);
Visual Basic: Declare Sub VCRun Lib "VCTOOL32.DLL" (ByVal szName As String)
Delphi: procedure VCRun(szName: PChar); far;
Parameters szname - name of the file to run
Notes VCRun is used to run an external application from Corel Visual CADD, whether a Visual CADD

specific program or a unrelated program. The program to be run is specified from within Corel
Visual CADD with the EXENAME parameter within a script or thorough the API with
VCSetExeName. This can also be retrieved using VCGetExeName. VCRun will abort any current
tool.

See Also VCDllRun, VCGetExeName, VCRunNested

VCRunNested
Version 1.2
Description Runs the specified application as a nested tool.
Declaration
C/C++: extern "C" void WINAPI VCRunNested(char* szName);
Visual Basic: Declare Sub VCRunNested Lib "VCTOOL32.DLL" (ByVal szName As String)
Delphi: procedure VCRunNested(szName: PChar); far;
Parameters szName - the application name and path.
Notes VCRunNested. unlike VCRun, executes the specified application as a nested tool instead of a new

tool. Nested tools do not interfere with any currently running tools, that is the current tool
remains active until the nested tool is complete and then continues operation from where the
nesting occurred.

See Also VCDllRun, VCGetExeName,VCRun

VCSaveCurrent3DViewto2D
Version 2.0.1
Description Saves the current 3D view to a projected 2D plane.
Declaration
C/C++ extern "C" void WINAPI VCSaveCurrent3DViewTo2D(short* iError, WORLDHANDLE TargetWorld);
Visual Basic Declare Sub VCSaveCurrent3DViewTo2D Lib "VCMAIN32.DLL" (iError As Integer, ByVal

TargetWorld As Long)
Delphi procedure VCSaveCurrent3DViewTo2D(var iError: Integer; TargetWorld: Longint);far;
Parameters TargetWorld - the drawing world to display the 2D projection.
Notes When creating 3D views of a drawing, three parameters are required: view type, eye location,

and viewed position. VCSetProjection3D determines the view type and thus how the lines will be
viewed in relation to each other, that is flat, parallel or perspective. VCSetView3D establishes
the absolute 3D coordinate of the viewers eye and thus the level of perspective exaggeration
used or the relative size of the view. VCChangeView3D can allow the users view point to be
moved incrementally in certain directions and thus creates a limited "walk-through"
functionality. 3D views can be viewed in wireframe or with Corel Visual CADD built in quick
shading. VCSet3DDisplay provides the ability to view the drawing as a quick shade and
VCSet3DQShadeOptions determines the level of quick shade when the drawing is shaded.

After setting a 3D view through the target and eye position method, an application can project
the view to a 2D drawing. VCSaveCurrent3DViewTo2D takes the current 3D view and display it to
a specified drawing world as a 2D projection.

See Also VCSaveDrawing, VCSetProjection3D,

VCSaveDrawing
Version 1.2
Description Saves the current drawing and converts if necessary.
Declaration
C/C++: extern "C" void WINAPI VCSaveDrawing(short* iError, char* pName, short iFileType, vbool

tfSaveSelected);
Visual Basic: Declare Sub VCSaveDrawing Lib "VCTRAN32.DLL" (iError As Integer, ByVal pName As String,

ByVal iFileType As Integer, ByVal tfSaveSelected As Integer)
Delphi:

Parameters pName - the name and path of the file to be loaded
iFileType - the type of drawing file that is to be loaded.
-1 - Determine By Extension
0 - FILE_VCD
3 - FILE_GCD
5 - FILE_DWG
6 - FILE_DXF

Notes If a drawing was originally from AutoCAD, there may be some changes to the final drawing if
particular entities were used while editing in Corel Visual CADD. Some of these entities include
ellipses, fills, and hatches due to the fact that AutoCAD doesn't support these entities directly or
their handling of them is different. The same is also true Generic CADD files although on a
smaller scale. Generic CADD does not support continuous lines so all entities made of
continuous lines will be converted to single lines. Although these entities may be supported
differently in other packages, they will not be lost but instead converted to the closest possible
entity type available in the other file format.

See Also VCLoadDrawing, VCMergeDrawing VCLoadVCDFromFile, VCAcadRead, VCAcadReadWith3D

VCSaveEnvironment
Version 1.2
Description Saves the Corel Visual CADD drawing environment.
Declaration
C/C++: extern "C" void WINAPI VCSaveEnvironment(short* iError);
Visual Basic: Declare Sub VCSaveEnvironment Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSaveDrawing(var iError: Integer; pName: PChar; iFileType: Integer;
Parameters No parameters are used with this subroutine.
Notes Saves the current drawing settings in the default environment into a style file. These settings

are then available to the user during the next drawing session or from drawing to drawing. This
differs from VCSaveStyle in that it is automatically loaded with each new session or drawing.

See Also VCSaveStyle, VCOpenStyle, VCSaveSettings, VCRestoreSettings, VCSaveSysSettings,
VCRestoreSysSettings

VCSavePlotterDriver
Version 2.0
Description Saves the current plotter driver settings to file.
Declaration
C/C++ extern "C" void WINAPI VCSavePlotterDriver(short* iError, char* szName);
Visual Basic Declare Sub VCSavePlotterDriver Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As String)
Delphi procedure VCSavePlotterDriver(var iError: Integer; szName: PChar); far;
Parameters szName - the name to save the current driver settings under
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCAddPlotter

VCSavePlotterLanguage
Version 2.0
Description Saves the current plotter language settings to file.
Declaration
C/C++ extern "C" void WINAPI VCSavePlotterLanguage(short* iError, char* szName);
Visual Basic Declare Sub VCSavePlotterLanguage Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As

String)
Delphi procedure VCSavePlotterLanguage(var iError: Integer; szName: PChar); far;
Parameters szName - the name to save the current plotter langage settings under
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs to be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type

See Also VCAddPlotterLanguageName

VCSavePlotterPenMap
Version 2.0
Description Saves the current pen map settings to file.
Declaration
C/C++ extern "C" void WINAPI VCSavePlotterPenMap(short* iError, char* szName);
Visual Basic Declare Sub VCSavePlotterPenMap Lib "VCDLG32.DLL" (iError As Integer, ByVal szName As

String)
Delphi procedure VCSavePlotterPenMap(var iError: Integer; szName: PChar); far;
Parameters szName - the name for the pen map.
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector

output devices. By using the direct plot method, an application can bypass the Windows drivers
and send information directly to the plotter. This leads to enhanced control of the pen mappings
for the device. The pen map controls the color, speed and width setting for each pen used by
the plotter.

See Also VCAddPlotterPenMapName, VCGetPlotterPenMapCount, VCGetPlotterPenMapName,
VCGetPlotterPenMapping

VCSaveSettings
Version 1.2
Description Saves all of the current entity and environment settings to a temporary memory buffer.
Declaration
C/C++: extern "C" void WINAPI VCSaveSettings();
Visual Basic: Declare Sub VCSaveSettings Lib "VCMAIN32.DLL" ()
Delphi: procedure VCSaveSettings; far;
Parameters No parameters are used with this subroutine.
Notes Used to temporarily save the current settings so VCMatchCurrentEntity can extract all

information form the current entity and its settings extracted from the system settings. The
users default settings can then be restored with VCRestoreSettings.

See Also VCRestoreSettings, VCSaveSysSettings, VCRestoreSysSettings, VCSaveEnvironment

VCSaveSysSettings
Version 1.2.1
Description Saves all of the current environment settings (except for entity specific values) to a temporary

memory buffer.
Declaration
C/C++: extern "C" void WINAPI VCSaveSysSettings(void);
Visual Basic: Declare Sub VCSaveSysSettings Lib "VCMAIN32.DLL" ()
Delphi: procedure VCSaveSysSettings; far;
Parameters No parameters are used with this subroutine.
Notes Used to temporarily save the current settings so VCMatchCurrentEntity can extract all

information form the current entity and its settings extracted from the system settings. The
users default settings can then be restored with VCRestoreSettings.

See Also VCSaveSettings, VCRestoreSettings, VCRestoreSysSettings

VCSaveStyle
Version 1.2
Description Saves part of the current drawing environment to a style file. This style file can subsequently be

loaded to recreate the drawing environment.
Declaration
C/C++: extern "C" void WINAPI VCSaveStyle(char* fname);
Visual Basic: Declare Sub VCSaveStyle Lib "VCMAIN32.DLL" (ByVal fname As String)
Delphi: procedure VCSaveStyle(fname: PChar); far;
Parameters fname - a string representing the path and name for the style.
Notes Use the Save Style command to save related groups of current settings to disk. The settings can

then be restored with the VCLoadStyle command. Styles are predefined collections of Corel
Visual CADD settings, similar in concept to style sheets or templates used in most word
processors (for more information about styles, see Load Styles). A style file can include anything
from a single set of entity properties (layer, color, line type and line width) to virtually the entire
Corel Visual CADD drawing environment. Style files allow users to quickly configure all relevant
settings necessary for a particular task. By sharing style files users can easily create and follow
office drafting standards.

See Also VCOpenStyle, VCSaveEnvironment

VCSaveVCA
Version 1.2
Description Saves an attribute definition to disk.
Declaration
C/C++: extern "C" void WINAPI VCSaveVCA(char* szAttribName, char* szAttribFile);
Visual Basic: Declare Sub VCSaveVCA Lib "VCMAIN32.DLL" (ByVal szAttribName As String, ByVal szAttribFile

As String)
Delphi: procedure VCSaveVCA(szAttribName: PChar; szAttribFile: PChar); far;
Parameters szAttribName - a string representing the name of the attribute within the drawing.

szAttribFile - a string representing the path and name for the file to save.
Notes Attributes created in one drawing can not be used in other drawings until they have been saved

to a VCA file on disk. A attribute definition can have two unique naming conventions. An on disk
name used when saved to file(limited to the characters defined by the operating system) and an
internal name used to store the name in a Corel Visual CADD drawing session. Most attribute
commands require the internal name not the on disk name. The internal name can be
determined from the saved name with VCGetAttributeInternalName.

See Also VCOpenVCA, VCOpenVCS VCSaveVCS

VCSaveVCDToFile
Version 2.0
Description Saves a VCD file.
Declaration
C/C++ extern "C" void WINAPI VCSaveVCDToFile(short* iError, char* pS_);
Visual Basic Declare Sub VCSaveVCDToFile Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS_ As String)
Delphi procedure VCSaveVCDToFile(var iError: Integer; pS_: PChar); far;
Parameters pS - the path and file name to siave the file.
Notes There are several file formats Corel Visual CADD can save to. These include VCD, Generic CAD,

AutoCAD DXF and AutoCAD DWG. VCSaveVCDFile is a direct routine to save the drawing into
Corel Visual CADD native format. If your application is to provide support for the other file
formats use VCSaveDrawing..

See Also VCSaveDrawing, VCAcadWriteDWG, VCAcadWriteDXF

VCSaveVCDToStream
Version 2.0
Description Saves a VCD to an OLE stream.
Declaration
C/C++ extern "C" void WINAPI VCSaveVCDToStream(short* iError, void* pS_);
Visual Basic Declare Sub VCSaveVCDToStream Lib "VCMAIN32.DLL" (iError As Integer, ByVal pS_ As String)
Delphi procedure VCSaveVCDToStream(var iError: Integer; var pS_: Pointer); far;
Parameters pS - name to save the stream.
Notes All of the Corel Visual CADD OLE handler routines are available to create an OLE server. This

routine will write the file to stream for the application to handle in its OLE event. Please see the
documentation for creating an OLE application in your compiler help for details on a stream.

See Also VCLoadVCDFromStream

VCSaveVCS
Version 1.2
Description Saves a symbol definition to disk for use in other drawing.
Declaration
C/C++: extern "C" void WINAPI VCSaveVCS(char* szSymbolName, char* szSymbolFile);
Visual Basic: Declare Sub VCSaveVCS Lib "VCMAIN32.DLL" (ByVal szSymbolName As String, ByVal

szSymbolFile As String)
Delphi: procedure VCSaveVCS(szSymbolName: PChar; szSymbolFile: PChar); far;
Parameters szSymbolName - a string representing the name of the symbol within the drawing.

szSymbolFile - a string representing the path and name for the file to save.
Notes A symbol definition must exist prior to placement in a drawing. The symbol definition can be

loaded into the drawing session from disk or created from existing entities. Corel Visual CADD
utilizes several symbol formats in addition to the native VCS files. These include AutoCAD block
(DWG, DXF) and Generic CADD components (CMP). These are loaded with VCOpenDWG and
VCOpenCMP commands. An internal symbol definition can also be created within a drawing
sessions using VCCreateSymbolDef and any of the VCAdd*Entity commands. The symbol can be
added to the drawing database with VCAddSymbolEntity in which the programmer is responsible
for handling placement and rubberbanding methods or with VCSymbolPlace in which Corel
Visual CADD handles these internally. A symbol definition can have two unique naming
conventions. An on disk name used when saved to file(limited to the characters defined by the
operating system) and an internal name used to store the name in a Corel Visual CADD drawing
session. VCAddSymbolEntity and VCPlaceSymbol both require the internal name not the on disk
name. The internal name can be determined from the saved name with
VCGetSymbolInternalName.

See Also VCOpenVCS, VCOpenVCA VCSaveVCA

VCSelectionRibalog
Version 1.2
Description Displays the selection speedbar.
Declaration
C/C++: extern "C" void WINAPI VCSelectionRibalog(WORD id);
Visual Basic: Declare Sub VCSelectionRibalog Lib "VCTOOL32.DLL" (ByVal id As Integer)
Delphi: procedure VCSelectionRibalog(id: Integer); far;
Parameters id - the command id of the tool initiating the selection speedbar.
Notes Typically when a user uses an edit tool to modify existing entities, the entities to edit should be

pre-selected following the Windows noun-verb paradigm. However in Corel Visual CADD, in order
to assist those making the transition from DOS based packages, if nothing is selected when a
edit tool is initiated, the selection bar will appear so the user can make a selection and then go
on with tool as usual. When constructing external user tools, it is helpful to check the number of
entities selected and then use VCSelectionRibalog to display the selection speedbar if the count
is 0. The command id is used to place a text line on the speedbar while selecting entities, to
serve as a reminder to the user of what tool they are using.

See Also Appendix A

VCSendMessage
Version 1.2
Description The VCSendMessage function sends the specified message to Corel Visual CADD. The function

calls the callback procedure for the window and does not return until that window procedure has
processed the message. This is in contrast to the VCPostMessage function, which places (posts)
the message in the window's message queue and returns immediately.

Declaration
C/C++: extern "C" LRESULT WINAPI VCSendMessage(WORD iMessage, WORD wParam, LPARAM lParam);
Visual Basic: Declare Function VCSendMessage Lib "VCMAIN32.DLL" (ByVal iMessage As Integer, ByVal

wParam As Integer, ByVal lParam As Long) As Long
Delphi: function VCSendMessage(iMessage: Integer; wParam: Integer; lParam Longint):Longint; far;
Parameters iMessage - Specifies the message to be sent.

wParam - Specifies 16 bits of additional message-dependent information.
lParam - Specifies 32 bits of additional message-dependent information.
Returns - the result of the message processing and depends on the message sent.

Notes Windows frequently sends or posts messages to any running application depending on current
focus, windows positioning, or current system activity. When programming an external
application, these messages will be received from the system and need to be passed on to the
Corel Visual CADD engine. In many cases there is a specific API call to do this, such as VCTimer,
but there are many more that may need to be sent or relayed to Corel Visual CADD. This is the
function used to do this. The wParam and lParam context will come from the message received
from the system and typically be the message received. If the message is being posted to
another application, and the wParam or lParam parameters are used to pass a handle or pointer
to a global memory object, the memory should be allocated by the GlobalAlloc function, using
the GMEM_SHARE flag.

See Also VCPostMessage

VCSet3DDisplay
Version 1.2
Description Determines whether the 3D view is viewed as a wireframe or shaded view.
Declaration
C/C++: extern "C" void WINAPI VCSet3DDisplay(short* iError, short iCode);
Visual Basic: Declare Sub VCSet3DDisplay Lib "VCMAIN32.DLL" (iError As Integer, ByVal iCode As Integer)
Delphi: procedure VCSet3DDisplay(var iError: Integer; iCode: Integer); far;
Parameters iCode - sets the 3D view type.

0 - VIEW3D_WIREFRAME
1 - VIEW3D_QSHADE

Notes When creating 3D views of a drawing three parameters are required. They are view type, eye
location, and viewed position. VCSetProjection3Ddetermines the view type and thus how the
lines will be viewed in relation to each other, that is flat, parallel or perspective. VCSetView3D
established the distance of the viewer from the viewed location as 3D coordinates and thus the
level of perspective exaggeration used or the relative size of the view. VCChangeView3Dcan
allow the users view point to be moved incrementally in certain directions and thus creates a
limited "walk-through" functionality. 3D views can be viewed in wireframe or with Corel Visual
CADD's built in quick shading. VCSet3DDisplay provides the ability to view the drawing as a
quick shade and VCSet3DQShadeOptions determines the level of quick shade when the drawing
is shaded.

See Also VCSet3DQShadeOptions, VCChangeView3D, VCSetView3D, VCSetProjection3D

VCSet3DQShadeOptions
Version 1.2
Description Determines the level of shading to be applied when a 3D view is shaded.
Declaration
C/C++: extern "C" void WINAPI VCSet3DQShadeOptions(short* iError, short iCode);
Visual Basic: Declare Sub VCSet3DQShadeOptions Lib "VCMAIN32.DLL" (iError As Integer, ByVal iCode As

Integer)
Delphi: procedure VCSet3DQShadeOptions(var iError: Integer; iCode: Integer); far;
Parameters iCode - sets the 3D view type.

0 - SHADE3D_ROUGH.
1 - SHADE3D_EXACT.
2 - SHADE3D_EXACT_SPLIT.

Notes When creating 3D views of a drawing three parameters are required. They are view type, eye
location, and viewed position. VCSetProjection3D determines the view type and thus how the
lines will be viewed in relation to each other, that is flat, parallel or perspective.
VCSetView3Destablished the distance of the viewer from the viewed location as 3D coordinates
and thus the level of perspective exaggeration used or the relative size of the view.
VCChangeView3Dcan allow the users view point to be moved incrementally in certain directions
and thus creates a limited "walk-through" functionality. 3D views can be viewed in wireframe or
with Corel Visual CADD's built in quick shading. VCSet3DDisplay provides the ability to view the
drawing as a quick shade and VCSet3DQShadeOptions determines the level of quick shade when
the drawing is shaded. When using quick shade keep in mind that as each level of accuracy is
used the shading time may increase dramatically depending on the complexity of the drawing.
Rough shading provides a quick but inexact shade and is best to get an idea of how the shade
will look without taking a great deal of time. Exact will accurately shade all polygons but will not
determine which polygons lie in front of others. For the best shading use exact and split which
will calculate intersections of polygons and place forward surfaces in front of others.

See Also VCSet3DDisplay, VCChangeView3D, VCSetView3D, VCSetProjection3D

VCSetAlertApp
Version 1.2
Description Registers an external hWnd with Corel Visual CADD, thus enabling messages to be sent back to

the application when the specified events have occurred.
Declaration
C/C++: extern "C" void WINAPI VCSetAlertApp(short* iError, HWND hWnd, short iCode);
Visual Basic: Declare Sub VCSetAlertApp Lib "VCMAIN32.DLL" (iError As Integer, ByVal hWnd As Integer, ByVal

iCode As Integer)
Delphi: procedure VCSetAlertApp(var iError: Integer; hWnd: Integer; iCode: Integer); far;
Parameters hWnd - the hWnd value of the object which will receive the messages from Corel Visual CADD.

iCode - a code representing the messages to be sent to the external application.
0 - ALERT_APP_ALL
1 - ALERT_APP_UTOOL_MOUSEDOWN
2 - ALERT_APP_UTOOL_MOUSEMOVE
4 - ALERT_APP_UTOOL_ABORT
8 - ALERT_APP_CMDLINE_CHAR
16 - ALERT_APP_CLOSE
32 - ALERT_APP_UTOOL_PENUP
64 - ALERT_APP_WORLD_CLOSE
128 - ALERT_APP_UTOOL_ERASERUBBER
256 - ALERT_APP_TOOL_COMPLETE
512 - ALERT_APP_UTOOL_INIT
1024 - ALERT_APP_UTOOL_TERMINATE
2048 - ALERT_APP_FRAME_CLOSE
4096 - ALERT_APP_FRAME_RESIZE
8192 - ALERT_APP_ENTITY_ERASED
16384 - ALERT_APP_ENTITY_SELECT_CHANGE
32768 - ALERT_APP_ACTIVATE
65536 - ALERT_APP_DEACTIVATE

Notes To initialize Windows messaging between Corel Visual CADD and an external application, the
hWnd of some control or object must be sent to Visual CADD using VCSetAlertApp. When
registering the hWnd a code must also be included which specifies which messages an
application will receive. These can be added together to get multiple messages. For example
iCode of 12 would specify that the command line characters and abort messages would be sent.
To handle these messages, an application code must have code specifically to handle a Windows
message sent to the control whose hWnd is registered with VCSetAlertApp. In Visual BASIC,
handle this by supplying code in the mousedown event for the control specified for each mouse
down message sent by Corel Visual CADD. Visual CADD is fairly intelligent about when to send
this message and only send the message when a drawing point has been selected. This means
that the user can issue snaps or use tracking without invoking the application code for the
mousedown event. To retrieve the point the user selected in the drawing area, use
VCGetUserToolLBDown which sets a Point2D of the last point picked. When trapping the user
input, register the control with an iCode of either 0 (all messages) or 8 and add code to the
control for keypress. When the keypress code is activated by the message from Corel Visual
CADD, use VCGetCmdStr to retrieve the last keypress from Visual CADD. Once the keypress has
been determined through code can act according to process the information or send it back for
Corel Visual CADD to use with VCSetCmdStr. Once the application has completed with the
messaging, use VCClearAlertApp to remove an application from the messaging registry.

See Also VCClearAlertApp, VCSetAlertAppDll, VCClearAlertAppDll

VCSetAlertAppDll
Version 2.0
Description Registers an external DLL with Corel Visual CADD, enabling messages to be sent back to the

application when the specified events have occurred.
Declaration
C/C++ extern "C" void WINAPI VCSetAlertAppDll(short* iError, char* DllName, char* NativeCmd, long

iCode);
Visual Basic Declare Sub VCSetAlertAppDll Lib "VCMAIN32.DLL" (iError As Integer, ByVal DllName As String,

ByVal NativeCmd As String, ByVal iCode As Long)
Delphi procedure VCSetAlertAppDll(var iError: Integer; DllName: PChar; NativeCmd:
Parameters DllName - the name of the DLL containing the user tool.

NativeCmd - the native command name given to the tool.
iCode - a code representing the messages to be sent to the external DLL.
0 - ALERT_APP_ALL
1 - ALERT_APP_UTOOL_MOUSEDOWN
2 - ALERT_APP_UTOOL_MOUSEMOVE
4 - ALERT_APP_UTOOL_ABORT
8 - ALERT_APP_CMDLINE_CHAR
16 - ALERT_APP_CLOSE
32 - ALERT_APP_UTOOL_PENUP
64 - ALERT_APP_WORLD_CLOSE
128 - ALERT_APP_UTOOL_ERASERUBBER
256 - ALERT_APP_TOOL_COMPLETE
512 - ALERT_APP_UTOOL_INIT
1024 - ALERT_APP_UTOOL_TERMINATE
2048 - ALERT_APP_FRAME_CLOSE
4096 - ALERT_APP_FRAME_RESIZE
8192 - ALERT_APP_ENTITY_ERASED
16384 - ALERT_APP_ENTITY_SELECT_CHANGE
32768 - ALERT_APP_ACTIVATE
65536 - ALERT_APP_DEACTIVATE

Notes A new option available to Corel Visual CADD is to make tools and interfaces in dynamic link
libraries (DLL's). This interface to Corel Visual CADD provides all the functionality of the message
based EXE's tools that were used with version 1.x. Some advantages to DLL's over EXE's are: a
DLL shares the same memory space as Corel Visual CADD, once loaded into memory, a DLL will
stay in memory until Corel Visual CADD closes, code can be run on load and different code can
be run each time a function is called, no interface or hWnd's are required, no checking is
required to see if Corel Visual CADD is running since it is the one calling the DLL, and several
tools can be in one DLL without command line options necessary for EXE's to achieve the same
functionality.

Any tool is made up of several functions that handle each of the events passed by Corel Visual
CADD. The old way was to use VCSetAlertApp to register a list of messages your user tool
needed in order to function properly. This was limiting in many development languages like
Visual BASIC because only certain controls could receive the needed messages and even those
controls were limited by the number of messages they could handle. Even if all the needed
messages were available they could accidentally be triggered if the interface was displayed on
screen. Now, VCSetAlertAppDLL registers a group of exported functions in a DLL to be used
instead relying on message handlers.

See Also VCSetAlertApp, VCClearAlertApp, VCClearAlertAppDll

VCSetAllDimPartsColor
Version 1.2
Description Sets all components of dimensions to the specified color.

Declaration
C/C++: extern "C" void WINAPI VCSetAllDimPartsColor(short* iError, short iColor);
Visual Basic: Declare Sub VCSetAllDimPartsColor Lib "VCMAIN32.DLL" (iError As Integer, ByVal iColor As

Integer)
Delphi: procedure VCSetAllDimPartsColor(var iError: Integer; iColor: Integer); far;
Parameters iColor - sets the color index number to be used for all dimension parts.
Notes The elements that make up a dimension include the dimension line, left and right extension

lines, left and right arrow and the dimension text. The API give developers complete control over
the visual properties of each of the dimension elements independent of each other. Changing
the properties of dimension elements will not effect previously drawn dimensions. Each
component of a dimension can be individually set to a color with VCSetDimItemColor.
VCSetAllDimPartsColor instead, sets the display color of all parts of the dimension settings. This
forces all parts to be displayed in that color for all subsequent dimension placements.

See Also VCSetAllDimPartsOn, VCGetDimItemLineWidth, VCGetDimItemColor, VCGetDimItemLineType,
VCGetDimItemShow

VCSetAllDimPartsOn
Version 1.2
Description Toggles the display of all dimension components to on.
Declaration
C/C++: extern "C" void WINAPI VCSetAllDimPartsOn(short* iError);
Visual Basic: Declare Sub VCSetAllDimPartsOn Lib "VCMAIN" (iError As Integer)
Delphi: procedure VCSetAllDimPartsOn(var iError: Integer); far;
Parameters tf - determines the display state for the dimension parts.

0 - turn all dimension part display off.
1- turn all dimension part display on.

Notes The elements that make up a dimension include the dimension line, left and right extension
lines, left and right arrow and the dimension text. The API give developers complete control over
the visual properties of each of the dimension elements independent of each other. Changing
the properties of dimension elements will not effect previously drawn dimensions. Each
component of a dimension can be individually set to display or not either by the user or by code
with VCSetDimItemShow. VCSetAllDimPartsOn instead, toggles the display of all parts of
dimension settings to on. This forces all parts to be displayed for all subsequent dimension
placements.

See Also VCSetAllDimPartsColor, VCGetDimItemLineWidth, VCGetDimItemColor, VCGetDimItemLineType,
VCGetDimItemShow

VCSetAngleHandle
Version 1.2
Description Specifies to Corel Visual CADD which object is to display the angle reading from Corel Visual

CADD.
Declaration
C/C++: extern "C" void WINAPI VCSetAngleHandle(HWND hWnd_);
Visual Basic: Declare Sub VCSetAngleHandle Lib "VCMAIN32.DLL" (ByVal hWnd_ As Integer)
Delphi: procedure VCSetAngleHandle(hWnd_: Integer); far;
Parameters hWnd - the hWnd handle for the object to be used as the message area.
Notes Like VCSetMessageHandle, VCSetAngleHandle sets a message handle of a Windows object to

display a text message. However in this case the message is the 2pt angle formed by line
segment between the last point placed and the current cursor location and the horizontal. This
will reflect the current angular format settings. This is normally displayed in the status bar at the
bottom of the Corel Visual CADD screen.

See Also VCSetMessageHandle, VCSetDistanceHandle, VCSetXYHandle

VCSetAtbDefLabelValue
Version 1.2
Description Sets the value for a field label in the specified attribute.
Declaration
C/C++: extern "C" void WINAPI VCSetAtbDefLabelValue(short* iError, char* szName, char* szLabel, char*

Value, short iRec);
Visual Basic: Declare Sub VCSetAtbDefLabelValue Lib "VCMAIN32.DLL" (iError As Integer, ByVal szName As

String, ByVal szLabel As String, ByVal Value As String, ByVal iRec As Integer)
Delphi: procedure VCSetAtbDefLabelValue(var iError: Integer; szName: PChar; szLabel PChar; Value:

PChar; iRec: Integer); far;
Parameters szName - the internal name for the attribute defintion

szLabel - the label name to set the value
Value - the value to attach to at the label
iRec - the record number for the attribute

Notes Attributes are non-graphical data that can be attached to a symbol. The attribute are made up of
fields represented by a label and a value. The label is a name for the attribute field and is
designated when creating the attribute. The value is the value of the attribute field and can be
edited after creating the attribute.

See Also VCGetAtbDefLabel, VCGetAtbDefRecordCount, VCGetAtbDefValue, VCGetAtbFont,
VCGetAtbInternalName, VCGetCurEntAtbCount, VCGetCurEntAtbRecCount,
VCGetCurEntAtbRecValue

VCSetCurrentDeSelected
Version 1.2
Description Deselects the current entity.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentDeSelected(short* iError);
Visual Basic: Declare Sub VCSetCurrentDeSelected Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetCurrentDeSelected(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes In order for the Corel Visual CADD user to make edits or changes to any entities within the

current drawing it is necessary for the entities to first be selected. If an application is to parse
through the drawing for specific entities and allow the user to edit or change these entities, they
must be selected. VCSetCurrentSelected does this without affecting the current selection set.
This allows the application to step through the database and select any entities that match the
selection criteria. VCSetCurrentDeSelected allows control over which entities are included in the
selection set.

See Also VCObjectSelect , VCClearSelection, VCCrossingSelect, VCDeSelectAll, VCSelectAll,
VCSelectInvert, VCSelectLast, VCWindowSelect, VCSetCurrentSelected

VCSetCurrentEntity
Version 1.2
Description Marks the specified entity as the current entity in order to retrieve information about that entity.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentEntity(short* iError, ENTITYHANDLE lH);
Visual Basic: Declare Sub VCSetCurrentEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As Long)
Delphi: procedure VCSetCurrentEntity(var iError: Integer; lH: Longint); far;
Parameters lH - the Corel Visual CADD entityhandle for the desired entity.
Notes In order to modify or retrieve settings of drawing entities, it is first necessary to select a current

entity. This can be done by either parsing through one at a time using VCFirstEntity and
VCNextEntity or by directly selecting the current entity with VCSetCurrentEntity. This does not
visually select the entity but simply set a pointer to the entity for later operations.

See Also VCNextEntity, VCFirstEntity, VCFirstSelected, VCNextSelected,VCGetEntityCurrentHandle

VCSetCurrentEntityPoint
Version 1.2
Description Used to add the coordinates for a VCAddContinuousLineEntity or VCAddContinuousBezierEntity

entity at the specified index point.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentEntityPoint(short* iError, short i, Point2D* dpP);
Visual Basic: Declare Sub VCSetCurrentEntityPoint Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As Integer,

dpP As Point2D)
Delphi: procedure VCSetCurrentEntityPoint(var iError: Integer; i: Integer; var dpP Point2D); far;
Parameters i - the index to the list of points to the line or curve, with 0 being the first point.

dpP - the Point2D structure containing the coordinates to place the entity.
Notes VCAddContinuousLineEntity and VCAddContinuousBezierEntity allow for a] number of points to

be placed with the VCSetCurrentEntityPoint command instead of through a parameter.
See Also VCSetCurrentEntityPoints, VCAddContinuousBezierEntity, VCAddContinuousLineEntity,

VCGetCurrentEntityPoint

VCSetCurrentEntityPoint3D
Version 1.2
Description Used to add the coordinates for a VCAddPolygon3D entity at the specified index point.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentEntityPoint3D(short* iError, short i, Point3D* dpP);
Visual Basic: Declare Sub VCSetCurrentEntityPoint3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal i As

Integer, dpP As Point3D)
Delphi: procedure VCSetCurrentEntityPoint3D(var iError: Integer; i: Integer; var dpP Point3D); far;
Parameters i - the index to the list of points to the line or curve, with 0 being the first point.

dpP - the Point3D structure containing the coordinates to place the entity.
Notes Any entity added to the Corel Visual CADD drawing database or to a symbol definition will take

on the current properties for line type, color, layer, and width. These all need to be set before
creating these entities or may be changed after creation with the change commands. All point
locations including those within a symbol definition are relative to the drawing origin. Each
entity added will be appended to the end of the database and take on the entity handle of 1
higher than the last entity in the drawing before the addition. Once a polygon3D is added to the
drawing it contains no points and must have points added using VCSetCurrentEntityPoint3D.

See Also VCAddPolygon3D,VCGetCurrentEntityPoint3D,VCGetCurrentEntityPoint

VCSetCurrentEntityPoints
Version 2.0.1
Description Operates identical to VCSetCurrentEntityPoint except allows a complete array to be passed

instead of individual points.
Declaration
C/C++ extern "C" void WINAPI VCSetCurrentEntityPoints(short* iError, Point2D* p2dArray, short

iPointCount);
Visual Basic Declare Sub VCSetCurrentEntityPoints Lib "VCMAIN32.DLL" (iError As Integer, p2dArray As

Point2D, ByVal iPointCount As Integer)
Delphi procedure VCSetCurrentEntityPoints(var iError: Integer; var p2dArray: Point2D; iPointCount:

Integer); far;
Parameters p2dArray - the array of Point2D for placement points

iPointCount - the number of points contained in the array.
Notes By passing an array of points, an application can speed the generation of large continuous

entities. For example, a COGO contour line which may require hundreds of points to define the
contour. VCSetCurrentEntityPoint can be used to set individual points one at a time or
VCSetCurrentEntityPoints can be used to pass the entire list of points directly into the routine.
This will provide a significant performance increase for large continuous entities.

See Also VCSetCurrentEntityPoints, VCAddContinuousBezierEntity, VCAddContinuousLineEntity,
VCGetCurrentEntityPoint

VCSetCurrentEntitySubEntity
Version 2.0
Description Sets the sub entity for parsing the boundary of a contour.
Declaration
C/C++ extern "C" void WINAPI VCSetCurrentEntitySubEntity(short* iError, ENTITYHANDLE lH, short

iContour, short iEntity);
Visual Basic Declare Sub VCSetCurrentEntitySubEntity Lib "VCMAIN32.DLL" (iError As Integer, ByVal lH As

Long, ByVal iContour As Integer, ByVal iEntity As Integer)
Delphi procedure VCSetCurrentEntitySubEntity(var iError: Integer; lH: Longint; iContour: Integer; iEntity:

Integer); far;
Parameters lH - the entity handle for the hatch or fill.

IContour - an 0 based index to the contour to parse.
IEntity - the 0 based index to the subentity.

Notes VCGetEntityContourCount provides a method to determine the number of contours that define
the boundary for a hatch or fill. VCGetEntitySubEntityCount gives you the number of entities
that are in each contour. For example, say you have an exploded rectangle with a hatch inside it.
The VCGetEntityContourCount would return 1(the number of contours that define the hatch
boundary), while VCGetEntitySubEntityCount will return a value of 4 (the number of entities that
make up the contour boundary). After determining the number of contour and entities in the
boundary an application can then parse the subentities be setting them based on an index,
effectively walking through the hatch or fill boundary. Any property retrieval function such as
VCGetCurrentEntityColorIndex can be used to get the desired information.

See Also VCGetEntityContourCount, VCGetEntitySubEntityCount

VCSetCurrentErased
Version 1.2
Description Sets the erased flag for the current entity to true.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentErased(short* iError);
Visual Basic: Declare Sub VCSetCurrentErased Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetCurrentErased(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes When modifying entities in the Corel Visual CADD database the program must create a new

entity and erase the old one. This effectively appears to be a change and still allows undo and
redo to work. VCSetCurrentErased is used to remove the previous entity.

See Also VCSetCurrentSelected, VCSetCurrentDeselected, VCSetCurrentEntity,
VCGetCurrentEntityHandle, VCSetCurrentUnErased

VCSetCurrentSelected
Version 1.2
Description Selects the current entity and makes it available for modify commands.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentSelected(short* iError);
Visual Basic: Declare Sub VCSetCurrentSelected Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetCurrentSelected(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes In order for the Corel Visual CADD user to make edits or changes to any entities within the

current drawing it is necessary for the entities to somehow be selected. If an application is to
parse through the drawing for specific entities and allow the user to edit or change these
entities, they must be selected. VCSetCurrentSelected does this without affecting the current
selection set. This allows the application to step through the database and select any entities
that match the selection criteria. VCSetCurrentDeSelected allows control over which entities are
included in the selection set.

See Also VCObjectSelect , VCClearSelection, VCCrossingSelect, VCDeSelectAll, VCSelectAll,
VCSelectInvert, VCSelectLast, VCWindowSelect, VCSetCurrentDeSelected

VCSetCurrentUnErased
Version 1.2
Description Sets the erased flag for the current entity to false.
Declaration
C/C++: extern "C" void WINAPI VCSetCurrentUnErased(short* iError);
Visual Basic: Declare Sub VCSetCurrentUnErased Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetCurrentUnErased(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes When modifying entities in the Corel Visual CADD database the program must create a new

entity and erase the old one. This effectively appears to be a change and still allows undo and
redo to work. VCSetCurrentErased is used to remove the previous entity.

See Also VCSetCurrentSelected, VCSetCurrentDeSelected, VCSetCurrentEntity,
VCGetCurrentEntityHandle, VCSetCurrentErased

VCSetDialogFrameHwnd
Version 2.0
Description Sets the Windows handle for the frame to display Corel Visual CADD dialogs.
Declaration
C/C++ extern "C" void WINAPI VCSetDialogFrameHwnd(HWND hWndFrame);
Visual Basic Declare Sub VCSetDialogFrameHwnd Lib "VCDLG32.DLL" (ByVal hWndFrame As Integer)
Delphi procedure VCSetDialogFrameHwnd(hWndFrame: Integer); far;
Parameters hWndFrame - Windows handle for the application frame
Notes Many features of the Corel Visual CADD interface can be utilized directly in a custom application

created with a separate interface. The interface features include dialogs, toolbars, menus and
child drawing windows. In order to access these features in the custom interface, a Windows
hWnd needs to be provided to display each of the Corel Visual CADD features. Once the dialog
frame is set, all the Visual CADD dialogs and ribalogs will function the same in a custom
interface.

See Also VCSetDialogToolFrameHwnd, VCSethMenu, VCSethWndMdiClient

VCSetDialogToolFrameHwnd
Version 2.0
Description Sets the HWND for displaying the Corel Visual CADD toolbars.
Declaration
C/C++ extern "C" void WINAPI VCSetDialogToolFrameHwnd(HWND hWndFrame);
Visual Basic Declare Sub VCSetDialogToolFrameHwnd Lib "VCDLG32.DLL" (ByVal hWndFrame As Integer)
Delphi procedure VCSetDialogToolFrameHwnd(hWndFrame: Integer); far;
Parameters hWndFrame - the HWND for the window.
Notes Many features of the Corel Visual CADD interface can be utilized directly in a custom application

created with a separate interface. The interface features include dialogs, toolbars, menus and
child drawing windows. In order to access these features in the custom interface, a Windows
hWnd needs to be provided to display each of the Corel Visual CADD features. Once the dialog
frame is set, all the Corel Visual CADD dialogs and ribalogs will function the same in a custom
interface.

See Also VCSetDialogFrameHwndVCSethMenu, VCSethWndMdiClient

VCSetEatNextLButtonDown
Version 2.0
Description Causes the next mouse down in the interface to be ignored.
Declaration
C/C++ extern "C" vbool WINAPI VCSetEatNextLButtonDown(short* iError, vbool tfSet);
Visual Basic Declare Function VCSetEatNextLButtonDown Lib "VCMAIN32.DLL" (iError As Integer, ByVal tfSet

As Integer) As Integer
Delphi function VCSetEatNextLButtonDown(var iError: Integer; tfSet: Boolean):Boolean;
Parameters tfSet - flag whether to ignore the next left button down.

0 - do not ignore the next left button down.
1 - ignore the next left button down.

Notes Usually only a utility function, this routine is used to ignore a mouse down button in the Corel
Visual CADD interface.

See Also VCGetUserToolLBDown, VCGetUserToolLBUp, VCGetUserToolMouseMove

VCSetEntitySection
Version 1.2
Description Specifies that when parsing the drawing database, to only step through the drawing area

instead of the symbol area.
Declaration
C/C++: extern "C" void WINAPI VCSetEntitySection(short* iError);
Visual Basic: Declare Sub VCSetEntitySection Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetEntitySection(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes When setting and getting current entity properties, the current entity is always set using

VCFirstEntity, VCNextEntity, or VCSetCurrentEntity. By default these only traverse the drawing
entities and not the symbol entities. VCSetEntitySection tells Corel Visual CADD that each
current entity selection to only select drawing entities and not entities in symbols.
VCSetSymbolSection conversely only steps through entities in symbol definitions and not
drawing entities.

See Also VCSetSymbolSection, VCSetCurrentEntity, VCNextEntity, VCFirstEntity

VCSetFilterActive
Version 1.2
Description When the filter is on, selection operations capture only those objects meeting all of the filter

criteria.
Declaration
C/C++: extern "C" void WINAPI VCSetFilterActive(short* iError, vbool tf);
Visual Basic: Declare Sub VCSetFilterActive Lib "VCMAIN32.DLL" (iError As Integer, ByVal tf As Integer)
Delphi: procedure VCSetFilterActive(var iError: Integer; tf: Boolean); far;
Parameters tf - determines the state of the selection filter

0 - the filter is inactive.
1 - the filter is active.

Notes The API allows an application to filter entities prior to making selections. By setting a selection
criteria based on entity properties and settings, the selection routine will only "capture" those
objects meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color,
line type and line width. Can be used to create a fast parsing method for specific entity types
when combined with the specialized parsing calls VCFirstSelected and VCNextSelected.

See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName,
VCGetFilterWidth, VCGetFilterColor, VCFirstSelected, VCNextSelected

VCSetFilterMatch
Version 1.2
Description Sets the selection filter properties based on the input entity.
Declaration
C/C++: extern "C" void WINAPI VCSetFilterMatch(short* iError, ENTITYHANDLE EH);
Visual Basic: Declare Sub VCSetFilterMatch Lib "VCMAIN32.DLL" (iError As Integer, ByVal EH As Long)
Delphi: procedure VCSetFilterMatch(var iError: Integer; EH: Longint); far;
Parameters iError is set depending on the success or failure of the function.

0 - The function succeeded.
1 - The function failed due to an invalid drawing world.
EH - entity handle for the entity to match for the filter properties

Notes The API allows an application to filter entities prior to making selections. By setting a selection
criteria based on entity properties and settings, the selection routine will only "capture" those
objects meeting the filter criteria. The filter criteria can be set based on entity kind, layer, color,
line type and line width. VCSetFilterMatch allows a filter properties to be set based on a specific
entity without matching and then setting the property values. Can be used to create a fast
parsing method for specific entity types when combined with the specialized parsing calls
VCFirstSelected and VCNextSelected.

See Also VCGetFilterKind, VCGetFilterKind2, VCGetFilterLayer, VCGetFilterLineType, VCGetFilterName,
VCGetFilterWidth, VCGetFilterColor, VCFirstSelected, VCNextSelected

VCSethWndMdiClient
Version 2.0
Description Sets the HWND for displaying the Corel Visual CADD MDI Windows.
Declaration
C/C++ extern "C" void WINAPI VCSethWndMdiClient(long hWnd);
Visual Basic Declare Sub VCSethWndMdiClient Lib "VCMAIN32.DLL" (ByVal hWnd As Long)
Delphi procedure VCSethWndMdiClient(hWnd: Longint); far;
Parameters hWnd - the HWND for the window.
Notes Many features of the Corel Visual CADD interface can be utilized directly in a custom application

created with a separate interface. The interface features include dialogs, toolbars, menus and
child drawing windows. In order to access these features in the custom interface, a Windows
hWnd needs to be provided to display each of the Corel Visual CADD features. Once the dialog
frame is set, all the Corel Visual CADD dialogs and ribalogs will function the same in a custom
interface.

See Also VCSetDialogFrameHwndVCSetDialogToolFrameHwndVCSethMenu, VCSethWndMdiClient

VCSetGraphicPenWidth
Version 2.0
Description Sets the pen width used for displaying fill patterns.
Declaration
C/C++ extern "C" void WINAPI VCSetGraphicPenWidth(short* iError, double dPen);
Visual Basic Declare Sub VCSetGraphicPenWidth Lib "VCMAIN32.DLL" (iError As Integer, ByVal dPen As

Double)
Delphi procedure VCSetGraphicPenWidth(var iError: Integer; dPen: Double); far;
Parameters dPen - the real world width for the pen.
Notes Some entities defined by several graphical objects, hatch patterns, fills, line types and fonts. For

instance, a hatch pattern is defined by lines to make a useful pattern. These entities are not
available for access through the standard database parsing routines provided. This is due to the
fact that typically an application will not need this specific information. Most applications will
need to simply parse the database and retrieve the entity information provided. In situations
where a custom vector output file is being defined or to guide a CNC milling machine, the
application may need to define all the vectors making up even the complex entities. The graphic
handle method allow for this detailed parsing functionality.

In order to access the information an application should first create a graphics handle using
VCCreateGraphicsHandle. This function creates a parsing list from the current entity if it is a
graphic entity, hatch, fill, text or line type. The iError return will be > 0 if the current entity is not
a graphic entity. The application can then parse the new set with VCFirstGraphic and
VCNextGraphic. Any required information can be retrieved using any standard query function
such as VCGetCurrentEntityPoint. The entity is considered read-only and only retrieval API
routines may be utilized. The individual graphic entities can not be set with any command. After
completing the parse the application should call VCDeleteGraphicHandle to destroy the created
handle.

See Also VCCreateGraphicsHandle, VCFirstGraphic, VCNextGraphic VCIsGraphic

VCSetHeaderUserData
Version 1.2
Description Sets the user data section to the drawing header for attaching user data.
Declaration
C/C++: extern "C" void WINAPI VCSetHeaderUserData(short* iError);
Visual Basic: Declare Sub VCSetHeaderUserData Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetHeaderUserData(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine..
Notes User data may be attached to any drawing entity or a drawing header and used for storage of

entity information, drawing information, custom settings, or indices to external tables. User data
may be of the C variable types double, float, long, or short. In addition to these types, a user
defined type of "chunk" may also be stored. A chunk may be any size and is simply a pointer to
a memory location. The size of the chunk is also passed so Corel Visual CADD can retrieve the
appropriate amount of data from the specified memory location. Whenever using user data, an
application must set a user data name in order to protect private data and to ensure that
different applications do not interfere with the others data. VCSetUserDataName is provided for
this purpose, while VCGetUserDataName checks the currently set user data name. The name
must only be set one time before adding any user data. By registering as a Corel Visual CADD
3rd Party developer, Corel will provide a user data "name" which should be used for this
purpose. The VCAddCurrentEntityUserData* calls always append the new variable as the last
user data variable. The VCSetCurrentEntityUserData* calls add the user data variable at the
index specified in the call, provided that there are indeed that many indices already attached,
and overwrite any existing user data at that index. User data is always attached to the current
entity which is set using VCFirstEntity, VCNextEntity, VCFirstSelected, VCNextSelected or
VCSetCurrentEntity. As previously mentioned, user data may be attached to the drawing header.
This is achieved by using VCSetHeaderUserData and then attaching the appropriate user data.
Once VCNextEntity or any other current entity selections are used, the user data calls will again
be used on the current entity.

See Also VCAddCurrentEntityUserDataChunk, VCAddCurrentEntityUserDataDouble,
VCAddCurrentEntityUserDataFloat, VCAddCurrentEntityUserDataLong,
VCAddCurrentEntityUserDataShort

VCSetLastCommandId
Version 1.2
Description Sets a command id as the last command issued in Corel Visual CADD. Useful for establishing

what the spacebar will repeat or execute.
Declaration
C/C++: extern "C" void WINAPI VCSetLastCommandId(WORD CmdId);
Visual Basic: Declare Sub VCSetLastCommandId Lib "VCMAIN32.DLL" (ByVal CmdId As Integer)
Delphi: procedure VCSetLastCommandId(CmdId: Integer); far;
Parameters id - the command id of the command to be set as the last command.
Notes In Corel Visual CADD, after a command has been completed, the spacebar can be used to repeat

the last command. Using this subroutine, an application can establish any command as the last
command and effectively assign what the spacebar will execute.

See Also Appendix A

VCSetMaxUID
Version 2.0
Description Sets the maximum UID that may be used.
Declaration
C/C++ extern "C" void WINAPI VCSetMaxUID(short* iError, UID uidMax);
Visual Basic Declare Sub VCSetMaxUID Lib "VCMAIN32.DLL" (iError As Integer, ByVal uidMax As Long)
Delphi procedure VCSetMaxUID(var iError: Integer; uidMax: Longint); far;
Parameters uidMax - the maximum UID that can be used in the drawing.
Notes Each entity in Corel Visual CADD maintains a unique entity identifier in order to track the entity.

This is in addition to the dynamic entity handle which changes as entities are deleted and
modified in the database. As entities are added to the drawing both an entity handle and a UID
are assigned to the entity. The entity handle will change as items are deleted and modified on
the database while the UID will remain constant. Whenever linking entities to external databases
or arrays, the application should utilize the UID due to its unchanging value with each entity. The
entity handle is used when parsing the database or setting specific entities within the drawing
session. The UID can should be audited prior to any external storage in order to ensure
uniqueness in the ID.

See Also VCAuditUIDS

VCSetMBMode
Version 1.2
Description Sets an operating mode where Corel Visual CADD interprets manually-entered coordinates

relative to a user-defined point.
Declaration
C/C++: extern "C" void WINAPI VCSetMBMode(short* iError);
Visual Basic: Declare Sub VCSetMBMode Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetMBMode(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD allows three modes of coordinate input. These are referred to as manual entry

modes and include the following: manual entry origin, manual entry relative, and manual entry
basepoint. Use the Manual Entry Basepoint command to set the operating mode to the
basepoint manual entry mode. In the basepoint mode, specify a temporary origin that remains
in effect until a user changes its location or change modes. This mode is particularly useful when
locations are known in relation to one specific point. The entry mode is a three way toggle and is
set using VCSetMOMode, VCSetMRMode, and VCSetMBMode which toggle to origin, relative and
base point respectively. All coordinate data input through the API is always relative to the origin
regardless of the manual entry setting.

See Also VCSetMRMode, VCSetMOMode

VCSetMOMode
Version 1.2
Description Sets an operating mode where Corel Visual CADD interprets manually-entered coordinates

relative to the drawing origin.
Declaration
C/C++: extern "C" void WINAPI VCSetMOMode(short* iError);
Visual Basic: Declare Sub VCSetMOMode Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetMOMode(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD allows three modes of coordinate input. These are referred to as manual entry

modes and include the following: manual entry origin, manual entry relative, and manual entry
basepoint. Use the Manual Entry Absolute command to set the operating mode to the absolute
manual entry mode. In the absolute mode, coordinates are interpreted as relative to the drawing
origin. This mode is particularly useful when locations are calculated or imported through
external programs or macros. The entry mode is a three way toggle and is set using
VCSetMOMode, VCSetMRMode, and VCSetMBMode which toggle to origin, relative and base
point respectively. All coordinate data input through the API is always relative to the origin
regardless of the manual entry setting.

See Also VCSetMBMode, VCSetMRMode

VCSetMRMode
Version 1.2
Description Sets an operating mode where Corel Visual CADD interprets manually-entered coordinates

relative to the last point referenced.
Declaration
C/C++: extern "C" void WINAPI VCSetMRMode(short* iError);
Visual Basic: Declare Sub VCSetMRMode Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetMRMode(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD allows three modes of coordinate input. These are referred to as manual entry

modes and include the following: manual entry origin, manual entry relative, and manual entry
basepoint. Use the Manual Entry Relative command to set the operating mode to the relative
manual entry mode. In the relative mode, each point placed or referenced through a snap or
other command becomes a temporary origin for the next operation. This mode is particularly
useful when distances are measured in sequence, with the end of one measurement being the
beginning of the next. The entry mode is a three way toggle and is set using VCSetMOMode,
VCSetMRMode, and VCSetMBMode which toggle to origin, relative and base point respectively.
All coordinate data input through the API is always relative to the origin regardless of the manual
entry setting.

See Also VCSetMBMode, VCSetMOMode

VCSetNamedLayer
Version 2.0
Description Names a layer at the given index.
Declaration
C/C++ extern "C" void WINAPI VCSetNamedLayer(short* iError, short iIndex, char* pName);
Visual Basic Declare Sub VCSetNamedLayer Lib "VCMAIN32.DLL" (iError As Integer, ByVal iIndex As Integer,

ByVal pName As String)
Delphi procedure VCSetNamedLayer(var iError: Integer; iIndex: Integer; pName: PChar); far;
Parameters iIndex - the layer index to name from 0 to 1023.

pName - the name to apply.
Notes The API provides two methods for naming layers in the active drawing. The first utilizes

VCAddNamedLayer and simply names the first layer in the list that has not already been named.
The function begins a parse on a 0 based layer index until the first non-named layer. It then
names the layer the given value and returns the index for the layer. This routine is generally
used when building a setup routine where the entire layer naming scheme is known up front.
The second method allows the application to apply a name to a specific layer. VCSetNamedLayer
takes a layer index as a parameter for naming. This operates more in hand with the Corel Visual
CADD interface since a user or application can pick the layer to name prior to the operation.

See Also VCAddNamedLayer

VCSetPlotSettings
Version 2.0
Description Specifies the settings for use in the direct plot routine.
Declaration
C/C++ extern "C" void WINAPI VCSetPlotSettings(short* iError, PlotStruct* pSettings);
Visual Basic Declare Sub VCSetPlotSettings Lib "VCDLG32.DLL" (iError As Integer, pSettings As PlotStruct)
Delphi procedure VCSetPlotSettings(var iError: Integer; var pSettings: PlotStruct);
Parameters pSettings - the PlotStruct containg the settings for the plot routine
Notes Corel Visual CADD contains both a Print and Plot command. The print command utilizes the

standard Windows drivers for output to the device. The plot command is an internal routine
allowing more control over vector output devices by bypassing the Windows drivers. Each of
these commands maintain separate default settings for the print output such as scale,
orientation and page size. These settings are maintained in a structure defined for Corel Visual
CADD.

See Also VCGetPrintSettings

VCSetPlotterCurrentLanguageIndex
Version 2.0
Description Specifies the current plotter language.
Declaration
C/C++ extern "C" void WINAPI VCSetPlotterCurrentLanguageName(short* iError, char*

szLanguageName);
Visual Basic Declare Sub VCSetPlotterCurrentLanguageIndex Lib "VCDLG32.DLL" (iError As Integer, ByVal

iIndex As Integer)
Delphi procedure VCSetPlotterCurrentLanguageIndex(var iError: Integer; iIndex:Integer); far;
Parameters iIndex - the index for the current plotter language
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

Corel Visual CADD ships with support for many common plotter languages. However, if the desired language
is not available, an application can create a language directly through the API. A plotter language consists of a
delimiter, initialization string, de-initialization string, pen up, pen move, pen draw, pen speed and pen change
commands. Each of these needs to be specified when creating a language. The required control codes are
generally listed in the output devices documentation and set to a specific plotter type

See Also VCSetPlotterCurrentPenMapIndex, VCGetPlotterCurrentLanguageName,
VCGetPlotterCurrentPageSize, VCGetPlotterCurrentPenMapName

VCSetPlotterCurrentPenMapIndex
Version 2.0
Description Specifies the current pen map used by the direct plot routine.
Declaration
C/C++ extern "C" void WINAPI VCSetPlotterCurrentPenMapIndex(short* iError, short iIndex);
Visual Basic Declare Sub VCSetPlotterCurrentPenMapIndex Lib "VCDLG32.DLL" (iError As Integer, ByVal iIndex

As Integer)
Delphi procedure VCSetPlotterCurrentPenMapIndex(var iError: Integer; iIndex:
Parameters iIndex - the index specifying the current pen map
Notes Corel Visual CADD ships with a direct plot routine in order to enhance the control over vector output devices.

By using the direct plot method, an application can bypass the Windows drivers and send information directly
to the plotter. This leads to enhanced control of the pen mappings for the device.

The direct plot routine utilizes a driver, language and pen map to control the output. The driver
determines the device settings such as communication port, Baud Rate, Parity and Data Bits.
The language controls the character codes used by the plotter to control the pen movements.
These are defined by Pen Up, Pen Down and Pen Move and other commands. The pen map
controls the color, speed and width setting for each pen used by the plotter.

See Also VCGetPlotterCurrentLanguageName, VCGetPlotterCurrentPageSize,
VCGetPlotterCurrentPenMapName

VCSetProjection3D
Version 1.2
Description Determines the type of projection to be used when using 3D views.
Declaration
C/C++: extern "C" void WINAPI VCSetProjection3D(short* iError, short iCode);
Visual Basic: Declare Sub VCSetProjection3D Lib "VCMAIN32.DLL" (iError As Integer, ByVal iCode As Integer)
Delphi: procedure VCSetProjection3D(var iError: Integer; iCode: Integer); far;
Parameters iCode - sets the 3D view type.

0 - VIEW3D_FLAT
1 - VIEW3D_PARALLEL
2 - VIEW3D_PERSPECTIVE

Notes When creating 3D views of a drawing three parameters are required. They are view type, eye
location, and viewed position. VCSetProjection3D determines the view type and thus how the
lines will be viewed in relation to each other, that is flat, parallel or perspective. VCSetView3D
established the distance of the viewer from the viewed location as 3D coordinates and thus the
level of perspective exaggeration used or the relative size of the view. VCChangeView3Dcan
allow the users view point to be moved incrementally in certain directions and thus creates a
limited "walk-through" functionality. 3D views can be viewed in wireframe or with Corel Visual
CADD's built in quick shading. VCSet3DDisplay provides the ability to view the drawing as a
quick shade and VCSet3DQShadeOptionsdetermines the level of quick shade when the drawing
is shaded.

See Also VCSet3DQShadeOptions, VCSet3DDisplay, VCChangeView3D, VCSetView3D

VCSetSymbolSection
Version 1.2
Description Specifies that when traversing the drawing database to only step through a specified symbol

and not through the drawing area.
Declaration
C/C++: extern "C" void WINAPI VCSetSymbolSection(short* iError, char* pName);
Visual Basic: Declare Sub VCSetSymbolSection Lib "VCMAIN32.DLL" (iError As Integer, ByVal pName As String)
Delphi: procedure VCSetSymbolSection(var iError: Integer; pName: PChar); far;
Parameters pName - the name of the symbol to step through.
Notes When setting and getting current entity properties, the current entity is always set using

VCFirstEntity, VCNextEntity, or VCSetCurrentEntity. By default these only traverse the drawing
entities and not the symbol entities. VCSetEntitySection tells Corel Visual CADD that each
current entity selection to only select drawing entities and not entities in symbols.
VCSetSymbolSection conversely only steps through entities in symbol definitions and not
drawing entities.

See Also VCSetEntitySection

VCSetUserTool
Version 1.2
Description Creates a new user defined tool and its first prompt.
Declaration
C/C++: extern "C" void WINAPI VCSetUserTool(short iStates, char* szNativeCmd, char* szFirstPrompt);
Visual Basic: Declare Sub VCSetUserTool Lib "VCTOOL32.DLL" (ByVal iStates As Integer, ByVal szNativeCmd

As String, ByVal szFirstPrompt As String)
Delphi: procedure VCSetUserTool(iStates: Integer; szNativeCmd: PChar; szFirstPrompt PChar); far;
Parameters iStates - the number of steps the tool uses (-1 specifies a continuous tool that ends with esc or a

pen-up).
szNativeCmd - the name of a command as defined in cmdext.def.
szFirstPrompt - a string used as the first prompt for the tool.

Notes Developing a user tool requires the tool to be defined in the CMDEXT.DEF file found in the Corel
Visual CADD system directory. The format for the file is as follows:.
INSDOOR,ID,c:\vcadd\insdoor.bmp,Insert Door,Insert Door,ExeName;c:\vcadd\vbapps\
insdoor.exe;Run;where.
"INSDOOR" is the native command name.
"ID" is the two letter command.
"c:\vcadd\insdoor.bmp" is the bitmap to be used for the button face.
"Insert Door" is the default menu text as appears on any menu.
"Insert Door" is the description prompt as it appears on the command line.
"ExeName;c:\vcadd\vbapps\insdoor.exe;Run" is the script used to execute the *.EXE for the tool,
and follows all single line script conventions.

See Also VCGetUserToolLBDown, VCGetUserToolMouseMove, VCSetAlertApp, VCClearAlertApp

VCSetView3D
Version 1.2
Description Establishes the viewers eye position and the position of the point being viewed.
Declaration
C/C++: extern "C" void WINAPI VCSetView3D(short* iError, Point3D* dpEye, Point3D* dpTarget);
Visual Basic: Declare Sub VCSetView3D Lib "VCMAIN32.DLL" (iError As Integer, dpEye As Point3D, dpTarget As

Point3D)
Delphi: procedure VCSetView3D(var iError: Integer; var dpEye: Point3D; var dpTarget Point3D); far;
Parameters dpEye - the location in 3D space of the viewers position.

dpTarget - the position in 3D space where the viewer is looking.
Notes When creating 3D views of a drawing three parameters are required. They are view type, eye

location, and viewed position. VCSetProjection3D determines the view type and thus how the
lines will be viewed in relation to each other, that is flat, parallel or perspective. VCSetView3D
established the distance of the viewer from the viewed location as 3D coordinates and thus the
level of perspective exaggeration used or the relative size of the view. VCChangeView3D can
allow the users view point to be moved incrementally in certain directions and thus creates a
limited "walk-through" functionality. 3D views can be viewed in wireframe or with Corel Visual
CADD's built in quick shading. VCSet3DDisplay provides the ability to view the drawing as a
quick shade and VCSet3DQShadeOptions determines the level of quick shade when the drawing
is shaded.

See Also VCSet3DQShadeOptions, VCSet3DDisplay, VCChangeView3D, VCSetProjection3D

VCSetWorldZoomAll
Version 1.2
Description Reduces or enlarges the image as necessary to fill the screen with the entire drawing.
Declaration
C/C++: extern "C" void WINAPI VCSetWorldZoomAll(short* iError);
Visual Basic: Declare Sub VCSetWorldZoomAll Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSetWorldZoomAll(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes Functions the same as the tool command VCZoomAll.
See Also VCZoomAll, VCSetWorldZoomWindow

VCSetWorldZoomWindow
Version 1.2
Description Changes the zoom so that a windowed area fills the screen.
Declaration
C/C++: extern "C" void WINAPI VCSetWorldZoomWindow(short* iError, Point2D* p0, Point2D* p1);
Visual Basic: Declare Sub VCSetWorldZoomWindow Lib "VCMAIN32.DLL" (iError As Integer, p0 As Point2D, p1

As Point2D)
Delphi: procedure VCSetWorldZoomWindow(var iError: Integer; var p0: Point2D; var p1 Point2D); far;
Parameters p0 - the Point2D structure containg the coordinates for the lower left corner of the window

p1 - the Point2D structure containg the coordinates for the upper right corner of the window
Notes Functions the same as the tool command except it allows for coordinate entry through the

parameter list.
See Also VCZoomWindow, VCSetWorldZoomAll

VCSortCurrentHatchFillEntity
Version 1.2
Description Evaluates the boundary for hatch/fill definition.
Declaration
C/C++: extern "C" void WINAPI VCSortCurrentHatchFillEntity(short* iError);
Visual Basic: Declare Sub VCSortCurrentHatchFillEntity Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCSortCurrentHatchFillEntity(var iError: Integer); far;
Parameters No additional parameters are used with this subroutine.
Notes VCAddFillEntity and VCAddHatchEntity allow hatch and fill boundaries to be specified by any

other entity types available in Corel Visual CADD. A hatch or fill entity is created by adding a
reference to the entity type, building the boundary from other entity types and the sorting the
boundary to finish the hatch or fill entity. VCSortCurrentHatchFillEntity forces Corel Visual CADD
to evaluate the input boundary entities for hatching or filling. The input entities must form a
closed boundary.

See Also VCAddFillEntity, VCAddHatchEntity, VCHatchSelected, VCFillSelected

VCStringToAngle
Version 1.2
Description Converts an input string into radians for use in other API routines.
Declaration
C/C++: extern "C" void WINAPI VCStringToAngle(short* iError, double* pD, char* pS);
Visual Basic: Declare Sub VCStringToAngle Lib "VCMAIN32.DLL" (iError As Integer, pD As Double, ByVal pS As

String)
Delphi: procedure VCStringToAngle(var iError: Integer; var pD: Double; pS: PChar);
Parameters pD - the returned angle value in radians.

pS - the input string for evaluation.
Notes The Corel Visual CADD API offers several utility routine to assist in capturing user input.

VCStringToAngle and VCStringToDist allow an application to utilize some of the built in command
line structure available through the Corel Visual CADD command prompt. VCStringToAngle will
detect and convert an input string value in decimal degrees or degrees:minute:second format
into a radian value for use within the API. VCStringToDist interprets the user entry string and
converts the coordinates based on the current units or input units in the string.

See Also VCStringToDist, VCGetUnitConversionFactor, VCAngleToString, VCDistToString

VCStringToDist
Version 1.2
Description Converts an input string into world coordinates for use in other API routines.
Declaration
C/C++: extern "C" void WINAPI VCStringToDist(short* iError, double* pD, char* pS);
Visual Basic: Declare Sub VCStringToDist Lib "VCMAIN32.DLL" (iError As Integer, pD As Double, ByVal pS As

String)
Delphi: procedure VCStringToDist(var iError: Integer; var pD: Double; pS: PChar);
Parameters pD - the returned distance

pS - the input string for evaluation
Notes The Corel Visual CADD API offers several utility routine to assist in capturing user input.

VCStringToAngle and VCStringToDist allow an application to utilize some of the built in command
line structure available through the Corel Visual CADD command prompt. VCStringToAngle will
detect and convert an input string value in decimal degrees or degrees:minute:second format
into a radian value for use within the API. VCStringToDist interprets the user entry string and
converts the coordinates based on the current units or input units in the string.

See Also VCStringToAngle, VCAngleToString, VCDistToString, VCGetUnitConversionFactor

VCSymbolPlace
Version 1.2
Description Allows a loaded symbol definition to be positioned in the drawing.
Declaration
C/C++: extern "C" void WINAPI VCSymbolPlace(char* szName);
Visual Basic: Declare Sub VCSymbolPlace Lib "VCTOOL32.DLL" (ByVal szName As String)
Delphi: procedure VCSymbolPlace(szName: PChar); far;
Parameters szName - the internal name of the symbol to place as it appears in the symbol list.
Notes A symbol definition must exist prior to placement in a drawing. The symbol definition can be

loaded into the drawing session from disk or created from existing entities. Corel Visual CADD
utilizes several symbol formats in addition to the native VCS files. These include AutoCAD block
(DWG, DXF) and Generic CADD components (CMP). These are loaded with VCAcadBlockRead and
VCOpenCMP commands. An internal symbol definition can also be created within a drawing
sessions using VCCreateSymbolDef and any of the VCAdd* commands. The symbol can be
added to the drawing database with VCAddSymbolEntity in which the programmer is responsible
for handling placement and rubberbanding methods or with VCSymbolPlace in which Corel
Visual CADD handles these internally. A symbol definition can have two unique naming
conventions. An on disk name used when saved to file(limited to the characters defined by the
operating system) and an internal name used to store the name in a Corel Visual CADD drawing
session. VCAddSymbolEntity and VCPlaceSymbol both require the internal name not the on disk
name. The internal name can be determined from the saved name with
VCGetSymbolInternalName.

See Also VCAcadBlockRead, VCCreateSymbolDef , VCOpenCMP, VCOpenVCS, VCAddSymbolEntity,
VCGetSymName, VCGetSymbolName, VCGetSymbolInternalName

VCTerminate
Version 1.2
Description Unloads all drawing database and settings from memory and ends the Corel Visual CADD

sessions.
Declaration
C/C++: extern "C" void WINAPI VCTerminate(void);
Visual Basic: Declare Sub VCTerminate Lib "VCMAIN32.DLL" ()
Delphi: procedure VCTerminateDialogs; far;
Parameters No parameters are used for this subroutine.
Notes If the Corel Visual CADD DLL have been initialized by VCInit, disable them with the VCTerminate

subroutine. This method frees memory for other applications and will prevent the loaded DLL
from interfering with the operation of other Corel Visual CADD sessions. Whenever an
application is to be loaded independent of the Corel Visual CADD interface, the DLL must be
initialized with VCInit. This allows the program to access the internal subroutines and functions.
VCGetInitCount is used to determine the number of instances of Corel Visual CADD sessions
currently active.

See Also VCInit, VCGetInitCount, VCTerminateDialogs

VCTerminateDialogs
Version 1.2
Description Removes all dialogs from memory to keep them from displaying.
Declaration
C/C++: extern "C" void WINAPI VCTerminateDialogs(void);
Visual Basic: Declare Sub VCTerminateDialogs Lib "VCDLG32.DLL" ()
Delphi: procedure VCTerminateDialogs; far;
Parameters No parameters are used with this subroutine.
Notes When building an external application based on the Corel Visual CADD engine, it may, or may

not, be desirable to display Corel Visual CADD's internal dialogs. If the external application uses
it's own dialogs and passes the values or settings to Corel Visual CADD manually than it
probably will not be necessary to use the internal dialogs. If however the external application
requires the internal dialogs for consistency, or ease of programming, VCInitDialogs will initialize
the dialogs for use while VCTerminateDialogs will terminate their use.

See Also VCInitDialogs, VCInit, VCTerminate

VCThisNameIsCurrentUser
Version 2.0
Description Returns the name of the current user.
Declaration
C/C++ extern "C" vbool WINAPI VCThisNameIsCurrentUser(char* szName);
Visual Basic Declare Function VCThisNameIsCurrentUser Lib "VCMAIN32.DLL" (ByVal szName As String) As

Integer
Delphi function VCThisNameIsCurrentUser(szName: PChar):Boolean; far;
Parameters szName - the name of the current user from the registry settings.
Notes The current user is taken from values in the Windows registry. This routine simply returns the

name listed in the registry as the licensed user for the active session.
See Also Registry Settings for Corel Visual CADD

VCTimer
Version 1.2
Description Sends a message to Corel Visual CADD that a timer message has been received from the

system.
Declaration
C/C++: extern "C" void WINAPI VCTimer();
Visual Basic: Declare Sub VCTimer Lib "VCMAIN32.DLL" ()
Delphi: procedure VCTimer; far;
Parameters No parameters are used in this subroutine.
Notes This is only used when an external application receives a WM_TIMER from the system. The

application would then call VCTimer in order to notify Corel Visual CADD of the message.
See Also Windows SDK

VCToggle
Version 1.2
Description Toggles the state of a setting.
Declaration
C/C++: extern "C" void WINAPI VCToggle(WORD id);
Visual Basic: Declare Sub VCToggle Lib "VCMAIN32.DLL" (ByVal id As Integer)
Delphi: procedure VCToggle(id: Integer); far;
Parameters id - the command id of the command to be toggled. See Appendix A for a listing of native

commands.
Notes This subroutine is valid only for toggle settings. VCToggle strictly toggles the command opposite

of what it was previously, it will not explicitly toggle on or off.
See Also VCIsToggle, Appendix A

VCTruncFrom
Version 2.0
Description Truncates the database from the specified entity handle.
Declaration
C/C++ extern "C" void WINAPI VCTruncFrom(short* iError, ENTITYHANDLE StartHere);
Visual Basic Declare Sub VCTruncFrom Lib "VCMAIN32.DLL" (iError As Integer, ByVal StartHere As Long)
Delphi procedure VCTruncFrom(var iError: Integer; StartHere: Longint); far;
Parameters StartHere - the entity handle for the entity to begin truncating from.
Notes The drawing database maintains all entity operation in the database. This includes erased entity

information for undo and redo levels. This data is stored until a pack data command or save. In
some situation however an application may need only to add an entity temporarily and not have
it remain in the database for undo and redo operations. VCTruncFrom allows an application to
truncate the database effectively eliminating items from the drawing and not allowing undo
levels to get set. For example, an application may need to display a temporary construction line
during operation. Since it is not desirable to maintain the entity in the drawing database the
application can truncate the drawing from that point.

See Also VCClearDrawing, VCClearDrawingNoPrompt, VCPackData, VCPurgeErasedEntities

VCUIOff
Version 1.2
Description Turns the user interface (ribalogs) off.
Declaration
C/C++: extern "C" void WINAPI VCUIOff(void);
Visual Basic: Declare Sub VCUIOff Lib "VCMAIN32.DLL" ()
Delphi: procedure VCUIOff; far;
Parameters No parameters are used with this subroutine.
Notes Several of the modify and entity placement commands use a speedbar to change settings and

prompt the user for relevant information. In an external application however, it is not necessarily
desirable for these to display. VCUIOff will turn off the display of these ribalogs while VCUIOn will
turn them back on. Normally the calling application will make the appropriate settings for
whatever command will be executed and with the user interface turned off (VCUIOff) will call the
appropriate subroutine. If the application then needs to display the next speedbar, it would
make a call to VCUIOn to turn the user interface on. Ribalogs will only display in the Corel Visual
CADD drawing environment; they will not attempt to display in a Visual BASIC picture box or any
similar environment.

See Also VCUIOn

VCUIOn
Version 1.2
Description Turns the user interface (ribalogs) on after being turned off.
Declaration
C/C++: extern "C" void WINAPI VCUIOn(void);
Visual Basic: Declare Sub VCUIOn Lib "VCMAIN32.DLL" ()
Delphi: procedure VCUIOn; far;
Parameters No parameters are used with this subroutine.
Notes Several of the modify and entity placement commands use a speedbar to change setting and

prompt the user for relevant information. In an external application however, it is not necessarily
desirable for these to display. VCUIOff will turn off the display of these Ribalogs while VCUIOn
will turn them back on. Normally the calling application will make the appropriate settings for
whatever command will be executed and with the user interface turned off (VCUIOff) will call the
appropriate subroutine. If the application then needs to display the next speedbar, it would
make a call to VCUIOn to turn the user interface on. Ribalogs will only display in the Corel Visual
CADD drawing environment; they will not attempt to display in a Visual BASIC picture box or any
similar environment.

See Also VCUIOff

VCUnloadUnusedSymDefs
Version 1.2
Description Removes unused symbol definitions from the drawing session.
Declaration
C/C++: extern "C" void WINAPI VCUnloadUnusedSymDefs(short* iError);
Visual Basic: Declare Sub VCUnloadUnusedSymDefs Lib "VCMAIN32.DLL" (iError As Integer)
Delphi: procedure VCUnloadUnusedSymDefs(var iError: Integer); far;
Parameters No parameters are used with this subroutine.
Notes A symbol definition can be loaded into the drawing session from disk or created from existing

entities. Corel Visual CADD utilizes several symbol formats in addition to the native VCS files.
These include AutoCAD block (DWG, DXF) and Generic CADD components (CMP). These are
loaded with VCOpenDWG and VCOpenCMP commands. An internal symbol definition can also be
created within a drawing sessions using VCCreateSymbolDef and any of the VCAdd*Entity
commands. While loaded these symbol definitions may or may not have been used in the
drawing session. VCUnloadUnusedSymbolDefs removes all unused symbol definitions and frees
any subsequent resources

See Also VCRemoveSymbol

VCUpdateBirdseyeView
Version 2.0
Description Updates the Birds Eye image.
Declaration
C/C++ extern "C" void WINAPI VCUpdateBirdseyeView(short* iError, vbool tfRefresh);
Visual Basic Declare Sub VCUpdateBirdseyeView Lib "VCDLG32.DLL" (iError As Integer, ByVal tfRefresh As

Integer)
Delphi procedure VCUpdateBirdseyeView(var iError: Integer; tfRefresh: Boolean); far;
Parameters tfRefresh - flag for updating the birds eye view.

0 - do not update the birds eye.
1 - update the birds eye.

Notes The Birds Eye view provides a thumbnail overall view of the active drawing as Window are
placed on top and the view changes it is necessary to update the current Birds Eye view.

See Also VCZoomAllViews, VCZoomRegenAllViews

VCUpdateStatusBar
Version 1.2
Description Forces Corel Visual CADD to update the status bar.
Declaration
C/C++: extern "C" void WINAPI VCUpdateStatusBar();
Visual Basic: Declare Sub VCUpdateStatusBar Lib "VCMAIN32.DLL" ()
Delphi: procedure VCUpdateStatusBar; far;
Parameters No additional parameters are used with this subroutine.
Notes The status bar contains several messages about cursor position, units and entry mode. After a

command is completed or when a command is nested within another, the status line sometimes
does not update to reflect the latest information. VCUpdateStatusBar will ensure the information
is current when called.

See Also VCLockMessage

VCUserMatch
Version 1.2
Description Initiates the match tool to extract the specified setting.
Declaration
C/C++: extern "C" void WINAPI VCUserMatch(WORD id);
Visual Basic: Declare Sub VCUserMatch Lib "VCTOOL32.DLL" (ByVal id As Integer)
Delphi: procedure VCUserMatch(id: Integer); far;
Parameters id - the command id of the coresponding tool for the setting to extract.
Notes When issuing the VCUserMatch command, the id of the tool for which the setting applies needs

to be passed as the id. For example, to match the color ColorProp would be passed as the id. See
appendix A for a listing on command id's.

See Also Appendix A, VCMatchTool

VCWindowSelect
Version 1.2
Description Selects any objects located entirely in the specified window.
Declaration
C/C++: extern "C" void WINAPI VCWindowSelect(Point2D* dpP0, Point2D* dpP1);
Visual Basic: Declare Sub VCWindowSelect Lib "VCMAIN32.DLL" (dpP0 As Point2D, dpP1 As Point2D)
Delphi: procedure VCWindowSelect(var dpP0: Point2D; var dpP1: Point2D); far;
Parameters pP0 - the coordinates of one corner of the window.

dpP1 - the coordinates of the second corner of the window.
Notes Operates the same as the select window tool except allows for input points from the external

application. The application can process the points from a mouse down event or code in the
coordinates for the selection routine.

See Also VCObjectSelect , VCClearSelection, VCCrossingSelect, VCDeSelectAll, VCSelectInvert,
VCSelectLast

VCWorld2DToScreen
Version 1.2
Description Converts the world 2D coordinates into screen values recognizable by the Windows API.
Declaration
C/C++: extern "C" void WINAPI VCWorld2DToScreen(short* iError, Point2D* dpWorld, Point2D* dpScreen);
Visual Basic: Declare Sub VCWorld2DToScreen Lib "VCMAIN32.DLL" (iError As Integer, dpWorld As Point2D,

dpScreen As Point2D)
Delphi: procedure VCWorld2DToScreen(var iError: Integer; var dpWorld: Point2D; dpScreen: Point2D); far;
Parameters dpWorld - the input CAD 2D coordinate.

dpScreen - the returned screen coordinates.
Notes When working with other API, it is typically necessary to utilize the screen coordinates for event

interaction. Corel Visual CADD however utilizes a world coordinate system based on user
settings to reference entities in the drawing. VCWorld2DToScreen converts from this world
system into screen coordinate for use in other routines.

See Also VCWorld3DToView3D, VCWorld3DToWorld2D

VCWorld3DToView3D
Version 1.2
Description Converts the 3D world coordinate into a 3D coordinate of the current view.
Declaration
C/C++: extern "C" void WINAPI VCWorld3DToView3D(short* iError, Point3D* dpWorld3D, Point3D*

dpView3D);
Visual Basic: Declare Sub VCWorld3DToView3D Lib "VCMAIN32.DLL" (iError As Integer, dpWorld3D As Point3D,

dpView3D As Point3D)
Delphi: procedure VCWorld3DToView3D(var iError: Integer; var dpWorld3D: Point3D; dpView3D:

Point3D); far;
Parameters dpWorld3D - the input CAD 2D coordinate.

dpView3D - the returned screen coordinates.
Notes The view coordinate system for a 3D drawing is represented by the target and eye position. This

routine converts a real world 3D point into a point defined by the current target and eye
position. Orthogonal projections of the current perspective can then be created from the
converted points by eliminating the appropriate plane(i.e. x,y,z=0).

See Also VCWorld2DToScreen, VCWorld3DToWorld2D

VCWorld3DToWorld2D
Version 1.2
Description Converts the world 3D coordinates into a world 2D value.
Declaration
C/C++: extern "C" void WINAPI VCWorld3DToWorld2D(short* iError, Point3D* dpWorld3D, Point2D*

dpWorld2D);
Visual Basic: Declare Sub VCWorld3DToWorld2D Lib "VCMAIN32.DLL" (iError As Integer, dpWorld3D As

Point3D, dpWorld2D As Point2D)
Delphi: procedure VCWorld3DToWorld2D(var iError: Integer; var dpWorld3D: Point3D; dpWorld2D:

Point2D); far;
Parameters dpWorld3D - the input CAD 2D coordinate.

dpWorld2D - the returned screen coordinates.
Notes The 2D coordinate returned is projected from the current 3D perspective view. In a flat plane,

the routine simply strips the z-axis from the point. In perspective views, the 3D coordinate is
projected to a flat plane coordinate system on the screen

See Also VCWorld2DToScreen, VCWorld3DToWorld2D

VCWriteMetafile
Version 2.0
Description Saves a Windows metafile of the active drawing.
Declaration
C/C++ extern "C" void WINAPI VCWriteMetafile(char* pName, short iFileType, vbool tfSelectedOnly);
Visual Basic Declare Sub VCWriteMetafile Lib "VCTRAN32.DLL" (ByVal pName As String, ByVal iFileType As

Integer, ByVal tfSelectedOnly As Integer)
Delphi procedure VCWriteMetafile(pName: PChar; iFileType: Integer; tfSelectedOnly: Boolean); far;
Parameters pName - the file name and path to save.

TfSelectedOnly - flag to save only selected entities.
0 - use all entities.
1 - use only selected entities.

See Also VCAcadWriteDWG, VCAcadWriteDXF, VCSaveDrawing

VCZoomAllViews
Version 2.0
Description Zooms to the drawing extents for all open viewports of the active drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCZoomAllViews(short* iError);
Visual Basic Declare Function VCZoomAllViews Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCZoomAllViews(var iError: Integer):Boolean; far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD allows for Multiple Document Interface. The MDI child windows may represent

a different drawing or a separate view of an existing drawing. When using multiple views of the
same drawing it may be necessary to refresh all data in all views at once. Instead of moving to
each drawing world individually and issuing a VCZoomRegen command, all the views can be
updated with a single call to VCZoomRegenAllViews. An application can also force a complete
update by forcing the views to zoom to their fullest extent with VCZoomAllViews.

See Also VCZoomRegenAllViewsVCZoomRegenAllViews, VCZoomViewVCZoomView,
VCZoomAllTool_Reference

VCZoomRegenAllViews
Version 2.0
Description Redraws entities for all open viewports of the active drawing.
Declaration
C/C++ extern "C" vbool WINAPI VCZoomRegenAllViews(short* iError);
Visual Basic Declare Function VCZoomRegenAllViews Lib "VCMAIN32.DLL" (iError As Integer) As Integer
Delphi function VCZoomRegenAllViews(var iError: Integer):Boolean; far;
Parameters No additional parameters are used with this subroutine.
Notes Corel Visual CADD allows for Multiple Document Interface. The MDI child windows may represent

a different drawing or a separate view of an existing drawing. When using multiple views of the
same drawing it may be necessary to refresh all data in all views at once. Instead of moving to
each drawing world individually and issuing a VCZoomRegen command, all the views can be
updated with a single call to VCZoomRegenAllViews. If only one view of the drawing exists then
this command behaves the same as a VCZoomRegen and simply redraws the active world.

See Also VCZoomAllViewsVCZoomAllViews, VCZoomViewVCZoomView, VCZoomAllTool_Reference

VCZoomView
Version 1.2
Description Displays a screen view previously named using the Named View command or the VCNameView

API routine.
Declaration
C/C++: extern "C" void WINAPI VCZoomView(char* szView);
Visual Basic: Declare Sub VCZoomView Lib "VCMAIN32.DLL" (ByVal szView As String)
Delphi: procedure VCZoomView(szView: PChar); far;
Parameters szView - the name of the named view.
Notes Named views are useful whenever a particular screen view needs to be accessed repeatedly for

drawing or editing operations.
See Also VCNameView, VCZoomSelected, VCZoomPrevious, VCZoomAll

Tool Reference

This chapter provides a list of commands that do not require parameter input.    These routines offer the
functionality of the Corel Visual CADD interface but allow no control over the operation.       

{button ,JI("vcadd32.hlp","Continuous_Line")} VCAbort
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAbort(void);
Visual Basic Declare Sub VCAbort Lib “VCMAIN32.DLL” ()
Delphi procedure VCAbort; far;

{button ,JI("vcadd32.hlp","Continuous_Line")} VCAdjoiningToMEP
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCAdjoiningToMEP(short* iError);
Visual Basic Declare Sub VCAdjoiningToMEP Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCAdjoiningToMEP(iError:Integer);

{button ,JI("vcadd32.hlp","Align")} VCAlignSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAlignSelected();
Visual Basic Declare Sub VCAlignSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCAlignSelected; far;

{button ,JI("vcadd32.hlp","Angular_Dimension")} VCAngularDim
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAngularDim(void);
Visual Basic Declare Sub VCAngularDim Lib “VCTOOL32.DLL” ()
Delphi procedure VCAngularDim; far;

{button ,JI("vcadd32.hlp","Two_Point_Arc")} VCArc2Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCArc2Pt(void);
Visual Basic Declare Sub VCArc2Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCArc2Pt; far;

{button ,JI("vcadd32.hlp","Three_Point_Arc")} VCArc3Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCArc3Pt(void);
Visual Basic Declare Sub VCArc3Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCArc3Pt; far;

{button ,JI("vcadd32.hlp","Array_Copy")} VCArrayCopySelected
Version 1.2

Declaration
C/C++ extern "C" void WINAPI VCArrayCopySelected();
Visual Basic Declare Sub VCArrayCopySelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCArrayCopySelected; far;

{button ,JI("vcadd32.hlp","Attach_Attribute")} VCAttributeAttach
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeAttach(void);
Visual Basic Declare Sub VCAttributeAttach Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeAttach; far;

{button ,JI("vcadd32.hlp","Create_Attribute")} VCAttributeCreate
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeCreate(void);
Visual Basic Declare Sub VCAttributeCreate Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeCreate; far;

{button ,JI("vcadd32.hlp","Attribute_Edit")} VCAttributeEdit
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeEdit(void);
Visual Basic Declare Sub VCAttributeEdit Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeEdit; far;

{button ,JI("vcadd32.hlp","Attribute_Embed")} VCAttributeEmbed
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeEmbed(void);
Visual Basic Declare Sub VCAttributeEmbed Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeEmbed; far;

{button ,JI("vcadd32.hlp","Attribute_Move")} VCAttributeMove
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeMove(void);
Visual Basic Declare Sub VCAttributeMove Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeMove; far;

{button ,JI("vcadd32.hlp","Attach_Attribute")} VCAttributeMultiAttach
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCAttributeMultiAttach(void);
Visual Basic Declare Sub VCAttributeMultiAttach Lib “VCTOOL32.DLL” ()
Delphi procedure VCAttributeMultiAttach; far;

{button ,JI("vcadd32.hlp","Boolean")} VCBooleanAdd

Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCBooleanAdd(short* iError);
Visual Basic Declare Sub VCBooleanAdd Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCBooleanAdd(var iError Integer); far;

{button ,JI("vcadd32.hlp","Boolean")} VCBooleanIntersect
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCBooleanIntersect(short* iError);
Visual Basic Declare Sub VCBooleanIntersect Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCBooleanIntersect(var iError Integer); far;

{button ,JI("vcadd32.hlp","Boolean")} VCBooleanSubtract
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCBooleanSubtract(short* iError);
Visual Basic Declare Sub VCBooleanSubtract Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCBooleanSubtract(var iError Integer); far;

{button ,JI("vcadd32.hlp","Single_Bezier_Curve")} VCBezEdit
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCBezEdit();
Visual Basic Declare Sub VCBezEdit Lib “VCTOOL32.DLL” ()
Delphi procedure VCBezEdit; far;

{button ,JI("vcadd32.hlp","Single_Bezier_Curve")} VCBezierSingle
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCBezierSingle(void);
Visual Basic Declare Sub VCBezierSingle Lib “VCTOOL32.DLL” ()
Delphi procedure VCBezierSingle; far;

{button ,JI("vcadd32.hlp","Fill_Boundary")} VCBoundaryFill
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCBoundaryFill(void);
Visual Basic Declare Sub VCBoundaryFill Lib “VCTOOL32.DLL” ()
Delphi procedure VCBoundaryFill; far;

{button ,JI("vcadd32.hlp","Hatch_Boundary")} VCBoundaryHatch
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCBoundaryHatch(void);
Visual Basic Declare Sub VCBoundaryHatch Lib “VCTOOL32.DLL” ()
Delphi procedure VCBoundaryHatch; far;

{button ,JI("vcadd32.hlp","Chamfer")} VCChamfer

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCChamfer(void);
Visual Basic Declare Sub VCChamfer Lib “VCTOOL32.DLL” ()
Delphi procedure VCChamfer; far;

{button ,JI("vcadd32.hlp","Two_Point_Circle")} VCCircle2Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCircle2Pt(void);
Visual Basic Declare Sub VCCircle2Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCCircle2Pt; far;

{button ,JI("vcadd32.hlp","Three_Point_Circle")} VCCircle3Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCircle3Pt(void);
Visual Basic Declare Sub VCCircle3Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCCircle3Pt; far;

{button ,JI("vcadd32.hlp","Diameter_Circle")} VCCircleDiameter
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCircleDiameter(void);
Visual Basic Declare Sub VCCircleDiameter Lib “VCTOOL32.DLL” ()
Delphi procedure VCCircleDiameter; far;

{button ,JI("vcadd32.hlp","Cmd_Cleardrawing")} VCClearScreen
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCClearScreen(void);
Visual Basic Declare Sub VCClearScreen Lib “VCMAIN32.DLL” ()
Delphi procedure VCClearScreen; far;

{button ,JI("vcadd32.hlp","Clear_Select")} VCClearSelection
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCClearSelection(void);
Visual Basic Declare Sub VCClearSelection Lib “VCMAIN32.DLL” ()
Delphi procedure VCClearSelection; far;

{button ,JI("vcadd32.hlp","Close_Contour")} VCCloseContour
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCloseContour();
Visual Basic Declare Sub VCCloseContour Lib “VCMAIN32.DLL” ()
Delphi procedure VCCloseContour; far;

{button ,JI("vcadd32.hlp","Continuous_Bezier_Curve")} VCContBezier

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCContBezier(void);
Visual Basic Declare Sub VCContBezier Lib “VCTOOL32.DLL” ()
Delphi procedure VCContBezier; far;

{button ,JI("vcadd32.hlp","Linear_Copy")} VCCopySelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCopySelected();
Visual Basic Declare Sub VCCopySelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCCopySelected; far;

{button ,JI("vcadd32.hlp","Trim_Intersection")} VCCornerTrim
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCornerTrim(void);
Visual Basic Declare Sub VCCornerTrim Lib “VCTOOL32.DLL” ()
Delphi procedure VCCornerTrim; far;

{button ,JI("vcadd32.hlp","Cut")} VCCut
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCut();
Visual Basic Declare Sub VCCut Lib “VCMAIN32.DLL” ()
Delphi procedure VCCut; far;

{button ,JI("vcadd32.hlp","Spline_Curve")} VCCurve
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCCurve(void);
Visual Basic Declare Sub VCCurve Lib “VCTOOL32.DLL” ()
Delphi procedure VCCurve; far;

{button ,JI("vcadd32.hlp","DATUM_DIM")} VCDatum
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCDatum(short* iError);
Visual Basic Declare Sub VCDatum Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCDatum(var iError Integer); far;

{button ,JI("vcadd32.hlp","Clear_Select")} VCDeSelectAll
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDeSelectAll(void);
Visual Basic Declare Sub VCDeSelectAll Lib “VCMAIN32.DLL” ()
Delphi procedure VCDeSelectAll; far;

{button ,JI("vcadd32.hlp","Diameter_Dimension")}VCDiameterDim

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDiameterDim(void);
Visual Basic Declare Sub VCDiameterDim Lib “VCTOOL32.DLL” ()
Delphi procedure VCDiameterDim; far;

{button ,JI("vcadd32.hlp","Align_Drawing")} VCDigConfig
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDigConfig();
Visual Basic Declare Sub VCDigConfig Lib “VCTOOL32.DLL” ()
Delphi procedure VCDigConfig; far;

{button ,JI("vcadd32.hlp","Align_Drawing")} VCDigDrawingAlign
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDigDrawingAlign();
Visual Basic Declare Sub VCDigDrawingAlign Lib “VCTOOL32.DLL” ()
Delphi procedure VCDigDrawingAlign; far;

{button ,JI("vcadd32.hlp","Dim_Edit")} VCDimEdit
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimEdit(void);
Visual Basic Declare Sub VCDimEdit Lib “VCTOOL32.DLL” ()
Delphi procedure VCDimEdit; far;

{button ,JI("vcadd32.hlp","Dimension_Arc_Move")} VCDimMoveArc
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimMoveArc(void);
Visual Basic Declare Sub VCDimMoveArc Lib “VCTOOL32.DLL” ()
Delphi procedure VCDimMoveArc; far;

{button ,JI("vcadd32.hlp","Dim_Edit")} VCDimMoveLine
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimMoveLine(void);
Visual Basic Declare Sub VCDimMoveLine Lib “VCTOOL32.DLL” ()
Delphi procedure VCDimMoveLine; far;

{button ,JI("vcadd32.hlp","Dimension_Text_Move")} VCDimMoveText
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimMoveText(void);
Visual Basic Declare Sub VCDimMoveText Lib “VCTOOL32.DLL” ()
Delphi procedure VCDimMoveText; far;

{button ,JI("vcadd32.hlp","DATUM_DIM")} VCDimPoint

Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCDimPoint(short* iError);
Visual Basic Declare Sub VCDimPoint Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCDimPoint(var iError Integer); far;

{button ,JI("vcadd32.hlp","Dimension_Text_Slide")} VCDimSlideText
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimSlideText(void);
Visual Basic Declare Sub VCDimSlideText Lib “VCTOOL32.DLL” ()
Delphi procedure VCDimSlideText; far;

{button ,JI("vcadd32.hlp","Change")} VCEdit
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCEdit();
Visual Basic Declare Sub VCEdit Lib "VCTOOL32.DLL" ()
Delphi procedure VCEdit; far;

{button ,JI("vcadd32.hlp","Ellipse")} VCEllipse
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCEllipse(void);
Visual Basic Declare Sub VCEllipse Lib “VCTOOL32.DLL” ()
Delphi procedure VCEllipse; far;

{button ,JI("vcadd32.hlp","Elliptical_Start_Span_Arc")} VCEllipticalArcStartSpan
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCEllipticalArcStartSpan(void);
Visual Basic Declare Sub VCEllipticalArcStartSpan Lib “VCTOOL32.DLL” ()
Delphi procedure VCEllipticalArcStartSpan; far;

{button ,JI("vcadd32.hlp","Erase_Last")} VCEraseLast
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCEraseLast();
Visual Basic Declare Sub VCEraseLast Lib “VCTOOL32.DLL” ()
Delphi procedure VCEraseLast; far;

{button ,JI("vcadd32.hlp","Erase")} VCEraseSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCEraseSelected();
Visual Basic Declare Sub VCEraseSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCEraseSelected; far;

{button ,JI("vcadd32.hlp","Explode")} VCExplode

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCExplode(void);
Visual Basic Declare Sub VCExplode Lib “VCTOOL32.DLL” ()
Delphi procedure VCExplode; far;

{button ,JI("vcadd32.hlp","Extend_Single")} VCExtend
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCExtend(void);
Visual Basic Declare Sub VCExtend Lib “VCTOOL32.DLL” ()
Delphi procedure VCExtend; far;

{button ,JI("vcadd32.hlp","Fill_Selection")} VCFillSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCFillSelected(void);
Visual Basic Declare Sub VCFillSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCFillSelected; far;

{button ,JI("vcadd32.hlp","Fillet")} VCFillet
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCFillet(void);
Visual Basic Declare Sub VCFillet Lib “VCTOOL32.DLL” ()
Delphi procedure VCFilletRadiusRibalog; far;

{button ,JI("vcadd32.hlp","Fit_Scale")} VCFitScaleSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCFitScaleSelected();
Visual Basic Declare Sub VCFitScaleSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCFitScaleSelected; far;

{button ,JI("vcadd32.hlp","Grid_Origin")} VCGridOrigin
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCGridOrigin(void);
Visual Basic Declare Sub VCGridOrigin Lib “VCTOOL32.DLL” ()
Delphi procedure VCGridOrigin; far;

{button ,JI("vcadd32.hlp","Hatch_Selection")} VCHatchSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCHatchSelected(void);
Visual Basic Declare Sub VCHatchSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCHatchSelected; far;

{button ,JI("vcadd32.hlp","Irregular_Polygon")} VCIrregularPolygon

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCIrregularPolygon(void);
Visual Basic Declare Sub VCIrregularPolygon Lib “VCTOOL32.DLL” ()
Delphi procedure VCIrregularPolygon; far;

{button ,JI("vcadd32.hlp","Leader")} VCLeader
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCLeader(void);
Visual Basic Declare Sub VCLeader Lib “VCTOOL32.DLL” ()
Delphi procedure VCLeader; far;

{button ,JI("vcadd32.hlp","Leader")} VCLeaderEdit
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCLeaderEdit(void);
Visual Basic Declare Sub VCLeaderEdit Lib "VCTOOL32.DLL" ()
Delphi procedure VCLeaderEdit; far;

{button ,JI("vcadd32.hlp","Single_Line")} VCLine
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCLine(void);
Visual Basic Declare Sub VCLine Lib “VCTOOL32.DLL”()
Delphi procedure VCLine; far;

{button ,JI("vcadd32.hlp","Continuous_Line")} VCLineContinuous
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCLineContinuous(void);
Visual Basic Declare Sub VCLineContinuous Lib “VCTOOL32.DLL” ()
Delphi procedure VCLineContinuous; far;

{button ,JI("vcadd32.hlp","Linear_Dimension")} VCLinearDim
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCLinearDim(void);
Visual Basic Declare Sub VCLinearDim Lib “VCTOOL32.DLL” ()
Delphi procedure VCLinearDim; far;

{button ,JI("vcadd32.hlp","Customizing_Line_Types")} VCLoadLnt
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCLoadLnt();
Visual Basic Declare Sub VCLoadLnt Lib "VCTOOL32.DLL" ()
Delphi procedure VCLoadLnt; far;

{button ,JI("vcadd32.hlp","Match_Entity")} VCMatchEntity

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMatchEntity();
Visual Basic Declare Sub VCMatchEntity Lib “VCTOOL32.DLL” ()
Delphi procedure VCMatchEntity; far;

{button ,JI("vcadd32.hlp","Match_Tool")} VCMatchTool
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMatchTool();
Visual Basic Declare Sub VCMatchTool Lib “VCTOOL32.DLL” ()
Delphi procedure VCMatchTool; far;

{button ,JI("vcadd32.hlp","Measure")} VCMeasureAngle2
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureAngle2(void);
Visual Basic Declare Sub VCMeasureAngle2 Lib “VCTOOL32.DLL” ()
Delphi procedure VCMeasureAngle2; far;

{button ,JI("vcadd32.hlp","Measure")} VCMeasureAngle3
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureAngle3(void);
Visual Basic Declare Sub VCMeasureAngle3 Lib “VCTOOL32.DLL” ()
Delphi procedure VCMeasureAngle3; far;

{button ,JI("vcadd32.hlp","Measure_Area")} VCMeasureArea
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureArea(void);
Visual Basic Declare Sub VCMeasureArea Lib “VCTOOL32.DLL” ()
Delphi procedure VCMeasureAreaRibalog; far;

{button ,JI("vcadd32.hlp","Measure")} VCMeasureDistance
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureDistance(void);
Visual Basic Declare Sub VCMeasureDistance Lib “VCTOOL32.DLL” ()
Delphi procedure VCMeasureDistance; far;

{button ,JI("vcadd32.hlp","Mirror")} VCMirrorSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMirrorSelected();
Visual Basic Declare Sub VCMirrorSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCMirrorSelected; far;

{button ,JI("vcadd32.hlp","Double_Line")} VCMLine

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMLine(void);
Visual Basic Declare Sub VCMLine Lib “VCTOOL32.DLL” ()
Delphi procedure VCMLine; far;

{button ,JI("vcadd32.hlp","Break")} VCModBreak
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCModBreak(void);
Visual Basic Declare Sub VCModBreak Lib “VCTOOL32.DLL” ()
Delphi procedure VCModBreak; far;

{button ,JI("vcadd32.hlp","Move_Point")} VCMovePoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMovePoint(void);
Visual Basic Declare Sub VCMovePoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCMovePoint; far;

{button ,JI("vcadd32.hlp","Move")} VCMoveSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMoveSelected();
Visual Basic Declare Sub VCMoveSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCMoveSelected; far;

{button ,JI("vcadd32.hlp","Multiple_Copy")} VCMultipleCopy
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCMultipleCopy();
Visual Basic Declare Sub VCMultipleCopy Lib "VCTOOL32.DLL" ()
Delphi procedure VCMultipleCopy; far;

{button ,JI("vcadd32.hlp","New_Handle")} VCNewHandle
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCNewHandle();
Visual Basic Declare Sub VCNewHandle Lib “VCTOOL32.DLL” ()
Delphi procedure VCNewHandle; far;

{button ,JI("vcadd32.hlp","Offset")} VCOffset
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCOffsetMEP(short* iError);
Visual Basic Declare Sub VCOffset Lib “VCTOOL32.DLL” ()
Delphi procedure VCOffsetRibalog; far;

{button ,JI("vcadd32.hlp","Offset")} VCOffsetPnt

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCOffsetPnt();
Visual Basic Declare Sub VCOffsetPnt Lib “VCTOOL32.DLL” ()
Delphi procedure VCOffsetPnt; far;

{button ,JI("vcadd32.hlp","ORD_DIM")} VCOrdinateDim
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCOrdinateDim(short* iError);
Visual Basic Declare Sub VCOrdinateDim Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCOrdinateDim(var iError Integer); far;

{button ,JI("vcadd32.hlp","Paste")} VCPaste
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPaste();
Visual Basic Declare Sub VCPaste Lib “VCTOOL32.DLL” ()
Delphi procedure VCPaste; far;

{button ,JI("vcadd32.hlp","Continuous_Line")} VCPenUp
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPenUp(void);
Visual Basic Declare Sub VCPenUp Lib “VCMAIN32.DLL” ()
Delphi procedure VCPenUp; far;

{button ,JI("vcadd32.hlp","Place_Symbol")} VCPlaceCurrentSymbol
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPlaceCurrentSymbol();
Visual Basic Declare Sub VCPlaceCurrentSymbol Lib “VCTOOL32.DLL” ()
Delphi procedure VCPlaceCurrentSymbol; far;

{button ,JI("vcadd32.hlp","Point")} VCPoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPoint(void);
Visual Basic Declare Sub VCPoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCPoint; far;

{button ,JI("vcadd32.hlp"," Customizing_Line_Types")} VCPurgeLnt
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCPurgeLnt();
Visual Basic Declare Sub VCPurgeLnt Lib "VCTOOL32.DLL" ()
Delphi procedure VCPurgeLnt; far;

{button ,JI("vcadd32.hlp","CREATE_REFFRAME")} VCRFSize

Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFSize(short* iError);
Visual Basic Declare Sub VCRFSize Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFSize(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_All")} VCRFZoomAll
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomAll(short* iError);
Visual Basic Declare Sub VCRFZoomAll Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomAll(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_Window")} VCRFZoomArea
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomArea(short* iError);
Visual Basic Declare Sub VCRFZoomArea Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomArea(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_In")} VCRFZoomIn
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomIn(short* iError);
Visual Basic Declare Sub VCRFZoomIn Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomIn(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_Out")} VCRFZoomOut
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomOut(short* iError);
Visual Basic Declare Sub VCRFZoomOut Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomOut(var iError Integer); far;

{button ,JI("vcadd32.hlp","Pan")} VCRFZoomPan
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomPan(short* iError);
Visual Basic Declare Sub VCRFZoomPan Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomPan(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_Previous")} VCRFZoomPrevious
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomPrevious(short* iError);
Visual Basic Declare Sub VCRFZoomPrevious Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomPrevious(var iError Integer); far;

{button ,JI("vcadd32.hlp","Redraw")} VCRFZoomRegen

Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomRegen(short* iError);
Visual Basic Declare Sub VCRFZoomRegen Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomRegen(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_Value")} VCRFZoomValue
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomValue(short* iError);
Visual Basic Declare Sub VCRFZoomValue Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomValue(var iError Integer); far;

{button ,JI("vcadd32.hlp","Zoom_View")} VCRFZoomView
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFZoomView(short* iError);
Visual Basic Declare Sub VCRFZoomView Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRFZoomView(var iError Integer); far;

{button ,JI("vcadd32.hlp","CREATE_REFFRAME")} VCRefFrameCreate
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRefFrameCreate(short* iError);
Visual Basic Declare Sub VCRefFrameCreate Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRefFrameCreate(var iError Integer); far;

{button ,JI("vcadd32.hlp","PLACE_REFFRAME")} VCRefFramePlace
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRefFramePlace(short* iError);
Visual Basic Declare Sub VCRefFramePlace Lib "VCTOOL32.DLL" (iError As Integer)
Delphi procedure VCRefFramePlace(var iError Integer); far;

{button ,JI("vcadd32.hlp","Center_Polygon")} VCRPolygonCenter
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRPolygonCenter(void);
Visual Basic Declare Sub VCRPolygonCenter Lib “VCTOOL32.DLL” ()
Delphi procedure VCRPolygonCenter; far;

{button ,JI("vcadd32.hlp","Side_Polygon")} VCRPolygonSide
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRPolygonSide(void);
Visual Basic Declare Sub VCRPolygonSide Lib “VCTOOL32.DLL” ()
Delphi procedure VCRPolygonSide; far;

{button ,JI("vcadd32.hlp","Radial_Copy")} VCRadCopySelected

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRadCopySelected();
Visual Basic Declare Sub VCRadCopySelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCRadCopySelected; far;

{button ,JI("vcadd32.hlp","Radial_Dimension")} VCRadialDim
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRadialDim(void);
Visual Basic Declare Sub VCRadialDim Lib “VCTOOL32.DLL” ()
Delphi procedure VCRadialDim; far;

{button ,JI("vcadd32.hlp","Two_Point_Rectangle")} VCRectangle2Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRectangle2Pt(void);
Visual Basic Declare Sub VCRectangle2Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCRectangle2Pt; far;

{button ,JI("vcadd32.hlp","Three_Point_Rectangle")} VCRectangle3Pt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRectangle3Pt(void);
Visual Basic Declare Sub VCRectangle3Pt Lib “VCTOOL32.DLL” ()
Delphi procedure VCRectangle3Pt; far;

{button ,JI("vcadd32.hlp","Redo")} VCRedo
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRedo(void);
Visual Basic Declare Sub VCRedo Lib “VCTOOL32.DLL” ()
Delphi procedure VCRedo; far;

{button ,JI("vcadd32.hlp","Redraw_Window")} VCRegenArea
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRegenArea(void);
Visual Basic Declare Sub VCRegenArea Lib “VCTOOL32.DLL” ()
Delphi procedure VCRegenArea; far;

{button ,JI("vcadd32.hlp","Rotate")} VCRotateSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCRotateSelected();
Visual Basic Declare Sub VCRotateSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCRotateSelected; far;

{button ,JI("vcadd32.hlp","Scale")} VCScaleSelected

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCScaleSelected();
Visual Basic Declare Sub VCScaleSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCScaleSelected; far;

{button ,JI("vcadd32.hlp","Seed_Fill")} VCSeedFill
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCSeedFill();
Visual Basic Declare Sub VCSeedFill Lib "VCTOOL32.DLL" ()
Delphi procedure VCSeedFill; far;

{button ,JI("vcadd32.hlp","Seed_Hatch")} VCSeedHatch
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCSeedHatch();
Visual Basic Declare Sub VCSeedHatch Lib "VCTOOL32.DLL" ()
Delphi procedure VCSeedHatch; far;

{button ,JI("vcadd32.hlp","Select")} VCSelect
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCSelect(void);
Visual Basic Declare Sub VCSelectl Lib “VCMAIN32.DLL” ()
Delphi procedure VCSelect; far;

{button ,JI("vcadd32.hlp","Select_Adj")} VCSelectAdjoining
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectAdjoining(void);
Visual Basic Declare Sub VCSelectAdjoining Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectAdjoining; far;

{button ,JI("vcadd32.hlp","Select_All")} VCSelectAll
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectAll(void);
Visual Basic Declare Sub VCSelectAll Lib “VCMAIN32.DLL” ()
Delphi procedure VCSelectAll; far;

{button ,JI("vcadd32.hlp","Select_Crossing")} VCSelectCrossingWindow
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectCrossingWindow(void);
Visual Basic Declare Sub VCSelectCrossingWindow Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectCrossingWindow; far;

{button ,JI("vcadd32.hlp","Invert_Select")} VCSelectInvert

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectInvert(void);
Visual Basic Declare Sub VCSelectInvert Lib “VCMAIN32.DLL” ()
Delphi procedure VCSelectInvert; far;

{button ,JI("vcadd32.hlp","Select_Last")} VCSelectLast
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectLast(void);
Visual Basic Declare Sub VCSelectLast Lib “VCMAIN32.DLL” ()
Delphi procedure VCSelectLastEntity; far;

{button ,JI("vcadd32.hlp","Select_Last")} VCSelectLastEntity
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectLastEntity();
Visual Basic Declare Sub VCSelectLastEntity Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectLastEntity; far;

{button ,JI("vcadd32.hlp","Select_Last")} VCSelectLastObject
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectLastObject(short iError);
Visual Basic Declare Sub VCSelectLastObject Lib “VCTOOL32.DLL” (ByVal iError as Integer)
Delphi procedure VCSelectLastObject;(var iError: Integer) far;

{button ,JI("vcadd32.hlp","Select")} VCSelectObject
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectObject(void);
Visual Basic Declare Sub VCSelectObject Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectObject; far;

{button ,JI("vcadd32.hlp","Select_Window")} VCSelectWindow
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectWindow(void);
Visual Basic Declare Sub VCSelectWindow Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectWindow; far;

{button ,JI("vcadd32.hlp","Extend_Multiple")} VCSelectionExtend
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectionExtend(void);
Visual Basic Declare Sub VCSelectionExtend Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectionExtend; far;

{button ,JI("vcadd32.hlp","Trim_Multiple")} VCSelectionTrim

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSelectionTrim(void);
Visual Basic Declare Sub VCSelectionTrim Lib “VCTOOL32.DLL” ()
Delphi procedure VCSelectionTrim; far;

{button ,JI("vcadd32.hlp","Set_Basepoint")} VCSetBasepoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSetBasepoint(void);
Visual Basic Declare Sub VCSetBasepoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCSetBasepoint; far;

{button ,JI("vcadd32.hlp","Snap_Center")} VCSnapArcCenter
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapArcCenter(void);
Visual Basic Declare Sub VCSnapArcCenter Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapArcCenter; far;

{button ,JI("vcadd32.hlp","Snap_Object")}    VCSnapCloseGeom
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapCloseGeom(void);
Visual Basic Declare Sub VCSnapCloseGeom Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapCloseGeom; far;

{button ,JI("vcadd32.hlp","Snap_Closest")}    VCSnapClosestPoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapClosestPoint(void);
Visual Basic Declare Sub VCSnapClosestPoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapClosestPoint; far;

{button ,JI("vcadd32.hlp","Snap_Closest")}    VCSnapEndPoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapEndPoint(void);
Visual Basic Declare Sub VCSnapEndPoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapEndPoint; far;

{button ,JI("vcadd32.hlp","Snap_Intersection")}    VCSnapInt
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapInt(void);
Visual Basic Declare Sub VCSnapInt Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapInt; far;

{button ,JI("vcadd32.hlp","Snap_Last_Point")}    VCSnapLastPoint

Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapLastPoint(long lParam, WORD wParam);
Visual Basic Declare Sub VCSnapLastPoint Lib “VCTOOL32.DLL” (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi procedure VCSnapLastPoint(lParam Longint; wParam Integer); far;

{button ,JI("vcadd32.hlp","Snap_Between_2_Points")}    VCSnapMid2Points
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapMid2Points(void);
Visual Basic Declare Sub VCSnapMid2Points Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapMid2Points; far;

{button ,JI("vcadd32.hlp","Snap_Midpoint")}    VCSnapMidPoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapMidPoint(void);
Visual Basic Declare Sub VCSnapMidPoint Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapMidPoint; far;

{button ,JI("vcadd32.hlp","Snap_Near_Point")}    VCSnapNearPoint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapNearPoint(long lParam, WORD wParam);
Visual Basic Declare Sub VCSnapNearPoint Lib “VCTOOL32.DLL” (ByVal lParam As Long, ByVal wParam As

Integer)
Delphi procedure VCSnapNearPoint(lParam Longint; wParam Integer); far;

{button ,JI("vcadd32.hlp","Snap_Parallel")}    VCSnapParallel
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapParallel(void);
Visual Basic Declare Sub VCSnapParallel Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapParallel; far;

{button ,JI("vcadd32.hlp","Snap_Percentage")}    VCSnapPercent
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapPercent();
Visual Basic Declare Sub VCSnapPercent Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapPercent; far;

{button ,JI("vcadd32.hlp","Snap_Perpendicular")}    VCSnapPerpendicular
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapPerpendicular(void);
Visual Basic Declare Sub VCSnapPerpendicular Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapPerpendicular; far;

{button ,JI("vcadd32.hlp","Snap_Quadrant")}    VCSnapQuad
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapQuad(void);
Visual Basic Declare Sub VCSnapQuad Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapQuad; far;

{button ,JI("vcadd32.hlp","Snap_Tangent")}    VCSnapTangent
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSnapTangent(void);
Visual Basic Declare Sub VCSnapTangent Lib “VCTOOL32.DLL” ()
Delphi procedure VCSnapTangent; far;

{button ,JI("vcadd32.hlp","Stretch")}    VCStretchSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCStretchSelected();
Visual Basic Declare Sub VCStretchSelected Lib “VCTOOL32.DLL” ()
Delphi procedure VCStretchSelected; far;

{button ,JI("vcadd32.hlp","Cmd_Symcreate")}    VCSymbolCreate
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSymbolCreate();
Visual Basic Declare Sub VCSymbolCreate Lib “VCTOOL32.DLL” ()
Delphi procedure VCSymbolCreate; far;

{button ,JI("vcadd32.hlp","Explode_Symbol")}    VCSymbolExplode
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSymbolExplode(void);
Visual Basic Declare Sub VCSymbolExplode Lib “VCTOOL32.DLL” ()
Delphi procedure VCSymbolExplode; far;

{button ,JI("vcadd32.hlp","Text_Editor")}    VCTextManager
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCTextManager();
Visual Basic Declare Sub VCTextManager Lib “VCTOOL32.DLL” ()
Delphi procedure VCTextManager; far;

{button ,JI("vcadd32.hlp","Text_Line")}    VCTextTool
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCTextTool();
Visual Basic Declare Sub VCTextTool Lib “VCTOOL32.DLL” ()
Delphi procedure VCTextTool; far;

{button ,JI("vcadd32.hlp","Tracking")}    VCTracking
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCTracking();
Visual Basic Declare Sub VCTracking Lib “VCTOOL32.DLL” ()
Delphi procedure VCTracking; far;

{button ,JI("vcadd32.hlp","Trim_Single")}    VCTrim
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCTrim(void);
Visual Basic Declare Sub VCTrim Lib “VCTOOL32.DLL” ()
Delphi procedure VCTrim; far;

{button ,JI("vcadd32.hlp","Undo")} VCUndo
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCUndo(void);
Visual Basic Declare Sub VCUndo Lib “VCTOOL32.DLL” ()
Delphi procedure VCUndo; far;

{button ,JI("vcadd32.hlp","Undo_Vertex")} VCUndoLastVertex
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCUndoLastVertex(void);
Visual Basic Declare Sub VCUndoLastVertex Lib “VCTOOL32.DLL” ()
Delphi procedure VCUndoLastVertex; far;

{button ,JI("vcadd32.hlp","Single_Line")} VCUpdateTool
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCUpdateTool();
Visual Basic Declare Sub VCUpdateTool Lib “VCTOOL32.DLL” ()
Delphi procedure VCUpdateTool; far;

{button ,JI("vcadd32.hlp","Stretch")} VCWindowStretch
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCWindowStretch();
Visual Basic Declare Sub VCWindowStretch Lib "VCTOOL32.DLL" ()
Delphi procedure VCWindowStretch; far;

{button ,JI("vcadd32.hlp","Zoom_All")} VCZoomAll
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomAll(void);
Visual Basic Declare Sub VCZoomAll Lib “VCMAIN32.DLL” ()
Delphi procedure VCZoomAll; far;

{button ,JI("vcadd32.hlp","Zoom_Window")} VCZoomArea
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomArea(void);
Visual Basic Declare Sub VCZoomArea Lib “VCTOOL32.DLL” ()
Delphi procedure VCZoomArea; far;

{button ,JI("vcadd32.hlp","Zoom_In")} VCZoomIn
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomIn(void);
Visual Basic Declare Sub VCZoomIn Lib “VCTOOL32.DLL” ()
Delphi procedure VCZoomIn; far;

{button ,JI("vcadd32.hlp","Zoom_Out")} VCZoomOut
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomOut(void);
Visual Basic Declare Sub VCZoomOut Lib “VCTOOL32.DLL” ()
Delphi procedure VCZoomOut; far;

{button ,JI("vcadd32.hlp","Pan")} VCZoomPan
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomPan(void);
Visual Basic Declare Sub VCZoomPan Lib “VCTOOL32.DLL” ()
Delphi procedure VCZoomPan; far;

{button ,JI("vcadd32.hlp","Zoom_Previous")} VCZoomPrevious
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomPrevious(void);
Visual Basic Declare Sub VCZoomPrevious Lib “VCMAIN32.DLL” ()
Delphi procedure VCZoomPrevious; far;

{button ,JI("vcadd32.hlp","Redraw")} VCZoomRegen
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomRegen(void);
Visual Basic Declare Sub VCZoomRegen Lib “VCMAIN32.DLL” ()
Delphi procedure VCZoomRegen; far;

{button ,JI("vcadd32.hlp","Zoom_Selected")} VCZoomSelected
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomSelected(void);
Visual Basic Declare Sub VCZoomSelected Lib “VCMAIN32.DLL” ()
Delphi procedure VCZoomSelected; far;

{button ,JI("vcadd32.hlp","Zoom_Value")} VCZoomValue
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCZoomValue(void);
Visual Basic Declare Sub VCZoomValue Lib “VCTOOL32.DLL” ()
Delphi procedure VCZoomValue; far;

Dialog Reference
This chapter focuses on using the Corel Visual CADD interface to enhance your application. Corel Visual CADD
relies on ribalogs displayed during a command operation. The Application Programming Interface allows the use
of built in ribalog and dialog boxes or custom ribalogs from an external application.

VCChangeRefFrameNameDlg
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCChangeRefFrameNameDlg(short* iError);
Visual Basic Declare Sub VCChangeRefFrameNameDlg Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCChangeRefFrameNameDlg(var iError: Integer); far;

VCChangeRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCChangeRibalog();
Visual Basic Declare Sub VCChangeRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCChangeRibalog; far;

VCCloseRibalog
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCCloseRibalog(short* iError);
Visual Basic Declare Sub VCCloseRibalog Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCCloseRibalog(var iError: Integer); far;

VCDBLineSettingsRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDBLineSettingsRibalog();
Visual Basic Declare Sub VCDBLineSettingsRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDBLineSettingsRibalog; far;

VCDimArrowRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimArrowRibalog();
Visual Basic Declare Sub VCDimArrowRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimArrowRibalog; far;

VCDimDisplayRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimDisplayRibalog();
Visual Basic Declare Sub VCDimDisplayRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimDisplayRibalog; far;

VCDimExtRibalog
Version 1.2
Declaration

C/C++ extern "C" void WINAPI VCDimExtRibalog();
Visual Basic Declare Sub VCDimExtRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimExtRibalog; far;

VCDimLeaderRibalog
Version 1.2
Declaration
C/C++: extern "C" void WINAPI VCDimLeaderRibalog();
Visual Basic: Declare Sub VCDimLeaderRibalog Lib “VCDLG32.DLL” ()
Delphi: procedure VCDimLeaderRibalog; far;

VCDimLineRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimLineRibalog();
Visual Basic Declare Sub VCDimLineRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimLineRibalog; far;

VCDimStringsRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimStringsRibalog();
Visual Basic Declare Sub VCDimStringsRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimStringsRibalog; far;

VCDimTextRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimTextRibalog();
Visual Basic Declare Sub VCDimTextRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimTextRibalog; far;

VCDimToleranceRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCDimToleranceRibalog();
Visual Basic Declare Sub VCDimToleranceRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCDimToleranceRibalog; far;

VCFilletRadiusRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCFilletRadiusRibalog();
Visual Basic Declare Sub VCFilletRadiusRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCFilletRadiusRibalog; far;

VCFilterRibalog
Version 1.2
Declaration

C/C++ extern "C" void WINAPI VCFilterRibalog();
Visual Basic Declare Sub VCFilterRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCFilterRibalog; far;

VCHatchSettingsRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCHatchSettingsRibalog();
Visual Basic Declare Sub VCHatchSettingsRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCHatchSettingsRibalog; far;

VCLayerMgr
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCLayerMgr(short* iError);
Visual Basic Declare Sub VCLayerMgr Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCLayerMgr(var iError: Integer); far;

VCMeasureAngleRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureAngleRibalog();
Visual Basic Declare Sub VCMeasureAngleRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCMeasureAngleRibalog; far;

VCMeasureAreaRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureAreaRibalog();
Visual Basic Declare Sub VCMeasureAreaRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCMeasureAreaRibalog; far;

VCMeasureDistRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCMeasureDistRibalog();
Visual Basic Declare Sub VCMeasureDistRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCMeasureDistRibalog; far;

VCObjectInfo
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCObjectInfo(short* iError);
Visual Basic Declare Sub VCObjectInfo Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCObjectInfo(var iError: Integer); far;

VCOffsetRibalog
Version 1.2
Declaration

C/C++ extern "C" void WINAPI VCOffsetRibalog();
Visual Basic Declare Sub VCOffsetRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCOffsetRibalog; far;

VCOrthoAngleRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCOrthoAngleRibalog();
Visual Basic Declare Sub VCOrthoAngleRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCOrthoAngleRibalog; far;

VCPlot
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCPlot(short* iError);
Visual Basic Declare Sub VCPlot Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCPlot(var iError: Integer); far;

VCPlotDlg
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCPlotDlg(short* iError);
Visual Basic Declare Sub VCPlotDlg Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCPlotDlg(var iError: Integer); far;

VCPrint
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPrint(short* iError);
Visual Basic Declare Sub VCPrint Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCPrint(var iError: Integer); far;

VCPrintDlg
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPrintDlg(short* iError);
Visual Basic Declare Sub VCPrintDlg Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCPrintDlg(var iError: Integer); far;

VCPropertiesRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCPropertiesRibalog();
Visual Basic Declare Sub VCPropertiesRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCPropertiesRibalog; far;

VCRFBirdsEye
Version 2.0
Declaration

C/C++ extern "C" void WINAPI VCRFBirdsEye(short* iError);
Visual Basic Declare Sub VCRFBirdsEye Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCRFBirdsEye(var iError: Integer); far;

VCRFLayerMgr
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCRFLayerMgr(short* iError);
Visual Basic Declare Sub VCRFLayerMgr Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCRFLayerMgr(var iError: Integer); far;

VCSetRefFrameNameDlg
Version 2.0
Declaration
C/C++ extern "C" void WINAPI VCSetRefFrameNameDlg(short* iError);
Visual Basic Declare Sub VCSetRefFrameNameDlg Lib "VCDLG32.DLL" (iError As Integer)
Delphi procedure VCSetRefFrameNameDlg(var iError: Integer); far;

VCScriptAssignRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCScriptAssignRibalog();
Visual Basic Declare Sub VCScriptAssignRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCScriptAssignRibalog; far;

VCSymbolMgr
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSymbolMgr(short* iError);
Visual Basic Declare Sub VCSymbolMgr Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCSymbolMgr(var iError: Integer); far;

VCSymCreateRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSymCreateRibalog();
Visual Basic Declare Sub VCSymCreateRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCSymCreateRibalog; far;

VCSymPlaceRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCSymPlaceRibalog();
Visual Basic Declare Sub VCSymPlaceRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCSymPlaceRibalog; far;

VCTextLineRibalog
Version 1.2
Declaration

C/C++ extern "C" void WINAPI VCTextLineRibalog();
Visual Basic Declare Sub VCTextLineRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCTextLineRibalog; far;

VCTextSettingsRibalog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCTextSettingsRibalog();
Visual Basic Declare Sub VCTextSettingsRibalog Lib “VCDLG32.DLL” ()
Delphi procedure VCTextSettingsRibalog; far;

VCUpdateDialog
Version 1.2
Declaration
C/C++ extern "C" void WINAPI VCUpdateDialog(short* iError);
Visual Basic Declare Sub VCUpdateDialog Lib “VCDLG32.DLL” (iError As Integer)
Delphi procedure VCUpdateDialog(var iError: Integer); far;

Common Development Tasks
This chapter details a step by step instruction for common tasks in the Application Programming Interface. Most
of the examples provided can be included directly into an application. However, by following the simplified steps
and making appropriate modifications, virtually any application can be achieved.
Chapter Conventions
CAPS Declared variables and parameter return values.
Italic Value to be set.
Text Example code.

Call Declarations
Parameter Details
Adding Entities to the Database
Symbol Operations
Creating a Custom Interface
Creating a User Tool
Using the Corel Visual CADD Interface
Attribute Manipulation
User Data Tasks
Command Line Interaction
Error Checking
Database Operations
Modifying Existing Entities

Call Declarations
The Corel Visual CADD API contains four basic parts in the declaration:    the Visual CADD API Name, the Library
Location, the Parameter List, and the Return Value. The following routine will be used as an example for
description:

Declare Function VCGetCurEntAtbRecCount Lib “VCMAIN32.DLL” (iError As Integer, ByVal iWhichAtb As Integer)
As Integer
Note:    The 16 bit versions of these DLL’s don’t have the “32” in the DLL name.

Corel Visual CADD API Name: The Corel Visual CADD API has been simplified by providing descriptive names
for each of the routines. For example, VCGetCurEntAtbRecCount() indicates how many attributes are attached to
a symbol. Other calls such as VCSetCurrentErased() erase the current entity from a drawing.

Library Location: The declarations for the Corel Visual CADD API are contained in a set of four library files
called VCMAIN32, VCTRANS32, VCTOOL32 and VCDIALOG32. The names of these files correspond directly to
the DLL in which the routine itself is stored.    Since all of these declarations are available for direct inclusion into
your application, the library locations are rarely a concern to the programmer, but are provided in case you wish
to include a minimal set of declarations in your application:

· VCMAIN32 contains the majority of the database routines, such as entity creation and system settings, and
is a more-or-less a general purpose library.

· VCTRANS32 contains all the file reading and writing (translation) routines. For example, a call to load an
AutoCAD 3D file is represented in this library.

· VCTOOL32 contains tool commands that are available directly through the Corel Visual CADD interface, such
as 2-point lines and circles.

· VCDIALOG32 contains all of the built in dialogs that show up while working in Corel Visual CADD, such as the
Layer Manager and the Symbol Manager.

Parameter List: When working with the Corel Visual CADD API, it is necessary to pass information to Visual
CADD about the specific information you want to set or have returned. This is reflected in the parameter list for
each routine. Different routines will require different parameters.    For example, in a sample declaration such as
VCGetCurEntAtbRecCount, you must specify the attribute index in order to retrieve the record count.

Return Value: The return value is the end result for the routine if it is declared as a function. For example, a
sample declaration like    VCGetLineTypeIndex() returns the current line type property index number.. Other
routines may return information that is related in some way to the parameter information being passed by the
function. For example, the name of a drawing is passed back as a parameter with the VCGetDrawingName()
routine, and its return value is the number of characters in that name.    Remember that procedures (sometimes
called subroutines) do not have a return value.
The one common ground for most of these routines (both functions and procedures) is the iError value. This
value represents the success or failure of the function. Some calls to set properties will only return an iError
value since no information is needed on return.    An iError value of 0 is true or succeed, while all other values
other than 0 is failed or false.

Parameter Details

Most of the functions listed utilize a specific set of parameters which are needed by the routine in order to return
the information requested. Please see the specific call for more information on the required parameters. The
following parameters are discussed in more detail and apply to all of the Corel Visual CADD API routines in one
way or another:    iError, distances, angles, toggles, strings, user data, and special types.

iError - This is set depending on the success or failure of the function.
0 - Succeeded.
1 - Failed:    Usually due to an invalid drawing world.    Please see the specific routine for more

detailed information.

distance - All distances are stored in the Corel Visual CADD database in inches. When retrieving or setting
distance values, you need to convert them into the proper units. VCGetUnitConversionFactor() returns a
multiplier that can be used to convert the values based on the current unit setting in Corel Visual CADD.

angles- All angles are stored in radians in the Corel Visual CADD drawing database. When retrieving or setting
angle values, you need to convert to the appropriate display format, typically degrees.

toggle - Most of the Get/Set calls simply return a toggle state for the specified setting. The values returned are
1, indicating “on,” “checked” or “true," and    0, indicating “off,” “unchecked” or “false.”

string - Calls to retrieve a string value also return the length of the string. Visual Basic requires fixed length
strings for return values. These can then be trimmed to the returned string length. In some languages, a “Null”
value can be passed into the routine in place of    the string variable, allowing the call to only return the string
length. The string variable can then be allocated before call the function again.

User Data - Attaches or retrieves data of the specified type for the current entity. User data may be attached to
any drawing entity or a drawing header and used for storage of entity information, drawing information, custom
settings, or indices to external tables. User data can be of the variable types double, float, long, short or byte. In
addition to these types, a user defined type of    “chunk” may also be stored. A chunk can be any size and is
simply a pointer to a memory location. The size of the chunk is also passed to Corel Visual CADD so that it can
retrieve the appropriate amount of data from the specified memory location.

Special Types - There are various special cases for calls which return either a double or a user-defined variable
type. Visual BASIC and Delphi do not allow user defined types to be passed by value, therefore they can not call
these routines. The solution is to utilize the “BP” routine which operates the same as the original routine, but
accepts the user-defined data type passed by pointer (or reference).

Adding Entities to the Database
The API provides several methods for adding entities to the drawing database. These methods include tool
operations and direct code. This section focuses on methods used to add entities directly through code. Any user
input and interaction in these situations are handled by the application. The tool commands allow an application
to launch the drawing tool while the Corel Visual CADD handles all the user input. Whether adding a single point
or a set of complex Bezier curves, the new entity is always appended to the end of the database. This allows
direct access to the newly added entity.
All the commands to add entities to the drawing require the entry of points to define the geometry. These points
are passed in a packed coordinate pair consisting of an x and y double value(x, y, z for 3D entities). These types
are defined by the following samples. All type declarations are found in Appendix C.

Type POINT2D
    x As Double
    y As Double
End Type

Type POINT3D
    x As Double
    y As Double
    z As Double
End Type

These coordinates can be altered after the entity has been added to modify the geometry based on a changing
set of criteria. The input coordinates can come directly from the code or as a results of user interaction within the
interface. See the user tool section of this task guide for details on capturing user events within the Corel Visual
CADD interface.
In addition to adding entities directly to the drawing database, the commands can be used to create complex
symbol definitions and hatch boundaries. The routines require the entry of an iSymbolIndex describing the
definition that is to be added to the entity. The parameter values are described for each routine of the calls and
correspond to the following rule. Use a -1 to add the entities directly to the drawing database, -2 to create a
hatch\fill boundary object and > 0 for creating a symbol index. A new symbol    definition is created by calling
VCCreateSymbolDef which returns an index value to be used as the iSymbolIndex for the add routines. To modify
an existing symbol the iSymbolIndex can be found    with VCGetSymbolIndex by passing the internal name of the
symbol. When used as the iSymbolIndex argument for the add commands, the entity will be added to the symbol
instead of the drawing. See the Symbols section of this task guide for details on building symbol definitions.

Adding a Single Entity
Adding a Continuous Entity
Adding a Hatch/Fill Entity
Adding a Text Entity
Adding a Reference Frame Entity

Adding a Single Entity
Most of the Corel Visual CADD entities are considered single. That is the entity requires a specific number of
placement points to be passed through the API. Each of these input points are then used to define specific
aspects of the entity. For example, a circle requires a center point and a radius point. The routine
VCAddCircleEntity takes an input parameter for each of these points. The following steps show the method for
adding and displaying an entity through code. The A - Z Reference should be consulted to determine the proper
number of input points required by each entity.
Steps:
1)    Optional: Set properties for the new entity.
While all the properties can be modified after the entity has been added to the database, it is convenient to set
the properties prior to the operation. The properties for entities typically include color, layer, line type and line
width. These can be set with the API calls VCSetColorIndex, VCSetLayerIndex, VCSetLineTypeIndex and
VCSetLineWidthIndex, respectively. Complex entities such as dimensions, text, fills and hatches require specific
setting routines for the entity type. See the A-Z Reference for detail on these specific routines.

The following code sets the color property to blue, the width index to 3 and the layer index to 30:
Call VCSetColorIndex(IERROR, 9)
Call VCSetLineWidthIndex(IERROR, 3)
Call VCSetLayerIndex(IERROR, 30)

2)    Add the entity to the database.
To add the entity to the drawing simply specify the point location which can be determined either directly
through code or as a results of user input. The point entries are then passed to the add command to place the
entity. Note each entity requires a different number of input points to define the geometry. For example, a line
entity requires two point locations for the end points while an elliptical arc requires seven points to define the
placement. Verify the number of entries and the placement location in the A-Z Reference.

The following code adds a line from 0,0 to 10,10 based on values established through code. Note the points have
been defined as a Point2D and contain a x and y value.:
ENDPOINT1.X = 0
ENDPOINT1.Y = 0
ENDPOINT2.X = 10
ENDPOINT2.Y = 10

Call VCAddLineEntityBP(IERROR, -1, ENDPOINT1, ENDPOINT2)

3)    Optional: Move to the new entity in the database.
The entity is always appended to the end of the database and given an entity handle one greater than the
previous last entity. It may be necessary to move to the new entity for tracking ID, checking properties or adding
data to the new entity. Each entity in the drawing database is referenced based on an entity handle or ID
allowing applications to quickly access entities with VCSetCurrentEntity.

The following code moves to the newly placed entity and sets it as the current entity:
Call VCLastEntity(IERROR, ENTITYHANDLE)
Call VCSetCurrentEntity(IERROR, ENTITYHANDLE)

4)    Optional: Draw the new entity to the screen.
New entities are not automatically displayed on the screen after being added to the database. In order to draw
the entity immediately, use VCDrawCurrentEntityVCDrawCurrentEntity. The entity will be drawn during the next
redraw or paint event.

The following code draws the new entity immediately to the screen:
Call VCDrawCurrentEntity(IERROR)

Adding a Continuous Entity
The Corel Visual CADD engine supports both continuous lines and beziers. These entities allow for a virtually
unlimited number of points to define the geometry. Due to these varying point counts, a reference to the entity
must be added an then construction points are used to define the placement of the new definition. The following
steps demonstrate the sequence required for adding these special entities.
Steps:
1)    Optional: Set the properties for the new entity.
Please see Adding a Single Entity for setting properties prior to adding to the drawing database.

2) Add a reference to the entity to the database.
Continuous entities allow for a multiple number of points defining the geometry. These points must be set after
the entity has been referenced in the database. Like the single entities, the defining points can be defined
through code or through interaction within the interface.

The following code adds a reference to a Continuous Bezierr entity:
Call VCAddContinuousBezierEntity(IERROR, -1)

3)    Move to the new entity in the database.
In order to add placement points to the geometry, the new entity must be set current. This ensures the point
operations are applied to the correct entity. Each entity in the drawing database is referenced based on a handle
or ID allowing applications to quickly access entities with VCSetCurrentEntity.
The following code moves to the newly placed entity and sets it as the current entity:
Call VCLastEntity(IERROR, ENTITYHANDLE)
Call VCSetCurrentEntity(IERROR, ENTITYHANDLE)

4)    Set the points for the continuous entity.
The points defining the geometry should be passed through an array. Since the entity allows for an infinite
number of points within the array, the application must indicate the number of points being added. This is done
through the VCSetCurrentEntityPoint command which allows point entry from an array along with the number of
points defined within the array.

The following code sample adds 10 random points to the Continuous Bezier entity:
For IINDEX = 1 To 10
        POINTARRAY(IINDEX).X = IINDEX * Rnd(5000) * 100
        POINTARRAY(IINDEX).Y = IINDEX * Rnd(5000) * 100
        Call VCSetCurrentEntityPoint(IERROR, 10, POINTARRAY(IINDEX))
Next IINDEX

5)    Optional: Draw the new entity to the screen
Call VCDrawCurrentEntity(IERROR)

Adding a Hatch/Fill Entity
Hatch and fill entities behave very similar to the continuous entities in that a definition must be placed in the
database and then entities and points used to define the definition. The difference is that a hatch entity
boundary can be defined by any of the other geometry entities. For example, a circle and a rectangle can be
used to define the boundaries of the pattern. Therefore, when adding hatch entity, the application must add a
reference to the hatch and then add single or continuous entities to define the boundary. The defined boundary
must be a closed element in order to complete the process. The following steps illustrate this concept in detail.
Steps:
1)    Optional: Set the properties for the new entity.
Hatch settings differ from the standard line type, color and width settings. Specific settings calls are required to
alter the color, pattern rotation and scale. See the A-Z Reference for detail on these specific routines.

The following code sets the hatch pattern to ZigZag with a scale of 0.5, rotation angle of 0.0 and color to blue:
Call VCSetHatchColor(IERROR, 9)
Call VCSetHatchRot(IERROR, 0#)
Call VCSetHatchScale(IERROR, 0.5)
Call VCSetHatchName(IERROR, “ZigZag”)

2)    Add a reference to the entity to the database.
Hatch entities allow different combinations of entities to form the boundary. These entities need to be added to
an existing hatch reference. After the reference is placed in the drawing file, entities are added to the reference
and sorted to verify the new boundary.

The following code adds a reference to a Hatch entity:
Call VCAddHatchEntity(IERROR, -1)
Move to the new entity in the database.
Call VCLastEntity(IERROR, ENTITYHANDLE)
Call VCSetCurrentEntity(IERROR, ENTITYHANDLE)

3)    Add entities to create the boundary.
The added entries must create a closed boundary item for the hatch. These boundaries can be made of either
single or continuous entities.

The following code creates a hatch boundary based on a circle entity. Note the -2 for iSymbolIndex in order to
add the entities to the hatch definition.
CENTERPOINT.X = 0
CENTERPOINT.Y = 0
RADIUSPOINT.X = 0
RADIUSPOINT.Y = 10

Call VCAddCircleEntityBP(IERROR, -2, CENTERPOINT, RADIUSPOINT)

4)    Optional: Use a continuous entity.
The added entries must create a closed boundary item for the hatch. These boundaries can be made of either
single or continuous entities. Please see Adding a Continuous Entity for more information.

5) Sort the Hatch/Fill Entity.
After the boundary has been created, the Corel Visual CADD engine must parse the boundary and determine if it
is closed. Only closed boundaries can be hatched or filled.

The following code hatches the boundaries if they are closed:
Call VCSortCurrentHatchFillEntity(IERROR)

6)    Optional: Draw the new entity to the screen
Call VCDrawCurrentEntity(IERROR)

Adding a Text Entity
Text entities are a special case of single entities that simply allow for a single input placement point and require
a string to be set prior to adding the entity to the database. The following steps illustrate this concept.
Steps:
1)    Optional: Set the properties for the new entity.
Text settings differ from the standard color, line width , layer and line type. The text settings are supported
through individual routines for each setting required. The main property settings for a text entity is the font
which can be a True Type or Vector style. Display parameters are available depending on the particular font
being used. For example, Vector fonts utilize an Italic value to specify the exact slant angle required while True
Types only allow an italic flag to be set but not the actual slant angle. These settings are detailed in the A-Z
Reference and should be noted when working with text entities.

The following code sets the text layer to 8 and the text color to 9.
Call VCSetTextLayer(IERROR, 8)
Call VCSetTextColor(IERROR, 9)

2)    Set the string to add.
Typically, when adding text directly through code, user interaction and input is not desired or available. In these
cases, when the Corel Visual CADD interface is bypassed, the text string needs to be set directly from the
external application.

The following code sample sets the text string “This is a sample text string” for adding to the drawing:
Call VCSetTextString(IERROR, “This is a sample text string”)

3)    Add the entity to the database.
Text entities only require an insertion point for the lower left corner of the string.

The following code adds a text entity to the drawing at 0,0:
INSERTIONPOINT.X = 0
INSERTIONPOINT.Y = 0

Call VCAddTextEntityBP(IERROR, -1, INSERTIONPOINT)

4) Optional: Move to the new entity in the database.
Call VCLastEntity(IERROR, ENTITYHANDLE)
Call VCSetCurrentEntity(IERROR, ENTITYHANDLE)

5)    Optional: Draw the new entity to the screen.
Call VCDrawCurrentEntity(IERROR)

Adding a Reference Frame Entity
Reference Frame entities enable you to display the contents of one file within another. You can use the frames to
layout drawings for printing or to create overlays. Typically this feature is implemented to provide Paper
Space/Model Space capability in which a real world scale drawing is referenced into a paper space title block.
The reference frame entity is then set to a specific scale for output. The printed or plotted output is then based
on a paper size drawing which directly reflects the desired output.

Step:
1) Set the file name to add as the Reference Frame
The reference frame contains a drawing that is to be referenced inside active drawing. The path and filename for
the drawing is required to define the entity.

The following code references a drawing named SAMPLE.VCD from the active directory:
Call VCSetRefFrameName(“SAMPLE.VCD”)

2) Optional: Set the desired frame properties.
A reference frame has specific properties that apply only to this entity type. These include boundary color, line
width, display, offset, rotation and scale. Each of these properties can be altered after the entity has been placed
however it is convenient to set these prior to adding the entity.

The following code sets the boundary display off and the rotation to 45 deg.:
Call VCSetRefFrameDrawBoundary(IERROR, 0)
Call VCSetRefFrameRot(IERROR, PI/4)

NOTE: All angles must be entered in radians. PI/4 represents 45 deg. In radians.

3) Bind the data if desired.
The referenced drawing can either be bound or linked to the reference frame entity. Bound data causes the
reference frame to store the vector information directly in the active drawing while linked data stores only a
reference to the external file. Linked drawings will reflect changes made after the file has been added. Bound
data will cause the drawing size to enlarge since all the reference file information is not stored in the new
drawing.

The following code specifies for the reference frame to contain linked data:
Call VCSetRefFrameIsDataBound(IERROR, 1)

4) Optional: Set the reference frame size.
A reference frame defaults to the size of the file that is being referenced. In situations where several reference
frames are used to reference a drawing, it may be desirable to specify the frame size in order to have the
referenced drawing fit to a certain position.

The following code sets the frame height and width to one unit each:
POINT2D DPHEIGHTWIDTH

DPHEIGHTWIDTH.X = 1
DPHEIGHTWIDTH.Y = 1

Call VCSetRefFrameViewWidthHeight(IERROR, DPHEIGHTWIDTH)

NOTE: The X value of the Point2D represents the height while the Y value represents the width.

5) Add the reference frame.
The reference frame entity can now be added to the drawing database.

The following codes adds the reference frame entity to the drawing at 0,0:
Call VCAddRefFrameEntity(IERROR, -1, DPPOINT)

Symbol Operations
Symbols are a collection of entities that have been grouped under a single definition. This allows the grouped
entities to be placed multiple times within a drawing. In addition, symbols behave as a “primitive” entities and
can be manipulated the same as lines, arcs and circles. Typically, symbols are used to reflect building parts such
as a door, sink, or window.
Instead of maintaining a large set of symbols reflecting all the possible property combinations, a symbol
definitions can be parametrically generated directly through the API. For example, a door can be created from a
set of property inputs from the application interface or a set of database rules. When created through code, the
symbols handle, or placement point, is defined by the drawing origin. Therefore, when creating a symbol it is
necessary to build the part around the origin or transpose the entities when finished. If not, inconsistencies in
the placement point can occur. For example, a symbol is generated about the coordinate pair 10,10 instead of
the origin. The code then requires the new symbol entity to be placed in the drawing at the coordinate pair
50,50. Since the symbol definition was created in error, the code would shift the symbol to 60,60 instead of the
desired placement point.
Symbol definitions are defined by an internal name and a set of entities grouped under that name. The internal
name can consist of thirty-two characters to define the symbol within the Corel Visual CADD interface. Symbols
can also be saved to disk for use in other drawings. When working with symbol definitions, the index or internal
name is required. However, since the saved disk name is typically known and not the internal name, use
VCGetSymbolInternalName to determine the internal name.

Loading a Symbol
Placing a Symbol
Creating a Symbol
Modifying a Symbol Definition
Parsing a Symbol Definition
Retrieving a Symbol Count

Loading a Symbol
In order to work with a symbol inside a drawing sessions, the symbol must be loaded into memory. An
application or user can then use tools to manipulate and place the symbol throughout the drawing. The following
code demonstrates the process for loading a symbol directly through code.
Steps:
1)    Retrieve the internal name for the symbol.
When working with symbol entities, the index or the internal name are required. Since the index changes as new
symbols are loaded and others are deleted, typically the internal name should be used. As noted, the internal
name may not be known but can be found from the one saved on disk.

The following code retrieves the internal name for a symbol from the one saved on disk. Since this example
utilizes Visual Basic, the returned string must be trimmed:
iSTRINGLENGTH = VCGetSymbolInternalName(IERROR, SAVEDDISKNAME, FIXEDINTERNALNAME)
TRIMMEDINTERNALNAME = Left(SAVEDDISKNAME, iSTRINGLENGTH)

2)    Optional: Test if the symbol is already loaded.
3)    Load the symbol based on the internal name.
When working with symbol, the symbol must be loaded into memory within the drawing session prior to any
placement commands. When loading new symbols into the session, an application should check if the definition
has already been loaded by another application or the user. The symbol must be loaded in order to be placed or
manipulated. The symbol can be loaded multiple times but will keep a single definition in memory.

The following code tests if the symbol has been loaded and loads the definition.
If VCIsSymbolLoaded(TRIMMEDINTERNALNAME) = 0 Then
 Call VCOpenVCS(SAVEDDISKNAME)
End If

1) Optional: Follow    with the symbol place operation.
For more information, please see Placing a Symbol

Placing a Symbol
Symbols behave as a primitive entity in the drawing. Therefore placing them from the interface or code is the
same as placing a line. Two methods for symbol placement are provided through the API. The first allows a user
to specify the location while Corel Visual CADD handles all rubberbanding and placement options. The second
allow an application to fully control the placement by directly setting the placement point through code. The
following example shows both of these methods to place a loaded symbol entity.
Steps:
1)    Optional: Load the symbol.
2)    Optional: Place the symbol directly through code.
The symbol can be added directly to the drawing database or another symbol definition directly through code.
This method requires the same steps presented in the adding a single entity. Once a symbol definition has been
loaded, the symbol must be selected from the internal definition buffer. Loaded symbols are available to all
drawings within the sessions and are referenced by an internal name or index. In order to place the symbol, it
must be the currently active symbol definition.
The following code sets the active symbol definition based on the internal name and places it at the origin (0,0):
PLACEMENTPOINT.X = 0
PLACEMENTPOINT.Y = 0

Call VCSetSymName(IERROR, SYMBOLINTERNALNAME)
Call VCAddSymbolEntityBP(IERROR, -1, PLACEMENTPOINT)

3)    Optional: Place the symbol using a tool command.
The API provides several options when placing a symbol through code. If the application requires user input for
the placement point then VCSymboPlace can be used. This routine initiate a tool in the drawing interface and
immediately allows the user to begin dragging the symbol to the desired location. Corel Visual CADD handles all
rubberbanding and preview events in this case.

The following code initiates the symbol placement tool and allows the user to select the placement point:
Call VCSymbolPlace(SYMBOLINTERANLNAME)

Creating a Symbol
As mentioned, symbols can be generated directly from code. The process is similar to adding entities to the
drawing with one minor change. A symbol definition must be created with VCCreateSymbolDef. After the
definition has been created, any of the previous operation, can be used by simply substituting the proper symbol
index. The following code demonstrate this process in detail.
Steps:
1)    Create a symbol name.
Create a reference to the symbol definition. The definition allows the code to add a symbol to currently active
drawing session based on an internal name.

The following code create a new definition with the name “NewSymbolDefintion”:
ISYMBOLINDEX = VCCreateSymbolDef(IERROR, “NewSymbolDefintion”)

2)    Add the entities directly to the symbol definition.
The returned symbol index can then be used to add entities directly to the definition. Use the methods discussed
in the “Adding Entities to the Database” section.

The following code adds entities directly to the new symbol definition.
CENTERPOINT.X = 0
CENTERPOINT.Y = 0
RADIUSPOINT.X = 0
RADIUSPOINT.Y = 10

Call VCAddCircleEntityBP(IERROR, ISYMBOLINDEX, CENTERPOINT, RADIUSPOINT)
Call VCAddLineEntityBP(IERROR, ISYMBOLINDEX, CENTERPOINT, RADIUSPOINT)

3)    Optional: Save the symbol definition to disk.
When a symbol definition is created it is simply loaded into the current drawing session. In order to utilize the
definition in other drawing sessions, it must be saved to disk.

The following code saves the symbol to a *.VCS file in the path “c:\vcadd\symbols\savevcs.vcs”:
Call VCSaveVCS(“NewSymbolDefinition”, “c:\vcadd\symbols\savevcs.vcs”)

Modifying a Symbol Definition
Modifying an existing symbol entity requires the same steps as used in the creation process. In this case an
application determines the symbol index and then any of the entity operation can be used to add to the
definition. The following code demonstrate the process:
Steps:
1)    Retrieve the symbol index.
In order to add entities directly to a symbol definition, the symbol index must be used. Since the symbol index
can change as new symbols are loaded and others deleted, it should be determined from the internal name.

The following code retrieves the symbol internal name:
ISYMBOLINDEX = VCGetSymbolIndex(IERROR, SYMBOLNAME)

2)    Add the entities directly to the symbol definition.
The returned symbol index can then be used to add entities directly to the definition.

The following code adds an arc to an existing definition from the point 0,0; 10,10; 20,0:
ARCSTARTPOINT.X = 0
ARCSTARTPOINT.Y = 0
ARCMIDPOINT.X = 10
ARCMIDPOINT.Y = 10
ARCENDPOINT.X = 20
ARCENDPOINT.Y = 0

Call VCAddArcEntityBP(IERROR, ISYMBOLINDEX, ARCSTARTPOINT, ARCMIDPOINT, ARCENDPOINT)

Parsing a Symbol Definition
Parsing is a method for moving from one entity to the next within the drawing database. A full detail of the steps
are provided later in these guide. Typically, an application may parse a symbol definition to change the entity
properties that make up the symbol or remove an existing entity from the symbol. The following code
demonstrates the steps for parsing the definition of a symbol. Please refer to the Database Operation section
later in the guide for complete details and steps for parsing the drawing database.
Steps:
1)    Set the symbol section for parsing.
When querying information about entities, it is necessary to parse the database for the desired item and set it as
the active handle. Symbols behave as “primitive” entities that are present within the drawing database.    In
order to access information about these subentities, an application needs to set the parsing selection to the
symbol definition prior to using the database routines. This allows an application to retrieve and set values
pertaining to entities within a symbol definition.

The following code sets the parsing section for a symbol name “InternalSymbolName”:
Call VCSetSymbolSection(IERROR, “InternalSymbolName”)

2)    Use the database parsing routines.
When querying information from a symbol definition, it is necessary to parse within the definition to retrieve the
properties. Any of the parsing methods provided through the API may be used.

The following code parse the symbol entity and return a count for the number of entities in that symbol:
If VCFirstEntity(IERROR, ENTITYTYPE) Then
    Do While IERROR = 0
        LCOUNT = LCOUNT + 1
        If VCNextEntity(IERROR, ENTITYTYPE) Then
        End If
    Loop
End If
MsgBox "Total Symbol Entity Count: " & CStr(LCOUNT), 64, "Sample Files"

3)    Reset the parsing routines to the entity section.
After completion of the symbol parsing routine, reset the entity section to the drawing.

The following code resets the parsing section to the drawing:
Call VCSetEntitySection(IERROR)

Retrieving a Symbol Count
Typically an application may build a Bill of Materials based on entities in the drawing database. Symbols are used
to represent specific objects to track such a bolt or nut type. A Bill of Material would then need to track the
number of bolts placed in the drawing. The API provides a fast method for retrieving this information and from
the drawing.

Steps
1) Retrieve the symbol definition count.
Symbol definitions are loaded into the drawing session as new drawings are load or by specific commands to
load them.

The following code retrieve a count for the number of currently loaded symbol definitions:
ISYMDEFCOUNT = VCGetSymbolDefCount()

2) Parse the symbol definitions and retrieve the placement count.
After retrieving the number of definitions loaded in the session, an application can then simply move through the
list and get the necessary information.
The following code parses the symbol definition and retrieves the number of placements for each definition.
For IINDEX = 0 To ISYMDEFCOUNT
                IPLACEMENTS = VCGetSymbolPlacementCount(IINDEX)
Next IINDEX

Utilizing a Custom Interface
Through the API an application can create a custom interface. This interface only the specific tools that you want
your application to have. When creating an interface using only the Corel Visual CADD DLL’s, the engine should
be initialized and a drawing world set. The rest of the interface is under complete control from the developer. For
example, an application may only need to provide viewing capabilities. In this situation, the application may
simply create a drawing screen and limit the tool set to the zoom functions, thus limiting the user from making
any changes to the drawing.
There are several steps in the process for creating a custom interface. These steps should followed in order to
create the interface desired for the application.
Steps:
1)    Initialize the engine in the applications startup routine.
In order to use the Corel Visual CADD engine from a custom interface, the application must initialize the DLL’s if
Visual CADD isn’t already running. Once the engine has been initialized, the full power of Corel Visual CADD is
available.
The following code initializes the Corel Visual CADD graphics engine:
Call VCInit

2)    Optional: Initialize dialogs in the applications startup routine.
It may be necessary to provide some of the interface functionality from Corel Visual CADD directly into an
application. For example, an application may need the print functionality built into Corel Visual CADD. Instead of
recreating the print dialog, an application can simply use the built in dialog directly in the custom interface. Corel
Visual CADD will handle all the print output in this situation with no modification from the developer.

The following code can be used to initialize the dialogs from the Corel Visual CADD interface:
Call VCInitDialogs

3)    Create a drawing world from a control hWnd.
In order to load a drawing , a valid drawing world must be specified. This drawing world does not have to be
visible and can simply be used as a memory holder for the loaded drawing. The drawing world is created through
a Windows hWnd. The drawing screen can be any control that has the ability to display information. Corel Visual
CADD references the drawing with a world handle index. Since Corel Visual CADD has a multiple document
interface, these handles should be used to reflect both the active drawing and drawing area. As an application
creates new worlds, the handles should be stored for maintaining valid drawings.

The following code creates a world and sets it as the active drawing:
NEWWORLD = VCNewWorld(FORM.HWND)
Call VCSetCurrWorld(NEWWORLD)

4) Optional: Provide a mouse down event handler in the control.
The application should provide event handlers for all the Windows events it wants to receive. For example, a
mouse down event is required if the application allows the user to interact in the drawing with drawing tools. A
simple file translator however has no need to provide event handling within the drawing world.

The following code should be placed in the mouse down event for the application in order to send messages to
the Corel Visual CADD engine:
Call VCLButtonDown2(x, y)

5)    Optional: Provide mouse move event handler in control.
The application should provide event handlers for all the Windows events it wants to receive. For example, a
mouse down event is required if the application allows the user to interact with the drawing and drawing tools. A
simple file translator however has no need to provide event handling within the drawing world. Mouse events
should be tracked to allow tool operations to utilize preview and rubberband events.

The following code should be placed in the mouse move event for the application in order to send messages to
the Corel Visual CADD engine:
Call VCMouseMove2(X, Y)

6)    Optional: Set message handle from a control hWnd.
The Corel Visual CADD interface uses several displays to enhance the users understanding of the drawing
process. These include message or prompt handles, coordinate display and ribalogs. Each of these displays item
can be included directly into your custom interface with little programming effort by providing the hWnd for the
appropriate control. An edit box or static label are examples.

The following code set a message handler within the custom interface:
Call VCSetMessageHandle(IERROR, HWND)

7)    Optional: Set an X,Y coordinate display.
The Corel Visual CADD interface uses several displays to enhance the users understanding of the drawing
process. These include message or prompt handles, coordinate display and ribalogs. Each of these display item
can be included directly into your custom interface with little programming effort.

The following code sets a coordinate display handler within the custom interface:
Call VCSetXYHandle(IERROR, HWND)

8)    Optional: Set a ribalog handle from a controls hWnd.
The Corel Visual CADD interface uses several displays to enhance the users understanding of the drawing
process. These include message or prompt handles, coordinate display, and ribalogs. Each of these display item
can be included directly into your custom interface with little programming effort. The context sensitive ribalogs
give the user settings during a tool operation. If these are not made available to the user then the code should
handle all the settings prior to activation of the tool. For example, the VCCopySelected command initiates the
copy tool from the interface. In Corel Visual CADD, a ribalog displays a setting for the number of copies desired.
If the ribalog is not made available to the user then the code should set the number of copies prior to activating
the tool.

The following code sets the ribalog handle for displaying the ribbings:
Call VCSetDialogFrameHwnd(HWND)

9)    Optional: Provide the tools for the interface.
The interface can provide any tool desired. The easiest method for applying the tools is utilize any of the tool
commands provided in the API. The custom interface can however utilize user tools built for specific tasks.

The following code provides the line tool on a command button:
Call VCLine

10)    Destroy the engine in the applications close routine when finished.
Upon close, the application should free up memory by disabling the Corel Visual CADD engine.
Call VCTerminate

11)    Optional: Destroy the dialogs in the applications close routine.
Close the dialogs if they were used in the custom interface.
Call VCTerminateDialogs

Creating a User Tool
User tools are powerful additions to the standard tool set provided directly through the Corel Visual CADD
interface. User tools offer complete control over all Window events and operations. The advantage generated by
users tools stems from this control over the messaging events. By capturing these events, the application can
create custom event driven tools for their application. Any messaging not retrieved by the user tool is
automatically handled by Corel Visual CADD.
There are several steps involved in creating a user defined tool. The definition for routines displayed here are
contained in the Alphabetical Listing of Functions and Subroutines. In addition, some variable declarations have
been omitted.
Steps:
1)    Set the level of event messaging in the initial application routine.
An application can register in any or all of the Corel Visual CADD messaging loops. However, in certain situations
it may only be necessary to retrieve mouse events. These event registers are passed as a parameter to
VCSetAlertApp. See the A-Z Reference for details on the values.

The following code registers an application into the Corel Visual CADD messaging loop to retrieve all events:
Call VCSetAlertApp(IERROR, FORM.HWND, 0)

2)    Set the begin level for an undo sequence.
Corel Visual CADD allows unlimited levels of undo and redo operations. In order for an external application to
take advantage of these levels, it should set a begin and end level for an undo operation. This allows the user to
undo or redo the operation after the original action.

The following code sets the initial begin operation level:
Call VCBeginOperation(IERROR)

3)    Set the user tool in the applications initial routine.
After the application has been registered into the messaging loop, the tool itself must be created in order for
Corel Visual CADD to interpret the operation. This process tells Corel Visual CADD how many steps are required
for the tool completion, the prompts a user follows while activating the tool and the native command name for
launching the specified tool.

The following code sets the initialization routine for the user tool with an unlimited number of entry points(-1)
with a tool name of “Select Example” and an initial prompt “Pick an entity”:
Call VCSetUserTool(-1, “Select Example”, “Pick an entity”)

4)    Optional: Set the prompts for each event returned.
If your tool requires multiple events, it is necessary to provide prompts for each action the user must provide
while working within the tool.

The following code sets the second and third prompt to reflect the selection list tool:
Call VCSetPrompt(2, “Pick entity # 2“)
Call VCSetPrompt(3, “Pick entity # 3“)

5)    Optional: Set the cursor type required by the application.
Depending on the type of tool being creating a different cursor may be desired. For example, this selection
routine should probably utilize a special selection cursor to let the user know it is in a selection mode. A draw
tool should probably utilize the standard cross hair cursor the user is accustomed to seeing within the Corel
Visual CADD interface. See the A-Z Reference for cursor types.

The following code specifies the cursor to be changed to a selection arrow during the tool operation:
Call VCSetCursor(IERROR, “IDC_NORMAL”)

6)    Optional: Retrieve the mouse down events.
Depending on the events your application is register(see step 1), the tool can respond to the event in any
manner desired.

The flowing code takes the mouse down event and selects the closest object to the mouse down:
Call VCUserToolLBDown(IERROR, DOWNPOINT)
Call VCObjectSelect(DOWNPOINT)

7)    Optional: Retrieve the mouse move events.
This example does not require the mouse move event. Typically, the mouse move event would be used to create
rubberbanding as the user works with the tool.

The following code is given for reference only and is not required by this particular tool:
Call VCUserToolMouseMove(IERROR, MOVEPOINT)

8)    Optional: Retrieve the key press events.
The user tool should generally provide an escape or abort event while within the tool operation. This typically is
done through a keypress event for the <ESC> key. The application can also retrieve general keypress events for
processing internal routines. For example, an application could capture a required angle input from the command
line or offer multiple solutions based on the input key.

The following code provides an escape event for the user during the tool operation. VCAbortOperation ends the
undo levels and VCAppExit cleans up the messaging loop:
If (KEYASII = 256) Then

Call VCAbortOperation
Call VCAppExit

End If

9)    Set the end of the undo sequence.
Corel Visual CADD allows unlimited levels for undo and redo. In order for an external application to take
advantage of these levels, it should set a begin and end level for an undo operation. This allows the user to undo
or redo the operation after the original action.

The following code sets the end operation level:
Call VCEndOperation(IERROR)

10)    Optional: Reset the cursor.
If the cursor was changed for the tool operation, then it should be reset to the default cursor in the Corel Visual
CADD interface. This is done by passing a NULL string the routine.

The following code resets the cursor type to the default:
Dim NULLSTRING As String
Call VCSetCursor(IERROR, NULLSTRING)

11)    Clear the application from the messaging loop.
After the application has completed, the tool should be cleared from the messaging loop.

The following code clears the application for the messaging loop:
Call VCClearAlertApp(IERROR, FORM.HWND)

12)    Clean up the application on close.
In order to free residual effects of the tool, the application should utilize VCAppExit on the closing event.

The following code ends the application and clears the tool from memory:
Call VCAppExit

Using the Corel Visual CADD Interface
The Corel Visual CADD interface makes extensive use of built in speed bars. Your application can access these
same ribalogs as needed. However, in most cases, you will need to create your own input form for retrieving
settings and properties for your application. Corel Visual CADD allows you to create a custom interface and
utilize the speedbar area directly in Corel Visual CADD. This method has numerous advantages over a normal
dialog. The user already has an understanding of the Corel Visual CADD interface and its functionality. The
following steps can be utilized to create a custom speed bar for interaction in Corel Visual CADD.
Steps:
1)    Retrieve the ribalog size and coordinates.
The API will return the current screen location for the bounding rectangle in the main speedbar. An application
can then resize dialogs based on this information. The values are returned in an iPoint2D structure containing the
x , y pixel screen coordinates for the bar. Screen coordinates in Windows are referenced from the upper left
corner and increase in size as moved right and down. In some languages screen coordinates are referenced in
twips instead of the standard pixels. In these cases, a conversion should be used based on values from the
language.

The following code retrieves the screen coordinates for the ribalog:
Call VCGetRibalogSize(IERROR, RIBALOGORG, RIBALOGSIZE)

2)    Retrieve the status bar coordinates.
The API will also return the coordinates of the status bar. The application can use this information to display
custom information during the operation of a tool. However, note that an application has full control over the
status prompt of the Corel Visual CADD interface. In cases where only prompt information needs to be displayed
use VCSetPrompt. However if the application needs to provide direct access to custom status information then
displaying a status form can be used.

The following code retrieves the screen coordinates for    the status bar:
Call VCGetStatusBarSize(IERROR, STATUSORG, STATUSSIZE)

3)    Resize the application form based on the coordinates.
The form should be resized based on the values returned in the previous examples. The process for doing this is
language dependent. Consult the language guide for your compiler for details on sizing a form at run time.

The following code presents the straight forward method of resizing a Visual Basic form based on these values:
GETTWIPSX = Screen.TwipsPerPixelX
GETTWIPSY = Screen.TwipsPerPixelY
FORM.Top = (RIBALOGORG.Y + 1) * GETTWIPSX
FORM.Left = RIBALOGORG.X * GETTWIPSY
FORM.Width = RIBALOGSIZE.X * GETTWIPSX
FORM.Height = (RIBALOGSIZE.Y - 2) * GETTWIPSY

Attribute Manipulation
Attributes are non-graphical data attached to symbol entities in the drawing database. Using attributes to
represent Bill of Materials and other information is being replaced by User Data methods. However, in many
situations there are existing CAD drawings containing attribute information .

Retrieving Attributes
Creating Attributes

Retrieving Attributes
The process for retrieving attributes runs on three levels. These levels are based on the complexity of the
attached attribute. A symbol can contain any number of attributes, each of which can contain any number of
labels and values. Therefore, when moving through the drawing database to retrieve attributes, an application
should first filter the symbols and then move through each attribute and each label one at a time until all have
been retrieved.    The process can then continue on to the next symbol in the drawing and repeat the attribute
search.
Step:
1)    Retrieve the number of attribute definitions attached.
A symbol can have an unlimited number of attributes attached . These attribute definitions contain labels and
values defining the definition. This step should be used to determine the number so a proper loop can be set up
to parse through all the attributes.

The following code retrieves the number of attributes and sets up a loop structure to begin parsing the
attributes.
CURRENTATBCOUNT = VCGetCurEntAtbCount(IERROR)
If (CURRENTATBCOUNT <> 0) Then
For ATBINDEX = 0 To CURRENTATBCOUNT - 1

2)    Retrieve the number of labels in the current attribute definition.
Similar to the step above but this sets up a loop structure for parsing the current attribute.

The following example sets up a loop structure to parse the current attribute definition.
CURRENTATBRECCOUNT = VCGetCurEntAtbRecCount(IERROR, ATBINDEX)
For RECORDINDEX = 0 To CURRENTATBRACCOUNT - 1

3)    Retrieve the label from the definition.
Once inside the attribute definition, the program can then retrieve the label and value. The label represents the
name or tag for the attribute. For example, if the attribute read MANUFACTURER: COREL then MANUFACTURER
represents the label and COREL represents the value.

The following code retrieve the label at the current loop index.
RETURNEDSTRINGLENGTH = VCGetCurEntAtbRecLabel(IERROR, ATBINDEX, RECORDINDEX, RETURNEDVALUE)

4)    Retrieve the value from the definition.
Once inside the attribute definition, the program can then retrieve the label and value. The label represents the
name or tag for the attribute. For example, if the attribute read MANUFACTURER: NUMERA then MANUFACTURER
represents the label and Numera represents the value.
RETURNEDSTRINGLENGTH = VCGetCurEntAtbRecValue(IERROR, ATBINDEX, RECORDINDEX, RETURNEDVALUE)

5)    Loop through the attribute definition.
The application should continue through the attribute definition until all the required data is retrieved.

6)    Loop through the symbol.
If the symbol has multiple attributes attached , the application should parse through the all the attributes on that
symbol before moving to the next symbol placement.

Creating Attributes
An attribute is defined by a name and contains both labels and values. The labels represent the tag for the
attribute value such as “Type”. The value represents the data that is stored in with the label. For example, the
previous sentence described a label of “Type”. A value for this label may be “Maple”. The value stores the
specific information describing the data.
Steps:
1) Create the initial attribute values.
 In order to create an attribute at least one set of label and value must be set. This data is referenced by an
index of zero in the attribute definition.

The following code adds an attribute definition named “MYATB” to the current drawing session and sets the initial
label to “Type” and value to “Default”:
Call VCAddAtbDef(IERROR, "MYATB", "Type", "Default")

2) Set any subsequent label and values in the attribute.
An attribute can contain up to 256 label and value sets. Each of these can represent any set of non-graphical
data required. Each attribute label and value must be set in order. For example, an application can set the values
for the second record set (iRec = 1) and then for the third record set (iRec = 2). It can not skip a set, it must add
the items in sequential order starting with 0 for the initial set.

The following code adds four more label and value record sets:
Call VCSetAtbDefLabelValue(iErr, "MYATB", "Label1", "Value1", 1)
Call VCSetAtbDefLabelValue(iErr, "MYATB", "Label2", "Value2", 2)
Call VCSetAtbDefLabelValue(iErr, "MYATB", "Label3", "Value3", 3)
Call VCSetAtbDefLabelValue(iErr, "MYATB", "Label4", "Value4", 4)

User Data Tasks
User data is a powerful tool for attaching and accessing information to entities. This data can range from
parametric entity ID values to SQL string statements for accessing a database. This data can be in many forms
including all the numeric type formats and a chunk or pointer to a assignment of memory containing the desired
information. In order to set aside a space of memory for attaching and accessing user data, a name must be
specified for the section. This name provides a unique location for information specific to your application.
Numera Software will provide a User Data ID for commercial developers to ensure unique entity definition
segments.

Attaching User Data
User Data Retrieval
Adding User Data to a Drawing Header

Attaching User Data
User data can be attached to entities or the drawing header. The information attached is then stored in the
drawing for later reference and use.
Steps:
1)    Set the required unique user data name in the application initialization routine.
In order to set up a space of memory for each entity and the drawing header, a user data name should specified
to reference the information.

The following code sets a user data name of “Sample Data”:
Call VCSetUserDataName(IERROR, “Sample Data”)

2)    Attach the information to the drawing header or to the current entity.
In order to access information in the drawing header, make a call to VCSetHeaderData. Otherwise, user data is
attached to the current entity. The current entity can be set in a number of ways including any parsing routine.
The current entity can be accessed directly through the API.

The following code specifies that the user data is attached to the drawing header rather than a specific header:
Call VCSetHeaderData(IERROR)
The following code should be used to return the user data to the drawing entities themselves:
Call VCSetEntitySection(IERROR)

3)    Add or set the desired user data values to the segment location.
The Corel Visual CADD API allows two methods for attaching the user data information. The easiest method is to
simply use the add routines which add the data to the next available slot in the user data segment. The API also
allows user data to be set and placed at a specific index within the user data slot. The benefits of the second
method become apparent when working with multiple data values being attached to the entity.    As more data is
attached, a hierarchical system can be set up to access the information desired.

The following code adds a user data short (0), double(25.5) and chunk(“My name is Sam”) value to a defined
entity:
UDShort = 0
UDFloat = 25.5
UDChunk = “This is the chunk data”
Call VCAddCurrentEntityUserDataShort(IERROR, UDShort)
Call VCAddCurrentEntityUserDataFloat(IERROR, UDFloat)
Call VCAddCurrentEntityUserDataChunk(IERROR, UDCHUNK, Len(UDCHUNK))

User Data Retrieval
User data is retrieved from both entities and the drawing header. Typically, an application knows the order and
type of data attached. However, when working with custom data not attached by your application the API can be
used to filter out the types and placement positions.
Steps
1)    Set the required unique user data name in the application initialization routine.
Please see Attaching User Data.

2)    Retrieve the information from the drawing header or the current entity.
To access information in the drawing header, the user data section needs to call VCSetHeaderData. Otherwise,
user data is accessed from the current entity. The current entity can be set in a number of ways including any
parsing routine. The current entity can be accessed directly through the API.

The following code specifies to retrieve the user data from the drawing header rather than a specific header:
Call VCSetHeaderData(IERROR)
The following code should be used to return the user data from the drawing entities themselves:
Call VCSetEntitySection(IERROR)

3)    Retrieve the user data count for the unique user data ID.
This count returns the number of valid user data segments attached to the entity. This information can then used
to loop through the retrieval process.

The following code retrieves the amount of data attached at the current location.
IATTACHEDDATACOUNT = VCGetCurrentEntityUserDataCount(IERROR)

For each index, retrieve the type of user data information attached. This step can be avoided if the application
remembers and accesses the information all in the same order each time.

The following code retrieves the user data kind at the specified index. Typically this would be done in a loop
statement to check all the data on the entity.
For IINDEX = 0 To IATTACHEDDATACOUNT - 1
IUDKIND = VCGetCurrentEntityUserDataKind(IERROR, IINDEX)
Select Case IUDKIND

End Select
Next IINDEX

4)    Retrieve the data from the specified index.
If the data type is not known then typically this would involve a statement to retrieve the proper entity type.

The following code works in conjunction with the previous values to retrieve the data into the proper type
Select Case iUDKind
Case FLOAT
VCGetCurrentEntityUserDataFloat(IERROR, IINDEX, rFloatValue)
Case SHORT
VCGetCurretnEntityUserDataShort(IERROR, IINDEX, rShortValue)
Case CHUNK
rSize = VCGetCurrEntUserDataChunkSize(IERROR, IINDEX)
VCGetCurrentEntityUserDataChnunk(IERROR, IINDEX, rChunkValue)
End Select

Adding User Data to a Drawing Header
User data is a powerful feature that can be implemented to store specific information with entities. It may be
necessary to also store information within the drawing header. A drawing property sheet in which specific data
such as total editing time or a drawing description or held in the header for review and document management is
a good example. Corel Visual CADD allows an application to attach user data either to a saved drawing in which
the information is saved with the drawing and only accessible when that drawing is open. The property sheet
example is a demonstration of this situation in which the added information is specifically related to that
drawing. Other situation may require an application to create a default or environment setting available and
loaded each time a drawing is made active or created. A special flag to set initial values in an application is a
good example. An application can store this general information in the Corel Visual CADD default environment
which is then automatically loaded each time a drawing is activated.

Steps:
1) Set the required unique user data name in the application initialization routine.
In order to set space in memory on each entity or in the drawing header, a user data name should be specified to
reference the information.

The following code sets a user data name of “Sample Data”:
Call VCSetUserDataName(IERROR, “Sample Data”)

2) Set the user data information to the drawing header.
In order to access information in the drawing header, make a call to VCSetHeaderData. Otherwise, user data is
attached to the current entity.

The following code specifies that the user data is attached to the drawing header rather than a specific header:
Call VCSetHeaderUser(IERROR)

3) Determine where the data will get attached.
User data will only get attached to the default environment if the active drawing has not been saved. If a drawing
has been saved then data will attach itself to the drawing and only be accessible when that drawing is active.
Therefore it is necessary to attach user data to an non-saved drawing when creating a default application setting.
An application can determine if a drawing has been saved by checking the drawing name with
VCGetDrawingName. Typically, it is not necessary to track the actual drawing name, instead an application can
simply verify a drawing has been saved if the return value for VCGetDrawingName is greater than zero. If it is
equal to zero then the drawing has not been saved and the data will be attached as setting to the default
environment.

The following code checks if the active drawing has been saved.
If (VCGetDrawingName() > 0) Then
        ‘THE DRAWING HAS BEEN SAVED
End IF

4) Attach the data.
After determining where the data will be attached any user data routine can be used to add data to the drawing.
The Corel Visual CADD API allows two methods for attaching the user data information. The easiest method is to
simply use the add routines which add the data to the next available slot in the user data segment. The API also
allows user data to be set and placed at a specific index within the user data slot. The benefits of the second
method become apparent when working with multiple data values being attached to the entity.    As more data is
attached, a hierarchical system can be set up to access the information desired.

The following code attaches user data to a saved drawing. The attached information will only be available when
the drawing is active. This would represent situations where the data is specific to the drawing and not an
environment setting.
If (VCGetDrawingName() > 0) Then
        Call VCAddCurrentEntityUserDataShort(IERROR, 1)
End IF

The following code attaches user data to the drawing environment. The attached information is then saved with
all drawing and the default environments.
If (VCGetDrawingName() = 0) Then
    Call VCAddCurrentEntityUserDataShort(IERROR, 1
End IF

NOTE: The slight difference in the previous code is represented by the greater than (>) and equal (=) signs.

5) Reset the data back to the entity definitions.
The user data task will remain in the drawing header until it is switched back to the entity section.

The following code switches the parsing section back to the entity definitions.
Call VCSetEntitySection(IERROR)

Command Line Interaction
Corel Visual CADD provides direct access to the command line for your application to use. Typically, command
interaction is handled better directly through API routines. However, certain situations call for the user to have
direct access to the command line. Information that can be captured through the command line includes two
letter command sequences, number entry, and prompt text. By capturing the command line, the external
application can process the key event before Corel Visual CADD manipulates the event.    An example of this is
applications utilize special two letter command structures that overwrite the built in commands.
Steps:
1)    Set the application to accept key board input.
In order to retrieve any keyboard activity from within the Corel Visual CADD interface, an alert application must
be set. This allows Corel Visual CADD to pass the key press events to that application. Once the application
receives the events it can process the input prior to Corel Visual CADD. In this manner an application could over
right the 2-letter command structure or retrieve values directly from the prompt.

The following code registers the application in the Corel Visual CADD messaging loop.
Call VCSetAlertApp(IERROR, HWND, iCode)

2)    Capture the first command line character in the application keypress event.
An application will receive all key press events once registered with the messaging loop. The application should
then filter out the desired key strokes. In many situations an application may simply need the <ESC> key
sequence in order to terminate an applications process.    In others it may need to retrieve a distance input or
rotation angle from the command line. In these situations an application can retrieve the current key with the
applications process and use VCGetCmdStr to return the previous input for the command line.

The following code placed in the Key_Press event handler of the application will retrieve the current key value
and use VCGetCmdStr to retrieve the values prior to this.
IRETURNEDSTRINGLENGTH = VCGetCmdStr(IERROR, RETURNEDSTRING)
The following sample code demonstrates a typical scenario to capture an input value after the <ENTER> key.
If KeyAscii = 13 Then
 RETURNEDSTRINGLENGTH = VCGetCmdStr(IERROR, ENTEREDVALUE)
End If

3)    Clear the application from the messaging loop.
As with any user tool, the application should be cleared from the messaging loop on exit. This frees the
application from the Corel Visual CADD messaging loop and terminates any event processing from the Visual
CADD interface.

The following code clears the application from the messaging loop.
Call VCClearAlertApp(IERROR, CMDLINE.HWND)

Error Checking
It is important for error checking to be handled through the API. While each call returns an IERROR value that can
be checked, it is typically used in a debug environment rather than in actual code testing. There are, however,
several error checking routines that should be implemented in order to ensure proper stability. These routines
range from simple version checking routines to in-depth world checking before any drawing interaction begins.

Version checking
Valid World Checking
Initialization Check

Version checking
When running external applications, it is a good idea to check the version to be sure that all the API‘s needed by
the application are supported in the version in use. Corel Visual CADD version numbers are broken into four
parts. These are from greatest to least significance; Major, Minor and Dot. Major and minor are the most
important and should always be checked. For example this API document was designed around Corel Visual
CADD 2.0.1(major version 2, minor version 0, minor dot version 1). Dot versions are typically maintenance
release versions.
Steps:
Check the version numbers.

The following code retrieves the version numbers for error checking:
IMAJOR = VCGetMajorVersion()
IMINOR = VCGetMinorVersion()
IDOT = VCGetMinorDotVersion()
If (IMAJOR >= 2) And (IMINOR >= 0) And (IDOT >= 0) Then
Else
 MsgBox "ERROR CODE MESSAGE FOR VERSION"
End If

Valid World Checking
The most common cause for API routines to fail is an invalid drawing world. Corel Visual CADD provides a
Multiple Document Interface (MDI) that allows several drawings opened at once. Each of these drawings are
opened into separate drawing worlds. The world handles begin at zero and are incremented with each new
drawing opened. The Corel Visual CADD API provides the ability to create new drawings both in the Visual CADD
interface and in an external application. Whenever interacting with any of these drawing worlds it is necessary to
validate the current world.
Steps:
Check the current world.

The following code checks the current drawing world in order to make sure it is valid.:
IVALIDWORLD = VCIsCurrentWorldValid()
If (IVALIDWORLD = 0) Then
    MsgBox "ERROR MESSAGE FOR INVALID WORLD"
End If

Initialization Check
When creating an external application, the DLL’s must be initialized in order to activate API routines. An
application that relies on the Corel Visual CADD interface should also check to ensure the Visual CADD engine
has been activated. In order to check if the DLL’s have been initialized, an application should call
VCGetInitCount.

Steps:
Check the initialization count.

The following code checks the DLL initialization count:
IINITCOUNT = VCGetInitCount()
If (IINITCOUNT = 0) Then
 MsgBox "ERROR MESSAGE FOR INITIALIZATION COUNT”
End If

Database Operations
The API provides all the necessary parsing routines for accessing information in the drawing database. In order to
access information from entities within the drawing, an application will have to use a database parsing routine.
This routine can be a specific entity call such as VCSetCurrentEntity or a general parsing routine such as
VCFirstEntity. The parsing routines can range from a simple translator that moves through the database from
beginning to end in order to write to a specified format or it can be a routine to modify existing properties with
the database. Anytime an entity is added to the database it is placed at the end of the database and given a
unique ID. This ID can be used to access information or modify properties directly after the operation. The
following samples will demonstrate the methods for moving through the database to obtain the desired entity
properties. These methods include a simple parse through each entity in the drawing to a complex filtering
method for obtaining specific information quickly.

Parsing the Database
Parsing a Filtered Entity List
Parsing an On Screen List
Expanded Parsing List
Retrieving Entity Properties
Parsing a Hatch/ Fill Boundary

Parsing the Database
The simplest form of drawing database interaction is to parse from the first entity in the file and work through
each entity until the file is finished. This parsing method requires the two routines VCFirstEntity and
VCNextEntity.

Move to the first entity in the drawing data base and loop through the database.
The following code demonstrates the proper method for implementing these routines to search the drawing file:

If VCFirstEntity(IERROR, ENTITYTYPE) Then
    Do While IERROR = 0
        ‘Do some sort of processing
        If VCNextEntity(IERROR, ENTITYTYPE) Then
        End If
    Loop
End If

Parsing a Filtered Entity List
When a parsing routine is needed to find specific entities or entity types in the database, a selection filter routine
can be implemented. For example, a database search may only require entities on layer 10 or symbols name
“TESTSYMBOL”. Instead of using a slow parsing routine that checks the entire database, a selection filter can be
implemented to pick the entities directly out the database.    This method is much easier and faster in finding
specific types on entities.

1)    Optional: Turn filter highlight off.
The filtering method works of a specialized selection filter. Since it may not be desirable to display this filtered
list to the end user, the application should turn highlight information while processing the entities.

The following code turns the selection highlight off:
Call VCSetHighlight(IERROR, 1)

2)    Optional: Reset the filter.
The application should reset the filter to clear out any existing filter information. By resetting the filter an
application is assured no other information in either the user settings or an application settings are used.

The following code resets the selection filter:
Call VCFilterReset(IERROR)

3)    Set the new filter criteria.
The filter can be applied on a variety of entity types, names, colors, layers and widths. You can use any
combination of these filter settings. The entity type Ids are presented in Appendix B.

The following example demonstrates a filter for symbols with the name “TestSymbol” that are on layer 10:
Call VCSetFilterKind(IERROR, 7)
Call VCSetFilterName(IERROR, “TestSymbol”)
Call VCSetFilterLayer(IERROR, 10)

4)    Set the filter active.
The following code sets the active filter:
Call VCSetFilterActive(IERROR, 1)

5)    Select the entities.
The parsing filter works on a selection list. Since the filter has been set to select specific types of entities, when
you select all of the entities in the database, only those that meet the parsing filter will be selected.
The following code selects all entities through code:
Call VCSelectAll

6)    Parse the filtered selection.
After setting the filter list, specialized parsing procedures are available to move through the entities in this list.
These are parsing routines are analogous to the standard parsing routines.

This following code parsed through the filtered selection list:
If VCFirstSelected(IERROR, ENTITYTYPE) Then
    Do While IERROR = 0
        ‘Do some sort of processing
        If VCNextSelected(IERROR, ENTITYTYPE) Then
        End If
    Loop
End If

7)    Deselect the entities.
The selection list should be cleared after the processing has finished.

The following code deselects all the entities in the drawing:
Call VCDeselectAll

8)    Turn the filter off.
The following code turns the selection filter off:

Call VCSetFilterActive(IERROR, 0)

9)    Optional: Reset the filter.
The filter should be reset after the operation to clean up any existence of the application from the user interface.

The following code resets the selection filter:
Call VCFilterReset(IERROR)

10)    Optional: Turn the highlight display.
The filtering method works of a specialized selection filter. Since it may not be desirable to display this filtered
list to the end user the application should turn highlight information of while processing the entities.

The following code turns the selection highlight off:
Call VCSetHighlight(IERROR, 1)

Parsing an On Screen List
The API also provides access to parsing entities that are currently on-screen. This allows an application to base
the parsing list on only those items present at the current zoom. This is beneficial in situations where specific
areas of the drawing need to parsed and filtered. If the current zoom encompass the entire area, then this
method simply behaves the same as the standard parsing method, moving through each entity in the drawing.

1)    Reset the on screen list with the new zoom
When working with display and zoom related parsing methods, the items selection list needs to be reset prior to
each parsing string. This ensures the current zoom, those changed directly through code or from the user
interface, are reflected in the database search.

The following code resets the screen list for the current zoom:
Call VCResetOnScreenList(IERROR)

2)    Parse the list.
The routines to parse the list coincide with standard methods of moving from the first item in the list to the next
until the end of the list is reached.

The following code parses the new screen list:
If VCFirstOnScreen(IERROR, ENTITYTYPE) Then
    Do While IERROR = 0
        ‘Do some sort of processing
        If VCNextOnScreen(IERROR, ENTITYTYPE) Then
        End If
    Loop
End If

Parsing an Expanded List
When the normal parsing routines are used, certain entities are treated as solid entities. For example, the normal
parsing routines will parse symbol and hatch entities as a single object even though they are made of several
entity types. A symbol definition can be parsed separately. Please see the Symbol section of this guide. However,
when creating a translator that does not allow certain complex objects such as symbols and attached patterns, it
may be necessary to parse inside the entities and gain information from the defining entity. This can be
accomplished by exploding the objects and then parsing them with normal routines. Remember that this can
have adverse affects on the original drawing. Instead by using VCFirstEntityExpand and VCNextEntityExpand, the
entire entity set, even those within complex objects, can be parsed by the application.

Parse the expanded list.
The routines to parse the list coincide with standard parsing methods of moving from the first item in the list to
the next until the end of the list is reached.
If VCFirstEntityExpand(IERROR, ENTITYTYPE) Then
    Do While IERROR = 0
        ‘Do some sort of processing
        If VCNextEntityExpand(IERROR, ENTITYTYPE) Then
        End If
    Loop
End If

Retrieving Entity Properties
There are two methods for retrieving the properties of an entity.    Once an entity has been set as current, the
properties can be retrieved. The first method is to match the properties of the entity and then use the
appropriate routine to retrieve the system settings. The second method allows an application to directly access
the properties from the entity definition.
Steps:
1)    Optional: Save the current system settings.
When working with entity properties, it is generally desirable to maintain the current settings in a temporary
buffer and restore the information on close. This allows a seamless integration into the interface and consistency
with the tolls a user is currently working with.

The following code stores the settings into a temporary buffer:
Call VCSaveSettings

2)    Parse the list for the desired entity.
The standard parsing structures presented in the previous sections are generally used to move through the
entities and retrieve the properties. However, in order to retrieve property information, an entity need only to be
set as current within the database. This can done by the parsing methods or directly if the entity handle is
known.

The following code demonstrates setting the current entity based on a known ID. Typically, this ID is found
through another parsing method. This code sets the current entity as number 10.
VCSetCurrentEntity(IERROR, 10)

3)    Optional: First Method. Match the entity properties in the settings and use a settings retrieval
routine.
This method requires the application to match all the entity properties and set them as the global variable in the
user interface. Typically, when using this method, it is good practice to save the current user settings prior to
processing and then retiring them on exit.

The following code matches the current entity properties and retrieves the color index corresponding to the
entity property.
Call VCMatchCurrentEntity(IERROR)
ICOLOR = VCGetColorIndex(IERROR)

4)    Optional: Second Method. Use a current entity routine to get the desired property.
The second method does not require the application to retrieve the entity property into a global variable. The
information can be retrieved directly from the entity property settings.

The following code retrieve the color setting directly from the entity property.
ICOLOR = VCGetCurrentEntityColor(IERROR)

5)    Optional: Restore the settings.
When working with entity properties it is generally desirable to maintain the current set settings in a temporary
buffer and restore the information on close back to these values. This allows a seamless integration into the
interface and consistency with the tolls a user is currently working with.

The following code restores the settings from the temporary buffer:
Call VCRestoreSysSettings

Parsing a Hatch/ Fill Boundary
Hatch and fill entities are defined by a boundary made up of different entities. For example, a hatch can be
defined by a rectangle and a circle. Both are part of the hatch definition and are maintained as subentities in the
Corel Visual CADD database. An application can access these boundary entities to retrieve properties, set new
value and effectively recreate the hatch entity. In order to access these entities an application needs to set up a
specialized parsing function to move through the entities.

Steps:
1) Retrieve the ENTITYHANDLE for the hatch or fill entity.
In order to access the boundaries of a hatch or fill entity, an application needs to retrieve the handle for the
entity. This handle is usually retrieved with VCGetCurrEntityHandle after utilizing another database parsing
routine. Please see the rest of the database parsing section for details on the methods available for accessing
entity information.

2) Set a parsing loop and determine the number of contours defining the boundary.
The hatch boundary can be defined by multiple paths. Using the previous example of the rectangle and circle,
the hatch entity would be defined by two (2) contours, one for the rectangle and one for the circle. The number
of contours can be retrieved with the API routine VCGetEntityContourCount.

The following example returns a count for the number of contours defining the entity. It assumes a known entity
handle calculated through other database parsing methods:

For ICONTOURINDEX = 0 To VCGetEntityContourCount(iError, CURRHANDLE) - 1

3) Set a parsing loop and determine the number of entities defining each contour.
Each contour is defined by separate entities. The rectangle and circle example will return the following values as
the application loops through the contours. It will return four (4) for the first contour, there are four lines defining
the rectangle. It will return a one (1) for the one circle entity defining the second contour.

The following example returns the number of entities defining each contour and loops though the list:

For ISUBCOUNT = 0 To VCGetEntitySubEntityCount(iError, CURRHANDLE, ICONTOURINDEX) - 1

4) Set the subentity and retrieve the desired entity information.
The subentity is then set using VCSetCurrentEntitySubEntity. Once the subentity is set the standard query
functions may be used to retrieve the entity information.

The following code sets the current subentity:

Call VCSetCurrentEntitySubEntity(IERROR, ICONTOURINDEX, ISUBCOUNT)

Modifying Existing Entities
It is possible to directly change the properties of any existing entity directly through the API.    By combining
commands that set entity properties or recreate the entity, drawing modifications can easily be done. It is not
necessary to duplicate or recreate an entity in order to change existing properties.      Sometimes, though, it can
be desirable to recreate the entity in order to create a new entity that will be added to the end of the database.
This entity then takes on a new entity handle for manipulation.    Many times it is necessary to delete the old
entity whenever an entity is duplicated.    The application should call VCSaveSettings when changing entity and
system variables. This will save the user’s current settings to a temporary buffer. These settings can then be
restored to the user’s default with VCRestoreSettings.

Changing Entity Properties using Eattr
Applying Settings to an Entity
Duplicating an Entity
Duplicating an Entity with Transformation

Changing Entity Properties Using Eattr

Most of the Corel Visual CADD entities are defined by the four basic properties of color, line type, line width and
layer. Some entities however are defined by a more complex set of properties and special routines are required
to modify these settings. These special entities include hatches, dimensions, and text entities. In order to modify
these entities another method must be used. Typically this would be accomplished by a duplication method
presented later. When working with basic entity types however a quick routine is available to change the basic
property settings of the entity. This method is VCChangeSelected , and allows an application to change the
properties of selected items without parsing the drawing database and recreating the entities themselves. This
method will allow for undo levels automatically by the routines execution.

Step:
1) Define the property values for the Eattr structure.
The Eattr structure contains integer based definitions for the basic entity properties. Instead of using individual
routines to set the color, line type, line width and layer values, a single structure is built to hold these values.
This structure is then passed to the VCChangeSelected command to change the property values for the entities.

The following code sets the color to 9, the layer to 1, the line width to 0 and the line type to 0:
EATTR.color = 9
EATTR.layer = 1
EATTR.linetype = 0
EATTR.linewidth = 0

2) Change the properties of the selected items.
The routine will automatically change all entities in the current selection list. There is no need to parse the
database and explicitly recreate the entities with the new properties.

The following code changes the selected entities to the predefined properties:
Call VCChangeSelected(EATTR)

Applying Settings to an Entity

The simplest method to alter the properties of an existing entity is to change the system entity properties and
then apply them to an entity. The following steps illustrate this method in detail.
Steps:
1)    Move to the desired entity in the database.
This can be done with all the general parsing routines or directly with a set entity commands.

The following code moves to the first entity in the selection list:
If VCFirstSelected(IERROR, ENTITYTYPE) Then
Do While IERROR = 0

2)    Save the current settings.
It is generally desirable to maintain the user default settings prior to changing the values. These settings can
then be restored at the end of the change command.

The following code saves the current user settings to a temporary buffer:
Call VCSaveSettings

3)    Set the desired new properties.
Any or all entity properties may be changed.

The following code sets the color index to 10, the line width index to 2 and the layer index to 1:
Call VCSetColorIndex(IERROR, 10)
Call VCSetLineWidthIndex(IERROR, 2)
Call VCSetLayerIndex(IERROR, 1)

4)    Apply the settings to the current entity.
After the new settings have been made it is necessary to apply them to the current entity.

The following code applies the new settings to the current entity. This method does not allow any undo levels to
be set. Please refer to the duplicating an entity section for other methods:
Call VCApplySettingsToCurrentEntity(IERROR)

5)    Restore the user default settings.
The user settings should be returned to the position prior to the operation. VCRestoreSettings resets the settings
based on the temporary buffer.

Duplicating an Entity

The properties of an existing entity can be changed by recreating the desired entity. While methods to retrieve
the entity points and properties are available to allow this task, an easier routine, VCDuplicate, can be
implemented to change only those properties desired and append the database with this completely new entity.
This offers advantages since the operation can include undo and redo event handlers for the user. The following
steps show how to duplicate an entity.
Steps:
1)    Move to the desired entity in the database.
This can be done with all the general parsing routines or directly with a set entity command.

2)    Save the current settings.
It is generally desirable to maintain the user default settings prior to changing the values. These settings can
then be restored at the end of the change command.

The following code saves the current drawing settings to a temporary buffer:
Call VCSaveSettings

3)    Set the desired new properties.
Any entity property can be set and changed with this operation. Certain entities have special properties relevant
only to their type. For example, hatches contain pattern information while a dimension contains arrow setting
values that are only valid for their respective entity type. These properties and other entity specific properties
can be found in the A-Z Reference Guide.

The following code sets the color property to blue, the width index to 3 and the layer index to 30:
Call VCSetColorIndex(IERROR, 9)
Call VCSetLineWidthIndex(IERROR, 3)
Call VCSetLayerIndex(IERROR, 30)

4)    Store the current entity handle for reference.
Since the duplicated entity is appended to the end of the database, it is necessary to keep track of the current
entity handle so that you can quickly move back to the original entity.

The following code stores the current entity handle in a temporary variable:
CURRHANDLE = VCGetCurrentEntityHandle(IERROR)

5)    Duplicate the entity.
By duplicating the entity, the application is recreating the entity with all the new settings.    The new entity is
then appended to the end of the database.

The following code duplicates the current entity and applies the current system settings to the new entity:
Call VCDuplicate(IERROR, CURRHANDLE)

6)    Draw the new entity.
After the entity is duplicated, it is not immediately drawn to the screen. The code should move to the new entity
and draw it after it has been added.

The following code moves to the last entity in the database and draws it to the screen:
Call VCLastEntity(IERROR, LASTHANDLE)
Call VCSetCurrentEntity(IERROR, LASTHANDLE)
Call VCDrawCurrentEntity(IERROR)

7)    Erase the old entity.
Typically it is necessary to erase the old entity from the drawing after the new one has been drawn.

The following code moves to the old entity and sets it as erased in the database.
Call VCSetCurrentEntity(IERROR, CURRHANDLE)
Call VCSetCurrentErased(IERROR)
Call VCDrawCurrentEntity(IERROR)

8)    Optional: Restore the user default settings.

The user settings should be returned after the duplicating operations are completed. VCRestoreSettings resets
the settings stored in the temporary buffer.

Duplicating an Entity with Transformation
The previous task allows any properties to be altered but allows for no input for altering the actual geometry of
the entity. While other routines such as VCSetCurrentEntityPoint can be used to move the current entity to a new
location, the API also provides routines that allow total manipulation of the entity geometry and properties.
These API calls allows for a translation point, scale value, or rotation to be applied directly to a newly created
entity. When working with these routines, it should be noted that all rotation and scaling are done via the
drawing origin(0,0). Therefore, when rotating an entity, the net rotation should first be translated from the
drawing origin, reset, and then returned to the starting position. The steps provided below    will demonstrate this
task by utilizing several VCDuplicateWithTransform statements to move and rotate the entity. While this is a
complicated task, these steps should illustrate fully on how to transform entities through API calls.
Transformations allow the application to shift the entity from its current state using features such as scaling, shift
in position, a rotation angle or a combination of any of these transformations all the while maintaining geometry
and property information.
Steps:
1)    Move to the desired entity in the database.
This can be done with all the general parsing routines or directly with a set entity command.    For more
information on parsing routines, please see Database Operations.

2)    Save the current settings.
 It is generally desirable to maintain the user default settings prior to changing the values. These settings can
then be restored at the end of the change command.
The following code saves the current drawing settings to a temporary buffer:
Call VCSaveSettings

3)    Set the desired new properties.
Any entity property can be set and changed easily through a variety of API calls. Certain entities have special
properties relevant only to their type. For example, hatches contain pattern information while a dimension
contains arrow setting values that are only valid for their respective entity type. These properties and other
entity specific properties can be found in the A-Z Reference Guide.

4)    Store the current entity handle for reference.
Since the duplicated entity is appended to the end of the database, it is necessary to keep track of the current
entity handle so that you can quickly move back to the original entity.

The following code store the current entity handle in a temporary variable:
CURRHANDLE = VCGetCurrentEntityHandle(IERROR)

5)    Optional: Apply a translation.
The translation moves an entity a specified distance in the x and y direction. This distance is input through a
Point2D structure containing the x any y values.    This value is the distance that the pair is to be moved, not the
new coordinates for the new pair.    For example, if the pair is (1,1) the entity will shift 1 unit in the x direction
and 1 unit in the y. It will not move to the coordinates 1,1.

The following code retrieves the current constriction points and uses these values to shift the entity to the
drawing origin.
Call VCGetCurrentEntityPointBP(IERROR, 0, CURRENTPOINT)
ORIGINPOINT.X = -CURRENTPOINT.X
ORIGINPOINT.Y = - CURRENTPOINT.Y
SCALEVALUE.X = 1
SCALEVALUE.Y = 1
ROTATIONVALUE = 0#
Call VCDuplicateWithTransform(IERROR, CURRHANDLE, ORIGINPOINT, SCALEVALUE, ROTATIONVALUE)

6)    Optional: Delete the old entity.
Typically it is necessary to erase the old entity from the drawing.

The following code moves to the old entity and sets it as erased in the database.
Call VCSetCurrentEntity(IERROR, CURRHANDLE)
Call VCSetCurrentErased(IERROR)
Call VCDrawCurrentEntity(IERROR)

7)    Optional: Retrieve the new entity handle.

For example, if the process is not completed and application needs to rotate the entity, the new entity handle
should be retrieved.

The following code retrieves the handle for the new entity.
Call VCLastEntity(IERROR, CURRHANDLE)

8)    Optional: Scale the entity.
The entity can be scaled to reflect changes in the entity property type. The scale value sizes the entity either up
or down proportionally.

The following code scale the entity.
ORIGINPOINT.X = 0
ORIGINPOINT.Y = 0
SCALEVALUE.X = 12
SCALEVALUE.Y = 12
ROTATIONVALUE = 0#
Call VCDuplicateWithTransform(IERROR, CURRHANDLE, ORIGINPOINT, SCALEVALUE, ROTATIONVALUE)

9)    Optional: Erase the old entity
10)    Optional: Retrieve the new entity handle.
11)    Optional: Rotate the entity.
The entity can be rotated any value from the original angle. For example a line slanted at 45 degrees can be
rotated + any angle directly without measuring the existing angle. The angle value is added or subtracted from
the existing rotation from the horizontal. Any angle input should be in radians. The rotation occurs about the
origin, therefore in cases where the entity is not located at the origin,    the entity should be translated to the
origin, rotated, and then translated back to the original position.

The following code rotates the entity 45 degrees.
ORIGINPOINT.X = 0
ORIGINPOINT.Y = 0
SCALEVALUE.X = 0
SCALEVALUE.Y = 0
ROTATIONVALUE = 0.7854
Call VCDuplicateWithTransform(IERROR, CURRHANDLE, ORIGINPOINT, SCALEVALUE, ROTATIONVALUE)

12)    Optional: Erase the old entity
13)    Optional: Retrieve the new entity handle.
14)    Optional: Translate the entity back to the original point.

The following code moves the rotated item bask to its original location.
ORIGINPOINT.X = 0
ORIGINPOINT.Y = 0
SCALEVALUE.X = 0
SCALEVALUE.Y = 0
ROTATIONVALUE = 0.7854
Call VCDuplicateWithTransform(IERROR, CURRHANDLE, ORIGINPOINT, SCALEVALUE, ROTATIONVALUE)
15)    Optional: Erase the old entity
16)    Optional: Retrieve the new entity handle.
17)    Optional: Restore the original settings.

Customizing Corel Visual CADD
The Corel Visual CADD interface can be fully customized. This includes the two-letter key structure, menu
including context sensitive popup menu and the toolbars.
Custom Commands
Creating Custom Aliases
Creating Custom Menus
Creating Custom Mouse Menus
Creating Custom Toolbars

Custom Commands
Corel Visual CADD supports the definition of custom commands or user defined tools. These commands are
contained in the CMDEXT.DEF file located in the Corel Visual CADD system directory. All other custom files, such
as the TOOLPAL.CST and the custom menus, get their information from the CMDEXT.DEF. The format for this file
is as follows:
Native Command, Two Letter Command, Bitmap File, Name to appear on menu, Status Line Description, Script
For example, a window erase command would look like this:
WINERASE,WE,D:\BITMAP\BITMAP.BMP,&WINDOW ERASE,PLACE WINDOW,SW;@;@;ER;
Native Command
This is the internal command name for the custom command. This can be used in the *.CST or *.MNU files to
place the command on a button or in a custom menu. This parameter should be a single word, 12 characters or
less. In our example, WINERASE is the name of the Native command.
Two Letter Command
This is the two (or three) letter shortcut that will provide access to the command via the keyboard. If the two
letter command is already used in the ALIAS.CMD that command will have precedence over the one defined in
CMDEXT.DEF. If using three letters, be aware that if another command uses the same first two letters the other
command will also have precedence. All commands must start with a letter.
Bitmap File
This is the path and name of the bitmap to be placed on the button if the icon is placed on a toolbar. Corel Visual
CADD uses 20x20 pixel buttons and will shrink or grow any bitmap to this size. If a path is not designated, Corel
Visual CADD will search in the custom directory as designated in the path settings for the bitmap. For more
information on customizing toolbars, see "Customizing Toolbars".
Menu Description
This specifies the text that will appear on a menu if the custom command is placed in the custom menu. The "&"
Symbol placed before a letter designates the letter that will be the "Hot Key" or the keyboard shortcut for that
item on the menu. The "Hot Key" will appear underlined.
Status Line Description
When the user passes the cursor over the command on the menu or an icon button, the status line description
will appear to give the user an idea of the tools function or prompt the user for information.
Script
The is the actual script the native command performs. (For more information on writing scripts see Creating
Command Aliases). As in the SCRIPT.DEF file, all commands must be delimited by semi-colons (;).
To run an executable file:
EXENAME - this defines the name of an executable to be run when the RUN command is used. If no path is set,
then Corel Visual CADD will search in the custom directory as designated in the path settings for the executable
file.
RUN - executes the program as designated by EXENAME
An example of this might be:
HATCHCHANGE,HC,C:\HATCH.BMP,HATCH &CHANGE ,SELECT HATCH, EXENAME;HATCH.EXE;RUN;
This uses an external program to execute the hatch change instead of an internal script. While in some cases it
may not be advantageous to use an external program, external programs are the most are the easiest way to
have complicated user tools load up.

Creating Command Aliases
The icons, speed bars, pull-down and popup menu provide an interface that makes it easy to learn and use Corel
Visual CADD. However, many users prefer the productivity gains that can be accomplished by accessing
commands directly with two or three-letter keyboard commands. Corel Visual CADD not only allows most
commands and functions to be accessed through two or three-letter keyboard entry, but also allows you to
invent your own two or three-letter “aliases” for the commands! These aliases may be used directly by keyboard
entry, or in scripts.
When you load Corel Visual CADD, a text file called ALIAS.CMD is read into memory. This file includes a list of all
Visual CADD “native” command names, each next to its 2 letter command (if any). When you type a 2 letter
command, Corel Visual CADD checks the list of aliases for a match. If it finds one, then it executes the native
command associated with that alias. If there is no alias or native command name matching what you type, Visual
CADD ignores the input.
Native command names are longer than the alternative two or three-letter alias commands (note: the Enter key
is not required to end either alias or native commands), so alias commands names are preferable for efficient
keyboard entry. However, because native commands are “hard coded” into Corel Visual CADD, they are
preferable for use in scripts that will be distributed to other Visual CADD users who may not be using the same
alias names.
To customize the alias command names, load ALIAS.CMD into a text editor such as the Windows Notepad
program, the DOS Edit program, or any word processor (using text mode). Note that each line in the file starts
with the currently assigned alias name, followed by a comma, then the native command. name. The commands
appear in the ALIAS.CMD file in the following format:
[Alias, Native Command]
PO,Point
LS, Single Line
LC, Continous Line
R2,Rect2
R3,Rect3
...
You may change the alias name to any two or three-letter text you wish. Make sure, however, that these letters
do not conflict with the starting letters of any other alias or native command name (you can easily check this by
using the search function in your text editor).
For example, suppose you want to type “RE3” instead of “R3” to start the 3-point rectangle command. First, note
that the listing for that command reads “R3,Rect3” in ALIAS.CMD. Simply change “R3” to “RE3” (do not alter the
native command name, Rect3), and save the change under the same file name. The next time you start Corel
Visual CADD, RE3 will be the new short name for the 3-point rectangle.
Tip

 Most of the native command names are self-explanatory. However, if you need more information, all native
commands are explained in the text file called NATIVE.TXT.

Custom Menus
Menus can be altered, added, deleted or rearranged. Native and Custom Commands may be added or removed
from existing menus. Custom menus are saved in ASCII text files with .MNU extension. Custom menus can be
loaded into Corel Visual CADD using several different methods. The Load Menu command is designed specifically
to load custom menus automatically via command line or Registry settings (it will not load mouse menus or
toolbars).
The format for this file is as follows:
POPUP "&File"// Define start of Popup Menu "File"
FileOpen// Native Command
"&New File", FileNew//"Description", Native Command
Separator// Separator
"&Close", 2405//"Description", Native Command ID
Separator// Separator
FileSave// Native Command
FileSaveAs// Native Command
.
.
FileExit// Native Command
POPUPEND
POPUP "&Edit"// Define New Popup menu "Edit"
Undo// Native Command
Redo// Native Command
SEPARATOR// Separator
.
.
All commands are either a native command or a custom command defined in the CMDEXT.DEF file. If the item is
a native command, the menu description is stored internally. If the command is defined in CMDEXT.DEF, then the
menu description is taken from the Menu Description parameter in the CMDEXT.DEF file.
"Description", Native Command
Same as above, but overrides the menu description of the native command with specified text.
"Description", Native Command ID
Same as above, but uses an associated Corel Visual CADD Native Command ID. It is not recommended using
these IDs as they are not published and can change without notice. They are documented and supported for
compatibility with Microsoft Windows Menu ASCII format.
POPUP "Menu Name"
Defines the start of a popup menu with name "NAME". All commands following POPUP and preceding POPUPEND
will be included in the popup menu
POPUPEND
Defines the end of specified popup menu
SEPARATOR
Creates a separator line in the menu
NOTE:
The following items are optional but are included for compatibility with Microsoft Windows Menu ASCII format.
MENUITEM Native Command
Used before a Native Command. Has no effect
{
Same as POPUP
}
Same as POPUPEND

Custom Mouse Menus
When creating custom tools it may be necessary to create or modify the context sensitive mouse menus to be
used with the tool. This menu appears when the user clicks the right mouse button in the drawing area while
using a tool. Customization of mouse menus is accomplished using ASCII text files: a pointer file
(MOUSEMNU.DEF) and an ASCII menu file for each tool.
MOUSEMNU.DEF
MOUSEMNU.DEF is an ASCII text file which contains all the current Corel Visual CADD tools and their default
menu files.. It resides in the System Path and can be modified to include custom commands. (For more
information on Custom Commands, please see Custom Commands.) Corel Visual CADD will use the specified
Menu File if it can find it. When the user clicks the right button, Visual CADD will determine if a Menu File has
been mapped to the tool. If so, Visual CADD will load the Menu File and create a popup menu on the fly. If Menu
File not found, the tool’s default Menu is used.
The format is as follows for MOUSEMNU.DEF:

Native Command, Path\Menu File
Native Command, Path\Menu File
Native Command, Path\Menu File
.
.

Example:
SymPlace,C:\VCADD\MENU\SYMPLACE.POP
LineCont,C:\VCADD\MENU\LINECONT.POP
LineSingle,C:\VCADD\MENU\LINESING.POP
LineDbl,C:\VCADD\MENU\LINEDBL.POP
Point,MENU\POINT.POP (see note)

NOTE: The Menu File path can be explicitly specified, C:\VCADD\MENU\SYMPLACE.POP. Or if the drive is not
explicitly specified, then Corel Visual CADD will contact the Menu File to the System Path. For instance, if the
System Path is C:\VCADD and Menu File is MENU\SYMPLACE.POP, then Corel Visual CADD will look for the Menu
File in the directory C:\VCADD\MENU\.
Menu File
The Menu File is the ASCII text file that contains the actual menu information and design for a particular tool’s
mouse menu. The Menu File does not necessarily need to be named the same as the tool menu it is defining,
(although it might be a good idea) but it must end in the extension .POP. The mouse menu can contain any of
Corel Visual CADD’s native commands or custom commands. Custom commands can also be defined locally or
‘on the fly’ for commands that are only available as long as this menu is active. .CMDEXT defines the beginning
of the section in which custom commands may be defined. Format of custom commands within mouse menus is
the same as in Visual CADD’s CMDEXT.DEF with the exception of the bitmaps and 2 letter command, which are
ignored. When Custom commands are used, Corel Visual CADD will search for commands defined in the .CmdExt
section of the Mouse Menu first, then search commands defined in the file CMDEXT.DEF, and lastly Visual CADD’s
default native commands.
All menu items including Popup, Popupend and seperator are available in mouse menus as well. For more
information on those items, please Custom Menu.
The following sample menu file defines the mouse menu illustrated in Figure 1.
Sample Menu File:
SYMPLACE.MNU

OK // See Note below
Match // See Note below
SymLast // VCADD Native command
Track // VCADD Native command
NewHandle // VCADD Native command
Separator // Separator Line
SYMROT90 // Custom command defined below
SYMROT45 // Custom command defined below
SYMROT0 // Custom command defined below
Separator
POPUP "Flip" // Start Popup menu with name “Flip”

SYMFLIPX // Custom command defined below
SYMFLIPY // Custom command defined below

POPUPEND // End Popup menu
.CmdExt //Local Custom Command Area

SYMROT90, , ,Symbol Rotate +90,Rotate +90,SymRot;$SymRot+90; //Custom Commands
SYMROT45, , ,Symbol Rotate +45,Rotate +45,SymRot;$SymRot+45;
SYMROT0, , ,Symbol Rotate = 0,Rotate = 0,SymRot;0;
SYMFLIPX, , ,Symbol Flip X,Flip X,SymScX;-$SymScX;
SYMFLIPY, , ,Symbol Flip Y,Flip Y,SymScY;-$SymScY;
Note:
Some Corel Visual CADD mouse menus, particularly those involving settings that may be matched (such as
rotation, height, etc.), have OK and/or MATCH hard coded at the top of the mouse menu. These cannot be
removed.

Custom Toolbars
You can easily rearrange or add to the command buttons in the main speed bar and tool bar. The icons to be
displayed in these bars are listed files MAINSBAR.CST and TOOLPAL.CST, which can be easily edited with any text
editor. These files can be found in your Corel Visual CADD system directory.
To edit the toolbars, open the correct file in an ASCII text editor, such as Microsoft Windows Notepad, DOS's EDIT,
etc. Make your changes based on the below information then save the file. The next time you open Corel Visual
CADD, your changes will take effect.
A "//" (without the quotes) can be placed in front of a native command to act as a "REM". In other words, Corel
Visual CADD will not place commands preceded by a // on a toolbar. It will simply ignore them.
MAIN SPEEDBAR
The following listing in MAINSBAR.CST would display a row of command buttons for the File New, File Open, File
Save As, and Clear Drawing commands, respectively:
SEPARATOR
FileNew
FileOpen
FileSave
SEPARATOR
Clear
The commands are listed in native command format. The word SEPARATOR instructs Corel Visual CADD to place
a small space in the sequence.
TOOL PALETTE
The following listing for TOOLPAL.CST creates a column of command buttons in the tool bar. Command names in
the same row create a pop-out menu.
Selection
LineCont,LineSingle,LineDbl,Point
Rect2,Rect3
RPolyCen,RPolySide,IPoly
The last three lines create pop-out menus of additional tool buttons. Each button in the pop-out menus is
specified by the comma-separated list of native command names. You can rearrange buttons, or add as many
command buttons in the tool bar and pop-out menus as will fit on the screen.
Note:
Individual Properties, i.e. linetype, linewidth, color, or layer, can be placed on the Main Speedbar and will appear
as dropdown combo boxes.

Registry Settings
The registry location for add-on utilities for Corel Visual CADD for Windows 95 and Windows NT should be
standardized. This allows the technical support to help diagnose problems encountered during the running of
Corel Visual CADD with add on software. This standard is not required but it is requested that all add on
applications write to this registry location.
Windows 95 and Windows NT use the system registry instead of the INI file found in previous versions. The
registry can be used to hold default values and settings required by an application. Corel Visual CADD stores
these same default settings in the HKEY_CURRENT_USER key in the directory SOFTWARE\VISUAL CADD\2.0\.
There are several sub directories used by various aspects of the program. All add on application should place
information in the ADDON directory by creating an application specific sub directory. The following code
presented in Visual Basic demonstrates how to write to the registry and this particular location.
Declarations: The following provide the constant and type declaration required to read from and write to the
Windows registry. These should be placed in the Form_Declaration section for Visual Basic applications. NOTE:
C/C++ applications simply include the standard <window.h>.
Const HKEY_LOCAL_MACHINE = &H80000002
Const HKEY_CURRENT_USER = &H80000001
Const ERROR_SUCCESS = 0&
Const KEY_QUERY_VALUE = &H1
Const KEY_ENUMERATE_SUB_KEYS = &H8
Const KEY_NOTIFY = &H10
Const SYNCHRONIZE = &H100000
Const READ_CONTROL = &H20000
Const KEY_SET_VALUE = &H2
Const STANDARD_RIGHTS_ALL = &H1F0000
Const KEY_CREATE_LINK = &H20
Const KEY_CREATE_SUB_KEY = &H4
Const KEY_ALL_ACCESS = ((STANDARD_RIGHTS_ALL Or KEY_QUERY_VALUE Or KEY_SET_VALUE Or
KEY_CREATE_SUB_KEY Or KEY_ENUMERATE_SUB_KEYS Or KEY_NOTIFY Or KEY_CREATE_LINK) And (Not
SYNCHRONIZE))
Const STANDARD_RIGHTS_READ = (READ_CONTROL)
Const REG_OPTION_NON_VOLATILE = 0              ' Key is preserved when system is rebooted
Const REG_SZ = 1
Const KEY_READ = ((STANDARD_RIGHTS_READ Or KEY_QUERY_VALUE Or KEY_ENUMERATE_SUB_KEYS Or
KEY_NOTIFY) And (Not SYNCHRONIZE))
'type defintion for windows API
Private Type SECURITY_ATTRIBUTES
                nLength As Long
                lpSecurityDescriptor As Long
                bInheritHandle As Boolean
End Type
These constants are defined in the Windows API help. In order to write to the appropriate registry location, a
string constant should be used. The following is an example taken from the HATCH CHANGE sample application.   
You will want to refer to the registry settings used during the install of Corel Visual CADD for the actual locations.
Const REGISTRY_STRING = "SOFTWARE\VISUAL CADD\2.0\ADDON\HATCH CHANGE"
NOTE: An application should create its own sub directory under ADDON. The previous line creates a directory
HATCH CHANGE. Your application should create a specific directory to store settings and defaults.
Reading: The following code can be used to read information from the registry. It utilizes the string value defined
above to open a key holding the X, Y value of the last screen position. The code should be placed in the
application startup routine. In Visual Basic this is generally the Form_Load or Sub Main procedures.
Dim hKey As Long
If (RegOpenKeyEx(HKEY_CURRENT_USER, REGISTRY_STRING, 0, KEY_READ, hKey) = ERROR_SUCCESS) Then
        If (RegQueryValueEx(hKey, "HatchXY", 0, REG_SZ, szHatchXY, 10) = ERROR_SUCCESS) Then
                iStringToken = InStr(szHatchXY, ",")
                FRM_HCHANGE.Left = CInt(Left(szHatchXY, iStringToken - 1))
                FRM_HCHANGE.Top = CInt(Mid(szHatchXY, iStringToken + 1))
        End If
        lReVal = RegCloseKey(hKey)
End If

The code uses the Window API routines to retrieve information from the registry.
Private Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias "RegOpenKeyExA" (ByVal hKey As Long, ByVal
lpSubKey As String, ByVal ulOptions As Long, ByVal samDesired As Long, phkResult As Long) As Long
Private Declare Function RegQueryValueEx Lib "advapi32.dll" Alias "RegQueryValueExA" (ByVal hKey As Long,
ByVal lpValueName As String, ByVal lpReserved As Long, lpType As Long, ByVal lpData As Any, lpcbData As Long)
As Long                  ' Note that if you declare the lpData parameter as String, you must pass it By Value.
Writing: The following code demonstrates writing to the registry. It is taken from the HATCH CHANGE sample
application and places the current X, Y location into the registry.
Dim hKey As Long
Dim lDisposition As Long
Dim saSecurity As SECURITY_ATTRIBUTES
 Dim szOutputRegKey As String
szOutputRegKey = CStr(FRM_HCHANGE.Left) & "," & CStr(FRM_HCHANGE.Top)
If (RegCreateKeyEx(HKEY_CURRENT_USER, REGISTRY_STRING, 0, REGISTRY_STRING,
REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, saSecurity, hKey, lDisposition) = ERROR_SUCCESS) Then
        If (RegSetValueEx(hKey, "HatchXY", 0, REG_SZ, szOutputRegKey, Len(CStr(FRM_HCHANGE.Left))) =
ERROR_SUCCESS) Then
        End If
        Call RegCloseKey(hKey)
End If
The code uses the following Windows API routines to write information to the registry.
Private Declare Function RegCloseKey Lib "advapi32.dll" (ByVal hKey As Long) As Long
Private Declare Function RegCreateKeyEx Lib "advapi32.dll" Alias "RegCreateKeyExA" (ByVal hKey As Long, ByVal
lpSubKey As String, ByVal Reserved As Long, ByVal lpClass As String, ByVal dwOptions As Long, ByVal
samDesired As Long, lpSecurityAttributes As SECURITY_ATTRIBUTES, phkResult As Long, lpdwDisposition As
Long) As Long
Private Declare Function RegSetValueEx Lib "advapi32.dll" Alias "RegSetValueExA" (ByVal hKey As Long, ByVal
lpValueName As String, ByVal Reserved As Long, ByVal dwType As Long, ByVal lpData As String, ByVal cbData As
Long) As Long                  ' Note that if you declare the lpData parameter as String, you must pass it By Value.

Tool ID

Point 2101 Point
LineSingle 2102 Single Line
LineCont 2103 Continuous Line
LineDbl 2116 Double Line
Rect2 2104 2 point Rectangle
Rect3 2105 3 point Rectangle
Circle3 2106 3 point Circle
Circle2 2107 2 point Circle
CircDiam 2122 Diameter Circle
Arc3 2108 3 point Arc
Arc2 2109 2 point Arc
Ellipse 2110 Ellipse
BezierSingle 2111 Single Bezier
BezierCont 2112 Continuous Bezier
Curve 2121 Spline Curve
RPolyCen 2113 Center Regular Polygon
RPolySide 2114 Side Regular Polygon
IPoly 2115 Irregular Polygon
EllArc 2117 Elliptical Arc
UndoVertex 2125 Undo Vertex
UndoDim 2126 Undo Last Dim
ContLineEx 1191 Explode Cont. Lines
HatchBnd 2359 Hatch Boundary
HatchSel 2352 Hatch Selected
SeedHatch 2340 Seed Hatch
FillBnd 2360 Fill Boundary
FillSel 2353 Fill Selected
SeedFill 2341 Seed Fill
SymOpen 2407 Load Symbol
SymSave 2408 Save Symbol
SymPlace 2120 Symbol Place
NewHandle 2457 New Handle
SymReplace 2525 Symbol Replace
SymRemove 2529 Symbol Remove
SymCreate 2351 Symbol Create
SymExplode 2124 Symbol Explode
SymLast 2119 Last Symbol
SymCount 2320 Symbol Count
AttCreate 2365 Attribute Create
AttAttach 2364 Attribute Attach
AttEmbed 2367 Attribute Embed
AttOpen 2415 Attribute Open
AttSave 2416 Attribute Save
BackRD 2215 Backward Redraw
Regen 2201 Redraw
RegenArea 2202 Redraw Window
ZmArea 2203 Zoom Window
ZmIn 2204 Zoom In
ZmOut 2205 Zoom Out
ZmPan 2206 Pan
ZmAll 2207 Zoom All
ZmSel 2208 Zoom Selected
ZmPrev 2209 Zoom Previous

ZmView 2212 Zoom View
ZmValue 2211 Zoom Value
NameView 2213 Name View
BirdsEye 2423 Birds-Eye View
NewView 2422 New View
ZmAllView 2217 Zoom All Views
RegenAllView 2218 Redraw All Views
Copy 2231 Linear Copy
RadCopy 2248 Radial Copy
ArrayCopy 2249 Array Copy
MultiCopy 2230 Multiple Copy
EraseLast 2257 Erase Last
Erase 2232 Erase
Mirror 2233 Mirror
Move 2234 Move
Rotate 2235 Rotate
MovePt 2236 Move Point
Fillet 2237 Fillet
IntTrim 2238 Intersection Trim
Stretch 2239 Stretch
WinStretch 2265 Window Stretch
Trim 2240 Trim
Extend 2241 Extend
Break 2242 Break
MTrim 2243 Selection Trim
MExtend 2259 Selection Extend
MTrim1 2266 Selection Trim
Chamfer 2244 Chamfer
Align 2246 Align
FitScale 2247 FitScale
Scale 2256 Scale
Offset 2252 Offset
Explode 2250 Explode
CloseContr 2254 Close Contour
Change 2255 Change
Edit 2431
Boolean 2262 Boolean Two Paths
Undo 2440 Undo
Redo 2441 Redo
CBCut 2442 Cut
CBCopy 2443 Copy
CBPaste 2444 Paste
Clear 2409 Clear Drawing
PackData 2309 Pack Data
PurgeLnt 2325
LoadLnt 2326
Track 2450 Track
Penup 2451 Pen Up
Selection 2449 Selection
Filter 2453 Filter
SelRibalog 2463 Selection Bar...
SelAll 2446 All
SelClear 2447 Clear List
SelInvert 2448 Invert Selection
SelWin 2454 Window
SelObj 2456 Object

SelCross 2460 Crossing
SelAdj 2461 Adjoining
SelLast 2470 Last
SelLay 2458 Layer
SelLastObj 2485
QSearch 2216 Quick Search
SnPerp 2151 Snap Perpendicular
SnPara 2162 Snap Parallel
SnTangent 2152 Snap Tangent
SnClosestPt 2154 Snap Closest Point
SnMidPt 2155 Snap Midpoint
SnMid2Pts 2164 Snap Middle
SnObject 2156 Snap Object
SnIntersect 2157 Snap Intersection
SnNearPt 2158 Snap Nearest Point
SnCenter 2160 Snap to Center of Arc and Polygons
SnQuad 2159 Snap to Nearest Quadrant of Circle
SnLastPt 2161 Snap Last Point
SnPercent 2153 Snap Percentage
Absolute 6127 M.E. Absolute
Relative 6128 M.E. Relative
Basepoint 6129 M.E. Basepoint
SetBasePt 2214 Set Basepoint
AutoFillet 2541 Auto Fillet
OrthoMode 2542 Ortho Mode
CursorFree 2543 Cursor Free
FilletRad 2532 Fillet Radius
IncSnap 2163 Incremental Snap
ChamferDist 2536 Chamfer Dist
GridOrg 2540 Grid Origin
GridSize 2537 Grid Size
SnapGrid 2539 Snap Grid
GridDisp 2538 Grid Display
DimLin 2181 Linear Dimension
DimAng 2182 Angular Dimension
DimRad 2184 Radial Dimension
DimDia 2185 Diameter Dimension
DimOrd 2196 Ordinate Dimension
Datum 2180 Datum Dimension
Leader 2186 Leader
DimMoveTxt 2187 Dimension Text Move
DimSlideTxt 2188 Dimension Text Slide
DimEdit 2191 Dimension Edit
DimHorz 2192 Dim Direction: Horizontal
DimVert 2193 Dim Direction: Vertical
DimAlign 2194 Dim Direction: Aligned
DimAtAngle 2195 Dim Direction: At an Angle
DimSingle 2544 Dim Mode : Single
DimCumul 2545 Dim Mode : Cumulative
DimPart 2546 Dim Mode : Partitioned
DimHorzTxt 2591 Horizontal Text
DimInlineTxt 2592 In-Line Text
ProxFixed 2590 Proximity Fixed
DatumOff 1230 Datum OFF
DatumXY 1231 Datum (XY)
DatumX 1232 Datum (X only)

DatumY 1233 Datum (Y only)
MeasDist 2301 Measure Distance/Angles
MeasArea 2302 Measure Area
DigMode 2310 Tablet Mode
DigAlign 2312 Align Drawing
DigScale 2311 Trace Scale
MatchEnt 2305 Match Entity
MatchTool 2306 Match Tool
Text 2354 Text Line
TextEditor 2356 Text Editor
FileNew 2400 New Drawing
FileOpen 2401 Open Drawing
FileSave 2402 Save Drawing
FileSaveAs 2403 Drawing Save As
FileExit 2404 Exit Corel Visual CADD
FileClose 2405 Close Drawing
FilePrint 2406 Print Drawing
FilePlot 2412 Plot Drawing
FileMerge 2410 Merge Drawing
FileRun 2420 Run Executable File
FileName 1200
PrintSetup 2411 Printer Setup
FileSend 2429 Send the current drawing through electronic mail
RFCreate 2428 Reference Frame
RFPlace 2430 Reference Frame
RFDispBnd 2620 Display Boundary
RFTrans 2624 Display Transparent
LoadStyle 2413 Open Style
SaveStyle 2414 Save Style
SaveEnv 2316 Save Environment
WinExec 2318
LoadMenu 2419 Load Menu
LoadAscii 2426 Load Text File
Reset 2427
DimCh 2170 Dimension Change
TextCh 2172 Text Change
HatchCh 2173 Hatch Change
HatchSet 2501 Hatch Settings
TextSet 2521 Text Settings
DBSet 2534 DB Line Settings
OrthoSet 2533 Ortho Angle
SelSet 2463 Selection Bar...
LayMgr 2513 Layer Mgr
SymMgr 2506 Symbol Manager
TabOptions 2517 Settings...
ScriptAssign 2366 Assign Script
ObjInfo 2504 Object Info
LayDisplay 2481 Layer Display
LayHide 2482 Layer Hide
LayPropDlg 2486
TabGeneral 2552 General
TabCnstrnt 2553 Constraint
TabSystem 2551 System
TabPath 2554 Path
TabNumeric 2556 Numeric
TabText 2548 Text/Atb

TabHatch 2549 Hatch/Fill
TabDim 2550 Dimension
TabDimText 2555 Dim Text
TabLeader 2601 Leader
TabImpExp 2530 Import/Export Settings
DimTextSet 2507 Dim Text Settings
DimArrowSet 2508 Arrow Settings
DimExtSet 2509 Extension Settings
DimLineSet 2510 Dim Line Direction
DimTolSet 2511 Tolerance Settings
DimLeadSet 2519 Leader Text
DimStrSet 2520 Dim String Settings
DimDispSet 2515 Dim Display Settings
DimScaleSet 2653 Dim Scale
DimTextAlign 2605 Dim Text Align
ColorProp 2465
LayerProp 2466
TypeProp 2467
WidthProp 2468
Properties 3102 Properties
SetColor 1176
SetLayer 1178
SetType 1177
SetWidth 1180
SymName 1102
SymRot 1103
SymScale 1104
SymScX 1105
SymScY 1106
SymExp 1107
LTScaleW 1192
LTScaleD 1193
TextColor 1110
TextLay 1111
TextLnSp 1112
TextChSp 1109
TextJust 1113
TextHeight 1114
TextRot 1115
TextAspect 1116
TextBold 1117
TextItalic 1118
TextFont 1119
TextStr 1120
FontConv 2317 Font Converter
OrAngVar 1125
FilletRVar 1126
Update 3373
GridSizeX 1123
GridSizeY 1124
SymSnapOn 1129
SymSnapOff 1171
AllLayEdOn 1172
AllLayEdOff 1173
AllLaySnOn 1174
AllLaySnOff 1175

AutFilletOn 1134
AutFilletOff 1135
SolidOn 1136
SolidOff 1137
WallWidth1 1138
WallWidth2 1139
RPolyNSides 2535 Num Sides
RPolyIn 6130 Inscribed
RPolyCrcm 1142 Circumscribed
OrthoOn 1143
OrthoOff 1144
CursFreeOn 1145
CursFreeOff 1146
IncSnapOn 1147
IncSnapOff 1148
IncSnapSize 1150
FilletPrvOn 1154
FilletPrvOff 1155
OffsetFixOn 1156
OffsetFixOff 1157
ChamDist1 1158
ChamDist2 1159
OffsetDist 1160
PercSnapVal 1161
NumCopies 1162
RadCopies 1163
NumRows 1164
SetAngle 1166
RadSpanAngle 1167
SetScaleXY 1168
SetScaleX 1169
SetScaleY 1170
UIOff 1181
UIOn 1182
HatchName 1183
HatchRot 1185
HatchColor 1186
HatchScale 1184
FillColor 1188
ExeName 1190
ConstPts 2565 Construction Points
HandlePts 2566 Handle Points
CurveTanPts 2567 Curve Tangent Points
Hilite 2476 Selection Highlight
AllLayEdit 2478 All Layers Edit
SnapLayer 2479 Snap To All Layers
SymSnap 2480 Snap Inside Symbols
ArrowFlip 2600 Arrow Flip
ShowDash 2607 Show Dash
UseLayProp 1243 Use Layer Properties
UseSymClr 1244 Use Placement Color
DllRun 2323
DllName 1194
DllFunName 1195
DllCmdLine 1196
OleClass 2327

OleMethod 2328
OleDllName 1197
OleClassName 1198
OleFunName 1199
OleCmdLine 1202
WinVert 2376 Tile Windows Vertically
WinHoriz 2377 Tile Windows Horizontally
WinCascade 2375 Cascade Windows
WinArrange 2378 Arrange Icons
CloseAll 2379 Close All Windows
SYSPath 1210
VCDPath 1211
VCSPath 1212
VCFPath 1214
DWGPath 1214
DXFPath 1215
HelpIndex 2372 Help Index
HelpOnCmd 2381 Help
HelpAbout 2361 About Corel Visual CADD
RegEdit 3375 Registry Editor

Entity Types

UNKNOWN 0
LINE2D 1
ARC2D 2
CIRCLE2D 3
ELLIPSE2D 4
BEZIER2D 5
POINT2D 6
SYMBOL2D 7
TEXT2D 8
DIMLINEAR2D 9
DIMANGULAR2D 10
DIMRADIAL2D 11
DIMDIAMETER2D 12
FILL2D 13
HATCH2D 14
ATTRIBUTE2D 15
INTERPCURV2D 16
MINTERPCURV2D 17
ELLIPTICALARC2D 18
CONTINUOUSLINE2D 19
CONTINUOUSBEZIER2D 20
LEADER2D 21
REFFRAME2D 22
ORDDIM2D 23
POLYGON3D                          101
POINT3D                              102
LINE3D                                103
SYMBOL3D 104
CONTINUOUSLINE3D 105

User Defined Types

Visual Basic C/C++ Delphi
TypeDefs
N/A typedef long ENTITYHANDLE; N/A
N/A typedef long WORLDHANDLE; N/A
N/A typedef long GRAPHICHANDLE; N/A
N/A typedef unsigned long UID; N/A
N/A typedef short VBOOL; N/A
iPoint2D
Type iPoint2D
    x As Integer
    y As Integer
End Type

typedef struct iPoint2D {
        int x,y;
} iPoint2D;

Type
iPoint2D=record
    x: Integer;
    y: Integer;
end;

lPoint2D
Type lPoint2D
    x As Long
    y As Long
End Type

typedef struct lPoint2D {
        long x,y;
} lPoint2D;

Type
lPoint2D=record
    x: Longint;
    y: Longint;
end;

Point2D
Type Point2D
    x As Double
    y As Double
End Type

typedef struct Point2D {
        double x,y;
} Point2D;

Type
Point2D = record
    x: Double;
    y: Double;
end;

Point3D
Type Point3D
    x As Double
    y As Double
    z As Double
End Type

typedef struct Point3D {
        double x,y,z;
} Point2D;

Type
Point3D=record
    x: Double;
    y: Double;
    z: Double;
end;

EAttr
Type EAttr
    color As Integer
    layer As Integer
    linetype As Integer
    linewidth As Integer
End Type

typedef struct EAttr {
        short iColor, iLayer, iLinetype,
iLinewidth;
} EAttr;

Type
EAttr=record
    color: Integer;
    layer: Integer;
    linetype: Integer;
    linewidth: Integer;
end;

Rect
Type Rect
    top As Double
    bottom As Double
    left As Double
    right As Double
End Type

typedef struct Rect{
    double top,bottom,left,right;
} Rect

Type
Rect=record
    top: Double;
    bottom: Double;
    left: Double;
    right: Double;
end;

PrintStruct
Type PrintStruct
        PrintMode As Integer
        PageSize As Point2D
        Margins As Rect
        dScale As Double
        Origin As Point2D
        ScaleMode As Integer
        Orientation As Integer
        dRotation As Double
        PrintToFile As Integer
        SelectionOnly As Integer

typedef struct PrintStruct{
        BOOL PrintMode ;
        Point2D PageSize;
        Rect Margins;
        double dScale;
        Point2D Origin;
        short ScaleMode;
        short Orientation;
        double dRotation;
        BOOL PrintToFile;
        BOOL SelectionOnly;

Type
PrintStruct=Rect
        PrintMode: Integer;
        PageSize: Point2D;
        Margins: Rect;
        dScale: Double;
        Origin: Point2D;
        ScaleMode: Integer;
        Orientation: Integer;
        dRotation: Double;
        PrintToFile: Integer;

        DateStamp As Integer
        FastPreview As Integer
        AllColorsToBlack As
Integer
        PaperUnit As Integer
End Type

        BOOL DateStamp;
        BOOL FastPreview;
        BOOL AllColorsToBlack;
            short PaperUnit;
}PrintStruct;

        SelectionOnly: Integer;
        DateStamp: Integer;
        FastPreview: Integer;
        AllColorsToBlack: Integer;
        PaperUnit: Integer;
end;

PlotStruct
Type PlotStruct
        Port As Integer
        BaudRate As Integer
        DataBits As Integer
        Parity As Integer
        StopBits As Integer
        NumPens As Integer
        NumCarousels As Integer
        DPI As Integer
        UseCarousels As Integer
        UseLLOrigin As Integer
        SortColors As Integer
        Optimize As Integer
        BufferOutput As Integer
End Type

typedef struct PlotStruct{
      short Port;
      short BaudRate;
      short Databits;
      short Parity;
      short StopBits;
      short NumPens;
      short NumCarousels;
      short DPI;
      BOOL UseCarousels;
      BOOL UseLLOrigin;
      BOOL SortColors;
      BOOL Optimize;
      BOOL BufferOutput;
}PlotStruct;

Type
PlotStruct=Rect
        Port: Integer;
        BaudRate: Integer;
        DataBits: Integer;
        Parity: Integer;
        StopBits: Integer;
        NumPens: Integer;
        NumCarousels: Integer;
        DPI: Integer;
        UseCarousels: Boolean;
        UseLLOrigin: Boolean;
        SortColors: Boolean;
        Optimize: Boolean;
        BufferOutput: Boolean;
end;

Entity Types
Global Const LINE2D = 1
Global Const ARC2D = 2
Global Const CIRCLE2D = 3
Global Const ELLIPSE2D = 4
Global Const BEZIER2D = 5
Global Const Point2D = 6
Global Const SYMBOL2D = 7
Global Const TEXT2D = 8
Global Const DIMLINEAR2D = 9
Global Const DIMANGULAR2D = 10
Global Const DIMRADIAL2D = 11
Global Const DIMDIAMETER2D = 12
Global Const FILL2D = 13
Global Const HATCH2D = 14
Global Const ATTRIBUTE2D = 15
Global Const INTERPCURV2D = 16
Global Const MINTERPCURV2D = 17
Global Const ELLIPTICALARC2D = 18
Global Const CONTINUOUSLINE2D = 19
Global Const CONTINUOUSBEZIER2D = 20
Global Const LEADER2D = 21
Global Const REFFRAME2D = 22
Global Const ORDDIM2D = 23
Global Const POLYGON3D = 101
Global Const Point3D = 102
Global Const LINE3D = 103
Global Const SYMBOL3D = 104
Global Const CONTINUOUSLINE3D = 105

VC Supported File Types
Global Const FILE_VCD = 0
Global Const FILE_VCS = 1
Global Const FILE_VCA = 2
Global Const FILE_GCD = 3

Global Const FILE_CMP = 4
Global Const FILE_DWG = 5
Global Const FILE_DXF = 6
Global Const FILE_STY = 7
Global Const FILE_VCF = 8
Global Const FILE_EMF = 9
Global Const FILE_WMF = 10

Conversion Unit Global Constants
Global Const UNIT_INCH = 0
Global Const UNIT_FEET = 1
Global Const UNIT_MM = 2
Global Const UNIT_CM = 3
Global Const UNIT_M = 4

Display Unit
Global Const IN_DEC = 0
Global Const FT_IN_DEC = 1
Global Const FT_DEC = 2
Global Const IN_FRAC = 3
Global Const FT_IN_FRAC = 4
Global Const FT_FRAC = 5
Global Const MIL = 6
Global Const CEN = 7
Global Const MET = 8
Global Const ANG_DEG = 9
Global Const ANG_DMS = 10

Dimension Mode
Global Const DIMMODESINGLE = 0
Global Const DIMMODECUMULATIVE = 1
Global Const DIMMODEPARTITIONED = 2

Dimension Direction
Global Const DIMALIGNED = 1
Global Const DIMHORIZONTAL = 2
Global Const DIMVERTICAL = 3
Global Const DIMATANANGLE = 4

Dimension Tolerance Type
Global Const DIMNOTOLERANCE = 0
Global Const DIMSTACKEDMINMAX = 1
Global Const DIMSTACKEDVARIANCE = 2
Global Const DIMFIXEDVARIANCE = 3

Dimension Extension Line
Global Const DIMEXTNOSTRETCH = 0
Global Const DIMEXTSTRETCH = 1

Dimension Unit Type (Linear, Radial, or Diameter Dimensions)
Global Const DIMINCHES = 1
Global Const DIMFEET = 2
Global Const DIMMETERS = 3
Global Const DIMMILLIMETERS = 4
Global Const DIMCENTIMETERS = 5
Global Const DIMFTIN = 6

Dimension Unit Type (Angular Dimensions)
Global Const DIMANGLEFORMATDECIMAL = 0
Global Const DIMANGLEFORMATMINUTES = 1

Dimension Arrow Types
Global Const DIMARROWREGNOFILL = 0
Global Const DIMARROWREGFILLED = 1
Global Const DIMARROWREGOPEN = 2
Global Const DIMARROWNOTCHED = 3
Global Const DIMARROWSLASH = 4
Global Const DIMARROWCIRCLENOFILL = 5
Global Const DIMARROWCIRCLEFILL = 6

Dimension Text
Global Const DIMTEXTINLINE = 0
Global Const DIMTEXTABOVELINE = 1
Global Const DIMTEXTFREEFLOAT = 2

Dimension Text Rotation
Global Const DIMTEXTROTATIONALIGNED = 0
Global Const DIMTEXTROTATIONHORIZONTAL = 1

Linear Dimension Line Position
Global Const DIMLINELEFT = 0
Global Const DIMLINERIGHT = 1

Dimension Proximity Mode
Global Const DIMLINENOPROXFIX = 0
Global Const DIMLINEPROXFIX = 1

Dimension Arrow Mode
Global Const DIMARROWNOFLIP = 0
Global Const DIMARROWFLIP = 1

Messaging Codes
Global Const ALERT_APP_ALL = 0
Global Const ALERT_APP_UTOOL_MOUSEDOWN = 1
Global Const ALERT_APP_UTOOL_MOUSEMOVE = 2
Global Const ALERT_APP_UTOOL_ABORT = 4
Global Const ALERT_APP_CMDLINE_CHAR = 8
Global Const ALERT_APP_CLOSE = 16
Global Const ALERT_APP_UTOOL_PENUP = 32
Global Const ALERT_PENUP_CHARCODE = 252
Global Const ALERT_APP_WORLD_CLOSE = 64
Global Const ALERT_WORLD_CLOSE_CHARCODE = 253
Global Const ALERT_APP_UTOOL_ERASERUBBER = 128
Global Const ALERT_UTOOL_ERASERUBBER_CHARCODE = 255
Global Const ALERT_APP_TOOL_COMPLETE = 256
Global Const ALERT_TOOL_COMPLETE_CHARCODE = 254
Global Const ALERT_APP_UTOOL_INIT = 512
Global Const ALERT_UTOOL_INIT_CHARCODE = 251
Global Const ALERT_APP_UTOOL_TERMINATE = 1024
Global Const ALERT_UTOOL_TERMINATE_CHARCODE = 250
Global Const ALERT_APP_FRAME_CLOSE = 2048
Global Const ALERT_FRAME_CLOSE_CHARCODE = 249

Global Const ALERT_APP_FRAME_RESIZE = 4096
Global Const ALERT_FRAME_RESIZE_CHARCODE = 248
Global Const ALERT_APP_ENTITY_ERASED = 8192
Global Const ALERT_APP_ENTITY_ERASED_CHARCODE = 247
Global Const ALERT_APP_ENTITY_SELECT_CHANGE = 16384
Global Const ALERT_APP_ENTITY_SELECT_CHANGE_CHARCODE = 246
Global Const ALERT_APP_ACTIVATE = 32768
Global Const ALERT_APP_ACTIVATE_CHARCODE = 245
Global Const ALERT_APP_DEACTIVATE = 65536
Global Const ALERT_APP_DEACTIVATE_CHARCODE = 244

API calls which use "SymbolIndex", use this parameter for entity section additions
Global Const NONDEFENTITY = -1
Global Const HATCHFILLENTITY = -2

3D Projection Codes
Global Const VIEW3D_FLAT = 0
Global Const VIEW3D_PARALLEL = 1
Global Const VIEW3D_PERSPECTIVE = 2

3D Display Codes
Global Const VIEW3D_WIREFRAME = 0
Global Const VIEW3D_QSHADE = 1

3D View Codes
Global Const CHANGE_VIEW3D_LEFT = 0
Global Const CHANGE_VIEW3D_RIGHT = 1
Global Const CHANGE_VIEW3D_UP = 2
Global Const CHANGE_VIEW3D_DOWN = 3

Import Unit Types
Global Const ACAD_UNIT_INCH = 0
Global Const ACAD_UNIT_FEET = 1
Global Const ACAD_UNIT_MILL = 2
Global Const ACAD_UNIT_CENT = 3
Global Const ACAD_UNIT_METER = 4

Plot/Print Mode
Global Const PRINTMODE = 0
Global Const PLOTMODE = 1

Plot/Print Scale
Global Const FITTOPAPER = 0
Global Const CURRENTVIEW = 1
Global Const USERSCALE = 2

Plot/Print Orientation
Global Const PORTRAITMODE = 0
Global Const LANDSCAPEMODE = 1

Plot/Print Units
Global Const METRICUNITS = 0
Global Const ENGLISHUNITS = 1

Plot COM Settings
Global Const PORTCOM1 = 0

Global Const PORTCOM2 = 1
Global Const PORTCOM3 = 2
Global Const PORTCOM4 = 3
Global Const PORTLPT1 = 4
Global Const PORTLPT2 = 5
Global Const PORTLPT3 = 6
Global Const PORTFILE = 7

Plot BAUD Settings
Global Const BAUD110 = 0
Global Const BAUD300 = 1
Global Const BAUD1200 = 2
Global Const BAUD2400 = 3
Global Const BAUD4800 = 4
Global Const BAUD9600 = 5
Global Const BAUD19200 = 6
Global Const BAUD38400 = 7
Global Const BAUD57600 = 8   

Plot DataBit Settings                         
Global Const DATABITS7 = 0
Global Const DATABITS8 = 1

Plot Parity Settings
Global Const PARITYODD = 0
Global Const PARITYEVEN = 1
Global Const PARITYNONE = 2
Global Const STOPBITS1 = 0
Global Const STOPBITS2 = 1

