

For information on a command, click the name of the menu in which it appears:

File      Edit      View      Insert      Modify      Xtras      Control      Window

Or browse the alphabetical list of menu commands

For information on a window, click its name:

Cast Markers Text Inspector
Color Palettes Memory Inspector Text
Control Panel Message Toolbar
Debugger Paint Tool Palette
Field Score Video

Script Watcher

For information on a command, click the name of the menu in which it appears:

File      Edit      View      Insert      Modify      Xtras      Control      Window

Or browse the alphabetical list of menu commands

For information on a window, click its name:

Cast Markers Text Inspector
Color Palettes Memory Inspector Text
Control Panel Message Toolbar
Debugger Paint Tool Palette
Field Score Video

Script Watcher

Menu commands
Select a command or submenu listed alphabetically below:

Align New Bitmap
Arrange New Cast
Auto Distort New Check Box
Auto Filter New Color Palette
Borders New Field
Bring to Front New Movie
Cast New OLE Object
Cast Member New Radio Button
Cast Member Properties New Push Button
Cast Member Script New Text
Cast Preferences New Window
Cast Properties
Cast to Time Open
Clear
Close Window Page Setup
Color Palettes Paint Preferences
Control Panel Paint
Control: Push Button, Panel
      Radio Button, or Check Box Paragraph
Control: Field Paste Special
Convert to Bitmap Paste
Copy Play
Create Film Loop Preferences: Cast
Create Projector Preferences: General
Cut Preferences: Paint
Debugger Preferences: Score
Disable Scripts Print
Display Recompile All Scripts
Duplicate Remove All Breakpoints
Edit Cast Member Remove Frame
Exchange Cast Members Repeat
Exit Replace Again
Export Reverse Sequence
Field Revert
Film Loop Rewind
Filter Bitmap Ruler
Find Again Run Script
Find Cast Member Save All
Find Handler Save and Compact
Find Selection Save As
Find Text Save
Font Score Preferences
Frame Palette Score
Frame Script Script
Frame Sound Select All
Frame Tempo Selected Frames Only
Frame Transition Send to Back
Frame Show Grid
General Preferences Snap To Grid

Grid: Settings Sort
Grid: Show Space to Time
Grid: Snap To Sprite Properties
Ignore Breakpoints Sprite Script
Import Stage
In-Between Step Backward
In-Between Special Step Forward
Insert Frame command Step Into Script
Invert Selection Step Script
Loop Playback Stop
Marker next Transform Bitmap
Marker previous Text Inspector
Markers Window Text
Media Element: Bitmap Toggle Breakpoint
Media Element: Color Palette Toolbar
Media Element: Text Tool Palette
Memory Inspector Transform Bitmap
Message Tweak
Move Backward Undo
Move Forward Update Movies
Movie Casts Video
Movie Properties Volume

Watch Expression
Watcher
Zoom In
Zoom Out

Using Director Help
This help system contains screens of information on using Macromedia Director. These
screens are arranged in topics.

You can navigate through help topics by clicking underlined words (in green):
Click words with a solid underline to jump to a related topic. (For example, to go to

the contents screen click Contents).
Click and hold words with a dotted underline to see pop-up graphics or text. For

example: pop-up).

Buttons at the top of the help window help you find help topics:
Click the Contents button of the help screen to see a list of help categories.
Click the Search button to see an index to the Director help topics. The list on the

left shows each index entry in the Help system. When you select an index entry, the list on
the right shows each topic where the selected keyword is referenced. Double-click a topic to
display its help screen.

Click the Back button to see the previously displayed help topic. (This feature is not
always available.)

In Windows 3.1, click the History button to see a list of topics you have viewed. In
Windows 95, use the Display History Window command in the Options menu.

In Windows 95, click the Print button to print the topic you are viewing. In Windows
3.1, use the Print Topic command in the File menu.

Click the << and >> buttons to browse backward and forward through related
Director help topics. (These features are not always available.)

Acknowledgments and Copyright

This is an example of pop-up help information.

Director 5.0 Help
The Director 5.0 Help system was created by these talented individuals:

Online help expertise from Jeff Swartz
Written by Ben Melnick, Karen Olsen-Dunn, and Joe Schmitz
Designed by Diana J. Wynne
Art direction by Ilene Sandler
Art by Noah Zilberberg
Proofread by Anne Garwood

Special thanks to Dan Sadowski for engineering support and Sally Hebble for QA testing.

Copyright (c) 1994-1996 Macromedia, Inc. All rights reserved. The information in this help system
may not be copied, photocopied, reproduced, translated, or converted to any printed, electronic or
machine-readable form in whole or in part without prior written approval of Macromedia, Inc.

Last revised March 11, 1996

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

Select a category:

Animation Score
Bitmaps Shapes
Cast Sound
Color palettes Stage
Digital video Techniques
Lingo Tempo
OLE Text
Projectors Transitions

Xtras

Select a category:

Animation Score
Bitmaps Shapes
Cast Sound
Color palettes Stage
Digital video Techniques
Lingo Tempo
OLE Text
Projectors Transitions

Xtras

Cast
For an overview of working with casts, see:

Cast Window
Understanding internal and external casts

For information on creating cast members, see:

Creating a new cast member
Creating text cast members
Media Element: Bitmap
Media Element: Color Palette
Media Element: Text

For information on working with cast members, see:

Dragging cast members to the score
Moving cast members between casts
Moving cast members within the cast window
Placing cast members on the stage
Placing cast members over time
Using registration points

For information on cast member properties, see:

Cast member properties submenu (modify
 menu)

Score
For information about working in the score, see:

Selecting cells
Moving selections within the score
Moving around the score
Applying color to cells
About score window inks
Turning a channel on and off (score window)

Stage
For information about working with the stage, see:

Stage
Resizing sprites on the stage
Placing cast members on the stage

For information on changing the size and location of the stage, see:

Movie properties command (modify menu)

For information on aligning sprites on the stage, see:

Align command (modify menu)
Show Grid (View menu)
Snap to Grid (View menu)
Grid Settings (View menu)

Animation
For information on basic animation, see:

Moving selections within the score
In-Between command (Modify menu)
In-Between Special command (Modify menu)
Arrange submenu (Modify menu)
Dragging cast members to the score
Placing cast members on the stage
Placing cast members over time
Cast to Time command (Modify menu)
Recording with Cast to Time
Space to Time command (Modify menu)
Step recording
Recording with Space to Time
Real-time recording in a channel
Understanding onion skinning
Update Movies command (Xtras menu)
Converting Director 4 movies
Protecting and compacting with Update movies
Understanding font mapping

Bitmaps
For information on working with bitmaps in Director, see:

Paint window
Understanding color palettes
The paint window tools
Filter submenu (Xtras menu)
Auto Filter command (Xtras menu)
Auto Distort command (Xtras menu)
Understanding shapes and bitmaps
Creating a new cast member
Applying a filter to a bitmapped cast member

Text
For information on working with text in Director, see:

Text window
Understanding text and fields
Paragraph command (Modify menu)
Font command (Modify menu)
Creating text cast members
Editing text on stage
Importing text

Shapes
For information on working with shapes, see:

Creating shapes
Tool palette
Understanding shapes and bitmaps
Drawing with the shape tools

Digital video movies
For information on digital video movies, see:

Importing digital video movies
Digital video window
Using multiple digital video windows

Tempo
For information about setting and changing the tempo of your movies, see:

Frame Tempo command (Modify menu)

Sound
For information on using sound, see:

Importing sound files
Frame Sound command (Modify menu)
Cast Member Properties: Sound (Modify menu)
Controlling sound (Lingo)

Transitions
For information on using transitions, see:

Cast Member Properties: Transition (Modify menu)
Frame Transition command (Modify menu)
Installing Xtras

Color palettes
For information on color palettes, see:

Understanding color palettes
Understanding color depth
Color palette window
Cast Member Properties: Palette (Modify menu)

Projectors
For information on projectors, see:

Create Projector command (File menu)
Creating Projectors
Preparing a movie for distribution

Lingo
For information on specific Lingo elements, see the main Lingo topic.

For information on using Lingo in scripts, see:

Writing scripts
Types of scripts
Using variables
Event message hierarchy
Working with casts
Puppeting
Sprite properties
Handling text
Controlling sound
Managing memory
Using movie in a window
Child-parent scripts
Using XCMDs
Generating score

Xtras
For information on using and installing Xtras, see:

Using Xtras
Update Movies command (Xtras menu)
Frame Transition command (Modify menu)
Installing Xtras
Filter submenu (Xtras menu)
Auto Filter command (Xtras menu)
Using Auto Filter
Auto Distort command (Xtras menu)
Applying a filter to a bitmapped cast member

OLE
For information on using OLE objects in Director, see:

Using OLE objects in Director
OLE Object command (Insert menu)

Techniques
For information on techniques for using Director, see:

Converting Director animations into QuickTime movies
Importing Director movies
Memory management techniques
Using registration points

Understanding shapes and bitmaps
Shapes are created in Director using the tool palette. They are 1-bit vector-based
graphics that are limited to basic lines, shapes, and patterns. Only text, not lines and
shapes, can be converted to bitmaps using the Convert to Bitmap command. Shapes are
always editable.

Bitmaps are either imported or are created in the Paint window. You cannot edit bitmaps
once you create them, but you can manipulate them using any paint functions. You can
create special effects by applying Photoshop filters.

Shapes animate more slowly than bitmaps, but bitmaps use more RAM and disk space.
Shapes are most often used as static, invisible buttons or placeholders on the stage.

Shape

Creating shapes
Create shapes with the line, rectangle, rounded rectangle, and circle tools. As with the
paint tools, clicking the right side of the tool produces a hollow shape. Clicking the left
side of the tool produces a shape filled with the current color or pattern in the pattern
chip.

Pressing the Shift key while dragging constrains the tool to drawing a perfect square or
circle. The line tool is constrained to horizontal, vertical, or
45-degree lines with the Shift key.

Resizing sprites on the stage
If you click a sprite on the stage, a border is displayed around it with a resize handle at
the border's right edge. Drag the resize handle to change the sprite's size on the stage.

Selecting cells
Drag across cells to select them. If you have Playback Head Follows Selection checked in
the Score Preferences dialog box, the movie will advance or rewind as you select in
the score. You can see the frames on the stage as you select them in the score.

Action Shortcut

To select multiple adjacent cells Drag across cells or Shift-click

To select all the cells in a channel Double-click the channel number and drag down
to select all the cells in adjacent channels.

To select all cells in multiple frames Drag across the frame numbers at the top of the
score.

To select all the cells in a frame Click a frame number at the top of the score.

To select all adjacent cells that Double-click an occupied cell
contain the same cast member

For discontinuous selections Control+click

Moving selections within the score

Moving selections within the score
You can move the contents of one or more selected cells to a new location within the
score.

To move selected cells to a new location within the score:
1. Select the cells. The cursor changes to a hand.
2. To select additional frames, Shift-click them.
3. Drag the frames to the new location and release the mouse.

As you drag, an outline of your selection appears under the cursor. Dragging to the
edge of window will auto-scroll the window. To move a copy of the selection, press the
Alt key while dragging the selection.

The contents of the frames you move replace the contents of existing frames at the new
location.

If Playback Head Follows Selection is checked in the Score Preferences dialog box, the
selected frames will be displayed on the stage as you drag the selection in the score.

Moving around the score

The playback head

The playback head at the top of the score indicates which frame of the movie is currently
on the stage. The playback head travels in the scratch bar as the movie plays. You can
drag the playback head or click to move to a specific frame. If Playback Head Follows
Selection is checked in the Score Preferences dialog box, the playback head travels
with any selection you make in the score.

The jump button

To move your view of the score to the current frame of your movie use the jump button,
located in the lower left corner of the score window. Whenever you click this button,
Director brings the playback head into view and your view of the score jumps to the
frame currently on the stage.

The jump to top button

If only the script channel is visible, clicking the jump to top button scrolls the score
window to the top of the effects channels.

The frame counter

The frame counter pops up in the middle of the horizontal scroll bar when you drag the
scroll box. It indicates how far you have advanced or rewound the movie as you drag the
scroll bar.

Move forward and move backward buttons

The move forward and move backward buttons let you move a selection of sprites up or
down in the score, to change their foreground priority on the stage. Move forward
switches a range of cells you've selected in a channel with the cells in the channel below
it. The sprites associated with the selected cells move in front of the other sprites. Move
backward switches a range of cells you've selected in a channel with the cells in the
channel above it. The sprites associated with the selected cells move behind the other
sprites.

Shortcut: Control+Shift+down arrow for move forward, Control+Shift+up arrow for
move backward.

Applying color to cells
The cell color selector lets you apply color to score cells. The color only affects the cells
in the score; it does not affect how sprites appear on the stage.

To apply color to cells, select them and click a color from the cell color selector. The color
is carried with the cell if you move it or copy it.

You show or hide cell colors using the Enable Colored Cells option in the Score
Preferences dialog box. If you've already applied color to cells, hiding cell colors doesn't
remove their color. Score window performance is faster if you hide cell colors.

Step-recording
Step-recording lets you create frame-by-frame animation in a channel. To activate step-
recording in a channel, Alt+click the channel number in the score where you want
recording to occur. Select additional channels by Alt+clicking their channel numbers.

Note:    Step-record mode is automatically turned on if you drag cast members from the
cast window to the score or the stage.

A red step-recording indicator appears in the channels that are in step-record mode.

When you choose Step Forward from the Control menu or control panel, the sprite in
the channel with the step-recording indicator is copied into the next frame of your movie.

Step-recording remains in effect until you Alt+click the channel number again, click out
of the channel, drag the playback head, or click Rewind or Back Step.

To step-record animation:
1. Select the place in the score where you want Director to record the animation.
2. Drag a cast member from the cast window to the stage.

A sprite corresponding to the cast member appears on the stage. The thick selection
rectangle around the sprite indicates that Director is recording the sprite's position.
The step-record indicator appears next to the channel where Director is recording
information about the sprite.
To record a sprite that's already on the stage, click it to select it, and then Alt+click
the sprite to start recording. To stop recording, Alt+click it again.

3. Press 3 on the number pad, or click Step Forward control panel.
The movie advances to the next frame. The position of any sprite highlighted with a
thick selection rectangle is recorded in the new frame.
If a sprite you're recording is already present in the next cell of the channel where
you're recording its position, Director replaces the sprite's old position with its current
position.
Note: Recording stops when you move the playback head in any way other than
Step Forward.

4. Drag the sprite to reposition it.
You can also stretch the sprite or switch it with a sprite that corresponds to a different
cast member.

5. Repeat steps 3 and 4 until you've completed the sequence you want to record.
6. Rewind the movie or click a new frame in the score to stop recording.

Move the playback head to the beginning of the animation and run the movie to see
how it looks.

Recording with Space to Time
Use the Space to Time command on the Modify menu to move the sprites from several
channels in one frame to consecutive cells in a single channel. When you create an
animated sequence made up of a series of cast members, you can arrange the sprites on
the stage in a single frame to see their positions in relation to one another. Once you've
finished arranging the sprites, use Space to Time to convert the frame into an animation.

To use the Space to Time command:
1. Select the place in the score where you want Director to record the animation.
2. Place cast members on the stage where you want them to appear in the animation.

As you position the sprites on the stage, Director places each one in a separate
channel in the score.

3. In the score, select all the sprites that are part of the sequence.
4. Choose Space to Time from the Modify menu.

The Space to Time dialog box appears. It lets you set the number of frames you want
between each sprite and the one following it.

5. Type the interval you want and then click OK.
Director rearranges the sprites so that instead of being arranged from top to bottom
in a single frame, they're arranged in sequence from left to right in a single channel.

If you've spaced the cells so that there are blank cells between them, you need to use
one of the In Between commands to fill in the blank cells.

Space to Time is a fast way to set up the points you need for a curved In Between.
Arrange the cast members in one frame, choose Space to Time from the Modify menu,
and add 10 to 20 cells between each cast member to produce a smooth curve then
choose In-Between Special.

Recording with Cast to Time
Use Cast to Time to move cast members to the score and arrange them in subsequent
frames in a single channel.

To add a sequence of cast members to the score:
1. Select the place in the score where you want to record the animation.
2. Make the cast window active.
3. Select the series of cast members to be added to the score.
4. Choose Cast to Time from the Modify menu or hold down Alt and drag the cast

members to the stage.
The selected series of cast members is added to the score.

Sometimes the series of cast members that's placed in the score jumps about the stage
when you play the movie. That's because the registration points of the cast members
aren't set properly. See Using registration points.

Real-time recording in a channel (score window)
Real-time recording lets you record the movement of a sprite as you drag it across the
stage. The real-time recording technique is especially good for simulating the movement
of a cursor.

To activate real-time recording in a channel, press Control-Spacebar while clicking a cell
in the desired channel. To activate real-time recording in the first empty score channel,
just press Control-Spacebar.

An indicator appears next to the channel number to indicate that real-time recording will
occur in that channel. Only one channel at a time can be used for real-time recording.

To record in real time:
1. Select the place in the score where you want Director to record the animation.
2. In the cast window, select the cast member you want to animate.

Make sure you select a cast member in the cast window rather than a sprite on the
stage. Also, don't drag the cast member from the cast window to the stage--just
select it.
To record a specific range of frames, select the frames, and then click the Selected
Frames Only button on the control panel.

3. Hold down the Control key and the spacebar.
The real-time record indicator appears next to the channel where you're recording.
Recording begins as soon as you click the mouse button in the next step, so be
prepared to move the mouse.

4. Point to the spot on the stage where you want the animation to start, press the
mouse button to begin recording, and drag the pointer across the stage.
Director records the path along which you move the pointer.
If there are sprites in any of the other channels in the first frame of the animation,
Director records their positions in each frame where it records the position of the
sprite you're moving.

5. Release the mouse button to stop recording.

To have more control while recording in real time, use the tempo control in the
control panel to record at a speed that's slower than normal.

If you select Trails in the score, you can also use real-time recording to simulate
handwriting.

Turning a channel on and off (score)
Turning a channel off tells Director to ignore the channel during playback. By default, all
channels are active. Clicking the button next to a channel turns the channel off, causing
Director to ignore that channel when you play the movie.

If you turn the script channel off, Director ignores all scripts during playback. (This is the
same as checking the Disable Scripts command in the Control menu.)

Channel on/off settings are not saved with the movie.

Understanding internal and external casts
You can create multiple casts for your Director 5.0 movies. There are two types of casts,
internal and external. Prior to version 5.0 of Director, all casts were internal except
Shared.DIR and only one cast was allowed per movie.

Working with cast members within the cast window is the same regardless of whether
the cast is internal or external.

Internal casts

When you create a new movie, Director automatically creates an internal cast. Internal
casts are stored inside the movie file. When you save a movie, all internal casts are
saved. When you create a projector, they are stored inside the projector file. Internal
casts cannot be shared by other movies.

External casts

External casts are stored outside of the movie file. They can be shared between movies
or serve as libraries for commonly used movie elements. They are also useful for
distributing work in a project team.

When you create an external cast by choosing New Cast from the File menu, you have
the choice of linking or not linking the cast to the current movie.

If you link an external cast to the current movie, Director opens the cast every time
you open the movie. If it can't find the cast in the original location, it prompts you to locate
the cast file. When you save a movie, all linked external casts are saved as well. The first
time you save a movie with a linked external cast file, Director prompts you to enter a file
name and choose a location for the file.

If you don't link an external cast to a movie, you must open it separately with the
Open command on the File menu, and save it by activating the window and choosing Save
from the File menu. It is not saved along with the movie when you choose Save. If you move
a cast member to the stage or score from an unlinked external cast, Director prompts you to
link the cast to the current movie.

You can link and unlink existing casts to the current movie with the Movie Casts
command on the Modify menu.

Cast window
Save command (File menu)
New Cast command (File menu)

Moving cast members between casts

Moving cast members within the cast window
You can rearrange cast members within the cast window by dragging them to a new
location. When you select a cast member the pointer changes to a hand shape. Shift-
click to select additional adjacent cast members; Control-click to select additional non-
adjacent cast members.

Moving cast members between casts
You can move cast members between casts by dragging them, just as you would move
them within a cast window.

When you drag a cast member between internal and linked external casts, the cast
member is removed from the source location and placed in the destination.

When you drag a cast member to or from an unlinked external cast, Director places a
copy in the destination and the original remains where it was.

Alt-drag a cast member to copy it into a new cast window.

Understanding internal and external casts
Moving cast members within the cast window

Placing cast members on the stage
Placing cast members on the stage adds them to the score in the available channels of
the current frame. If you place more cast members than you have available channels of
the current frame, Director warns you that it will ignore the extra cast members.

When you place cast members on the stage (or in the score), Director adds them as
sprites. A sprite is an image of the cast member on the stage or in the score that
contains information about the cast member at one point in time.

Select a cast member in the cast window. Shift-click to select additional adjacent cast
members; Control-click to select additional non-adjacent cast members. Drag the
selection to the stage and release the mouse.

As you drag the cast members over the stage, Director displays an outline indicating the
size of the area enclosing all the cast members. (If you drag a sound or a palette, it does
not display an outline on the stage, as these cast members have no size dimensions.)

When you drop the cast members on the stage, step record is enabled in the channels
where the cast members were dropped.

Shortcut: Press Control+Shift+L to place selected cast members in the center of the
stage.

Placing cast members over time
By default, when you drag cast members from the cast window, Director places multiple
cast members on the stage so that they all occupy the same frame in the score. To place
cast members on the stage over time instead of in the same frame, press Alt while
dragging the cast members from the cast window to the stage.

As you Alt+drag the cast members over the stage, Director displays an outline indicating
the dimensions of the first visual cast member in the selection, which will be placed in
the current frame. The rest of the cast members in the selection are placed into adjacent
frames.

If the score window is open while you are dragging cast members to the stage, Director
outlines the cells in the score where the cast member selection will be dropped. Director
restricts you to dropping cast members only into unoccupied cells in the score. (If you
instead drag the cast members directly from the cast window into the score, Director
does not prevent you from dropping the cast members into occupied cells and
overwriting existing sprites.)

When you drag a cast member to the stage, Director uses the first empty cell in the
current frame that is closest to the current score selection. (If you drag the cast member
directly into the score, you can more precisely specify the cell that will contain the cast
member.) You can force Director to use a certain set of empty cells by first selecting
them in the score before dragging in the cast members.

Shortcuts:
Press Control+Alt+L to place selected cast members over time in the center of the

stage.
You can also place selected cast members across time in the score by choosing Cast

to Time from the Modify menu.

Dragging cast members to the score
Dragging cast members into the score places them into a range of cells and starts step-
record mode in the channels where the cast members are dropped.

To place one or more cast members into the score:
1. Click to select the first cast member in the cast window.
2. Shift-click to select additional adjacent cast members; Control+click to select

additional non-adjacent cast members.
3. Drag one of the cast members you just selected to the score. Dragging any selected

cast member drags the entire selection.
As you drag the cast members over the score, Director outlines the range of cells into
which the cast members will be dropped.

Director restricts you to specific regions of the score depending on the type of cast
members in the selection. For example, if you drag a sound cast member into the score,
Director restricts you to the two sound channels. If you are dragging different types of
cast members, Director lets you only drop them into cells of the appropriate type.

You can drag this Into this part
type of cast member of the score

Bitmap, PICT, Text, Field Sprite channels 1-48
Button, Shape, Film loop, Sound channel 1 or 2
Movie, Digital Video
Sound
Palette Palette channel
Script Script channel. (Not a movie script.)

When you drop cast members into the score, Director fills the highlighted cells in
sequential order by cast number. The first cast member in the selection of a particular
type will be dropped into the left-most or top-most cell in the channel.

Any occupied cells in the highlighted region are overwritten by the cast members you
drag in.

Creating a new cast member
To create a new cast member, click the Add button. The keyboard shortcut for Add is
Control+Shift+A.

Director creates a new window in which you can create the cast member. Whatever you
create is placed in the first available cast member position.

The previous and next buttons control which cast member is displayed.

Using rulers
The paint window has vertical and horizontal rulers to help you align and size your
artwork.

To use the rulers, choose Rulers from the View menu. The rulers appear at the top and
left side of the paint window.

The default unit of measurement is pixels. To change the unit of measurement, click the
corner where the rulers meet. With each click the unit of measurement changes.

To change the location of the zero point, drag right or left along the ruler at the top of the
window or up or down along the ruler at the side.

Zooming in and out (paint window)
The Zoom commands on the View permit you to zoom in or out at four levels of
magnification.

To zoom in on the image in the paint window:
Choose Zoom In (Control+plus sign) from the View menu to zoom in one degree of

magnification.
To zoom in on a particular feature of the image, Command-click the image, or

position the pointer over the feature before choosing Zoom In.
Choose Zoom from the View menu and select a degree of magnification from the

submenu.

You can see a full-size view of the image in the box in the upper right corner of the paint
window. You can go back to the full-size view any time by clicking inside the box.

Zoom Out reverses the direction of the zoom. To reduce a magnified view, choose Zoom
Out (Control+minus) from the View menu.

Shortcut:    Switch back and forth between normal size and the last level of
magnification you chose by double-clicking the pencil tool or by Command-clicking with
any tool.

Selecting colors and patterns (paint window)
Colors and patterns are similar in the way you choose them and in the way you make use
of them. You choose both colors and patterns from pop-up palettes (the pop-up colors
palette isn't available if you have your monitor set to black and white), and you make
use of both with the same set of tools.

The colors that appear on the pop-up palette come from a set of colors known as a
palette. A Macintosh or Windows computer is capable of displaying over 16 million colors,
but it can only display a given set of colors at any one time, depending on the
capabilities of your video card. If the computer you're working with has a 4-bit video
card, you can work with palettes of 16 colors. If you're working with an 8-bit video card,
you'll be able to work with palettes of 256 colors.

Director has nine standard palettes: two System palettes (for Macintosh and Windows
systems), Rainbow, Grayscale, Pastels, Vivid, NTSC, Metallic, and VGA palettes. (The
standard palettes aren't all available all the time; which palettes are available depend on
the number of colors your monitor is set to display.) The System palette for your platform
is the default palette. You can create as many additional palettes as you want.

There are three types of colors you can choose from the current palette: The foreground
color is the color that you paint with when the pattern is solid and the ink is Normal. The
background color is the secondary color in a pattern. The destination color is the color
you want to replace the foreground color with when you use the Switch ink or the Switch
Colors button; when you use the Cycle ink, the destination color is the end of the range
of colors (beginning with the foreground color) that you want to cycle through; and when
you use the Gradient ink, the destination color and the foreground color define the two
extremes of the range that make up the color gradient.

Director has three standard palettes of patterns--Grays, Standard, and QuickDraw--as
well as a custom palette. The custom palette contains a set of default patterns; you can
create new patterns by editing the default patterns in the Pattern Settings dialog box.
You can also create a tile--a multicolored pattern that's a duplicate of a small rectangular
section of an existing cast member.

Drawing with the shape tools
The shape tools are the line, rectangle, circle, and polygon tools. There are two tools
each for the rectangle, circle, and polygon tools: hollow version and a filled version.
When you use the hollow version, the shape you draw is only an outline; it is not filled
with a pattern or color. When you use the filled version, the shape you draw is filled with
the currently selected foreground and background colors and patterns.

If you press the Alt key while drawing with one of the shape tools, the border of the
shape is drawn with the current pattern.

If you press the Shift key while drawing with the line tool, the line is constrained to
horizontal, vertical, or 45-degree angles.

Double-clicking the shaded side of the rectangle, circle, or polygon tool opens the
Gradients.

Using registration points
When you create a cast member in the paint window, it is automatically assigned a
registration point in the center. You can see this by creating a simple cast member and
clicking the registration tool. When you click the tool, dotted lines appear in the paint
window. The intersection of these dotted lines is the registration point of the cast
member. Using registration points speeds your ability to quickly and accurately put cast
members on the stage and have them all line up with the same point.

The registration tool is used to line up cast members for frame-by-frame animation.
When you have a series of cast members, you can align their registration points so you
have a fixed reference point for animation. A simple example might be the hands of a
clock. The hands are made up of different cast members at various positions around the
face of the clock, but they must be anchored to the center of the clock. Setting a
registration point on the hands at the point about which they rotate enables them to line
up in the proper position on the stage.

Another example of using registration points is a running figure. You can set a
registration point at the same spot on the ground so when the series of running figures is
animated, they bounce up and down relative to the same point on the ground.

To set registration points:
1. Open the paint window to the first cast member in the series.
2. Select the registration tool.
3. Adjust the registration point or reset it to the default setting by dragging the

crosshair outside the window and releasing the mouse button.
4. Repeat this process until the registration points of all the cast members in the series

have been reset.

Creating tiles from a cast member
You can use tiles to make multi-colored patterns. There are eight default tiles that are
always available for you to use, or you can create your own. The tiles you create are
stored with the Director movie they were created in.

Once created, the tile appears in the patterns pop-up menu and can be used like any
other pattern. The current foreground and background colors have no effect on the color
of the tiles but switching palettes changes the color of the tiles.

To create a tile:
1. Click the Pattern chip and choose Tile Settings from the bottom of the pop-up.

The radio buttons determine whether the tile you select is built-in or made from a
cast member.

2. Click Cast Member.
This radio button is dimmed if all the cast members in the movie are 1-bit cast
members. Tiles can be made only from cast members with color depths greater than
1 bit.

3. Click the left or right arrows to choose a cast member.
As you click the arrows, the cast members in the paint window appear in the left side
of the Tiles dialog box.

4. Choose a size using the Width and Height pop-up menus.
As you choose a width and height for your tile, the dotted box on the left side of the
Tiles dialog box changes shape to indicate the tile's size. You can also drag the dotted
box to make a tile from a different part of the cast member.

5. Click OK.
The tile you made is displayed in the bottom row of the pattern palette.

You can choose and use the tile just as you would select and use a pattern.

Creating text cast members
There are two main ways to create text cast members:

Create text cast members directly on stage using the text tool on the tool palette.
Click the text tool and then drag the pointer on stage to define the width of the text. When
you release the mouse button, a text insertion point appears in the area you just defined
and you can begin entering text. The new text cast member is placed in the first available
position in the cast. The sprite is assigned to the first open score cell in the current frame.

Create text cast members in the text window by choosing Text from the New Media
submenu in the Insert menu or by clicking the text window tool on the toolbar. Text you
enter appears in the first available cast position, but it is not automatically placed on the
stage.

You can also create text cast members by importing text in the rich text format (RTF).
When importing text, Director creates a new cast member each time it encounters a hard
page break or a section break in the file. A cast member can include as much text as
memory allows.

Understanding text and fields
Importing text

Text Cast Member Properties

Understanding text and fields
There are three ways of working with text in Director. Each has distinct advantages for
different applications.

Rich text

Rich text is the type of text you create with the text tool or in the text window. It is
best suited for most applications and provides many features that were not possible in
earlier versions of Director.

It offers paragraph formatting and definable tabs for each separate paragraph in a
cast member.

It is always editable in the authoring environment, but when you create a projector it
is bitmapped. Bitmapped text offers the best performance in animations and does not
require that users have the same fonts installed on their systems.

Large fonts can be anti-aliased to improve on-screen appearance. No jagged lines
appear at corners or along angles. See anti-alias in the Text Cast Member Properties
dialog box.

You can import from any application that stores text in the standard rich text format
(RTF). When importing text Director creates a new cast member each time it encounters a
hard page break in the file. See Importing text.

The text cannot be edited by users in playback or projectors, and it prints at 72 dpi.

Fields

A field is the type of text you create in any of the following ways:
With the field tool on the tool palette
By choosing Field from the Controls submenu of the Insert menu
In the field window, which is opened by choosing the Field command from the

Window menu.

In general, you should only use fields if you need text that is editable in playback or
projectors, or you need the best available print quality. Prior to version 5.0, fields were
the only type of editable text available in Director. The disadvantages of fields are:

The formatting of text in fields is controlled by the system software, so users must
have the same fonts installed on their systems when they play the movie or projector.

Paragraph formatting and tabs are not available.
Fields can slow down animation.

Bitmapped text

Bitmapped text is text you create in the paint window, or import from other image
editing and paint programs. You cannot edit bitmapped text once you create it, but you
can manipulate it using any paint functions. You can, for example, create dramatic
effects by applying Photoshop filters to bitmapped text. The print quality of bitmapped
text is usually poor.

Importing text
Creating text cast members

Text Cast Member Properties

Editing text on stage
You can edit text directly on stage without opening the text window. Click a text sprite
once, and you can move the sprite on the stage just like any other sprite. Click twice to
make an insertion point appear within the text.    Once the insertion point is visible, you
can enter or edit text just like you would in the text window. When you make a change,
Director updates all instances of the text cast member.

Change the width of a text or field cast member with the resize handle on the right
border.

Creating text cast members
Text Cast Member Properties

Importing text
You can import text from any application that saves text as plain text or in the rich text
format (RTF). Choose Import from the File menu, choose Text from the Type pop-up
menu, and then double-click the file you want to import.

When importing rich text, Director creates a new cast member each time it encounters in
a hard page break or a section break in the file. A cast member can include as much text
as memory allows. Director assigns the name of the file you import to the cast member
name.

Creating text cast members
Understanding text and fields

Text Cast Member Properties

Applying color to text
You can change the color of selected text using the pop-up color palette in the Font
dialog box. To change the background color of text, select the text cast member on stage
and then choose a color with the background color chip on the tool palette. This changes
the color of the entire cast member. You can't choose more than one background color
for a text cast member.

Creating a digital video cast member
To add a digital video movie to the cast, you either paste it, import it, or choose Digital
Video from the New Media Element submenu in the Insert menu. Director automatically
links the movie to the cast and adds it to the cast window. If you paste the movie,
Director first asks you to name the file in which to store the movie.

Using multiple digital video windows
You can create as many digital video windows as memory allows and play them
simultaneously. A movie continues playing even if it is not the front-most window.

You can also create multiple views of the same digital video window, to display the same
cast member in separate windows. This is useful for editing the movie, since you can
play the movie independently in each window, and cut and paste between each window.

Changes to the cast member in one window are automatically reflected in any other
windows that display the cast member.

About score window inks
Some score window inks work with both black and white and color artwork and others
work only with color. Inks that only work with color are: Bkgnd Transparent, Blend,
Darkest, Lightest, Add, Add Pin, Subtract, and Subtract Pin.

To apply an ink, select the cells in the score and then choose the ink from the ink pop-up
menu.

When dragging a cast member to the stage, the default ink is the last ink you chose in
the pop-up menu.

The default ink is Copy. When you use Copy, a bounding box appears around the sprite.
The bounding box is invisible when displayed on a white stage, but when the sprite
passes in front of another sprite, or the stage is black, you will see the bounding box.

To eliminate the bounding box that appears around a sprite, select the sprite in the score
and choose the Matte ink. Use it sparingly though, because it slows down screen redraw
and uses more memory than other inks.

To change the ink for a sprite, select the cell or cells, and choose an ink from the Ink pop-
up menu. Your choice replaces the previous ink assigned to the sprite.

Choose an ink carefully, since some inks can result in decreased performance when
animating a cast member. For example, the following inks are listed in order of
decreasing performance: Copy, Matte, Background Transparent, and Blend.

Note for Adobe Type Manager users:    The following inks produce jagged text if you
have Adobe Type Manager installed: Not Transparent, Not Reverse, Not Ghost, Blend,
Darkest, Lightest, Add, Add Pin, Subtract, and Subtract Pin.

Ink pop-up menu

Importing digital video movies
Importing a QuickTime or Video for Windows (AVI) movie automatically links the file to
the current movie and adds it to the cast window.

Any changes you make to the digital video movie with an editor outside Director are
reflected in the linked file.

Note:    The imported digital video movie's contents do not become part of the Director
movie. If you make a copy of the Director movie, be sure to include all digital video
movies that are part of the movie.

Video Window
Digital Video Cast Member Properties

Installing Xtras
You can add three types of Xtras to Director: filters, transitions, and new cast member
types.

Xtras are available from third-party developers. You can install Photoshop filters in
Director as Xtras. You can also create your own Xtras if you can program in C.

To install an Xtra, copy the file to the Xtras folder inside the Director application folder. If
you use more than one Macromedia product, you should store Xtras in an Xtras folder in
the Macromedia folder in the Windows folder. You can create folders inside the Xtras
folder and Director will still find them.

Importing sound files
Imported sounds are added to the cast window. You can import the following sound files:

On the Mac, you can import System 7 sounds, AIFF files, and AIFC files. Compressed
System 7 sounds can only be played on Macintosh computers.

In Windows, you can import WAVE, AIFF files, and AIFC files. Compressed WAVE
sounds can only be played on Windows computers.

Dialog box options

File displays sounds stored as files.

Resource displays sounds stored as resources in applications.

Linked lets you create a link to an AIFF or AIFC file on disk. Additionally, in Windows, you
can link to a WAVE sound file. You must create a link to a compressed sound file.

Sound Cast Member Properties
Frame Properties: Sound

Understanding color palettes
For an entertaining, full-color demonstration of how color palettes affect your work in
Director, run the Color Palettes lab from the Director CD.

When your system is set to 8-bit color depth (256 colors) or less, it uses a limited set of
colors called a color palette. The color palette determines all the colors that can be
shown on the screen at the same time. This includes not only the colors for the images
you're working with, but system elements like title bars, dialog boxes, tools, and so on.

If your system is set to display 16-, 24-, or 32-bit color (thousands or millions of colors),
color palettes don't affect Director movies; they serve only as a means for selecting
colors in the paint window. Because they refer directly to a complete spectrum of colors,
16-, 24-, and 32-bit graphics do not require color palettes to achieve accurate color.

Color graphics with 2-, 4-, or 8-bit color depth don't store any information about the hue,
saturation, or brightness of any particular color. They identify colors by referring to
positions in the current color palette.

Where palettes come from

When working with 2-, 4-, or 8-bit graphics, many graphics programs create special
palettes with the best colors to display a particular image.

When you create 2-, 4-, or 8-bit graphics in any application, the active palette is linked to
the file. This palette must be active for the graphic to display the right colors.

Director includes several palettes. The system palettes are the default selections. Any
additional palettes you create or import appear as cast members.

Conflicting color palettes in Director movies

Only one palette can be active on your computer at a time. This causes problems in
Director when you try to put two bitmapped cast members on stage at the same time
that have different palettes; the colors for one of the images will be wrong.

While a movie is playing, the palette channel in the score determines the active palette.
When the playback head reaches a frame containing a new palette, it changes the active
palette. To make this change using Lingo, see the PuppetPalette command.

When a cast member you are placing on stage has a palette different from the currently
active palette, Director adds the new palette to the palette channel. The new palette
becomes the active palette, and it remains in effect until you set a different palette in the
palette channel. For more information about using the palette channel, see Frame
Palette command

Solving color palette problems

Here are some guidelines for solving problems caused by conflicting color palettes:
Make sure all cast members on stage at the same time refer to the same palette. This

is essential.

Simplify your work and avoid frequent palette changes by mapping all the images in
your movie to as few palettes as possible.

If possible, create a palette that contains all the colors you need in your movie. You
can do this within Director by modifying an existing palette in the color palette window. You
can copy and paste colors from one palette to another. For information on using the color
palette window, see Color palettes window. Outside of Director, you can use a conversion
utility named DeBabelizer by Equilibrium software (Macintosh only) to scan groups of
images, create an optimal palette, and then remap all of them to the new palette. Some
image editing programs also have similar features

Remap existing cast members to a new color palette using the Transform Bitmap
command. See the next section, "Changing the palette of existing cast members."

As you import cast members, you can remap them to new palettes using the Image
Options.

If you don't understand what has been discussed so far, or if you're using images
with simple colors, you can avoid all of these complexities by using Transform Bitmap to
remap all of your images to the Windows or Macintosh system palette.

Changing the palette of existing cast members

You can remap existing bitmap cast members to different color palettes with Transform
Bitmap.

Understanding color depth

Understanding color depth
The number of colors a graphic image or a computer system can display is called the
color depth.

Color depth is expressed as the number of bits used to specify the color of each pixel, or
as the number of colors that can be displayed at once.

Bit Depth Number of colors

1-bit Black and white
2-bit 4
4-bit 16
8-bit 256
16-bit 32,768
32-bit 16.7 million

There are several reasons to use 8-bit graphics in your movies:
Many low-end systems support only 8-bit graphics. If you intend to distribute to a

wide audience of low-end users, 8-bit is the safest choice.
Graphics with lower color depth require less storage space, less memory to display,

and animate faster. Graphics with 16-bit color depth or more contain so much information
about color that they rapidly use up all available memory.

Director for Windows 3.1 supports only 8-bit graphics. (Director for Windows 95
supports higher bit depths.)

To change the color depth of bitmap cast members:
1. Select the cast member you want to change.
2. Choose Transform Bitmap from the Modify menu.
3. Choose a new depth setting from the color depth pop-up and then click Transform.

To change the color depth of a movie:
1. Change your monitor's color depth setting in the control panel of your system

software.
2. Click Save in the File menu to save the movie or Save As to save the movie with a

new name.

Understanding color palettes
Image Options

Applying a filter to a bitmapped cast member
You can apply a filter to an entire bitmapped cast member, or to a selection in the paint
window.

To apply a filter:
1. Open the cast member in the paint window, or select the cast member in the cast

window.
You can apply a filter to several cast members at once by selecting them all in the
cast window. To apply a filter to a selected portion of a cast member, use the
selection rectangle or the lasso in the paint window to select the part you want to
change.

2. Choose Filter Bitmap from the Xtras menu.
3. In the Filter Bitmap dialog box, choose a category on the left and a filter on the right.

You can also choose All in the category list to view all the filters at once.
4. Click Filter.

Many filters require you to enter special settings. When you choose one of these
filters, a dialog box or some other type of control appears after you click Filter.
Some filters have no changeable settings. When you choose one of these, the cast
member changes with no further steps.

Using OLE objects in Director
You can place OLE objects in Director movies as cast members. An OLE cast member is
treated as a bitmap inside of Director. For this reason, you should use OLE objects
primarily for images. Sound and video OLE objects are not effective.

When you create an OLE object, it's created as an 8-bit cast member. Use the
Transform Bitmap command to change the bit depth. As you update from the server, the
OLE object changes in the cast to the new bit depth.

Double-clicking an OLE cast member or sprite launches the OLE server so that you
can edit it. When you make changes in the OLE server and choose Update from the File
menu, the OLE object is automatically updated within Director.

When you edit an OLE object, Director uses the standard cross-hatching to indicate
the object is in use by the server. When you quit the server, the cross-hatching disappears.

OLE objects are converted to bitmaps when you create a projector. They are no
longer linked to their source applications.

OLE objects remain external files. Be sure to include all OLE files when you move a
movie or create a projector.

OLE objects work only in Windows 95 and Windows NT.

OLE Object command (Edit menu)

Using Auto Filter
Use Auto Filter to create dramatic animated effects with bitmap filters. Auto Filter applies
a filter incrementally to a series of cast members. You can use it either to change a range
of selected cast members, or to generate a series of new filtered cast members based on
a single cast member. You define a beginning and ending setting for the filter, and then
Auto Filter applies an intermediate filter value to each cast member.

To use Auto Filter:
1. Select a bitmapped cast member, or a range of cast members, and then choose Auto

Filter from the Xtras menu.
To change only a portion of a bitmapped cast member, use the selection marquee or
the lasso in the paint window to select the part you want to change.

2. In the Auto Filter dialog box, select a filter.
3. Click Set Starting Values and use the filter controls to enter filter settings for the first

cast member in the sequence.
When you finish working with the filter controls, the Auto Filter dialog reappears.

4. Click Set Ending Values and use the filter controls to enter filter settings for the last
cast member in the sequence.

5. Enter the number of new cast members you want to create (the box is not available if
you have selected a range of cast members).

6. Click Filter to begin the filtering.
A message appears to show the progress. Some filters are very complex and require
extra time for computing.

Understanding onion skinning
Related topics:

Tracing a cast member
Creating new cast members using a series of previous cast members as

reference images
Drawing a series of images by using another series of images as reference

images
Onion skinning and registration points

Onion skinning derives its name from a technique used by conventional animators who
draw on very thin "onion skin" paper so that they can see one or more of the previous
images in the animation.

Onion skinning in Director allows you to create or edit animated sequences of cast
members in the paint window using other cast members as a reference. Reference
images appear dimmed in the background. While working in the paint window you can
view not only the current cast member that you're painting, but one or more cast
members blended into the image. For a description of the onion skin toolbar, see Onion
Skin (View menu).

You can use onion skinning:
To trace over a image, or to create a series of images all registered with a particular

image.
When drawing each cast member of an animation, to see previous images in the

sequence and use those images as a reference while you are drawing new ones.
To create a series of images based on another "parallel" animation. A series of

images serves as the background while you paint a series of foreground images.

Tracing a cast member
Follow these steps to trace a new cast member using another cast member as a
background image:
1. Open the paint window and select Onion Skin from the View menu.
2. Open the cast member in the paint window that you want to use as the reference

image or background.
3. Click Toggle Onion Skin (the left-most button in the toolbar) to turn onion skinning on.
4. Click Set Background in the toolbar to set the background image.
5. Click the Add button ("+") in the paint window to create a new cast member.
6. Click Show Background in the onion skin toolbar.

The original cast member now appears as a dimmed image in the paint window. All
painting operations now take place "on top of" the original cast member's image.

7. Paint the new cast member using the background image as a reference.

Creating new cast members using a series of previous cast members
as reference images

You can create new cast members using other cast members as reference images. Use
the Preceding and the Following Cast Members buttons in the onion skin toolbar to help
you step through a series of cast members created for your animation.

You can set Following Cast Members to display reference images following the current cast
member. Use the Preceding and Following Cast Members settings to help you step through a
series of cast members created for your animation.

In the following illustration, the Preceding Cast Members field is set to 2 so that images of
two previous cast members appear in the background as a new cast member is painted in
the foreground.

Drawing a series of images by using another series of images as
reference images

Follow these steps to use a series of images that serve as the background while painting
a series of foreground images.

1. Arrange the series of cast members you want to use as your background, in
consecutive order in the cast.
Cast members in each of the foreground and the background series must be adjacent
to each in the other in the cast, otherwise Director cannot track the background
properly as you add cast members to the foreground.

2. Open the paint window and select Onion Skin from the View menu.
The onion skin toolbar appears.

3. Click Toggle Onion Skin in the onion skin toolbar to turn onion skinning on.
Make sure all values in the onion skin toolbar are set to 0.

4. Open the cast member in the paint window that you want to use as the first
background cast member in the reference series and click Set Background.

5. Select the position in the cast that you want the first cast member in the foreground
series to appear and click the Add button ("+") in the paint window to create a new
cast member.
The first cast member in the foreground series can be located anywhere in the cast.

6. Click Track Background in the onion skin toolbar.
The corresponding member of the reference series appears as a reference image.

7. Paint the new cast member using the background image as a reference.
8. When you have finished drawing the cast member, click the Add button ("+") again

to create the next cast member.
When Track Background is enabled, Director advances to the next cast member in
the reference series and its image appears in the background in the paint window.

9. Repeat step 8 until you have completed drawing the cast members in the series.

Onion skinning and registration points
The current cast member and the reference images must be correctly registered with
each other. All images must be drawn with their registration points aligned.

By default, the registration point of a bitmap cast member is always the center of the
image. Director freezes the registration point of a bitmap cast member once it has been
used as a foreground or background image during onion skinning. For more information
about using registration points see, Using registration points.

Linking to a file
When you import a PICT file, AIFF sound file, or a Director movie, you have the option to
create a link to the file in the cast rather than copying the contents of the file into your
movie. This allows you to add a PICT, sound, or Director movie to the current movie
without increasing the size of the movie. It also allows you share the same linked file
among several movies.

If you change the linked file, the changes are automatically reflected when you reopen
your movie. Director looks for any linked cast members when you open the movie. If it
cannot find a linked file, a dialog box appears so you can locate the file.

 Note:    Director always imports digital video movies by linking to the file.

Importing PICT files
If you import a PICT file, Director converts it to a bitmapped cast member and adds it to
the cast.

The color depth of an imported PICT image depends upon the color depth of the monitor
on which Director's stage appears. For example, if the stage appears on a second
monitor when you import the image, the second monitor's color depth determines the
image's color depth.

Importing the cast member's palette ensures that the cast member looks as it did when
it was originally created.

Remapping the PICT file causes the cast member to appear in the colors closest to the
colors in the current palette.

Dialog box options

Linked creates a link to the location of the PICT file on disk. This is useful if you want to
add large (24-bit) images to your movie without increasing the movie's size.

Note:    If you edit a linked PICT file, changes are reflected in the file on disk when you
save the movie. For example, if you import a 24-bit PICT file by linking to the file, and
later change its color depth using the Transform Bitmap command, Director alters the bit
depth of the PICT file on disk when you save the movie.

Importing Director movies
Importing a movie adds the movie's contents (cast members, scripts, sounds, palettes,
text, artwork) to the cast window. Director converts the movie to a film loop in the cast,
imports all the movie's cast members, and updates their references to reflect their new
positions in the cast. The following items are not imported: movie script, resources,
tempos, transitions, and markers in the score. Score scripts are imported but are not
activated when you drag the film loop onto the stage.

Note:    You cannot link to a movie created with a previous version of Director. To link the
movie, first update it to Director 5.0's file format using the Update Movies command in
the Xtras menu.

Dialog box options

Linked lets you create a link to the movie in the cast window. This option is useful if you
want to add a movie to your current movie without increasing the file size of your current
movie. The movie is imported as a film loop, without the individual cast members. If this
box is not checked, the movie itself will be imported into the cast.

Converting Director animations into QuickTime movies
You can export a Director animation as a QuickTime movie, and then import it into
Director so that it becomes a single cast member. You might want to do this for the
following reasons:

Since an imported digital video movie is linked to its source file on disk, you can edit
the digital video movie in another application, and your changes will be automatically
reflected in the digital video movie inside Director.

Director provides precise control over the digital video movie's playback, using the
Digital Video Cast Member Properties dialog box.

Other users can use and distribute the QuickTime movie for use in any application
that supports QuickTime.

You might not want to convert a Director animation into a digital video movie if the
animation includes interactivity. (Digital video movies do not allow interactivity.)

Notes:
If you lose your transitions when you export a Director movie as a digital video

movie, try increasing the Duration and Smoothness settings for the transitions before you
export the movie.

If the exported digital video movie plays before your transitions occur, turn off the
digital video movie cast member's Direct to Stage setting in the Cast Member Properties
dialog box.

Memory management techniques
You use the same basic memory-management techniques on both Windows and
Macintosh:

Be conservative with memory-intensive cast members such as large internal sounds
and bitmaps. If possible, use external sounds instead of internal sounds.

Keep animations as small as possible. If cast members are too big, you get a memory
error message when the movie is played back.

Create movies in several smaller segments instead of one large movie whenever
practical. Smaller segments are more likely to play back without pausing, and can begin and
end at logical breaks in the movie.

Use trails to leave sprite images on stage if the sprite doesn't move and uses no
transitions.

Determine the minimum free memory that the movie will be required to use, and
then work backward from that minimum to make sure that your movie fits into available
memory. For example, you should take into account all global variables and objects, and
determine how much memory they will require. After subtracting this amount from the
projector size set by the system, you will know the amount of memory that remains for both
sound and graphic cast members in any one frame.

Determine the available memory before playing a movie by entering put the
memorySize in the message window. You can also use put the freeBlock to see what's
happening to memory while you play the movie. You can also use the traceLoad command
to display cast member names and other information about cast members as they are
loaded into memory.

Using Lingo, include a check of the freeBlock before the movie starts to determine if
the minimum memory necessary to run is available. If not, display an alert informing the
user how much more memory is necessary.

To determine how much memory a frame of a movie uses, use the ramNeeded Lingo
function.

Use Cast Member Properties to tell Director when to purge a cast member from
memory. Make sure large cast members have an appropriate purge priority.

Load cast members into memory on a "when needed" basis (specified using the Cast
Properties command on the Modify menu).

If memory on the target machine is a consideration, create separate versions of your
Director movie, and design each one to run on machines with 5 megabytes, 8 megabytes, or
16 megabytes of physical RAM. Create a separate movie that checks the available RAM and
then calls the appropriate movie version.

During authoring, use the Lingo properties the traceLoad and the traceLogFile to
determine when cast members are used in your movie. Set the cast member's unload option
in Cast Member Properties to make sure cast members that are needed frequently don't get
purged from memory.

Predicting bitmap size in memory

Most cast members are the same size in memory as they are on disk. However, bitmaps
can change size when they are loaded into memory, depending on the color resolution of
the playback monitor.

A 1-bit color depth image remains a 1-bit color depth image, but 4-bit and 8-bit images
adjust their color depth depending on which computer they play on. This has two
implications:

A 4-bit cast member expands to twice its original file size in memory on a 256-color
monitor.

An 8-bit cast member shrinks to half its original file size in memory on a 16-color
monitor.

The following formula measures how much memory a bitmap uses:

Number of bytes used by a bitmap=(image's height in pixels x image's width in pixels x
color depth in bits)/8

For example, a bitmap image that is 100x100 pixels and has a 4-bit color depth uses
5,000 bytes of memory: (100x100x4)/8=5,000.

Creating projectors
To create projectors for any version of Windows, you must use the Windows version of
Director; likewise you can only create Macintosh projectors with the Macintosh version of
Director.

Note:    You can only include Director 5 movies in projectors. Use Update Movies to
convert older movies to the latest version of Director.

To create a projector:
1. Choose Create Projector from the File menu.

The Create Projector dialog box appears.
2. Double-click the movies and external casts you want to include in the projector.

Director transfers the name of the movie or cast to the file list.
If you want to add more movies to the projector, repeat the step for each one. If you
want to include all the movies that are in the folder that's open, click the Add All
button.

3. Use the Move Up and Move Down buttons to arrange the movies in the proper order.
Movies play in the order they appear in the list. Be sure to put the starting movie at
the top of the list. If your movie contains Lingo that switches between movies, the
order of the other movies may not be important.

4. To change any of the projector options, click Options.
The most important option is selecting the type of computer the projector will run on.

Windows Runs on
projector option

Windows NT and 95 Windows NT and 95
Windows 3.1 Windows 3.1--also runs slowly on Windows 95 and NT

Macintosh projector Runs on
option

Power Macintosh Native Power Macintosh only
Standard Macintosh Macintosh older than Power Macintosh--also runs slowly on

Power Macintosh
All Macintosh All Macintosh systems at optimal speed, but the projector

file is much larger

5. Click Create.
A directory dialog box appears.

6. Name the projector, and then click OK.
Director turns the movies you've selected into a projector.

When you play a projector, it starts the play-only version of Director, plays the movie or
movies that are part of the projector, and then quits automatically.

Create Projector command

Preparing a movie for distribution

Preparing a movie for distribution
To distribute a movie to users who don't own Director, you need to create a projector.

A projector is a play-only version of a movie or series of movies. It appears as an
application program in your system software. When a projector runs, it automatically
begins playing the first movie and quits when the last movie finishes.
You cannot edit a projector in Director. You must edit the movie source file and then
create a new projector.

When a projector plays, it accesses all external linked files the same way an ordinary
movie does. All linked media--bitmaps, sounds, digital videos, and so on--must be in the
same location relative to the projector as they were when the movie was created. To be
sure there is no problem when the you distribute the movie, place linked files in the
same folder as the projector, or in a folder inside the projector folder.

Organizing movies in a larger production

In most cases, you should divide a larger production into a series of smaller movies. You
can combine as many movies as you want in a projector, but larger files take longer to
save and are cumbersome to work with. Also, movies are easier to change if they are
organized in discrete sections.

The best way to organize a larger production is to create a small projector file that
launches the movie and then branches to other movies. This saves you the trouble of
creating a new projector every time you change one part of a movie.

Create Projector command
Creating Projectors
Update Movies

Protecting and compacting with Update Movies
During a project, use Update Movies to compact groups of files you have been working
on that may have become fragmented. (This is the same as using Save and Compact on
a file.)

At the end of a project, use it to compact and protect all your movies and casts at once.

A protected movie can be played only from a projector or as movie in a window. To play a
protected movie from a projector, you must use Lingo to go to or play the protected
movie. Protected casts can only be opened by protected movies.

To protect and compact movies and casts:
1. Choose Update Movies from the Xtras menu.

The Update Movies dialog box appears.
2. Choose options for Action and Original Files.

Action defines whether the selected files are updated or protected. Original files
specified if original files are deleted or moved to a new folder you specify.

4. Click OK.
A dialog box appears with which you select files to change.

5. Select movies and casts you want to update and click Add.
Click Add All to add all the movies in the current folder. The movies you select appear
in the file list at the bottom of the dialog box. You can update movies in different
folders at the same time.
Choose Add All Includes Folders before you click the Add All button to make it include
any movies or casts inside folders appearing in the upper list. This option is useful for
updating large projects with several levels of folders.

6. Click Update.
Director saves new versions of the selected movies with the same names and
locations as the original movies. This ensures that all links and references to other
files continue to work properly. Director copies the original movies to the folder you
specified, recreating their original folder structure. If you didn't specify a folder for
the original movies, Director prompts you to select one.

Note:    Director adds a .DXR suffix to protected movies, and .CXT to protected external
casts.

Update Movies command
Converting Director 4 movies

Converting Director 4 movies
You must use Update Movies to convert any Director 4 movie with a shared cast
(Shared.dir) to Director 5. To update movies from older versions (pre-4.0), you must first
convert them to the Director 4 file format.

Using Update Movies makes the following changes to movie files from Director 4:
Converts the movie into a Director 5.0 format file.
Converts a shared cast (Shared.dir) to a linked external cast named Shared.cst. It

renumbers the cast members so they begin with number one and updates all score
references to the new numbers. Make sure you select Shared.dir as one of the files to be
updated while using Update Movies.

Places transitions in the cast.

Lingo from pre-4.0 versions that was allowed in Director 4 may not work in Director 5. If
alert boxes inform you of script errors during Update Movies, this may be the problem.
Update Movies converts movies with old Lingo to the new file format, but they will
probably not run. To use theses movies in Director 5, you have to find and change the old
lingo. For information on outdated Lingo, see "Using outdated Lingo" in the introduction
to Learning Lingo.

Improved System-Win palette

Director 5 uses an improved System-Win palette. For compatibility, Director still includes
the System-Win palette provided in Director 4, which has been renamed "System-Win
(Dir4)." You may notice that the Director user interface is a little brighter when it's the
active palette.

While your Director 4 movies will play with exactly the colors and artwork as in Director
4, it's easy to convert them to the new System-Win palette. To do so:
1. Make a copy of your movie.
2. Choose Movie Properties from the Modify menu and set the movie palette to System-

Win (Dir4).
3. Use Find Cast Member on the Edit menu to find all cast members in your movie that

use the System-Win (Dir4) palette.
4. Click Select All.
5. Choose Transform Bitmap from the Modify menu and remap those cast members to

System-Win.
6. Check the score for any references to the old palette.
7. Save your movie.

The colors in System-Win that were replaced are more subdued versions of the same
colors, so you should find the results to be generally pleasing.

Update Movies command
Protecting and compacting with Update movies

Understanding font mapping
Director stores font, size, and style information for each text cast member. However,
when you open a movie created on a Macintosh using the Windows version of Director,
Windows may create visually different text than the text displayed on a Macintosh.

Most Windows PCs don't use the same fonts used in your Macintosh movie. If Windows
doesn't have one of these fonts, Director substitutes another available font.
Macintosh and Windows font sizes can differ. For example, 12-point text on the Macintosh
can appear smaller on the PC.

When you create a new movie, Director looks for a file called FONTMAP.TXT in the same
folder as the Director application. This file specifies how Director maps fonts between the
Macintosh and Windows platforms. If Director finds this file, it uses it to create an internal
font map for the movie. If no FONTMAP.TXT file exists, the new movie uses no font map.
When you open the movie on the PC, Director uses the movie's internal font map to
determine the appropriate substitute Windows fonts for text cast members that were
created on a Macintosh. If the movie has no font map, Director substitutes other
available fonts. The sample FONTMAP.TXT file at the end of this section provides an
example of how Director maps Macintosh fonts to Windows fonts.

If you want to guarantee that field text looks identical on both platforms, convert
your field cast members to bitmaps before opening the movie on the other platform. Be
aware, though, that bitmapped text uses more disk space and cannot be edited as text.

Use text cast members if you want identical looking text. Text cast members are not
dependent on playback-system fonts, they animate faster than fields, and they use only
slightly more memory (but they cannot be edited at playback time).

Buttons, which appear as field cast members, should not be converted to bitmaps.
Bitmapping buttons removes certain properties or attributes assigned to button cast
members and could affect Lingo scripts that refer to these button properties.

Editing a movie's FONTMAP.TXT file
Using fonts on high-resolution screens

Editing a movie's FONTMAP.TXT file
When you open a new movie, Director looks for a font map file named FONTMAP.TXT in
the same folder as the Director application. This file specifies the font mapping for all
new movies. If Director can't find this file, it does not use a font map for new movies.

You can edit an existing movie's font map file to specify which fonts Director substitutes
when you open the movie on the PC. Rather than creating this file from scratch, you can
save the movie's internal font map table in a text file, and then edit this file as necessary.

To define the font mapping information for a movie, it's more convenient to edit the
FONTMAP.TXT file before you begin authoring a movie, since Director automatically uses
the information stored in the FONTMAP.TXT file when you open a new movie. (If you've
already created the movie, you can still edit the font map file, but you will then have to
manually load the file into the movie to have Director apply it to the movie.)

Note: If you edit a text, field, or button cast member on the PC in a movie created on a
Macintosh, the cast member loses its original Macintosh font information. Similarly, if you
edit the text, field, or button cast member on the Macintosh for a movie created on the
PC, the cast member loses its original Windows font information. If you plan to edit a
movie on both the Macintosh and Windows platforms, make sure that the font mapping
file specifies that each Macintosh font has only one substitute font on the PC, and vice
versa. This one-to-one font mapping ensures that Director will be able to assign the
appropriate substitute font when you edit a text cast member on one platform and then
open the movie on the other platform.

A movie's FONTMAP.TXT file might look like this:

; This is a sample FONTMAP.TXT file
; Comments are denoted by using ";" or "--" to start the line
; The format for Font Mapping is:
; Platform:FontName => Platform:FontName [MAP (NONE | ALL)] [OLDSIZE =>

NEWSIZE]
-- The format for specific Character Mapping is
-- Platform: => Platform:    OLDCHAR => NEWCHAR ...
; Here are sample mappings for the standard Mac fonts:
Mac:Chicago              => Win:"MS Sans Serif"
Mac:Courier              => Win:"Courier New"
Mac:Geneva                => Win:System Map All
Mac:Helvetica          => Win:Arial
Mac:Monaco                => Win:Terminal
Mac:"New York"        => Win:"MS Serif" Map None
Mac:Symbol                => Win:Symbol
Mac:Times                  => Win:"Times New Roman" 14=>12 18=>14 24=>18 30=>24
; Here are sample mappings for the stock Windows fonts
Win:Arial                          => Mac:Helvetica Map All
Win:"Courier"                  => Mac:Courier
Win:"Courier New"          => Mac:Courier
Win:"MS Serif"                => Mac:"New York" Map None
Win:"MS Sans Serif"      => Mac:Chicago
Win:Symbol                        => Mac:Symbol
Win:System                        => Mac:Geneva
Win:Terminal                    => Mac:Monaco
Win:"Times New Roman" => Mac:"Times" 12=>14 14=>18 18=>24 24=>30

Note: From Windows to Mac, Courier and Courier New map onto Courier. When coming
back to Windows only Courier New will be used.

Here is a sample character mapping for the bullet char

Mac: => Win: 165=>149
Win: => Win: 149=>165

Note:
Comment lines must begin with two dashes (--) or a semicolon (;)
Only one font mapping definition can be specified on a line   
Arguments must be separated by spaces or tabs
If a font name consists of more than one word, it must be enclosed in quotation

marks

Defining the font mapping for a new movie
Changing the font mapping for an existing movie

Defining the font mapping for a new movie
To define the font mapping for a new movie:
1. Using any application that can edit text, open the sample FONTMAP.TXT file that's in

the same folder as the Director application.
When you installed Director, this file was placed in the same folder as the Director
application. If the file is missing, you can either re-install it or create it from scratch.
See the end of this section for an example of a FONTMAP.TXT file.

2. For each Macintosh font remapping entry, type on one line:
Mac:MacFontName=>Win:WinFontName [MAP (NONE|ALL)]
[MACfontsize=>WINfontsize]

where MacFontName is the name of the Macintosh font, and WinFontName is the
name of the Windows font being substituted for the Macintosh font.
The two arguments enclosed in brackets are optional. MAP ALL or MAP NONE
specifies whether you want to remap characters with ASCII values greater than 127
or just pass them through.    The default is MAP ALL.
You can specify how you want the characters to be remapped, as described in Step 3.
The sample FONTMAP.TXT file contains mappings for a few commonly used graphical
characters.
The last argument, [MACfontsize=>WINfontsize], consists of one or more pairs of
numbers, separated by a space, that let you map a Macintosh font size to a Windows
font size.
Because font sizes appear smaller on a PC, you might want to map Macintosh font
sizes to larger Windows font sizes.

3. For each Macintosh special character that you want to remap, type:
Mac:=>Win: OLDCHAR=>NEWCHAR OLDCHAR=>NEWCHAR

where OLDCHAR is the ASCII value of the Macintosh special character, and NEWCHAR
is the ASCII value of the Windows character being substituted for it. You can enter as
many remapping pairs as you want by separating each one with a space.
You can only remap characters whose ASCII values are greater than 127 and less
than 255.
If you didn't specify MAP ALL for any of the font remapping entries, as described in
Step 2, you can skip this step.

4. Save the file as ASCII text, in the same folder as the Director application.
5. Open a new movie in Director.

When you open a new movie, Director looks for the font map file named
FONTMAP.TXT in the same folder as the Director application. All new movies will use
the font mapping information in the FONTMAP.TXT file. You can edit this file on a
movie-by-movie basis, as necessary.
Existing movies continue to use the font map information (if any) stored within the
movie rather than the font mapping specified in the FONTMAP.TXT file.

Changing the font mapping for an existing movie
To change the font mapping for an existing movie:
1. Using any text editing application, edit the FONTMAP.TXT file as described in "Editing

a movie's FONTMAP.TXT file," earlier in this section.
Save this file using any name of your choice.

2. Open the movie whose font mapping you want to change.
3. Choose Movie Properties on the Modify menu.
4. Click Load from File.

This option lets Director load the font mapping assignments specified in the font map
file.

5. In the dialog box, select the font map file you just edited and click Open.
6. Click OK in the Movie Info dialog box.
7. Save the movie and close it.
8. Open the movie again.
The movie now uses the font map information specified in the font mapping file.

Using fonts on high-resolution screens
Windows Setup program offers a Large font option, which uses a larger font on higher-
resolution screens. When using the Large font option, text in TrueType or System font on
an 800x600 pixel or larger display can wrap differently than it does on the Macintosh.

To avoid problems with the Large font option when playing back moves on screens larger
than 800x600 pixels, use Windows' Small font option whenever possible. When it is
necessary to use the Large font option, first test the movie on a large screen to verify
that text looks appropriate.

Using XCMDs and XFCNs

Related topics:

Differences between Xobjects and XCMDs
Differences between XObjects and XCMDs
Learning to use XCMDs
Using an XCMD or XFCN
XCMDs and callbacks
XCMD and XFCN callback requests

Lingo lets you use HyperCard's XCMDs and XFCNs in your movies. Using XCMDGlue--part
of Director's *Standard.xlib library of XObjects-- you can access XCMDs and XFCNs from
Lingo scripts. This lets you can extend Director's capabilities by using the many XCMDs
and XFCNs available from HyperCard.

Most XCMDs and XFCNs work automatically with XCMDGlue, but some may not.When the
XCMD's primary purpose is to perform a HyperCard-specific action--such as handling
cards, HyperTalk scripts, or other parts of the HyperCard interface--the XCMD or XFCN
might generate an error message when used in Director.

XCMDs and XFCNs are closely related. For convenience, Director Help refers to them
collectively as XCMDs.

Note: XCMDs provide an interface to external code modules but are not capable of
ensuring that the external code modules themselves perform as intended. You must
make sure that the external code modules perform correctly to have them produce the
desired results in Director.

Differences between XObjects and XCMDs
XCMDGlue works differently from XObjects. You don't create instances of XCMDGlue to
work with specific XCMDs. Instead, XCMDGlue acts as an interpreter between Lingo and
the XCMD.

A major difference between XCMDs and XObjects is that an XObject can have multiple
instances:

One XObject can be used to create a number of independent objects, each capable of
performing different operations.

An XCMD cannot create new instances, so it can perform only one function at a time.

For these cases, you can use Lingo to create a special mechanism which may solve the
problem. For further information, see the XCMDs and callbacks topic.

Learning to use XCMDs
Related topics:

Opening XCMD resources
Viewing XCMD resources
Closing XCMD resources

Like using XObjects, using an XCMD involves three basic steps:
1. Opening the XCMD
2. Exchanging messages with the XCMD to perform some function
3. Closing the XCMD.

One of the best ways to learn about XCMDs is to use them in Director's message window.
In this section, you'll see how to open, view the contents of an XCMD resource by
exchanging a message with the XCMD, and close an XCMD.

Opening XCMD resources
XCMDs can be located in two places: in an external file or in a Director movie.

When an XCMD resource is stored in the current movie's resource fork, the XCMD is
automatically opened when the movie is opened. This is similar to the way *Standard.xlib
is automatically opened when you launch Director. You can copy XCMD resources into
your Director movie using a resource editor like ResEdit.

When an XCMD resource is stored in an external file such as a resource file or stack, you
can open it with the openXlib command. If the file is in another folder, you must specify a
full pathname to the folder. The easiest way to access the file is to place it in the same
folder as your Director movie or the Director application.

To open an XCMD using the openXlib command:
1. Launch Director.
2. Open the message window and type openXlib followed by the name of the XCMD

resource file.
3. Press Return.

The resource file you specified opens.
One resource file can contain multiple XCMDs. When you use the openXlib command,
all XCMDs stored in the specified XCMD resource file are opened. The XCMD resource
file can be a HyperCard stack, a resource file, or even a TeachText document
containing XCMD resources. Notice that this is the same command used to open
regular XObjects.

Viewing XCMD resources
After you've opened the XCMD, you can use the showXlib command to display all open
resource files that contain XCMDs as well as XObjects.

To display a list of all open resource files that contain XCMDs and Xobjects, ype showXlib
in the message window, and then press Return.

To display the contents of a specific XCMD resource file, type showXlib followed by the
name of the resource file, and then press Return.

Closing XCMD resources
The closeXlib command lets you close all open resource files that contain XCMDs and
XObjects.

To close all open resource files that contain XCMDs and XObjects, type closeXlib in the
message window, and then press Return.

To close a specific resource file that contains XCMDs, type closeXlib followed by the name
of the resource file in the message window, and then press Return.

Using an XCMD or XFCN
In many cases, once you open an XCMD, you can use the XCMD in your Lingo scripts the
same way you would use it in a HyperTalk script. XCMDGlue does everything else by
converting the XCMD for you. For example, the following handler would let you use the
MIDIplay XCMD (from Opcode Systems) to play a MIDI file from Director:

on startMIDIplayback
openXlib (the pathname & "MIDIplay")
-- opens the MIDIplay XCMD
-- Use Lingo's "pathname" function to find
-- resource files
-- in the same folder as your movie
MIDIplay "open","MyDrive:MyFolder:myMIDIfile"
-- opens the MIDI file to be played
MIDIplay "start"
-- starts playback of the MIDI file

end startMIDIplayback
This handler stops the playback of the MIDI file:

on stopMIDIplayback
MIDIplay "stop"
closeXlib (the pathname & "MIDIplay")

end stopMIDIplayback

XCMDs and callbacks
Related topics:

Using a callback handler
Defining the callback factory
Creating the callback object
Specifying the callback handler

Not all XCMDs can be used with XCMDGlue in a completely transparent manner.
Occasionally, XCMDGlue is unable to properly convert the XCMD. When you attempt to
use an XCMD's syntax in a script, an error message is displayed.

Certain XCMDs may call on HyperCard to internally perform some tasks while the XCMD
is executing. Most of these are conversion routines and are used to conveniently convert
information to and from different formats. The remaining callbacks either involve the
HyperTalk interpreter or access information stored in HyperCard-specific entities such as
fields, or they do both. The table of HyperCard callback requests at the end of this
appendix lists specific technical information regarding these callbacks.

Lingo automatically supports all callbacks that are not overly specific to HyperCard. Still,
some HyperCard-specific callbacks are supported when Lingo provides a direct
equivalent. The remaining callbacks that are not automatically supported (a total of nine)
are so specific to HyperCard that they cannot be resolved automatically unless the
application calling the XCMD is virtually identical to HyperCard. Even in such cases, it is
still possible to use an XCMD by using a user-defined mechanism called a callback
handler.

Using a callback handler
A callback handler uses a Lingo factory to accept and respond to messages that
correspond to HyperCard callback requests. A factory is a set of scripts that can be used
to create an object. In Director 4.0, the functionality of factories has largely been
replaced by parent scripts. For more information on parent scripts, see Chapter 10,
"Parent Scripts and Child Objects." In this specific case, however, a factory provides the
best way to respond to callbacks. This section shows you the steps necessary to create a
callback factory, and to call that factory from a handler.

Essentially, a callback handler provides a mechanism that some XCMDs already expect to
be available. The XCMD expects that when it sends or receives a callback message,
something will be there to receive it and possibly return another message. (Usually
HyperCard does this.) A callback handler defined in Lingo simply intercepts and returns
these messages when appropriate. Whether you choose to use this information depends
on your understanding of the purpose of the callback.

Fortunately, when XCMDGlue does not understand a callback request, it indicates the
name of the callback in the error message. Once you know which callback your XCMD
needs to deal with, you can create a callback handler for it.

There are three basic steps to creating a callback handler:
1. Defining a callback factory
2. Creating the callback object
3. Specifying the XCMD to be used with the callback object (with the setCallBack

command that is part of XCMDGlue).

Defining the callback factory
The first step in creating a callback factory is to define it. The following example factory
includes methods for all the callbacks that are not supported by XCMDGlue. This factory
does not attempt to do anything with the callback requests other than create a record of
them in the message window. As you'll see later, you can use this information to process
callbacks. This factory should be placed in a movie script:

factory callBackFactory
method mNew
me(mPut, 1, "SendCardMessage")
me(mPut, 2, "EvalExpr")
me(mPut, 3, "StringLength")
me(mPut, 4, "StringMatch")
me(mPut, 5, "SendHCMessage")
me(mPut, 6, "ZeroBytes")
me(mPut, 7, "PasToZero")
me(mPut, 8, "ZeroToPas")
me(mPut, 9, "StrToLong")
me(mPut, 10, "StrToNum")
me(mPut, 11, "StrToBool")
me(mPut, 12, "StrToExt")
me(mPut, 13, "LongToStr")
me(mPut, 14, "NumToStr")
me(mPut, 15, "NumToHex")
me(mPut, 16, "BoolToStr")
me(mPut, 17, "ExtToStr")
me(mPut, 18, "GetGlobal")
me(mPut, 19, "SetGlobal")
me(mPut, 20, "GetFieldByName")
me(mPut, 21, "GetFieldByNum")
me(mPut, 22, "GetFieldByID")
me(mPut, 23, "SetFieldByName")
me(mPut, 24, "SetFieldByNum")
me(mPut, 25, "SetFieldByID")
me(mPut, 26, "StringEqual")
me(mPut, 27, "ReturnToPas")
me(mPut, 28, "ScanToReturn")
me(mPut, 31, "FormatScript")
me(mPut, 32, "ZeroTermHandle")
me(mPut, 33, "PrintTEHandle")
me(mPut, 34, "SendHCEvent")
me(mPut, 35, "HCWordBreakProc")
me(mPut, 36, "BeginXSound")
me(mPut, 37, "EndXSound")
me(mPut, 38, "RunHandler")
me(mPut, 39, "ScanToZero")
me(mPut, 40, "GetXResInfo")
me(mPut, 41, "GetFilePath")
me(mPut, 42, "FrontDocWindow")
me(mPut, 43, "PointToStr")
me(mPut, 44, "RectToStr")
me(mPut, 45, "StrToPoint")
me(mPut, 46, "StrToRect")
me(mPut, 47, "GetFieldTE")
me(mPut, 48, "SetFieldTE")

me(mPut, 49, "GetObjectName")
me(mPut, 50, "GetObjectScript")
me(mPut, 51, "SetObjectScript")
me(mPut, 52, "StackNameToNum")
me(mPut, 53, "Notify")
me(mPut, 54, "ShowHCAlert")
me(mPut, 100, "NewXWindow/GetNewXWindow")
me(mPut, 101, "CloseXWindow")
me(mPut, 102, "SetXWIdleTime")
me(mPut, 103, "XWHasInterruptCode")
me(mPut, 104, "RegisterXWMenu")
me(mPut, 105, "BeginXWEdit/EndXWEdit")
me(mPut, 106, "SaveXWScript")
me(mPut, 107, "GetCheckPoints")
me(mPut, 108, "SetCheckPoints")
me(mPut, 109, "XWAllowReEntrancy")
me(mPut, 110, "SendWindowMessage")
me(mPut, 111, "HideHCPalettes")
me(mPut, 112, "ShowHCPalettes")
me(mPut, 113, "XWAlwaysMoveHigh")
me(mPut, 200, "GoScript")
me(mPut, 201, "StepScript")
me(mPut, 202, "AbortScript")
me(mPut, 203, "CountHandlers")
me(mPut, 204, "GetHandlerInfo")
me(mPut, 205, "GetVarInfo")
me(mPut, 206, "SetVarValue")
me(mPut, 207, "GetStackCrawl")
me(mPut, 208, "TraceScript")

method mEvalExpr x
put "mEvalExpr:" && x

method mSendHCMessage x
put "mSendHCMessage:" && x

method mSendCardMessage x
put "mSendCardMessage:" && x

method mGetFieldByName card, name
put "mGetFieldByName:" && card && name

method mGetFieldByNum card, num
put "mGetFieldByNum:" && card && num

method mGetFieldByID card, id
put "mGetFieldByID:" && card && id

method mSetFieldByName card, name, value
put "mSetFieldByName:" && card && name && value

method mSetFieldByNum card, num, value
put "mSetFieldByNum:" && card && num && value

method mSetFieldByID card, id, value
 put "mSetFieldByID:" && card && id && value

method mUnknown which
put me(mGet, value(which)) into callBackName
put "mUnknown:" && which && "(" & ¬
callbackName & ")"

You do not need to specify every callback handled in this factory. You are required to
define methods only for the callbacks that are indicated in error dialogs generated by the
XCMD. For example, the mEvalExpr callback may be the only callback you need to
account for.

As indicated in this example, the put statements in each method are optional. They are
there to let you know what the XCMD or XFCN is attempting to tell HyperCard. You can
use this information in any way you want. Sometimes, a callback requires a value
(message) to be sent back to HyperCard. If you know what that value should be, use
return at the end of the specific callback method's script. For example, if a callback
required HyperCard to return TRUE or FALSE you could use a method similar to the
following:

method callBackMethod
if test then return TRUE else return FALSE

end callBackMethod
Some XCMDs use a large amount of processor time. In this situation, using a put
statement in your script slows down whatever the XCMD does, because the put
statement has to be evaluated and written into the message window. You can optimize
the callback factory in this case by removing the put statements.

When a callback error occurs, the XCMD usually stops running after you click OK in the
error dialog box. However, because of the design of certain XCMDs, the XCMD sometimes
continues to execute. You still need to create a callback handler for these XCMDs.
Otherwise, unexpected results could occur.

Creating the callback object

After you have defined a callback factory, you can create a factory object using the
following statement:

put callbackFactory(mNew) into callbackObject

Specifying the callback handler
Finally, you specify the callback handler with the following statement:

setCallBack XCMD/XFCNname, callbackObject
The setCallBack command is part of the XCMDGlue XObject.

The XCMD or XFCN should now function properly. If you later use other elements of the
XCMD's syntax, you might still need to deal with other callbacks. You can accomplish this
easily by adding the appropriate method to your callback factory.

XCMD and XFCN callback requests
The following are HyperCard's callback requests. The symbol in the rightmost column
identifies which level of support is provided for each callback.

Number HyperCard callback Type*

1 SendCardMessage -
2 EvalExpr -
3 StringLength 4
4 StringMatch 4
5 SendHCMessage -
6 ZeroBytes 4
7 PasToZero 4
8 ZeroToPas 4
9 StrToLong 4
10 StrToNum 4
11 StrToBool 4
12 StrToExt 4
13 LongToStr 4
14 NumToStr 4
15 NumToHex 4
16 BoolToStr 4
17 ExtToStr 4
18 GetGlobal 4
19 SetGlobal 4
20 GetFieldByName -
21 GetFieldByNum -
22 GetFieldByID -
23 SetFieldByName -
24 SetFieldByNum -
25 SetFieldByID -
26 StringEqual 4
27 ReturnToPas 4
28 ScanToReturn 4
31 FormatScript -
32 ZeroTermHandle -
33 PrintTEHandle -
34 SendHCEvent -
35 HCWordBreakProc -
36 BeginXSound -
37 EndXSound -
38 RunHandler -
39 ScanToZero 4
40 GetXResInfo -
41 GetFilePath -
42 FrontDocWindow -
43 PointToStr -
44 RectToStr -
45 StrToPoint -
46 StrToRect -
47 GetFieldTE -
48 SetFieldTE -
49 GetObjectName -

50 GetObjectScript -
51 SetObjectScript -
52 StackNameToNum -
53 Notify -
54 ShowHCAlert -
100 NewXWindow/GetNewXWindow -
101 CloseXWindow -
102 SetXWIdleTime -
103 XWHasInterruptCode -
104 RegisterXWMenu -
105 BeginXWEdit/EndXWEdit -
106 SaveXWScript -
107 GetCheckPoints -
108 SetCheckPoints -
109 XWAllowReEntrancy -
110 SendWindowMessage -
111 HideHCPalettes -
112 ShowHCPalettes -
113 XWAlwaysMoveHigh -
200 GoScript -
201 StepScript -
202 AbortScript -
203 CountHandlers -
204 GetHandlerInfo -
205 GetVarInfo -
206 SetVarValue -
207 GetStackCrawl -
208 TraceScript -

* 4: Automatically supported by Lingo

-: Requires a callback handler. Some messages and expressions (such as EvalExpr) may
be evaluated by XCMDGlue in a manner compatible with HyperTalk. Other messages
and expressions (such as GetFieldByName) always assume HyperCard entities for
which there are no counterpart in Director.

Click a category to see a list of frequently asked questions:

Technical support

Multiple platforms

General

Macintosh

Microsoft Windows

Digital video

Lingo

Made with Macromedia

Click a category to see a list of frequently asked questions:

Technical support

Multiple platforms

General

Macintosh

Microsoft Windows

Digital video

Lingo

Made with Macromedia

FAQs -- multiple platforms

How do I take Director 5 movies from the Macintosh to Windows? Do I need to buy
Director 5 for Windows?

What about Director and Windows 95? Netscape? OS/2? Blackbird?

FAQs -- general

My projector does not center on the stage, even though I have told it to do so in
Movie Info. Why?

When I import graphics into Director and apply Background Transparent ink effect to
them, the edges are not clean.

Why are my buttons being ignored when I have a Wait for Digital Video Movie to
Finish in Channel or other wait settings in the tempo channel?

How can I expand Director's printing capabilities?

Why do I get an out of memory error when importing a FLC or FLI on Windows, or a
PICS file on Macintosh?

How does Director work with a database?

How can I play a Director movie on a hard disk and keep its content on a CD-ROM?

FAQs -- Macintosh

I have Director for Macintosh, and it is quitting with a Type 1 Error.

I am using Director for Macintosh, and all I want to do is make the area behind the
stage black.

FAQs -- Microsoft Windows

When I use Director for Windows, I get a General Protection Fault.

Why do my 24-bit images look great in the cast window but look dithered when I put
them on the stage? I am using Director for Windows.

How do I play MPEG movies in Director for Windows?

How can I send MCI commands from Lingo? Where is a list of MCI commands?

When I run my Director for Windows projector, I get an error message that says
"Lingo.ini not found."

When I run my Director for Windows projector, it says "Handler not Defined: #FileIO."

In Director for Windows, when I play a QuickTime movie or an AVI file with sound, I
cannot play another sound file simultaneously. Why?

Is there a way to embed a custom icon for a Director for Windows projector?

Which installer do you recommend for Director for Windows projectors? Do you
recommend a compiler for DLLs?

How do I find the letter of a CD drive in Director for Windows?

FAQs -- digital video

Where have the transitions and sounds gone when I export my Director movie to
digital video?

In Director for Windows, why does the controller of my QuickTime for Windows movie
stay on the stage when I jump to a new frame? Or, on the Macintosh, why does the
last frame of the digital video file stay on the screen when I jump to a new frame?

How can I make digital video files play as well as they do outside of Director?

FAQs -- Lingo

How do I find the movie script?

How do I use a custom cursor in Director?

What is a mask cast member, and how do I make one?

I have a rollOver test in a frame that works properly, but when I jump to a new
frame, that rollOver area is still being evaluated even though the sprite is no longer
there. This also happens with the cursor of sprite property.

Where is a list of keyCodes?

FAQs -- Made with Macromedia

Basic information regarding distribution of "Made with Macromedia" titles.

Who needs to comply with the Made with Macromedia logo requirements?

What if the Macromedia runtime is an insubstantial part of a commercially distributed
software product that was not Made with Macromedia?

 I am using Shockwave™ to add multimedia to my web site. Am I required to use the
Made with Macromedia logo on my "Shocked" Web Site?

 I qualify for either full or partial marking of the Made with Macromedia logo. What
are the steps I need to take to comply with this agreement?

Technical support
If you think you need technical support, either online, by fax, or by phone:
1. Please read everything relevant to the problem in the manuals and the online help.
2. Check the index for more references to the topic. More information on a procedure or

feature may be found in a separate section.
3. If something used to work, think about what may have changed. Perhaps you

installed new software or changed some settings.
4. Try creating a new file and reproducing the problem there. If the problem goes away

in the new file, compare the new file with your old file to find and eliminate the
differences.

Note: Most of the problems you encounter can be solved by following the five steps
listed above.

If you still need help:

If you still need help at this point, a little advance preparation can save you time and
money, and allow the support representative to help you faster. Consult the following
checklist before contacting technical support:

 Please try to define the problem so that you can repeat the steps that led to the
problem and specifically identify when and how the problem occurred. The support
representative will need to know exactly what the problem is in order to provide help.

 Be able to provide the following information:
- Product name, version number, and product registration number
- Type of computer, such as 386, 486 or Pentium, local-bus or non-local bus,

Quadra or PowerMac
- Amount of memory installed
- Amount of free hard disk space
- Screen resolution (screen size in pixels, for example, 1024 by 768)
- Screen color depth (number of colors or bits, for example, 256 colors or 8-bit

color)
- Graphics card manufacturer, model name, and driver version number.
- Sound card manufacturer and model name
- DOS and Windows or Macintosh System version numbers
- A list of external devices connected to the computer
- Brief description of the problem or error, and the specific text of any error

messages

These steps will help us pinpoint and solve your problem more quickly.

Technical support:
Inside the U.S. and Canada
Outside the U.S. and Canada

Contacting Macromedia

Contacting Macromedia
Technical Support

Sales: Call 800-288-4797

Source & Center
Call 800-396-0129 or 415-252-7999.
Contact Source & Center for training, consulting services, purchasing Priority Access
technical support, referrals for multimedia development, referrals to Macromedia
Authorized Graphics/Imaging Centers (MAGIC) and to user groups, and authorization
programs for trainers, developers and service bureaus.

Macromedia International User Conference
Call 415-252-7999

Success Stories
pr@macromedia.com
fax 415-626-1502

Product Suggestions and Feedback
director@macromedia.com
fax 415-626-0554.
Contact the Director Product Team with product suggestions and feedback about
Director.

World Wide Web
http://www.macromedia.com/

Made with Macromedia program
Call 415-252-2000.
Macromedia offers Director 5 developers the ability to distribute applications created
in Director without paying royalties. Our new Macromedia licensing policy allows you
to distribute your Director projects royalty-free, provided you include the Made with
Macromedia logo as described in our guidelines.

Technical support inside the United States and Canada

Debugging, designing, creating

Please note that technical support can answer installation, configuration, and general
usage questions about the product. For help in debugging, designing, or creating your
application, contact Macromedia Professional Consulting Services at 415-252-2245.

Online services

Information about Director is available in Macromedia's forums on CompuServe, America
Online, Microsoft Network, and also at various sites on the Internet. For an up-to-date list
of all of the resources available online, call MacroFacts, Macromedia's 24-hour fax
information line and request document 3503. In the United States and Canada, call 800-
449-3329. From elsewhere, call 415-863-4409.

CompuServe: To reach the Macromedia forum on CompuServe, use the command
Go Macromedia. On CompuServe, we provide message areas for discussion of multimedia
development and support of our products, as well as libraries that contain useful utilities and
examples--including drivers, models, DLLs, and XCMDs.

America Online: In the United States, to reach the Macromedia forum on America
Online, use the keyword Macromedia. On America Online, we provide message areas for
discussion of multimedia development and support of our products, as well as libraries that
contain useful utilities and examples--including drivers, models, DLLs, and XCMDs.

Microsoft Network: To reach the Macromedia forum on Microsoft Network, use the
command Goto Macromedia. On Microsoft Network, we provide message areas for discussion
of multimedia development and support of our products, as well as libraries that contain
useful utilities and examples--including drivers, models, DLLs, and XCMDs.

MacroFacts

Macromedia's 24-hour fax information line, providing instant access to Macromedia's
products and services. In the United States and Canada, call 800-449-3329. From
elsewhere, call 415-863-4409.

Contacting Technical Support

Technical Support fax: 415-703-0924

Technical Support phone: 415-252-9080

Macromedia, Inc.
600 Townsend Street
San Francisco, CA    94103

Technical support outside the United States and Canada
Online services

Information about Director is available in Macromedia's forums on CompuServe,
Microsoft Network, and also at various sites on the Internet. For an up-to-date list of all of
the resources available online, call MacroFacts, Macromedia's 24-hour fax information
line and request document 3503. You can reach MacroFacts by calling 415-863-4409.

CompuServe: To reach the Macromedia forum on CompuServe, use the command
Go Macromedia. On CompuServe, we provide message areas for discussion of multimedia
development and support of our products, as well as libraries that contain useful utilities and
examples--including drivers, models, DLLs, and XCMDs.

Microsoft Network: To reach the Macromedia forum on Microsoft Network, use the
command Goto Macromedia. On Microsoft Network, we provide message areas for discussion
of multimedia development and support of our products, as well as libraries that contain
useful utilities and examples--including drivers, models, DLLs, and XCMDs.

MacroFacts

Macromedia's 24-hour fax information line, providing instant access to Macromedia's
products and services. You can reach MacroFacts by calling 415-863-4409.

If you're looking for assistance by fax or phone internationally, please contact the vendor
or the distributor from which you acquired Director.

For additional help, contact the Macromedia office in your area:

Macromedia Europe (including Europe, the Middle East, and Africa)
4 Wellington Business Park
Dukes Ride, Crowthorne Berkshire
England
United Kingdom RG45 6LS

44.1344.76.1111
44.1344.76.1149 (fax)
44.1344.750.517 (fax)

Macromedia Japan
Serom Building 3F
Shinsen-Cho 11-7
Shibuya-Ku
Tokyo
Japan 150

81.3.3462.5790
81.3.3462.5794 (fax)

Macromedia Asia Pacific
9 Minto St
East Kew, Victoria
Australia 3102

61 3 9859 8325
61 3 9859 4162 (fax)

For Pacific and Latin America
Macromedia
600 Townsend Street
San Francisco, CA 94103
U.S.A

415-252-2267
415-626-0554 (fax)

How do I take Director 5 movies from the Macintosh to Windows? Do I need to
purchase Director 5 for Windows?

Yes, you need to have Director for Windows to make an Director executable (projector)
for the Windows platform. Director movies play on both platforms, but the projectors
themselves are platform-specific.

In general, you do not need to duplicate your work. Most of what you do in Director will
be exactly the same on both platforms. You can open the same movie on the Macintosh
and Windows machine. Even the Lingo is the same. Most of the other issues you will deal
with will include your content: making sure that your cast members work on both
platforms as well.

Our best advice would be to work with both platforms from the beginning of your project.
You should be successful if you test early, test often, and test on all target machines.

What about Director and Windows 95? Netscape? OS/2? Blackbird?

Director for Windows 5 runs on Windows 95, Windows NT, and Windows 3.1.

There have been announcements made of the development of Director playback
technologies for Netscape, OS/2 Warp, Blackbird, and others.

The best resource on the latest information of Director and Macromedia developments is
the press release area of our CompuServe and America Online forums, and our web
page: http://www.macromedia.com.

My projector will not center on the stage, even though I have told it to do so in
the Movie Info dialog box. Why?

If you would like to avoid all of this, you can also use a Lingo command in your on
startMovie handler to: "set the centerStage to TRUE".

When I bring my graphics into Director and apply Background Transparent ink
effect to them, the edges are not clean.

Imported images may have very light shades around the edges that look white to the
eye, but are slightly darker than true white. Background Transparent ink effect subtracts
one color only. The default for this background color is white, the first indexed position of
a palette. You can change the background color of a sprite by selecting the sprite on the
stage and selecting a different color in background chip of the Tools window.

Some techniques used to work with these light colors are:
1. Use the eyedropper tool in the paint window to determine the position in the palette

the light color. Select the image in the paint window with the selection rectangle tool
in Shrink or No Shrink modes. Select the paintbrush and the switch ink effect to
change that color to a true white.

2. Often images that are anti-aliased against a white background get a halo around
them because the image has feathered edges with intermediate colors between the
object color and the white background. One good solution is to recreate the image
without anti-aliasing, or edit the edges by hand.

Why are my buttons being ignored when I have a Wait for Digital Video Movie to
Finish in Channel X, or other wait settings in the tempo channel?

The tempo channel is intended for use in straightforward, linear presentations. It is quick
and easy, and perfect for slide shows. If you begin to use Lingo to add interactive control
of you movie, it is good practice to use Lingo alone.

Say, for example, you have written a sprite script for a button to "go to the frame +
1". If you also have a Wait for Digital Video Movie to Finish in Channel: X set in the tempo
channel, Director will not know which message to execute. The tempo channel and Lingo
compete for control of score navigation.

The good news is you can script everything in the tempo channel with Lingo and
maintain interactivity at the same time.

How can I expand Director's printing capabilities?

From within the Director application, you can print for authoring purposes of previewing
the stage, your scripts, cast members and more. For many reasons, one being to keep
the size of the projector small, Director projectors have simple printing engines.

You can use the Lingo printFrom command to print the stage in a projector at 25, 50 or
100%. It is also possible to use third-party solutions to enhance the printing capabilities
of a projector. Please take a look on our CompuServe and America Online forums or our
web page for information and demonstration copies of those available. One of these
most commonly used at this time is the PrintOMatic Xtra.

Why do I get an out of memory error when importing a FLC or FLI on Windows, or
a PICS file on Macintosh?

When you import a FLC/FLI or PICS file into Director, a 27-frame file for example, it is
similar to bringing in 27 full screen graphics at one time. If you have been working for a
while, you could run out of memory if you try to import all of these graphics at once. This
is a very common error when importing large 3D files.

What you will need to do is this:
1. Import one small section of the PICS (Mac) or FLC/FLI (Windows) file at a time.
2. Save the file by choosing Save and Compact (this will re-write the file and your

changes).
3. Go into About Director, and choose to purge the memory.
4. Repeat this sequence again, or a few more times, depending on the size of the file.

Once the entire animation is in Director, you can put it back together on the stage with
"Cast To Time." You may want to make sure in the paint window that the registration
points of all of the images are the same. Double-click the registration tool to make sure it
is in the center of each image.

To find more 3D animation discussions and techniques, take a look at the technical
support KnowledgeBase file, available on our CompuServe and America Online forums,
and web page.

How does Director work with a database?

You have a couple of options when working with databases and Director. You can either
create your own database structure by using Lingo's lists. This is an easy and fast, cross-
platform solution.

If you would like to communicate with an external database, you can use one of many
Xtras available from third parties to do so. Some issues you may need to consider if
using this approach include: cross-platform compatibility issues for the database, how to
distribute the database, and the overhead of running multiple applications on the target
machine. Information on these third party utilities can be found on our CompuServe and
America Online forums and web page: http://www.macromedia.com.

I have Director for Macintosh, and it is quitting with a Type 1 Error.

Type 1 Error is a bus error, one of the most common errors on the Macintosh. It could
mean a number of things, in order of severity. If you receive a Type 1 Error while running
Director, you should run through this list of steps:

1. Allocate more memory to Director:
- Quit Director.
- Select the Director application icon in the Director folder (do not launch it).
- Select Get Info from the File Menu.
- Allocate more memory to the Preferred size for Director.
- Try the task you were doing before.

2. If that does not work, disable all of your extensions:
- Restart your computer and hold down the Shift key.
- Keep the Shift key down until a message comes up saying "Extensions Disabled."
If the error goes away, you should work through your extensions to see which one(s)
might be conflicting. We do not keep a list of extensions known to be incompatible
chiefly because of the difficulty in creating such a list. It would be more descriptive to
make a list of extensions that, under some circumstances, can lead to problems in
Director. Sometimes two extensions that cause no problems by themselves will cause
Macintosh applications to go haywire if they are both active at the same time.
Similarly, extension conflicts can be the result of load order.
Director does not require any extensions, except QuickTime if you are using
QuickTime movies. If you find that there is an extension conflict on your machine, you
can use an Extension Manager (one ships with System 7.5) to disable all of your
extensions except QuickTime while working in Director.

3. If that does not work, reinstall Director.
4. If that does not work, reinstall the System Software.

A full list of all the Macintosh System errors is available from Apple.

I am using Director for Macintosh, and all I want to do is make the area behind the
stage black.

To do this in a projector, simply choose Full Screen in the Projector Options dialog box.

When I use Director for Windows, I get a General Protection Fault.

If you get a General Protection Fault when starting up Director in module DIR5WIN.DLL,
then you might have the HP Deskjet printer driver set up as default in the Printers control
panel. Selecting a different printer driver or making "none" the default should fix the
problem.
   
If the General Protection Fault occurs in this module at another time during development,
or in a different module, it is most likely a display driver issue. Switching to the Microsoft
"VGA" display drivers will test if this is the problem.

Why do my 24-bit images look great in the cast window but look dithered when I
put them on the stage? I am using Director for Windows 3.1.

Director for Windows 3.1 displays bitmap sprites on stage in 8-bit color depth (256
colors) or less. We do so to abide by a Microsoft standard set in Windows 3.1 to ensure
the highest level of compatibility with a broader range of video display drivers. Director 5
run on Windows 95 and NT supports 24-bit color.

This limitation does not apply to digital video, like QuickTime for Windows and Video for
Windows. Digital video goes through a different display buffer than the other sprites on
the Director stage. One option you have is to convert your bitmaps to one-frame digital
video files, as they are optimized to color depths greater than 8-bit. Because they play
directly to the screen buffer, however, you will not be able to overlay sprites on top of
them during playback.

The best technique, however, to maintain the score's 48 channel layering effects, would
be dither your graphics to a custom 8-bit palette.

How do I play MPEG movies in Director for Windows?

Director uses the Lingo MCI command to pass strings to an MPEG playback controller
such as the ReelMagic card. Initially, when Director for Windows shipped, you could only
play the MPEG file and not control it. You can now get the "handle" to the MPEG window
by using DLLGLue XObject, available on our CompuServe and America Online forums,
and web page. Sample scripts come with the DLL Glue XObject, and a help file on MCI,
called "MCISTRWH.HLP," is available in our CompuServe and America Online forums, and
web page.

How can I send MCI commands from Lingo? Where is a list of MCI commands?

Director can send MCI commands from Lingo with the mci "string" command. The
command you insert in the "string" area is documented with the device you are trying
to control. See the mci help topic for information on using the Lingo mci command.
Microsoft has a series of help files and technical documents on CompuServe and in their
multimedia developer's kit. An MCI help file, called MCISTRWH.HLP, is located in our
libraries on our CompuServe and America Online forums, as well as our web page:
http:///www.macromedia.com.

When I run my Director for Windows projector, I get an error message that says
"Lingo.ini not found."

The two most frequent causes of this problem include:
1. A particular Cirrus Logic video driver that overwrites other areas of memory. Solution:

Get newer Cirrus Logic video drivers from Cirrus Logic or use the generic Microsoft
SVGA (640x480x256) driver.

2 A multimedia shell is in use on a low-end machine, thus, reducing system resources
and available RAM below a workable level. The solution is to run straight Program
Manager instead.

When I run my Director for Windows projector, it says "Handler not Defined:
#FileIO."

Upon launching, the Director for Windows projector looks for a text file called "LINGO.INI".
This file can be useful for last minute instructions for your completed Director project.

The projector looks for it in its own directory and then scans the DOS path, and when it
finds a LINGO.INI file, it follows its instructions. The default LINGO.INI (in the Director
application directory) has many comments and one solitary command: "openXlib
'fileio'." Comment this out and put a copy of the file in the same directory as your
projector, and it will never ask for FILEIO.DLL again.

If by chance a LINGO.INI file from a different application created with Director remains on
that machine, the projector will follow the instructions it finds first. (There was a
LINGO.INI file associated with the Director Player for Windows projector as well.) You
might get other errors at that time. Your safest bet is to supply a text file in the same
directory as your projector, and call it "LINGO.INI." Even if it is blank, the projector will
read it first and continue without any errors.

If you are using the FileIO XObject with Director for Windows, you will need to supply the
FILEIO.DLL in the same directory as your projector. FileIO is not embedded into the
Director Windows application as it is on the Macintosh. For more information on what to
distribute with your Director for Windows projector, please refer to the "PROJECT.WRI" file
in the Director for Windows application directory.

In Director for Windows, when I play a QuickTime movie or an AVI file with sound,
I cannot play another sound file simultaneously. Why?

The fact is that Windows supports only one sound channel. Director for Windows can play
more than one sound at a time (.WAV or .AIF) because it mixes them together.
Macromedia created a technology called MACROMIX.DLL that allows Director to do this.
In Director for Windows 4.0, it was necessary that the sounds needed to be of the same
sampling rate (11.025, 22.05, 44.1 kHz) and sample sizes (8-bit and 16-bit) in order to
mix them together. This is no longer true in Director for Windows 5.

What Director cannot do is mix sounds for QuickTime for Windows or AVI movies with
audio files. Whichever sound gets to the sound port first, wins. The second sound will not
be able to start playing until the first sound is completely finished with the sound
channel.

The Director for Windows "README.WRI" file recommends to keep at least one frame
between video and audio sources. Other techniques used to make sure the first sound is
completely finished include:

for a puppetSound: puppetSound 0
for a digital video: set the movieRate of sprite X to 0

Is there a way to embed a custom icon for a Director for Windows projector?

The best (least risky) way to do this in Windows is to change the icon inside the
PROJECTR.SKL file. It should be installed into the same directory as DIRECTOR.EXE.
1. Make a backup copy of PROJECTOR.SKL.
2. Open PROJECTOR.SKL as an .EXE in your favorite resource editor (One recommended

is AppStudio).
3. Edit the icon. It's in the icon resource called APPICON.
4. Save the file. Make sure it is still called PROJECTOR.SKL and is in the same directory.
5. Create a projector with your own icon.
6. Optional: restore the original version of PROJECTOR.SKL.

AppStudio comes with Microsoft's Visual C++.

Note: Borland Resource Workshop versions 4.0 and 4.0.2 will NOT work for this
procedure. (It comes with Borland C++.) The Director projector skeleton includes half a
megabyte of code, but BRW will not recognize those code elements -- it only understands
resources. Thus, you will run into "unexpected file format" errors trying to save your
updated PROJECTR.SKL file as an EXE.

Which installer do you recommend for Director for Windows projectors? Do you
recommend a compiler for DLLs?

There are many installer and compiler products on the market. We cannot, as a policy,
officially recommend third-party software or hardware. It seems, from the feedback of
many developers, that this decision is based on personal preference. Your best bet would
be to ask the developers themselves on our on-line services, or contact a software
reseller for this information.

Where have the transitions and sounds gone when I export my Director movie to
digital video?

Many of the score-based transitions of Director will not export to QuickTime on the
Macintosh, or AVI on Windows. You can experiment with increasing the chunk size and
duration of some of them, but many will not convert with the file. When a frame-based
Director animation is converted to a time-based QuickTime of AVI file, many of these
transitions are lost along the way.

As for sounds, the export to AVI from Director for Windows does not support sound.
Exporting sound with the Director animation to QuickTime on the Macintosh can vary in
reliability. Success in doing this is affected by the sound format, available resources on
the machine, where the sound is placed in the score and many other factors, none of
which are constant.

The best technique is to export only the animations from Director. You should add the
transitions, and sounds if you would like, in your favorite digital video editing tool.
SoundEdit 16 is a nice complement when editing the sound of a QuickTime movie on a
Macintosh. You can choose keyframes in the QuickTime movie, synchronize parts of the
wave form to those frames, and save the QuickTime movie once again.

In Director for Windows, why does the controller of my QuickTime for Windows file
stay on the stage when I jump to a new frame? Or, on the Macintosh, why does
the last frame of the digital video file stay on the screen when I jump to a new
frame?

In Windows, digital video plays directly to the screen buffer, on top of Director's
compositing engine. You can turn this property off on the Macintosh, but not in Windows.
It is a good technique on the Macintosh, however, to select Direct to Stage in the Cast
Member Properties dialog box for the QuickTime movie. This way, the video can play on
the top layer, above the other sprites.

When the video plays direct to stage, Director does not know that the movie is there, and
therefore does not redraw the stage when jumping to a new frame. You will see an
artifact of the video when you jump to a new frame if you do not remove it yourself.

There are many techniques you can use to redraw the stage yourself. Here is one
example:

 on exitFrame
 set the visible of sprite X to FALSE
 --X is the channel where the video is placed
 updatestage
 end

How can I make digital video files play as well as they do outside of Director?

If you are having trouble with the performance of a digital video file in Director, you
should:
1. Play the digital video file in Apple's MoviePlayer or the Windows Media Player. Make

sure it runs to your satisfaction outside of Director.
2. After importing the file into Director, play it in the video window. You can access this

window by double-clicking on the digital video file in the Cast window. If the file plays
poorly from there, it will not play well in the score. If you are having troubles with the
file, you should return to the MoviePlayer or Media Player to see if the file is intact.

3. If you are on the Macintosh, select Direct to Stage in the Digital Video Cast Member
Info dialog box for the QuickTime movie. (Digital video is always Direct to Stage on
Windows.)

4. Place the video in the score. In the script channel for that frame, type:

on exitFrame
 go to the frame
end

It is important to use this "go to the frame" loop to keep Director's playback head
moving in that frame.
If you would like to loop in that frame until the digital video is done playing, you can
use this script:

on exitFrame
 if the movieRate of sprite channelNumber
 then go to the frame

end

For a list of all of the digital video Lingo terms, see the Lingo digital video topic.

How do I find the movie script?

With the functionality of Director 5 to support more than one movie script, there is no
one way to find "it," since there can be more than one of them. Once you create a movie
script, you will find it in the cast window, but some ways to find it initially include:

Press Ctrl-Shift-U.
In the Window menu, select the script window.
If you're in a score script, click the Add (+) button.

How do I use a custom cursor in Director?

In order to use a custom cursor in Director, there are only a few steps to follow. The
Director Learning Lingo book covers this issue. For some reason, thought, it still stumps
many people, so here is a list of the rules to follow:

1. The cast member you use for your custom cursor must be 1-bit (black and white.
You can verify this in the bottom left hand corner of the paint window.

2. Your Lingo syntax needs to be correct. You have two options of how to do this. Here
are some sample scripts to illustrate this:
You can use the "cursor" command:

on startMovie
 cursor [5]
 --your cursor is in cast #5 and would be
 --active for the entire movie
end

You can use the "cursor of sprite" command:

on enterFrame
 if rollover (2) then
 --the sprite you rollover is in channel 2
 set the cursor of sprite 2 to [5]
 --your cursor is in cast #5
 end if
 --only when sprite 2 is rolled over
end

on exitFrame
 go to the frame
end

What is a mask cast member, and how do I make one?

When you use a custom cursor, the areas that are white in the black & white area will be
transparent when rolling over other sprites. In order to make the white areas opaque,
you will need to make a mask cast member. The Macintosh system watch cursor is a
good example of this.

Here is one technique to do so:
1. Duplicate your custom cursor cast member in the cast window.
2. Double-click that cast member and bring it up in the paint window.
3. Select the pencil tool (after zooming in) and draw a one-pixel circumference around

the bitmap, making it one pixel thicker than the other bitmap.
4. Take the paint bucket tool and fill the white areas with black.

The paint bucket tool may do the trick. In order to have the white area be opaque
over other sprites, there needs to be opposition of black and white pixel when the
two cursors are used together.

5. Again, make sure this cursor is set to 1-bit after editing.
6. Make sure this cast member is in the cast position following the custom cursor.
7. Add it to your syntax. For example:

set the cursor of sprite 2 to [5,6]
--where the cursor cast member is in cast #5
--and the mask cast member is in cast #6

I have a rollOver test in a frame that works properly, but when I jump to a new
frame, that rollOver area is still being evaluated even though the sprite is no
longer there. This also happens with the cursor of sprite property.

These tests for the mouse position, or "hot" areas, actually refer to sprite channel
characteristics, and not to individual sprites. If the channel used to hold the sprite being
rolled over alternates between empty and full, unexpected results may occur.

There are at least three ways of working with this:
1. One is to keep channels full in all frames. You can move all the frames next to one

another and delineate them with markers.
2. Another approach would be to create a one-bit "dot" cast member using the tools

window. (This would take up very little memory.) Put an instance of the "dot" in the
empty frames of the sprite channel being used to test for the rollOver.

3. You can also scoot the sprite off-stage, up above the menu bar, to give it an off-
screen position before removing it from the stage.

This issue is similar to setting the cursor of sprite, as mentioned in the Lingo
Dictionary. The cursor property will stay in effect until you turn it off by setting the cursor
to zero.

Where is a list of keyCodes?

The keyCode function returns the numerical code for the last key pressed. (This
keyboard code is the key's numerical value, not the ASCI value.)

There is not a list of keyCodes available in the Director documentation. It is easy to
generate a keyCode yourself, though, by creating a one-frame test movie with these
scripts:

In the movie script, type:

on startMovie
 set the keyDownScript to "put the keyCode"
end

In the frame script of frame 1, type:

on exitFrame
 go to the frame
end

When you play the movie, leave the message window open and the keyCode for any key
you type will appear in the message window. Make sure that the message window is not
the active window, or the keys you press will not be evaluated correctly.

To test for keys in the numeric keypad, you will need to test the keyCodes from a
projector and put the keyCode into a text field. It is necessary to test for certain
modifier keys specifically with Lingo (i.e. the controlDown, the shiftDown, etc.)

These keyCodes are standard on Macintosh keyboards, but might not be standard across
IBM-compatible keyboards. We have not, however, come across a nonstandard keyboard
here in technical support.

How do I find the letter of a CD drive in Director for Windows?
Crossing drive volumes is more difficult in Windows than on the Mac. On the Mac, you
can just say:

play movie "MyCD:Data:MovieA"

Any mounted volume with that name and path will work automatically. On Windows,
though, the path may be "G:\MyCD\Data\MovieA" or "D:\MyCD\Data\MovieA" or
whatever. Each end user's machine could have the hard drive on a different drive letter.

The following handler will help in finding the actual drive letter for the CD drive. It
assumes that you have a uniquely named file that you pass to the handler (here called
"weirdfil.txt") at the root level of your CD drive. It will successively search for the file
by that name on the root of each drive letter (A to Z) in the alphabet, then return the
letter name of the CD volume it finds the file on.

The script would look like:

put CheckDrive("weirdfil.txt") into myCD

The return would be the drive letter followed by a colon. This handler begins looking at
drive C, since the chances of both A and B drive being floppy drives is very high.

on CheckDrive weirdfil
-- Note: use your actual filename instead of "weirdfil"
-- throughout this handler
 repeat with I = 66 to 90
 set drive = numToChar(I)
 set myThisPath = string(drive & ":\"& weirdfil)
 set myFile = fileIO(mNew, "read", myThisPath)
 if objectP(myFile) then
 myFile(mDispose)
 return drive&":"
 exit
 end if
 end repeat
 alert "Please check that"&"E&weirdfil"E&&¬
"is on your CD drive."
end

How can I play a Director movie on a hard disk and keep its content
on a CD-ROM?

Here are some tips on how to play your Director movie from a hard disk while keeping its
content on the CD-ROM:

1. Make sure linked cast members are all on one volume, and save the movie onto the
same volume. This allows a relative pathname to be constructed at playback.

2. In the movie script, determine the drive letter of the CD-ROM, probably using a
custom Xtra.

3. Construct a string starting with the drive letter of the CD-ROM, and the rest of the
path duplicating the directory hierarchy where the movie was saved. This allows the
relative paths constructed in the first step to remain usable.

4. setAt the searchPath, 1, <<the constructed string>>
    This tells Director to search for files on the CD-ROM, beginning at the named

directory.
If some of your content or subsidiary movies are on the hard disk, you will want to
search the hard disk first, before looking at the CD-ROM. Most likely, these searches
will be relative to the directory that the movie was launched from. This is how the
searching will work, as set up above.
If you know that all your content and subsidiary movies are on the CD-ROM, you can
dispense with searching the hard disk, saving at least one disk access:

5. set the searchCurrentFolder to FALSE
 This will bypass searches relative to the current directory before scanning through

the searchPath.

Basic information regarding distribution of "Made with Macromedia"
titles

Macromedia's royalty-free licensing policy means that you can distribute applications
created with Director or Authorware to millions of end-users on multiple platforms--free.
Simply include the Made with Macromedia logo on your product's packaging and credit
screen, complete the Run time distribution agreement, and register your product with
Macromedia to qualify.

This is meant to give a quick overview of the Made with Macromedia Run-time
distribution agreement and answer frequently asked questions. It is not, however, a
replacement for the actual agreement. Please refer to the Made with Macromedia (MwM)
folder on your product CD for the Run-Time distribution agreement, logos, and logo usage
guidelines.

Who needs to comply with the Made with Macromedia logo
requirements?

Any user of Authorware or Director who creates an End-user Product and distributes it
outside of his own organization or anyone who causes an End-user Product to be created
and distributed outside of his own organization. You must fill out Exhibit A of the Run
time distribution agreement and place the Made with Macromedia logo on the outer most
front, side, or back of the packaging and within the software on either a splash or credits
screen.

What if the Macromedia runtime is an insubstantial part of a
commercially distributed software product that was not Made with
Macromedia?

You do not need to place the Made with Macromedia logo on the outside of the
packaging, but you will need to put the logo onscreen within the software that makes use
of a Macromedia run-time.    You must sign and return the Run-time distribution
agreement, fill out Exhibit C, "Product Qualifying for Limited Markings," and place the
Made with Macromedia logo on the splash or credits screen only. (You do not have to
place it on the packaging.)

I am using Shockwave™ to add multimedia to my web site. Am I
required to use the Made with Macromedia logo on my "Shocked"
Web Site?

No. This is a benefit to help inform your viewers that your site contains cutting edge
multimedia content. Viewers will be directed to the Shockwave Plug-In so they can view
the Macromedia-created movies within your web site. Macromedia will publish a list of
shocked web sites on our web site, thus increasing the visibility of    your site.

I qualify for either full or partial marking of the Made with
Macromedia logo. What are the steps I need to take to comply with
this agreement?

1. Complete, sign, and return one copy of the Run-time Distribution Agreement and
either Exhibit A or C that are located in the Made with Macromedia folder of the
Director or Authorware product CD. Exhibit A is for products that qualify for full
marking and Exhibit C is for products that qualify for limited, software only, markings.
The agreement becomes effective upon receipt by Macromedia. For multiple products
or future products, you need only fill out and return an additional copy of Exhibit A or
C. Each additional copy of Exhibit A or C will become effective upon receipt by
Macromedia.   

2. If you qualify for full markings, you need to place the Made with Macromedia logo on
the outside of the packaging and on screen within the software. Logos are located in
the Made with Macromedia (MwM) folder of your Authorware or Director product CD.   
See Exhibit B of the Run Time Distribution Agreement for detailed size and location
guidelines. If you qualify for limited markings, you must place the Made with
Macromedia logo on screen only within the software guidelines outlined in Exhibit B.

3. Incorporate the following copyright statement into the copyright screen of the end-
user product.
- (If Authorware was used to create the Publisher Product)

AUTHORWARE ® COPYRIGHT © 1993 Macromedia, Inc.
- (If Director was used to create the Publisher Product)

DIRECTOR ® COPYRIGHT © 1994 Macromedia, Inc.
4. Send Macromedia two (2) copies of the final, packaged end-user software within 30

days of ship to:

Macromedia Developer Relations
600 Townsend Street
San Francisco, CA 94103

Click a letter (above) to view Lingo elements alphabetically.

Or select one of the categories below to see a list of relevant Lingo elements:

Cast members Movie control
Casts Movie in a window
Code structures & syntax Navigation
Computer & monitor New Lingo elements
Digital video Operators
External files Parent scripts
Fields Puppets
Frames Score generation
Interface elements Sprites
Lingo that has changed in 5.0 Sound
Lingo that is outdated Strings
Lists Time
Math & logical operators User interaction
Memory management Variables

For general information on using Lingo, see the Lingo basics topic.

Click a letter (above) to view Lingo elements alphabetically.

Or select one of the categories below to see a list of relevant Lingo elements:

Cast members Movie control
Casts Movie in a window
Code structures & syntax Navigation
Computer & monitor New Lingo elements
Digital video Operators
External files Parent scripts
Fields Puppets
Frames Score generation
Interface elements Sprites
Lingo that has changed in 5.0 Sound
Lingo that is outdated Strings
Lists Time
Math & logical operators User interaction
Memory management Variables

For general information on using Lingo, see the Lingo Basics topic.

The Lingo menu appears when you click and hold the Lingo button in the script window.
This menu displays the complete set of Lingo commands that you can use to create
scripts for your movie.

Choosing an element from the Lingo menu enters it into a script at the insertion point.
This saves you from typing the command and also eliminates typing.

Note: You can use the Copy command from the Windows Help Edit menu to copy Lingo
examples from the Help topics; then you can paste the example into the Director script
window and modify it for your use.

Lingo is Director's scripting language. Some of the advantages of using Lingo in a movie
include:

Providing navigation features that let users play and explore movies in the way they
prefer

Communication with users by receiving and sending information
Ability to play animation and sound in ways that the score alone can't
Control of fields, sound, and digital video
Creation of child objects
Automation of authoring by duplicating manual tasks done by using the interface.

New Lingo elements
The following elements are new in Director 5.0 or have had functionality added since
Director 4.0:

activeWindow name of CastLib
autoTab of member new
beginRecording number of CastLib
border of member number of castLibs
boxDropShadow number of members of castLib
boxType of member on activateWindow
buttonType on closeWindow
cancelIdleLoad on moveWindow
case
the castLibNum of sprite on resizeWindow
center of member on rightMouseDown
changeArea of member on rightMouseUp
channelCoun of member on zoomWindow
charPosToLoc openWindow
chunkSize of member otherwise
clearFrame pageHeight of member
crop of member paletteMapping
deleteFrame pattern
desktopRectList paletteRef
digitalVideoTimeScale the platform
digitalVideoType of member preLoadMode of CastLib
dropShadow of member preLoadMovie
duplicate(list)
duplicateFrame rect of member
duration of member rightMouseDown, the
editable of member rightMouseUp, the
emulateMultiButtonMouse sampleRate
end case sampleSize
endRecording save castLib
fileName of castLib score
filled of member scoreSelection
finishIdleLoad scriptsEnabled
frameLabel scriptType
framePalette scrollByLine
frameScript scrollByPage
frameSound1 scrollTop of member
frameSound2 selection of castLib
frameTempo setCallBack
frameTransition shapeType
frontWindow sound of member
height of member wordWrap of member
idleHandlerPeriod timeScale of member
idleLoadDone trackCount(member)
idleLoadMode trackCount(sprite)
idleLoadPeriod trackEnabled
idleLoadTag trackNextKeyTime

idleReadChunkSize trackNextSampleTime
insertFrame trackPreviousKeyTime
keyPressed trackPreviousSampleTime
lineCount of member trackStartTime(member)
linePosToLocV trackStartTime(sprite)
lineSize of member trackStopTime(member)
loc of sprite trackStopTime(sprite)
locToCharPos trackText
locVToLinePos trackType (member)
loop of member trackType (sprite)
margin of member transitionType of member
media of member type of member
member unloadMovie
memberNum of sprite updateFrame

updateLock
windowPresent

Lingo that is outdated in version 5.0
The following elements are obsolete and no longer supported:

birth
instance
factory
closeDA
openDA
when...then constructs

Lingo that has changed in version 5.0
The following terms have been revised to keep terminology clear now that Director has
multiple casts. The older terms are still supported, but they will become obsolete and
should be avoided:

Director 4.0 Term Director 5.0 Term
backColor of cast backColor of member
cast member
castmembers number of members
castNum of sprite memberNum of sprite
castType of cast type of member
center of cast center of member
controller of cast controller of member
crop of cast crop of member
depth of cast depth of member
duplicate cast duplicate member
duration of cast duration of member
erase cast erase member
fileName of cast fileName of member
foreColor of cast foreColor of member
frameRate of cast frameRate of member
height of cast height of member
hilite of cast hilite of member
loaded of cast loaded of member
loop of cast loop of member
modified of cast modified of member
move cast move member
name of cast name of member
number of cast number of member
number of castmembers number of members
palette of cast palette of member
picture of cast picture of member
preLoad of cast preLoad of member
preLoadCast preLoadMember
purgePriority of cast purgePriority of member
scriptText of cast scriptText of member
size of cast size of member
sound of cast sound of member
text of cast text of member
textAlign of field alignment of member
textFont of field font of member
textHeight of field lineHeight of member
textSize of field fontSize of member
textStyle of field fontStyle of member
video of cast video of member
width of cast width of member

Child-parent scripts
A child object is a self-contained, independent copy of the handlers and variables in a
parent script. Each group of child objects has its own behaviors and values for variables
and properties:

The handlers work the same as other handlers in Director.
The property settings and variables can be set and tested the same way as the Lingo

properties and variables you've already worked with.

A parent script contains three types of Lingo:
 An on new handler, which creates the new child object and sets its initial values

when the handler is called. (The term me serves as a local variable that contains the child
object itself and provides a placeholder for the child object in Lingo statements.)

 Optional additional handlers that control the child object's behavior and properties
after the child object is created.

 An optional statement that declares which variables are property variables--variables
for which each child object can maintain individual values regardless of the values for other
child objects.

The new function creates a new child object when it uses the name of a parent script, as
in the following syntax:

new(script "scriptName", argument1, argument2, argument3...)

The new function can be issued from anywhere in the movie. You can customize the child
object by changing the variable name and values of the arguments in the new statement.

An ancestor is an additional parent script whose handlers are available to a child object.
A parent script makes another parent script its ancestor by assigning the script's name to
the ancestor property. For example, the following statement makes the script Ancestor
Ball Script an ancestor:

set ancestor to new(script"Ancestor Ball Script", listPosition)

See "Parent and child scripts" in Learning Lingo    and the ancestor and parent scripts in
the movie MECH for more information about child objects.

actorList and ancestor properties; new function; me keyword

Event message hierarchy
Each message has a set series of scripts that it goes to after the message is sent.
Different messages are sent to different types of scripts. The following table lists the
order of objects that each type of message is sent to:

This message: Is sent to this series of scripts:
mouseDown, mouseUp Primary event handler, sprite, cast member, frame,

and then movie script
keyDown, keyUp Primary event handler, sprite, cast member, frame,

and then movie script
enterFrame, exitFrame Frame and then movie script
idle Primary event handler and then movie scripts
startMovie and
stopMovie handler Movie scripts
activateWindow, closeWindow,
openWindow, resizeWindow,
zoomWindow Movie scripts
Custom handler calling
statements Movie scripts

For more information about strategies for placing handlers, see Chapter 1, "Script
Basics," in Learning Lingo.

on activateWindow, on closeWindow, on enterFrame, on exitFrame, on idle,
on keyDown, on keyUp, on mouseDown, on mouseUp, on openWindow, on
resizeWindow, on startMovie, on stopMovie, on zoomWindow

Puppeting
By making a score channel a puppet, you can tell Director to ignore the score's settings
for that channel and control the channel directly from Lingo. In a sense, the channel is a
puppet and Lingo pulls the strings.

For sprites and sounds, the channel remains a puppet until you use a statement to
return control to the score. The statement you use depends on whether the channel is a
sprite channel or a sound channel.

For tempos and palettes, the puppet condition lasts until the playback head enters a
frame that has a new palette or tempo setting.

For transitions, the puppet condition applies only to the specific instance in which the
puppet transition is used.

For details about using one of these commands, see that command's entry in the online
help.

puppetPalette, puppetSound, puppetSprite, puppetTempo, and
puppetTransition commands

Handling text
Director has two types of cast members dedicated to text:

Text cast members can be edited and formatted in the text window but not on the
stage or from Lingo. This type of text is static after the movie is converted to a projector.
Although text cast members are useful for displaying text that has been previously
formatted as rich text, they can't receive user input or change formatting after the movie is
distributed.

Field cast members can be edited on the stage and from Lingo while the movie plays.
This lets you make movies in which the user can type characters and have Director manage
them. Strings in a field cast member can be revised as the movie plays, and Lingo can
format characters at any time.

A variety of field cast member properties determine the format of characters in the field
cast member. For a list of properties that you can set, choose Fields from the categorized
Lingo menu in the script window.

Lingo duplicates the ability to make a field editable by setting the editable of sprite
and the editable of member properties. To turn editable fields on or off independent of
the interface, set the sprite or field cast member property to either TRUE or FALSE.

For more information about handling text and fields, see Chapter 6, "Working with Text &
User Input," in Learning Lingo.

Controlling sound
Lingo can control many aspects of how sound plays in a movie. Using the puppetSound
command, you can override the score and play a sound cast member from Lingo.
However, Lingo can also control how sound plays. The following table lists additional
ways that Lingo can control sound and the elements that you use to achieve it. For
details about an element, see its entry in the online help:

To do this: Use these elements:
Play an external sound file sound playFile
Check whether a sound channel the soundBusy
is currently playing a sound
and make the movie respond
accordingly
Turn sound off the soundEnabled
Control sound volume from the soundLevel
the movie
Control how sound fades in sound fadeIn
and out and sound fadeOut

sound playFile, puppetSound, sound fadeIn, and sound fadeOut commands;
the soundBusy and soundEnabled properties

Using movie in a window
A movie in a window is a distinct Director movie that can be opened by the current
movie. Because it's a Director movie, the movie in a window can keep its Lingo in effect.

You create a window by specifying the screen rectangle for the window and then
specifying the movie assigned to the window. You can also make the window visible,
change its type, set its title, or set the window's size and location.

Besides specifying which movie plays in the window and when the window opens and
closes, you can control the behavior of the window itself and how movies in windows
interact with the movie on the stage.

The following lists the Lingo elements you use to achieve different tasks for playing a
movie in a window. For details about an element, see its entry in the online help:

To: Use:
Set up a rectangle for the movie set the rect of window "whichWindow" to

rect(coordinates)
Assign a movie to the window set the fileName of window "whichWindow"

to "fileName"
Specify whether the window
title is visible set the titleVisible of window

"whichWindow" to trueOrFalse
Open the window that contains
the movie open window "whichWindow"
Determine the window type set the windowType of window

"whichWindow"
Move the window to the front moveToFront window "whichWindow"
Move the window to the back moveToBack window "whichWindow"
Make the window visible set the visible of window "whichWindow"
Pass Lingo statements between
windows tell "instructions"
Close the window close window "whichWindow"

For an example of how these elements are used together to create a movie in a window,
see Chapter 9, "Movies in a window," in Learning Lingo.

open window, close window, moveToFront, and moveToBack commands; the
fileName of window, the titleVisible of window, the visible of window, and the
windowType of window properties

Using variables
Director remembers and updates values by using variables. As the name implies, a
variable contains a value that can be changed or updated as the movie plays. By
changing the value of a variable as the movie plays, you can do things such as store
information the user enters or record whether a specific event has happened.

The value assigned to the variable can be a whole number, a decimal number (such as
1.56), a character string (such as "xyz" or a person's name), or the result of a calculation.

Assigning values to variables

Assign a value--such as a number or a character string--to a variable with the set or the
put ... into command. For example, the statement

put "Mary" into theName

assigns the string "Mary" to the variable vName.

Some possible sources for values assigned to variables are strings that the user types,
the result of an arithmetic operation, and the result of clicking a particular sprite.

Creating variables

A variable is created the first time you assign a value to it, which is also called initializing
a variable. You can then use the variable in other expressions or change its value based
on whatever criteria you want. A variable can be a global variable or a local variable.

Global variables

Global variables can be shared among handlers and movies. The global variable exists
and retains its value for as long as Director is running or until you issue the clearGlobals
command.

You make a variable global by using the term global before the variable name in every
handler that uses the global variable.

Every handler that declares that a variable is global can use the variable's current value;
if the handler changes the variable's value, the new value is available throughout the
movie. Variables that you declare in the message window are automatically global.

For example, to use someone's name several times in a movie, you could establish a
global variable that contains a name entered by the user at the beginning of the movie.

The following statements makes theName a global variable and give it the value Mary:

global gName
put "Mary" into gName

Later in the movie, this handler could change the name assigned to this variable to
"John." The variable can be changed from two different handlers because each handler
treats the variable as global:

on nameChange

 global gName
 put "John" into gName
end

It is a good habit to start the names of all global variables with a small letter "g". This
helps identify which variables are global when you examine Lingo code.
To display all current global variables and their current values, use the showGlobals
command in the message window.

Local variables

A local variable exists only as long as the handler in which it is defined is running. You
can use a local variable in any handler, but it is available only while that handler is
running.

Unless the handler uses the term global to declare that a variable is global, the variable
is automatically a local variable.

You can display all current local variables in the handler by using the showLocals
command. This command can be used in the message window or in handlers to help with
debugging. The result appears in the message window.

Treating variables as local is a good idea when you only want to use the variable
temporarily in that one handler. This helps avoid unintentionally changing the value in
another handler that uses the same variable name.

global keyword, clearGlobals, showGlobals, put, and set commands

Types of scripts
A script's type is determined by where it is assigned in the movie. The type of script in
which you place Lingo can affect the script's behavior.

There are four types of scripts:

Score scripts are assigned to cells in the score. A score script assigned to a sprite is
called a sprite script. A score script assigned to a frame's script channel is called a frame
script.

Sprite scripts can respond to mouseDown and mouseUp events and to keyDown and
keyUp events if the sprite is a field.

Frame scripts can respond to mouseDown and mouseUp events, keyDown and keyUp
events (if the sprite is a field), and enterFrame and exitFrame events.

Director automatically assigns numbers to new score scripts. These numbers appear
in the Script pop-up menu and in the cells that the script is assigned to. When you revise a
score script, the changes show up everywhere the script is assigned in the score.

 Scripts of cast members are assigned directly to a cast member independent of the
score. Scripts assigned to cast members can respond to mouseDown and mouseUp events
and to keyDown and keyUp events if the cast member is a field.

 Movie scripts aren't assigned to a specific object but are available to the entire
movie. Scripts assigned to the movie can respond to mouseDown and mouseUp events,
keyDown and keyUp events (if the sprite is a field), enterFrame and exitFrame events,
startMovie and stopMovie events, and idle events.

Parent scripts are a special type of script that contains Lingo used to create child
objects. For information about parent scripts, see Child-parent scripts.

The title bar at the top of the script window tells the script's type.
Score, movie, and parent scripts exist as full-fledged cast members in the cast window.
You can change one of these script's type to one of the others by choosing from the Type
pop-up menu in the Script Cast Member Properties dialog box.

Event message hierarchy

Managing memory
Loading cast members that require a large amount of memory can cause undesired
pauses in a movie.

Lingo helps you minimize these pauses by controlling when specific cast members are
loaded, setting how many bytes Director attempts to load at one time, and prioritizing
when Director unloads them.

For more information, see the entry for individual Lingo elements that can manage
memory. For a list of elements related to memory management, choose Memory
Management from the features menu in the script window.

preLoad, preLoadMember commands; purgePriority of member property

Working with casts
Lingo uses the castLib keyword, followed by a cast's name, to identify a cast. For
example, in the statement set the text of member "Title" of castLib "News" to
"Calendar" it uses castLib to identify the cast News.

When you want to change a movie's content by switching casts, you can change the cast
assigned to a sprite by changing the sprite's castLibNum property. The sprite then uses
the cast member that has the same cast member number in the new cast.

When you want to replace a movie's content by replacing its casts, you can make the
casts external casts and overwrite the cast files with new cast files. Of course, each new
cast file must have the same name as the cast file it replaces.

The following Lingo elements are useful for obtaining information about casts:

castLib
fileName of castLib
findEmpty
name of castLib
number of castLib
number of castLibs
number of members of castLib
preLoadMode of castLib
save castLib

castLib keyword; purgePriority of member

Sprite properties
Using Lingo's sprite properties, you can check a sprite's current conditions and change many
of them. For a complete list of sprite properties, choose Sprites from the Lingo features
menu in the script window. For more information about a specific property, such as whether
it can be set from Lingo, see the property's entry in the online help.

The following properties can be set from Lingo provided that the sprite channel has been put
under Lingo's control by the puppetSprite command:

backColor memberNum
blend moveableSprite
castLibNum pattern
constraint scoreColor
cursor scriptNum
editable spriteBox
foreColor stretch
height trails
in top
lineSize visible
locH width
locV

the and sprite keywords; put, puppetSprite, and set commands

Generating score
Lingo duplicates manual tasks that you perform in the score--such as selecting frames,
specifying what's in each channel, and animating sprites over a series of frames--by
creating a new frame and then specifying each channel's content. It repeats this, frame
by frame, until the entire sequence of frames is set up.

You can add new frames, edit frames, or delete frames.

To start recording score, you must issue the beginRecording keyword. When you are
done recording score, you must issue the endRecording keyword.

Lingo can specify each channel's content during a score recording session. The following
lists what Lingo can set for each channel:

Channel Lingo that can set the channel's content

Label the frameLabel

Tempo the frameTempo

Palette the framePalette

Transition the frameTransition

Sound channel 1 the frameSound1

Sound channel 2 the frameSound2

Script the frameScript

Sprite channels Sprite properties such as memberNum of sprite, locH and
locV, and moveable of sprite. (Assign a sprite script by
setting the scriptNum of sprite.)

When the frame's content is complete, use the updateFrame command to enter the new
content. The updateFrame command makes a copy of the current frame, inserts it as the
next frame, and then advances to the new frame. After Director has entered the new
frame, you can specify that frame's content.

Several commands are available to add or delete frames. The following table lists these
commands and their result:

Command Result
clearFrame Deletes everything in the current frame, but remains in the

frame.
deleteFrame Deletes the current frame. The next frame then becomes the

current frame.
duplicateFrame Duplicates the current frame and its content. The duplicate

frame is inserted after the current frame and then becomes the
current frame.

insertFrame Inserts a copy of the current frame following the current frame.
The new frame then becomes the current frame.

updateFrame Enters the changes made to the current frame. The command
then makes a copy of the current frame, inserts it as the next
frame, and then advances to the new frame.

For more information about generating score from Lingo, see Chapter 11, "Creating
movies from Lingo," in Learning Lingo.

clearFrame, and deleteFrame, duplicateFrame, insertFrame, and
updateFrame commands; the updateLock movie property

Writing scripts
You write scripts in the script window. The following are common ways to perform basic
tasks for creating, assigning, and opening scripts:

To: Do this:

Open a new score script Choose New Script from the Script pop-up menu;
or select a score cell and then click the script
preview button. When you open a new score
script, the script receives the number of the first
available location in the cast window.

Open a new movie script Click the plus sign in the script window

Assign a score script to one Select the cells in the score and then choose
or more cells in the score the score script number from the Script pop-up

menu.

Enter and edit text Click in the script window and follow basic text
editing techniques to type, select, delete, and
copy text.

Remove a score script Select the cell and then choose Clear Script
from the cell from the Script pop-up menu.

Change a script window's type Open the script's Cast Member Properties and
then choose a type from the Type
pop-up menu.

Cycle through the scripts in Use the forward and reverse arrows at the
the script window top of the script window to advance or back up to

the script.

Open the script assigned Click Script in the Cast Member Properties
to a cast member dialog box; select the script in the cast window

and then click the script button at the top of the
cast window.

Open a score, movie, or Double-click the script in the cast window.
parent script

Open a score script from Select the cell and then click the script
the score preview button.

Open a score, movie, or Select the script and choose Duplicate from
parent script the Edit menu

Script window and Types of scripts

Using Xtras
Xtras are software modules that extend Director's functionality. An Xtra file can contain
one or more such modules. There are four types of Xtras:

Transition Xtra cast members, which supply transitions in addition to predefined
transitions available in the Frame Properties:Transition dialog box. After they are used in the
score's transition channel, they appear in the cast window the same as any cast member.

An Xtra transition cast member can have its own custom properties, properties dialog
box, animated thumbnail, cast window icon, and About box. Open the dialog box that sets
properties by opening the Frame Properties:Transition dialog box and then clicking Options.

Xtra cast members, which can be a wide range of objects such as databases, text
managers, or special graphics. They appear in the Insert menu after the Xtra is loaded. An
Xtra can create more than one menu item if it is designed to do so.

Add an Xtra cast member to a cast by choosing the Xtra from the Insert menu. Cast
member Xtras are sometimes called sprite Xtras because they can be assigned to the score
after they are in the cast window.

An Xtra cast member can have its own custom properties, properties dialog box,
media editor, animated thumbnail, cast window icon, and About box. Open the dialog
box that sets the Xtra's properties by opening the cast member's Properties dialog
box and then clicking Options. Open the Xtra's media editor by double-clicking the
cast member's thumbnail in the cast window.
Lingo Xtras, which add Lingo elements to Director's built-in Lingo.
Tool Xtras, which you can use during authoring. To open a tool Xtra, choose it from

the Xtras menu.

Providing Xtras

When Director launches, it automatically registers Xtras that are in either of two places:
The Xtras folder in the same folder that contains the Director application or projector
One of the following folders, depending on which platform Director is running on:
For Windows 95 and Windows NT, the Xtras folder in the Program Files\Common Files\

Macromedia\Xtras folder
For Windows 3.1, the Windows\Macromed\Xtras folder
For Macintosh and Power Macintosh, the System Folder:Macromedia:Xtras folder.

To make an Xtra available, place its file in one of these folders before you launch
Director. (The Xtra can be in a folder within the Xtras folder up to five layers deep.)
Director also automatically closes these Xtras when the application quits.

You can also open Lingo Xtras after Director is running by using the openXlib command.
The Lingo Xtra can be in any folder if you open it this way. However, you must use the
closeXlib command to close the Xtra after Director is finished with it.

Xtras aren't packaged in projectors. The Xtras must be in an Xtras folder in the same
folder as the projector or an Xtras folder that is valid for the current operating system.

If an Xtra that the movie uses is missing, an alert appears when the movie or external
cast file opens. For missing Xtra transition cast members, the movie performs a simple
cut transition instead. For other missing Xtra cast members, Director displays a red "X"
on the stage as a placeholder for the missing Xtra.

Copies of the same Xtra can have different filenames or have the same filename but
reside in different folders. If they are used in the same movie, Director detects that such
Xtras are duplicates and displays an alert. You can avoid this situation by just deleting

any duplicate Xtras if this occurs.

Creating Xtras by using the new function

You can create a new instance of an Xtra by using the new function. The specific way you
do this depends on the Xtra's type.

You can create new transition Xtras and cast member Xtras just as you can built-in cast
members. For transition cast members, use new and the symbol #transition. Other cast
member Xtras have their own symbols specified by the developer.

For example, a QuickDraw 3D cast member could be given the symbol #quickDraw3D. In
this case, to create a new cast member, you'd use the statement new(#quickDraw3D).

This statement creates a new instance of the Xtra cast member which has the symbol
#math:

new(#math)

After the cast member is created, you can assign it content the same way as you do for
other castmembers.

You create new instances of Lingo Xtras by using the new function and the term xtra as
the first parameter. For example, this statement creates a new instance of the Lingo Xtra
stringReader:

set string1 = new(xtra "stringReader")

For instances of Lingo Xtras created by using the new function, you must set the variable
that contains the Xtra to 0 before you use the closeXlib command to delete the Lingo
Xtra.

See Chapter 11, "Authoring from Lingo," for more information about creating cast
members from Lingo.

Checking which Xtras are available

Lingo can tell you how many Xtras are available, the name of each, and what each Xtra
contains.

The number of xtras property indicates how many Xtras are available in the current
movie.

The name of xtra property determines the name of a specific Xtra. The name of xtra
property can be tested and set.

For example, the following repeat loop displays the name of each Xtra in the message
window:

repeat with counter = 1 to (the number of xtras)
 put the name of xtra counter
end repeat

The showXLib command displays each Xtra file and its contents. For example, suppose
that a Lingo Xtra Friends is in the folder c:\Xtra Reserve. If the Xtra file Friends contains
the modules Fred and Joe, the showXlib command would give the following results:

c:\xtra reserve
 xtra Fred
 xtra Joe

Use mMessageList to display message with information about the Xtra. For example, the
statement put mMessageList(xtra "Fred") displays information about the Xtra Fred.

For more information on Xtras

For a listing of Xtras available for Director, see the Macromedia Web site at
http://www.macromedia.com. You will also find information on the Xtra Developer's Kit
(XDK).

Lingo elements--navigation

Click a Lingo element for more information:

continue
delay
go loop
go next
go previous
go
marker
pause
play
play done

Lingo elements--movie control
Click a Lingo element for more information:

movieName
on startMovie
on stopMovie
play
play done
saveMovie
score
stage
stageBottom
stageColor
stageLeft
stageRight
stageTop
switchColorDepth
updateMovieEnabled

Lingo elements--user interaction
Click a Lingo element for more information:

clickLoc mouseDownScript
clickOn mouseH
commandDown mouseUpScript
controlDown mouseV
cursor moveableSprite of sprite
cursor of sprite on keyDown
doubleClick on keyUp
key on mouseDown
keyCode on mouseUp
keyDownScript optionDown
keyUpScript rollOver
lastClick shiftDown
lastKey
lastRoll
loc of sprite

Lingo elements--computer & monitor
Click a Lingo element for more information:

beep
beepOn
colorDepth
desktopRectList
floatPrecision
machineType
mci
multiSound
quit
restart
romanLingo
version

Lingo elements--memory management
Click a Lingo element for more information:

cancelIdleLoad
finishIdleLoad
freeBlock
idleLoadDone
idleReadChunkSize
loaded of member
memorySize
movieFileFreeSize
movieFileSize
preLoad
preLoad of member
preLoadEventAbort
preLoadMember
preLoadMode of CastLib
preLoadRAM
purgePriority of member
ramNeeded

Lingo elements--casts
Click a Lingo element for more information:

castLib
fileName of castLib
findEmpty
name of CastLib
number of CastLib
number of castLibs
number of members of castLib
preLoadMode of CastLib
save castLib

Lingo elements--cast members
Click a Lingo element for more information:

center of member
crop
duplicate member
erase member
fileName of member
height of member
importFileInto
media of member
member
new
number of member
rect of member
type of member

Lingo elements--sprites
Click a Lingo element for more information:

backColor of sprite
constrainH
constraint of sprite
constrainV
cursor of sprite
foreColor of sprite
height of sprite
ink of sprite
left of sprite
loc of sprite
memberNum of sprite
moveableSprite of sprite
paletteRef
puppetSprite
scriptNum of sprite
stretch of sprite
type of sprite
updateStage
visible of sprite

Lingo elements--frames
Click a Lingo element for more information:

frame
frameLabel
framePalette
frameScript
frameSound1
frameSound2
frameTempo
frameTransition
label
marker
on enterFrame
on exitFrame
puppetPalette
puppetTempo
puppetTransition

Lingo elements--score generation
Click a Lingo element for more information:

beginRecording
clearFrame
deleteFrame
duplicateFrame
endRecording
insertFrame
updateFrame

Lingo elements--external files
Click a Lingo element for more information:

closeDA open
closeResFile openDA
closeXlib openResFile
copyToClipBoard openXlib
fileName of castLib pathName
fileName of member searchCurrentFolder
getNthFileNameInFolder searchPath
importFileInto setCallBack
movieFileFreeSize showResFile
moviePath showXlib

sound playFile
xFactoryList

Lingo elements--movie in a window
Click a Lingo element for more information:

closeWindow
drawRect of window
fileName of window
forget window
modal of window
moveToBack
moveToFront
open window
rect of window
title of window
visible of window
window
windowList

Lingo elements--parent scripts
Click a Lingo element for more information:

actorList
ancestor
birth
new
property

Lingo elements--lists
Click a Lingo element for more information:

[] (list brackets)
add
addAt
addProp
append
count
deleteAt
deleteProp
findPos
findPosNear
getaProp
getAt
getLast
getOne
getPos
getProp
getPropAt
listP

Lingo elements--code structures & syntax
Click a Lingo element for more information:

case
end case
end if
exit
if ... then ...
if ... then ... else
repeat while
end repeat

Lingo elements--strings
Click a Lingo element for more information:

&
&&
char...of
chars
contains
delete
EMPTY
item...of
itemDelimiter
last
length
line...of
number of items in
number of lines in
stringP
word...of

Lingo elements--math & logical operators
Click a Lingo element for more information:

-    (minus sign) abs
() (parenthesis) and
*    (multiplication) atan
+    (addition) charToNum
/    (division) cos
>    (greater than) exp
> = (greater than or equal to) FALSE
<      (less than) float
< = (less than or equal to) floatP
<>    (not equal) integer
=    (equal sign) integerP

mod
or
sqrt
TRUE

Lingo elements--fields
Click a Lingo element for more information:

alignment of member item...of
char...of lineHeight of member
chars locToCharPos
charToNum locVToLinePos
contains number of chars in
delete number of items in
dropShadow of member number of words in
editable of member offset
editable of sprite scrollByPage
font of member string
fontSize of member text of member
fontStyle of member wordWrap of member
foreColor of member word...of
height of member
hilite

Lingo elements--digital video
Click a Lingo element for more information:

controller of member
duration of member
frameRate of member
loop of member
movieRate of sprite
timeScale of member
trackCount(member)
trackCount(sprite)
trackEnabled
trackNextKeyTime
trackNextSampleTime
trackPreviousKeyTime
trackPreviousSampleTime
trackStartTime(member)
trackStartTime(sprite)
trackStopTime(member)
trackStopTime(sprite)
trackText
trackType (member)
trackType (sprite)

Lingo elements--sound
Click a Lingo element for more information:

puppetSound
sound close
sound fadeIn
sound fadeOut
sound of member
sound playFile
sound stop
soundBusy
soundEnabled
volume of sprite

Lingo elements--interface elements
Click a Lingo element for more information:

alert
buttonType
checkMark of menuItem
enabled of menuItem
installMenu
menu
name of menu
name of menuItem
number of menuItems
number of menus
script of menuItem

Lingo elements--operators
Click a Lingo element for more information:

#    (pound sign) <      (less than)
-    (minus sign) < = (less than or equal to)
-- (comment delimiter) <>    (not equal)
&    (concatenator) =    (equal sign)
&& (concatenator) >    (greater than)
*    (multiplication) > = (greater than or equal to)
+    (addition) []    (list brackets)
/    (division) "    (string constant)

¬    (continuation symbol)
() [parentheses]

Lingo elements--puppets
Click a Lingo element for more information:

puppet of sprite
puppetPalette
puppetSound
puppetSprite
puppetTempo
puppetTransition
updateStage

Lingo elements--time
Click a Lingo element for more information:

date
delay
framesToHMS
HMStoFrames
startTimer
ticks
time
timer
timeoutKeyDown
timeoutLapsed
timeoutMouse
timeoutScript

Lingo elements--variables
Click a Lingo element for more information:

clearGlobals
property
put
set...to and set...=
showGlobals
showLocals

Lingo elements--A
Click a Lingo element for more information:

abbr
abbrev
abbreviated
abort
abs
activateWindow
activeWindow
actorList
add
addAt
addProp
after
alert
alignment of member
ancestor
and
append
atan
autoTab of member

Lingo elements--B
Click a Lingo element for more information:

backColor of member
backColor of sprite
BACKSPACE
beep
beepOn
before
beginRecording
birth
blend of sprite
border of member
bottom of sprite
boxDropShadow of member
boxType of member
buttonStyle
buttonType

Lingo elements--C
Click a Lingo element for more information:

cancelIdleLoad closeDA
case closeResFile
the castLib closeWindow
the castLibNum of sprite closeXlib
center of member crop
centerStage colorDepth
changeArea of member colorQD
channelCount commandDown
char...of constrainH
charPosToLoc constraint of sprite
chars constrainV
charToNum contains
checkBoxAccess continue
checkBoxType controlDown
checkMark of menuItem controller of member
chunkSize of member copyToClipBoard
clearFrame cos
clearGlobals count
clickLoc crop of member
clickOn cursor
close window cursor of sprite

Lingo elements--D
 Click a Lingo element for more information:

date digitalVideo member video
deactivateWindow digitalVideo sprite movieRate
delay digitalVideo sprite movieTime
delete digitalVideo sprite startTime
deleteAt digitalVideo sprite stopTime
deleteFrame digitalVideo sprite volume
deleteOne digitalVideoTimeScale
deleteProp digitalVideoType
depth of member directToStage of member
desktopRectList do
digitalVideo done
digitalVideo member center dontPassEvent
digitalVideo member controller doubleClick
digitalVideo member crop down
digitalVideo member directToStage drawRect of window
digitalVideo member duration dropShadow of member
digitalVideo member frameRate duplicateFrame
digitalVideo member loop duplicate(list)
digitalVideo member pausedAtStart duplicate member
digitalVideo member preload duration of member
digitalVideo member sound

Lingo elements--E
Click a Lingo element for more information:

editable of member
editable of sprite
else
EMPTY
emulateMultiButtonMouse
enabled of menuItem
end
end case
end repeat
endRecording
ENTER
enterFrame
erase member
exit
exit repeat
exitFrame
exitLock
exp

Lingo elements--F
Click a Lingo element for more information:

factory font of member
fadeIn fontSize of member
fadeOut fontStyle of member
FALSE foreColor of member
field foreColor of sprite
fileName of castLib forget window
fileName of member frame
fileName of window frameLabel
filled framePalette
findEmpty frameRate of member
findPos frameScript
findPosNear frameSound1
finishIdleLoad frameSound2
fixStageSize framesToHMS
float frameTempo
floatP frameTransition
floatPrecision freeBlock

freeBytes
frontWindow

Lingo elements--G
Click a Lingo element for more information:

getaProp
getAt
getLast
getNthFileNameInFolder
getOne
getPos
getProp
getPropAt
global
go
go loop
go next
go previous

Lingo elements--H
Click a Lingo element for more information:

halt
height of member
height of sprite
hilite
hilite of member
HMStoFrames

Lingo elements--I
Click a Lingo element for more information:

idle insertFrame
idleHandlerPeriod inside
idleLoadDone inside point
idleLoadMode installMenu
idleLoadPeriod instance
idleLoadTag integer
idleReadChunkSize integerP
if intersect
ilk intersect rect
importFileInto intersects
in into
inflate rect item...of
ink of sprite itemDelimiter
items

Lingo elements--J
There are no Lingo elements that begin with the letter J.

Lingo elements--K
Click a Lingo element for more information:

key
keyCode
keyDown
keyDownScript
the keyPressed
keyUp
keyUpScript

Lingo elements--L
 Click a Lingo element for more information:

label lines
labelList lineSize of member
last lineSize of sprite
lastClick list
lastEvent list operators ([])
lastFrame listP
lastKey loaded of member
lastRoll loc of sprite
left of sprite locH of sprite
length locToCharPos
line...of locV of sprite
lineCount of member locVToLinePos
lineHeight log
lineHeight of member long
linePosToLocV loop

loop of member

Lingo elements--M
 Click a Lingo element for more information:

machineType menuItems
map menus
map point method
map rect mGet
margin min
marker mInstanceRespondsTo
mAtFrame mMessageList
max mName
maxInteger mNew
mci mod
mDescribe modal of window
mDispose modified of member
me mouseCast
media of member mouseChar
member mouseDown
member backColor mouseDownScript
member memberType mouseH
member depth mouseItem
member fileName mouseLine
member foreColor mouseUp
member height mouseUpScript
member hilite mouseV
member loaded mouseWord
member name move member
member number moveableSprite of sprite
member palette moveToBack
member picture moveToFront
member purgePriority moveWindow
member rect movie
member regPoint movieFileFreeSize
member scriptText movieFileSize
member text movieName
member width moviePath
memberNum of sprite movieRate of sprite
memorySize movieTime of sprite
menu mPerform
menuItem mPut
mRespondsTo multiSound

Lingo elements--N
Click a Lingo element for more information:

name of CastLib number of CastLib
name of member number of castLibs
name of menu number of chars in
name of menuItem number of items in
name of window number of lines in
name of xtra number of member
new number of members
next number of members of castLib
next repeat number of menuItems
not number of menus
nothing number of words in

number of xtras
numToChar

Lingo elements--O
Click a Lingo element for more information:

objectP on resizeWindow
of on rightMouseDown
offset on rightMouseUp
offset rect on startMovie
on on stepMovie
on activateWindow on stopMovie
on closeWindow on timeOut
on deactivateWindow on zoomWindow
on enterFrame open
on exitFrame openWindow
on idle open window
on keyDown openDA
on keyUp openResFile
on mouseDown openXlib
on mouseUp optionDown
on moveWindow or
on openWindow otherwise

Lingo elements--P
Click a Lingo element for more information:

pageHeight of member preLoad
palette of member preLoad of member
paletteMapping preLoadEventAbort
paletteRef preLoadMember
param preLoadMode of CastLib
paramCount preLoadMovie
pass preLoadRAM
pasteClipBoardInto previous
pathName printFrom
pattern property
pause puppet of sprite
pausedAtStart of member puppetPalette
pauseState puppetSound
perFrameHook puppetSprite
pi puppetTempo
picture of member puppetTransition
pictureP purgePriority of member
platform put
play put...after
play done put...before
playFile put...into
point
power

Lingo elements--Q
Click a Lingo element for more information:

quickTimePresent
quit
QUOTE

Lingo elements--R
 Click a Lingo element for more information:

ramNeeded resizeWindow, on
random restart
randomSeed result
rect RETURN
rect of member return
rect of sprite rightMouseDown
rect of window rightMouseDown
rect point rightMouseUp
regPoint of member rightMouseUp
repeat while right of sprite
repeat with rollOver
repeat with...in list romanLingo
repeat with...down to

Lingo elements--S
 Click a Lingo element for more information:

sampleRate sort
sampleSize sound close
save castLib sound fadeIn
saveMovie sound fadeOut
score sound of member
scoreColor of sprite sound playFile
scoreSelection sound stop
script of menuItem soundBusy
scriptNum of sprite soundEnabled
scriptsEnabled soundLevel
scriptText of member sourceRect
scriptType sprite
scrollByLine spriteBox
scrollByPage sprite...intersects
scrollTop sprite...within
searchCurrentFolder sqrt
searchPath stage
searchPaths stageBottom
selection stageColor
selection of castLib stageLeft
selEnd stageRight
selStart stageTop
setaProp startMovie
setAt starts
setCallBack startTimer
setProp stepMovie
set...to and set...= stillDown
setTrackEnabled stop
shapeType stopMovie
shiftDown stretch of sprite
short string
showGlobals stringP
showLocals switchColorDepth
showResFile symbolP
showXlib
shutDown
sin
size of member

Lingo elements--T
Click a Lingo element for more information:

TAB TRUE
tan to
tell top of sprite
text of member trace
the traceLoad
then traceLogFile
ticks trackCount(member)
time trackCount(sprite)
timeoutKeyDown trackEnabled
timeoutLapsed trackNextKeyTime
timeoutLength trackNextSampleTime
timeoutMouse trackPreviousKeyTime
timeoutPlay trackPreviousSampleTime
timeoutScript trackStartTime(member)
timer trackStartTime(sprite)
timeScale of member trackStopTime(member)
title of window trackStopTime(sprite)
titleVisible of window trackText
trackType (sprite) trackType (member)
trails of sprite type of member
transitionType of member type of sprite

Lingo elements--U
 Click a Lingo element for more information:

union rect
unLoad
unLoadMember
unloadMovie
updateFrame
updateLock
updateMovieEnabled
updateStage

Lingo elements--V
 Click a Lingo element for more information:

value
version
video of member
videoForWindowsPresent
visible of sprite
visible of window
voidP
volume of sound
volume of sprite

Lingo elements--W
 Click a Lingo element for more information:

when...then
while
width of member
width of sprite
window
windowList
windowPresent
windowType of window
with
within
word...of
wordWrap of member

Lingo elements--X
 Click a Lingo element for more information:

xFactoryList
xtra
xtras

Lingo elements--Y
There are no Lingo elements that begin with the letter Y.

Lingo elements--Z
Click a Lingo element for more information:

zoomBox
zoomWindow

(pound sign)
Syntax: #symbolName

This symbol definition operator defines a symbol. In addition to integers, floating point
numbers, strings, and objects, Lingo also has a symbol data type. A symbolName begins
with an alphabetical character and may be followed by any number of alphabetical or
numerical characters.

The valid operations on symbols are:
Assignment to a variable
Comparison
Being passed as a parameter to a handler or method
Being returned as a value from a handler or method.

A symbol is a self-contained unit that can be used to represent a condition or flag. It does
not consist of individual characters in the same sense as a string. However, you can
convert a symbol to a string for display purposes by using the string function.

Symbols take up much less space than strings and can be manipulated. Essentially,
symbols have the speed and memory advantages of integers but give you the
descriptive power of strings.

Example:

This statement sets the variable named state to the symbol #Playing:

set state = #Playing

symbolP function

- (minus sign)
Syntax (negation): -expression

This arithmetic operator reverses the sign of the value of the expression.

This is an arithmetic operator with a precedence level of 5.

Syntax (subtraction): expression1 - expression2

This arithmetic operator performs an arithmetic subtraction on two numerical
expressions, subtracting expression2 from expression1. When both expressions are
integers, the difference is an integer. When either or both expressions are floating point
numbers, the difference is a floating point number.

This is an arithmetic operator with a precedence level of 3.

Example 1 (negation):

This statement reverses the sign of the expression 2 + 3:

put -(2 + 3)

The result is -5.

Example 2 (subtraction):

This statement subtracts the integer 2 from 5, and then displays the result in the
message window:

put 5 - 2

The result is 3, which is an integer.

Example 3 (subtraction):

This statement subtracts the floating point number 1.5 from 3.25, and then displays the
result in the message window:

put 3.25 - 1.5

The result is 1.75, which is a floating point number.

-- (comment delimiter)
Syntax: -- [comment]

This comment delimiter symbol indicates the beginning of a script comment. On any line,
what is between the comment symbol (double hyphen) and the end-of-line return
character is interpreted as a comment instead of a Lingo statement.

Example:

This handler uses a double hyphen to make the second line a comment:

on resetColors
 -- This handler resets the sprite's colors.
 set the foreColor of sprite 1 to 35
 -- bright red
 set the backColor of sprite 1 to 36
 -- light blue
end resetColors

& (concatenator)
Syntax: expression1 & expression2

This operator performs a string concatenation of two expressions. If either expression1 or
expression2 evaluates to a number, it is first converted to a string. The resulting
expression is a string.

This is a string operator with a precedence level of 2.

Example 1:

This statement concatenates the strings "abra" and "cadabra":

put "abra" & "cadabra"

The result is the string "abracadabra".

Example 2:

This statement concatenates the strings "$" and the content of the variable price. The
concatenated string is then assigned to the field cast member Price:

put "$" & price into field "Price"

&& (concatenator)
Syntax: expression1 && expression2

This string operator concatenates two expressions, inserting a space character between
the original string expressions. If either expression1 or expression2 evaluates to a
number, it is first converted to a string. The resulting expression is a string.

This is a string operator with a precedence level of 2.

Example 1:

This statement concatenates the strings "abra" and "cadabra", and inserts a space
between the two:

put "abra" && "cadabra"

The result is the string "abra cadabra".

Example 2:

This statement concatenates the strings "Today is" and today's date in the long format,
and inserts a space between the two:

put "Today is" && the long date

If today's date were Tuesday, March 15, 1996, the result would be the string Tuesday,
March 15, 1996.

() (parentheses)
Syntax: (expression)

This grouping operator performs a grouping operation on an expression. It is used to
control the order of execution of the operators in an expression, and override the
automatic precedence order. It causes the expression contained within the parentheses
to be evaluated first. When parentheses are nested, the contents of inner ones are
evaluated before the contents of outer ones.

This is a grouping operator with a precedence level of 5.

Examples:

These statements use the grouping operator to change the order in which operations
occur. The result appears below each statement:

put (2 + 3) * (4 + 5)

-- 45

put 2 + (3 * (4 + 5))

-- 29

put 2 + 3 * 4 + 5

-- 19

* (multiplication)
Syntax: expression1 * expression2

This arithmetic operator performs an arithmetic multiplication on two numerical
expressions. If both expressions are integers, the product is an integer. If either or both
expressions are floating point numbers, the product is a floating point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement multiplies the integers 2 and 3, and then displays the result in the
message window:

put 2 * 3

The result is 6, which is an integer.

Example 2:

This statement multiplies the floating point numbers 2.0 and 3.1414, and then displays
the result in the message window:

put 2.0 * 3.1416

The result is 6.2832, which is a floating point number.

+ (addition)
Syntax: expression1 + expression2

This arithmetic operator performs an arithmetic sum on two numerical expressions. If
both expressions are integers, the sum is an integer. If either or both expressions are
floating point numbers, the sum is a floating point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement adds the integers 2 and 3, and then displays the result in the message
window:

put 2 + 3

The result is 5, which is an integer.

Example 2:

This statement adds the floating point number 2.5 and 3.25, and then displays the result
in the message window:

put 2.5 + 3.25

The result is 5.75, which is a floating point number.

/ (division)
Syntax: expression1 / expression2

This operator performs an arithmetic division on two numerical expressions, dividing
expression1 by expression2. If both expressions evaluate to integers, the quotient is an
integer. If either or both expressions evaluate to floating point numbers, the quotient is a
floating point number.

This is an arithmetic operator with a precedence level of 4.

Example 1:

This statement divides the integer 22 by 7, and then displays the result in the message
window:

put 22 / 7

The result is 3. Because both numbers in the division are integers, Lingo rounds the
answer down to the nearest integer.

Example 2:

This statement divides the floating point number 22.0 by 7.0, and then displays the
result in the message window:

put 22.0 / 7.0

The result is 3.1429, which is a floating point number.

< (less than)
Syntax: expression1 < expression2

This comparison operator compares two expressions. When expression1 is less than
expression2, the condition is TRUE. When expression1 is greater than or equal to
expression2, the condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1.

<= (less than or equal to)
Syntax: expression1 <= expression2

This comparison operator compares two expressions. When expression1 is less than or
equal to expression2, the condition is TRUE. When expression1 is greater than
expression2, the condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1.

<> (not equal)
Syntax: expression1 <> expression2

This comparison operator compares two expressions. When expression1 is not equal to
expression2, the condition is TRUE. When expression1 is equal to expression2, the
condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1. This operator also works with
symbols and objects.

= (equal sign)
Syntax: expression1 = expression2

This comparison operator compares two expressions or strings. When expression1 is
equal to expression2, the condition is TRUE. When expression1 is not equal to
expression2, the condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1. This operator also works with
symbols and objects.

> (greater than)
Syntax: expression1 > expression2

This comparison operator compares two expressions. When expression1 is greater than
expression2, the condition is TRUE. When expression1 is less than or equal to
expression2, the condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1.

>= (greater than or equal to)
Syntax: expression1 >= expression2

This comparison operator compares two expressions. When expression1 is greater than
or equal to expression2, the condition is TRUE. When expression1 is less than
expression2, the condition is FALSE.

This operator can compare strings as well as integers and floating point numbers.

This is a comparison operator with a precedence level of 1.

[] (list operators)
Syntax: [entry1, entry2, entry3, ...]

These square brackets specify that the entries within the brackets are a list.

There are four types of lists:
Unsorted linear lists
Sorted linear lists
Unsorted property lists
Sorted property lists.

Each entry in a linear list is a single value that has no other property associated with it.
Each entry in a property list consists of a value and a property. The property appears
before the value and is separated from the value by a colon. You cannot store a property
in a linear list. When using strings as entries in a list, enclose the string in quotation
marks.

For example, [6, 3, 8] is a linear list. The numbers have no properties associated with
them. However, [#gears:6, #balls:3, #ramps:8] is a property list. Each number has a
property, in this case a piece of machinery, associated with it. This property list could be
useful for tracking how many of each piece of machinery are currently on the stage in
the mechanical simulation. Properties can appear more than once in a property list.

Lists can be sorted in alphanumeric order. A sorted linear list is ordered by the values in
the list. A sorted property list is in order by the properties in the list. You sort a list by
using the appropriate command for a linear list or property list.

Property lists are case-sensitive.

A linear list or a property list can contain no values at all. An empty list consists of two
square brackets ([]). To clear a list, set the list to [].

You can modify, test, or read items in a list.

You do not have to worry about explicitly disposing of lists. Lists are automatically
disposed of when they are no longer referred to by any variable. When the list is held
within a global variable, it persists from movie to movie.

You can quickly initialize a list by doing so in the on startMovie handler. An alternative
way is to write the list as a field cast member and assign the list to a variable. You can
then handle the list by handling the variable.

Example 1:

This statement defines a list by making the variable machinery equal to the list:

set machinery = [#gears:6, #balls:3, #ramps:8]

Example 2:

This handler sorts the list "aList," and then displays the result in the message window:

on sortList aList
 sort aList
 put aList
end sortList

If the movie issues the statement sortList machinery, where machinery is the list in
Example 1 above, the result is [#balls:3, #gears:6, #ramps:8].

Example 3:

This statement creates an empty linear list:

set x = []

Example 4:

This statement creates an empty property list:

set x = [:]

add, addAt, append, count, deleteAt, findPos, findPosNear, getaProp, getAt,
getLast, getPos, setAt, setaProp, sort commands; ilk, list, min, max functions

" (string constant)

Syntax: "

When used before and after a string, quotation marks indicate that the string within the
quotation marks is a literal string, not a variable, numerical value, or Lingo element.
Quotation marks must always surround literal names of cast members, casts, windows,
and external files.

Example:

The following statement uses quotation marks to indicate that the string "San Francisco"
is a literal string. In this case, it's the name of a cast member.

put the loaded of member "San Francisco"

¬ (continuation symbol)
Syntax: first part of a statement on this line ¬

second part of statement on next line ¬
 third part of statement

This special character, when used as the last character in a line, indicates that the
statement continues on the next line. Lingo then interprets the lines as one continuous
statement. You can do this on several successive lines.

Create this character by pressing Alt+Enter.

Example:

This statement uses the ¬ character to wrap the statement onto several lines:

set the memberNum of sprite mySprite ¬
 to the number of member ¬
 "This is a long cast name."

abbr, abbrev, abbreviated

the date and time functions.

abort
Syntax: abort

This command has Lingo exit the current handler and any handler that called it without
executing any of the remaining statements in the handler. This differs from the exit
keyword, which returns to the handler from which the current handler was called.

The abort command does not quit Director.

Example:

This statement has Lingo exit the handler and any handler that called it when the
amount of free memory is less than 50K:

if the freeBytes < 50*1024 then abort

abs
Syntax: abs (numericExpression)

This function calculates the absolute value of a numerical expression. If
numericExpression is an integer, its absolute value is also an integer. If
numericExpression is a floating point number, its absolute value is also a floating point
number.

The abs function has several uses. It can simplify tracking mouse and sprite movement
by converting coordinate differences (which can be either positive or negative) into
distances (which are always positive). The abs function is also useful for handling
mathematical functions such as sqrt and log.

Example 1:

This statement calculates the absolute value of -2.2 and displays the result in the
message window:

put abs(-2.2)

Example 2:

This statement determines whether the absolute value of the difference between the
current mouse position and the value of the variable startV is greater than 30. If it is, the
foreground color of sprite 6 is changed.

if abs (the mouseV - startV) > 30 then ¬
set the foreColor of sprite 6 to 95

activeWindow
Syntax: the activeWindow

This system property indicates which movie window is currently active. For the main
movie, the activeWindow is the stage. For a movie in a window, the activeWindow is
the movie in a window itself.

Example: to be provided

actorList
 Syntax: the actorList

This property is a list of all child objects currently in the movie. All objects in the
actorList receive an enterFrame message when the playback head enters a new
frame.

You can clear child objects from the actorList by setting the actorList to [], which is
an empty list.

Director doesn't clear the contents of the actorList when branching to another movie,
which could cause unpredictable behavior in the new movie. If you don't want child
objects in the current movie to be carried over into the new movie, insert a statement
that clears the actorList in the on startMovie handler of the new movie.

Example 1:

This statement creates a child object from the parent script Moving Ball. All three
values are parameters that the script requires:

add the actorList, new(script "MovingBall", 1,¬
 200,200)

Example 2:

This statement displays the contents of the actorList in the message window:

put the actorList

Example 3:

This statement clears the actorList:

set the actorList = []

new command; parent-child scripts

add
Syntax: add linearList, value

This command adds the value specified by value to the linear list specified by linearList.
For a sorted list, the value is placed in its proper order. For an unsorted list, the value is
added to the end of the list.

Example 1:

This statement adds the value 2 to the list named bids. The resulting list is [3, 4, 1, 2]:

set bids = [3, 4, 1]
add bids, 2

Example 2:

This statement adds 2 to the sorted linear list [1, 4, 5]. The new item stays in
alphanumeric order because the list is sorted:

add bids, 2

addAt
Syntax: addAt list , position , value

This command adds a value to the list at the position specified by position. Use this
command when you need to add an item at a specific location in a list.

The addAt command works with linear lists only. Using addAt with a property list
produces a script error.

Example:

This statement adds the value 8 to the fourth position in the list named bids, which is [3,
2, 4, 3, 6, 7]:

set bids = [3, 2, 4, 5, 6, 7]
addAt bids, 4, 8

The resulting value of bids is [3, 2, 4, 8, 3, 6, 7].

addProp
Syntax: addProp list , property , value

This command adds the property specified by property and its value specified by value
to the property list specified by list. For an unsorted list, the value is added to the end of
the list. For a sorted list, the value is placed in its proper order.

When the property already exists in the list, Lingo creates a duplicate property. You can
avoid duplicate properties by using the setaProp command to change the new entry's
property.

The addProp command works with linear lists only. Using addProp with a property list
produces a script error.

Example 1:

This statement adds the property named kayne and its assigned value 3 to the property
list named bids, which contains [#gee: 4, #ohasi: 1]. Because the list is sorted, the new
entry is placed in alphabetical order:

addProp bids, #kayne, 3

The result is the list is [#gee: 4, #kayne: 3, #ohasi: 1].

Example 2:

This statement adds the entry kayne: 7 to the list named bids, which now contains
[#gee: 4, #kayne: 3, #ohasi: 1]. Because the list already contains the property kayne,
Lingo creates a duplicate property:

addProp bids, #kayne, 7

The result is the list [#gee: 4, #kayne: 3, #kayne:7, #ohasi: 1].

after
 See put...after command.

alert
Syntax: alert message

This command causes a system beep and displays an alert dialog box containing the
string specified by message, and an OK button. This command is useful for providing
error messages in your movie. The message can contain up to 255 characters.

The message must be a string. If you want to include a number variable in an alert, use
the string function to handle the variable.

Example 1:

The following statement produces an alert stating that there is no CD-ROM drive
connected:

alert "There is no CD-ROM drive ¬
connected."

Example 2:

This statement produces an alert stating that a file was not found:

alert "The file" && QUOTE & filename & QUOTE ¬
 && "was not found."

string

alignment of member
Syntax: the alignment of member whichCastmember

the alignment of member whichCastmember

This field property determines the alignment used to display characters within the
specified field cast member.

The value of the property is a string consisting of one of the following: "left," "center," or
"right." The parameter whichCastmember can be either a cast name or a cast number.

The alignment of member property can be tested and set.

The field cast member must contain characters, if only a space, to use the alignment of
member property. It has no effect on a cast member that contains no characters.

Example:

This statement sets the variable named alignment to the current alignment of member
setting for the field cast member Rokujo Speaks:

put the alignment of member "Rokujo Speaks" into ¬
 alignment

This repeat loop consecutively sets the alignment of the field cast member Rove to left,
center, and then right.

repeat with i = 1 to 3
 set the alignment of member "Rove" ¬
 to word i of "left center right"
end repeat

This property requires that the field castmember already contain characters, if only a
space. It will not affect a castmember that contains no characters.

text of member property; font of member, lineHeight of member, fontSize of
member, and fontStyle of member text properties; & (ampersand) and && (double
ampersand) field operators

ancestor
Syntax: property ancestor

The ancestor property allows child objects to use handlers that are not contained within
the parent script. The ancestor property is typically used with two or more parent
scripts. This is useful when you want child objects to share certain behaviors that are
inherited from an ancestor, while differing in other behaviors that are inherited from the
parents.

The ancestor property is typically assigned in the child object's new handler within the
parent script. When you send a message to a child object that does not have a defined
handler, that message is forwarded to the script defined by the ancestor property.

The ancestor property can be changed "on the fly." This allows you to significantly
change behaviors and properties for a large group of objects with a single command.

For a complete discussion of this topic, see "Parent Scripts and Child Objects," in
Learning Lingo.

The ancestor script can contain independent property variables that can be accessed by
child objects. To refer to property variables within the ancestor script, you must use this
syntax:

set propertyVariable to value

For example, this statement changes the property variable legCount within an ancestor
script to 4:

set the legCount of me to 4

Use the syntax the variableName of scriptName to access property variables that are
not contained within the current object. This statement allows the variable myLegCount
within the child object to access the property variable legCount within the ancestor
script:

put the legCount of me into myLegCount

The following scripts present an example of using the ancestor property. Each of these
scripts is a cast member. Using the ancestor script Animal and the parent scripts Dog and
Man, they interact with one another to define objects.

Example 1:

The first script Dog sets the property variable breed to Mutt; sets the ancestor of Dog to
the Animal script; and sets the legCount variable that is stored in the ancestor script to
4:

property breed, ancestor

on new me
 set breed = "Mutt"
 set the ancestor of me to new(script "Animal")

 set the legCount of me to 4
 return me
end new

Example 2:

The second script Man sets the property variable race to African; sets the ancestor of
Man to the Animal script; and sets the legCount variable that is stored in the ancestor
script to 2:

property race, ancestor

on new me
 set race to "African"
 set ancestor to new(script "Animal")
 set the legCount of me to 2
 return me
end new

Example 3:

The third script Animal stores the property variable legCount for each child object and
defines the eat handler:

property legCount

on new me
 return me
end new

on eat me, what
 put "Eating " & what
end

Example 4:

The fourth script creates a child object of Man, displays its variables in the message
window, and calls the eat handler and displays it in the message window. Since the eat
handler is not in the parent script Man, Lingo finds the eat handler in the ancestor script
Animal:

set manChild to new(script "man")
put the legCount of manChild
--> 2

put the race of manChild
--> "African"

eat manChild, "apple"
--> "Eating apple"

Example 5:

This parent script creates a set of independent timers. Each timer's "countdown" time is
controlled by the intervalInSeconds argument. The action that each timer performs
when its time is up is controlled by the actionItem argument.

Each timer that is created repeatedly performs its assigned task each time its assigned
time passes.

You can use the Lingo "actorList" to service objects each time the playback head
advances. By creating objects from a common parent script, each object can have
separate time settings and separate actions that occur when they hit their target time.

 -- script name: "timer script"
 property interval, currentSegment, startTime, actionItem

 on new me, intervalInSeconds, handlerToExecute
 set interval = intervalInSeconds * 60
 set currentSegment = 0
 set startTime = the ticks
 set actionItem = handlerToExecute
 return me
 end new

 on AdvanceClock me
 set currentSegment to currentSegment + 1
 do actionItem
 end AdvanceClock

This can be called by syntax such as:

add the actorList, new(script "timer script", 2, "beep")
add the actorList, new(script "timer script", 15, ¬
"set the stageColor to random(255)")

The first statement has the object beep every 2 seconds, while the second randomly
changes the color of the screen every fifteen seconds. The advantage of using parent
scripts is that all the data is self-contained for each object. You can dispose of each
object by removing it from the actorList. If you are using many timers, then giving each
an identifying property allows you to iterate through the actorList, identifying that unique
object.

Example 6:

These statements make the parent script Animal the ancestor script for the child object
designated by me:

set theDog to new(script "Animal")
set the ancestor of me to theDog

new function; me and property keywords

and
Syntax: logicalExpression1 and logicalExpression2

This logical operator determines whether two logical expressions are both TRUE. When
both logicalExpression1 and logicalExpression2 are TRUE, the result is TRUE (1). When
either or both expressions are FALSE, the result is FALSE (0).

The precedence level of this logical operator is 4.

Example 1:

This statement determines whether both logical expressions are TRUE and displays the
result in the message window:

put 1 < 2 and 2 < 3

The result is 1, which is the numerical equivalent of TRUE.

Example 2:

The first logical expression in this statement is TRUE; the second logical expression is
FALSE. Because both logical expressions are not TRUE, the logical operator gives the
result 0, which is the numerical equivalent of FALSE:

put 1 < 2 and 2 < 1
-- 0

not and or logical operators

append
Syntax: append list, value

This command adds the specified value to the end of the list, regardless of the list's type.
This differs from the add command, which adds a value to a sorted list in accordance
with the list's order.

The append command works with linear lists only. Using append with a property list
produces a script error.

Example:

This statement adds the value 2 at the end of the sorted list named bids, which contains
[1, 3, 4] even though this is not according to the list's sorted order:

set bids = [1, 3, 4]
append bids, 2
The resulting value of bids is [1, 3, 4, 2].

add command

atan
Syntax: atan (number)

This function calculates the arctangent of the specified number. The result is between
pi/2 and +pi/2.

 Example:

This expression gives the arctangent of pi/4 radians:

atan (pi()/4.0)

autoTab of member
Syntax: the autoTab of member whichCastmember

This field cast member property determines whether the editable field that follows the
field cast member specified by whichCastmember becomes the active field after the user
presses Tab.

When the autoTab of member is TRUE, pressing Tab makes the next editable field
on stage the active field.

When the autoTab of member is FALSE, pressing Tab doesn't make the next editable
field on stage the active field.

Example:

This statement makes the field that follows the field cast member Comments active after
the user presses Tab:

set the autoTab of "Comments" to TRUE

backColor of member
Syntax: set the backColor of member whichCastmember to colorNumber

This cast member property sets the background color of the specified field cast member.

The backColor of member value depends on the color depth of the monitor. It ranges
from 0 to 255 for 8-bit color, from 0 to 15 for 4-bit color, and so on. The numbers
correspond to the index number of the background color in the current palette. (A color's
index number appears in the color palette's lower left corner when you click the color.)

Example:

This statement changes the color of the characters in cast member 1 to the color in
palette entry 250.

set the backColor of member 1 to 250

Example:

This handler converts a list that contains percentages of red, green, and blue that make
up a color. It returns an integer that represents the color on a 32-bit color monitor:

on convert the List
 set red to getAt(theList, 1) * 255 * 65536 * / 100.00
 set green to getAt(theList, 2) * 255 * 256 / 100.00
 set blue to getAt(theList, 3) * 255 * 1 * / 100.00
 return red + green + blue
end

This statement calls the convert handler to obtain the backColor value for pure blue on
a 32-bit monitor and displays the result in the message window:

put convert ([0, 0, 100])

 Example:

This handler converts a list that contains red, green, and blue values from 0 to 255 and
generates an integer that represents the color on a 16-bit color monitor:

on convert16 theList
 set normedList = theList /8
 set red to integer(getAt(normedList, 1)) * 1024
 set green to integer(getAt(normedList, 2)) * 32
 set blue to integer(getAt(normedList, 1))
 return red + green + blue
end

This statement calls the convert16 handler to change the backColor of field cast
member 1 to bright green:

set the backColor of member 1 to convert16([0, 255, 0])

backColor of sprite
Syntax: the backColor of sprite whichSprite

This sprite property determines the background color of the sprite specified by
whichSprite. The sprite must be a puppet before you can set its background color using
Lingo. Setting the backColor using a Lingo script is the same as choosing the
background color from the tool palette when the sprite is selected on the stage.

The background color applies only to 1-bit bitmap and shape cast members. It does not
affect how a field or button cast member is displayed. An 8-bit bitmap is affected, but
generally not in a useful way.

The backColor of sprite value ranges from 0 to 255 for 8-bit color, and from 0 to 15
for 4-bit color. The numbers correspond to the index number of the background color in
the current palette. (A color's index number appears in the color palette's lower left
corner when you click the color.)

When you set this property within a script while the playback head is not moving, be sure
to use the command updateStage to redraw the stage. If you are changing several sprite
properties--or several puppet sprites--you only have to use one updateStage command
at the end of all the changes.

One use of the backColor of sprite property that works consistently with 8-bit bitmap
sprites is specifying which color is to be made transparent using the score ink effect
Background Transparent. This is particularly useful when creating or importing anti-
aliased graphics or objects from a 3D rendering program for use over video.

Using a black stage color that is defined as the overlay color by the video card, as well as
having images that are anti-aliased against a black background, usually works best. This
will produce a dark gray shadow behind the graphic when used over a video source. This
is the least objectionable shadow color.

The backColor of sprite property can be tested and set.

Example 1:

The following statement sets the variable oldColor to the background color of sprite 5:

put the backColor of sprite 5 into oldColor

Example 2:

The following statement randomly changes the background color of a random sprite
between sprite 11 and sprite 13 to color number 36:

set the backColor of sprite (10 + random(3)) to 36

foreColor sprite property; stageColor property

BACKSPACE
Syntax: BACKSPACE

This character constant represents the backspace key. This key is marked "Backspace" in
Windows and "delete" on the Macintosh keyboard.

Example:

This on keyDown handler checks whether the backspace key was pressed and, if it was,
calls the handler clearEntry:

on keyDown
 if the key = BACKSPACE then clearEntry
 dontPassEvent
end keyDown

beep
Syntax: beep [numberOfTimes]

This command causes the computer's speaker to beep the number of times specified by
numberOfTimes. If numberOfTimes is missing, the beep occurs once.

For the Macintosh, the beep sound is the Alert Sound selected in the Sound control
panel. If the Speaker Volume in the Sound control panel is set to 0, the menu bar flashes
instead.

In Windows, the beep sound is the sound assigned in the Sounds Properties dialog
box.

Example 1:

This statement causes two beeps if the field Answer is empty:

if field "Answer" = EMPTY then beep 2

Example 2:

This handler causes up to three beeps whenever a key is pressed:

on keyDown
 beep random(3)
end

beepOn
Syntax: the beepOn

This property determines whether the computer beeps when the user clicks outside an
active sprite--a sprite that has a script associated with it. If the beepOn property is set to
TRUE, clicking outside active sprites results in a beep.

The beepOn property can be tested and set. The default value is FALSE.

Scripts that set the beepOn property should be placed in event, frame, or movie scripts.

Example 1:

This statement sets the beepOn property to TRUE:

set the beepOn to TRUE

Example 2:

This statement sets the beepOn to the opposite of its current setting:

set the beepOn to (not the beepOn)

before

put...before command

beginRecording
Syntax: beginRecording

This keyword starts a score update session. Only one update session in a movie can be
active at a time.

Example:

When used in the following handler, the beginRecording keyword begins a score
generation session that animates the cast member Ball by assigning the cast member to
sprite channel 20 and then moving the sprite horizontally and vertically over a series of
frames. The number of frames is determined by the argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set horizontal = 0
 set vertical = 300
 repeat with i = 1 to numberOfFrames
 go to frame i
 set the memberNum of sprite 20 to ¬
 the number of member "Ball"
 set the locH of sprite 20 to horizontal
 set the locV of sprite 20 to vertical
 set the type of sprite 20 to 1
 set the foreColor of sprite 20 to 255
 set horizontal = horizontal + 3
 set vertical = vertical + 2
 updateFrame
 end repeat
 endRecording
end

endRecording, updateFrame, generating score

blend of sprite
Syntax: the blend of sprite whichSprite

Using this sprite property, you can set or determine the puppet sprite's blend value.
Blend values can be from 0 to 100, which correspond to the blend values in Sprite
Properties dialog box.

Example 1:

This statement sets the blend value of sprite 3 to 40 percent:

set the blend of sprite 3 to 40

Example 2:

This statement displays the blend value of sprite 3 in the message window:

put the blend of sprite 3

border of member
Syntax: the border of member whichCastmember

This field cast member property indicates the width, in pixels, of the border around the
specified field cast member.

Example:

This statement makes the border around the field cast member Title ten pixels wide:

set the border of member "Title" to 10

bottom of sprite
Syntax: the bottom of sprite whichSprite

This sprite property is the bottom vertical coordinate of the bounding rectangle of the
sprite specified by whichSprite.

The bottom of sprite property can be tested, but not set directly. Use the spriteBox
command to set the bottom vertical coordinate of a sprite.

Example:

This statement assigns the vertical coordinate of the bottom of sprite numbered (i + 1)
to the variable named lowest:

put the bottom of sprite (i + 1) into lowest

Note: Sprite coordinates are measured in numbers of pixels, starting with (0,0) at the
upper left corner of the stage. Stage coordinates are measured in numbers of pixels,
starting with (0,0) at the upper left corner of the monitor.

height, left, locH, locV, right, top, and width sprite properties; spriteBox
command

boxDropShadow of member
Syntax: the boxDropShadow of member whichCastMember

This field cast member property determines the size, in pixels, of the drop shadow for the
box of the field cast member specified by whichCastmember.

Example:

This statement makes the drop shadow of field cast member Title ten pixels wide:

set the boxDropShadow of member "Title" to 10

boxType of member
Syntax: the boxType of member whichCastmember

This field cast member property determines how the type of text box for the cast
member is specified by whichCastmember. The possible values are #adjust, #scroll,
#fixed, and #limit.

Example:

This statement makes the box for field cast member Editorial a scrolling field:

set the boxType of member "Editorial" to #scroll

buttonStyle
Syntax: the buttonStyle

This property determines the visual response of buttons when a user clicks a button, and
then moves the pointer over other buttons without releasing the mouse button.

The buttonStyle property can have these values:
0--list style: When the buttonStyle property is set to 0 (list style), subsequent

buttons highlight when the pointer passes over them. If the user releases the mouse button
while the pointer is over such a button, the script associated with that button is activated.

1--dialog style: When the buttonStyle property is set to 1 (dialog style) only the
first button highlights. Subsequent buttons are not highlighted. If the user releases the
mouse button while the pointer is over a button other than the original button clicked, the
script associated with that button is not activated.

The buttonStyle property can be tested and set, and the default value is 0 (list style).
You can use this property in any type of script.

Example 1:

The following statement sets the buttonStyle property to 1:

set the buttonStyle to 1

Example 2:

This statement remembers the current setting of the buttonStyle property by putting
the current buttonStyle in the variable buttonStyleValue:

put the buttonStyle into buttonStyleValue

checkBoxAccess and checkBoxType properties

buttonType
Syntax: the buttonType of member whichCastmember

This button cast member property indicates the specified button cast member's type.
Possible values are #pushButton, #checkBox, or #radioButton.

Example:

This statement makes the button cast member Editorial a checkbox:

set the buttonType of member "Editorial" to #checkBox

cancelIdleLoad
Syntax: cancelIdleLoad loadTag

This command cancels the loading of all cast members that have the specified load tag.

Example:

This statement cancels loading cast members that have the idle load tag 20:

cancelIdleLoad 20

 idleLoadTag

case
Syntax: case case expression of

expression1 : Statement(s)
expression2 :
 multipleStatements

.

.

.
expression3, expression4 :
 Statement(s)
{otherwise statement(s)}
          end case

This keyword starts a multiple branching logic structure that is more efficient than
repeated use of if-then statements.

Lingo compares the value in case expression to the expressions in lines beneath it. The
comparison starts at the beginning and continues through each line in order until Lingo
encounters an expression that matches case expression. When a matching expression is
found, Lingo executes the corresponding statement or statements that follow the colon
after the matching expression. When only one statement follows the matching
expression, the matching expression and its corresponding statement appear on the
same line. Multiple statements are on indented lines immediately below the matching
expression.

When there is more than one possible match that causes Lingo to execute the same
statements, the expressions must be separated by commas. (The line containing
expression3 and expresssion4 is an example of such a situation.) If the optional
otherwise statement is included at the end of the case structure, the statement
following otherwise is executed if there are no matches.

Example:

The following handler tests which key the user pressed most recently and responds
accordingly.

If the user pressed A, the movie goes to the frame labeled Apple.
If the user pressed B or C, the movie performs the specified transition, and then goes

to the frame labeled Oranges.
If the user pressed any other key, the computer beeps.

on keyDown
 case (the key) of
 "A": go to frame "Apple"
 "B", "C":
 puppetTransition 99
 go to frame "Oranges"
 otherwise beep
 end case
end keyDown

castLib
Syntax: castLib whichCast

This keyword indicates that the cast specified in whichCast is a cast.

The default cast is cast number 1. To specify a cast member in a cast other than cast 1,
use the castLib to specify the alternate cast.

Examples:

The following statement displays the number of the cast Buttons in the message window:

put the number of castLib "Buttons"

This statement assigns cast member 5 in cast number 4 to sprite 10:

set the member of sprite 10 to member 5 of castLib 4

castLibNum of sprite
Syntax: the castLibNum of sprite whichSprite

This sprite property determines the number of the cast that contains the cast member
assigned to the specified sprite. This property can be tested and set.

If you change the castLibNum of sprite without changing the memberNum of
sprite, Director uses the cast member that has the same cast member number in the
new cast. This is useful for movies that you use as templates and update by supplying
new casts. If you organize the cast contents so that each cast member has a cast
member number that corresponds to its role in the movie, Director automatically inserts
the new cast members correctly.

Example:

This statement changes the cast member assigned to sprite 5 by switching its cast to
Wednesday Schedule:

set the castLibNum of sprite 5 to the number ¬
of castLib "Wednesday Schedule"

center of member
Syntax: the center of member whichCastmember

This movie and digital video cast member property interacts with the crop of member
cast member property. It can be tested and set.

When the crop of member is FALSE, the center of member has no effect.
When the crop of member is TRUE and the center of member is TRUE, cropping

occurs around the center of the digital video cast member.
When the crop of member is TRUE and the center of member is FALSE, cropping

starts at the top left corner of the sprite that refers to the digital video cast member.

Example:

This statement causes the digital video cast member Interview to be displayed in the top
left corner of the sprite.

set the center of member "Interview" to FALSE

crop of member digital video cast member property

centerStage
Syntax: the centerStage

This property determines whether the stage is centered on the monitor when the movie
is loaded. The statement that includes this property is placed in the move that precedes
the movie you want it to affect.

If the centerStage is TRUE, the stage is centered.
If the centerStage is FALSE, the stage is not centered.

This property is useful for checking stage location before a movie plays from a projector.
Place handlers that use this property in the preceding movie before using the go to
movie command.

The centerStage property can be tested and set. The default value is TRUE.

Example 1:

This statement sends the movie to a specific frame if the stage is not centered:

if the centerStage = FALSE then ¬
 go to frame "off center"

Example 2:

This statement changes the centerStage property to the opposite of its current value:

set the centerStage to (not the centerStage)

fixStageSize property

changeArea of member
Syntax: the changeArea of member whichCastMember

This transition cast member property determines whether the transition applies to the
changing area on the stage. It can be tested and set. Its effect is similar to selecting the
Changing Area Only option in the Frame Transition dialog box.

When the changeArea of member is TRUE, the transition applies to the changing
area only.

When changeArea of member is FALSE, the transition applies to the entire stage.

Example:

This statement makes the transition cast member Wave apply only to the changing area
on the stage:

set the changeArea of member "Wave" to TRUE

channelCount of member
Syntax: the channelCount of member whichCastmember

This sound cast member property determines the number of channels in the specified
cast member. This is useful for determining whether a sound is in mono or stereo. This
property can be read but not set.

Example:

This statement determines how many channels are in the sound cast member Jazz:

put the channelCount of member "Jazz"

char...of
Syntax: char whichCharacter of chunkExpression

char firstCharacter to lastCharacter of chunkExpression

This chunk expression keyword identifies a character or a range of characters in a chunk
expression. Chunk expressions are used to refer to any character, word, item, or line in
any source of text such as field cast members and variables that hold strings.

The expression whichCharacter identifies a specific character.
The expressions firstCharacter and lastCharacter identify a range of characters.

The expressions must be integers that specify a character or range of characters in the
chunk. Characters include letters, numbers, punctuation marks, spaces, and control
characters like TAB and RETURN.

You can test and set the char...of keyword.

Example 1:

This statement displays the first character of the string $9.00:

put char 1 of "$9.00"

-- "$"

Example 2:

This statement displays the entire string $9.00:

put char 1 to 5 of "$9.00"

-- "$9.00"

Example 3:

This statement changes the first five characters of the second word of the third line of a
field cast member:

put "?????" into char 1 to 5 of word 2 of line 3 ¬
 of member "quiz"

mouseCast, mouseItem, mouseLine, and mouseWord integer functions;
word...of, item...of, and line...of chunk expression keywords; number of chars in chunk
function; and chars, length, and offset functions

charPosToLoc
Syntax: charPosToLoc(member whichCastMember, nthCharacter)

This function gives the point in the specified field cast member that is closest to the
character specified by nthCharacter. This is useful for determining the location of
individual characters.

Values for charPosToLoc are in pixels from the top left corner of the field cast member.
The nthChar parameter is 1 for the first character in the field, 2 for the second character,
and so on. The point is the point in the entire field cast member, not the part of the field
cast member that appears on the stage.

Example:

The following statement determines the point where the fiftieth character in the field
cast member Headline appears and assigns the result to the variable location:

put charPosToLoc(member "Headline", 50) into location

chars
Syntax: chars(stringExpression , firstCharacter , lastCharacter)

This function identifies a substring of characters in stringExpression. The substring starts
at firstCharacter and ends at lastCharacter. The expressions firstCharacter and
lastCharacter must specify a position in the string.

If firstCharacter and lastCharacter are equal, then a single character is returned from the
string. If lastCharacter is greater than the string length, only a substring up to the length
of the string is identified. If lastCharacter is before firstCharacter, the function gives the
value EMPTY.

Example 1:

This statement identifies the sixth character in the word Macromedia:

put chars("Macromedia", 6, 6)

-- "m"

Example 2:

This statement identifies the sixth through tenth characters of the word Macromedia:

put chars("Macromedia", 6, 10)

-- "media"

Example 3:

This statement tries to identify the sixth through twentieth characters of the word
Macromedia. Because the word has only ten characters, the result includes only the sixth
to tenth characters.

put chars ("Macromedia", 6, 20)

-- "media"

char...of chunk expression keyword; length and offset functions; number of chars
in chunk function

charToNum
Syntax: charToNum(stringExpression)

This function identifies the ASCII code number that corresponds to the first character of
stringExpression.

The charToNum function is especially useful for testing the ASCII value of characters
created by combining keys such as the Control key and one other alphanumeric key.

Director treats upper- and lower-case letters the same if you compare them using the
equals sign (=) operator. However, it treats them differently if you use the < or >
operator. For example, the statement put ("M" = "m") gives the result 1 or TRUE.
However the statement put ("M" < "m") or the statement put ("M" > "m") gives the
result 0 or FALSE. This can create confusion when comparing characters. You can avoid
problems by using charToNum to give the ASCII code for a character and then using the
ASCII code to refer to the character.

Example 1:

This statement displays the ASCII code number for the letter A:

put charToNum("A")

-- 65

Example 2:

This statement checks whether 0 is the ASCII code number of the character assigned to
the variable nextChar:

if charToNum(nextChar) = 0 then foundNUL

numToChar function

checkBoxAccess
Syntax: the checkBoxAccess

This property determines what happens when the user clicks a checkbox or radio button
created with button tools in the tools window. There are three possible results:

0--Lets the user set checkboxes and radio buttons on and off. This is the default.

1--Lets the user set checkboxes and radio buttons on but not off.

2--Prevents the user from setting checkboxes and radio buttons at all; the buttons can
only be set by scripts.

The checkBoxAccess property can be tested and set. The default value is 0.

Example 1:

This statement sets the checkBoxAccess property to 1, which lets the user click
checkboxes and radio buttons on but not off:

set the checkBoxAccess to 1

Example 2:

This statement records the current setting of the checkBoxAccess property by putting
the value in the variable oldAccess:

put the checkBoxAccess into oldAccess

hilite of member property; checkBoxType property

checkBoxType
Syntax: the checkBoxType

This system property determines what is inserted in checkboxes to indicate whether they
are selected. There are three possible styles:

0--Creates a standard checkbox that has "x" when the checkbox is selected. This is the
default.

1-- Creates a checkbox that has a black rectangle when the checkbox is selected.

2-- Creates a checkbox that has a filled black rectangle when the checkbox is selected.

The checkBoxType property can be tested and set. The default value is 0.

Example 1:

This statement sets the checkBoxType property to 1, which creates a black rectangle in
checkboxes when the user clicks them.

set the checkBoxType to 1

hilite of member property; checkBoxAccess property

checkMark of menuItem
Syntax: the checkMark of menuItem whichItem of menu whichMenu

This menu item property determines whether the specified custom menu item is
displayed with a checkmark.

When it is TRUE, a checkmark appears next to the custom menu item.
When it is FALSE, no checkmark appears.

The whichItem expression can be either a menu item name or a menu item number. The
whichMenu expression can be either a menu name or a menu number.

The checkMark of menuItem property can be tested and set. The default value is FALSE.

Example:

This handler unchecks any items that are checked in the custom menu specified by the
argument theMenu. For example, unCheck ("Format") unchecks all the items in the
Format menu.

on unCheck theMenu
 put the number of menuItems of menu theMenu into n
 repeat with i = 1 to n
 set the checkMark of menuItem i of menu ¬
 theMenu to FALSE
 end repeat
end unCheck

installMenu command; enabled of menuItem, name of menuItem, number of
menuItems, and script of menuItem menu item properties; name of menu and number
of menus menu item properties; menu keyword

chunkSize of member
Syntax: the chunkSize of member whichCastMember

This transition cast member property, which determines the transition's chunk size, does
the same as setting the smoothness slider in the Frame Properties: Transition dialog box.
It can be tested and set. Values are the number of pixels in each chunk of the transition
and can be any value from 1 to 128 pixels.

Example:

This statement sets the chunk size of the transition cast member Fog to 4 pixels:

set the chunkSize of member "Fog" to 4

clearFrame
Syntax: clearFrame

This command erases everything already in the current frame's sprite and effects
channels. It works during score recording only.

Example:

The following handler clears the content of each frame before it edits that frame during
score generation:

on newScore
beginRecording

 repeat with counter = 1 to 50
 clearFrame

 set the frameScript to 25
 updateFrame
 end repeat

 endRecording
end

Score generation

clearGlobals
Syntax: clearGlobals

This command sets all user-defined global variables to 0.

Example:

If you initialize a global variable with a string or value:

global foo

put "Director" into foo

The global variable foo contains the string Director until another string or value is put
into the global, or until the clearGlobals command is issued. This can be useful when
initializing global variables, or when opening a new movie that requires a new set of
global variables.

clearGlobals

When this command is issued, the global variable foo contains 0.

clickLoc
Syntax: the clickLoc

This function identifies the last place on the screen where the mouse was clicked. The
location is given as a point.

The value of clickLoc usually changes frequently. If you want to record a specific value of
clickLoc, it is a good idea to assign it to a variable at the time the click occurs.

Example:

The following on mouseDown handler displays the last mouse click location:

on mouseDown
 put the clickLoc
end mouseDown

If the click were 50 pixels from the left end of the stage and 100 pixels from the top of
the stage, the message window would display the following:

-- point(50, 100)

clickOn
Syntax: the clickOn

This function returns the last active sprite clicked by the user. An active sprite is a sprite
that has a sprite script associated with it.

When you want to detect whether the user clicks a sprite with no script, you must assign
a placeholder script to it ("--" for example) so that it can be detected by the clickOn.

The clickOn function has no effect in a repeat loop.

To detect a click on the stage, test whether the clickOn equals 0.

The value of clickLoc usually changes frequently. If you want to record a specific value of
clickLoc, it is a good idea to assign it to a variable at the time the click occurs.

Example 1:

This statement checks whether sprite 7 was the last active sprite clicked:

if the clickOn = 7 then alert "Sorry, try again."

Example 2:

This statement sets the foreColor of the last active sprite that was clicked to a random
color:

set the foreColor of sprite (the clickOn) to ¬

 random(255)-1

doubleClick, mouseDown, and mouseUp functions

close window
Syntax: close window windowIdentifier

This command closes the window specified by windowName.
To specify a window by name, use the syntax close window "name ", where you

replace name with the name of a window. Be sure to use the complete path name.
To specify a window by its number in the windowList, use the syntax close window

number, where you replace number with the window's number in the window list.

Lingo permits you to attempt to close a window that is already closed.

Example 1:

This statement closes the window named Panel:

close window "Panel"

Example 2:

This statement closes the window that is number 5 in the window list:

close window 5

open window command; windowList function

closeResFile
Syntax: closeResFile [whichFile]

On the Macintosh, this command closes the resource file specified by the string
expression whichFile. When the resource file is in a different folder than the current
movie, whichFile must specify a pathname. When no file is specified, all open resource
files are closed. In Windows, this command performs no operation and generates no error
message.

It is good practice to close any file you have opened as soon as you are finished using it.

Example 1:

This statement closes all open resource files:

closeResFile

Example 2:

This statement closes the file Special Fonts if it is in the same folder as the movie or in a
folder that is in Director's search path:

closeResFile "Special Fonts"

Example 3:

This statement closes the file Special Fonts in the folder Special Tools on the same disk
as the movie. The disk is identified by the variable currentDrive:

closeResFile currentDrive & ¬

 ":Special Tools:Special Fonts"

openResFile and showResFile commands

closeXlib
 Syntax: closeXlib [whichFile]

This command closes the Xlibrary file specified by the string whichFile . If the Xlibrary is
in another folder than the current movie, whichFile must specify a pathname. If no file is
specified, all open Xlibraries are closed.

Xtras and XObjects are stored in Xlibrary files. Xlibrary files are resource files that contain
XCOD (XObjects) resources. HyperCard XCMDs and XFCNs can also be stored in Xlibrary
files.

In Windows, using the .DLL extension for XObjects is optional.

It is good practice to close any file you have opened as soon as you are finished using it.

Example 1:

This statement closes all open Xlibrary files:

closeXlib

Example 2:

This statement closes the Xlibrary Video Disc Xlibrary when it is in the same folder as the
movie:

closeXlib "Video Disc Xlibrary"

Example 3:

This statement closes the Xlibrary Transporter Xtras in the folder New Xtras on the same
disk as the movie. The disk is identified by the variable currentDrive:

closeXlib currentDrive & ¬

 ":New XObjects:Transporter XObjects"

openXlib and showXlib commands

colorDepth
Syntax: the colorDepth

This property determines the color depth of the computer's monitor.

On the Macintosh, using this property lets you check the color depth of different
monitors and change it when appropriate.

In Windows, using this property lets you check the monitor's color depth, but not
change it. (Changing color depth in Windows requires using the System Setup program or
installing the proper video card driver.)

Possible values are the following:

1--Black-and-white

2--4 colors

4--16 colors

8--256 colors

16--32,768 colors

32--16,777,216 colors

When you assign a color depth higher than the monitor's color depth no color depth
change occurs.

On computers with more than one monitor, the colorDepth property refers to the
monitor that the stage is on. If the stage spans more than one monitor, the colorDepth
indicates the greatest depth of those monitors; setting the colorDepth attempts to put
all those monitors to the specified depth.

The colorDepth property can be tested and set. On the Macintosh, the default value is
the value set in the Monitors control panel.

Example 1:

This statement makes playing the segment "Full color" dependent on whether the
monitor color depth is set to 256 colors:

if the colorDepth = 8 then play movie "Full color"

Example 2:

This statement uses the colorQD function to check whether the monitor can display
color, and then sets the color depth to 256 colors if it is:

if the colorQD = TRUE then set the colorDepth to 8

colorQD function; switchColorDepth property

colorQD
Syntax: the colorQD

This function indicates whether the Color QuickDraw software is available on a
Macintosh.

The colorQD is TRUE (1) for a color-capable Macintosh. For any computer using
Windows, the colorQD is always TRUE regardless of what is on the computer.

The colorQD is FALSE (0) for a black-and-white-only Macintosh.

Note: A machine capable of displaying color may not have it switched on. This command
is best used in conjunction with colorDepth.

Example 1:

This statement checks whether the Macintosh is color capable and plays the movie
"Color Movie" if it is:

if the colorQD = TRUE then play movie "Color Movie"

Example 2:

This statement checks whether the Macintosh is color capable and sets the color depth
to 256 colors if it is:

if the colorQD = TRUE then set the colorDepth to 8

colorDepth and switchColorDepth properties

commandDown
Syntax: the commandDown

This function determines whether the Command key is being pressed on the Macintosh
or the Control key is being pressed in Windows.

The commandDown function is TRUE when the Command key is being pressed on the
Macintosh or the Control key is being pressed in Windows.

The commandDown function is FALSE when the Command key is not being pressed on
the Macintosh or the Control key is not being pressed in Windows.

You can use the commandDown together with the element the key to determine when
the Macintosh's Command key or the PC's Control key is pressed in combination with
another key. This lets you create handlers that are executed when the user presses
specified Command-key or Control-key combinations.

Note that Command key and Control-key equivalents for Director's authoring menus take
precedence while playing the movie, unless you have installed custom Lingo menus, or
are playing a projector version of the movie.

Example:

These statements have Lingo pause a projector whenever the user presses Command-P
on the Macintosh or Control-P in Windows. By setting the keyDownScript property to
doCommandKey, the on startMovie handler makes the doCommandKey handler the first
event handler executed when a key is pressed. The doCommandKey handler checks
whether the Command (or Ctrl) and P keys are pressed at the same time and pauses the
movie if they are.

on startMovie
 set the keyDownScript to "doCommandKey"
end startMovie

on doCommandKey
 if (the commandDown) and (the key = "p") then pause
end

controlDown, key, keyCode, optionDown, and shiftDown functions

constrainH

Syntax: constrainH (whichSprite , integerExpression)

This function evaluates integerExpression, and then gives a value that depends on the
horizontal coordinates of the left and right edges of whichSprite.

When the value is between the left and right coordinates, the value doesn't change.
When the value is less than the left horizontal coordinate, the value is changed to the

value of the left coordinate.
When the value is greater than the right horizontal coordinate, the value is changed

to the value of the right coordinate.

The constrainH and constrainV functions constrain only one axis each; the constraint
of sprite property limits both. Note that this function does not change the sprite's
properties.

Example 1:

These statements check the constrainH for sprite 1 when it has left and right
coordinates of 40 and 60:

put constrainH(1, 20)
-- 40

put constrainH(1, 55)
-- 55

put constrainH(1, 100)
-- 60

Example 2:

This statement constrains a movable slider (sprite 1) to the edges of a gauge (sprite 2)
when the mouse pointer goes past the edge of the gauge:

set the locH of sprite 1 to constrainH(2, the mouseH)

constrainV function; constraint of sprite, left, and right sprite properties

constraint of sprite
Syntax: the constraint of sprite whichSprite

This sprite property determines the constraints on the position of the sprite specified by
whichSprite. When the constraint of sprite property is turned on, the sprite
specified by whichSprite is constrained to the bounding rectangle of another sprite.

The constraint of sprite property affects moveable sprites, and the locH and locV
sprite properties. The constraint point of a moveable sprite cannot be moved outside the
bounding rectangle of the constraining sprite. (The constraint point for a bitmap sprite is
the registration point. The constraint point for a shape sprite is its top left corner.) When
a sprite has a constraint set, the constraint limits override any locH and locV sprite
property settings.

To remove a constraint of sprite property, set it to 0:

set the constraint of sprite whichSprite to 0
The constraint of sprite property can be tested and set. The default value is 0.

The constraint of sprite property is useful for constraining a moveable sprite to the
bounding rectangle of another sprite. This is a way to simulate a "track" for a slider
control or restrict where on the screen a user can drag an object in a game.

Example 1:

This statement constrains sprite (i + 1) to the boundary of sprite 14.

set the constraint of sprite (i + 1) to 14

Example 2:

This statement checks whether sprite 3 is constrained and activates the handler
showConstraint if it is. (The operator <> performs the same operation as "not equal
to.")

if the constraint of sprite 3 <> 0 then ¬
 showConstraint

constrainH and constrainV functions; locH and locV sprite properties

constrainV

Syntax: constrainV (whichSprite , integerExpression)

This function evaluates integerExpression, and then gives a value that depends on the
vertical coordinates of the top and bottom edges of the sprite specified by whichSprite.

When the value is between the top and bottom coordinates, the value doesn't
change.

When the value is less than the top coordinate, the value is changed to the value of
the top coordinate.

When the value is greater than the bottom coordinate, the value is changed to the
value of the bottom coordinate.

Note that this function does not change the sprite properties.

Example 1:

These statements check the constrainV for sprite 1 when it has top and bottom
coordinates of 40 and 60:

put constrainV(1, 20)
-- 40

put constrainV(1, 55)
-- 55

put constrainV(1, 100)
-- 60

Example 2:

This statement constrains a movable slider (sprite 1) to the edges of a gauge (sprite 2)
when the mouse pointer goes past the edge of the gauge:

set the locV of sprite 1 to ¬
 constrainV(2, the mouseV)

bottom of sprite, constraint of sprite, and top of sprite sprite properties;
constrainH function

contains

Syntax: stringExpression1 contains stringExpression2

This operator compares two strings.
When stringExpression1 contains stringExpression2, the condition is TRUE (1).
When stringExpression1 does not contain stringExpression2, the condition is FALSE

(0).

The contains comparison operator has a precedence level of 1.

The contains comparison operator is useful for checking whether the user types a
specific character or string of characters. You can also use the contains operator to
search one or more fields for specific strings of characters.

Example:

This statement determines whether a string from a field contains only numeric input
before converting it using the value() function. You can use this handler to test it:

on isNumber aLetter
 put "1234567890." into digits
 if digits contains aLetter then
 return TRUE
 else
 return FALSE
 end if
end isNumber

Note: The string comparison is not sensitive to case or diacritical marks; "a" and "Å" are
treated the same.

offset function; starts comparison operator

continue
Syntax: continue

The continue command resumes playing the movie after a pause.

Example:

This statement has the movie resume playing when it is paused and the Return key is
pressed:

set the keydownScript to "if the key = RETURN ¬
 then continue"

This handler checks whether the movie is currently paused when the user releases the
mouse button and has it continue if it is:

on mouseUp
 if the pauseState = #paused then continue
end

delay and pause commands; pauseState function

controlDown
Syntax: the controlDown

This function determines whether the Control key on a Macintosh or the Ctrl key on a PC
is being pressed.

The controlDown function is TRUE when the Control key is being pressed.
The controlDown function is FALSE when the Control key is not being pressed.

You can use the controlDown function together with the key to check for combinations
of the Control key and another key.

Example:

This keyDown handler checks whether the key that is pressed is the Control key and
activates the doControlKey handler if it is. The argument (the key) identifies which key
was pressed in addition to the Control key.

on keyDown
 if the controlDown then doControlKey (the key)
end

charToNum, commandDown, key, keyCode, optionDown, and shiftDown
functions

controller of member
Syntax: the controller of member castName

A digital video movie cast member can be made to show or hide its controller with this
cast member property. Setting this property to 1 shows the controller; setting it to 0
hides it.

The controller of member property applies to QuickTime and QuickTime for Windows
movies only. Setting controller of member for a Video for Windows movie performs no
operation and generates no error message. Checking the controller of member for a
Video for Windows movie always returns FALSE.

The digital video movie must be in directToStage playback mode in order to display the
controller.

Example:

This statement has the QuickTime cast member Demo show its controller:

set the controller of member "Demo" to 1

directToStage of member cast member property

copyToClipBoard
Syntax: copyToClipBoard member whichCastmember

This command copies the specified cast member to the Clipboard. You can use this
command to copy cast members between movies or applications. The cast window does
not need to be the active window when you use the copyToClipBoard command.

Example 1:

This statement copies the cast member named chair to the Clipboard:

copyToClipBoard member "chair"

Example 2:

This statement copies cast member number 5 to the Clipboard:

copyToClipBoard member 5

cos
Syntax: cos (angle)

This function calculates the cosine of the specified angle. The angle must be expressed
in radians.

Example:

The following statement calculates the cosine of pi ()/2 and displays it in the message
window:

put cos (pi ()/2)

count
Syntax: count (list)

This function returns the number of entries in the specified list.

The count command works with linear and property lists.

Example:

This statement displays the number 3, the number of entries:

put count ([10, 20, 30])

-- 3

crop of member
Syntax: the crop of member whichCastmember

This cast member property affects how the digital video cast member is displayed inside
a sprite when the digital movie is larger than the sprite that it appears in. It can be
tested and set.

When the crop of member is FALSE the cast member is scaled--either stretched or
shrunk--to fit inside the sprite rectangle.

When the crop of member is TRUE, the cast member is not scaled. It is cropped to fit
inside the sprite rectangle.

Example:

This statement instructs Lingo to crop any sprite that refers to the digital video cast
member Interview:

set the crop of member "Interview" to TRUE

center of member digital video cast member property

cursor
Syntax: cursor [castNumber , maskCastNumber]

or

cursor whichCursor

This command changes the cast member that is used for a cursor. The cursor command
stays in effect until you turn it off by setting the cursor to zero.

Use the syntax cursor [castNumber , maskCastNumber] to specify the number of a
cast member to use as a cursor and its optional mask. The hot spot of the cursor is the
registration point of the cast member.

The cast member that you specify must be a 1-bit cast member. If the cast member
is larger than 16 x 16 pixels, Director crops it to a 16 x 16 square, starting in the upper left
corner of the image. The bitmap's registration point is the cursor's hot spot.

Use the syntax cursor whichCursor to use the default cursors that are supplied by
the system. The term whichCursor must be an integer that specifies the appearance of the
cursor. The following values specify cursors:

0 -- no cursor set
-1 -- arrow (pointer) cursor
1 -- I-beam cursor
2 -- crosshair cursor
3 -- crossbar cursor
4 -- watch cursor
200 -- blank cursor

To hide the cursor, set the cursor to 200 (a blank cursor).

During system events such as loading a file, the operating system may put up the watch
cursor, and then change to the pointer cursor when returning control to the application.
This overrides the cursor command settings from the previous movie. Therefore, in a
presentation using a custom cursor for multiple movies, store any special cursor resource
number as a global variable. Global Lingo variables stay in memory between movies.
This allows you to use the cursor command at the beginning of any new movie that is
loaded.

Cursor commands can be interrupted by an Xtra or other external agent. If the cursor is
set to a value in Director and something else takes control of the cursor, resetting the
cursor to the original value has no effect because Director doesn't perceive that the
cursor changed. You can work around this by explicitly setting the cursor to some third
value and then resetting it to the original value.

Notes:
In Windows, a cursor can't be a resource; it must be a cast member. If a cursor isn't

available in Windows because it hasn't been converted from a resource to a cast member,
Lingo uses the standard arrow cursor instead. It is recommended that you don't make
custom cursors resources when you create movies that you intend to play on both the
Macintosh and PC.

Be sure not to confuse cursor 1 with cursor [1]. The first selects the I-beam from
the system cursor set; the second uses castmember 1 as the custom cursor.

Example:

On the Macintosh, this statement changes the cursor to a watch cursor whenever the
value in the variable named status equals 1:

if status = 1 then cursor 4

This handler checks whether the cast member assigned to the variable is a 1-bit cast
member and then uses it as the cursor if it is:

on myCursor someMember
if the depth of member someMember = 1
then cursor[someMember]
else

beep
end if

end

cursor of sprite property; openResFile command; rollOver function

cursor of sprite
Syntax: the cursor of sprite whichSprite to [castNumber, maskCastNumber]

the cursor of sprite whichSprite to whichCursor

This sprite property determines the cursor resource that is used when the pointer is over
the sprite specified by the integer expression whichSprite. The cursor property stays in
effect until you turn it off by setting the cursor to zero.

When you set the cursor of sprite in a given frame, Director keeps track of the sprite
rectangle to know whether to alter the cursor. This rectangle persists when the movie
enters another frame unless you set the cursor of sprite property for that channel to 0.

Note: In Windows, a cursor can't be a resource; it must be a cast member. If a cursor
isn't available in Windows because it hasn't been converted from a resource to a cast
member, Lingo uses the standard arrow cursor instead. It is recommended that you don't
make custom cursors resources when you create movies that you intend to play on both
the Macintosh and PC.

The cursor of sprite property is an integer that specifies the resource ID number of
the cursor. The following cursors are always available:

0 --no cursor set; uses system default
-1 --arrow (pointer) cursor
1 --I-beam cursor
2 --crosshair cursor
3 --crossbar cursor
4 --watch cursor
200 --blank cursor

To hide the cursor, set the cursor to 200 (a blank cursor resource).

To use custom cursors, set the cursor of sprite property to an external resource that
contains the custom cursor.

The cursor of sprite property is useful for changing the cursor when the mouse
pointer is over specific regions of the screen. You can use this to indicate regions where
certain actions are possible when the user clicks.

When the cursor is over the location of a sprite that has been removed, the rollover still
occurs. Avoid this problem by not doing rollovers over these locations or by relocating
the sprite up above the menu bar before deleting it.

On the Macintosh, you can use a numbered cursor resource in the current open movie
file as the cursor by replacing whichCursor with the number of the cursor resource.

The cursor of sprite property can be tested and set.

Example:

This statement changes the cursor to a watch cursor whenever the value in the variable
named status equals 1:

if status = 1 then cursor 4

cursor and openResFile commands

date
Syntax: the abbr date

the abbrev date
the abbreviated date
the date
the long date
the short date

This function gives the current date in the system clock in one of three formats:
abbreviated, long, or short. If no format is specified, the default is short. The
abbreviated format can also be referred to as abbrev and abbr.

The format that Director uses parts of the date vary depending on how the date is
formatted on the computer. As a result, you have no reliable way to use the date in
calculations after you distribute the movie.

In Windows, you can customize the date display by using the International control
panel. (Windows stores the current short date format in the SYSTEM.INI file. Use this value to
determine what the parts of the short date indicate.)

On the Macintosh, you can customize the date display by using the Date & Time
control panel.

Example 1:

This statement gives the abbreviated date:

put the abbreviated date

-- "Sat, Sep 7, 1991"

Example 2:

This statement gives the long date:

put the long date

-- "Saturday, September 7, 1991"

Example 3:

This statement gives the short date:

put the short date

-- "9/7/91"

Example 4:

This statement tests whether the current date is January 1 by checking whether the first
four characters of the date are 1/1. If it is January 1, the alert "Happy New Year!"

appears:

if char 1 to 4 of the date = "1/1/" ¬

 then alert "Happy New Year!"

Note: The three date formats vary, depending on the country for which your System file
was designed. These examples are for the United States.):

time function

delay
Syntax: delay numberOfTicks

This command halts the movie for a given amount of time. The integer expression
numberOfTicks specifies the number of ticks to wait. (There are 60 ticks per second.) The
only mouse and keyboard interactivity possible during this time is to stop the movie by
pressing Control+Alt+Period.

The delay command works only when the playback head is moving. Place scripts using
the delay command in either an on enterFrame or on exitFrame handler.

To mimic the behavior of a halt in a handler when the playback head is not moving, use
the startTimer command or assign the current value of the timer to a variable and
wait for an amount of time to pass before exiting the frame. (An example is in the
following set.)

Because it increases the time of individual frames, the delay command is useful for
controlling the playback rate of a sequence of frames.

Example 1:

This handler delays the movie for 2 seconds when the playback head exits the current
frame:

on exitFrame
 delay 2 * 60
end exitFrame

Example 2:

This handler, which could be placed in a frame script, delays the movie a random
number of ticks:

on keyDown
 if the key = RETURN then delay random(180)
end keyDown

Example 3:

The first of these handlers sets timer when the playback head leaves a frame. The
second handler, assigned to the next frame, loops in the frame until the specifed amount
of time passes:

--script for first frame
on exitFrame
 global gTimer
 set gTimer = the ticks
end

--script for second frame
on exitFrame
 global gTimer
 if gTimer < (10 * 60) then
 go to the frame
 end if
end

Note: The delay command does not function when the playback head is not moving.

startTimer command; timer property

delete
Syntax: delete chunkExpression

This command deletes the specified chunk expression (character, word, item, or line) in
any string container. Sources of strings include field cast members and variables that
hold strings.

Example 1:

This statement deletes the first word of line 3 in the field cast member Address:

delete word 1 of line 3 of member "Address"

Example 2:

This statement deletes the first character of the string in the variable bidAmount:

if char 1 of bidAmount = "$" then delete char 1 ¬
 of bidAmount

char...of, field, item...of, line...of, word...of, chunk expression keywords; hilite
text property, Understanding text and fields

deleteAt
Syntax: deleteAt list , number

This command deletes the item in the position specified by number from the list
specified by list. The value number is the item's position in the order of the list.

If you try to delete an object that isn't in the list, Director gives an alert. You can avoid
this by first checking whether the item is in the list.

The deleteAt command works with linear and property lists.

Example:

This statement deletes the second item from the list named designers, which contains
["gee", "kayne", "ohashi"]:

set designers = ["gee", "kayne", "ohashi"]
deleteAt designers, 2

The result is the list ["gee", "ohashi"].

This handler checks whether an object is in a list before attempting to delete it:

on myDeleteAt theList, theIndex
 if count(theList) < theIndex then
 beep
 else
 deleteAt theList, theIndex
 end if
end

addAt command

deleteFrame
Syntax: deleteFrame

This command deletes the current frame. After the current frame is deleted, the next
frame becomes the new current frame.

The deleteFrame command works during a score generation session only.

Example:

The following handler checks whether the sprite in channel10 of the current frame has
gone past the right edge of a 640 x 480 stage and deletes the frame if it has:

on testSprite
beginRecording

 if the locH of sprite 10 > 640 ¬
 then deleteFrame

 endRecording
end

deleteOne
Syntax: deleteOne list, value

This command deletes a value from a linear or property list. If the value appears in the
list more than once, deleteOne deletes the first occurrence only.

When the list is a property list, the property associated with the deleted value is also
removed from the list.

The deleteOne command works with linear lists only. Using deleteOne with a property
list produces a script error.

Example:

The first statement creates a list consisting of the days Tuesday, Wednesday, and Friday.
The second statement deletes the name Wednesday from the list.

set days = ["Tuesday", "Wednesday", "Friday"]
deleteOne days, "Wednesday"
put days
-- ["Tuesday", "Friday"]

The put days statement has the message window display the result, which is:
["Tuesday", "Friday"].

deleteProp
Syntax: deleteProp list, property

This command deletes the item that has the specified property from the specified list.
For linear lists, this is the same as the deleteAt command. When there are more than
one of the same property, only the first property in the list is deleted.

The deleteProp command works with property lists only. Using deleteProp with a linear
list produces a script error.

Example:

This statement deletes the property color from the list [#height:100, #width: 200,
#color: 34, #ink: 15], which is called spriteAttributes:

deleteProp spriteAttributes, #color

The result is the list [#height:100, #width: 200, #ink: 15].

deleteAt command

depth of member
Syntax: the depth of member whichCastmember

This cast member property gives the color depth of the bitmap cast member specified by
whichCastmember. Black and white is 1-bit color depth; 256 colors is 8-bit color depth;
thousands of colors is 16-bit color depth; and millions of colors is 32-bit color depth.

This property can be tested, but not set from Lingo.

Example:

This statement determines the color depth of the cast member Shrine:

put the depth of member "Shrine"

deskTopRectList

Syntax: the deskTopRectList

This system property indicates the size of the computer's monitors and their position in
the desktop. It is useful for checking whether objects such as windows, sprites, and pop-
up menus appear entirely on one screen.

The result is a list of standard rect coordinates, where each rect is the boundary of a
monitor. The coordinates for each monitor are relative to the upper left corner of monitor
1, which has the value (0,0). The first set of rect coordinates is the size of the first
monitor. If a second monitor is present, there is a second set of coordinates that show
where the corners of the second monitor are relative to the first monitor.

This property can be tested but not set.

Example:

This statement tests the size of the monitors connected to the computer and displays the
result in the message window:

put the deskTopRectList
-- [rect(0,0,1024,768), rect(1025, 0, 1665, 480]

The result shows that the first monitor is 1024 x 768 pixels and the second monitor is
640 x 480 pixels.

This handler tells how many monitors are in the current system:

on countMonitors
 return count(deskTopRectList)
end

digitalVideo
center of member
controller of member
crop of member
directToStage of member
duration of member
frameRate of member
loop of member
movieRate of sprite
movieTime of sprite
pausedAtStart
preload of member
sound of member
trackStartTime(member)
trackStopTime(member)
video of member
volume of member

digitalVideoTimeScale
Syntax: the digitalVideoTimeScale

This system property determines the time units that the system uses to measure time for
digital video cast members. The value is in units per second. When the
digitalVideoTimeScale is set to 0, Director uses the time scale of the movie that is
currently playing.

Setting the time unit that measures digital video lets you precisely access tracks by
making sure that the system's time unit for video is a multiple of the digital video's time
unit.

Example:

This statement sets the time units that the system uses to measure digital video to 600:

set the digitalVideoTimeScale to 600

digitalVideoType of member
Syntax: the digitalVideoType of member whichCastmember

This digital video cast member property indicates the format of the specified digital
video. This property can be tested but not set. Possible values are #quickTime or
#videoForWindows.

Example:

The following statement tests whether the cast member Today's Events is a QuickTime or
AVI digital video and displays the result in the message window:

put the digitalVideoType of member "Today's Events"

directToStage of member
Syntax: the directToStage of member castName

This property determines whether a digital video cast member plays in front of all other
layers on the stage.

When this property is set to 1, a digital video movie plays in front of all other layers.
When this property is set to 0, a digital video movie cast member can appear in any

layer of the stage's animation planes. (In Windows, the directToStage of member property
is always TRUE. Setting the directToStage of member to FALSE has no effect in Windows.)

No cast members appear in front of a directToStage digital video movie. Also, ink
effects do not affect the appearance of a directToStage digital video movie. Using this
property may improve the playback performance of a digital video movie cast member.

Example:

This statement makes the QuickTime movie "The Residents" always play in the top layer
of the stage:

set the directToStage of member "The Residents" to 1

do
Syntax: do stringExpression

This command evaluates stringExpression and executes the result as a Lingo statement.
This command is useful for evaluating expressions that the user has typed, and for
executing commands stored in string variables, fields, arrays, and files.

Using uninitialized local variables within a do command creates a compile error. Initialize
any local variables in advance.

Note: This command does not allow global variables to be declared, they must be
declared in advance.

Example:

This statement performs the statement contained within quotes:

do "beep 2"

do getAt(commandList, 3)

dontPassEvent
Syntax: dontPassEvent

This command prevents Lingo from passing an event message to subsequent locations in
the message hierarchy.

The dontPassEvent command applies only to the current event being handled. It does
not affect future events.

The dontPassEvent command applies only within primary event handlers or handlers
that they call. It has no effect elsewhere.

Example 1:

This handler has the computer beep when the Tab or Enter key is pressed and keeps the
message from passing on to subsequent locations in the message hierarchy:

on myKey

 if the key = TAB or the key = ENTER then beep

 dontPassEvent

end myKey

Example 2:

This statement makes myKey the primary event handler:

set the keyDownScript to "myKey"

When these are in effect at the same time, pressing the Tab or Enter key any time the
movie is playing has the computer beep but not pass the keyDown message on to
anywhere else in the movie.

doubleClick
Syntax: the doubleClick

This function determines whether the last two mouse clicks were considered a double-
click.

The doubleClick function is TRUE if the last two mouse clicks were a double-click.
The doubleClick function is FALSE if the last two mouse clicks were not a double-

click.

Example:

This statement sends the playback head to the frame Enter Bid when the user double-
clicks the mouse button.

if the doubleClick then go to frame "Enter Bid"

clickOn, mouseDown, mouseUp functions

drawRect of window
Syntax: the drawRect of window windowName

This window property identifies the rectangular coordinates of the section of the movie
that appears in the movie's window. The coordinates are given as a rect, with entries in
the order left, top, right, and bottom.

This can be useful for scaling or panning movies.

The drawRect of window property can be tested or set.

Example 1:

This statement displays the current coordinates of the movie window called Control
Panel.

put the drawRect of window "Control Panel"
-- rect(10, 20, 200, 300).

Example 2:

This statement sets the rect of the movie to the values of the rect movieRectangle. The
portion of the movie within the rect is the part of the movie that appears in the window:

set the drawRect of window "Control Panel" ¬
 to movieRectangle

dropShadow of member
Syntax: the dropShadow of member whichCastMember

This field cast member property determines the size of the drop shadow for the
characters in a field cast member. Possible values are a range of pixels.

Example:

This statement sets the drop shadow of the field cast member Comment to five pixels:

set the dropShadow of member "Comment" to 5

duplicate(list)
Syntax: duplicate(oldList)

or

set <x> = duplicate(oldList)

This function returns a copy of a list. It is useful for saving the current content of a list for
later use. Nested lists (list items that are themselves lists) are copied as lists, with all
their content duplicated.

When you assign a list to a variable, the variable contains a reference to the list, not the
list itself. You can make an independent copy of the list by using the following structure:

set newList = value(string(oldList))

Example:

This statement makes a copy of the list CustomersToday and assigns it to the variable
CustomerRecord:

put duplicate(CustomersToday) into CustomerRecord

duplicate member
Syntax: duplicate member original [, new]

This command makes a copy of the cast member specified by original. The optional new
parameter specifies a specific cast window location for the duplicate cast member. If the
new parameter isn't included, the duplicate cast member is placed in the first open cast
window position.

Example 1:

This statement makes a copy of cast member Desk and places it in the first empty cast
window position.

duplicate member "Desk"

Example 2:

This statement makes a copy of cast member Desk and places it in cast window position
125.

duplicate member "Desk", member 125

duplicateFrame
Syntax: duplicateFrame

This command duplicates the current frame and its content. The duplicate frame is
inserted after the current frame and then becomes the current frame. This command can
be used during score generation only.

The duplicateFrame command does the same thing as the insertFrame command.

Example:

When used in the following handler, the duplicateFrame command creates a series of
frames that have cast member Ball in the external cast Toys assigned to sprite channel
20. The number of frames is determined by the argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set the memberNum of sprite 20 to ¬
 the number of member "Ball" of castLib "Toys"
 repeat with i = 0 to numberOfFrames
 duplicateFrame
 end repeat
 endRecording
end

duration of member
Syntax: the duration of member whichCastmember

This cast member property determines the duration of whichCastmember.

 When whichCastmember is a digital video cast member, the property indicates the digital
video's duration. The value is in ticks (60ths of a second).

 When whichCastmember is a transition cast member, the property indicates the
transition's duration. The value for a transition is in milliseconds. During playback, this
setting has the same effect as the Duration setting in the Frame: Transition dialog box.

Example 1:

This statement sets the variable howLong to the duration of the QuickTime cast member
Demo:

put the duration of member "Demo" into howLong

Example 2:

This statement sets the duration of the transition cast member Fog to 1 second:

set the duration of member "Fog" = 60

editable of member
Syntax: the editable of member whichCastmember

This field cast member property determines whether the specified field cast member is
editable on stage.

When the editable of member is TRUE, the specified field cast member is editable.
When the editable of member is FALSE, the specified field cast member isn't

editable.

Example:

This statement makes the field cast member Answer editable:

set the editable of member "Answer" = TRUE

editable of sprite
Syntax: the editable of sprite whichSprite

This sprite property indicates whether a field sprite is editable.
When the field can be edited by the user, the editable of sprite is TRUE.
When the field cannot be edited by the user, the editable of sprite is FALSE.

To use Lingo to make a field sprite editable, the sprite must first be a puppet.

The editable of sprite property lets you change whether a field can be edited as the
movie plays. This lets you turn editable on and off depending on current conditions in the
movie.

You can also make a field cast member editable by using the Editable option in the Field
Cast Member Properties dialog box.

You can make a field sprite editable by using the Editable option in the score.

The editable of sprite property can be tested and set.

For more information about handling several editable fields in a movie, see Learning
Lingo.

Example 1:

This handler first makes the field sprite a puppet and then makes it editable:

on myNotes
 puppetSprite 5, TRUE
 set the editable of sprite 5 to TRUE
end

Example 2:

This statement checks whether a field sprite is editable and displays a message if it is:

if the editable of sprite 13 = TRUE ¬
 then set the text of member "Notice" to "Please ¬
 enter your answer below."

EMPTY
 Syntax: EMPTY

This character constant represents the empty string, "", a string with no characters.

You can scroll to a specific line in a scrolling field by inserting EMPTY before the line.

Example 1:

This statement erases all characters in the field cast member Notice by setting the field
to EMPTY:

set the text of member "Notice" to EMPTY

Example 2:

This statement does the same as the previous statement but uses a different form:

put EMPTY into field "Notice"

emulateMultiButtonMouse
Syntax: the emulateMultiButtonMouse

This system property determines whether clicking the right mouse button on a Windows
computer corresponds to clicking the mouse button with the Control key pressed on a
Macintosh. Since the mouse buttons for Windows and Macintosh computers are different,
this property is very useful for providing consistent mouse button responses for cross-
platform movies.

When the emulateMultiButtonMouse is TRUE, the movie treats clicking the right
mouse button on a Windows computer the same as clicking the mouse button while the
Control key is pressed on the Macintosh.

When the emulateMultiButtonMouse is FALSE, the movie doesn't treat clicking the
right mouse button on a Windows computer the same as clicking the mouse button while the
Control key is pressed on the Macintosh.

Example:

The following statement checks whether the movie is playing on a PC and sets the
emulateMultiButtonMouse to TRUE if it is:

if the machineType = 256 then set ¬
the emulateMultiButtonMouse to TRUE

the keyPressed, the rightMouseDown , the rightMouseUp

enabled of menuItem
Syntax: the enabled of menuItem whichItem of menu whichMenu

This menu item property determines whether the menu item specified by whichItem is
displayed in plain text or dimmed, and whether it is selectable. The term whichMenu
specifies the menu that contains the menu item.

If the enabled of menuItem is TRUE, the menu item appears in plain text and is
selectable.

If the enabled of menuItem is FALSE, the menu item appears dimmed and is not
selectable.

The expression whichItem can be either a menu item name or a menu item number. The
expression whichMenu can be either a menu name or a menu number.

The enabled property can be tested and set. The default value is TRUE.

Example:

This handler enables or disables all the items in the specified menu. The argument
theMenu specifies the menu; the argument Setting specifies TRUE or FALSE. For example,
the calling statement ableMenu ("Special", FALSE) disables all the items in the Special
menu.

on ableMenu theMenu, vSetting
 put the number of menuItems of menu theMenu into n
 repeat with i = 1 to n
 set the enabled of menuItem i of menu theMenu ¬
 to vSetting
 end repeat
end ableMenu

name of menu, number of menus, checkMark of menuItem, script of
menuItem, and number of menuItems properties

end
This keyword marks the end of handlers, methods, and multi-line control structures.

if...then, method, on, repeat while, and repeat with keywords; on mouseDown,
on mouseUp, on keyDown, on startMovie, on stepMovie, on stopMovie, and on idle
event handlers.

end case
Syntax: end case

This keyword ends a case statement.

Example:

This handler uses the end case keyword to end the case statement:
on keyDown
 case the key
 of "A": go to frame "Apple"
 of "B", "C" :
 puppetTransition 99
 go to frame "Mango"
 otherwise beep
 end case
end keyDown

case

end repeat
See repeat while

repeat with
repeat with...in list
repeat with...down to

endRecording
Syntax: endRecording

This keyword ends a score update session.

You can resume puppetting after the endRecording keyword is issued.

Example:

When used in the following handler, the endRecording keyword ends the score
generation session:

on animBall numberOfFrames
 beginRecording
 set the memberNum of sprite 20 to ¬
 the number of member "Ball"
 set horizontal = 0
 set vertical = 300
 repeat with i = 0 to numberOfFrames
 set the locH of sprite 20 to horizontal
 set the locV of sprite 20 to vertical
 set horizontal = horizontal + 3
 set vertical = vertical + 2
 updateFrame
 end repeat
 endRecording
end

ENTER
Syntax: ENTER

This character constant represents the Enter key.
This key is marked "enter" on the Macintosh keyboard.
Although PC keyboards also label the key that enters a carriage return as Enter, the

element ENTER only refers to the Enter key on the number pad.

Example:

This statement checks whether the Enter key is pressed and sends the playback head to
the frame addSum if it is:

on keyDown
 if the key = ENTER then go to frame "addSum"
end

enterFrame
 See on enterFrame event handler.

erase member
Syntax: erase member whichCastmember

This command deletes the specified cast member and leaves its slot in the cast window
empty.

Example 1:

This statement deletes the cast member named Gear in the cast Hardware:

erase member "Gear" of castLib "Hardware"

Example 2:

This handler deletes cast members start through finish:

on deleteMember start, finish
 repeat with i = start to finish
 erase member i
 end repeat
end on deleteMember

exit
Syntax: exit

This keyword has Lingo leave a handler, and return to the place from where the handler
was called. When the handler is nested within another handler, Lingo returns to the main
handler.

Example:

The first statement of this script checks whether the monitor is set to black and white,
and exits if it is:

on setColors
 if the colorDepth = 1 then exit
 set the foreColor of sprite 1 to 35
end setColors

abort command; on and method keywords

exit repeat
Syntax: exit repeat

This keyword has Lingo leave a repeat loop and go to the statement following the end
repeat statement, but remain within the current handler or method.

The exit repeat keyword is useful for breaking out of a repeat loop when a specified
condition--such as two values being equal or a variable being a certain value--exists.

Example:

This handler looks for the position of the first vowel in a string represented by the
variable testString. As soon as the first vowel is found, the exit repeat command has
Lingo leave the repeat loop and go to the statement return i:

on findVowel testString
 repeat with i = 1 to the number of chars ¬
 in testString
 if "aeiou" contains ¬
 char I of testString then exit repeat
 end repeat
 return i
end findVowel

repeat while and repeat with keywords

exitLock
Syntax: the exitLock

This property determines whether the user can quit to the Desktop from projectors.
When the exitLock is FALSE, the user can quit to the desktop by pressing

Control+period, Control+Q or Control+W.
When the exitLock is TRUE, the user cannot quit to the desktop by pressing

Control+period or Control+w.

The exitLock property can be tested and set. The default value is FALSE.

Example 1:

This statement sets the exitLock property to TRUE:

set the exitLock to TRUE

Example 2:

This handler checks whether Control+period or Control+Q was pressed and whether the
exitLock is set so that the user cannot exit to the Desktop. When this is the case, the
playback head goes to the frame "quit sequence," which could provide an alternative
way to exit the movie:

on checkExit
 if the commandDown and ¬
 (the key = "." or the key = "q") and ¬
 the exitLock = TRUE then go to frame "quit sequence"
end checkExit

exp
Syntax: exp(integer)

This function calculates e, the natural logarithm base, to the power specified by integer.

Example:

The following statement calculates the value of e to the exponent 5:

put exp(5)

-- 148.4132

FALSE
Syntax: FALSE

This logical constant applies to an expression that is logically FALSE, such as 2 > 3. When
treated as a number value, FALSE has the numerical value of 0.

This is functionally equivalent to the pauseState being FALSE.
Example:

This statement turns off the soundEnabled property by setting it to FALSE:

set the soundEnabled to FALSE

TRUE logical constant, NOT keyword

field
Syntax: field whichField

This keyword refers to a field cast member.

The field cast member is specified by whichField.
When whichField is a string, it is used as the cast member name.
When whichField is an integer, it is used as the cast member number.

Character strings can be read from or put into the field. You can also use chunk
expressions with fields.

Example:

This statement puts the characters 5 through 10 of the field name entry into the variable
myKeyword:

put char 5 to 10 of member "entry" into myKeyword

This statement checks whether the user entered the word "desk" and goes to the frame
"deskBid" if he or she did:

if field "bid" contains "desk" then go to "deskBid"

char...of, item...of, line...of, and word...of chunk expression keywords

fileName of castLib
Syntax: the fileName of castLib whichCast

This property gives the filename of the specified cast.
When the cast is external, the fileName of castLib gives the cast's full pathname

and filename.
When the cast is internal, the fileName of castLib gives the name of the movie.

This property can be tested and set.

Example:

This statement displays the pathname and filename of the external cast Buttons in the
message window:

 put the fileName of castLib "Buttons"

This statement sets the filename of the external cast Buttons to Content.Cst:

set the fileName of castLib "Buttons" to ¬
the pathName&"Content.Cst"

The movie would then use the external cast file Content.Cst as the cast Buttons.

fileName of member
Syntax: the fileName of member whichCastmember

This cast member property refers to the name of the file assigned to the linked cast
member specified by cast member. This is useful for switching which external linked file
is assigned to a cast member while the movie plays, similar to the way you can switch
cast members. When the linked file is in a different folder than the movie, you must
include the file's pathname.

The fileName of member property can be tested and set. After the filename is set,
Director uses that file the next time the cast member is used.

Example:

This statement makes the QuickTime movie "ChairAnimation" the linked file assigned to
cast member 40:

set the fileName of member 40 = "ChairAnimation"

fileName of window
Syntax: the fileName of window whichWindow

This window property refers to the filename of the movie assigned to the window
specified by whichWindow. When the linked file is in a different folder than the movie,
you must include the file's pathname.

You assign a movie to a window by setting the fileName of window for the window to the
movie's filename. This is required before you can play the movie in the window.

The fileName of window property can be tested and set.

Example:

This statement assigns the file named Control Panel to the window named Tool Box:

set the fileName of window "Tool Box" = ¬

 "Control Panel"

This statement displays the filename of the file assigned to the window named
Navigator:

put the fileName of window "Navigator"

filled of member
Syntax: the filled of member whichCastmember

This shape cast member property indicates whether the specified cast member is filled
with a pattern.

 When the filled of member is TRUE, the shape is filled with a pattern.
 When the filled of member is FALSE, the shape isn't filled with a pattern.

Example:

The following statements make the shape cast member Target Area a filled shape and
assigns it the pattern numbered 0, which is a solid color:

set the filled of member "Target Area" = TRUE
set the pattern of member "Target Area" = 0

filled of member

findEmpty
Syntax: findEmpty(member castmemberNumber)

This function gives the next empty cast member position on or after the cast member
specified by whichCastmember. This function works on the current cast.

Example:

This statement finds the first empty cast member on or after cast member 100.

put findEmpty(member 100)

findPos
Syntax: findPos(list, prop)

This command identifies which position the property specified by property holds in the
property list specified by list.

The findPos command works with sorted property lists only. Using findPos with a linear
list or unsorted property list produces a script error.

The findPos command does the same thing as the findPosNear command, except that
the result of the findPos command is void when the specified property is not in the list.

Example:

This statement identifies the position of the property c in the list Answers, which consists
of [#a:10, #b:12, #c:15, #d:22]:

findPos(Answers, #c)

The result is 3, because c is the third property in the list.

findPosNear command

findPosNear
Syntax: findPosNear(list , prop)

This command identifies which position the property specified by property holds in the
property list specified by list.

The findPosNear command works with sorted property lists only. Using findPosNear
with a linear list or unsorted property list produces an error.

The findPosNear command does the same thing as the findPos command, except that
when the specified property is not in the list, the findPosNear command identifies the
position of the closest property in the list, based on the sort order. This would be useful in
finding the closest name in a sorted directory of names.

Example:

This statement identifies the position of a property in the sorted list Answers, which
consists of [#Nile:2, #Pharaoh:4, #Raja:0]:

findPosNear(Answers, #Ni)

The result is 1, because Ni is closest to Nile, the first property in the list.

findPos command

finishIdleLoad
Syntax: finishIdleLoad loadTag

This command completes loading for all the cast members that have the specified load
tag.

Example:

 This statement completes loading of all cast members that have the load tag 20:

finishIdleLoad 20

fixStageSize
Syntax: the fixStageSize

This property determines whether the stage size remains the same when you load a new
movie, regardless of the stage size saved with that movie. When the fixStageSize
property is TRUE, the stage size remains the same when you load a new movie.

The fixStageSize property cannot change the stage size for a movie that is currently
playing. This property is primarily used for movies played back with the player.

The fixStageSize property can be tested and set. The default value is TRUE.

Example:

This statement determines if the fixStageSize property is turned on, and sends the
playback head to a specified frame if it is.

if the fixStageSize = FALSE then ¬

 go to frame "proper size"

This statement sets the fixStageSize property to the opposite of its current setting:

set the fixStageSize to (not the fixStageSize)

centerStage property

float
Syntax: float (expression)

Converts an expression to a floating point number. The number of digits that follow the
decimal point is set using the floatPrecision property.

Example:

This statement converts the integer 1 to floating-point 1.

put float(1)
-- 1.0

floatPrecision property

floatP
Syntax: floatP(expression)

This function indicates whether the value specified by expression is a floating point
number.

The floatP function is TRUE (1) if expression is a floating point number.
The floatP function is FALSE (0) if expression is not a floating point number.

The "P" in floatP stands for "predicate."

Example:

This statement tests whether 3.0 is a floating point number. The message window
displays the number 1, indicating that it is TRUE:

put floatP(3.0)
-- 1

This statement tests whether 3 is a floating point number. The message window displays
the number 0, indicating that it is FALSE:

put floatP(3)
-- 0

float, integerP, objectP, stringP, and symbolP functions

floatPrecision
Syntax: the floatPrecision to integer

This system property rounds off the display of floating point numbers to the number of
decimal places specified by integer. The maximum is 19 significant digits.

The floatPrecision property determines only the number of digits used to display
floating point numbers. The number of digits used to perform calculations doesn't
change.

The floatPrecision property can be tested and set. The default value is 4.

Example:

This statement rounds off the square root of 3.0 to three decimal places:

set the floatPrecision to 3
put sqrt(3.0) into x
put x

-- 1.732

This statement rounds off the square root of 3.0 to eight decimal places:

set the floatPrecision to 8
put x

-- 1.73205081

font of member
Syntax: the font of member whichCastmember

This field property determines the typeface of the font used to display the specified field
cast member. The parameter whichCastmember can be either a cast member name or
number.

The font of member field property can be set, affecting every line in the field. When
tested, it returns the height of the first line of the field.

The field cast member must contain characters, if only a space, to use the font of
member property. It has no effect on a cast member that contains no characters.

Example:

This statement sets the variable named oldFont to the current font of member setting
for the field cast member Rokujo Speaks:

put the font of member "Rokujo Speaks" into oldFont

text of member property; alignment of member, lineHeight of member,
fontSize of member, and fontStyle of member field properties

fontSize of member
Syntax: the fontSize of member whichCastmember

This field property determines the size of the font used to display the specified field cast
member. The parameter whichCastmember can be either a cast member name or
number.

The fontSize field property can be tested and set.

Example:

This statement sets the variable named oldSize to the current fontSize of member
setting for the field cast member Rokujo Speaks:

put the fontSize of member "Rokujo Speaks" into ¬
 oldSize

This property requires that the field castmember already contain characters, if only a
space. It will not affect a castmember that contains no characters.

text of member property; alignment of member, font of member, and
lineHeight of member field properties

fontStyle of member
Syntax: the fontStyle of member whichCastmember

This field property determines the styles applied to the font used to display the specified
field cast member.

The value of the property is a string of styles delimited by commas. Lingo uses a font
that is a combination of the styles in the string. The available styles are plain, bold, italic,
underline, shadow, outline, condense, and extend. In addition, you can use the word
normal to remove all of the styles that are currently applied. The parameter
whichCastmember can be either a cast member name or number.

The field cast member must contain characters, if only a space, to use the fontStyle
of member property. It has no effect on a cast member that contains no characters.

The fontStyle of member field property can be tested and set.

The field cast member must contain characters, if only a space, to use the fontStyle
of member property. It has no effect on a cast member that contains no characters.

Example:

This statement sets the variable named oldStyle to the current fontStyle of member
setting for the field cast member Rokujo Speaks:

put the fontStyle of member "Rokujo" into oldStyle

This statement sets the fontStyle of member setting for the field cast member Rokujo
Speaks to bold italic:

set the fontStyle of member "Poem" to "bold, italic"

text of member property; alignment of member, font of member, lineHeight
of member, and fontSize of member field properties

foreColor of member
Syntax: set the foreColor of member castName to colorNumber

This cast member property sets the foreground color of a field cast member.

Example:

This statement changes the color of the field in cast member 1 to the color in palette
entry 250:

set the foreColor of member 1 to 250

foreColor of sprite
Syntax: the foreColor of sprite whichSprite

This sprite property determines the foreground color of the sprite specified by
whichSprite. Setting the foreColor sprite property in a Lingo script is equivalent to
choosing the foreground color from the tools window when the sprite is selected on the
stage.

The foreground color applies only to 1-bit bitmap and shape cast members. It does not
affect the display of a field or button cast member. An 8-bit, 16-bit, or 24-bit bitmap is
affected, but generally not in a useful way.

The value of a sprite's background color ranges from 0 to 255 for 8-bit color, or from 0 to
15 for 4-bit color. The numbers correspond to the index number of the background color
in the current palette. (A color's index number appears in the color palette's lower left
corner when you click the color.)

Changing a sprite's foreground color during a mouseDown is a useful way to indicate when
a sprite is clicked.

When you set this property within a script while the playback head is not moving, be sure
to use the updateStage command to redraw the stage. If you are changing several sprite
properties--or several sprites--you only have to use one updateStage command at the
end of all the changes.

The foreColor of sprite property can be tested and set, although in order to set it with
Lingo the sprite must be a puppet.

Example:

The following statement sets the variable oldColor to the foreground color of
sprite 5:

put the foreColor of sprite 5 into oldColor

The following statement makes 36 the number for the foreground color of a random
sprite from sprite 11 to sprite 13.

set the backColor of sprite (10 + random(3)) to 36

forget window
Syntax: forget window whichWindow

This command tells Lingo to close and delete the window specified by window when the
window is no longer in use and no other variables refer to it.

Example:

This statement has Lingo delete the window Control Panel when the movie no longer
uses the window:

forget window "Control Panel"

frame
Syntax: the frame

This function gives the number of the current frame of the current movie.

Example:

This statement sends the playback head to the frame before the current frame:

go to (the frame - 1)

label and marker functions, go command

frameLabel
Syntax: the frameLabel

This frame property identifies the label assigned to the current frame. When the current
frame has no label, the value of the frameLabel property is 0.

The frameLabel property can be tested at any time. It can also be set during a score
generation session.

Example:

This statement checks the label of the current frame. In this case, the current
frameLabel is Start:

put the frameLabel

-- "Start"

framePalette
Syntax: the framePalette

This frame property identifies the cast member number of the palette used in the current
frame.

The framePalette property can be tested. It can also be set during a score generation
session.

Example:

This statement checks the palette used in the current frame. In this case, the palette is
cast member 45:

put the framePalette

-- 45

This statement makes cast member 45, which is a palette cast member, the palette for
the current frame.

set the framePalette to 45

puppetPalette command

frameRate of member
Syntax: the frameRate of member QTcastmember

This digital video cast member property specifies the frame rate that the digital video
movie specified by QTcastmember plays at. The possible values for the frameRate of
member correspond to the radio buttons for selecting digital video playback options.

When the frameRate of member is between 0 and 255, the digital video movie
plays every frame at that frame rate. The frameRate of member property cannot be greater
than 255.

When the frameRate of member is set to -1, the digital video movie plays every
frame at its normal rate.

When the frameRate of member is set to -2, the digital video movie plays every
frame as fast as possible.

Example:

This statement sets the frame rate of the QuickTime cast member Rotating Chair to 30
frames per second:

set the frameRate of member "Rotating Chair" to 30

This statement has the QuickTime cast member Rotating Chair play every frame as fast
as possible:

set the frameRate of member "Rotating Chair" to -2

movieRate of sprite, movieTime of sprite sprite properties

frameScript
Syntax: the frameScript

This frame property identifies the cast member number of the frame script assigned to
the current frame.

The frameScript property can be tested. During a score recording session, you can also
assign a frame script to the current frame by setting the frameScript property. (This
property could only be read in earlier versions of Director.)

Example:

This statement displays the number of the script assigned to the current frame. In this
case, the script number is 25:

put the frameScript

-- 25

This statement makes the script cast member "Button responses" the frame script for
the current frame:

set the frameScript to member "Button responses"

frameSound1
Syntax: the frameSound1

This frame property determines the number of the cast member assigned to the first
sound channel in the current frame. This property can also be set during a score
recording session.

Example:

As part of a score recording session, this statement assigns the sound cast member Jazz
to the first sound channel:

set the frameSound1 to member "Jazz"

frameSound2
Syntax: the frameSound2

This frame property determines the number of the cast member assigned to the second
sound channel for the current frame. This property can also be set during a score
recording session.

Example:

As part of a score recording session, this statement assigns the sound cast member Jazz
to the second sound channel:

set the frameSound2 to member "Jazz"

framesToHMS
Syntax: framesToHMS(frames , tempo , dropFrame , fractionalSeconds)

This function converts the specified number of frames to their equivalent length in hours,
minutes, and seconds. This is useful for predicting the actual playtime of a movie or
controlling a video playback device.

The integer expression frames specifies the number of frames.
The integer expression tempo specifies the tempo in frames per second.
The dropFrame argument is a logical expression. Normally, this is FALSE. This

argument is meaningful only if FPS is set to 30 frames per second. (Drop frame is a method
of compensating for the color NTSC frame rate which is not exactly 30 frames per second.)

The fractionalSeconds argument determines what happens to residual frames. When
TRUE replaces fractionalSeconds, the residual frames are converted to the nearest
hundredth of a second. When FALSE replaces fractionalSeconds, the residual frames are
returned as an integer number of frames.

The resulting string uses the form: "sHH:MM:SS.FFD", where:

s--"-" if the time is less than zero, or space if the time is greater than or equal to zero

HH--hours

MM--minutes

SS--seconds

FF--fraction of a second if fractionalSeconds is TRUE, or frames if fractionalSeconds is
FALSE

D--"d" if dropFrame is TRUE, or space if dropFrame is FALSE

Example:

This statement converts a 2710-frame, 30 frame-per-second movie. The dropFrame and
fractionalSeconds arguments are both turned off:

put framesToHMS(2710, 30, FALSE, FALSE)

-- " 00:01:30.10 "

HMStoFrames function

frameTempo
Syntax: the frameTempo

This frame property indicates the tempo assigned to the current frame.

The frameTempo property can be tested. It can also be set during a score recording
session. This property could only be tested in earlier versions of Director.

Example:

This statement checks the tempo used in the current frame. In this case, the tempo is 15
frames per second:

put the frameTempo

-- 15

puppetTempo command

frameTransition
Syntax: the frameTransition

This frame property gives the number of the transition cast member assigned to the
current frame. During a score recording session, you can also set this property as a way
to specify transitions.

Example:

When used in a score recording session, this statement makes the transition cast
member Fog the transition for the frame that Lingo is currently recording:

set the frameTransition to member "Fog"

freeBlock
Syntax: the freeBlock

This function indicates the size of the largest free contiguous block of memory, in bytes.
A kilobyte (K) is 1024 bytes. A megabyte (MB) is 1024 kilobytes. In order to load a cast
member, you need a free block at least as large as the cast member.

Example:

This statement determines whether the largest contiguous free block is smaller than 10K,
and displays an alert if it is:

if the freeBlock < 10 * 1024 then ¬

 alert "Not enough memory!"

freeBytes, memorySize, and ramNeeded functions; size of member cast
member property

freeBytes
Syntax: the freeBytes

This function indicates the total number of bytes of free memory, which may not be
contiguous. A kilobyte (K) is 1024 bytes. A megabyte (MB) is 1024 kilobytes.

This function differs from freeBlock, because it reports all free memory, not just
contiguous memory.

Example:

This statement checks whether more than 200K of memory is available, and plays a color
movie if it is.

if the freeBytes > 200 * 1024 then ¬
 play movie "colorMovie"

freeBlock, memorySize, and ramNeeded functions; size of member cast
member property

frontWindow
Syntax: the frontWindow

This system property indicates which movie in a window is currently frontmost on the
stage. When the stage is frontmost, the frontWindow is the stage. When a media
editor or floating palette is frontmost, the frontWindow is <void>.

This property can be tested but not set.

Example:

This statement determines whether the stage is currently the frontmost window and, if it
is, brings the window Try This to the front:

if the frontWindow = the stage then ¬
moveToFront window "Try This"

getaProp

 Syntax: getaProp(list, positionOrProperty)

This command identifies the value associated with the position or value specified by
positionOrProperty in the list specified by list.

When the list is a linear list, the result is the value at the position specified by
positionOrProperty.

When the list is a property list, the result is the value associated with the property
specified by positionOrProperty.

The getaProp command gives the result void when the specified value is not in the list.

When used with linear lists, the getaProp command does the same as the getAt
command.

Example:

This statement identifies the value in the third position of the linear list Answers, which
consists of [10, 12, 15, 22]:

getaProp(Answers, 3)

The result is 15, because 15 is the third value in the list.

This statement identifies the property associated with the value 15 in the property list
Answers, which consists of [#a: 10, #b:12, #c:15, #d:22]:

getaProp(Answers, #c)

The result is 15, which is the value associated with property c.

getOne, getProp commands

getAt
Syntax: getAt(list, position)

This command identifies the item in the position specified by position in the list specified
by list . If the list contains fewer elements than the specified position, an alert appears.

The getAt command works with linear and property lists. This command does the same
as the getaProp command for linear lists.

Example:

This statement has the message window display the third item in the list Answers, which
consists of [10, 12, 15, 22]:

getAt(Answers, 3)

The result is 15.

getaProp command

getLast
Syntax: getLast(list)

This command identifies the last value in the list specified by list. The getLast command
works with linear and property lists.

Example:

This statement identifies the last item in the list Answers, which consists of [10, 12, 15,
22]:

put getLast(Answers)

The result is 22.

This statement identifies the last item in the list Bids, which consists of [#Gee:750,
#Kayne:600, #Ohashi:850]:

put getLast(Bids)

The result is 850.

getNthFileNameInFolder
Syntax: getNthFileNameInFolder(folderPath, fileNumber)

This function returns a fileName from the directory folder at the specified path and
number within the folder. To be found by the getNthFileNameInFolder function, Director
movies must be set to be visible in the folder structure. However, the
getNthFileNameInFolder function finds other types of files whether they are visible or
invisible. If the function returns an EMPTY string, you have specified a number greater
than the number of files in the folder.

Note: To specify other folder names, use the full path defined in the format for the
specific platform the movie is running on.

For example, in the Macintosh, use a pathname such as
"HardDisk:Director:Movies:" To look for files on the Macintosh desktop, you would use
the path "HardDisk:Desktop Folder:"

To specify a pathname in Windows, use a directory path such as "C:\Director\
Movies"

Example:

The following handler returns a list of filenames in the folder at the current path. To call
the function, use parentheses, as in "put currentFolder()".

on currentFolder
put [] into fileList
 repeat with i = 1 to the maxInteger
 put getNthFileNameInFolder(the pathName, i) ¬
 into n
 if n = EMPTY then exit repeat
 append(fileList, n)
 end repeat
 return fileList
end currentFolder

getOne
Syntax: getOne(list , value)

This command identifies the position or property associated with the value specified by
value in the list specified by list.

When the list is a linear list, the result is the value's position in the list.
When the list is a property list, the result is the property associated with the value in

the list.

For values in the list more than once, only the first occurrence is displayed. The getOne
command gives the result 0 when the specified value is not in the list.

When used with linear lists, the getOne command does the same as the getPos
command.

Example:

This statement identifies the position of the value 12 in the linear list Answers, which
consists of [10, 12, 15, 22]:

getOne(Answers, 12)

The result is 2, because 12 is the second value in the list.

This statement identifies the property associated with the value 12 in the property list
Answers, which consists of [#a:10, #b:12, #c:15, #d:22]:

getOne(Answers, 12)

The result is b, which is the property associated with the value 12.

getPos command

getPos
Syntax: getPos(list , value)

This command identifies the position of the value specified by value in the list specified
by list. When the specified value is not in the list, the getPos command gives the value
0.

The getPos command works with linear and property lists.

For values in the list more than once, only the first occurrence is displayed. This
command does the same as the getOne command when used for linear lists.

Example:

This statement identifies the position of the value 12 in the list Answers, which consists
of [#a:10, #b:12, #c:15, #d:22]:

getPos(Answers, 12)

The result is 2, because 12 is the second value in the list.

getOne command

getProp
Syntax: getProp(list , property)

This command identifies the value associated with the property specified by property in
the property list specified by list.

The getProp command works with property lists only. Using getProp with a linear lists
produces a script error.

The getProp command is identical to the getaProp command, except that the getProp
command displays an error message when the specified property is not in the list.

Example:

This statement identifies the value associated with the property #c of the property list
Answers, which consists of [#a:10, #b:12, #c:15, #d:22]:

getProp(Answers, #c)

The result is 15, because 15 is the value associated with #c.

getOne command

getPropAt
 Syntax: getPropAt(list , index)

This command identifies the property name associated with the position specified by
index in the property list specified by list. If the specified item isn't in the list, Director
displays an error message.

The getPropAt command works with property lists only. Using getPropAt with linear lists
produces a script error.

Example:

This statement displays the second property in the given list.

put getPropAt([#a:10, #b:20],2)
-- #b

global
Syntax: global variable1 [, variable2] [, variable3]...

This keyword identifies a variable as a global variable so that it can be shared by other
handlers or movies.

Every handler that examines or changes the contents of a global variable must use the
global keyword to identify the variables as global. Otherwise, the handler treats the
variable as a local variable even if it is declared to be global in another handler.

A global variable can be declared by a script, a handler, or a method, and its value can
be used by other scripts, handlers, and methods.

Example:

global startingPoint
set startingPoint = whichMenu

showGlobals command and property keyword

go
Syntax: go [to] [frame] whichFrame

go [to] movie whichMovie
go [to] [frame] whichFrame of movie whichMovie

This command causes the playback head to jump to the frame specified by whichFrame
of the movie specified by whichMovie. The expression whichFrame can be a marker label
or an integer frame number. The expression whichMovie must specify a movie file. (If the
movie is in another folder, whichMovie must specify the pathname.)

The phrase go to the frame has the playback head loop in the current frame. This is a
convenient way to keep the playback head in the same frame, but keep Lingo active.
Avoid using go to the frame in a frame that has a transition. This slows down the movie
and overwhelms the processor as it constantly tries to perform the transition.

It's better to refer to marker labels instead of frame numbers, because editing a movie
can cause frame numbers to change. Thus a command like go to frame 35 can become
incorrect. It's also easier to read your script if you use marker labels.

The go to movie command loads frame 1 of the movie. If the command is called from
within a handler, the handler in which it is placed continues executing. If you want to
suspend the handler while playing the movie, use the play command.

When you specify a movie to play, you must also specify its path if the movie is in a
different folder. There's no need to include the movie's .DIR or .DXR file extension in the
go to movie command. In fact, it's often better to omit the suffix during development. If
you use .DIR files during the main development cycle and then later protect those
movies, Lingo will fail when it encounters hard-coded filenames with the incorrect suffix.
If you omit the file suffix, Lingo looks for a file with either suffix in the specified path.

The following are reset when loading a movie: the beepOn, the constraint properties,
the keyDownScript, the mouseDownScript, the mouseUpScript; the cursor of
sprite and immediate of sprite properties; the cursor and puppetSprite
commands; and custom menus. However, the timeoutScript is not reset when loading
a movie.

Example:

This statement sends the playback head to the marker named start:

go to "start"

This statement sends the playback head to the marker named Memory in the movie
named Noh Tale to Tell:

go to frame "Memory" of movie "Noh Tale to Tell"

label, marker, and pathName functions; play command

go loop
Syntax: go loop

This command has the playback head continuously return to the first marker to the left
and then loop back. If no markers are to the left of the playback head, the playback head
continues to the right.

The go loop command is equivalent to the statement go to the marker(0) that was
used in earlier versions of Lingo.

Example:

This statement has the movie loop between the current frame and the previous marker:

go loop

go, go next, go previous commands

go next
Syntax: go next

This command sends the playback head to the next marker in the movie. If no markers
are to the right of the playback head, the playback head goes to the first marker to the
left. If there are no markers to the left, the playback head goes to frame 1.

It is equivalent to the statement go marker(1) that was used in earlier versions of Lingo.

Example:

This statement sends the playback head to the next marker in the movie:

go next

go, go loop, go previous commands

go previous
Syntax: go previous

This command sends the playback head to the previous marker in the movie. It is
equivalent to the statement go marker(-1) that was used in earlier versions of Lingo.

Example:

This statement sends the playback head to the previous marker in the movie:

go previous

go, go loop, go next commands

halt
Syntax: halt

This command has Lingo exit the current handler and any handler that called it. After
exiting all handlers, the halt command then stops the movie.

Example:

This statement checks whether the amount of free memory is less than 50K, and if it is,
exits all handlers that called it, and then stops the movie:

if the freeBytes < 50*1024 then halt

abort and pass commands; exit keyword

height of member
Syntax: the height of member whichCastmember

This cast member property determines the height in pixels of the cast member specified
by whichCastmember. The height of member property applies only to bitmap and
shape cast members. It does not affect field or button cast members.

The height of member property can be tested but not set.

Example:

This statement assigns the height of cast member 50 to the variable vHeight:

put the height of member 50 into vHeight

spriteBox command; the width of member property; height of sprite and width
of sprite sprite properties

height of sprite
Syntax: the height of sprite whichSprite

This sprite property determines the vertical size in pixels of the sprite specified by
whichSprite. The height applies only to bitmap and shape cast members. It does not
affect field or button cast members.

Setting this property does not have any effect on bitmap sprites unless the sprite's
stretch property is set to TRUE. In order to set this property with Lingo, the sprite must
be a puppet.

When you set this property within a script while the playback head is not moving, be sure
to use the updateStage command to redraw the stage. When you are changing several
sprite properties--or several sprites--you only have to use the updateStage command
once at the end of all the changes.

The height of sprite property can be tested and set.

Example:

This statement sets the height of sprite 10 to 26 pixels:

set the height of sprite 10 to 26

This statement assigns the height of sprite (i + 1) to the variable vHeight:

put the height of sprite (i + 1) into vHeight

height of member, stretch of sprite, width of member, and width of sprite
sprite properties; spriteBox command

hilite
Syntax: hilite chunkExpression

This command highlights (selects) the specified chunk in a field sprite. You can select any
chunk that Lingo lets you define, such as a character, word, or line. In Windows, the color
that highlights characters is the color set in Selected Items in the Display Properties
dialog box.

Example:

This statement highlights the fourth word in the field cast member Comments, which
contains the string "Thought for the Day":

hilite word 4 of member "Comments"

char...of, item...of, line...of, and word...of chunk expression keywords; delete
command; mouseChar, mouseLine, and mouseWord integer functions; field keyword;
selEnd and selStart field property

hilite of member
Syntax: the hilite of member whichCastmember

This button property determines whether a checkbox or radio button sprite is selected.
When the hilite of member is TRUE, the checkbox or radio button is selected.
When the hilite of member is FALSE, the checkbox or radio button is not selected.

When whichCastmember is a string, it is used as the cast member name. When
whichCastmember is an integer, it is used as the cast member number.

The hilite of member button property can be tested and set. The default value is
FALSE.

Example:

This statement checks whether the button named 2400 baud is selected and sets the
baud rate to 2400 if it is:

if the hilite of member "2400 baud" = TRUE then ¬

 setBaudRate(2400)

This statement uses Lingo to select the button cast member powerSwitch by setting the
hilite of member for the cast member to TRUE:

set the hilite of member powerSwitch to TRUE

checkBoxAccess and checkBoxType properties

HMStoFrames
Syntax: HMStoFrames(hms , tempo , dropFrame , fractionalSeconds)

This function converts movies measured in hours-minutes-seconds to the equivalent
number of frames.

The string expression hms specifies the time in the form "sHH:MM:SS.FFD", where:
s is a dash (-) if the time is less than zero, or a space if the time is greater than or

equal to zero.
HH represents number of hours.
MM represents number of minutes.
SS represents number of seconds.
FF represents fraction of a second if fractionalSeconds is TRUE. FF represents frames

if fractionalSeconds is FALSE.
D is the letter "d" if dropFrame is TRUE. D is a space if dropFrame is FALSE.

The expression tempo specifies the tempo in frames per second.

The dropFrame argument is a logical expression.. When TRUE replaces dropFrame, it
is a drop-frame. When FALSE replaces dropFrame, it is not. When the string hms ends in a
"d", the time is treated as a drop-frame, regardless of the value of dropFrame.

The fractionalSeconds argument determines the meaning of the fractional seconds.
When it is set to TRUE, the numbers after the seconds specify a fraction of a second, to the
nearest hundredth of a second. When it is set to FALSE, the numbers after the seconds
specify the number of residual frames.

Example:

This statement determines the number of frames in a 1-minute, 30.1-second movie when
the tempo is 30 frames per second. The dropFrame and fractionalSeconds arguments
are both turned off:

put HMStoFrames(" 00:01:30.10 ", 30, FALSE, FALSE)
-- 2710

framesToHMS function

idle

on idle event handler

idleHandlerPeriod
Syntax: the idleHandlerPeriod

This movie property determines the maximum number of ticks that passes until the
movie sends an idle message. The default value is 0, which has the movie send idle
handler messages as frequently as possible.

When the playback head enters a frame, Director starts a timer, repaints the appropriate
sprites on the stage, and then issues an enterFrame event. At this point, if the amount of
time set for the tempo setting has elapsed, Director generates an exitFrame event and
goes to the next specified frame.

However, if the amount of time set for this frame hasn't elapsed, Director waits until the
time runs out. During this time, Director periodically generates an idle message. The
amount of time between idle events is determined by the idleHandlerPeriod.

Example:

The following statement has the movie send an idle message at most once per second:

set the idleHandlerPeriod = 60

managing memory

idleLoadDone
Syntax: idleLoadDone(loadTag)

This function reports whether Director has loaded all cast members that have the
specified load tag.

 The result is TRUE when all cast members with the given tag have been loaded.
 The result is FALSE when some cast members with the given load tag are still waiting

to be loaded.

Example:

This statement checks whether all cast members whose load tag is 20 have been loaded,
and then plays the movie Kiosk if they are:

if idleLoadDone(20) = TRUE then play "Kiosk"

managing memory

idleLoadMode
Syntax: the idleLoadMode

This system property determines when the preLoad and preLoadMember commands
attempt to load cast members during idle periods. The following values are possible
values for the idleLoadMode and their effect:

0--Does not perform idle loading
1--Performs idle loading when there is free time between frames
2--Performs idle loading during idle events
3--Performs idle loading as frequently as possible.

Example:

This statement has the movie try as frequently as possible to load cast members
designated for preloading by the preLoad and preLoadMember commands:

set the idleLoadMode = 2

managing memory

idleLoadPeriod
Syntax: the idleLoadPeriod

This property determines the number of ticks (1/60th of a second) that Director waits
before returning to attempt to load cast members waiting to be loaded. The default value
for the idleLoadPeriod is 0, which has Director service the load queue as frequently as
possible.

Example:

This statement has Director service the set of cast members waiting to be loaded every
1/2 second (30 ticks):

set the idleLoadPeriod = 30

managing memory

idleLoadTag
Syntax: the idleLoadTag

This system property is a number that identifies, or "tags", the cast members that have
been queued for loading when the computer is idle. The property can be tested and set.
When you set the property, it can be any number that you choose.

Example:

This statement makes the number 10 the idle load tag.

set the idleLoadTag = 10

managing memory

idleReadChunkSize
Syntax: the idleReadChunkSize of member whichCastmember

This movie property determines the maximum number of bytes from a cast member that
Director can load when it loads cast members from the load queue. The property can be
tested and set.

Example:

This statement specifies that 500K is the maximum number of bytes from cast member
number 50 that Director can load in one attempt at loading cast members in the load
queue:

set the idleReadChunkSize to 500000

managing memory

if
Syntax: if logicalExpression then then-statement

or

if logicalExpression then then-statement
else else-statement
end if

or

if logicalExpression then
statement(s)
end if

or

if logicalExpression then
statement(s)
else
statement(s)
end if

or

if logicalExpression1 then
statement(s)
else if logicalExpression2 then
statement(s)
else if logicalExpression3 then
statement(s)
end if

The if-then structure evaluates the logicalExpression specified by logicalExpression.
When the condition is TRUE, Lingo executes the statement(s) that follow then.
When it is FALSE, Lingo executes the statement(s) following else. If no statements

follow else, Lingo exits the if-then structure.

When the condition is a property, Lingo automatically checks whether the property is
TRUE. You don't need to explicitly add the phrase "= TRUE" after the property, but it is
common practice to do so.

The else portion of the statement is optional. If you need to have more than one then-
statement or else-statement , you must end with the form end if.

When you use else, it always corresponds to the previous if statement. This means that
sometimes you need to include an else nothing statement to associate an else
keyword with the proper if keyword.

Examples:

This statement checks whether the Return key was pressed, and then continues if it was:

if the key = RETURN then continue

This statement checks whether the color QuickDraw software is available on a Macintosh.
If it is available, Lingo plays the movie Color Movie. If the color QuickDraw software isn't
available, Lingo plays the movie Black & White Movie:

if the colorQD = TRUE then play "Color Movie"
else play "Black & White Movie"

This handler checks whether the Command and "q" keys were pressed simultaneously,
and then executes the subsequent statements if it was:

on keyDown
if (the commandDown) and (the key = "q") then
 cleanUp
 quit
end if
end keyDown

case keyword

ilk
Syntax: ilk(list)

ilk(item, type)

This function indicates the type of a list, rect, or point.

The syntax ilk(list) returns whether list is a linear list or property list. For linear lists,
ilk(list) returns #linearList;    for property lists, ilk(list) returns #propList.

The syntax ilk(item, type) compares the object represented by item and inidcates
whether the object is of the specified type. When the object is of the specified type, the ilk
function returns TRUE (1).    When the object isn't of the specified type, the ilk function
returns FALSE (0). The following are the values that would be returned for each combination
of linear list, property list, point, or rect items and types:

item possible type=returned value
__

linear list: #list=1, #linearlist=1, #proplist=0, #point=0, #rect=0
property list: #list=1, #linearlist=0, #proplist=1, #point=0, #rect=0
point: #list=1, #linearlist=1, #proplist=0, #point=1, #rect=0
rect: #list=1, #linearlist=1, #proplist=0, #point=0, #rect=1

Examples:

This statement identifies whether the list named bids is a property list and displays the
result in the message window:

put ilk(bids, #proplist)

Because the list is a property list the message window displays 1, the numeric equivalent
of TRUE.

This statement identifies whether the variable vTotal is a list and displays the result in
the message window:

put ilk(vTotal, #list)

Because the variable is not a list, the message window displays 0, which is the numeric
equivalent of FALSE.

importFileInto
Syntax: importFileInto member whichCastmember , fileName

importFileInto member whichCastmember of ¬
castLib whichCast, fileName

This command replaces the content of the cast member specified by whichCastmember
with the file specified by fileName.

The importFileInto command is useful when you are finishing developing a movie. Use
it at that time to embed media that you have kept linked and external so that it could be
edited during the project. However, using this command in projectors can be a problem,
because imported files can quickly consume memory.

Example:

This statement replaces the content of the sound cast member Memory with the sound
file Wind:

importFileInto member "Memory", "Wind"

in
number of chars in, number of items in, number of lines in, and number of
words in functions.

inflate rect
 Syntax: inflate (rectangle , widthChange , heightChange)

This command changes the dimensions of the rectangle specified by rectangle. The
change is relative to the center of the rectangle.

The widthChange parameter specifies how much the rectangle changes horizontally.
The heightChange parameter specifies how much the rectangle changes vertically.

The total change in each direction is twice the number you specify. For example,
replacing widthChange    with 15 increases the rectangle's width by 30 pixels.

Values less than 0 for horizontal or vertical reduce the rectangle's size.

Examples:

This statement increases the width of the rectangle by 4 pixels and the height by 2
pixels:

inflate (Rect(10, 10, 20, 20), 2, 1)
-- Rect (8, 9, 22, 21)

This statement increases both the height and width of the rectangle by 20 pixels:

inflate (Rect(0, 0, 100, 100), -10, -10)
-- Rect (-10, -10, 110, 110)

ink of sprite
Syntax: the ink of sprite whichSprite

This sprite property determines the ink effect applied to the sprite specified by
whichSprite.

The following ink effects are available:

0--Copy
1--Transparent
2--Reverse
3--Ghost
4--Not copy
5--Not transparent
6--Not reverse
7--Not ghost
8--Matte
9--Mask
32--Blend
33--Add pin
34--Add
35--Subtract pin
36--Background transparent
37--Lightest
38--Subtract
39--Darkest

In the case of background transparent (ink effect 36), you set the color that becomes
transparent by selecting the color from the background color chip in the tools window
while the sprite is selected in the score. You can do the same thing by using Lingo to set
the backColor property, but this is unpredictable when the sprite has more than 1-bit
color.

If you set this property within a script while the playback head is not moving, be sure to
use the updateStage command to redraw the stage. If you change several sprite
properties--or several sprites--you need to use only one updateStage command at the
end of all the changes.

For further information about ink effects, see Using Director.

The ink sprite property can be tested and set. To change any sprite property using Lingo,
the sprite must be a puppet.

Example:

This statement changes the variable currentInk to the value for the ink effect of sprite (i
+ 1):

put the ink of sprite 3 into currentInk

This statement gives sprite (i + 1) a matte ink effect by setting the ink effect of sprite
property to 8, which specifies matte ink:

set the ink of sprite (i + 1) to 8

backColor of sprite and foreColor of sprite sprite property, Ink pop-up menu
(score)

insertFrame
Syntax: insertFrame

This command duplicates the current frame and its content. The duplicate frame is
inserted after the current frame and then becomes the current frame. It can be used only
during a score recording session.

This command does the same as the duplicateFrame command.

Example:

The following handler generates a frame that has the transition cast member Fog
assigned in transition channel followed by a set of empty frames. The number of frames
is determined by the argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set the frameTransition to ¬
 the number of member "Fog"
 repeat with i = 0 to numberOfFrames
 insertFrame
 end repeat
 endRecording
end

inside
Syntax: inside(point, rectangle)

This function indicates whether the point specified by point is within the rectangle
specified by rectangle.

When the point is within the rectangle, the inside function is TRUE.
When the point is outside the rectangle, the inside function is FALSE.

Example:

This statement indicates whether the point Center is within the rectangle Zone and
displays the result in the message window:

put inside(Center, Zone)

map, mouseH, mouseV, and point functions

installMenu
 Syntax: installMenu whichCastmember

This command installs the menu defined in the field cast member specified by whichCast
member. These custom menus appear only while the movie is playing. To remove the
custom menus, use the installMenu command with no argument, or with 0 as the
argument.

For an explanation of how menu items are defined in a field cast member, refer to the
menu: keyword.

Examples:

This statement installs the menu defined in field cast member 37:

installMenu 37

This statement installs the menu defined in the field cast member named Menubar by
using the number of member property to refer to the field cast member:

installMenu member "Menubar"

This statement disables menus that were installed by the installMenu command:

installMenu 0

menu keyword

integer
Syntax: integer(numericExpression)

This function rounds the value of numericExpression to the nearest whole integer.

You can force an integer to be a string by using the string() function.

Example:

This statement rounds off the number 3.75 to the nearest whole integer:

put integer(3.75)

-- 4

This statement rounds off the value in parentheses. This provides a usable value for the
locH of sprite, which requires an integer:

set the locH of sprite 1 ¬

 to integer(0.333 * stageWidth)

float and string functions

integerP
Syntax: integerP(expression)

This function indicates whether the expression specified by expression is an integer:
When expression can be evaluated to an integer, integerP is TRUE (1).
When expression cannot be evaluated to an integer, integerP is FALSE (0).

The "P" in integerP stands for "predicate."

Examples:

This statement checks whether 3 can be evaluated to an integer. Because it is an
integer, the message window displays the number 1, which is the numeric equivalent of
TRUE:

put integerP(3)
-- 1

This statement checks whether 3 can be evaluated to an integer. Because 3 is
surrounded by quotes, it cannot be evaluated to an integer, so the message window
displays the number 0, which is the numeric equivalent of FALSE:

put integerP("3")
-- 0

This statement checks whether the numerical value of the string in field cast member
Entry is an integer, and displays an alert if it isn't.

if integerP(value(field "Entry")) = FALSE then ¬
 alert "Please enter an integer."

floatP, objectP, stringP, and symbolP functions

intersect
 Syntax: intersect(rectangle1 , rectangle2)

This function determines the rectangle formed where rectangle1 and rectangle2
intersect.

Example:

This statement assigns the variable newRectangle the rectangle formed where rectangle
toolKit intersects rectangle Ramp:

set newRectangle = intersect(ToolKit, Ramp)

map and rect functions

into
This code fragment occurs in a number of Lingo constructs, such as put...into.

item...of
Syntax: item whichItem of chunkExpression

or

item firstItem to lastItem of chunkExpression

This chunk expression keyword specifies an item or a range of items in a chunk
expression. An item in this case is any sequence of characters delimited by commas.

The terms whichItem , firstItem , and lastItem must be integers or integer expressions
that refer to the position of items in the chunk.

Chunk expressions refer to any character, word, item, or line in any source of strings.
Sources of strings include field cast members and variables that hold strings.

When the number that specifies the last item is greater than the item's position in the
chunk expression, the actual last item is specified instead.

Examples:

This statement determines the third item in the chunk expression that consists of names
of colors and displays the result in the message window:

put item 3 of "red, yellow, blue green, orange"
-- "blue green"

The result is the entire chunk blue green because this is the entire chunk within the
commas.

This statement determines the third through fifth item in the chunk expression and
displays the result in the message window:

put item 3 to 5 of "red, yellow, blue green, orange"
-- "blue green, orange"

This statement attempts to determine the third through fifth items in the chunk
expression. Because there are only four items in the chunk expression, the fourth item is
used instead of the fifth item. The result appears in the message window:

put item 3 to 5 of "red, yellow, blue green, orange"
-- " blue green, orange"

put item 5 of "red, yellow, blue green, orange"
-- ""

This statement inserts the item Desk as the fourth item in the second line of the field
cast member All Bids:

put "Desk" into item 4 of line 2 ¬
 of member "All Bids"

char...of, line...of, and word...of chunk expression keywords; number of items in
chunk function

itemDelimiter
Syntax: the itemDelimiter

This property indicates the special character used to separate items.

You can use the itemDelimiter function to parse filenames by setting itemDelimiter
to a colon (:) on the Macintosh or a backslash (\) in Windows. Restore the
itemDelimiter to a comma (,) for normal operation. Be sure to restore it to "," for
normal operation.

The itemDelimiter function can be tested and set.

Example:

This handler determines the last component in a Macintosh pathname. The handler first
records what the current delimiter is, and then changes the delimiter to a colon (:). When
a colon is the delimiter, Lingo can use the last item of to determine the last item in
the chunk that makes up a Macintosh pathname. Before exiting, the delimiter is reset to
its original value.

on getLastComponent pathName
 set save = the itemDelimiter
 set the itemDelimiter = ":"
 set f = the last item of pathName
 set the itemDelimiter = save
 return f
end

key
Syntax: the key

This function indicates the last key that was pressed. (This value is the ANSI value
assigned to the key, not the numerical value.)

This function can be used for testing keys within event script and for navigation/keyboard
shortcuts.

You can use the key to write handlers that perform certain actions when the user
presses specific keys. This is a way to provide keyboard shortcuts and other forms of
interactivity for the user. When used in a primary event handler, the actions you specify
are the first to be executed.

Examples:

These statements have the movie pause when the user presses Return. By setting the
keyDownScript property to checkKey, the on startMovie handler makes the checkKey
handler the first event handler executed when a key is pressed. The checkKey handler
checks whether the Return key is pressed and pauses the movie if it is:

on startMovie
 set the keyDownScript to "checkKey"
end startMovie

on checkKey
 if the key = RETURN then pause
end

This keyDown handler checks whether the last key pressed is the Enter key, and then
calls the handler addNumbers if it is:

on keyDown
 if the key = ENTER then addNumbers
end keyDown

commandDown, controlDown, keyCode, and optionDown functions

keyCode
Syntax: the keyCode

This function gives the numerical code for the last key pressed. (This keyboard code is
the key's numerical value, not the ANSI value.)

You can use the keyCode function to detect when the user has pressed the arrow or
function keys, which cannot be specified by the key function. The value of keyCode varies
on international keyboards.

The keyCode function can be tested but not set.

Examples:

This handler uses the message window to display the appropriate key code each time a
key is pressed:

on enterFrame
 set the keydownScript = "put the keyCode"
end

This statement checks whether the up arrow (whose key code is 126) is pressed, and
goes to the previous marker if it is:

if the keyCode = 126 then go to marker(-1)

commandDown, controlDown, key, and optionDown functions

keyDown
on keyDown handler

keyDownScript
Syntax: the keyDownScript

This property specifies the Lingo that is executed when a key is pressed. The Lingo can
be a simple statement or a calling script for a handler.

When a key is pressed and the keyDownScript is defined, Lingo executes the instructions
specified for the keyDownScript first. Unless the instructions include the pass command
so that the keyDown message can pass on to other objects in the movie, no other
keyDown handlers are executed.

Setting the keyDownScript property does the same as using the when keyDown then
command that appeared in earlier versions of Director.

When the instructions you specify for the keyDownScript property are no longer
appropriate, turn them off by using the statement set the keyDownScript to EMPTY.

Example:

This statement sets the keyDownScript to if the key = RETURN then continue. When
this is in effect and the movie is paused, the movie always continues whenever the user
presses the Return key.

set the keyDownScript to "if the key = RETURN then continue"

keyUpScript, mouseDownScript, and mouseUpScript properties

keyPressed
Syntax: the keyPressed

This system property gives the character assigned to the key that was last pressed. The
result is in the form of a string. When no key has been pressed, the keyPressed is an
empty string.

The keyPressed property works inside repeat loops. This property can be tested but not
set.

Example:

The following statement checks whether the user pressed Enter in Windows or Return on
a Macintosh and runs the handler updateData if he or she did:

if the keyPressed = RETURN then updateData

keyUpScript
Syntax: the keyUpScript

This property specifies the Lingo that is executed when a key is released. The Lingo can
be a simple statement or a calling script for a handler.

When a key is released and the keyUpScript is defined, Lingo executes the instructions
specified for the keyUpScript first. Unless the instructions include the pass command so
that the keyUp message can pass on to other objects in the movie, no other on keyUp
handlers are executed.

When the instructions you've specified for the keyUpScript property are no longer
appropriate, turn them off by using the statement set the keyUpScript to empty.

Example:

This statement sets the keyUpScript to if the key = RETURN then continue. When
this is in effect and the movie is paused, the movie always continues whenever the user
presses the Return key.

set the keyUpScript ¬
 to "if the key = RETURN then continue"

label
Syntax: label(expression)

This function indicates the frame associated with the marker label specified by
expression. The term expression should be a label in the current movie; if it's not, this
function returns 0.

Examples:

This statement sends the playback head to the tenth frame after the frame labeled Start:

go to label("Start") + 10

This statement assigns the frame number of the fourth item in the label list to the
variable whichFrame:

put label(line 4 of the labelList) into whichFrame

go and play commands; labelList and marker functions

labelList
Syntax: the labelList

This function gives a listing of the frame labels in the current movie, one label per line.

Example:

This statement makes a listing of frame labels the content of the field cast member Key
Frames:

put the labelList into field "Key Frames"

label and marker functions

last
Syntax: the last chunk in (chunkExpression)

This function identifies the last chunk specified by chunk of the chunk expression
specified by chunkExpression.

Chunk expressions refer to any character, word, item, or line in any container of
characters. Containers include the contents of field cast members; variables that hold
strings; and specified characters, words, items, lines, and ranges within containers.

 Examples:

This statement identifies the last word of the string "Macromedia, the multimedia
company" and displays the result in the message window:

put the last word of "Macromedia,¬

 the multimedia company"

The result is the word company.

This statement identifies the last character of the string "Macromedia, the multimedia
company" and displays the result in the message window:

put the last char of "Macromedia,¬

 the multimedia company"

The result is the letter y.

char...of and word...of chunk expression keywords

lastClick
Syntax: the lastClick

This function gives the time in ticks (60ths of a second) since the mouse button was last
pressed.

The lastClick can be tested, but not set.

Example:

This statement checks whether it has been 10 seconds since the last mouse click, and
sends the playback head to the marker No Click if it has:

if the lastClick > 10 * 60 then go to "No Click"

lastEvent, lastKey, and lastRoll functions; startTimer command

lastEvent
Syntax: the lastEvent

This function gives the time in ticks (60ths of a second) since the last mouse click,
rollover, or key press occurred.

Example:

This statement checks whether it has been 10 seconds since the last mouse click,
rollover, or key press, and sends the playback head to the marker Help if it has:

if the lastEvent > 10 * 60 then go to "Help"

lastClick, lastKey, and lastRoll functions; startTimer command

lastFrame
Syntax: the lastFrame

This property is the number of the last frame in the movie.

The lastFrame property can be tested but not set.

Example:

This statement displays the number of the last frame of the movie in the message
window:

put the lastFrame

lastKey
Syntax: the lastKey

This function gives the time in ticks (60ths of a second) since the last key was pressed.

Example:

This statement checks whether it has been 10 seconds since the last key was pressed,
and sends the playback head to the marker "No Key" if it has:

if the lastKey > 10 * 60 then go to "No Key"

lastClick, lastEvent, and lastRoll functions; startTimer command

lastRoll
Syntax: the lastRoll

This function gives the time in ticks (60ths of a second) since the mouse was last moved.

Example:

This statement checks whether it has been 45 seconds since the mouse was last moved,
and sends the playback head to the marker No Roll if it has:

if the lastRoll > 45 * 60 then go to "Attract Loop"

lastClick, lastEvent, and lastKey functions; startTimer command

left of sprite
Syntax: the left of sprite whichSprite

This sprite property is the left horizontal coordinate of the bounding rectangle of the
sprite specified by whichSprite.

Sprite coordinates are measured in pixels, starting with (0,0) at the upper left corner of
the stage.

The left of sprite property can be tested, but not set. Use the spriteBox command
to set the left horizontal coordinate of a sprite.

Examples:

The following statement determines whether the sprite's left edge is to the left of the
stage's left edge. If the sprite's left edge is to the stage's left edge, the script runs the
handler offLeftEdge:

if the left of sprite 3 < 0 then offLeftEdge

This statement measures the left horizontal coordinate of the sprite numbered (i + 1)
and assigns the value to the variable named vLowest:

put the left of sprite (i + 1) into vLowest

bottom of sprite, height of sprite, locH of sprite, locV of sprite, right of
sprite, top of sprite, and width of sprite properties; spriteBox command

length
Syntax: length(string)

This function gives the number of characters in the string specified by string. Spaces and
control characters like Tab and Return count as characters.

Examples:

This statement displays the number of characters in the string "Macro"&"media":

put length("Macro" & "media")
-- 10

This statement checks whether the content of the field cast member File Name has more
than 31 characters and displays an alert if it does:

if length(field "File Name") > 31 then ¬
 alert "That file name is too long."

chars and offset functions

line...of
Syntax: line whichLine of chunkExpression

or

line firstLine to lastLine of chunkExpression

This chunk expression keyword specifies a line or a range of lines in a chunk expression.
A line chunk is any sequence of characters delimited by Returns.

The expressions whichLine, firstLine, and lastLine must be integers that specify a line in
the chunk.

Chunk expressions refer to any character, word, item, or line in any source of characters.
Sources of characters include field cast members and variables that hold strings.

Examples:

This statement assigns the first four lines of the variable Action to the field cast member
To Do:

set the text of member "To Do" = line 1 to 4 ¬
 of Action

This statement inserts the word "and" after the second word of the third line of the string
assigned to the variable Notes:

put "and" after word 2 of line 3 of Notes

char...of, item...of, word...of, and chunk expression keywords; number of words
in chunk function

the lineCount of member
Syntax: the lineCount of member whichCastMember

This field cast member property indicates the number of lines that appear in the field
cast member on the stage. The number of lines depends on how the string wraps, not
the number of carriage returns in the string.

Example:

This statement determines how many lines the field cast member Today's News has
when it appears on the stage and assigns the value to the variable numberOfLines:

put the lineCount of member "Today's News" ¬
into numberOfLines

lineHeight
Syntax: lineHeight(member whichCastMember, lineNumber)

This function gives the height, in pixels, of a specific line in the specified field cast
member.

Example:

This statement determines the height, in pixels, of the first line in the field cast member
Today's News and assigns the result to the variable headline:

put lineHeight(member "Today's News",1) into headline

lineHeight of member
Syntax: the lineHeight of member whichCastmember

This field property determines the line spacing used to display the specified field cast
member. The parameter whichCastmember can be either a cast member name or
number.

The lineHeight of member property can be tested and set.

Example:

This statement sets the variable oldHeight to the current lineHeight of member
setting for the field cast member Rokujo Speaks:

put the lineHeight of member "Rokujo Speaks" into ¬
 oldHeight

text of member property; alignment of member, font of member, fontSize of
member, and fontStyle of member field properties

linePosToLocV
Syntax: linePosToLocV(member whichCastMember, lineNumber)

This function gives a specific line's distance, in pixels, from the top edge of the field cast
member.

Example:

This statement measures the distance, in pixels, that the second line of the field cast
member Today's News is from the top of the field cast member and assigns the result to
the variable startOfString:

put linePosToLocV(member "Today's News",2) ¬
into startOfString

the lineSize of member
Syntax: the lineSize of member whichCastmember

This shape cast member property determines the thickness, in pixels, of the border of
the specified shape cast member. It can be tested and set.

Example:

This statement sets the thickness of the shape cast member Answer Box to 5 pixels:

set the lineSize of member "Answer Box" = 5

lineSize of sprite
Syntax: the lineSize of sprite whichSprite

This sprite property determines the thickness, in pixels, of the border of the sprite
specified by whichSprite. The lineSize of sprite property applies only to shape
sprites. For non-rectangular shapes the border is the edge of the shape, not its bounding
rectangle.

The lineSize of sprite property can be tested and set. For a sprite property to be set
using Lingo, the sprite must be a puppet.

Examples:

This statement displays the thickness of the border of sprite 4:

put the lineSize of sprite 4 into thickness

This statement sets the thickness of the border of sprite 4 to 3 pixels:

set the lineSize of sprite 4 to 3

list
Syntax: list(value1 , value2 , value3...)

This function defines a linear list made up of the values specified by value1, value2,
value3.... This is an alternative to using square brackets ([]) to create a list.

Example:

This statement sets the variable named designers equal to a linear list that contains the
names Gee, Kayne, and Ohashi:

set designers = list("Gee", "Kayne", "Ohashi")

The result is the list ["Gee", "Kayne", "Ohashi"].

listP
Syntax: listP(item)

This function indicates whether the item specified by item is a list, rect, or point.
When listP is TRUE (1), the item specified by item is a list, rect, or point.
When listP is FALSE (0), the item specified by item is not a list, rect, or point.

Example:

This statement checks whether the list in the variable designers is a list, rect, or point
and displays the result in the message window:

put listP(designers)

The result is 1, which is the numerical equivalent of TRUE.

This statement checks whether the point in the variable Spot is a list, rect, or point and
displays the result in the message window:

put listP(Spot)

The result is 1, which is the numerical equivalent of TRUE.

ilk function

loaded of member
Syntax: the loaded of member whichCastMember

This cast member property specifies whether the cast member specified by
whichCastMember is loaded into memory.

When the loaded of member is TRUE, the cast member is loaded into memory.
When the loaded of member is FALSE, the cast member is not loaded into memory.

Different cast member types have slightly different behavior for loading.
Shape and script cast members are always loaded in memory.
Movie cast members are never unloaded.
Digital video cast members can be preloaded and unloaded independently of whether

they are being used. (A digital video cast member plays faster from memory than from disk.)

The loaded of member property can be tested but not set.

Example:

This statement checks whether cast member Demo Movie is loaded in memory, and goes
to an alternate movie if it isn't:

if the loaded of member "Demo Movie" = FALSE then ¬
go to "Waiting"

size of member cast property; preLoad and unLoad commands; ramNeeded
function

loc of sprite
Syntax: the loc of sprite whichSprite

This property determines the stage coordinates of the specified sprite. The value is given
as a point. The loc of sprite can be tested and set.

Example:

This statement checks the stage coordinates of sprite 6. The result is the point
(50, 100):

put the loc of sprite 6
-- point(50, 100)

bottom of sprite, height of sprite, left of sprite, locV of sprite, right of
sprite, top of sprite, and width of sprite sprite properties

locH of sprite
Syntax: the locH of sprite whichSprite

This sprite property is the horizontal position of the specified sprite's registration point.
Sprite coordinates are relative to the upper left corner of the stage. See "Registration
points" in Chapter 4 of Using Director for information about registration points.

The locH of sprite property can be tested and set. For a sprite property to be set
using Lingo, the sprite should be a puppet. Otherwise, the sprite reverts to the cast
member set in the score when the playback head exits the frame.

If you set this property within a script while the playback head is not moving, be sure to
use the updateStage command to redraw the stage. If you are changing several sprite
properties--or several sprites--you need only one updateStage command at the end of all
the changes.

Examples:

This statement checks whether the horizontal position of sprite 9's registration point is to
the right of the right edge of the monitor, and moves the sprite's right edge to the edge
of the stage if it is:

if the locH of sprite 9 > the stageRight then ¬
 set the locH of sprite 9 to the stageRight

This statement puts sprite 15 at the same horizontal location as the mouse click:

set the locH of sprite (15) to the mouseH

bottom of sprite, height of sprite, left of sprite, locV of sprite, right of
sprite, top of sprite, and width of sprite sprite properties; spriteBox and updateStage
commands

locToCharPos
Syntax: locToCharPos(member whichCastMember, location)

This function returns a number that identifies which character in the specified field cast
member is closest to the point specified by location. The value 1 corresponds to the first
character in the string, the value 2 corresponds to the second character in the string,
and so on.

Example:

This statements determines which character is closest to the point (100, 100) in the field
cast member Today's News and assigns the result to the variable PageDesign:

put locToCharPos(member "Today's News", point(100,100))¬
into PageDesign

locVToLinePos
Syntax: locVToLinePos(member whichCastMember, locV)

This function returns the number of the line of characters that appears at the vertical
position specified by locV. The locV value is the number of pixels from the top of the field
cast member, not the part of the field cast member that currently appears on the stage.

Example:

This statement determines which line of characters appears 150 pixels from the top of
the field cast member Today's News and assigns the result to the variable pageBreak:

put locVToLinePos(member "Today's News", 150) into pageBreak

locV of sprite
Syntax: the locV of sprite whichSprite

This sprite property is the vertical position of the specified sprite's registration point.
Sprite coordinates are relative to the upper left corner of the stage. See "Registration
points" in Chapter 4 of Using Director for information about registration points.

The locV of sprite property can be tested and set. For a sprite property to be set
using Lingo, the sprite should be a puppet. Otherwise, the sprite reverts to the cast
member set in the score when the playback head exits the frame.

If you set this property within a script while the playback head is not moving, be sure to
use the updateStage command to redraw the stage. If you are changing several sprite
properties--or several sprites--you need only one updateStage command at the end of all
the changes.

Examples:

This statement checks whether the vertical position of sprite 9's registration point is to
the below the bottom of the stage, and moves the sprite's bottom edge to the bottom of
the stage if it is:

if the locV of sprite 9 > the stageBottom then ¬
 set the locV of sprite 9 to the stageBottom

This statement puts sprite 15 at the same vertical location as the mouse click:

set the locV of sprite (15) to the mouseV

bottom of sprite, height of sprite, left of sprite, locH of sprite, right of
sprite, top of sprite, and width of sprite sprite properties; spriteBox and updateStage
commands

log
Syntax: log(number)

This function calculates the natural logarithm of the number specified by number , which
must be a decimal number greater than zero.

Examples:

This statement assigns the natural logarithm of 10.5 to the variable Answer. The result is
calculated to two decimal places:

set Answer = log(10.5)

This statement calculates the natural logarithm of the square root of the value Number,
and then assigns the result to the variable Answer:

set Answer = log(the sqrt of Number)

long
 the date and time functions

loop
Syntax: loop

This keyword refers to the marker. The loop keyword with the go to command is
equivalent to the statement go to marker.

Example:

This handler loops the movie between the previous marker and the current frame:

on exitFrame
 go loop
end exitFrame

loop of member
Syntax: the loop of member whichCastmember

This digital video cast member property determines whether the specified digital video
movie cast member is set to loop.

When the loop of member is TRUE(1), the digital video movie cast member loops.
When the loop of member is set to FALSE(0), the digital video movie cast member

doesn't loop.

Example:

This statement sets the QuickTime movie cast member Demo to loop:

set the loop of member "Demo" to 1

machineType
Syntax: the machineType

This function indicates the kind of computer that is currently being used. These codes
indicate the type of computer:

1 Macintosh 512Ke
2 Macintosh Plus
3 Macintosh SE
4 Macintosh II
5 Macintosh IIx
6 Macintosh IIcx
7 Macintosh SE/30
8 Macintosh Portable
9 Macintosh IIci
11 Macintosh IIfx
15 Macintosh Classic
16 Macintosh IIsi
17 Macintosh LC
18 Macintosh Quadra 900
19 PowerBook 170
20 Macintosh Quadra 700
21 Classic II
22 PowerBook 100
23 PowerBook 140
24 Macintosh Quadra 950
25 Macintosh LCIII
27 PowerBook Duo 210
28 Macintosh Centris 650
30 PowerBook Duo 230
31 PowerBook 180
32 PowerBook 160
33 Macintosh Quadra 800
35 Macintosh LC II
42 Macintosh IIvi
45 PowerMac 7100/70
46 Macintosh IIvx
47 Macintosh Color Classic
48 PowerBook 165c
50 Macintosh Centris 610
52 PowerBook 145
53 PowerComputing 8100/100
73 PowerMac 6100/60
76 Macintosh Quadra 840av
256 IBM PC-type machine

Note: These codes are for general classification purposes only. It is unwise to use them
to make assumptions about the performance or screen size of the computer your movie
is running on.

Example:

This statement checks whether the computer is a Macintosh Classic and plays the movie
Classic Movie if it is:

if the machineType = 15 then play "Classic Movie"

These statements check whether the current operating system is Windows or Macintosh,
and runs a handler intended for that platform:

if the machineType = 256 then
 WindowsActions
else
 MacintoshActions
end if

colorDepth property; colorQD function

map
Syntax: map(targetRect, sourceRect, destinationRect)

or

map(targetPoint, sourceRect, destinationRect)

This function is used to position and size a rectangle or point, based on the relationship
of a source rectangle to a target rectangle.

 Example:

This handler modifies the rectangle of sprite n so that the sprite's new rect has the same
relationship to its old rect as the dimensions of the stage have to the rect of sprite 2:

on scaleMySprite n
 set the stretch of sprite to TRUE
 set the rect of sprite n = ¬
 map(the rect of sprite n, ¬
 the rect of sprite 2, ¬
 the rect of the stage)
 updateStage
end scaleMySprite

margin of member
Syntax: the margin of member whichCastmember

This field cast member property determines the size, in pixels, of the margin inside the
field box.

Example:

The following sets the margin inside the box for the field cast member Today's News to
15 pixels:

set the margin of member "Today's News" to 15

marker
Syntax: marker(integerExpression)

This function returns the frame number of markers before or after the current frame. This
can be useful for implementing a "next" or "previous" button, or for setting up an
animation loop.

The integerExpression can evaluate to any positive or negative integer or zero. For
example:

marker(2) returns the frame number of the second marker after the current frame.
marker(1) returns the frame number of the first marker after the current frame.
marker(0) returns the frame number of the current frame, if the current frame is

marked, or the frame number of the previous marker if the current frame is not marked.
marker(-1) returns the frame number of the first marker before the current frame.
marker(-2) returns the frame number of the second marker before the current

frame.

Examples:

This statement sends the playback head to the beginning of the current frame:

go to marker(0)

This statement sets the variable nextMarker equal to the next marker in the score:

put marker(1) into nextMarker

go command; frame, labelList and label functions

mAtFrame
Syntax: method mAtFrame frameNumber, subFrameNumber

[statements]
end mAtFrame

This special message is used by Lingo in conjunction with any XObject or that has been
assigned to the perFrameHook property, as follows:

set the perFrameHook to objectName

Subsequently, the mAtFrame message is automatically sent to the object every time the
playback head reaches a new frame, or every time an internal subframe is reached
within a visual transition.

The functionality within mAtFrame must be supplied by the XObject definition (as opposed
to predefined methods). That is why mAtFrame is technically called a message, instead of
a predefined method.

The perFrameHook property is primarily designed for use with XObjects that need to be
called at every subframe, such as frame-by-frame video recorders. Objects should
generally use an on stepMovie handler if they need to be called at every frame.

method keywords; perFrameHook property; or on stepMovie movie handler

max
Syntax: max(list)

or

max (value1, value2, value3, ...)

This function returns the highest value in the specified list, or the highest of a given
series of values.

Example:

This handler assigns the variable Winner the maximum value in the list Bids, which
consists of [#Castle:600, #Schmitz:750, #Wang:230]. The result is then inserted in the
content of the field cast member Congratulations:

on findWinner Bids
 set Winner = max(Bids)
 set the text of member "Congratulations" = ¬
 "You have won, with a bid of $" & Winner &"!"
end

maxInteger
 Syntax: the maxInteger

This property returns the largest whole number that is supported by the system. On most
personal computers, this is 2,147,483,647 (2 to the 31st power, minus 1.)

This can be useful for initializing boundary variables before a loop or for limit testing.

Example:

This example generates a table in the message window, of the maximum decimal value
that can be represented by a certain number of binary digits.

on showMaxValues
 put 31 into b
 put the maxInteger into v
 repeat while v > 0
 put b && "-" && v
 put b-1 into b
 put v/2 into v
 end repeat
end showMaxValues

mci
Syntax: mci "string "

The multimedia extensions for Windows respond to commands sent to the media control
interface, or mci. You can use the mci command to pass the strings specified by strings
to the Windows media control interface.

Strings passed by the mci command play only in Windows; they are not executed on the
Macintosh. Because the Macintosh does not support the mci interface, the mci command
gives you a way to include commands intended for the Windows environment within a
movie that you create and can play on the Macintosh.

Example:

This statement makes the command play cdaudio from 200 to 600 track 7 play
only when the movie plays back in Windows:

mci "play cdaudio from 200 to 600 track 7"

mDescribe
Syntax: XObjectName(mDescribe)

This predefined method is used only with. The purpose of mDescribe is to create a list of
methods in the message window. This list contains the names of other methods of the
XObject, plus any comments by the programmer of the XObject that document the
functionality or syntax of these methods.

You only use this method for authoring. Do not include it in scripts within a movie.

Before using mDescribe to display an XObject's method, first open the appropriate library
using the openXlib command. To display information about the XObject, enter the
showXlib command followed by XobjectName(mDescribe) in the message window. A
display of all open Xlibrary resource files and all XObjects is contained in those Xlibraries.

Example:

This statement displays methods and comments assigned to the fileIO XObject:

fileIO(mDescribe)

mMessageList predefined method; showXLib command

mDispose
Syntax: object(mDispose)

This predefined method supports XObjects in earlier versions of Lingo. It is recommended
that you use lists and parent lists. They are a simpler way of achieving the same result.

This predefined method is used to destroy the object specified by object, which was
created earlier with the mNew method. It is used to dispose of instances of XObjects. Use
it to free up memory when an XObjects is no longer needed.

You do not need to explicitly dispose of child objects created from parent scripts. Lingo
disposes of these objects when they are no longer referenced by a variable within the
movie.

It is best that you check for previous instances of an object with the same name, and
dispose of it before creating new instances of an object using mNew. The initialize handler
in the following example illustrates this. In this way, if the movie is aborted before the
normal mDispose, you won't fill up memory by repeatedly creating new objects. This can
happen during the development of a project, when you repeatedly stop it before the end,
and play it again from the beginning.

If you define an mDispose method in an XObject, it will be executed instead of the
predefined method. The result--which is seldom what you want--is that the object will not
really get disposed. If you need to perform various housekeeping actions before
disposing, put the routines in a method with another name, like mRelease.

Example:

This handler determines whether the item assigned to the variable myObject is an
XObject and disposes of it if it is:

on cleanUp
 global myObject
 if objectP(myObject) then myObject(mDispose)
end cleanUp

mNew predefined method

me
Syntax: me

This keyword can be used within parent scripts as a shorthand means of referring to the
script itself.

Example:

This statement sets the object myBird1 to the script named Bird. The me keyword accepts
the parameter script "Bird" and is used to return that parameter:

set myBird1 to new(script "Bird")

This is the new handler of the Bird script:

on new me
 return me
end

new function; ancestor property. parent scripts-child objects

media of member
Syntax: the media of member whichCastmember

This function returns data that describes the specified cast member. The result is a set of
numbers that identifies the cast member.

You can use the media of member to copy the content of one cast member into another
cast member by setting the second cast member's media of member value to the media
of member value for the first.

Example :

This statement copies the content of the cast member Sunrise into the cast member
Dawn by setting the media of member value for Dawn to the media of member value for
Sunrise:

set the media of member "Dawn" to the ¬
media of member "Sunrise"

type of member

member
Syntax: member whichCastmember

member whichCastmember of castLib whichCast

This keyword indicates that the object specified by whichCastmember is a cast member.
If whichCastmember is a string, it is used as the cast member name. If
whichCastmember is an integer, it is used as the cast member number.

Example 1:

The following statement sets the hilite of the button cast member named Enter Bid to
TRUE:

set the hilite of member "Enter Bid" to TRUE

Example 2:

This statement puts the name of sound cast member 132 into the variable soundName:

put the name of member 132 into soundName

Example 3:

This statement determines whether cast member 9 has a name assigned.

if stringP(the name of member 9) then exit

memberNum of sprite
Syntax: the memberNum of sprite whichSprite

This sprite property determines the number of the cast member associated with the
sprite specified by whichSprite.

Setting this property lets you switch the cast member assigned to a sprite. The sprite
should be a puppet before you do this. If it isn't puppeted, the sprite reverts to the cast
member set in the score when the playback head exits the frame.

The value for the memberNum of sprite    counts all cast member locations in all casts
without separating out their cast numbers. It adds 1000 for each lower numbered cast.
For example, the memberNum for cast member 1 in cast 1 is 1. However, the memberNum
for cast member 1 of cast 2 is 1001. You can avoid confusion by specifying the member
for the    sprite and specifying a cast member and its cast. For example, this statement
assigns cast member Tree in cast Landscape to sprite 5:

set the member of sprite 5 to member "Tree" of castLib "Landscape"

You could also use the same approach but use cast member numbers, as in the following
example:

set the member of sprite 5 to member 10 of castLib 3

A typical use of this is exchanging cast members when a sprite is clicked to simulate the
reversed image that appears when a standard button is clicked. You can also make some
action in the movie depend on which cast member is assigned to a sprite.

When you set this property within a script while the playback head is not moving, be sure
to use the updateStage command to redraw the stage. If you are changing several sprite
properties--or several puppet sprites--you only have to use one updateStage command
after making all of the changes.

The memberNum of sprite property can be tested and set.

Example 1:

The following statement switches the cast member assigned to sprite 3 to cast member
number 35:

set the memberNum of sprite 3 to 35

Example 2:

This statement assigns the cast member Narrator to sprite 10 by setting the memberNum
of sprite to Narrator's cast number:

set the memberNum of sprite 10 = the number of member "Narrator"

number of member property

members
 the number of members property

memberType of member
type of member cast property

memorySize
Syntax: the memorySize

This function returns the total amount of memory (in bytes) allocated to the program,
whether in use or free. It is useful for checking minimum memory requirements. A
kilobyte (K) is 1024 bytes. A megabyte (MB) is 1024K.

Example:

if the memorySize < 500 * 1024 then alert ¬

 "There is not enough memory to run this movie."

freeBlock and freeBytes, and ramNeeded functions; size of member cast
property

menu
Syntax: menu: menuName

itemName | script
itemName | script
...

or

menu: menuName
itemName | script
itemName | script

 ...
[more menus]

This keyword specifies the actual content of custom menus, in conjunction with the
installMenu command. Menu definitions are typed in field cast members. You refer to a
particular menu definition by its cast member name or number.

The menu: keyword specifies the name of the menu. In the subsequent lines you can
specify the menu items for that menu. You can have a script execute when the user
chooses that item by putting the script after the "or" ("|") symbol. A new menu is defined
by the subsequent occurrence of the menu: keyword.

You can create hierarchical menus by using XCMDs or simulate them by writing scripts
that display a graphic cast member that mimics a submenu.

You can use special characters to define custom menus. (These special characters are
case-sensitive. For example, to make a menu item bold, the letter "B" must be upper-
case.)

Symbol Example--Description (key combination)

| Open/O | go to frame "Open"--Associates a script with the

menu item

@ menu: @--Creates the Apple symbol and enables Macintosh menu
bar items when you define an Apple menu on the Macintosh

(Save(--Disables the menu item

(- (- --Creates a disabled line in the menu

! !Easy Select--Checks the menu with a checkmark (Option-v)

<B Bold<B--Sets the menu item's style to Bold

<I Italic<I--Sets the style to Italic

<U Underline<U--Sets the style to Underline

<O Outline<O--Sets the style to Outline

<S Shadow<S--Sets the style to Shadow

/ Quit/Q--Defines a command-key equivalent

Special symbols should follow the item name, and precede the "¼" symbol. You can also
use more than one special character to define a menu item. Using <B<U, for example,
sets the style to Bold and Underline.

Example:

This set of statements specifies the content of a custom File menu:

menu: File
Open/O | go to frame "Open"
Close/W | go to frame "Close"
 (-
Quit/Q | go to frame "Quit"

installMenu command; name of menu menu property; name of menuItem,
number of menuItems, checkMark of menuItem, enabled of menuItem, and script
of menuItem menu item properties

menuItem
 See name of menuItem, number of menuItems, checkMark of menuItem,
enabled of menuItem, and script of menuItem menu item properties.

method
Syntax: method methodName [argument1] [, argument2] ...

This keyword is now obsolete. It was used to define a method, which was used in earlier
versions of Director and is now used only for compatibility with scripts written in earlier
movies. You should use lists and parent scripts in Director 5.0; they are a simpler way to
achieve the same result.

A method is a special kind of handler that exists inside an XObject and that has its own
special syntax. It uses Lingo to create expressions that are commands or functions. A
method is a script, or series of scripts, that handle different messages (or processes) for
objects created by an XObject.

There are two kinds of objects: internal (created by factories) and external (created by
XObjects). Factories and XObjects use methods. The difference is that you define an
XObject's methods in the movie script or a cast member script, but an XObject's methods
are predefined in the XObject itself. To see an XObject's methods, type
XObjectname(mDescribe) in the message window.

Each object has its own set of messages created by its methods. Messages are the way
objects communicate with each other and with the rest of Lingo. Messages are sent by
an object's methods and provide all of the necessary functionality for each particular
object's task. Methods are associated with the objects created by their XObject. Each
object can use all the methods in its XObject.

A method is defined using the method keyword:

method messagename

For ease of reference, it is a good convention to begin the value you substitute for
messagename with a lowercase m.

exit and return keywords; mNew predefined method

mGet
Syntax: object(mGet, whichElement)

Methods were used for managing arrays in earlier versions of Director. It is now
recommended that you use lists and parent lists instead. They are a simpler way of
achieving the same result.

The integer expression whichElement specifies which array element the mGet method
returns. If you retrieve an element that has not been assigned a value with the mPut
method, the element has the numerical value 0.

Different types of data can be stored in various elements of the same array. You can use
the functions floatP, integerP, objectP, stringP, and symbolP to determine the data
type of a particular element.

Example:

These first three statements use mPut to put data into an internal array. Using 3, 7, and
12 assigns these values to the third, seventh, and twelfth elements of the array:

put objectName (mNew) into myObject
myObject(mPut, 3, 2 + 2)
myObject(mPut, 7, sqrt(2.0))
myObject(mPut, 12, "hello" && "there")

This statement displays the value associated with the third element of the array:

put myObject(mGet, 3)

The result is 4, which is the equivalent of 2 + 2.

This statement displays the value associated with the seventh element of the array:

put myObject(mGet, 7)

The result is 1.4142, which is the equivalent of the square root of 2.

This statement displays the value associated with the twelfth element of the array:

put myObject(mGet, 12)

The result is "hello there", which is the value that was assigned in the first example.

Note: Different types of data can be stored in various elements of the same array. You
can use the functions integerP, floatP, stringP, symbolP, and objectP to determine
the data type of a particular element.

mPut predefined method

min
Syntax: min(list)

or

min (a1, a2, a3...)

This function specifies the minimum value in the list specified by list.

Example:

This handler assigns the variable vLowest the minimum value in the list bids, which
consists of [#Castle:600, #Shields:750, #Wang:230]. The result is then inserted in the
content of the field cast member Sorry:

on findLowest bids
set vLowest = min(bids)
set the text of member "Sorry" = ¬
 "We're sorry, your bid of $" & vLowest && "is not a
 winner!"
end

max function

mInstanceRespondsTo
 Syntax: XObject(mInstanceRespondsTo, message)

This predefined method can only be used with XObjects. It returns a positive integer if an
instance of the XObject responds to the specified message, which must be a string or
symbol expression. In this case the integer returned is the number of arguments required
by the message, plus 1. The method returns 0 if XObject does not respond to the
specified message.

Example:

This statement checks whether the SerialPort XObject responds to the message string
mWrite.

put SerialPort(mInstanceRespondsTo, "mWrite")

The result is 2; one for the first parameter, plus one.

mRespondsTo predefined method

mMessageList
Syntax: XObject(mMessageList)

This predefined method can only be used with XObjects. It returns a string that describes
the XObject and its methods. The string is the same string that the mDescribe method
displays in the message window; however, it may be put into fields or variables.

Example:

This statement displays methods and comments assigned to the fileIO XObject:

put fileIO(mMessageList)

mDescribe, mInstanceRespondsTo, mRespondsTo predefined methods

mName
Syntax: XObject(mName)

or

XObjectInstance (mName)

This predefined method (which can be used only with XObjects and their instances) gives
a string that contains the name of the XObject that created the instance.

Example:

These statements create an instance of the serial port XObject and places it in the
variable modemPort. It then displays the name of the XObject instance:

put SerialPort(mNew, 0) into modemPort
put modemPort(mName)

The result is SerialPort, which is the name of the XObject.

mNew
Syntax: XObject(mNew [,argument1] [,argument2] ...

This predefined method is used to create objects or instances of an external XObject in
RAM. To create the instance of a particular class of objects, you assign an object variable
to the particular XObject name using the mNew method.

Arguments to the mNew method are optional. Of course, a particular XObject may have
been written to require a certain number of arguments of a certain type. See its
documentation, its example movie, or its mDescribe in the message window for this
information.

There is no requirement for any particular number of arguments to the mNew method of
objects. Typically you use the mNew method to assign instance variables used throughout
the methods of an object.

In order to clear the object you create using mNew from RAM at the end of the movie, it is
a good idea to use the predefined mDispose method for XObjects.

Before creating new instances of an object using mNew, it is also a good idea to check for
previous instances of an object that has the same name, and mDispose it before you
create a new one. In this way, if the movie is aborted before the normal mDispose, you
won't fill up RAM by repeatedly creating new ones. This can happen during the
development of a project, when you repeatedly stop the movie before the end, and play
it again from the beginning.

Examples:

This statement creates a new instance of myArrayObject. The new instance is named
myArray:

put myArrayObject(mNew) into myArray

This statement creates a new instance of birdObj. The new instance is named bird and
has initial instance variables wingCastNum and legCastNum:

put birdObj(mNew, wingCastNum, legCastNum) into bird

This statement creates a new instance of the XObject PioneerLaserDisc myArrayObject.
The new instance is named vDisc:

put PioneerLaserDisc(mNew, 1, 9600, 0) into vDisc

This handler checks for existing instances of factories and XObjects and disposes of any
it finds. It then creates a new instance of the myArrayObject:

on startMovie
 global myObject
 -- check for previous instances:
 if objectP(myObject) then myObject(mDispose)
 -- create a new instance of the object in RAM:
 put myArrayObject(mNew) into myObject

end startMovie

method keyword; mDescribe and mDispose predefined methods

mod
Syntax: integerExpression1 mod integerExpression2

This arithmetic operator performs the arithmetic modulus operation on two integer
expressions. In this operation, integerExpression1 is divided by integerExpression2. The
resulting value of the entire expression is the integer remainder of the division.

This is an arithmetic operator with a precedence level of 4.

Examples:

This statement divides 7 by 4 and then displays the remainder in the message window:

put 7 mod 4

The result is 3.

This handler sets the ink effect of all odd-numbered sprites to copy, which is the ink
effect specified by the number 0. First, the handler checks whether the sprite that has
the number in the variable mySprite is an odd-numbered sprite by dividing the sprite
number by 2 and then checking whether the remainder is 1. When the remainder is 1,
which is the result for an odd-numbered number, the ink effect is set to copy:

on setInk
if (mySprite mod 2) = 1 then
 set the ink of sprite mySprite to 0
 else
 set the ink of sprite mySprite to 8
 end if
end setInk

modal of window
Syntax: the modal of window "window "

This window property specifies whether movies can respond to events that occur outside
the window specified by window.

When the modal of window property is TRUE, movies cannot respond to events
outside the window.

When the modal of window property is FALSE, movies can respond to events outside
the window.

Setting the modal of window to TRUE lets you make a specific movie in a window the
only movie that the user can interact with.

Example:

This statement lets movies respond to events outside of the window Tool Panel:

set the modal of window "Tool Panel" to FALSE

modified of member
Syntax: the modified of member whichCastmember

This function indicates whether the cast member specified by whichCastmember has
been modified since it was read from the movie file.

When the modified of member is TRUE (1), the cast member has been modified
since it was read from the movie file.

When the modified of member is FALSE (0), the cast member has not been
modified since it was read from the movie file.

Example:

This statement tests whether the cast member Introduction has been modified since it
was read from the movie file:

put the modified of member "Introduction"

The result is 0, which is the numerical equivalent of FALSE.

mouseCast
Syntax: the mouseCast

This integer function gives the cast number of the sprite that is under the cursor when
the function is called. When the cursor is not over a cast member, it gives the result -1.

This is useful for having the movie perform specific actions when the cursor rolls over a
sprite and the sprite uses a certain cast member.

Examples:

This statement checks whether the cast member Off Limits is the cast member assigned
to the sprite under the cursor and displays an alert if it is. This is one example of how
you can specify an action depending on which cast member is assigned to the sprite:

if the mouseCast = the number of member "Off Limits"¬
then alert "Stay away from there!"

This statement assigns the number of the sprite under the cursor to the variable
lastCast:

put the mouseCast into lastCast

memberNum of sprite sprite property; mouseChar, mouseItem, mouseLine,
mouseWord, and rollOver functions; the number of member cast property

mouseChar
Syntax: the mouseChar

This integer function, used for field sprites, gives the number of the character that is
under the cursor when the function is called. The count is from the beginning of the field.
If the mouse is not over a field or is in the gutter of a field, the result is -1.

Example:

This statement determines whether the cursor is not over a field sprite and changes the
content of the field cast member Instructions to "Please point to a character." when it is:

if the mouseChar = -1 then ¬
 put "Please point to a character." ¬
 into field "Instructions"

This statement assigns the character under the cursor in the specified field to the
variable currentChar:

put char (the mouseChar) of member (the mouseCast) ¬
 into currentChar

mouseItem, mouseLine and mouseWord functions; char...of chunk expression
keyword; the number of chars in chunk function

mouseDown
Syntax: the mouseDown

This function indicates whether the mouse button is currently being pressed.
When the mouseDown is TRUE, the button is being pressed.
When the mouseDown is FALSE, the button is not being pressed.

Examples:

This handler has the movie beep until the user clicks the mouse:

on enterFrame
 repeat while the mouseDown = FALSE
 beep
 end repeat
end

This statement has Lingo exit the repeat loop or handler it is in when the user clicks the
mouse:

if the mouseDown then exit

mouseH, mouseUp, and mouseV functions; on mouseDown and on mouseUp
event handlers

mouseDownScript
Syntax: the mouseDownScript

This property specifies the Lingo that is executed when the mouse button is pressed. The
Lingo can be a simple statement or a calling script for a handler.

When the mouse button is pressed and the mouseDownScript is defined, Lingo executes
the instructions specified for the mouseDownScript first. Unless the instructions include
the pass command so that the mouseDown message can pass on to other objects in the
movie, no other on mouseDown handlers are executed.

Setting the mouseDownScript property does the same thing as using the when keyDown
then command that appeared in earlier versions of Director.

When the instructions you've specified for the mouseDownScript property are no longer
appropriate, turn them off by using the statement set the mouseDownScript to empty.

The mouseDownScript property can be tested and set, and the default value is EMPTY,
which means that the mouseDownScript has no Lingo at all assigned to it.

Example:

This statement sets the mouseDownScript to if the mouseDown then go to next.
When this is in effect and the user clicks the mouse button, the playback head always
jumps to the next marker in the movie.

set the mouseDownScript ¬

 to "if the mouseDown then go to next"

This statement sets the mouseDownScript to if the clickOn = 0 then beep. When
this in effect and the user clicks anywhere on the stage, the computer beeps.

set the mouseDownScript ¬

 to "if the clickOn = 0 then beep"

dontPassEvent command; mouseUpScript property; on mouseDown and on
mouseUp event handlers

mouseH
Syntax: the mouseH

This function indicates the horizontal position of the mouse cursor. The value of mouseH is
the number of pixels the cursor is from the left edge of the stage.

The mouseH function is useful for moving sprites to the horizontal position of the mouse
cursor and checking whether the cursor is within a region of the stage. Using mouseH and
mouseV functions together, you can determine the cursor's exact location.

The mouseH function can be tested but not set.

Examples:

This handler moves sprite 10 to the mouse cursor location and updates the stage when
the user clicks the mouse button:

on mouseDown
 set the locH of sprite 1 to the mouseH
 set the locV of sprite 1 to the mouseV
 updateStage
end

This statement tests whether the cursor is more than 10 pixels to the right or left of a
starting point and sets the variable Far to TRUE if it is:

if abs(the mouseH - startH) > 10 then ¬
 put TRUE into draggedEnough

locH of sprite and locV of sprite sprite properties; mouseV function

mouseItem
Syntax: the mouseItem

This integer function gives the number of the item that is under the pointer when the
function is called and the cursor is over a field sprite. (An item is any sequence of
characters delimited by commas.) Counting starts at the beginning of the field. If the
mouse is not over a field, the result is -1.

Example:

This statement determines whether the cursor is over a field sprite and changes the
content of the field cast member Instructions to "Please point to an item." when it is not:

if the mouseItem = -1 then ¬
 put "Please point to an item." ¬
 into field "Instructions"

This statement assigns the item under the cursor in the specified field to the variable
currentItem:

put item (the mouseItem) of member (the mouseCast) ¬
 into currentItem

item...of chunk expression keyword; mouseChar, mouseLine, and mouseWord
functions; number of items in chunk function

mouseLine
Syntax: the mouseLine

This integer function gives the number of the line under the pointer when the function is
called and the cursor is over a field sprite. Counting starts at the beginning of the field.
When the mouse is not over a field sprite, the result is -1.

Examples:

This statement determines whether the cursor is over a field sprite and changes the
content of the field cast member Instructions to "Please point to a line." when it is not:

if the mouseLine = -1 then ¬
 put "Please point to a line." ¬
 into field "Instructions"

This statement assigns the number of the item under the cursor in the specified field to
the variable currentLine:

put line (the mouseLine) of member (the mouseCast) ¬
 into currentLine

mouseChar, mouseItem, and mouseWord functions; line...of chunk expression
keyword; number of lines in chunk function

mouseUp
Syntax: the mouseUp

This function indicates whether the mouse button is released.
The mouseUp function is TRUE when the mouse button is released.
The mouseUp function is FALSE when the mouse button is being pressed.

Examples:

This handler has the movie beep as long as the mouse button is being pressed. The beep
stops when the user clicks the mouse button:

on enterFrame
 repeat while the mouseUp = FALSE
 beep
 end repeat
end enterFrame

This statement has Lingo exit the repeat loop or handler it is in when the user releases
the mouse button:

if the mouseUp then exit

mouseDown, mouseH, and mouseV functions; on mouseDown and on mouseUp
event handlers

mouseUpScript
Syntax: the mouseUpScript

This property determines the Lingo that is executed when the mouse button is released.
The Lingo can be a simple statement or a calling script for a handler.

When the mouse button is released and the mouseUpScript is defined, Lingo executes
the instructions specified for the mouseUpScript first. Unless the instructions include the
pass command so that the mouseUp message can pass on to other objects in the movie,
no other mouseUp handlers are executed.

When the instructions you've specified for the mouseUpScript property are no longer
appropriate, turn them off by using the statement set the mouseUpScript to empty.

Setting the mouseUpScript property does the same as using the when mouseUp then
command that appeared in earlier versions of Director.

The mouseUpScript property can be tested and set. The default value is EMPTY.

Examples:

This statement sets the mouseUpScript to continue. When this is in effect and the
movie is paused, the movie always continues whenever the user releases the mouse
button.

set the mouseUpScript to "continue"

This statement has the movie beep when the user releases the mouse button after
clicking anywhere on the stage:

set the mouseUpScript ¬
 to "if the clickOn = 0 then beep"

dontPassEvent command; mouseDownScript property; on mouseDown and on
mouseUp event handlers

mouseV
Syntax: the mouseV

This function indicates the vertical position of the mouse cursor. The value of mouseV is
the number of pixels the cursor is from the top of the stage.

The mouseV function is useful for moving sprites to the vertical position of the mouse
cursor and checking whether the cursor is within a region of the stage. Using mouseH and
mouseV functions together, you can identify the cursor's exact location.

Examples:

This handler moves sprite 1 to the mouse cursor location and updates the stage when
the user clicks the mouse button:

on mouseDown
 set the locH of sprite 1 to the mouseH
 set the locV of sprite 1 to the mouseV
 updateStage
end

This statement tests whether the cursor is more than 10 pixels above or below a starting
point and sets the variable vFar to TRUE if it is:

if abs(the mouseV - startV) > 10 then ¬
 put TRUE into draggedEnough

mouseH function; locH of sprite and locV of sprite sprite properties

mouseWord
 Syntax: the mouseWord

This integer function gives the number of the word under the cursor when the function is
called and when the cursor is over a field sprite. Counting starts from the beginning of
the field. When the mouse is not over a field, the result is -1.

Examples:

This statement determines whether the cursor is over a field sprite and changes the
content of the field cast member Instructions to "Please point to a word." when it is not:

if the mouseWord = -1 then ¬
 put "Please point to a word." ¬
 into member "Instructions"

This statement assigns the number of the word under the cursor in the specified field to
the variable currentWord:

put word (the mouseWord) of member (the mouseCast) ¬
 into currentWord

mouseChar, mouseItem, and mouseLine functions; number of words in chunk
function; word...of chunk expression keyword

move member
Syntax: move member whichCastmember [, member whichLocation]

This command moves the cast member specified by whichCastmember to a different
location in the cast window.

Using the move member command without the optional parameter, the cast member
moves to the first empty location in the cast window.

Including the member whichLocation parameter in the move member command moves
the cast member to the location specified by whichLocation.

Example:

This statement moves cast member Shrine to the first empty location in the cast window:

move member "Shrine"

This statement moves cast member Shrine to location 20 in the Bitmaps cast window:

move member "Shrine", member 20 of castLib "Bitmaps"

moveableSprite of sprite
Syntax: the moveableSprite of sprite whichSprite

This sprite property indicates whether a sprite is moveable.
When the sprite can be moved by the user, the moveableSprite of sprite is TRUE

(1).
When the sprite cannot be moved by the user, the moveableSprite of sprite is

FALSE (0).

To use Lingo to make a field sprite moveable, the sprite must first be a puppet sprite.

You can also make a sprite moveable by using the Moveable option in the score.
However, controlling whether a sprite is moveable by using Lingo lets you turn this
condition on and off as situations in the movie require. For example, referring to the
"Mechanical Simulation" sample movie, you could let the user drag parts from the toolkit
but make them unmoveable after they are on the pegboard by turning moveableSprite
of sprite on and off at the appropriate times.

Setting the moveableSprite of sprite property lets you control whether sprites are
moveable from other scripts.

The moveableSprite of sprite property can be tested and set.

Examples:

This handler first makes the sprite a puppet and then makes it moveable:

on spriteMove
 puppetSprite 5, TRUE
 set the moveableSprite of sprite 5 to TRUE
end

This statement checks whether a sprite is moveable and displays a message if it isn't:

if the moveableSprite of sprite 13 = FALSE ¬
 then set the text of member "Notice" to ¬
 "You can't drag this item by using the mouse."

puppetSprite command

moveToBack
Syntax: moveToBack window "whichWindow "

This command moves the window specified by whichWindow behind all other windows.

Example:

These statements move the first window in the windowList behind all other windows:

set myWind=getat(the windowList, 1)
moveToBack myWind

If the first record of the windowList was "Demo Window", the long version of the
moveToBack would be:

moveToBack window "Demo Window"

moveToFront
Syntax: moveToFront window "whichWindow"

This command moves the window specified by whichWindow in front of all other
windows.

Example:

This statement moves the first window in the windowList in front of all other windows:

set myWind=getat(the windowList, 1)
moveToFront myWind

If the first record of the windowList was "Demo Window", the long version of the
moveToFront would be:

moveToFront window "Demo Window"

movie
Syntax: the movie

This string function returns the name of the currently open movie.

Example:

This statement assigns the name of the current movie to the field cast member Current
Movie:

put the movie into member "Movie Name"

go and play commands; pathName function

movieFileFreeSize
Syntax: the movieFileFreeSize

This function returns the number of unused bytes in the current movie.

When the movie has no unused space, the movieFileFreeSize function returns 0.

Example:

This statement displays the number of unused bytes that are in the current movie:

put the movieFileFreeSize

movieFileSize
Syntax: the movieFileSize

This function returns the number of bytes in the current movie.

Example:

This statement displays the number of bytes in the current movie:

put the movieFileSize

movieName
Syntax: the movieName

This function indicates the simple name of the current movie. The movieName function is
equivalent to the movie function.

Example:

This statement displays the name of the current movie in the message window:

put the movieName

movie, moviePath, and pathName functions

moviePath
Syntax: the moviePath

This function indicates the pathname of the folder that the current movie is located in.
The moviePath function is equivalent to the pathName function.

Example 1:

This statement displays the pathname of the current movie's folder:

put the moviePath

Example 2:

This statement plays a sound file "crash.aif" stored in the "sounds" subfolder of the
current movie's folder:

sound playFile 1, the moviePath&"sounds/crash.aif"

Note: If you choose to specify a subfolder location, as in this example, using "/" will
insure that the path is understood on both Macintosh and Windows computers. Only on a
Macintosh can you use ":" to separate subfolders.

movie, movieName, and pathName functions

movieRate of sprite
Syntax: the movieRate of sprite channelNumber

This sprite property controls the rate at which a digital video in a specific channel plays.
The movie rate is a value specifying the playback of the digital video. A value of 1 is
normal forward play, -1 is reverse, 0 is stop. Higher and lower values are possible. For
example a value of 0.5 has the digital video play slower than normal. However, frames
may be dropped when the movieRate of sprite exceeds 1. The severity of dropping
frames depends on factors such as the performance of the computer the movie is
playing on, whether the digital video sprite is stretched, and so on.

This property can be tested and set.

Example:

This statement sets the rate for a digital video in sprite channel 9 to normal playback
speed:

set the movieRate of sprite 9 to 1

This statement has the digital video in sprite channel 9 play in reverse:

set the movieRate of sprite 9 to -1

movieTime of sprite
 Syntax: the movieTime of sprite channelNumber

This sprite property determines the current time of a digital video movie playing in the
channel specified by channelNumber. The value of the movieTime is measured in ticks.

The movieTime of sprite property can be tested and set.

Example:

This statement displays the current time of the QuickTime movie in channel 9 in the
message window:

put the movieTime of sprite 9

This statement sets the current time of the QuickTime movie in channel 9 to the value in
the variable Poster:

set the movieTime of sprite 9 to Poster

mPerform
Syntax: object (mPerform, message [, argument1][, argument2]...)

This predefined method is used to send an arbitrary message to any Lingo object. It is
similar to the Lingo do command, which executes a Lingo statement stored as a string.
However, mPerform invokes a particular method of the specified object by sending that
message to the object indirectly.

This is accomplished as follows: The first argument to mPerform is a required argument
called a "message expression." This expression can be either in the form of either a
string or symbol. This message specifies the name of the method to be invoked by the
mPerform message.

Optional additional arguments, which can be any data type, constant, or property used in
the method to be invoked, follow this required first argument.

Typically, the object name is specified by use of the me keyword, since the typical use of
mPerform is within a method that invokes one of several other methods.

A powerful use for mPerform is to eliminate a lot of if...then conditional tests within
methods that call other methods.

Examples:

This statement creates an instance named modemPort of the SerialPort XObject:

put SerialPort(mNew, 0) into modemPort

These statements invoke the mWriteChar method with the argument charNum:

modemPort(mPerform, "mWriteChar", charNum)
modemPort(mWriteChar, charNum)

me and method keywords

mPut
 Syntax: object(mPut, whichElement, expression)

This predefined method, which can only be used with objects, puts data into an object's
internal array. Every object produced has an associated array capable of storing an
arbitrary number of integers, floating point numbers, strings, objects, or symbols. The
elements of the array are numbered 1, 2, 3, The mGet predefined method is used to
retrieve values from a particular element.

The integer expression whichElement specifies which array element the mPut method
assigns. The value of expression is assigned to the specified element.

Example:

These three statements use mPut to put data into an internal array. Using 3, 7, and 12
assigns these values to the third, seventh, twelfth elements of the array:

myObject(mPut, 3, 2 + 2)
myObject(mPut, 7, sqrt(2.0))
myObject(mPut, 12, "hello" && "there")

This statement displays the value associated with the third element of the array:

put myObject(mGet, 3)

The result is 4.

This statement displays the value associated with the seventh element of the array:

put myObject(mGet, 7)

The result is 1.4142, which is the square root of 2.

This statement displays the value associated with the twelfth element of the array:

put myObject(mGet, 12)

The result is the string "hello there".

mGet predefined method

mRespondsTo
Syntax: XObjectInstance (mRespondsTo, message)

This predefined method, which can only be used with instances of XObjects, returns a
positive integer when XObjectInstance responds to the specified message, which must
be a string or symbol expression. In this case the integer returned is the number of
arguments required by the message, plus 1. The method returns 0 if XObjectInstance
does not respond to the specified message.

Example:

These statements create an instance of the XObject SerialPort and checks whether it
responds to the message string mWrite.

put SerialPort(mNew, 0) into modemPort
put modemPort(mRespondsTo, "mWrite")

mInstanceRespondsTo predefined method

multiSound
Syntax: the multiSound

This system property is TRUE when the system supports more than one sound channel.
(A PC must have a multichannel sound card for the multiSound property to be TRUE.)

Example:

This statement plays the sound file Music in sound channel 2 if the computer supports
more than one sound channel:

if the multiSound then sound playFile 2, "Music"

name of member
Syntax: the name of member whichCastmember

This cast member property determines the name of the specified cast member.
When whichCastmember evaluates to a string, it is used as the cast name.
When whichCastmember evaluates to an integer, it is used as the cast number.

The name is a descriptive string assigned by the user. Setting this property is equivalent
to entering a name in the Cast Member Properties dialog box.

The name cast member property can be tested and set.

Examples:

This statement changes the name of cast member named On to Off:

set the name of member "On" to "Off"

This statement sets the name of cast member 15 to Background Sound:

set the name of member 15 to "Background Sound"

This statement sets the variable itsName to the name of the cast member that follows
the cast member whose number is equal to the variable i:

put the name of member (i + 1) into itsName

number of member cast property, Cast Member Properties dialog box

name of CastLib
Syntax: the name of castLib whichCast

This cast member property returns the name of the specified cast. This property can be
tested and set.

Example:

This statement changes the name of the cast Buttons to Interface:

set the name of castLib "Buttons" to "Interface"

name of menu
Syntax: the name of menu whichMenu

This menu property returns a string containing the name of the specified menu. The
expression whichMenu can evaluate to either a menu number or a menu name.

The name of menu property can be tested but cannot be set directly. Use the
installMenu command to set up a custom menu bar.

Example:

This statement assigns the name of menu number 1 to the variable firstMenu:

put the name of menu 1 into firstMenu

The following handler returns a list of menu names, one per line:

on menuList
 put EMPTY into list
 repeat with i = 1 to the number of menus
 put the name of menu i & RETURN after list
 end repeat
 return list
end menuList

number of menus property; name of menuItem menu item property

name of menuItem
Syntax: the name of menuItem whichItem of menu whichMenu

This menu item property determines the text that appears in the menu item specified by
whichItem in the menu specified by whichMenu. The whichItem expression can be either
a menu item name or a menu item number; whichMenu can be either a menu name or a
menu number.

The name of menuItem property can be tested and set.

Examples:

This statement sets the variable itemName to the name of the eighth item in the Edit
menu:

put the name of menuItem 8 of menu "Edit" ¬
 into itemName

This statement has a specific filename follow the term Open in the File menu:

set the name of menuItem "Open" of menu fileMenu ¬
 to "Open" & fileName

name of menu and number of menuItems properties

name of window
Syntax: the name of window "whichWindow"

This property determines the name of the specified window. It can be tested and set.

Example:

This statement changes the name of window Yesterday to Today

set the name of window "Yesterday to "Today"

name of xtra
Syntax: the name of xtra whichXtra.

This property indicates the name of the specified Xtra. It can be tested and set.

Example:

The following statement changes the name of the Xtra Editor to Text Whiz:

set the name of xtra "Editor" to "Text Whiz"

Using Xtras

new
Syntax: new(type)

or

new(type, castLib whichCast)

or

new(type, member whichCastMember of castLib whichCast)

or

set x = new(parentScript arg1, arg2, ...)

or

new(script parentScriptName , value1, value2 , ...)

This function creates a new cast member or child object.

For cast members, the parameter type sets the cast member's type. Possible predefined
values correspond to the existing cast member types: #bitmap, #field, etc. The new
function can also create Xtra cast member types, which can be identified by any name
that the author chooses.

The optional whichCastMember and whichCast parameters specify the cast member slot
and cast window where the new cast member is stored. When no cast member slot is
specified, the first empty slot is used. The new function returns the cast member slot.

When the argument for the new function is a parent script, the new function creates a
child object. The parent script should include an on new handler that sets the child
object's initial conditions.

The child object has all the handlers of the parent script. The child object has the same
property variable names that are declared in the parent script, but each child object has
its own values for these properties.

Because the child object is a value, it can be assigned to variables, placed in lists, and
passed as a parameter.

Being able to assign individual property values to child objects is the primary advantage
of using on new handlers.

You display information about a child object by using the put command to display
information about it in the message window.

For more information about creating child objects from parent scripts, see Chapter 10,
"Parent Scripts & Child Objects," in Learning Lingo.

Example 1:

This handler creates a new bitmap cast member and assigns it to the variable
Background:

on makeBitmap
 set Background = new(#bitmap)
end makeBitmap

Example 2:

These statements use a new handler to create a child object of a parent script. The
parent script is a script cast member named Bird, which contains these handlers:

on new me
 return me
end

on fly me
 put "I am flying"
end fly

Example 3:

These statements create a child object called myBird, and make it fly by calling the fly
handler in the Bird parent script:

set myBird to new(script "Bird")
fly myBird

Example 4:

This example uses a new Bird parent script, which contains the property variable speed:

property speed

on new me, initSpeed
 set speed to initSpeed
 return me
end

on fly me
 put "I am flying at " & speed & "mph"
end

Example 5:

The following statements create two child objects called myBird1 and myBird2. When the
fly handler is called from the child object, the speed of the object is displayed in the
message window:

set myBird1 to new (script "Bird", 15)
set myBird2 to new(script "Bird", 25)
fly myBird1

fly myBird2

This message would appear in the message window:

-- "I am flying at 15 mph"

-- "I am flying at 25 mph"

 type of member cast member property, ancestor, me, parent-child scripts

next
Syntax: next

This keyword refers to the next marker in the movie. The next keyword is equivalent to
the phrase the marker (+ 1).

Example:

This statement sends the playback head to the next marker in the movie:

go next

loop and previous keywords

next repeat
Syntax: next repeat

This keyword causes Lingo to go to the next step in a repeat loop in a script. This is
different from the exit repeat keyword.

Example:

This repeat loop displays only odd numbers in the message window:

repeat with i = 1 to 10

 if (i mod 2) = 0 then next repeat

 put i

end repeat

not
Syntax: not logicalExpression

This logical operator performs a logical negation on a logical expression.
When the expression specified by logicalExpression is TRUE, the result is FALSE (0).
When the expression specified by logicalExpression is FALSE, the result is TRUE (1).

This is a logical operator with a precedence level of 5.

Examples:

This statement determines whether 1 is not less than 2:

put not (1 < 2)

Because 1 is less than 2, the result is 0, which indicates that the expression is FALSE.

This statement determines whether 1 is not greater than 2:

put not (1 > 2)

Because 1 is not greater than 2, the result is 1, which indicates that the expression is
TRUE.

This handler sets the checkMark of menuItem for the item Bold in the Style menu to
the opposite of its current setting:

on resetMenuItem
 set the checkMark of menuItem "Bold" ¬
 of menu "Style" to not (the checkMark ¬
 of menuItem "Bold" of menu "Style")
end resetMenuItem

and and or logical operators

nothing
Syntax: nothing

This command does nothing at all. It is useful for making the logic of an if-then statement
more obvious. Also, a nested if...then...else statement that contains no explicit
command for the else clause may require else nothing. Otherwise, Lingo interprets the
else clause as part of the preceding if.

Examples:

The nested if-then-else statement in this handler uses the nothing command to satisfy
the statement's else clause:

on mouseDown
 if the clickOn = 1 then
 if the moveable of sprite 1 = TRUE ¬
 then set the text of member "Notice" = ¬
 "Drag the ball"
 else nothing
 else set the text of member "Notice" = ¬
 "Click again"
 end if
end mouseDown

This handler has the movie do nothing as long as the mouse button is being pressed:

on mouseDown
 repeat while the stillDown
 nothing
 end repeat
end mouseDown

 if...then keywords

number of member
Syntax: the number of member whichCastmember

This cast member property indicates the cast number of the cast member specified by
whichCastmember.

When whichCastmember is a string, the string is used as the cast member name.
When whichCastmember is an integer, the integer is used as the cast member

number.

The number of member property can be tested, but not set.

Examples:

This statement assigns the cast number of the cast member Power Switch to the variable
whichCastmember:

put the number of member "Power Switch" into ¬
 whichCastmember

This statement assigns the cast member Red Balloon to sprite 1:

set the memberNum of sprite 1 ¬
 to the number of member "Red Balloon"

memberNum of sprite sprite property; number of property

number of castLib
Syntax: the number of castLib whichCast

This cast member property indicates the number of the specified cast. For example, 2 is
the number of castLib for Cast 2. The property can be tested but not set.

Example:

This repeat loop uses the message window to display the number of cast members that
are in each of the movie's casts:

repeat with n = 1 to the number of castLibs
 put the name of castLib n &&"contains"&&the ¬
 number of members of castLib n&&"cast members."
end repeat

number of castLibs
Syntax: the number of castLibs

This cast member property returns the number of casts that are in the current movie.
This property can be tested but not set.

Example:

This repeat loop uses the message window to display the number of cast members that
are in each of the movie's casts:

repeat with n = 1 to the number of castLibs
 put the name of castLib n &&"contains"&&the ¬
 number of members of castLib n&&"cast members."
end repeat

number of members
Syntax: the number of members

This property indicates the number of the last cast member in the current movie. Any
empty cast slots are also counted, so the actual number of cast members may be fewer
than the number of members value.

The number of members property can be tested, but not set.

Example:

The following handler returns a string containing a list of all the cast member names, one
per line:

on castList whichCast
 put EMPTY into list
 repeat with i = 1 to the number of members¬
 of castLib whichCast
 put the name of member I of castLib whichCast¬
 & RETURN after list
 end repeat
 return list
end castList

number of member cast property

number of chars in
Syntax: the number of chars in chunkExpression

This chunk function returns a count of the characters in a chunk expression.

Chunk expressions refer to any character, word, item, or line in any container of
characters. Containers include field cast members and variables that hold strings, and
specified characters, words, items, lines, and ranges in containers.

Spaces and control characters such as Tab and Return count as characters.

Examples:

This statement displays the number of characters in the string "Macromedia, the
multimedia company" in the message window:

put the number of chars ¬
in "Macromedia, the multimedia company"

The result is 33.

This statement sets the variable charCounter to the number of characters in the ith
word in the string Names:

put the number of chars in word i of member "Names" into
charCounter

length function; number of items in, number of lines in, number of words in in
chunk functions; char...of keyword

number of items in
Syntax: the number of items in chunkExpression

This chunk function returns a count of the items in a chunk expression. An item chunk is
any sequence of characters delimited by commas.

Chunk expressions refer to any character, word, item, or line in any container of
characters. Containers include fields (field cast members) and variables that hold strings,
and specified characters, words, items, lines, and ranges in containers.

Example:

This statement displays the number of items in the string "Macromedia, the multimedia
company" in the message window:

put the number of items ¬
 in "Macromedia, the multimedia company"

The result is 2.

This statement sets the variable itemCounter to the number of items in the field Names:

put the number of items in field "Names" into
 itemCounter

item...of chunk expression keyword, number of chars in, number of lines in,
number of words in chunk functions

number of lines in
Syntax: the number of lines in chunkExpression

This chunk function returns a count of the lines in a chunk expression.

Chunk expressions are used to refer to any character, word, item, or line in any container
of characters. Containers include field cast members and variables that hold strings, and
specified characters, words, items, lines, and ranges in containers.

Examples:

This statement displays the number of lines in the string "Macromedia, the multimedia
company" in the message window:

put the number of lines ¬
 in "Macromedia, the multimedia company"

The result is 1.

This statement sets the variable lineCounter to the number of lines in the field Names:

put the number of lines in field "Names" into lineCounter

line...of chunk expression keyword; number of chars in, number of items in,
number of words in in chunk functions

number of members of castLib
Syntax: the number of members of castLib whichCast

This cast member property indicates the number of the last cast member in the specified
cast. This property can be tested but not set.

Example:

These statements use the message window to display the type of each cast member in
the cast Central Casting. The number of members of castLib property is used to
determine how many times the loop repeats.

i = 0
repeat i to the number of members ¬
of castLib "Central Casting"
 put "Cast member"&&i&&"is a"&&¬
 (the type of member I of ¬
 castLib "Central Casting" &&"cast member."
end repeat

number of menuItems
Syntax: the number of menuItems of menu whichMenu

This menu property indicates the number of menu items in the custom menu specified
by whichMenu. The whichMenu parameter can be a menu name or a menu number.

The number of menuItems menu property can be tested but not set directly. Use the
installMenu command to set up a custom menu bar.

Examples:

This statement sets the variable fileItems to the number of menu items in the custom
File menu:

put the number of menuItems of menu "File" ¬
 into fileItems

This statement sets the variable itemCount to the number of menu items in the custom
menu whose menu number is equal to the variable i:

put the number of menuItems of menu i into itemCount

installMenu command; number of menus property

number of menus
Syntax: the number of menus

This menu property indicates the number of menus installed in the current movie.

The number of menus menu property can be tested, but not set. Use the installMenu
command to set up a custom menu bar.

Example:

This statement determines whether there are any custom menus installed in the movie
and installs the menu Menubar if no menus are already installed:

if the number of menus = 0 then ¬
 installMenu (the number of member "Menubar")

This statement has the message window display the number of menus that are in the
current movie:

put the number of menus

installMenu command; number of menuItems property

number of words in
the number of words in chunkExpression

This function tells how many words are in the chunk expression specified by
chunkExpression.

Chunk expressions refer to any character, word, item, or line in any container of
characters. Containers include field cast members and variables that hold strings, and
specified characters, words, items, lines, and ranges in containers.

Examples:

This statement has the message window display the number of words in the string
"Macromedia, the multimedia company":

put the number of words ¬
 in "Macromedia, the multimedia company"

The result is 4.

This handler reverses the order of words in the string specified by the argument
wordList:

on reverse wordList
 put EMPTY into list
 repeat with i = 1 to the number of words ¬
 in wordList
 put word i of wordList & " " before list
 end repeat
 delete char (the number of chars in list) of list
 return list
end reverse wordList

number of chars in, number of items in, number of lines in chunk functions;
word...of chunk expression keyword

number of xtras
Syntax: the number of xtras

This property gives the number of Lingo Xtras available to the movie. They could have
been opened by the openxlib command or are present in the standard Xtras folder. It
can be tested but not set.

Example:

This statement has the message window display the number of Lingo Xtras that are
available to the movie:

put the number of xtras

Using Xtras

numToChar
Syntax: numToChar(integerExpression)

This function gives a string containing the single character whose ASCII sequence
number is the value of integerExpression. It is useful for interpreting data from outside
sources that are presented as numbers rather than as characters.

Example:

This statement has the message window display the character whose ASCII number is
65:

put numToChar(65)

The result is the letter "A."

charToNum function

objectP
Syntax: objectP(expression)

This function indicates whether the expression specified by expression is an object
produced by a parent script, Xtra, or XObject.

When objectP is TRUE, the expression is such an object.
 When objectP is FALSE, the expression is not such an object.

The "P" in objectP stands for "predicate."

It is good practice to use objectP to determine which items are XObjects when you
create XObjects by using mNew or disposing of XObjects by using mDispose.

Examples:

This statement checks whether modemPort is an XObject and displays the result in the
message window:

put objectP(modemPort)

This handler checks whether externalFile is an XObject and disposes of it if it is:

on stopMovie
 if objectP(externalFile) then ¬
 externalFile(mDispose)
end stopMovie

floatP, integerP, stringP, and symbolP functions; mDispose and mNew
predefined methods; Using Xtras

of
The word of is part of many Lingo properties, such as the foreColor of sprite, the
number of member, the name of menu, and so on.

offset
Syntax: offset(stringExpression1, stringExpression2)

This function gives the first place that first character of stringExpression1 occurs in
stringExpression2.

When stringExpression1 is found in stringExpression2, the result is the number that
indicates the position of the first occurrence.

When stringExpression1 is not found in stringExpression2, the result is 0.

Lingo counts spaces as characters in both strings. On the Macintosh, the string
comparison is not sensitive to case or diacritical marks. For example, Lingo considers "a"
and "Å" the same character on the Macintosh.

Example:

This statement has the message window display the beginning position of the string
"media" within the string "Macromedia":

put offset("media","Macromedia")

The result is 6.

This statement has the message window display the beginning position of the string
"Micro" within the string "Macromedia

put offset("Micro", "Macromedia")

The result is 0, because "Macromedia" doesn't contain the string "Micro".

chars and length functions; contains and starts comparison operators

offset rect
Syntax: offset (rectangle, horizontalChange, verticalChange)

This function yields a rectangle that is offset from the rectangle specified by rectangle.
The horizontal offset is the value specified by horizontalChange; the vertical offset is the
value specified by verticalChange.

When horizontalChange    is greater than zero, the offset is toward the right of the
stage; when horizontalChange    is less than zero, the offset is toward the left of the stage.

When verticalChange    is greater than zero, the offset is toward the top of the stage;
when verticalChange    is less than zero, the offset is toward the bottom of the stage.

The values for verticalChange    and horizontalChange    are in pixels.

on
Syntax: on handlerName [argument1] [, arg2] [, arg3] ...

[statements]
end handlerName

This keyword indicates the beginning of a handler. Handlers are collections of Lingo
statements that you can execute by simply using the handler name. A handler can
accept arguments as input values and return a value as a function result.

Handlers can be defined in score scripts, movie scripts, and scripts of cast members. A
handler in a script of a cast member can only be called by other handlers in the same
script. A handler in a score script or movie script can be called from anywhere.

You can use the same handler in more than one movie by putting the handler's script in
the shared cast.

on activateWindow, on closeWindow, on enterFrame, on exitFrame, on idle,
on keyDown, on keyUp, on mouseDown, on mouseUp, on resizeWindow, on
startMovie, on stepMovie, on stopMovie, and on zoomWindow event handlers

on activateWindow

Syntax: on activateWindow
statement(s)
end

This event handler contains statements that are executed when the movie is running as
a movie in a window and the window becomes active, such as when the user clicks the
inactive window.

The on activateWindow handler is a good place for Lingo that you want executed every
time the movie becomes active.

Example:

This handler plays the sound file Hurray when the window that the movie is playing in
becomes active:

on activateWindow
 puppetSound 2, "Hurray"
end

on closeWindow

Syntax: on closeWindow
statement(s)
end

This event handler contains statements that are executed when the movie is running as
a movie in a window and the user closes the window by clicking the window's close box.

The on closeWindow handler is a good place to put Lingo that you want executed every
time the movie's window closes.

Example:

This handler plays the sound file Sigh when the window that the movie is playing in
closes:

on closeWindow
 puppetSound 2, "Sigh"
end

on deactivateWindow
Syntax: on deactivateWindow

statement(s)
end

This message is sent when the window is deactivated. The on deactivate event handler
is a good place for Lingo that you want executed whenever a window is deactivated.

Example:

This handler plays the sound file Snore when the window that the movie is playing in is
deactivated:

on deactivateWindow
 puppetSound 2, "Snore"
end

on enterFrame
Syntax: on enterFrame

statement(s)
end enterFrame

This event handler contains statements that are executed each time the playback head
enters the frame that the on enterFrame handler is attached to. The on enterFrame
handler is equivalent to the on stepMovie handler used in earlier versions of Director.

The on enterFrame event handler is a good place for Lingo that you want executed once
at every new frame.

Place on enterFrame handlers in frame scripts or movie scripts.
When you want to assign the handler to an individual frame, put the handler in the

frame script.
When you want to assign the handler to every frame unless you explicitly instruct the

movie otherwise, put the on enterFrame handler in a movie script. The handler then
executes every time the playback head enters a frame unless the frame script has its own
on enterFrame handler. When the frame script has its own on enterFrame handler, the on
enterFrame handler in the frame script overrides the one in the movie script.

Example:

This handler turns off the puppet condition for sprites 1 through 5 each time the
playback head enters the frame:

on enterFrame
 repeat with i = 1 to 5
 puppetSprite i, FALSE
 end repeat
end

on exitFrame, on idle, on keyDown, on keyUp, on mouseDown, on mouseUp,
on startMovie, on stepMovie, and on stopMovie event handlers

on exitFrame
Syntax: on exitFrame

statement(s)
end exitFrame

This event handler contains statements that are activated each time the playback head
exits the frame that the on exitFrame handler is attached to. The on exitFrame handler
is a useful place for Lingo that resets conditions that are no longer appropriate after
leaving the frame.

Place on exitFrame handlers in frame scripts or movie scripts.
When you want to assign the handler to an individual frame, put the handler in the

frame script.
When you want to assign the handler to every frame unless explicitly instructed

otherwise, put the handler in a movie script. The on exitFrame handler then executes
every time the playback head exits the frame unless the frame script has its own on
exitFrame handler. When the frame script has its own on exitFrame handler, the on
exitFrame handler in the frame script overrides the one in the movie script.

Example:

This handler turns off all puppetSprite conditions when the playback head exits the
frame:

on exitFrame
 repeat with i = 48 down to 1
 set the puppet of sprite i = FALSE
 end repeat
end exitFrame

This handler sends the playback head to a specified frame if the value in the variable
vTotal exceeds 1000 when the playback head exits the frame:

on exitFrame
 if vTotal > 1000 then go to frame "Finished"
end

on enterFrame, on idle, on keyDown, on keyUp, on mouseDown, on
mouseUp, on startMovie, on stepMovie, and on stopMovie event handlers

on idle
Syntax: on idle

statement(s)
end idle

This event handler contains statements that are executed whenever the movie has no
other events to handle.

This is a useful location for Lingo statement that you want to execute as frequently as
possible. Some common cases are updating values in global variables and displays that
tell current movie conditions.

Because statements in on idle handlers run frequently, it is good practice to avoid
placing Lingo that takes a long time to process in an on idle handler.

It is often preferable to put on idle handlers in frame scripts instead of movie scripts.
This makes it easier to turn off the on idle handler when appropriate.

Example:

This handler updates the time being displayed in the movie whenever there are no other
events to handle:

on idle
 put the short time into field "Time"
end idle

on enterFrame, on exitFrame, on keyDown, on keyUp, on mouseDown, on
mouseUp, on startMovie, on stepMovie, and on stopMovie event handlers

on keyDown
Syntax: on keyDown

statement(s)
end

This event handler contains statements that are activated when a key is pressed.

When a key is pressed, Lingo searches these locations, in order, for an on keyDown
handler: primary event handler, editable field sprite script, script of a field cast member,
frame script, and movie script. (For sprites and cast members, on keyDown handlers work
only for editable strings. A keyDown on a different type of cast member, such as a
bitmap, has no effect.)

Lingo stops searching when it reaches the first location that has an on keyDown handler,
unless the handler includes the pass command to explicitly pass the keyDown message
on to the next location.

The on keyDown event handler is a good place to put Lingo that implements keyboard
shortcuts or other interface features that you want to have occur when the user presses
keys.

Where you place an on keyDown handler can affect when it runs.
When you want the handler to apply to a specific editable field sprite, put the handler

in a sprite script.
When you want the handler to apply to an editable field cast member in general, put

the handler in a script of the cast member.
When you want the handler to apply to an entire frame, put the handler in a frame

script.
When you want the handler to apply throughout the entire movie, put the handler in

a movie script.

You can override an on keyDown handler by placing an alternate on keyDown handler in a
location that Lingo checks before it gets to the handler you want to override. For
example, you can override an on keyDown handler assigned to a cast member by placing
an on keyDown handler in a sprite script.

Example:

This handler checks whether the Return key was pressed and sends the playback head to
another frame if it was:

on keyDown
 if the key = RETURN then go to frame "AddSum"
end keyDown

on enterFrame, on exitFrame, on idle, on keyUp, on mouseDown, on
mouseUp, on startMovie, on stepMovie, and on stopMovie event handlers

on keyUp
Syntax: on keyUp

statement(s)
end

This event handler contains statements that are activated when a key is released. The on
keyUp handler is similar to the on keyDown handler.

When a key is released, Lingo searches these locations, in order, for an on keyUp
handler: primary event handler, editable field sprite script, script of a field cast member,
frame script, and movie script. (For sprites and cast members, on keyUp handlers work
only for editable strings. A keyUp on a different type of cast member, such as a bitmap,
has no effect.)

Lingo stops searching when it reaches the first location that has an on keyUp handler,
unless the handler includes the pass command to explicitly pass the keyUp message on
to the next location.

The on keyUp event handler is a good place to put Lingo that implements keyboard
shortcuts or other interface features that you want to have occur when the user releases
keys.

Where you place an on keyUp handler can affect when it runs:
When you want the handler to apply to a specific editable field sprite, put the handler

in a sprite script.
When you want the handler to apply to an editable field cast member in general, put

the handler in a script of the cast member.
When you want the handler to apply to an entire frame, put the handler in a frame

script.
When you want the handler to apply throughout the entire movie, put the handler in

a movie script.

You can override an on keyUp handler by placing an alternate on keyUp handler in a
location that Lingo checks before it gets to the handler you want to override. For
example, you can override an on keyUp handler assigned to a cast member by placing
an on keyUp handler in a sprite script.

Example:

This handler checks whether the Return key was released and sends the playback head
to another frame if it was:

on keyUp
 if the key = RETURN then go to frame "AddSum"
end keyUp

on enterFrame, on exitFrame, on idle, on keyDown, on mouseDown, on
mouseUp, on startMovie, on stepMovie, and on stopMovie event handlers

on mouseDown
Syntax: on mouseDown

statement(s)
end

This event handler contains statements that are activated when the mouse button is
pressed.

When the mouse button is pressed, Lingo searches these locations, in order, for an on
mouseDown handler: primary event handler, sprite script, script of a cast member, frame
script, and movie script. Lingo stops searching when it reaches the first location that has
an on mouseDown handler, unless the handler includes the pass command to explicitly
pass the mouseDown message on to the next location.

The on mouseDown event handler is a good place to put Lingo that flashes images,
triggers sound effects, or makes sprites move when the user presses the mouse button.

Where you place an on mouseDown handler can affect when it runs.
When you want the handler to apply to a specific sprite, put the handler in a sprite

script.
When you want the handler to apply to a cast member in general, put the handler in

a script of the cast member.
When you want the handler to apply to an entire frame, put the handler in a frame

script.
When you want the handler to apply throughout the entire movie, put the handler in

a movie script.

You can override an on mouseDown handler by placing an alternate on mouseDown
handler in a location that Lingo checks before it gets to the handler you want to override.
For example, you can override an on mouseDown handler assigned to a cast member by
placing an on mouseDown handler in a sprite script.

Example:

This handler checks whether the user clicks anywhere on the stage and sends the
playback head to another frame if he or she does:

on mouseDown
 if the clickOn = 0 then go to frame "AddSum"
end mouseDown

This handler, assigned to a sprite script, plays a sound when the sprite is clicked:

on mouseDown
 puppetSound "Crickets"
end mouseDown

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on mouseUp,
on startMovie, on stepMovie, and on stopMovie event handlers

on mouseUp
Syntax: on mouseUp

statement(s)
end mouseUp

This event handler contains statements that are activated when the mouse button is
released.

When the mouse button is released, Lingo searches these locations, in order, for an on
mouseUp handler: primary event handler, sprite script, script of a cast member, frame
script, and movie script. Lingo stops searching when it reaches the first location that has
an on mouseUp handler, unless the handler includes the pass command to explicitly pass
the mouseUp message on to the next location.

An on mouseUp event handler is a good place to put Lingo that changes the appearance
of objects--such as buttons--after they are clicked. You can do this by switching the cast
member assigned to the sprite after the sprite is clicked and the mouse button is
released. The sprite's different appearance indicates that the sprite has already been
clicked.

Where you place an on mouseUp handler can affect when it runs.
When you want the handler to apply to a specific sprite, put the handler in a sprite

script.
When you want the handler to apply to a cast member in general, put the handler in

a script of the cast member.
When you want the handler to apply to an entire frame, put the handler in a frame

script.
When you want the handler to apply throughout the entire movie, put the handler in

a movie script.

You can override an on mouseUp handler by placing an alternate on mouseUp handler in a
location that Lingo checks before it gets to the handler you want to override. For
example, you can override an on mouseUp handler assigned to a cast member by placing
an on mouseUp handler in a sprite script.

Example:

This handler, assigned to sprite 10, switches the cast member assigned to sprite 10
when the user releases the mouse button after clicking the sprite:

on mouseUp
 puppetSprite 10, TRUE
 set the memberNum of sprite 10 ¬
 to the number of member "Dimmed"
end mouseUp

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on
mouseDown, on startMovie, on stepMovie, and on stopMovie event handlers

on moveWindow
Syntax: on moveWindow

 statement(s)
end

This event handler contains statements that are executed when a window is moved, such
as when the user drags the movie to a new location on the stage. The on moveWindow
handler is a good place to put Lingo that you want executed every time the movie's
window moves.

Example:

This handler plays the sound file Honk when the window that the movie is playing in
moves:

on moveWindow
 puppetSound 2, "Honk"
end

on openWindow
Syntax: on openWindow

 statement(s)
 end

This event handler contains statements that are executed when Director opens a
window. The on openWindow handler is a good place to put Lingo that you want
executed every time the movie's window opens.

Example:

This handler plays the sound file Hurray when the window that the movie is playing in
opens:

on openWindow
 puppetSound 2, "Hurray"
end

on resizeWindow
 Syntax: on resizeWindow

statement(s)
end resizeWindow

This event handler contains statements that are activated when a movie is running as a
movie in a window and the user resizes the window by dragging the window's grow box
or one of its edges.

An on resizeWindow event handler is a good place to put Lingo related to the window's
dimensions, such as positioning sprites and cropping digital video.

Example:

This handler moves sprite 3 to the coordinates stored in the variable centerPlace when
the window that the movie is playing in is resized:

on resizeWindow centerPlace
 set the loc of sprite 3 to centerPlace
end

on rightMouseDown
Syntax: on rightMouseDown

 statements
 end rightMouseDown

This event handler contains statements that are activated when the right mouse button
on a Windows computer is pressed. For Macintosh computers, the statements are
activated when the mouse button and Control key are pressed at the same time,
provided that the emulateMultiButtonMouse property is set to TRUE. If the
emulateMultiButtonMouse property isn't set to TRUE, this event handler has no effect on
the Macintosh.

Example:

This handler opens the window Help when the user clicks the right mouse button in
Windows:

on rightMouseDown
 open window "Help"
end

on rightMouseUp
Syntax: on rightMouseUp

 statements
 end rightMouseUp

This event handler contains statements that are activated when the right mouse button
on a Windows computer is released.

For Macintosh computers, the statements are activated if the mouse button is released
while the Control key is pressed, provided that the emulateMultiButtonMouse property is
set to TRUE. If the emulateMultiButtonMouse property isn't set to TRUE, this event
handler has no effect on the Macintosh.

Example:

This handler opens the window Help when the user releases the right mouse button in
Windows:

on rightMouseUp
 open window "Help"
end

on startMovie
 Syntax: on startMovie

statement(s)
end startMovie

This event handler contains statements that are activated after the movie preloads cast
members but before the movie starts playing, regardless of where the playback head is.

An on startMovie handler is a good place to put Lingo that opens resource files, creates
global variables, initializes variables, plays a sound while the rest of the movie is loading
into memory, and checks and adjusts to computer conditions such as color depth.

Example:

This handler creates a global variable when the movie starts:

on startMovie
 global currentScore
 set currentScore = 0
end startMovie

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on
mouseDown, on mouseUp, on stepMovie, and on stopMovie event handlers

on stepMovie
Syntax: on stepMovie

statement(s)
end stepMovie

This handler contains statements that are executed each time the playback head enters
a new frame. This handler, which was used in earlier versions of Director, has the same
result as the on enterFrame handler.

The on stepMovie handler has no effect in Windows. For the best results, use the on
enterFrame handler for Lingo that should run each time the playback head enters a new
frame.

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on
mouseDown, on mouseUp, on startMovie, and on stopMovie event handlers ;
perFrameHook property

on stopMovie
Syntax: on stopMovie

statement(s)
end stopMovie

This event handler contains statements that are activated when the movie stops playing.

An on stopMovie handler is a good place to put Lingo that performs "cleanup" tasks--
such as closing resource files, clearing global variables, erasing fields, and disposing of
objects--when the movie is finished.

Example:

This handler clears global variables and closes two resource files when the movie stops:

on stopMovie
 set gCurrentScore = 0
 closeResFile "Special Fonts"
 closeResFile "Special Cursors"
end stopMovie

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on
mouseDown, on mouseUp, on startMovie, and on stepMovie event handlers

on timeOut
Syntax: on timeOut

statement(s)
end timeOut

This event handler contains statements that are executed when the no one uses the
keyboard or mouse for the length of time set in the timeOutLength. This is a useful location
for Lingo that you want to execute when the user does nothing for a specified length of time.

An on timeOut handler must be placed in a movie script.

Example:

This handler plays the movie Attract Loop after users do nothing for the time set in the
timeOutLength property. This would be a way to respond when users have gone away
from the computer:

on timeOut
 play movie "Attract Loop"
end timeOut

on enterFrame, on exitFrame, on idle, on keyDown, on keyUp, on
mouseDown, on mouseUp, on startMovie, and on stepMovie event handlers

on zoomWindow
 Syntax: on zoomWindow

statement(s)
end zoomWindow

This event handler contains statements that are activated when a movie that is running
as a movie in a window is resized when the user clicks the minimize/maximize button
(Windows) or the zoom button (Macintosh). The operating system determines the
dimensions after resizing the window.

An on zoomWindow event handler is a good place to put Lingo intended to rearrange
sprites when window dimensions change.

Example:

This handler moves sprite 3 to the coordinates stored in the variable centerPlace when
the window that the movie is playing in is resized:

on zoomWindow centerPlace
 set the loc of sprite 3 to centerPlace
end

open
Syntax: open [whichDocument with] whichApplication

This command launches the application specified by the string whichApplication. By
specifying whichDocument, you can specify a document that the application opens at the
same time. When either is in a different folder than the current movie, you must specify
the pathname.

If you are running MultiFinder, there must be enough memory to run both Macromedia
Director and the other application at the same time.

Example:

This statement checks whether the computer the computer is a Macintosh (by checking
whether it isn't a PC) and then opens the application MacWrite if it is:

if the machineType <> 256 then open "MacWrite"

This statement opens the MacWrite application, which is in the folder Applications on the
drive myDrive, and the document named Storyboards:

open "Storyboards" with myDrive & "Applications:" ¬
 & "MacWrite"

openResFile, and openXlib commands

open window
Syntax: open window "whichWindow"

This command opens a window that can play a Director movie and brings it to the front
of the stage. The window is specified by whichWindow and must have a movie already
assigned to it before you can use the open window command.

Example:

This statement opens the window Control Panel and brings it to the front:

open window "Control Panel"

close window command

openResFile
Syntax: openResFile whichFile

On the Macintosh, this command opens the resource file specified by the string
whichFile. When the file is in a different folder than the current movie, whichFile must
specify a pathname.

In earlier versions of Director, this command was necessary to make additional fonts and
cursors available in your movies. However, you can now provide custom cursors by
importing the cursor as a cast member and using the cursor property.

When the file is already open, openResFile has no effect. It is good practice to close any
open file as soon as you are finished using it.

Do not use openResFile to open another application. (Its code resources will interfere
with those of Macromedia Director.) Use a resource mover like ResEdit to move the
resources you need to a separate resource file.

Example:

This statement opens the resource file Special Fonts:

openResFile "Special Fonts"

This statement opens the resource file Special Icons, which is in another folder:

openResFile the pathName&"Special Icons"

closeResFile and showResFile commands; cursor property

openXlib
Syntax: openXlib whichFile

This command opens the Xlibrary file specified by the string expression whichFile. If the
file is in a different folder than the current movie, whichFile must include the pathname.

It is good practice to close any file you have opened as soon as you are finished using it.
When the file is already open, openXlib has no effect.

Xlibrary files contain Xtras and XObjects as XCOD resources. Unlike openResFile,
openXlib makes these Xtras and XObjects known to Director.

In Windows, the .DLL extension is optional.

The openXlib command also opens HyperCard XCMDs and XFCNs so that you can use
them with Director on the Macintosh. When you need to use an XCMD from more than
one application in a movie, use this command to open a link to the HyperCard stack,
rather than install the XCMD in both places with ResEdit. When you do that, a resource
conflict that results in a system beep occurs.

Example:

This statement opens the Xlibrary file Video Disc Xlibrary:

openXlib "Video Disc Xlibrary"

This statement opens the Xlibrary file Xtras, which is in a different folder than the current
movie:

openXlib "My Drive:New Stuff:Transporter Xtras"

closeXlib and showXlib commands

optionDown
Syntax: the optionDown

This function determines whether the Option key on the Macintosh or the Alt key on the
PC is being pressed.

When the Option or Alt key is being pressed, the optionDown is TRUE.
When the Option or Alt key is not being pressed, the optionDown is FALSE.

Example:

This handler checks whether the Option key or Alt key is being pressed and calls the
handler named doOptionKey if it is:

on keyDown
 if the optionDown then doOptionKey(the key)
end keyDown

controlDown, commandDown, key, and shiftDown functions

or
Syntax: logicalExpression1 or logicalExpression2

This operator performs a logical OR operation on two logical expressions.
When either expression or both expressions are TRUE, the result is TRUE (1).
When both expressions are FALSE, the result is FALSE (0).

This is a logical operator with a precedence level of 4.

Examples:

This statement has the message window display whether at least one of the expressions
1 < 2 and 1 > 2 is TRUE:

put 1 < 2 or 1 > 2

Because the first expression is TRUE, the result is 1, which is the numerical equivalent of
TRUE.

This statement checks whether the contents of the field cast member named field are
either AK or HI, and displays an alert if they are:

if field "State" = "AK" or field "State" = "HI" ¬
 then alert "You're off the map!"

and and not logical operators

otherwise
Syntax: otherwise statement

This optional keyword precedes instructions that Lingo carries out when none of the
earlier conditions in a case statement are met.

Example:

The following handler tests which key the user pressed most recently and responds
accordingly.

 If the user pressed A, B, or C, the movie performs the corresponding action following
the of keyword.

If the user pressed any other key, the movie executes the statement that follows the
otherwise keyword. In this case, the statement is a simple beep.

on keyDown
 case (the key) of
 "A": go to frame "Apple"
 "B", "C":
 puppetTransition 99
 go to frame "Oranges"
 otherwise beep
 end case
end keyDown

pageHeight of member
Syntax: the pageHeight of member whichCastmember

This field cast member property gives the height, in pixels, of the area of the field cast
member that is visible on the stage. This property can be tested but not set.

Example:

This statement gets the height of the visible portion of the field cast member Today's
News:

put the pageHeight of member "Today's News"

palette of member
Syntax: the palette of member whichCastMember

This cast member property determines which palette is associated with the cast member
specified by whichCastMember. This property applies to bitmap cast members only.

The palette of member property can be tested and set.

Example:

This statement displays the palette assigned to the cast member Leaves in the message
window:

put the palette of member "Leaves"

paletteMapping
Syntax: the paletteMapping

This movie property determines whether Director remaps the movie's palette. Its effect is
similar to the Remap Palettes When Needed checkbox in the Movie Properties dialog
box.

When the paletteMapping is TRUE, the movie remaps palettes for cast members
whose palette is different than the current movie palette.

When the paletteMapping is FALSE, the movie doesn't remap palettes for cast
members.

Example:

This statement has the movie always remap the movie's palette when needed:

set the paletteMapping = TRUE

paletteRef
Syntax: the paletteRef

This property determines the palette associated with a bitmap cast member.
Built-in Director palettes are indicated by symbols (#systemMac, #rainbow, etc...).
Palettes that are cast members are treated as cast member references. This differs from
the palette of member, which returns a positive number for cast palettes and negative
numbers for built-in Director palettes.

The paletteRef property can be tested and set.

Example:

This statement assigns the Mac system palette to the bitmap cast member Shell:

set the paletteRef of member "Shell" to #systemMac

param
Syntax: param(parameter)

This function gives the value of a parameter in a list. The variable parameter represents
the parameter's position in the list.

Example:

This handler calculates the average value of a list of parameters:

on avg first, second, third
 set n = paramCount()
 set sum = 0.0
 repeat with i = 1 to n
 set sum = param(i) + sum
 end repeat
 return sum/n
end avg

This statement passes the handler three values and displays the result in the message
window:

put avg(1,2,3)
--> 2.0

paramCount function

paramCount
Syntax: the paramCount

This function determines the number of parameters sent to the current handler.

Example:

This statement sets the variable counter to the number of parameters that were sent to
the current handler:

set counter = paramCount()

pass
Syntax: pass

This command passes an event message to the next location in the message hierarchy.
Otherwise, an event message stops at the first location that contains a handler for the
event. (The exception is for messages such as mouseDown and timeOut that go to
primary event handlers first. Lingo always passes these messages on after the primary
event handler, unless the primary event handler includes the dontPassEvent command.)

Passing an event message to other locations in the message hierarchy lets you execute
more than one handler for a given event.

Examples:

Used together, these handlers are both activated by a mouseUp event because the first
handler contains a pass command.

This on mouseUp handler attached to sprite 3 executes the handler and then passes the
mouseUp message on:

on mouseUp
 if sprite 3 intersects sprite 4 ¬
 then set the text of member 10 = ¬
 "You placed it correctly"
 pass
end

This on mouseUp handler in the frame script executes because the on mouseUp handler
assigned to the sprite script contains the pass command:

on mouseUp
 go to "Next test"
end

dontPassEvent command

pasteClipBoardInto
Syntax: pasteClipBoardInto member whichCastMember

This command pastes the contents of the Clipboard into the cast member specified by
whichCastMember. When you paste into an occupied cast window slot, the old cast
member is completely erased. For instance, pasting a bitmap into a field cast member
makes the bitmap the cast member and erases the field cast member.

You can paste any item that is in a format that Director can use as a cast member. When
you copy strings from another application, the string's formatting is not retained.

The pasteClipBoardInto cast command provides a convenient way to copy objects
from other movies and from other applications into the cast window.

Example:

This statement pastes the contents of the Clipboard into the bitmap cast member Shrine:

pasteClipBoardInto member "Shrine"

pathName
Syntax: the pathName

This function returns a string containing the full pathname of the folder in which the
current movie is located.

You can write pathnames that work on both Windows and Macintosh computers by using
the @ operator.

Example:

This statement checks whether the pathname contains the term System and has the
computer beep if it does:

if the pathName contains "System" then beep

Example 2:

These statements check whether the movie is playing in Windows or on the Macintosh,
and then plays the sound file Crash.AIF in the Sounds subfolder of the current movie's
folder. By checking which platform the movie is playing on, the movie uses the sound
playFile statement that has the appropriate folder delimiter:

case (the platform) of
"Windows,32", "Windows,16" :sound playFile 1, ¬
the pathname&"sounds/crash.aif"
otherwise sound playFile 1, the pathname&¬
"sounds:crash.aif"

end case

movie function

pattern
Syntax: the pattern of member whichCastmember

This shape cast member property determines the pattern associated with the specified
shape. Possible values are the numbers that correspond to the chips in the tools
window's patterns palette. If the shape cast member is unfilled, the pattern is applied to
the cast member's outer edge. This property can be tested and set.

Example:

The following statements make the shape cast member Target Area a filled shape and
assigns it the pattern numbered 0, which is a solid color:

set the filled of member "Target Area" = TRUE
set the pattern of member "Target Area" = 0

pause
Syntax: pause

This command causes the playback head to halt. Typically, you would put the pause
command in the script channel of a frame, and then assign continue or go commands to
one or more sprite scripts in that frame.

In many cases, using pause is recommended over looping on the same frame, or looping
between two frames. This is because a pause uses much less processor time than
repeatedly moving the playback head to the beginning of the frame. Some exceptions to
this general rule are when you are moving sprites or are using the perFrameHook, which
requires that the playback head keeps going to the same frame.

The pause command is useful for halting the movie while a menu is displayed or for
letting the user look at a screen as long as she or he wants.

Example:

The following on mouseUp handler for a button alternately pauses and continues the
animation, like the pause button on a videocassette recorder:

on mouseUp
 if the pauseState = TRUE then
 continue
 else
 pause
 end if
end mouseUp

continue command; pauseState function

pausedAtStart of member
Syntax: the pausedAtStart of member whichDVMovie trueOrFalse

This digital video cast member property specifies whether the Paused at Start checkbox
in the Digital Video Cast Member Properties dialog box is checked or not.

When the pausedAtStart of member property is TRUE, the Paused at Start checkbox
is checked.

When the pausedAtStart of member property is FALSE, the Paused at Start
checkbox is not checked.

The pausedAtStart of member property can be tested and set.

Example:

This statement turns on the Paused at Start checkbox in the Digital Video Cast Member
Info dialog box for the QuickTime movie Rotating Chair:

set the pausedAtStart of member "Rotating Chair" = TRUE

pauseState
Syntax: the pauseState

This function returns TRUE when the movie is currently paused.

Example:

This statement checks whether the movie is currently paused and has the movie
continue if it is:

if the pauseState = TRUE then continue

pause and continue commands

perFrameHook
Syntax: the perFrameHook

The perFrameHook property was required in earlier versions of Director. However, you
can now achieve the same results by placing Lingo that you want to execute at every
frame in an on enterFrame handler. It is now only relevant for managing
the actorList.

The perFrameHook property designates an object created by an XObject that is called
every frame with a special message called mAtFrame. You specify which routines and
procedures are used in mAtFrame.

The perFrameHook property can be used to call a certain set of procedures (using
mAtFrame) each frame. Without the perFrameHook, you would have to type this set of
procedures (using a handler) into the script channel of every single frame in which you
wanted it to occur. With the perFrameHook, you need only set the proper object to the
perFrameHook once and the procedures (contained in the mAtframe method) will be
executed at every frame. When you no longer want to use the perFrameHook, set it to 0
to turn it off. The perFrameHook is especially useful when recording animations frame-
per-frame to videotape.

At every frame, the perFrameHook object is sent the mAtFrame message. Therefore, you
must create an XObject that defines an mAtFrame method (in the same XObject that
creates the object you set to the perFrameHook).

When recording frame-per-frame to videotape, you can define two arguments for
mAtFrame that specify the frame and subframe (subframes occur during transitions; each
change during the transition is a subframe):

method mAtFrame frame, subframe

The frame argument is sent for each frame and the subframe argument is sent for each
subframe. You can name the arguments whatever you like, if you prefer not to use frame
or subframe. You can also define additional arguments for mAtFrame, whether you are
recording frame-per-frame to videotape or not.

The perFrameHook is primarily designed to be used with XObjects that have an mAtFrame
argument. If you do use the perFrameHook with an XObject, do not use the updateStage
command. Otherwise, unexpected results could occur.

method keywords

pi
Syntax: pi()

This function gives the value of , the ratio of a circle's circumference to its diameter.
The value of  is given as a floating point number to the number of decimal places set by
the floatPrecision property.

Example:

This statement uses the pi function as part of an equation for calculating the area of a
circle:

set vArea = pi()*power(vRadius,2)

picture of member
Syntax: the picture of member whichCastmember

This cast member property determines which image is associated with a bitmap, text, or
PICT cast member. To update changes to a cast member's registration point or update
changes to an image after relinking it using the fileName property, use the following
statement:

set the picture of member whichCastmember = the picture ¬
of member whichCastmember

where you replace whichCastmember with the name or number of the affected cast
member.

The picture of member property can be tested and set.

Example:

This statement sets the variable named pict to the image in the cast member named
Sunset:

put the picture of member "Sunset" into pict

type of sprite property

pictureP
Syntax: pictureP(pictureValue)

This function tells the state of the picture of member property for the specified cast
member.

When the picture of member property is TRUE, pictureP is TRUE (1).
When the cast member is not a picture data type, pictureP is FALSE (0).

Because pictureP doesn't directly check whether a cast member has a picture, you
must test whether a cast member has a picture by checking the cast member's picture
of member property.

Example:

The first statement assigns the value of the picture of member property for the cast
member Shrine, which is a bitmap, to the variable pictureValue. The second statement
checks whether Shrine is a picture by checking value assigned to pictureValue:

put pictureP(pictureValue)

The result is 1, which is the numerical equivalent of TRUE.

platform
Syntax: the platform

This system property indicates which platform the movie was created on. It can be
tested, but not set. Possible values are the following:

Possible value Corresponding platform

Macintosh,68k Original 68K Macintosh
Macintosh,PowerPC PPC Macintosh
Windows,16 Windows 3.1 or earlier
Windows,32 Windows 95 or WinNT

Example:

This statement checks whether the movie was created in Windows 95 and assigns the
cast Win95 Art the name Interface if it is:

if the platform = "Windows,32" then set the name ¬
of castLib "Win95 Art" to "Interface"

play
Syntax: play [frame] whichFrame

play movie whichMovie
play frame whichFrame of movie whichMovie

This command causes the playback head to jump to the specified frame of the specified
movie. The expression whichFrame can be either a string marker label or an integer
frame number. The expression whichMovie must be a string that specifies a movie file.
When the movie is in another folder, whichMovie must specify a pathname.

The play command is similar to the go to command, but with the play command, when
the sequence being played is over, the playback head automatically returns to the frame
where the play command was called. If the play command is issued from a frame script,
the playback head returns to the next frame; if the play command comes from a sprite
script or handler, the playback head returns to the same frame. A sequence is over when
the playback head reaches the end of the movie, or the play done command is given.

The play command can also be used for playing several movies from a single handler.
The handler is suspended while each movie plays, but resumes when the movie is over.
Contrast this with a series of go commands that, when called from a handler, play the
first frame of each movie. The handler is not suspended while the movie plays but
immediately continues executing.

If a play done command isn't used to indicate the end of a segment started by a play
command, memory gets used up because the original calling script isn't deleted. If you
aren't sure that each play command has a matching play done command, consider
avoiding play commands. Instead, use a global list to record where the movie should
return to.

Examples:

This statement moves the playback head to the marker named blink:

play "blink"

This statement moves the playback head to the next marker:

play marker(1)

This statement moves the playback head to a separate movie:

play movie "My Drive:More Movies:" & newMovie

go and play done commands; marker function

play done
Syntax: play done

This command indicates that the sequence being played is complete when the current
movie or sequence was started using the play or go to commands. The play done
command causes the playback head to return to where the sequence was started from. If
the play command is issued from a frame script, the playback head returns to the next
frame; if the play command is issued from a sprite script, the playback head returns to
the same frame.

If a play done command isn't used to indicate the end of a segment started by a play
command, memory gets used up because the original calling script isn't deleted. If you
aren't sure that each play command has a matching play done command, consider
avoiding play commands. Instead, use a global list to record where the movie should
return to.

Note: The play done command has no effect in a movie that is playing in a window.

play command

point
Syntax: point(horizontal, vertical)

This function yields a point that has the horizontal coordinate specified by horizontal and
the vertical coordinate specified by vertical.

Example:

This statement sets the variable lastLocation to the point (250, 400):

put point(250, 400) into lastLocation

rect function

power
Syntax: power(base, exponent)

This function calculates the value of the number specified by base to the exponent
specified by exponent.

Example:

This statement sets the variable vResult the value of 4 to the third power:

set vResult = power(4,3)

preLoad
Syntax: preLoad

preLoad toFrameNum
preLoad fromFrame, toFrameNum

This command preloads cast members in the specified frame or range of frames into
memory. Preloading stops when memory is full or when all of the specified cast members
have been preloaded.

When used without arguments, the preLoad command causes a preload of all cast
members used from the current frame to the last frame of a movie.

When used with one argument, toFrame, the preLoad command causes a preload of all
cast members used in the range of frames from the current frame to the frame toFrame,
as specified by frame number or label name.

When used with two arguments, fromFrame and toFrame, the preLoad command causes
a preload of all cast members used in the range of frames from the frame fromFrame to
the frame toFrame, as specified by frame number or label name.

The preLoad command also returns the number of the last frame successfully loaded. To
access this value, use the result function.

Examples:

This statement preloads the cast members used from the current frame to the frame that
has the next marker:

preLoad marker (1)

This statement preloads the cast members used from frame 10 to frame 50:

preLoad 10, 50

preLoadMember command

preLoad of member
Syntax: the preLoad of member whichCastmember

This digital video cast member property determines whether the digital video cast
member specified by whichCastmember can preload into memory.

When the digital video cast member can be preloaded into memory, the preLoad of
member is TRUE.

When the digital video cast member can not be preloaded into memory, the preLoad
of member is FALSE.

Setting the preLoad of member to TRUE has the same effect as selecting Enable
Preload in the Digital Video Cast Member Properties dialog box.

Example:

This statement has the message window display whether the QuickTime movie Rotating
Chair can be preloaded into memory:

put the preLoad of member "Rotating Chair"

preLoadMember
Syntax: preLoadMember

preLoadMember whichCastmember
preLoadMember fromCastmember, toCastmember

This command preloads cast members. Preloading stops when memory is full or when all
of the specified cast members have been preloaded.

When used without arguments, the preLoadMember command preloads all cast members
in the movie.

When used with the whichCastmember argument, the preLoadMember command
preloads that cast member.

When used with the arguments fromCastmember and toCastmember, the
preLoadMember command preloads all cast members in the range specified by the cast
member numbers or names.

The preLoadMember command returns the cast member number of the last cast member
successfully loaded. To obtain this value, use the result function.

Example:

This statement preloads cast member 20:

preLoadMember 20

This statement preloads cast member Shrine and the ten cast members after it in the
cast window:

preLoadMember "Shrine", (the number of member "Shrine" + 10)

preLoadEventAbort
Syntax: the preLoadEventAbort

This property specifies whether pressing keys or clicking the mouse can stop preloading
of cast members.

When the preLoadEventAbort property is TRUE, pressing keys or clicking the mouse
can stop preloading of castmembers.

When the preLoadEventAbort property is FALSE, pressing keys or clicking the mouse
cannot stop preloading of cast members.

The default value is FALSE. The setting of this property affects the current movie.

The preLoadEventAbort property can be tested and set.

Example:

This statement lets the user stop preloading of cast members by pressing keys or
clicking the mouse:

set the preLoadEventAbort = TRUE

preLoad and preLoadMember commands

preLoadMode of CastLib
Syntax: the preLoadMode of castLib whichCast

This cast property determines the specified cast's preload mode. This has the same
effect as setting Load Cast in the Movie Properties dialog box.
Possible values are the following:

0--When Needed
1--Before Frame One
2--After Frame One

An on startMovie handler is usually a good place for Lingo that determines when cast
members are loaded. This property can be tested and set.

Example:

The following statement has Director load the members of the cast Buttons before the
movie enters frame one:

set the preLoadMode of castLib "Buttons" = TRUE

Movie Properties dialog box

preLoadMovie
Syntax: preLoadMovie whichMovie

This command preloads the cast members associated with the first frame of the
specified movie. Preloading a movie helps it start faster when it is started by a go to
movie or play movie command.

Example:

This statement preloads the movie Introduction:

preLoadMember "Introduction"

preLoadRAM
Syntax: the preLoadRAM

This property specifies the amount of RAM that can be used for preloading a digital
video. It can be set and tested.

This is useful for managing memory, so that digital video cast members are not given
more than a certain limit of memory, and other types of cast members can still be
preloaded. When the preLoadRAM is FALSE, all available memory can be used for
preloading digital video cast members.

Example:

This statement allocates the amount of RAM available for preloading to 3 times the size
of the cast member Interview:

set the preLoadRAM to 3 * (the size of member "Interview")

loop and next keywords

previous
 go previous

printFrom
Syntax: printFrom fromFrame [, toFrame] [, reduction]

This command prints whatever is displayed on the stage in each frame starting at the
frame specified by fromFrame. Optionally you can supply the toFrame, and the reduction
(100, 50, or 25 percent).

When printing at less than 100 percent, the document prints as a bitmap, so text does
not print as sharply as it would at full size.

Example:

This statement prints what is on the stage in every frame starting at frame 1:

printFrom 1

This statement prints what is on the stage in every frame from the marker Intro to the
marker Tale. The reduction is 50 percent:

printFrom label("Intro"), ("Tale"), 50

property
Syntax: property [property1][, property2][, property3] [...]

This keyword declares that the properties specified by property1, property2, and so on
are property variables. Property variables, which are used in parent scripts, serve the
same purpose as instance variables in Xtras and XObjects.

You declare property variables at the beginning of the parent script. You can access them
from outside the parent script by using the the operator.

Example:

This statement allows each child object created from a single parent script to have its
own location and velocity setting:

property location, velocity

ancestor property, child-parent scripts

puppet of sprite
Syntax: the puppet of sprite whichSprite

This sprite property determines whether the sprite specified by the integer expression
whichSprite is a puppet.

A puppet sprite is controlled by Lingo instead of the score. For example, Lingo can switch
the cast member assigned to a sprite or turn on and off whether the sprite is moveable.
For more information on using puppets, see Chapter 4, "Manipulating the Score from
Lingo," in Learning Lingo.

The sprite channel must contain a sprite before you can make the channel a puppet.

Making the sprite channel a puppet lets you control any of the sprite properties--such as
memberNum of sprite, locH of sprite, and width of sprite--from Lingo.

Setting the puppet of sprite property is equivalent to using the puppetSprite
command. For example, the statement:

set the puppet of sprite 1 to TRUE

has the same effect as:

puppetSprite 1, TRUE

The puppetSprite property can be tested and set. The default value is FALSE.

Example:

This statement makes the sprite numbered i + 1 a puppet:

set the puppet of sprite (i + 1) to TRUE

This statement records whether sprite 5 is a puppet by assigning the value of the puppet
of sprite to the variable. When sprite 5 is a puppet, isPuppet is set to TRUE. When sprite
5 is not a puppet, isPuppet is set to FALSE:

put the puppet of sprite 5 into isPuppet

puppetSprite command, Puppeting

puppetPalette
Syntax: puppetPalette whichPalette [, speed] [, nFrames]

This command causes the palette channel to act as a puppet. When the palette channel
is a puppet, Lingo can override the palette setting in the palette channel of the score and
assign palettes to the movie.

The puppetPalette command sets the current palette to the palette cast member
specified by the expression whichPalette. If whichPalette evaluates to a string, it
specifies the cast name of the palette. If whichPalette evaluates to an integer, it specifies
the cast number of the palette.

Optionally, you can fade in the palette by replacing speed with an integer expression,
with 1 being slowest and 60 being fastest. You can also fade in the palette over several
frames by replacing nFrames with an integer expression for the number of frames.

A puppet palette remains in effect until you turn it off with the command puppetPalette
0. No subsequent palette changes in the score are obeyed when the puppet palette is in
effect.

Example:

This statement makes Rainbow the movie's palette:

puppetPalette "Rainbow"

This statement makes Grayscale the movie's palette. The transition to the Grayscale
palette occurs over a time setting of 15 and between frames labeled Gray and Color:

puppetPalette "Grayscale", 15, ¬
 label("Gray") - label("Color")

Puppeting

puppetSound
Syntax: puppetSound whichChannel, "whichCastMember"

puppetSound "whichCastMember"
puppetSound member "whichCastMember"
puppetSound 0

This command makes the sound channel a puppet and plays the sound cast member
specified by whichCastMember. When the sound is a puppet, Lingo can override any
sounds assigned in the score's sound channels.

For internal sound cast members, you can specify a sound channel by replacing
whichChannel with a channel number. However, you can't specify a channel for linked
sound cast members. Linked sound cast members always play in sound channel 1.

The sound starts playing after the playback head moves or the updateStage command is
executed. The statement puppetSound 0 stops a sound from playing. It also turns off the
puppet status of the sound and returns control of the sound to the sound channel in the
score. Use puppetSound to restore control of the sound channel to the score.

Puppet sounds can be useful for playing a sound while a different movie is being loaded
into memory.

Example:

This statement plays the sound Wind under control of Lingo:

puppetSound "Wind"

sound fadeIn, sound fadeOut, sound playFile, sound stop commands,
Puppeting

puppetSprite
Syntax: puppetSprite whichSprite, state

This command controls whether the sprite specified by whichSprite is a puppet. When a
sprite is a puppet, any sprite property can be controlled by Lingo instead of the score. For
example, Lingo can switch the cast member assigned to a sprite or turn on and off
whether the sprite is moveable.

When state is TRUE, Lingo controls the sprite and the score is ignored.
When state is FALSE, the sprite is controlled by the score.

The initial properties of the puppet are taken from whatever sprite is in the channel when
the puppetSprite command is executed. Subsequent control of the sprite properties
through Lingo can change these properties.

The channel must contain a sprite when you use the puppetSprite command.

You must provide the command puppetSprite whichSprite, FALSE when you are finished
with your puppet; otherwise unpredictable results can occur when the playback head
returns to sprites in frames that aren't intended to be puppets.

For more information on using puppets, see Chapter 4 of Learning Lingo.

Examples:

This statement makes the sprite in channel 15 a puppet:

puppetSprite 15, TRUE

This statement removes the puppet condition from the sprite in the channel numbered i
+ 1:

puppetSprite i + 1, FALSE

backColor of sprite, bottom of sprite, memberNum of sprite, constraint of
sprite, cursor, foreColor of sprite, height of sprite, ink of sprite, left of sprite,
lineSize of sprite, locH of sprite, locV of sprite, puppet of sprite, right of sprite,
stretch of sprite, top of sprite, type of sprite, and width of sprite sprite properties;
puppetSprite property, Puppeting

puppetTempo
Syntax: puppetTempo framesPerSecond

This command causes the tempo channel to act as a puppet. When the tempo channel is
a puppet, Lingo can override the tempo setting in the score and change the tempo
assigned to the movie.

The puppetTempo command sets the tempo to the number of frames specified by
framesPerSecond. The maximum frames per second is 60.

You do not need to turn off the puppet tempo condition to have subsequent tempo
changes in the score take effect.

Examples:

This statement set the movie's tempo to 30 frames per second:

puppetTempo 30

This statement increases the movie's old tempo by ten frames per second:

puppetTempo oldTempo + 10

Puppeting

puppetTransition
Syntax: puppetTransition member whichCastMember

puppetTransition member castmemberReference
puppetTransition whichTransition [, time]¬
 [, chunkSize] [, changeArea]

This command performs the specifed transition between the current frame and the next
frame.

To use an Xtra transition cast member, use puppetTransition member followed by the
cast member's name or number.

To use a built-in Director transition, replace whichTransition with one of the following
values:

Code Transition

01 Wipe right
02 Wipe left
03 Wipe down
04 Wipe up
05 Center out, horizontal
06 Edges in, horizontal
07 Center out, vertical
08 Edges in, vertical
09 Center out, square
10 Edges in, square
11 Push left
12 Push right
13 Push down
14 Push up
15 Reveal up
16 Reveal up, right
17 Reveal right
18 Reveal down, right
19 Reveal down
20 Reveal down, left
21 Reveal left
22 Reveal up, left
23 Dissolve, pixels fast *
24 Dissolve, boxy rectangles
25 Dissolve, boxy squares
26 Dissolve, patterns
27 Random rows
28 Random columns
29 Cover down
30 Cover down, left
31 Cover down, right
32 Cover left
33 Cover right
34 Cover up
35 Cover up, left

36 Cover up, right
37 Venetian blinds
38 Checkerboard
39 Strips on bottom, build left
40 Strips on bottom, build right
41 Strips on left, build down
42 Strips on left, build up
43 Strips on right, build down
44 Strips on right, build up
45 Strips on top, build left
46 Strips on top, build right
47 Zoom open
48 Zoom close
49 Vertical blinds
50 Dissolve, bits fast *
51 Dissolve, pixels *
52 Dissolve, bits *

Transitions marked with an asterisk (*) in the table will not work on monitors that are set
to 32 bits.

Replace time with the number of 1/4 seconds used to complete the transition. The
minimum is 0; the maximum is 120 (30 seconds). Replace chunkSize with the number of
pixels in each chunk of the transition. The minimum is 1; the maximum is 128. Smaller
chunk sizes give smoother transitions but are slower.

There is no direct relationship between a low time and a fast transition. The actual speed
of the transition depends on the relation of chunkSize and time. As an example, if the
chunkSize is one pixel, the transition takes a long time no matter how low the time,
because the computer has to do a lot of work. To make transitions occur faster you
should use a larger chunk size, instead of setting a shorter time.

Replace changeArea with a value that determines whether the transition occurs only in
the changing area. The changeArea is an area within which sprites have changed.

To have the transition occur only in the areas that change, replace changeArea with
FALSE, which is the default setting.

To have the transition occur over the entire stage, replace changeArea with TRUE.

Example:

This statement performs a wipe from right transition. Because no value is specified for
changeArea, the transition occurs only on the changing area, which is the default:

puppetTransition 1

This statement performs a wipe from right transition that lasts 1 second, has a chunk
size of 20, and occurs over the entire stage:

puppetTransition 2, 4, 20, TRUE

Puppeting

purgePriority of member
Syntax: the purgePriority of member whichCastMember

This cast member property specifies the purge priority of the cast member specified by
whichCastMember.

Cast members' purge priorities determine the priority that Director follows when
choosing which cast members to delete from memory when memory is full. The higher
the purge priority, the more likely that the cast member is deleted. The following
purgePriority settings are available:

0--Never purge
1--Purge last
2--Purge next
3--Purge normal

Normal allows Director to purge cast members from memory at random (just as Director
3.1 did). Next, Last, and Never allow users some control over purging. However, if you
set a lot of cast members to Last or Never, your movie may run out of memory.

Setting purgePriority of member for cast members is useful for managing memory
when the size of the movie's cast exceeds the available memory. As a general rule, you
can minimize pauses while the movie loads cast members by assigning a low purge
priority to cast members that are frequently used in the course of the movie. This
reduces the number of times that Director reloads the cast member when the movie
plays.

Example:

This statement sets the purge priority of cast member Background to 2, which makes it
one of the first cast members to be purged when memory is needed:

set the purgePriority of member "Background" to 2

put
Syntax: put expression

This command evaluates the expression specified by expression and displays the result
in the message window. This can be used as a debugging tool by tracking the values of
variables as the movie plays.

Examples:

This statement displays the time in the message window:

put the time
-- "9:10 AM"

This statement displays the value assigned to the variable vBid in the message window:

put vBid
-- "Johnson"

put...after, put...before, and put...into commands

put...after
Syntax: put expression after chunkExpression

This command evaluates a Lingo expression, converts the value to a string, and inserts
the resulting string after a specified chunk in a container. (If chunkExpression specifies a
nonexistent target chunk, the string value is inserted as appropriate into the container.)
The previous contents of the container remain.

Chunk expressions can refer to any character, word, item, or line in any container of
characters. Containers include fields (field cast members) and variables that hold strings,
and specified characters, words, items, lines, and ranges in containers.

Example:

This statement adds the string "fox dog cat" after the contents of the variable
animalList:

put "fox dog cat" after animalList

char...of, item...of, line...of, put...before, put...into, and word...of chunk
expression keywords

put...before
Syntax: put expression before chunkExpression

This command evaluates a Lingo expression, converts the value to a string, and inserts
the resulting string before a specified chunk in a container. (If chunkExpression specifies
a nonexistent target chunk, the string value is inserted as appropriate into the
container.) The previous contents of the container remain.

Chunk expressions can refer to any character, word, item, or line in any container.
Containers include fields (field cast members) and variables that hold strings, and
specified characters, words, items, lines, and ranges in containers.

Example:

These statements set the variable named animalList to the string "fox dog cat" and then
insert the word elk before the second word of the list:

put "fox dog cat" into animalList
put "elk " before word 2 of animalList

The result is the string "fox elk dog cat".

char...of, item...of, line...of, put...after, put...into, and word...of chunk
expression keywords

put...into
Syntax: put expression into variable

put expression into chunkExpression

This command has two different usages.

The first usage evaluates a Lingo expression and stores its value in a local, global,
property or instance variable. The value can be an integer, a floating point number, a
string, an object, or a symbol; it resides unchanged in the variable.

The second usage evaluates a Lingo expression, converts the value to a string, and uses
the resulting string to replace a specified chunk in a container. (If chunkExpression
specifies a nonexistent target chunk, the string value is inserted as appropriate into the
container.)

Chunk expressions can refer to any character, word, item, or line in any container.
Containers include field cast members and variables that hold strings, and specified
characters, words, items, lines, and ranges in containers.

Note: In Lingo, you can use set...to and set...= as well as put...into for variable
assignments. However, unlike set, you can't use put to specify values of properties.

Example:

This statement sets the variable x to the square root of 2:

put sqrt(2.0) into x

The result is 1.4142.

char...of, item...of, line...of, put...after, put...before, and word...of chunk
expression keywords; set to command

quickTimePresent
Syntax: the quickTimePresent

This function determines whether the QuickTime extension is currently loaded into
memory.

When the extension is present, the quickTimePresent function is TRUE (1).
When the extension is not present, the quickTimePresent function is FALSE (1).

Example:

This statement determines whether the QuickTime extension is in memory and sets the
movieRate for a QuickTime sprite indicated by QTSprite:

if the quickTimePresent = 1 then ¬
 set the movieRate of sprite QTSprite

quit
Syntax: quit

This command exits from Director or a projector to the Finder.

Example:

This statement has the computer exit to the Desktop when the user presses Control+Q:

if the key = "q" and the commandDown then quit

restart and shutDown commands

QUOTE
Syntax: QUOTE

This character constant represents the quote character. It is needed to refer to the literal
quote character in a string, since the quote character itself is used by Lingo scripts to
delimit strings.

Example:

This statement inserts quote characters in the string:

put "Can you spell" && QUOTE & "Macromedia" ¬

 & QUOTE & "?"

The result is quotes around the word Macromedia, as in the following string:

Can you spell "Macromedia"?

ramNeeded
Syntax: ramNeeded (firstFrame, lastFrame)

This function determines, in bytes, the memory needed to display a range of frames. For
example, you can test the size of frames containing 32-bit artwork. If the ramNeeded is
larger than the freeBytes, then go to frames containing 8-bit artwork. Divide by 1024 to
convert bytes to kilobytes (K).

Example:

This statement sets the variable frameSize to the number of kilobytes needed to display
frames 100 to 125 of the movie:

put ramNeeded (100, 125) into frameSize

This statement determines whether the memory needed to display frames 100 to 125 is
more than the available memory and branches to a movie using cast members that have
lower color depth if it is:

if ramNeeded (100, 125) > freeBytes then ¬
 play frame "8-bit"

freeBytes function; size of member cast member property

random
Syntax: random(integerExpression)

This function returns a random integer from 1 to the value specified by
integerExpression.

The random function is useful when you want to randomly vary values in a movie. Some
possible uses are varying the path through a game, assigning random numbers, or
changing the color or position of sprites.

Examples:

This statement assigns random values to the variable diceRoll:

put random(6) + random(6) into diceRoll

This statement randomly changes the foreground color of sprite 10:

set the foreColor of sprite 10 = random(256) - 1

This handler randomly chooses which of two movie segments to play in the "Noh Tale":

on selectMovie
 if random(2) = 2 then play frame "11a"
 else
 play frame "11-b" of movie "NT.OTher Movie"
 end if
end

randomSeed
Syntax: the randomSeed

This property specifies seed for generating random numbers. Using the same seed
produces the same sequence of random numbers.

The randomSeed property can be tested and set.

Example:

This statement displays the random seed number in the message window:

put the randomSeed

rect
Syntax: rect(left, top, right, bottom)

rect(point1, point2)

This function has two uses:
When you use four arguments, the rect function defines a rectangle that has the

sides specified by left, top, right, and bottom. The left and right values specify numbers of
pixels from the left edge of the stage. The top and bottom values specify numbers of pixels
from the top of the stage.

When you use two arguments, the rect function defines a rectangle that encloses the
points specified by point1 and point2.

Examples:

This statement sets the variable newArea to a rectangle whose left side is at 100, top is
at 150, right side is at 300, and bottom is at 400 pixels:

put rect(100, 150, 300, 400) into newArea

This statement sets the variable newArea to the rectangle defined by the points
firstPoint and secondPoint. The coordinates of firstPoint are (100, 150); the
coordinates of secondPoint are (300, 400). Note that this statement creates the same
rect as the rectangle created in the previous example:

put rect(firstPoint, secondPoint)

point function

the rect of member
Syntax: the rect of member whichCastmember

This function gives the left, top, right, and bottom coordinates for the rectangle of any
graphic cast membersuch as a bitmap, shape, movie, or digital video. The coordinates
are returned as a rect.

The rect of member property can be tested but not set.

Example:

This statement displays the coordinates of bitmap cast member 20:

put the rect of member 20

rect of sprite
Syntax: the rect of sprite whichSprite

This function gives the left, top, right, and bottom coordinates for the rectangle of any
graphic sprite such as a bitmap, shape, movie, or digital video. The coordinates are
returned as a rect.

The rect of sprite property can be tested and set.

Example:

This statement displays the coordinates of bitmap sprite 20:

put the rect of sprite 20

rect of window
Syntax: the rect of window whichWindow

This window property determines the left, top, right, and bottom coordinates of the
window specified by whichWindow. The coordinates are given as a rect.

The rect of window property can be tested and set.

Example:

This statement displays the coordinates of the window Control Panel:

put the rect of window "Control Panel"

regPoint of member
Syntax: the regPoint of member whichCastMember

This cast member property specifies the registration point of a bitmap cast member. The
registration points are listed as horizontal and vertical coordinates in a point that has the
form point (horizontal, vertical).

The regPoint of member property can be tested and set.

Example:

This statement displays the registration points of the bitmap cast member Desk in the
message window:

put the regPoint of member "Desk"

This statement changes the registration points of the bitmap cast member Desk to the
values in the list:

set the regPoint of member "Desk" = ¬
 point(300, 400)

repeat while
Syntax: repeat while testCondition

[statements...]
end repeat

This keyword structure repeatedly executes the statements as long as the condition
specified by testCondition is TRUE. Some possible uses for this structure are for Lingo
that continues to read strings until the end of a file is reached, checks items until the end
of a list is reached, or repeatedly performs an action until the user clicks or releases the
mouse button.

Example:

This handler starts the timer counting, resets the timer to 0, and then has the timer
count up to 60 ticks:

on countTime
 startTimer
 repeat while the timer < 60
 -- waiting for time
 end repeat
end countTime

exit, exit repeat, and repeat with keywords

repeat with
Syntax: repeat with counter = start to finish

[statements...]
end repeat

This keyword structure executes the Lingo specified by statements the number of times
specified by counter. The value of counter is the difference between the value specified
by start and the value specified by finish. The counter is incremented by 1 each time
Lingo goes through the repeat loop.

The repeat with structure is useful for repeatedly applying the same effect to a series
of puppets or calculating a series of numbers, such as a number to some exponent.

Example:

The following handler turns sprites 1 through 30 into puppets:

on puppetize
 repeat with channel = 1 to 30
 puppetSprite channel, TRUE
 end repeat
end puppetize

exit, exit repeat, and repeat while keywords

repeat with...down to
Syntax: repeat with variable = startValue down to endValue

This keyword counts down by increments of 1 from startValue to endValue.

Example:

This handler contains a repeat loop that counts down from 20 to 15:

on countDown
 repeat with i = 20 down to 15
 set the memberNum of sprite 6 to (10 + i)
 updateStage
 end repeat

repeat with...in list
Syntax: repeat with variable in someList

This keyword assigns successive values from the specified list to the variable.

Example:

This statement displays four values in the message window:

repeat with x in [1, 2, 3, 4]
 put i
end repeat

restart
Syntax: restart

This command restarts the Macintosh computer. It is equivalent to choosing Restart in
the Macintosh Finder's Special menu. The restart command has no effect in Windows.

Example:

This statement restarts the Macintosh when the user presses Command-period:

if the key = "r" and the commandDown then restart

quit and shutDown commands

result
Syntax: the result

This function gives the value of the return expression in the last handler executed.

The result function is useful for obtaining values from movies that are playing in
windows and tracking Lingo's progress by displaying results of handlers in the message
window as the movie plays.

Examples:

The following handler returns a random roll for two dice:

on diceRoll
 return random(6) + random(6)
end diceRoll

The two statements:

diceRoll
 put the result into roll

are equivalent to this statement:

put diceRoll() into roll

Note that

put diceRoll into roll

does not call the handler because there are no parentheses following diceRoll;
diceRoll here is considered a variable reference.

return keyword

RETURN constant
Syntax: RETURN

This character constant represents the Return key.

Example:

This statement has a paused movie continue when the user presses the Return key:

if the key = RETURN then continue

This statement uses the Return character constant to insert a return between two lines in
an alert:

alert "Last line in the file." & RETURN & ¬
 "Click OK to exit."

In Windows, writing to a file requires an additional line feed character at the end of each
line. This statement creates a two-character string named CRLF that provides the
additional line feed:

put Return&numToChar(10) into CRLF

return
Syntax: return expression

This keyword is used in handlers and methods that return values. It returns the value of
expression and exits from a handler or method. The expression can be an integer,
floating point number, string, object, or symbol.

When calling a handler or method that serves as a user-defined function and has a return
value, you must use parentheses around the argument list. This is necessary even when
there are no arguments, as in the diceRoll function handler discussed under the entry
the result.

Example 1:

The following handler returns the greater of two expressions:

on max a, b
 if a > b then
 return a
 else
 return b
 end if
end max

If 3 and 7 were used for a and b, the result would be as follows:

put max(3, 7)
-- 7

Example 2:

In Windows, this statement creates a two-character string named CRLF that provides the
additional line feed:

put RETURN&numToChar(10) into CRLF

result keyword

right of sprite
Syntax: the right of sprite whichSprite

This sprite property indicates the number of pixels that the right edge of the sprite
specified by whichSprite is from the left edge of the stage.

The right of sprite property can be tested, but not set directly. The right horizontal
coordinate of a sprite can be set using the spriteBox command.

Example:

This statement calls the handler offRightEdge when the right edge of sprite 3 is past
the right edge of the stage:

if the right of sprite 3 > (the stageRight ¬
 - the stageLeft) then offRightEdge

Note: Sprite coordinates are expressed relative to the upper-left corner of the stage.

bottom of sprite, height of sprite, left of sprite, locH of sprite, locV of sprite,
top of sprite, and width of sprite sprite properties; spriteBox command

the rightMouseDown
Syntax: the rightMouseDown

This system property indicates the current state of the right mouse button on a Windows
computer. On the Macintosh, if the emulateMultiButtonMouse property is set to TRUE,
this property indicates whether the user is pressing the mouse button and the Control
key.

When rightMouseDown is TRUE, the right mouse button (Windows) or the mouse
button and Control key (Macintosh) is being pressed.

When rightMouseDown is FALSE, the right mouse button (Windows) or the mouse
button and Control key (Macintosh) is not being pressed.

Example:

This statement checks whether the right mouse button is being pressed and plays the
sound Oops if it is:

if the rightMouseDown then puppetSound 2, "Oops"

the rightMouseUp
Syntax: the rightMouseUp

This system property indicates the current state of the right mouse button on a Windows
computer. On the Macintosh, if the emulateMultiButtonMouse property is set to TRUE,
this property indicates whether the user is pressing the mouse button and the Control
key.

When rightMouseUp is TRUE, the right mouse button (Windows) or the mouse button
and Control key (Macintosh) is currently not being pressed.

When rightMouseUp is FALSE, the right mouse button (Windows) or the mouse
button and Control key (Macintosh) is currently being pressed.

Example:

This statement checks whether the right mouse button is released and plays the sound
Click Me if it is:

if the rightMouseDown then puppetSound 2, "Oops"

rollOver
Syntax: rollOver(whichSprite)

This function indicates whether the cursor is currently over the bounding rectangle of the
sprite specified by whichSprite.

When rollOver is TRUE (1), the cursor is currently over the sprite.
When rollOver is FALSE (0), the cursor is not currently over the sprite.

The rollOver function is typically used in frame scripts. It is useful for creating handlers
that perform an action when the user places the cursor over a specific sprite. It can also
simulate additional sprite channels by splitting the stage into regions that send the
playback head to a different frame that subdivides the region for the available sprite
channels.

When the cursor is over the location of a sprite that has been removed, the rollover still
occurs. Avoid this problem by not doing rollovers over these locations or by relocating
the sprite up above the menu bar before deleting it.

Example:

This statement changes the content of field cast member Message to "This is the place."
when the cursor is over sprite 6:

if rollOver(6) then ¬
put "This is the place." into field "Message"

This handler sends the playback head to different frames when the cursor is over certain
sprites on the stage. The three sprites in this case could be invisible rectangles in
different parts of the stage. Putting additional subdivisions within each of the frames lets
you work with more sprites than there are available channels:

on enterFrame
 if rollover(1) then go to frame "Left"
 if rollover(2) then go to frame "Middle"
 if rollover(3) then go to frame "Right"
end enterFrame

mouseCast function

romanLingo
Syntax: the romanLingo

This property specifies whether Lingo uses a single-byte or double-byte interpreter.
When the romanLingo is TRUE, Lingo uses a single-byte interpreter.
When the romanLingo is FALSE, Lingo uses a double-byte interpreter.

The Lingo interpreter is faster with single-byte character sets. Some versions of
Macintosh system software--Japanese, for example--use a double-byte character set. U.S.
system software uses a single-byte character set. Normally, the romanLingo is set when
starting up Director and is determined by the local version of Macintosh system software.

If you are using a non-roman script system but don't use any double-byte characters in
your script, set this property to TRUE to get faster execution of your Lingo scripts.

Example:

This statement sets the romanLingo to TRUE, which has Lingo use a single-byte
character set:

set the romanLingo to TRUE

sampleRate of member
Syntax: the sampleRate of member whichCastmember

This sound cast member property determines the sample rate of the specified cast
member. The result is in kHz. This property can be tested but not set.

Example:

This statement checks the sample rate of the sound cast member Voice Over and assigns
the value to the variable soundRate:

put the sampleRate of member "Voice Over" into soundRate

sampleSize of member
Syntax: the sampleSize of member whichCastmember

This sound cast member property determines the sample size of the specified cast
member. The result is usually 8- or 16-bit. This property can tested but not set.

Example:

This statement checks the sample size of the sound cast member Voice Over and assigns
the value to the variable soundSize:

put the sampleSize of member "Voice Over" into soundSize

save castLib
Syntax: save castLib whichCast {, pathName:newFileName}

This command saves any changes to the cast. Including the optional
pathname:newFileName parameter saves the file to a new file that uses the
pathname:newFileName parameter as its file name. (When the pathname:newFileName
parameter isn't included, changes to the cast are saved in the cast's original file.

Example:

This statement has Director save the revised version of the cast Buttons in the new file
UpdatedButtons in the same folder:

save castLib "Buttons" , "UpdatedButtons"

saveMovie
Syntax: saveMovie [pathname:filename]

This command saves the current movie. Including the optional parameter saves the
movie to the file specified by pathname:filename.

Example:

This statement saves the current movie to the file Update:

saveMovie "Update"

score
Syntax: the score

This movie property determines which score is associated with the current movie. The
score must be a film loop cast member. The property can be tested and set.

Example:

This statement assigns the film loop cast member "Waterfall" to the score of the current
movie.

set the score to media of member "Waterfall"

scoreColor of sprite
Syntax: the scoreColor of sprite whichSprite

This sprite property indicates the score color assigned to the sprite specified by
whichSprite. The possible values correspond to color chips 0 to 5 in the current palette.

The scoreColor of sprite property can be tested but not set.

Example:

This statement has the message window display the value for the score color assigned to
sprite 7:

put the scoreColor of sprite 7

scoreSelection
Syntax: the scoreSelection

This movie property determines which channels are selected in the score window. The
selection is in a list consisting of the starting channel number, the ending channel
number, the starting frame number, and the ending frame number. Specify sprite
channels by their channel number. Use the following numbers to specify the other
channels:

To specify: Use:
Frame script channel 0
Sound channel 2 -1
Sound channel 1 -2
Transition channel -3
Palette channel -4
Tempo channel -5

You can select discontinuous channels, but you can't select discontinuous frames. This
property can be tested and set.

Examples:

 This statement selects sprite channels 15 through 25 in frames 100 through 200:

set the scoreSelection = [[15, 25, 100, 200]]

This statement selects sprite channels 15 through 25 and sprite channels 40 through 50
in frames 100 through 200:

set the scoreSelection = [[15, 25, 100, 200] , [40, 50, 100, 200]]

This statement selects the frame script in frames 100 through 200:

set the scoreSelection = [[0, 0, 100, 200]]

script of menuItem
Syntax: the script of menuItem whichItem of menu whichMenu

This menu item property determines which Lingo statement is executed when the
specified menu item is selected. The whichItem expression can be either a menu item
name or a menu item number; the whichMenu expression can be either a menu name or
a menu number.

When the menu is installed, the script is set to the text following the "¼" character in the
menu definition.

The script property can be tested and set.

Example:

This statement makes the handler named goHandler the handler that is executed when
the user chooses the command Go from the custom menu Control:

set the script of menuItem "Go" of menu "Control" ¬
 to "goHandler"

checkMark of menuItem and enabled of menuItem properties; installMenu
command; menu keyword

scriptNum of sprite
Syntax: scriptNum of sprite whichSprite

This sprite property indicates the number of the script assigned to the sprite specified by
whichSprite.

The scriptNum of sprite property can be tested, but not set.

Example:

This statement displays the number of the script attached to sprite 4:

put the scriptNum of sprite 4

scriptsEnabled of member
Syntax: the scriptsEnabled of member whichCastmember

This movie cast member property determines whether scripts in a linked movie are
enabled.

 When the scriptsEnabled of member is TRUE (1), the linked movie's scripts are
enabled.

 When the scriptsEnabled of member is FALSE (0), the linked movie's scripts aren't
enabled.

This property is available for Director movie cast members only. While it can be tested
and set for Director movies, it can't be tested or set for other cast members.

Example:

This statement turns off scripts in the linked movie Jazz Chronicle:

set the scriptsEnabled of member "Jazz Chronicle" = FALSE

scriptText of member
Syntax: the scriptText of member whichCastmember

This cast member property indicates the content of the script, if any, assigned to the
cast member specified by whichCastmember.

Movies lose their values for the scriptText of member property when they are
converted into projectors. Therefore, the movie's values for the scriptText of
member can't be used by a projector. However, Director can set new values for the
scriptText of member inside the projector.

The scriptText of member property can be tested and set.

Example:

This statement makes the contents of field cast member 20 the script of cast member
30:

set the scriptText of member 30 = the text of member 20

scriptType of script
Syntax: the scriptType of member whichScript

This script cast member property indicates the specified script's type. Possible values are
#MOVIE, #SPRITE, #FRAME, and #PARENT.

Example:

This statement makes script member Main Script a movie script:

set the scriptType of member "Main Script" to #movie

scrollByLine
Syntax: scrollByLine member whichCastmember, amount

This command scrolls the specified field cast member up or down by the number of lines
specified in amount.

When amount is positive, the field scrolls down.
When amount is negative, the field scrolls up.

Examples:

This statement scrolls the field cast member Today's News down five lines:

scrollByLine member "Today's News", 5

This statement scrolls the field cast member Today's News up five lines:

scrollByLine member "Today's News", -1

scrollByPage
Syntax: scrollByPage member whichCastMember, amount

This command scrolls the specified field cast member up or down by the number of
pages specified in amount.

 When amount is positive, the field scrolls down.
 When amount is negative, the field scrolls up.

Examples:

This statement scrolls the field cast member Today's News down one page:

scrollByPage member "Today's News", 1

This statement scrolls the field cast member Today's News up one page:

scrollByPage member "Today's News", -1

scrollTop of member
Syntax: the scrollTop of member whichCastmember

This property of text and field cast members determines the distance, in pixels, from the
top of a field cast member to the top of the field that is currently visible in the scrolling
box. By changing the value for the scrollTop of member while the movie plays, you
can change the section of the field that appears in the scrolling field.

Example:

This repeat loop makes the field Credits appear to scroll by continuously increasing the
value of the scrollTop of member:

set the scrollTop of member "Credits" = 1
repeat with count = 1 to 150
 set the scrollTop of member "Credits" = the scrollTop of ¬
 member "Credits" + count
end repeat

searchCurrentFolder
Syntax: the searchCurrentFolder

This function determines whether Director searches the current folder when searching
filenames.

When the searchCurrentFolder function is TRUE (1), Director searches the current
folder when resolving filenames.

When the searchCurrentFolder function is FALSE (0), Director does not search the
current folder when resolving filenames.

The searchCurrentFolder function can be tested and set.

Examples:

This statement has the message window display whether the searchCurrentFolder
function is on.

put the searchCurrentFolder

The result is the number 1, which is the numeric equivalent of TRUE.

This statement sets the searchCurrentFolder function to TRUE, which has Director
search the current folder when resolving filenames:

set the searchCurrentFolder to TRUE

searchPath
Syntax: the searchPath

This function provides a list of the pathnames that are searched when Director resolves
filenames. When Director cannot find the file in the current folder, it searches for it in the
folders listed in the searchPath.

The searchPath content is a regular list that you can handle the same as any other list
by using commands such as add, addAt, append, deleteAt, and setAt. Items in the list
are separated by commas. Trailing colons and backslashes are allowed but not
necessary.

Adding a large number of paths to the searchPath slows searching. Try to minimize the
number of paths in the list.

The searchPath function can be tested and set.

Example 1:

This statement displays the pathnames that Director searches when resolving filenames:

put the searchPath

Example2:

This statement assigns two folders to the searchPath in Windows. This version includes
optional trailing backslashes:

set the searchPath = ["c:\director\projects\",¬ d:\cdrom\sources\"]

This statement is the same, except that trailing backslashes have been omitted:

set the searchPath = ["c:\director\projects", d:\cdrom\sources"]

Example 3:

This statement assigns two folders to the searchPath on a Macintosh. This version
includes optional trailing colons:

set the searchPath = ["hard drive:director:projects:",¬ cdrom:sources:"]

This statement is the same, except that trailing colons have been omitted:

set the searchPath = ["hard drive:director:projects"¬ cdrom:sources"]

searchCurrentFolder function

searchPaths
Syntax: the searchPaths

This global property is a list of paths that Director searches. Each item in the list is a fully
qualified pathname as it appears on the current platform at run time.

The value of the searchPaths value is a regular list that you can handle the same as
any other list by using commands such as add, addAt, append, deleteAt, and setAt.

Adding a large number of paths to the searchPaths slows searching. Try to minimize
the number of paths in the list.

Example:

These statements have Director look inside a folder named Sounds, which is in the same
folder as the current Director movie:

put the moviePath & "Sounds" into soundsPath
add the searchPaths, soundPath

selection
Syntax: the selection

This function returns a string containing the highlighted portion of the current editable
field. It is useful for testing what a user has selected in a field.

The selection function only determines which string of characters are selected; you
cannot use the selection to select a string of characters.

Example:

This statement checks whether any characters are selected and displays the alert
"Please select a word." if none are:

if the selection = EMPTY then ¬
 alert "Please select a word."

selStart and selEnd properties

selection of castLib
Syntax: the selection of castLib whichCast

set the selection of castLib whichCast = [startMember1,¬
endMember1] , {[startMember2, endMember2] ,¬
 [startMember3, endMember3]...}

This cast property determines which cast members are selected in the specified cast
window. The specified range appears as a list of the starting and ending cast member
numbers for the selected range. You can specify more than one selection by specifying
additional ranges of cast members. (Specifying more than one selection is done dragging
while pressing the Control key (Windows) or the Command key (Macintosh). This property
can be tested and set.

Example:

This statement selects cast members 1 through 10 in castLib number 1:

set the selection of castLib 1 = [1, 10]

This statement selects cast members 1 through 10 and 30 through 40 in castLib number
1:

set the selection of castLib 1 = [1, 10], [30,40]

selEnd
Syntax: the selEnd

This field property specifies the ending character of a selection. It is used with the
selStart to determine a selection from the currently editable field, counting from the
beginning character.

The selEnd field property can be tested and set, and the default value is 0.

Examples:

These statements select "cde" from the field "abcdefg":

set the selStart to 3

set the selEnd to 5

This statement calls the handler noSelection when the selEnd is the same as the
selStart:

if the selEnd = the selStart then noSelection

This statement makes a selection 20 characters long:

set the selEnd to the selStart + 20

editable of sprite and hilite commands; selection function; selStart and text of
member properties

selStart
Syntax: the selStart

This field property specifies the starting character of a selection. It is used with the
selEnd to determine a selection from the currently editable field, counting from the
beginning character.

The selStart field property can be tested and set. The default value is 0.

Examples:

These statements select "cde" from the field "abcdefg":

set the selStart to 3

set the selEnd to 5

This statement calls the handler noSelection when the selEnd is the same as the
selStart:

if the selEnd = the selStart then noSelection

This statement makes a selection 20 characters long:

set the selEnd to the selStart + 20

editable of sprite and hilite commands; selection function; selEnd and text of
member properties

set...to, set...=
Syntax: set the property to expression

set the property = expression
set variable to expression
set variable = expression

This command evaluates the expression specified by expression and puts the result into
the property specified by property or the variable specified by variable.

Examples:

This statement sets the ink effect for sprite 3 to the ink effect specified by the
number 8:

set the ink of sprite 3 to 8

This statement sets the soundEnabled property to the opposite of its current state. When
the soundEnabled is TRUE (the sound is on), this statement turns it off. When the
soundEnabled is FALSE (the sound is off), this statement turns it on.

set the soundEnabled = not (the soundEnabled)

This statement sets the variable named vowels to the string "aeiou":

set vowels to "aeiou"

property keyword

setaProp
Syntax: setaProp list, property, newValue

This command replaces the value assigned to property with the value specified by
newValue in the list specified by list. When the property isn't already in the list, Lingo
adds the new property and value.

The setaProp command works with property lists only. Using setaProp with a linear list
produces a script error.

Example:

These statements create a property list and then adds the item #c:10 to the list:

set newList = [#a:1, #b:5]
put newList
-- [#a:1, #b:5]
setaProp newList, #c, 10
put newList
-- [#a:1, #b:5, #c:10]

setAt
Syntax: setAt list, orderNumber, value

This command replaces the item specified by orderNumber with the value specified by
value in the list specified by list.

When orderNumber is greater than the number of items in a linear list, the list is
expanded with blank entries to provide the number of places specified by orderNumber.

When orderNumber is greater than the number of items in a property list, an error
alert occurs.

The setAt command works with linear and property lists.

If the list contains fewer items than the position specified by orderNumber, Lingo gives a
script error.

Example:

This handler assigns a name to the list [12, 34, 6, 7, 45], replaces the fourth item in the
list with the value 10, and then displays the result in the message window:

on enterFrame
 set vNumbers = [12, 34, 6, 7, 45]
 setAt vnumbers, 4, 10
 put vNumbers
end enterFrame

When the handler runs, the message window displays the following:

 [12, 34, 6, 10, 45]

setCallBack
Syntax: setCallBack XCMDname, value

This command specifies how Lingo handles unsupported callbacks from the HyperTalk
XCMD or XFCN specified by XCMDname when the movie plays on a Macintosh. In
Windows the setCallBack command has no effect.

When value is TRUE (1), unsupported callbacks from the specified XCMD or XFCN
cause a generic alert to be displayed.

When value is FALSE (0), unsupported callbacks from the specified XCMD or XFCN are
ignored.

When value is an object created from an XObject, unsupported callbacks from the
specified XCMD or XFCN cause various messages to be sent to the object.

Example:

This statement has Lingo ignore unsupported callbacks from the SuperDuperXCMD
command:

setCallBack SuperDuperXCMD, 0

setProp
Syntax: setProp list, property, newValue

This command replaces the value assigned to property with the value specified by
newValue in the list specified by list. If the list doesn't contain the specifed property,
setProp produces a script error.

The setProp command works with property lists only. Using setProp with a linear list
produces a script error.

This command is similar to the setaProp command, except that this command gives an
error when the property is not already in the list.

Example:

This statement changes the value assigned to the age property of property list x to 11:

set x = [#age:10, #sex:0]
setProp x #age, 11

setaProp command

setTrackEnabled
Syntax: setTrackEnabled(sprite whichSprite, whichTrack, trueOrFalse)

This digital video sprite property determines whether the specified track of a digital video
is enabled to play.

When setTrackEnabled is TRUE, the specified track is enabled.
When setTrackEnabled is FALSE, the specified track is disabled.

Example:

This statement enables track 3 of the digital video assigned to sprite channel 8:

setTrackEnabled(sprite 8, 3, TRUE)

shapeType
Syntax: the shapeType of member whichCastmember

This shape cast member property indicates the specified shape's type. Possible types are
#rect, #roundRect, #oval, or #line. This property is useful for specifying a shape cast
member's type after the shape cast member is created from Lingo.

Example:

These statements create a new shape cast member numbered 100 and then define it as
an oval:

new(#shape, member 100)
set shapeType of member 100 = #oval

shiftDown
Syntax: the shiftDown

This function indicates whether the user is pressing the Shift key.
When the shiftDown is TRUE, the user is pressing the Shift key.
When the shiftDown is FALSE, the user is not pressing the Shift key.

Example:

This statement checks whether the Shift key is being pressed and calls the handler
doShiftKey if it is:

if the shiftDown then doShiftKey (the key)

commandDown, controlDown, key, and optionDown functions

short
date and time functions

showGlobals
Syntax: showGlobals

This command has the message window display all global variables. It is useful for
debugging scripts.

clearGlobals and showLocals commands; global keyword

showLocals
Syntax: showLocals

This command has the message window display all local variables. This command can
only be used within handlers or parent scripts.

Local variables in handlers are abandoned after the handler executes. This command is
useful for debugging scripts.

clearGlobals and showGlobals commands; global keyword

showResFile
Syntax: showResFile [whichFile]

This command, when used on the Macintosh, displays a list of resources in the resource
file specified by the string whichFile. The file must be already open. If the resource file is
in a different folder than the current movie, whichFile must specify a pathname. If no file
is specified, all open resource files are listed. In Windows, the showResFile command
has no effect.

There may be many open resource files, and the listing may be very long. To cancel the
listing, press the mouse button.

Example:

This statement displays the resource file Special Fonts:

showResFile "Special Fonts"

closeResFile, openResFile, openXlib, and showXlib commands

showXlib
Syntax: showXlib [Xlibfilename]

This command shows all Xtras and XObjects in Xlibfilename (it must be open), or all open
Xlibraries if no file is specified. Xlibrary files are resource files that contain XCOD
(XObjects) resources. If the file is in another folder than the current movie, specify the
pathname.

Xlibrary files are resource files that contain XCOD (Xtras and XObjects) resources
(Macintosh) or .DLLs (Windows). Because the type of Xlibrary files on the Macintosh and
in Windows differs, the list of files that the showXlib command generates can be
different on different platforms.

The mDescribe method displays on line documentation for an XObject.

To use mDescribe:
1. Type showXlib in the message window and press Return.

This displays all open Xlibrary resource files and all Xtras and XObjects contained in
those Xlibraries.

2. Using the list of Xtras and XObjects displayed in the message window, type
XObjectName(mDescribe) and press Return.
This displays the on-line documentation for that XObject.

Example:

This statement displays the Xtras and XObjects in the VideoDisc Library:

showXlib "VideoDisc Xlibrary"

closeXlib and openXlib commands

shutDown
Syntax: shutDown

This command has different effects on the Macintosh and in Windows.
On the Macintosh, the shutDown command closes all open applications and turns the

computer off.
In Windows, the shutDown command exits Director or the projector and then exits

Windows.

Example:

This statement checks whether the user has pressed Control+R and shuts down the
computer if he or she has:

if the key = "s" and the commandDown then shutDown

quit and restart commands

sin
Syntax: sin(angle)

This function calculates the sine of the specified angle. The angle must be expressed in
radians as a floating point number.

Example:

The following statement calculates the sine of pi/2:

put sin (pi()/2.0)
-- 1

Note: The symbol  cannot be used in a Lingo expression.

size of member
Syntax: the size of member castName

This cast member property permits you to learn the size, in bytes, of a specific cast
member number or name. Divide bytes by 1024 to convert to kilobytes.

Example:

put the size of member "Shrine" into field "How Big"

sort
Syntax: sort list

This command puts the items in the list specified by list into alphanumeric order.
When the list is a linear list, the list is sorted by values.
When the list is a property list, the list is sorted alphabetically by properties.

Once a list is sorted, it maintains its sort order even when you add new variables using
the add command.

Example:

This statement puts the list Values, which consists of [#a: 1, #d: 2, #c: 3], into
alphanumeric order. The result appears below the statement:

put values
-- [#a: 1, #d: 2, #c: 3]
sort Values
put Values
--[#a: 1, #c: 3, #d: 2]

sound close
Syntax: sound close soundChannel

This command stops the sound playing in and then closes the sound channel specified by
soundChannel.

Example:

This statement stops any sound playing in and closes sound channel 1:

sound close 1

sound fadeIn
Syntax: sound fadeIn whichChannel

sound fadeIn whichChannel, ticks

This command fades in a sound in the specified sound channel over a period of frames or
ticks.

When ticks is specified, then the fade in occurs evenly over that period of time.
When ticks is not specified, the default number of ticks is calculated as 15 * (60 /

(Tempo setting)) based on the Tempo setting for the first frame of the fade in.

The fade in continues at a predetermined rate until the number of ticks has elapsed, or
the sound in the specified channel changes.

Example:

This statement fades in the sound in channel 1 over 5 seconds:

sound fadeIn 1, 5 * 60

sound fadeOut command

sound fadeOut
Syntax: sound fadeOut whichChannel

sound fadeOut whichChannel, ticks

This command fades out a sound in the specified sound channel over a period of frames
or ticks.

When ticks is specified, then the fade out occurs evenly over that period of time.
When ticks is not specified, the default number of ticks is calculated as 15 * (60 /

(Tempo setting)) based on the Tempo setting for the first frame of the fade out.

The fadeout continues at a predetermined rate until the number of ticks has elapsed, or
the sound in the specified channel changes.

Example:

This statement fades in the sound in channel 1 over 5 seconds:

sound fadeIn 1, 5 * 60

sound fadeIn command

sound of member
Syntax: the sound of member whichCastmember

This movie and digital video cast member property determines whether the sound for
the specified movie or digital video plays.

 When the sound of member is TRUE (1), the sound plays.
When the sound member is FALSE (0), the sound doesn't play.

This property can bet tested and set for Director movies and digital video cast members.

Example:

This statement turns on the sound for the Director movie cast member Movie Clip:

set the sound of member "Movie Clip" to 1

sound playFile
Syntax: sound playFile whichChannel, whichFile

This command plays the AIFF or WAVE sound located at whichFile in the sound channel
specified by whichChannel.

When the sound file is in a different folder than the movie, whichFile must specify the full
pathname to the file.

The sound playFile command streams files from disk rather than playing them from
RAM the way Director plays sound cast members. As a result, using the sound playFile
command when playing digital video or when loading cast members into memory can
cause conflicts when the computer tries to read the disk in two places at once.

On the Macintosh, this command requires System 6.0.7 or later to work; otherwise the
sound playback will not occur.

Examples:

This statement plays the file named Thunder in channel 1:

sound playFile 1, "Thunder"

This statement plays the file named Thunder in channel 3:

sound playFile 3, the pathName &"Thunder"

sound stop command

sound stop
Syntax: sound stop whichChannel

This command stops the playing of the sound playing in the specified channel.

Example:

This statement checks whether a sound is playing in sound channel 1 and stops the
sound if it is:

if soundBusy(1) then sound stop 1

soundBusy function

soundBusy
Syntax: soundBusy(whichChannel)

This function determines whether a sound is playing in the sound channel specified by
whichChannel.

When a sound is playing in the specified sound channel, the soundBusy function is
TRUE (1).

When no sound is playing in the specified sound channel, the soundBusy function is
FALSE (0).

Make sure that you allow enough time for the sound to start playing before using
soundBusy to check the sound channel.

Example:

This statement checks whether a sound is playing in sound channel 1 and loops in the
frame if it is. This would allow the sound to finish before the playback head goes to
another frame:

if soundBusy(1) then go to the frame

sound playFile and sound stop commands

soundEnabled
Syntax: the soundEnabled

This property determines whether the sound is on or off. TRUE means that the sound is
on.

The soundEnabled property can be tested and set; and the default value is TRUE. When
you set this property to FALSE, the volume setting of the sound is not changed but you
do not hear the sound.

Example:

This statement set turns to the opposite of its current setting. It turns the sound on if it is
off and turns it off if it is on:

set the soundEnabled to not (the soundEnabled)

soundLevel, volume of sound, volume of sprite properties

soundLevel
Syntax: the soundLevel

This property determines the volume level of the sound that is played through the
computer's speaker. Settings range from 0 (no sound) to 7 (maximum sound volume).

The soundLevel property can be tested and set. The default value is 7.

Examples:

This statement sets the variable oldSound equal to the current sound level:

put the soundLevel into oldSound

This statement sets the sound level to 5:

set the soundLevel to 5

soundEnabled and volume of sound property

sourceRect
Syntax: the sourceRect of window whichWindow

This window property specifies the coordinates of the rectangle that the movie that plays
in the window specified by whichWindow was originally created for.

Example:

This statement displays the original coordinates of the movie Control Panel in the
message window:

put the sourceRect of "Control Panel"

sprite
Syntax: the property of sprite whichSprite

This keyword tells Lingo that the value specified by whichSprite is a sprite number. It is
used with every sprite property.

A sprite is an occurrence of a cast member in an animation channel of the score.

Examples:

This statement sets the variable named horizontal to the locH of sprite 1:

put the locH of sprite 1 into horizontal

This statement turns on the puppet condition for the sprite that has sprite number i + 1:

set the puppet of sprite (i + 1) to TRUE

puppetSprite command

sprite...intersects
Syntax: sprite sprite1 intersects sprite2

This operator compares the position of two sprites. It is TRUE if the bounding rectangle of
sprite1 touches the bounding rectangle of sprite2.

If both sprites have matte ink, their actual outlines are used, not the bounding
rectangles. A sprite's outline is defined by the non-white pixels that make up its border.

This is a comparison operator with a precedence level of 5.

Example:

This statement checks whether two sprites intersect and changes the contents of the
field cast member Notice to "You placed it correctly." if they do:

if sprite i intersects j then ¬
put "You placed it correctly." into field "Notice"

sprite within comparison operator

sprite...within
Syntax: sprite sprite1 within sprite2

This comparison operator compares the position of two sprites. It is true if the bounding
rectangle of sprite1 is entirely inside the bounding rectangle of sprite2.

If both sprites have matte ink, their actual outlines are used, not the bounding
rectangles. A sprite's outline is defined by the non-white pixels that make up its border.

This is a comparison operator with a precedence level of 5.

Example:

This statement checks whether two sprites intersect and calls the handler doInside if
they do:

if sprite 3 within 2 boundary ¬
 then doInside

sprite intersects comparison operator

spriteBox
Syntax: spriteBox whichSprite, left, top, right, bottom

This command sets the bounding rectangle coordinates of the puppet sprite specified by
the integer expression whichSprite. The spriteBox command gives you a way to set the
left, top, right, and bottom sprite properties of a sprite directly without having to convert
it into locH, locV, width, and height. This is useful because the left, top, right, and
bottom sprite properties cannot be set directly.

This command works only on puppet sprites. For bitmap sprites, the stretch of sprite
property must be TRUE to use this command.

A sprite's coordinates change based on their registration points. For bitmap sprites, it
may be necessary to move the registration points in order to obtain proper results.

Example:

This statement sets the coordinates of sprite 3's bounding rectangle to 50, 50, 200, and
250:

spriteBox 3, 50, 50, 200, 250

This statement sets the bounding rectangle of the sprite whose number is mySprite to
the starting values and the current cursor location. This creates a rectangle that
stretches from the specified point to the mouse cursor:

spriteBox mySprite, ¬
 startH, startV, the mouseH, the mouseV

bottom of sprite, height of sprite, left of sprite, right of sprite, stretch of
sprite, top of sprite, and width of sprite sprite properties; puppetSprite and
updateStage command

sqrt
Syntax: sqrt(number)

the sqrt of number

This function yields the square root of the number specified by number.
When number is a floating point number, the result is a floating point number.
When number is an integer, the result is rounded to the nearest integer.

The value of number must be a decimal number that is greater than zero.

Example:

This statement displays the square root of 3.0 in the message window:

put sqrt(3.0)
-- 1.7321

floatPrecision property

stage
 Syntax: the stage

This system property is used to refer to the main movie in commands and functions that
relate to windows. This is useful when using the tell command to send a message to
the main movie from a child movie.

Example:

This statement causes the main movie to stop animating:

tell the stage to pause

This statement displays the current setting of the stage:

put the rect of the stage
--rect (0, 0, 640, 480)

stageBottom
Syntax: the stageBottom

This function--along with the stageLeft, the stageRight, and the stageTop --
indicates where the stage is positioned on the desktop. It returns the bottom vertical
coordinate of the stage, relative to the upper left corner of the main screen. The height
of the stage in pixels is given by the stageBottom - the stageTop.

The stageBottom function can be tested but not set.

Example:

These two statements position sprite 3 a distance of 50 pixels from the bottom edge of
the stage:

put the stageBottom - the stageTop into ¬
 stageHeight
set the locV of sprite 3 to stageHeight - 50

Note: Sprite coordinates are expressed relative to the upper-left corner of the Stage. See
"Changing Sprite Properties" in Chapter 2, "Using the Stage and Score," of Using
Director.

stageLeft, stageRight, and stageTop functions; locH of sprite and locV of
sprite sprite properties

stageColor
Syntax: the stageColor

This property determines the color of the movie background.

The value of the stageColor ranges from 0 to 255 for 8-bit color, or from 0 to 15 for 4-bit
color. You can click a color in the color palette to see that color's index number in the
lower left corner of the window. Setting the stageColor in a Lingo script is equivalent to
choosing the stage color from the pop-up palette in the panel window.

Example:

This statement sets the variable oldColor to the index number of the current stage
color:

put the stageColor into oldColor

This statement sets the stage color to the color assigned to chip 249 on the current
palette:

set the stageColor to 249

backColor of sprite and foreColor of sprite properties

stageLeft
Syntax: the stageLeft

This function--along with the stageRight, the stageTop, and the stageBottom--
indicates where the stage is positioned on the desktop. It equals the left horizontal
coordinate of the stage, relative to the upper left corner of the main screen. When the
stage is flush with the left side of the main screen, this coordinate is zero.

The stageLeft function can be tested but not set.

Sprite coordinates are expressed relative to the upper-left corner of the Stage.

Example:

This statement checks whether the left edge of the stage is beyond the left edge of the
screen and calls the handler leftMonitorProcedure if it is:

if the stageLeft < 0 then leftMonitorProcedure

stageBottom, stageRight, and stageTop, functions; locH of sprite and locV of
sprite sprite properties

stageRight
Syntax: the stageRight

This function--along with the stageLeft, the stageTop, and the stageBottom--
indicates where the stage is positioned on the desktop. It returns the right horizontal
coordinate of the stage, relative to the upper left corner of the main screen's desktop.
The width of the stage in pixels is given by the stageRight - the stageLeft.

The stageRight function can be tested but not set.

Sprite coordinates are expressed relative to the upper-left corner of the Stage.

Example:

These two statements position sprite 3 a distance of 50 pixels from the right edge of the
stage:

put the stageRight - the stageLeft into stageWidth
set the locH of sprite 3 to stageWidth - 50

stageBottom, stageLeft, and stageTop functions; locH of sprite and locV of
sprite sprite properties

stageTop
Syntax: the stageTop

This function--along with the stageBottom, the stageLeft, and the stageRight--
indicates where the stage is positioned on the desktop. It returns the top vertical
coordinate of the stage, relative to the upper left corner of the main screen's desktop. If
the stage is in the upper left corner of the main screen, this coordinate is zero.

The stageTop function can be tested but not set.

Example:

This statement checks whether the top of the stage is beyond the top of the screen and
calls the handler upperMonitorProcedure if it is:

if the stageTop < 0 then upperMonitorProcedure

Sprite coordinates are expressed relative to the upper-left corner of the Stage.

stageBottom, stageLeft, and stageRight functions; locH of sprite and locV of
sprite sprite properties

startMovie
See on startMovie movie handler.

starts
Syntax: string1 starts string2

This comparison operator compares two strings.
When string1 starts with string2, the condition is TRUE (1).
When string1 does not start with string2, the condition is FALSE (0).

The string comparison is not sensitive to case or diacritical marks; "a" and "Å" are
considered the same.

This is a comparison operator with a precedence level of 1.

Example:

This statement has the message window display whether the word Macromedia starts
with the string Macro:

put "Macromedia" starts "Macro"

The result is 1, which is the numerical equivalent of TRUE.

contains comparison operator

startTimer
Syntax: startTimer

This command sets the timer property to zero. It also resets all the accumulating timers
for the lastClick, lastEvent, lastKey, and lastRoll functions to zero.

Example:

This handler set the timer to zero when a key is pressed:

on keyDown
 startTimer
end keyDown

lastClick, lastEvent, lastKey, and lastRoll functions; timeoutLength,
timeoutMouse, timeoutPlay, timeoutScript, and timer properties

stillDown
Syntax: the stillDown

This function indicates whether the user is pressing the mouse button.
When the user is pressing the mouse button, the stillDown is TRUE.
When the user is not pressing the mouse button, the stillDown is FALSE.

This function is useful within a mouseDown script to trigger certain events only after the
mouseUp.

Lingo cannot test the stillDown when it is used inside a repeat loop. Use the
mouseDown function inside of repeat loops instead.

Example:

This statement checks whether the mouse button is being pressed and calls the handler
dragProcedure if it is:

if the stillDown then dragProcedure

mouseDown function

stretch of sprite
Syntax: the stretch of sprite whichSprite

This sprite property determines whether the bitmap sprite specified by whichSprite can
be stretched by using the spriteBox command or the width of sprite and height of
sprite properties. If it is TRUE, the bitmap sprite can be stretched.

The stretch of sprite property can be tested and set, and the default value is FALSE.
When FALSE, the bitmap sprite always stays at its default or normal size.

The stretch of sprite property applies to bitmap, digital video, and picture cast
members, but not to shape, field, or button cast members. Shapes can be stretched at
any time by setting their height of sprite and width of sprite properties,
regardless of the setting of their stretch property. Field and button cast members
cannot be stretched in any case.

Director requires much more processor time to draw stretched sprites than regular
sprites, which can affect movie performance.

In order to have its properties set using Lingo, the sprite must be a puppet.

Example:

This statement checks whether sprite 3 is stretchable and sets the sprite's width to 10
pixels if it is:

if the stretch of sprite 3 = TRUE then ¬
 set the width of sprite 3 to 10

spriteBox and updateStage commands; height of sprite and width of sprite
properties

string
Syntax: string(expression)

This function converts an integer, floating point number, or symbol expression to a
string.

Example:

This statement adds 2 + 2 and has the message window display the results:

put string(2 + 2)

This statement converts the symbol #123 to a string:

put string(123)
-- "123"

value function

stringP
Syntax: stringP(expression)

This function determines whether the expression specified by expression is a string.
When the expression is a string, the result is TRUE.
When the expression is not a string, the result is FALSE.

The "P" in stringP stands for predicate.

Examples:

This statement checks whether "3" is a string:

put stringP("3")

The result is 1, which is the numeric equivalent of TRUE.

This statement checks whether the floating point number 3.0 is a string:

put stringP(3.0)

Because 3.0 is a floating point number and not a string, the result is 0, which is the
numeric equivalent of FALSE.

floatP, ilk, integerP, objectP, and symbolP functions

switchColorDepth
Syntax: the switchColorDepth

This property, when the movie plays on the Macintosh, determines whether Director
automatically switches the color depth when loading a movie. The switchColorDepth
property has no effect in Windows.

When the switchColorDepth is TRUE, Director switches the monitor(s) that the
stage occupies to the color depth of the movie that is being loaded.

When the switchColorDepth is FALSE, Director leaves the color depth of the
monitor(s) unchanged when a movie is loaded.

When the switchColorDepth is TRUE, nothing happens until a new movie is loaded.

Setting the monitor's color depth to that of the movie is good practice.
When the monitor's color depth is set below that of the movie, resetting it to the

color depth of the movie (assuming that the monitor can provide that color depth) helps
maintain the movie's original appearance.

When the monitor's color depth is higher than that of the movie, reducing the color
depth lets you use the minimum amount of memory to play movies. At minimum memory,
loading cast members is more efficient and animation can occur faster.

The switchColorDepth property can be tested and set. The default value is the setting
for the Reset Monitor to Movie's Color Depth checkbox in the General Preferences
dialog box.

Examples:

This statement sets the variable named switcher to the current setting of
switchColorDepth:

put the switchColorDepth into switcher

This statement checks whether the current color depth is 8-bit and turns the
switchColorDepth property on if it is:

if the colorDepth = 8 then ¬
 set the switchColorDepth to TRUE

colorDepth property; colorQD function

symbolP
Syntax: symbolP(expression)

This function determines whether the expression specified by expression is a symbol.
When the expression is a symbol, the result is TRUE.
When the expression is not a symbol, the result is FALSE.

The "P" in symbolP stands for predicate.

Example:

This statement checks whether #3 is a symbol:

put symbolP(#3)

TAB
Syntax: TAB

This character constant represents the Tab key.

Example:

This statement checks whether the character typed is the Tab character and calls the
handler doNextField if it is:

if the key = TAB then doNextField

This statement advances or retreats the playback head depending on whether the user
presses Tab or Shift-Tab:

if the key = TAB then
 if the shiftDown then
 go the frame -1
 else
 go the frame +1
 end if
end if

BACKSPACE, EMPTY, RETURN character constants

tan
Syntax: tan(angle)

This function yields the tan of the specified angle. The angle must be expressed in
radians as a floating point number. A radian is an arc in a circle, equal in length to the
radius. It is 57.295 degrees. There are 2 or 6.2833 radians in a circle.

Example:

The following function yields the tangent of /4:

tan (pi()/4.0) = 1

Note: That the  symbol cannot be used in a Lingo expression.

tell
Syntax: tell object to statement

or

tell object
statement(s)
end tell

This command communicates the statement or statements specified by statement(s) to
the object specified by object.

The tell command is useful for allowing movies to interact. It can be used within a main
movie to send a message to a movie playing in a window, or to send a message from a
movie playing in a window to the main movie. For example, the tell command can let a
button in a control panel call a handler in a movie playing in a window. The movie playing
in a window could react to the first movie handler by executing the handler. The movie
playing in the window could interact with the main movie by sending some value back to
the movie.

When you use the tell command to send a message to a movie playing in a window, it
is important to use an object name that identifies the window by using the full pathname
or its number in the windowList. If you use the windowList, use the expression
getAt(the windowList, windowNum), where windowNum    is a variable that contains
the number of the window's position in the list. Because opening and closing windows
may change the order of the windowList, it is a good idea to store the full pathname as
a global variable.

A multiple line tell command resembles a handler. It needs an end statement:

global childMovie
tell window childMovie
 go to frame 5
 set the stageColor to 100
 set the memberNum of sprite 4 to 45
 updateStage
end tell

When a message calls a handler, a value returned from the handler can be found in the
global property the result after the called handler is done:

global childMovie
tell window childMovie to calcBalance
-- a handler name
put the result into myBalance
-- return value from "calcBalance" handler

When you use the tell command to send a message from a movie playing in a window
to the main movie, use the system property the stage as the object name:

tell the stage to go to frame "Main menu"

When you use the tell command to call a handler in another movie, make sure that you

do not have a handler by the same name in the same script in the local movie. If you do,
the local script will be called. This applies only to handlers in the same script in which
you are using the tell command.

Example:

This statement has the window Control Panel instruct the movie Simulation to branch to
another frame:

tell window "Simulation" to go to frame "Save"

text of member
Syntax: the text of member whichCastmember

This cast member property determines the character string that is contained in the field
cast member specified by whichCastmember.

The text of member property is useful for displaying messages and recording what the
user types.

The text of member property can be tested and set.

Lingo changes to the text of a cast member remove any special formatting you have
applied to individual words or lines. Altering the text of member reapplies global
formatting.

Example:

This statement places the phrase "Thank you." in the empty cast member Response:

if the text of member "Response" = EMPTY then ¬
 set the text of member "Response" to "Thank You."

This statement sets the content of cast member Notice to "You have made the right
decision!":

set the text of member "Notice" = "You have ¬
 made the right decision!"

selEnd and selStart    field properties;

the
Syntax: the property

All Lingo properties and many sprite properties and functions require the keyword the to
precede the property. This distinguishes the property from a variable or object name.

Properties have "super-global" scope, which means they are available within handlers
and methods even without a global declaration. Like global variables, Lingo system
properties are available between different movies in the same presentation (unless they
are changed by system events). Sprite properties would change when a new movie is
loaded.

ticks
Syntax: the ticks

This function returns the current time in ticks (1/60th of a second). Counting ticks begins
from the time the computer is started.

Example:

This statement converts ticks to minutes by dividing the number of ticks by 60 twice and
then sets the variable minutesOn to the result:

put the ticks/60/60 into minutesOn

time and timer functions

time
Syntax: the time

the short time
the long time
the abbreviated time
the abbrev time
the abbr time

This function returns the current time in the system clock as a string in one of three
formats: short, long, or abbreviated. If no format is specified, the default is short. The
abbreviated format can also be referred to as abbrev and abbr. In the United States, the
short and abbreviated formats are the same.

Examples:

These statements have the message window display the time in different formats.
Possible results appear below each statement:

put the short time
--"1:30 PM"

put the long time
--"1:30:24 PM"

put the abbreviated time
--"1:30 PM"

Note: The three time formats vary, depending on the individual computer's time format.
The examples above are for the United States.

date function

timeoutKeyDown
Syntax: the timeoutKeyDown

When this property is TRUE, keyDown events set the timeoutLapsed property to zero.

The timeoutKeyDown property can be tested and set. The default value is TRUE.

Example:

This statement sets the variable timing to the value of the timeoutKeyDown:

put the timeoutKeyDown into timing

This statement turns off the timeoutKeyDown:

set the timeoutKeyDown to FALSE

keyDownScript property

timeoutLapsed
 Syntax: the timeoutLapsed

This property indicates the number of ticks elapsed since the last timeout. A timeout
event occurs when the timeoutLapsed property reaches the time specified by the
timeoutLength property.

The timeoutLapsed property can be tested, but not set directly in Lingo.

Example:

This statement sets the field of member Countdown to the value of the timeoutLapsed
property. Dividing the timeOutLapsed by 60 converts it to seconds:

put the timeoutLapsed / 60 into field "Countdown"

timeoutLength
Syntax: the timeoutLength

This property determines the number of ticks before a timeout event occurs. A timeout
occurs when the timeoutLapsed property reaches the time specified by the
timeoutLength property.

The timeoutLength property can be tested and set. The default value is 10,800 ticks,
which is 3 minutes.

Example:

This statement sets the timeOutLength to 10 seconds:

set the timeoutLength to 10 * 60

timeoutMouse
Syntax: the timeoutMouse

This property determines whether mouseDown events reset the timeoutLapsed property
to zero. When this property is TRUE, mouseDown events reset the timeoutLapsed
property.

The timeoutMouse property can be tested and set. The default value is TRUE.

Examples:

This statement records the current setting of the timeoutMouse by setting the variable
named timing to the timeoutMouse:

put the timeoutMouse into timing

This statement sets the timeoutMouse property to FALSE. The result is that the
timeoutLapsed property keeps its current value when the mouse button is pressed:

set the timeoutMouse to FALSE

mouseDownScript and mouseUpScript properties

timeoutPlay
Syntax: the timeoutPlay

This property determines whether the timeoutLapsed property is reset to zero when a
movie is played. When timeoutPlay is TRUE, playing a movie resets the timeoutLapsed
property to zero. This allows timeouts to occur only when the animation is paused.

The timeoutPlay property can be tested and set. The default value is FALSE.

Example:

This statement sets the timeoutPlay to TRUE, which has Lingo reset the
timeoutLapsed property to zero when a movie is played:

set the timeoutPlay to true

timeoutScript
Syntax: the timeoutScript

This property determines the Lingo that Director executes a s a primary event handler
when a timeout occurs.

Define a primary event handler for timeouts by setting the timeoutScript to a string of
the appropriate Lingo. The Lingo can be a simple Lingo statement or a calling statement
for a handler. When the event script you've assigned is no longer appropriate, turn it off
with the statement set the timeoutScript to EMPTY.

The timeoutScript property can be tested and set. The default value is EMPTY.

Example:

This statement sets the timeoutScript to a calling script for the handler
timeoutProcedure:

set the timeoutScript to "timeoutProcedure"

timer
Syntax: the timer

This property is a free-running timer that counts time in ticks (60ths of a second). It has
nothing to do with the timeOutScript. It is only for convenience in timing certain events.
The startTimer command zeroes the value of the timer property.

The timer property is useful for setting up delays within handlers. (The delay command
works only in frame scripts.) For example, you can use the timer to synchronize
pictures to a soundtrack by inserting a delay that makes the movie wait until a sound is
finished.

Example:

This handler creates a 1 second delay:

on countTime
 startTimer
 repeat while the timer < 60
 nothing
 end repeat
end countTime

This statement sets the variable startTicks to the current value of the timer:

set the timer = startTicks

lastClick, lastEvent, lastKey, and lastRoll functions; startTimer command

timeScale of member
Syntax: the timeScale of member whichCastmember

This digital video cast member property gives the time unit per second that the digital
video's frames are based on. For example, a QuickTime digital video is measured in
1/600s of a second. This property can be tested but not set.

digitalVideoTimeScale

title of window
Syntax: the title of window whichWindow

This window property is the title of the window specified by whichWindow.

The title of window property can be tested and set.

Example:

This statement makes Action View the title of window X:

set the title of window "X" to "Action View"

titleVisible of window
Syntax: the titleVisible of window whichWindow

This window property specifies whether the window specified by whichWindow displays
the window title in the window's title bar.

The titleVisible of window property can be tested and set.

Example:

This statement displays the title of the window Control Panel by setting the window's
titleVisible property to TRUE:

set the titleVisible of window "Control Panel" to TRUE

to
The word to occurs in a number of Lingo constructs.

char...of, item...of, line...of, and word...of chunk expression keywords; repeat
with, and set...to/set...= commands

top of sprite
Syntax: the top of sprite whichSprite

This sprite property returns the top vertical coordinate of the bounding rectangle of the
sprite specified by whichSprite. The coordinate is the number of pixels from the upper
left corner of the stage.

The top of sprite property can be tested, but not set directly. The top vertical
coordinate of a sprite can be set with the spriteBox command.

Example:

This statement checks whether the top of sprite 3 is above the top of the stage and calls
the handler offTopEdge if it is:

if the top of sprite 3 < 0 then offTopEdge

bottom of sprite, height of sprite, locH left of sprite, of sprite, locV of sprite,
right of sprite, and width of sprite sprite properties; spriteBox command

trace
Syntax: the trace = trueOrFalse

This property specifies whether the movie's trace function is on or off.
When the trace is TRUE (1), the trace function is on.
When the trace is FALSE (0), the trace is off.

Example:

This statement turns the trace function on:

set the trace = TRUE

traceLoad
Syntax: the traceLoad

This property specifies the amount of information that is displayed about cast members
as they are loaded. The possible values for the traceLoad property have the following
effect:

0--Displays no information
1--Displays cast members' names
2--Display cast members' names, number of the current frame, movie name, and file

seek offset.

The traceLoad property can tested and set.

Example:

This statement has the movie display the names of cast members as they are loaded:

set the traceLoad to 1

traceLogFile
Syntax: the traceLogFile

This property specifies the name of the file that the message window display is written
to. You can close the file by setting the traceLogFile property to
EMPTY ("").

Example:

This statement has Lingo write the display of the message window to the file messages:

set the traceLogFile = "Messages"

This statement closes the file that the message window display is being written to:

set the traceLogFile = ""

trackCount(member)
Syntax: trackCount(member whichCastmember)

This digital video cast member property returns the number of tracks on the specified
digital video cast member. This property can be tested but not set.

Example:

This statement determines the number of tracks in the digital video cast member Jazz
Chronicles and displays the answer in the message window:

put trackCount(member "Jazz Chronicle")

trackCount(sprite)
Syntax: trackCount(sprite whichSprite)

This digital video sprite property returns the number of tracks on the specified digital
video sprite. This property can be read but not set.

Example:

This statement determines the number of tracks in the digital video sprite assigned to
channel 10 and displays the answer in the message window:

put trackCount(sprite 10)

trackEnabled
Syntax: trackEnabled(sprite whichSprite, whichTrack)

This digital video sprite property indicates whether the specified track of a digital video is
enabled to play.

 When trackEnabled is TRUE, the specified track is enabled.
 When trackEnabled is FALSE, the specified track is disabled.

This property cannot be set. You must use the setTrackEnabled property

setTrackEnabled sprite property

trackNextKeyTime
Syntax: trackNextKeyTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the key frame that follows the
current time in the specified digital video track. This property can be tested but not set.

Example:

This statement determines the time of the key frame that follows the current time in
track 5 of the digital video assigned to sprite channel 15 and displays the result in the
message window:

put trackNextKeyTime(sprite 15, 5)

trackNextSampleTime
Syntax: trackNextSampleTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the next sample that follows the
digital video's current time. It is useful for locating text tracks in a digital video. This
property can be tested but not set.

Example:

This statement determines the time of the next sample that follows the current time in
track 5 of the digital video assigned to sprite 15:

put trackNextSampleTime(sprite 15, 5)

trackPreviousKeyTime
Syntax: trackPreviousKeyTime(sprite whichSprite, whichTrack)

This digital video sprite property reports the time of the prior key frame that precedes
the current time. This property can be tested but not set.

Example:

This statement determines the time of the key frame in track 5 that precedes the current
time in the digital video sprite assigned to channel 15 and displays the result in the
message window:

put previousKeyTime(sprite 15, 5)

trackPreviousSampleTime
Syntax: trackPreviousSampleTime(sprite whichSprite, whichTrack)

This digital video sprite property indicates the time of the sample preceding the digital
video's current time. It is useful for locating text tracks in a digital video. This property
can be tested but not set.

Example:

This statement determines the time of the sample in track 5 that precedes the current
time in the digital video sprite assigned to channel 15 and displays the result in the
message window:

put trackPreviousSampleTime(sprite 15, 5)

trackStartTime(member)
Syntax: trackStartTime(member whichCastMember, whichTrack)

This digital video cast member property gives the start time of the specified track of the
specified digital video cast member. It can be tested but not set.

Example:

This statement determines the start time of track 5 in the digital video cast member Jazz
Chronicle and displays the result in the message window:

put trackStartTime(member "Jazz Chronicle", 5)

trackStartTime(sprite)
 Syntax: trackStartTime(sprite whichSprite, whichTrack)

This sprite property sets the starting time of a digital video movie in the specified sprite
channel. The value of trackStartTime is measured in ticks.

When a digital video movie is played, trackStartTime determines where playback
begins.

Example:

In the message window, this statement tells you when track 5 in sprite channel 10 starts
playing -- at 120 ticks (2 seconds) into the track:

put trackStartTime(sprite 10, 5)
-- 120

duration of member property; movieRate of sprite and movieTime of sprite
sprite properties

trackStopTime(member)
Syntax: trackStopTime(member whichCastmember, whichTrack)

This digital video cast member property gives the stop time of the specified track of the
specified digital video cast member. It can be tested but not set.

Example:

This statement determines the stop time of track 5 in the digital video cast member Jazz
Chronicle and displays the result in the message window:

put trackStopTime(member "Jazz Chronicle", 5)

trackStopTime(sprite)
Syntax: trackStopTime(sprite, whichSprite, whichTrack)

This digital video sprite property gives the stop time of the specified track of the
specified digital video sprite. It can be tested but not set.

When a digital video movie is played, the trackStopTime is where playback halts or
loops if the loop property is turned on.

Example:

This statement determines the stop time of track 5 in the digital video assigned to sprite
6 and displays the result in the message window:

put trackStopTime(sprite 6, 5)

movieRate of sprite, movieTime of sprite, and trackStartTime (member)
properties

trackText
Syntax: trackText(sprite whichSprite, whichTrack)

This digital video sprite property gives the text that is at the current time in the specified
track of the digital video. The result is a string value, which can be up to 32k long. This
property applies to text tracks only. It can be tested but not set.

Example:

This statement assigns the text at the current time in track 5 of the digital video
assigned to sprite 20 to the field cast member Archives:

put trackText(sprite 20, 5) into member "Archives"

trackType(member)
Syntax: trackType (member whichCastmember, whichTrack)

This digital video cast member property tells which type of media is in the specified track
of the specified cast member. Possible values are #video, #sound, #text, #music. This
property can be tested but not set.

Example:

The following handler checks whether track 5 of digital video cast member Today's News
is a text track and runs the handler textFormat if it is:

on checkForText
 if trackType(member "Today's News", 5) = #text ¬
 then textFormat
end

trackType(sprite)
Syntax: trackType(sprite whichSprite, whichTrack)

This digital video sprite property gives the type of media in the specified track of the
specified sprite. Possible values are #video, #sound, #text, and #music. This property
can be tested but not set.

Example:

The following handler checks whether track 5 of the digital video sprite assigned to
channel 10 is a text track and runs the handler textFormat if it is:

on checkForText
 if the trackType(sprite 10, 5) = #text ¬
 then textFormat
end

trails of sprite
Syntax: the trails of sprite whichSprite

This property turns the trails ink effect on and off for the sprite specified by whichSprite.
In order to set this property, the sprite must have the puppetSprite property set to
TRUE before setting the trails property. Set the trails to 0 to turn trails off; set the
trails to 1 to turn trails on.

To erase trails:
Animate another sprite across these pixels.
Use a transition.

Example:

This statement sets the trails on for sprite 7:

set the trails of sprite 7 to 1

directToStage of member cast member property

transitionType of member
Syntax: the transitionType of member whichCastmember

This transition cast member property determines a transition's type, which is given as a
specific number. The possible values are the same as the code numbers assigned to
transitions for the puppetTransition command.

Example:

This statement sets the type of transition cast member 3 to 51, which is a pixel dissolve
cast member:

set the transitionType of member 3 to 51

TRUE
Syntax: TRUE

This logical constant represents the value of a logically true expression, such as 2 < 3. It
has a numerical value of 1.

Example:

This statement turns on the soundEnabled property by setting it to TRUE:

set the soundEnabled to TRUE

FALSE logical constant

type of member
Syntax: the type of member whichCastmember

the type of member whichCastmember ¬
of castLib whichCast

This cast member property indicates the specified cast member's type. This property
replaces castType, which appeared in earlier versions of Director.

The type of member can be one of the following values:

#bitmap #picture
#button #richText
#digitalVideo #script
#field #shape
#filmLoop #sound
#movie #transition
#palette

You can also define custom cast member types for custom cast members.

The type cast member property can be tested but not set.

Example:

The following handler checks whether the cast member Today's News is a field cast
member and runs the handler fieldFormat if it is:

on checkFormat
 if the type of member "Today's News" = #field ¬
 then fieldFormat
end

type of sprite
Syntax: the type of sprite

This sprite property lets you clear sprite channels during score recording by setting the
type of sprite value for that sprite to 0. In earlier versions of Director, this sprite property
determined the type of the sprite specified by whichSprite.

The type of sprite property can be tested and set.

Examples:

This statement clears sprite channel 1 when issued during a score recording session:

set the type of sprite 1 to 0

union rect
Syntax: union rect rect1, rect2

This function returns the smallest rectangle that encloses the two rectangles rect1 and
rect2.

Example:

put union (rect (0, 0, 10, 10), ¬
rect (15, 15, 20, 20))
-- rect (0, 0, 20, 20)

map and rect functions

unLoad
Syntax: unLoad

unLoad theFrameNum
unLoad fromFrameNum, toFrameNum

This command clears the cast members used in a specified frame from memory. When
used without an argument, the unLoad command clears the cast members in all the
frames of a movie from memory--except any being used in the current frame.

When used with one argument, theFrameNum, the unLoad command clears from
memory the cast members in that frame. Director automatically unloads the least
recently used cast members to accommodate preLoad commands or normal cast
loading.

When used with two arguments, fromFrameNum and toFrameNum, the unLoad command
unloads all cast members in the range specified. You can specify a range of frames by
frame numbers or frame labels.

Example:

This statement clears the cast members used in frame 10 from memory:

unLoad 10

This statement clears the cast members used from the frame labeled first to the frame
labeled last:

unLoad "first","last"

preLoad, preLoadMember, and unloadMember commands; purgePriority of
member property

unLoadMember
Syntax: unLoadMember member whichCastmember

unLoadMember member whichCastmember of castLib whichCast

unLoadMember member fromCastName, toCastName

This command clears the specified cast members from memory. When used without an
argument, unLoadMember causes all cast members in a movie to be cleared from
memory--except for any being used in the current frame.

When used with one argument, whichCastmember, the unLoadMember command clears
from memory the cast member name or number that you specify.

When used with two arguments, fromCastName and toCastName, the unLoadMember
command unloads all cast members in the range specified.

Example:

This statement clears the cast member Screen 1:

unLoadMember member "Screen1"

This statement clears from memory all cast members from cast member 11 to cast
member 18:

unLoadMember 11, 18

preLoad and preLoadMember commands; purgePriority of member property

unloadMovie
Syntax: unloadMovie whichMovie

This command removes the specified movie from memory. This can be useful for
prioritizing which movies to unload when memory is low.

Example:

This statement checks whether the largest contiguous block of free memory is less than
100K and unloads the movie Parsifal if it is:

if the freeBlock < 100 * 1024 then unLoadMovie "Parsifal"

updateFrame
Syntax: updateFrame

This command enters the changes that have been made to the current frame and steps
to the next frame. Any objects that were already in the frame when the update session
started remain in the frame. You must issue an updateFrame command for each frame
that you are updating.

This command works during a score generation session only.

Example:

When used in the following handler, the updateFrame command enters the changes that
have been made to the current frame and steps to the next frame each time Lingo
reaches the end of the repeat loop. The number of frames is determined by the
argument numberOfFrames.

on animBall numberOfFrames
 beginRecording
 set horizontal = 0
 set vertical = 300
 repeat with i = 1 to numberOfFrames
 go to frame i
 set the memberNum of sprite 20 to ¬
 the number of member "Ball"
 set the locH of sprite 20 to horizontal
 set the locV of sprite 20 to vertical
 set the type of sprite 20 to 1
 set the foreColor of sprite 20 to 255
 set horizontal = horizontal + 3
 set vertical = vertical + 2
 updateFrame
 end repeat
 endRecording
end

 beginRecording, endRecording, parent-child scripts

updateLock
Syntax: the updateLock

This movie property determines whether the stage is updated during score recording
 When the updateLock is TRUE, the stage is not updated.
 When the updateLock is FALSE, the stage is updated.

It is important that the updateLock is set to FALSE before updating the score. You can
also use the updateLock to prevent unintentional score updating when leaving a frame,
such as when temporarily leaving a frame to examine properties in another frame.

You can keep the stage display constant during a score recording session by setting the
updateLock movie property to TRUE before Lingo updates the score. If the updateLock is
FALSE, the stage updates to show a new frame each time the frame is entered by the
updateLock command. If the updateLock is TRUE, the stage doesn't change as new
frames are generated.

updateMovieEnabled
Syntax: the updateMovieEnabled

This property specifies whether changes made to the current movie are automatically
saved when the movie branches to another movie.

When the updateMovieEnabled property is TRUE, changes to the movie are
automatically saved when the movie branches to another movie.

When the updateMovieEnabled property is FALSE, changes to the movie are not
automatically saved when the movie branches to another movie.

The default value is FALSE.

Example:

This statement has Director save changes to the current movie whenever the movie
branches to another movie.

set the updateMovieEnabled = TRUE

updateStage
Syntax: updateStage

This command redraws the stage immediately. Normally the stage is updated only
between frames, but the updateStage command updates the stage any time the
command is executed from a handler or method.

The updateStage command is useful for creating animation within one frame, which is
common when animating puppets.

Do not use updateStage with the perFrameHook property. Otherwise, unexpected results
could occur.

Example:

This handler makes the sprite specified by whichSprite a puppet sprite, changes the
sprite's horizontal and vertical locations, and redraws the stage so that the sprite
appears in the new location:

on moveRight whichSprite, howFar
 puppetSprite whichSprite, TRUE
 set the locH of sprite whichSprite ¬
 to the locH of sprite whichSprite + howFar
 updateStage
end moveRight

value
Syntax: value(string)

This function returns the numerical value of a string. This is useful when making use of a
numerical string that the user has typed into a field cast member or data from Xtras and
XObjects that return numerical strings.

Examples:

This statement displays the numerical value of the string "the sqrt of" && "2.0":

put value("the sqrt of" && "2.0")

The result is 1.4142.

This statement displays the numerical value of the string "penny":

put value("penny")

The resulting display in the message window is <VOID>, because the word penny has no
numerical value.

string function

version
Syntax: version

This system variable contains the version string for Macromedia Director. The same
string appears the Finder's Get Info dialog box.

Example:

This statement displays the version of Macromedia Director in the message window:

put version
-- "5.0"

video of member
Syntax: the video of member whichCastmember

This digital video cast member property enables or disables playing the specified digital
video cast member.

When the video of member is TRUE (1), the digital video is enabled.
When the video of member is FALSE (0), the digital video is disabled.

Example:

This statement turns off the video associated with the cast member Interview:

set the video of member "Interview" to FALSE

videoForWindowsPresent
Syntax: the videoForWindowsPresent

This movie property indicates whether Video for Windows is present on the computer. It
can be tested but not set.

Example:

This statement checks whether Video for Windows is missing and has the playback head
go the marker Alternate Scene if it isn't:

if the videForWindows = FALSE then go to "Alternate Scene"

visible of sprite
Syntax: the visible of sprite whichSprite

This sprite property determines whether the sprite specified by whichSprite is visible.
When the visible of sprite property is TRUE, the sprite is visible.
When the visible of sprite property is FALSE, the sprite is not visible.

The visible of sprite property can be tested and set.

Example:

This statement makes sprite 8 visible:

set the visible of sprite 8 to TRUE

visible of window
Syntax: the visible of window whichWindow

This window property determines whether the window specified by whichWindow is
visible.

When the visible of window property is TRUE, the window is visible.
When the visible of window property is FALSE, the window is not visible.

The visible of window property can be tested and set.

Example:

This statement makes the window Control Panel visible:

set the visible of window "Control Panel" to TRUE

voidP
Syntax: voidP(variableName)

This property specifies whether the variable specified by variableName has been given
an initial value.

When the voidP property is TRUE, the variable has not been given an initial value.
When the voidP property is FALSE, the variable has been given an initial value.

The voidP property can be tested but not set.

Example:

This statement checks whether the variable answer has been given an initial value:

put voidP (answer)

volume of sound
Syntax: the volume of sound whichChannel

This sound property determines the volume of the sound channel specified by
whichChannel. Sound channels are numbered 1, 2, 3, 1 and 2 are the channels that
appear in the score.

The value of the volume of sound property ranges from 0 (silent) to 255 (maximum
volume).

The lower the value of the volume of sound, the more static or noise you're likely to
hear. Using the soundLevel may produce less noise, although it offers less control.

Example:

This statement sets the volume of sound channel 2 to 130, which is a medium setting:

set the volume of sound 2 to 130

fadeIn and fadeOut commands; soundEnabled and soundLevel properties

volume of sprite
Syntax: the volume of sprite whichSprite

This property can be used to control the volume of a digital video movie cast member.
You can use a cast name or number. The values for volume range from -256 to 256.
Values of zero or less are silent.

Example:

This statement sets the volume of the QuickTime movie playing in sprite channel 7 to
256, which is the maximum sound volume:

set the volume of sprite 7 to 256

soundLevel property

width of member
Syntax: the width of member whichCastMember

This cast member property determines the width in pixels of the cast member specified
by whichCastMember. The width of member applies only to bitmap and shape cast
members. It does not affect field or button cast members.

The width of member property can be tested, but not set.

Example:

This statement assigns the width of member 50 to the variable height:

put the width of member 50 into height

height of member property

width of sprite
Syntax: the width of sprite whichSprite

This sprite property determines the horizontal size in pixels of the sprite specified by
whichSprite. The width applies only to bitmap and shape cast members. It does not
affect field or button cast members.

The width of sprite property can be tested and set.

Setting this property has no effect on bitmap sprites unless the sprite's stretch of
sprite property is set to TRUE.

When you set this property within a script while the playback head is not moving, be sure
to use the updateStage command to redraw the stage. When you are changing several
sprite properties--or several sprites--you have to use only one updateStage command at
the end of all the changes.

Examples:

This statement sets the width of sprite 10 to 26 pixels:

set the width of sprite 10 to 26

This statement assigns the width of sprite number i + 1 to the variable howWide:

put the width of sprite (i + 1) into howWide

height of sprite and stretch of sprite sprite properties; spriteBox command

window
 Syntax: window whichWindow

This keyword refers to the movie window--a window that contains a Director movie--
specified by whichWindow.

Windows that play movies are useful for creating floating palettes, separate control
panels, and windows of different shapes. By using windows that play movies, you can
have several movies open at once and allow them to interact.

Examples:

This statement opens the window Control Panel:

open window "Control Panel"

This statement moves the window Control Panel to the front:

moveToFront window "Control Panel"

close window, moveToBack, moveToFront, and open window commands

windowList
Syntax: the windowList

This property is a list of all the known movie windows.

Examples:

This statement displays all the known movie windows in the message window:

put the windowList

This statement clears the windowList:

set the windowList = []

windowPresent

Syntax: windowPresent("windowName")

This function tells whether the object specified by windowName is running as a movie in
a window. The windowName argument must be the window's name as it appears in the
windowList property.

 When windowPresent returns TRUE (1), the object is a movie in a window.
 When windowPresent returns FALSE (0), the object isn't a movie in a window.

Example:

This statement tests whether the object myWindow is a movie in a window and displays
the result in the message window:

put windowPresent(myWindow)

windowType of window
Syntax: the windowType of window whichWindow

This window property specifies the display style of the window specified by
whichWindow. The possible values are the following:

Numbers 0 to 16, which specifies the window types that correspond to the Macintosh
Standard Tool Box numbers.

Number 49 specifies a floating palette windoid.

In Windows, these numbers create windows with the same functionality but a Windows
appearance. Other values for the windowType are possible, but use them with caution,
because some modal windows can only be exited by restarting the computer.

Example:

This statement sets the value of the display style of the window Control Panel to 8:

set the windowType of window "Control Panel" to 8

word...of
Syntax: word whichWord of chunkExpression

word firstWord to lastWord of chunkExpression

This chunk expression keyword specifies a word or a range of words in a chunk
expression. A word chunk is any sequence of characters delimited by spaces. (Any non-
visible character--such as a Tab or Enter--is considered a space.)

The expressions whichWord, firstWord, and lastWord must evaluate to integers that
specify a word in the chunk.

Chunk expressions refer to any character, word, item, or line in any source of characters.
Sources of characters include fields (field cast members) and variables that hold strings.

Example:

These statements set the variable named animalList to the string "fox dog cat" and
then insert the word elk before the second word of the list:

put "fox dog cat" into animalList

put "elk" before word 2 of animalList

The result is the list "fox elk dog cat".

This statement has the message window display the fifth word of the same string:

put word 5 of "fox elk dog cat"

Because there is no fifth word in this string, the message window displays two quote
marks (""), which indicate an empty string.

char...of, line...of , and item...of chunk expression keywords; the number of
words in in chunk function

wordWrap of member
Syntax: the wordWrap of member whichCastmember

This field cast member property controls line wrapping.
 When TRUE, the wordWrap of member allows line wrapping.

When FALSE, the wordWrap of member prevents line wrapping.

Example:

This statement turns the line wrapping off for the field cast member Rokujo:

set the wordWrap of member "Rokujo" to FALSE

xFactoryList
Syntax: xFactoryList(whichLibrary)

This function returns a string list of all the currently available Xtras and XObjects in the
XLibrary file specified by the string whichLibrary. The XLibrary must have been
previously opened with the openXlib command. If you specify EMPTY for whichLibrary,
this function returns a list of all Xtras and XObjects in all open XLibraries.

The Xtras and XObjects appear one per line in the returned string list. Each line ends with
an Enter character.

Example:

This statement displays the Xtras and XObjects available in the Xlibrary named AppleCD
XObj:

put xfactoryList("AppleCD XObj")"

This statement displays the first line of the list of all available Xtras and XObjects in all
open Xlibraries:

put line 1 of xfactoryList(EMPTY)

Using Xtras

xtra
Syntax: xtra whichXtra

This function returns an instance of the specified Xtra.

Example:

This statement uses the new function to create a new instance of the Xtra Math Whiz and
assigns it to the variable tool:

set tool = new(xtra "Math Whiz")

Using Xtras

xtras
number of xtras

zoomBox
Syntax: zoomBox startSprite, endSprite [, delayTicks]

This command creates a zooming effect, like the expanding windows in the Finder. The
zoom effect starts at the bounding rectangle of startSprite and finishes at the bounding
rectangle of endSprite. zoomBox uses the following logic when executing:

1--Looks for endSprite in the current frame, otherwise,
2--Looks for endSprite in the next frame.

Note, however, that the zoomBox command does not work for an endSprite in the same
channel as startSprite.

delayTicks is the delay in ticks between each movement of the zoom rectangles. If
delayTicks is not specified, the delay is 1.

Example:

This statement creates a zoom effect between sprites 7 and 3:

zoomBox 7, 3

File menu
The File menu contains commands for creating Director movies and casts, opening and
saving movies, importing and exporting files, creating projectors, and printing.

Click the name of a menu command for more information:

New Movie Page Setup
New Cast Print
Open Send Mail
Close Window Preferences: General
Save Preferences: Score
Save As Preferences: Cast
Save and Compact Preferences: Paint
Save All Exit
Revert
Import
Export
Create Projector

New Movie command (File menu) Control+N

The New Movie command opens a new, untitled movie. Name the untitled movie by
choosing Save from the File menu.

New Cast command (File menu) Control+Alt+N

The New Cast command creates new internal and external casts.

A cast is a database of graphics, sounds, color palettes, Lingo scripts, buttons,
transitions, digital video movies, and text used in a movie.

An internal cast is the cast automatically created when you create a new movie. The
internal cast is stored inside the movie file. When you create a projector, internal casts
are stored inside the projector file.

External casts are casts stored outside of the movie file and can be shared between
movies.

To create a new cast, enter a name for the new cast, choose either Internal or External,
and then click Create.

If you choose External, the Used in Current Movie checkbox is checked by default. Click
the checkbox if you don't want the external cast used in the current movie.

Understanding internal and external casts
Cast window
Cast Properties

Open command (File menu) Control+O

The Open command opens an existing Director movie or external cast. When you choose
Open, a directory dialog box appears.

The dialog box only lists movies and casts created by the Macintosh version of Director,
or movies with a .DIR extension created with the Windows version of Director.

When you open a movie with linked external casts, Director opens the external casts as
well. If it cannot find them in the specified location, it prompts you to choose a new
location.

Update Movies command (Xtras menu)

Close Window command (File menu) Control+F4

This command closes the current window.

Save command (File menu) Control+S

The Save command saves the current movie, replaces the previous version, and saves all
casts (internal and external) linked to the movie.

If an external cast is the front-most window, then the external cast is saved, not the
movie.

The first time you save a movie with linked external casts, Director prompts you to enter
a name and location for each cast.

To change the movie's color depth, change the monitor's color depth before saving the
movie.

Save As command (File menu)
Save All command (File menu)
Update Movies command (Xtras menu)
Understanding internal and external casts

Save As command (File menu) Control+Shift+S

Use Save As to name and save a movie, save the movie under a different name, or to
save it to a different disk. Enter the new name of the movie to name it, or click the Drive
button to save to a different drive.

The first time you save a movie with linked external casts, Director prompts you to enter
a name and location for each cast.

To change the movie's color depth, change the monitor's color depth before saving the
movie.

Save All command (File menu)
Save and Compact (File menu)
Update Movies command (Xtras menu)
Understanding internal and external casts

Save and Compact (File menu) Control+Option+S

Use save and compact to save the movie so that it is optimized for playback. Since this
operation reorders the cast and compacts the file, it takes longer, especially if you are
saving a very large file. However, this command produces smaller and more efficient
movies.

Save As command (File menu)
Save All command (File menu)
Update Movies command (Xtras menu)
Understanding internal and external casts

Save All command (File menu)
Use Save All to save the movie and all external cast files, linked and unlinked. If the
movie or any casts have not been saved before, a directory appears.

Save As command (File menu)
Save and Compact (File menu)
Understanding internal and external casts

Revert command (File menu)
The Revert command opens the last saved version of the current movie. This command
is dimmed if you have not made any changes or if you are working on a new untitled
movie that you have not yet saved.

Import command (File menu) Control+R

When you choose Import, Director opens a cast window and displays a dialog box so you
can choose the file you want to import.

Note: Director 5.0 for Windows supports the following file types in addition to those also
supported by Director for Macintosh: JPEG, CompuServe GIF, TIFF, EPS, Photo CD,
Windows metafiles, and FCC and FCI.

Dialog box options
Linked gives you the option to create a link to a PICT file, AIFF sound file, or a

Director movie when you import rather than copying the contents of the file into your movie.
As PICT option is only available when you import a Macintosh PICT file. If checked,

the image is imported and pasted into the cast as a PICT cast member. If not checked,
Director converts the imported image to a bitmapped cast member.

Note: Digital video movies are always linked.
Add and Add All buttons let you build a list of multiple files to import.
Options provides further options specific to the type of file you're importing.

Linking to a file
Importing text
Importing PICT files
Importing Director movies
Importing digital video movies

Image Options
If you import a bitmap with a color depth or color palette different than the current
movie, the Image Options dialog box appears. You can choose to import the bitmap at its
original color depth or at the stage color depth. You also have the choice of importing the
image's color palette, or remapping the image's colors to a palette already in the movie.

In many cases, it's easiest to change the image's color depth to the depth of the stage, and
remap the image to the color palette used in the rest of the movie. If you are not concerned
with the exact colors that display on stage, remap everything to the system palette.

Dialog box options

Color Depth selects the color depth you want for the cast member.
Image specifies the color depth of the current image. Select this option if you want to

import the image at this color depth.
Stage specifies the color depth of the current stage. Select this option if you want to

import the file at this color depth.

Palette specifies options for importing 2-, 4-, or 8-bit images.
Import specifies importing the image with its color palette.
Remap To makes Director replace the image's colors with the    most similar solid

colors in palette you select from the pop-up menu.
Dither blends the colors in the new palette to approximate the original colors in the

graphic..

Same Settings for Remaining Images applies the current settings to all the
remaining files you selected for importing.

Note: If you change 16-, 24-, or 32-bit cast members to 8-bits or less, you need to remap
them to an existing color palette.

Understanding color depth
Understanding color palettes

Export command (File menu)            Control+Shift+R

Exports frames of Director movies from Director so you can save images as stills, or
create digital video movies. You can choose to export frames of movies as AVI and PICT
files.

Dialog box options

Export options determine which frames to export:
Current Frame exports the current frame on the stage. This is the default.
Selected Frames exports the selected frames in the score window.
All exports all frames.
Frame Range exports only the range of frames that begin and end with the frame

numbers you enter in the Begin: and End: boxes.
Include:

Every Frame exports all frames in the selected range.
One in Every N Frames exports only the frames at the interval you specify in the box.
Frames With Markers exports frames with markers set in the score window.
Frames with Artwork Changes in Channel exports frames only when a cast member

changes in the channel you specify in the box.

Format specifies the exported file format from the pop-up menu. File formats you can
export are Video for Windows (AVI) and DIB (Device Independent Bitmap).

Video for Windows Options is dimmed unless you choose Video for Windows from the
Format pop-up. Specify the export frames per second (fps) interval in the box.

When you click Export, a directory dialog box appears, allowing you to name the file. If
you are saving in AVI format, only one file will be created. If you are saving in DIB format,
Director automatically creates one file for each frame, attaching the corresponding frame
number to each file. For example, if the name of the exported file is "Myfile", Frame 1 will
be exported to a file named "Myfi0001.dib for Windows 3.1 and NT or "Myfile0001" for
Windows '95.

Create Projector command (File menu)
The Create Projector command creates a play-only version of a Director movie, called a
projector. Use the Create Projector dialog box to add movies and external casts from the
Source Folder to the projector's play list. See Creating projectors

Click a dialog box option for more information:

Movies created with previous versions of Director are not listed in the dialog box. To include
movies that were created with a previous version of Director, you must first open the movies
in the current version of Director and save them, or use the Update Movies command to
convert them.

If a movie is open when you choose this command, Director closes the current movie.

Add moves the selected source movie to the projector's play list.

Add All adds all movies in the current folder to the play list.

Move Up and Move Down moves a selected movie higher up or further down in the
play list.

You can include more than one interactive movie in the projector file list. You can also
use Lingo to "go to" or "play" files while running a projector under Lingo control.

Remove takes the selected movie off the play list.

Create assembles the projector file. Click Done to dismiss the dialog box.

Options opens the Projector Options dialog box that specifies additional preferences
for creating the projector.

Projector Options dialog box
The Projector Options dialog box specifies additional preferences for creating the
projector.

Click a dialog box option for more information:

Note:    These settings override any movie preferences you set in Movie Properties and
apply to all movies in the projector.

Create for--Select the type of systems you wish to support:
Windows 95 and NT allows the projector to run on all Windows 32-bit operating

systems.
Windows 3.1 allows the projector to run on Windows 3.1. A Windows 3.1 projector will

also run on Windows 95 and NT.

Playback:
Play Every Movie specifies that the projector plays all movies in the play list.

Otherwise, the projector only plays the first movie in the play list (unless other movies are
called by Lingo from the first movie). In a projector with Play Every Movie checked, pressing
Control+period will go to the next movie and Control+Q will quit.

Animate in Background allows the movie to continue playing if a user clicks outside
the stage. This is useful if you are using Apple Events. If not checked, the movie stops
playing if the user clicks outside the stage.

Options:
Full Screen displays the movie full screen, placing the menu bar (if there is one) at

the top of the screen and hiding all of the desktop. If there's a menu, it overlays the top of
the stage.

In a Window displays the movie in a normal window, without taking over the screen.
The window is not resizeable.

Show Title Bar is available only if In a Window is selected. If checked, the window
where the movie appears has a title bar. The window is only moveable if it has a title bar.

Stage Size:
Use Movie Settings uses the same stage size of the new movie or matches the size of

the current movie.
Match First Movie repositions and resizes based on the first movie in the projector.
Center centers the stage on the screen, which is useful if the stage size is smaller

than the screen size. Otherwise, the movie plays using its original stage position. In
Windows, projectors are always centered.

Media:
Duplicate Cast Members for Faster Loading makes copies of cast members in the

order they are used in the movie. This makes the file larger, but improves speed of loading.

Page Setup command (File menu) Control+Shift+P

The Page Setup command offers options for determining how a page is to be printed. The
dialog box that you see depends on the type of printer you use.

Print command (File menu) Control+P

The Print command lets you print your movie in a variety of ways.

Click a dialog box option for more information:

Print lets you choose what part of your movie you want to print. You can print an image
of the stage, the score, all scripts or a range of scripts (movie, cast, score, and sprite
scripts), cast text, cast art, cast thumbnails, and the comments in the markers window.

The Scripts, Cast Text, Cast Art, or Cast Thumbnails print options let you choose from a
range of cast and cast members--internal or external. Information displayed in the print
dialog depends on the selection to be printed.

When you use the Print command, cast members in each frame are merged into a single
image. If you press the Alt key while clicking the Print button, each cast member in a
given frame is imaged as a separate PICT. If you are printing multiple frames on a page,
printing with this option causes shape elements (text, rectangles, lines, and circles) to
print better. However, printing with this option may take much longer.

Frames controls which frames of your movie are printed.
Current Frame prints the frame that is currently on the stage.
Selected prints the frames that are selected in the score.
All Frames prints all the frames in your movie.
Range prints the range of frame entered in the Begin and End boxes.

Include lets you specify which frames to print.
Every Frame is the default setting and prints every frame specified in Range.
One in Every _ Frames prints frames at the interval you specify in the box. For

example, if you type 10, Director prints every 10th frame.
Frames with Markers prints only the frames that have markers in the score window.
Frames with Artwork Changes In Channel prints the frames in which cast members

move or in which new cast members are introduced in the score. Specify the channel in the
box.

Options displays a dialog box that lets you adjust the layout of the items you choose to
print. The image at the left of the dialog box previews the layout options.

Image Size prints your document at 100% or scales it to 50% or 25% size.
Frame Printing Options allows you to print a border around each frame, the frame

number, registration marks, storyboard format, and marker comments associated with each
frame.

Storyboard format checkbox is only available when you select 50%- or 25%-size
images to print.

Date and Filename in Header prints a header on each page. The header consists of
the name of the Director movie and the current date.

Custom Footer prints a footer on each page. Type the footer in the field.

Send Mail (File menu) Control+P

Send Mail mails an open movie, together with any other information you provide, to the
user you specify in a dialog. (The dialog is supplied by the mail-system you have
installed, and may differ between systems.) The command is only enabled when
electronic mail software is installed on your machine under Windows 95 and NT. It is not
supported on Windows 3.1.

General Preferences command (File menu) Control+U

The General Preferences command allows you to modify some of Director's default
settings.

Click a dialog box option for more information:

Stage size specifies the size and location of the stage.
Use Movie Settings sets the stage size to the movie's stage size and location.
Match Current Movie opens the new movie in the stage of the movie that's currently

open.
Center positions the stage in the center of the screen, which is useful if the stage size

is smaller than the screen size. Otherwise, the movie plays using its original stage position.
Animate in Background runs your animation in the background while you are working

with other applications. When you are running animation in the background, the stage
remains on the screen and the active application window appears in front of the stage.

Use Movie Properties on the Modify menu to specify the exact size of the stage.

User Interface
Classic Look (Monochrome) switches to a black and white user interface. Using a

black and white user interface improves performance if you switch color palettes, since
Director doesn't have to update its color user interface to match the colors in the new
palette each time you switch palettes. In addition, working with a black and white user
interface may be less distracting as you work with the color palettes in your movie. For
example, if you are working on an animation that uses multiple palettes and/or color cycling,
using a black and white user interface may be less distracting.

Dialogs Appear At Mouse Position displays dialog boxes at the mouse position. If this
option is not checked, dialog boxes are centered on the monitor that contains the menu bar.

Save Window Positions on Exit saves the positions of all open windows every time
you quit.

Message Window Recompiles Scripts is checked by default. If deselected, scripts
should be manually recompiled using the Recompile All Scripts command before entering
Lingo in the message window.

Show Tooltips is checked by default. Deselect to turn off the definitions that appear
when you hold the pointer over tools.

Text Ruler specifies inches, centimeters, or pixels for the units of measure displayed on
the ruler in the text and field windows.

Memory limits the amount of memory Director uses. Click Limit Memory Size to, and
then enter the number of Kilobytes in the box on the right.

Score Window Preferences command (File menu)
This command controls display options in the score window.

Click a dialog box option for more information:

Display Options determines how the score window will look on screen.
Allow Colored Cells allows you to choose a color for selected cells using the cell color

selector on the left side of the score window. Otherwise, the cell color selector is hidden.
If you've already applied color to cells, unchecking this option hides cell colors but

doesn't remove them. Score window scrolling performance is faster if you hide cell colors.
Magnified Cells enlarges the cells in the score window for better viewing. You can

perform all the regular score operations while the view is magnified.
Playback Head Follows Selection toggles between two ways of selecting frames in the

score. If checked, the playback head travels as you make a selection in the score window.
You can see the selected frames on the stage as you select them. If not checked, your
selection in the score has no effect on the playback head and does not advance the movie
as you make a selection. You might want to turn this option off if the score includes frames
that take a long time to draw, such as frames with blend ink applied to them.

You can temporarily switch this option to its opposite setting by pressing the Alt key
while making a selection in the score window.
Drag and Drop allows you to turn off drag and drop in the score. Pressing the

Spacebar while the score window is open temporarily overrides this setting.

Extended Display Information options let you choose the notation information that
appears in the numbered sprite channels when extended display is on. You can turn
Extended display on with the score window's Display pop-up menu.

Cast Member Type, Motion, Blend displays the cast member type (text, PICT, or
bitmap) and a directional arrow to indicate the cast member's position with respect to the
previous cast member in that channel. It also indicates whether a cast member has a blend
percentage applied to it.

Cast Member Number displays the cast member position number from the cast
window. If the cast member displays its name (as chosen in the Cast Window Preferences
dialog box), then the first few letters of the cast member name are instead displayed.

Ink Mode displays the type of ink applied to the cast member in that cell.
Script Code displays the number of the script associated with that cell or a plus (+)

sign if the script is a cast member script.
X & Y Coordinates show the screen coordinates of the cast member.
Change in X and Y Location indicates the change in X and Y coordinates relative to

the previous cast member in that channel.

Cast Window Preferences command (File menu)
Cast Window Preferences displays a dialog box that lets you control the appearance of
the current cast window. Before you choose Cast Preferences, make sure that the cast
you want to change is active. The title bar displays the name of the cast you are
changing.

Click a dialog box option for more information:

Maximum Visible specifies the maximum number of cast members displayed in the
cast window. Note that this option does not limit the actual number of cast members that
can exist in the cast. If you have a small number of cast members, you can hide the
remaining unused cast positions and make better use of the vertical scroll bar. The
default is 1000.

Row Width determines how many thumbnails are displayed in each row in the cast
window. Eight, Ten, and Twenty specify fixed-row widths that are independent of the
window size; if the cast window is smaller horizontally than the width of the cast row, you
must use the horizontal scroll bar to reveal the rest of the cast. The Fit to Window option
automatically adjusts the number of cast members per row to fit the current width of the
cast window. In this mode, the horizontal scroll bar is disabled, since the entire width of
the cast is always in view. The default is Fit to Window.

Thumbnail Size sets the size of each cast thumbnail image displayed in the cast
window. Thumbnails always maintain the standard 4:3 aspect ratio.

Small--44 x 33 pixels
Medium--56 x 42 pixels (default)
Large--80 x 60 pixels

If thumbnails appear "fuzzy", they were probably created at a small size and are now set
to a larger size. To fix this problem, change the cast window preferences thumbnail
setting to a larger size. Click OK when the alert message asks you if thumbnails should
be regenerated.

Label selects the display format of the cast member ID displayed below each cast
thumbnail image in the cast window. The chosen format is also used in other windows,
whenever a cast ID is displayed. The default is Number:Name.

Number displays cast number in decimal format.
Name displays cast name, if one exists; otherwise displays cast number in decimal

format.
Number:Name displays cast number (in decimal format) and cast name, separated by

a colon, i.e., "340:Snoopy". If a name does not exist, it just displays the cast number in
decimal format. This is the default.

Media Type Icons determines if Director displays an icon in the lower right corner of
each cast member, indicating the cast member's type.

Cast Member Script Icons indicate that a cast member has a script attached to it by
displaying a script indicator in its lower left corner.

Paint Window Preferences command (File menu)
The Paint Window Preferences command allows you to modify the settings of a number
of tools and drawing methods in the paint window.

Click a dialog box option for more information:

Paint window

Brush Tools allows you to set brush tools to remember the last color or ink used.
Remember Color remembers the last color used with a tool and stays selected for the

next time you use the paintbrush or air brush.
Remember Ink remembers the last ink used with a tool and stays selected for the

next time you use the paintbrush or air brush.

Cycling controls the way colors cycle when you draw with cycling ink.
Repeat Sequence causes colors to cycle from foreground to destination and then

repeat foreground to destination.
Reverse Sequence causes colors to cycle from the foreground to the destination color

and then destination to foreground.

Other Line Width allows you to set a thicker line width than the widths available in the
paint window. The width you set will be the width that appears when you draw a line
(after selecting Other in the tool palette line width selector).

Blend Amount sets the opacity of the selected color when using the Blend ink effect in
the paint window. You can vary the blend value between 0 and 100 percent.

Lighten/Darken sets the rate at which artwork changes when you use the Darken or
Lighten effect in the paint window.

Interpolate by determines how colors are used when using smooth, lighten, darken, or
cycle effects.

Color Value ignores the order of the colors in the palette and produces a continuous
blend of the foreground and destination colors.

Palette Location uses all the colors in the palette between the foreground and
destination colors.

Exit command (File menu) Alt+F4

The Exit command exits Director.

Edit menu
The Edit menu contains standard commands for editing.

Click a command for more information:

Undo Find Text
Repeat Find Handler
Cut Find Cast Member
Copy Find Selection
Paste Find Again
Paste Special Replace Again
Clear Exchange Cast Members
Duplicate Edit Cast Member
Select All
Invert Selection

Undo command (Edit menu) Control+Z

Undo reverses your last action. Undo works with most commands you use while writing,
drawing, and animating.

Repeat command (Edit menu) Control+Y

Repeat command repeats your last action. Repeat works with paint effects commands.

If using Photoshop filters to modify cast members, this command repeats the effect of
the last filter used.

Cut command (Edit menu) Control+X

The Cut command removes the selected object from its current location and places it on
the Clipboard. It can then be pasted to another location.

Copy command (Edit menu) Control+C

The Copy command makes a copy of the selected colors, text, art, or sequence of art and
places that copy on the Clipboard.

Paste command (Edit menu) Control+V

The Paste command pastes the contents of the Clipboard in a selected location.

Paste Special command (Edit menu)
Use this command to paste a sequence of sprites at the point on the stage where a
previous sequence ended. When you use this command, Director automatically adjusts
the positions of cast members on the stage so that the first cast member in the pasted
sequence follows the last cast member in the original sequence.

For example, to animate a ball bouncing across the stage with a sequence of five sprites
that describe one bounce, you can use Paste Relative to make the second sequence of
sprites start where the first sequence ended. The effect is that the two sequences are
chained, one after another, in one smooth, continuous motion. This works for any
repetitive sequence of sprites.

When selecting cells in a sequence to be pasted relative to the original sequence, make
sure the same cast member is at the beginning and end of the sequence, and that you
overlap the first cell in the copy with the last cell in the original sequence.

Using OLE Objects in Director, OLE Object command

Clear command (Edit menu)
Clear removes the selected cells or cast members without saving to the Clipboard. When
the score window is active, Clear removes the contents of selected cells. When a cast
window is active, Clear removes selected cast members.

Delete is the keyboard shortcut for this command.

Duplicate command (Edit menu)            Control+D

The Duplicate command duplicates the selected cast member and pastes the duplicate
into the next available position in the cast window.

If the paint, text, digital video, or script window is open, this command duplicates the
selected cast member and places it in the edit window. The name and registration point
of the duplicate is the same as the name and registration point of the original cast
member.

This command cannot be used with a cast member that is part of a shared cast.

This is a quick way to create a series of cast members for frame-by-frame animation.
Duplicate a cast member, change it slightly, duplicate the changed cast member, alter
and duplicate it again, and so on.

If the cast window is front-most, you can select multiple cast members and use this
command to duplicate the entire selection at the same time.

You can also duplicate by Option-dragging selected cast members into empty cast
spaces.

New Window

Select All command (Edit menu) Control+A

Select All highlights all the selectable items in the active window.

Invert Selection command (Edit menu)
When you choose Invert Selection after choosing a color or range of colors in the color
palettes window, your selection is replaced by a new selection, which consists of all the
colors that were not part of your original selection. This command only works when
working with color palettes.

Find Text command (Edit menu) Control+F

Find Text lets you quickly search for and replace text in the text, field, or script windows.
All searches start at the insertion point and work forward.

Click a dialog box option for more information:

Find field specifies the text you want to find. Searching is not case-sensitive:
ThisHandler, thisHandler, and THISHANDLER are all the same for search purposes.

Replace field specifies the replacement text.

Search
Cast Member specifies the cast member to be searched.
Cast specifies whether Director searches Internal or External casts.
All Casts specifies whether Director searches only the current cast member, or

searches all cast members of the same type (either text or script, depending on where you
initiated the search). If checked, Director searches all cast members of the same type,
beginning with the current cast member, and wrapping around to the first cast member if
Wrap-Around Search is checked. If All Cast Members is not checked, Director only searches
the current cast member's text.

Options
Wrap-Around specifies whether or not Director begins the search again once it

reaches the end of the current text. If this option is checked but All Casts is not checked,
Director continues searching from the top of the current text after it reaches the bottom of
the window. If both options are checked, Director searches all cast members of the same
type (either text or script, depending on where you initiated the search), beginning with the
currently selected cast member, and wrapping around to the first cast member of that type
if necessary.

Whole Words Only searches for occurrences of the specified whole word.

Find Handler command (Edit menu) Control+Shift+;

Find Handler lets you view the names of all handlers in the current script or movie. You
can also use this command to open the script window that contains the selected handler.

To find a handler:

Choose Find Handler from the Edit menu. Click options in the dialog box to display
different lists of handlers. Select a handler and click OK to open the script window in
which the handler is defined.

Dialog box options

Search determines what Script will be searched.
The Current Script Only lists the handlers defined in the current script and is only

available if you choose Find Handler from a script window.

View by determines how handlers will be listed.
Name lists handlers alphabetically, by name.
Script Order lists handlers in the order in which they appear in their respective

scripts. Handlers from different scripts are listed in the order in which the scripts appear in
the cast window.

Find Cast Member command (Edit menu) Control+;

Use this command to find cast members by name, by type, by color palette, or by their
use in the current score. This command is useful for identifying cast members to clear
from your movie or to remap to another palette.

To find cast members:

Select the cast you want to search from and then choose one of the search options.
Select a cast member in the list and click Select (or double-click a cast member) to

close the dialog box and select the cast member in the cast.
Click Select All to close the dialog box and select all matching cast members in the

cast.

To quickly select cast members by name, type the first few letters of the name, and the
dialog box automatically displays a list of cast members whose name begins with the
letters you type.

Click a dialog box option for more information:

Cast selects the cast to search.

Name searches for all cast members with names that begin with the characters you
enter. Click Name and enter the cast member name you want to search for in the field to
the right.

Type finds all the cast members of a particular type. Select Type and choose an option
from the menu.

Palette searches for all cast members using a certain palette.

Usage finds all cast members not used in the score. Keep in mind, however, that a cast
member that is not used in the score may still be used in a Lingo command.

View by determines how cast members are displayed on the list.
Name views cast members by name.
Number views by number.

Select button selects the cast member highlighted in the Find Cast Member dialog box.

Select All button selects all the cast members in the Find Cast Member dialog box.

Find Selection command (Edit menu) Control+H

Select a cast member in either the cast window or the score and use Find Selection to
find the next occurrence of that cast member in the score.

Find Again repeats the previous find, initiated in either the cast or score window.

Find Again command (Edit menu) Control+Alt+F

Find Again finds the next occurrence of the text you entered in the Find field in the Find
dialog box.

Replace Again command (Edit menu) Control+Alt+E

Choose Replace Again to replace the next instance of the text you entered in the Find
field in the Find Text dialog box.

Exchange Cast Members command (Edit menu) Control+E

The Exchange Cast Members command replaces the cast member selected on the stage
or in the score with the cast member selected in the cast window. When you use
Exchange Cast Members, the registration point of the new cast member lines up with the
registration point of the old cast member.

Edit Cast Member command (Edit menu)
This command is only available if there is a selection in the cast window. It displays the
appropriate editing window for the selected cast member. For example, if you select a
bitmap cast member and choose this command, Director opens the paint window for the
selected cast member. For cast members that don't have editing windows (e.g., shape,
PICT, sound, movie, and film loop cast members) Director displays the cast member's
Cast Member Properties dialog box.

Shortcut:    Double-click a cast member in the cast window

View menu
Click a command or submenu for more information:

Display
Marker Next
Marker Previous
Zoom In
Zoom Out
Zoom 100, 200, 400, 800%
Panel
Rulers
Grid: Show
Grid: Snap To
Grid: Settings
Onion Skin

Depending on which window you have in front, the Panel command name changes (such
as Paint Tools or Text Toolbar).

Display command (View menu)
Choose the type of display for the score window.

 Display pop-up menu (score window)

Marker next command (View menu) Control+right

Choose an option to move to the next marker in the score, or select the name of a
marker to move there directly.

Marker previous command (View menu) Control+left

Choose an option to move to the previous marker in the score, or select the name of a
marker to move there directly.

Zoom submenu (View menu)

Zoom in    Control+Add

Choose zoom in to reduce size of the paint window. You can zoom between 100% to
800%.

When you zoom in, a smaller representation of the 100% size artwork appears in the
upper right corner of the paint window. To return to normal size, click inside the smaller
window or choose Zoom Out.

Zoom out    Control+Subtract

Choose zoom out to enlarge the paint window. You can zoom from 100% to 800%.

To return to normal size, click inside the smaller window or choose Zoom In.

Zoom 100, 200, 400, 800%

Choose one of these to view the paint window at a specific scale.

You can also magnify your artwork by double-clicking the pencil tool in the paint
window's tool palette, or by Control-clicking the area you want to enlarge with any of the
paint tools.

Panel command (View menu)
Depending on which window you have in front, the Panel command name changes (such
as Paint Tools or Text Toolbar).

Choose Panel from the View menu to show or hide tool panels in the text, paint, color
palette, and script windows.

Ruler command (View menu)
Choose Ruler from the View menu to show or hide rulers in the paint or text windows.

The default setting for the unit of measure is inches. You can change the setting for text
to picas, centimeters, or pixels using General Preferences in the File menu.

In the paint window, change the unit of measure by clicking the upper left corner where
the vertical and horizontal rulers meet. The zero point of the rulers can be moved to a
new location by dragging from the corner of the rulers. The current position of the
pointer is indicated by dotted lines in the rulers.

Show Grid command (View menu) Command+Shift+Alt+G

The commands on the Grid submenu control the grid on the stage. Use the grid to align
and place sprites on the stage.

Show Grid shows or hides the grid on the stage. A checkmark indicates the grid is
displayed.

Snap to Grid
Grid Settings

Snap to Grid command (View menu) Control+Option-G

The commands on the Grid submenu control the grid on the stage. Use the grid to align
and place sprites on the stage.

Snap To Grid makes all sprites move to the nearest grid line when you move them. A
check mark indicates the option is on.

Show Grid
Grid Settings
Align

Grid Settings command (View menu)
The commands on the Grid submenu control the grid on the stage. Use the grid to align
and place sprites on the stage.

Dialog box options

Grid Settings defines the settings for the grid. In the Grid Settings dialog box you can
define the following settings:

Spacing--Enter the number of pixels between the vertical and horizontal grid
markings.

Display--Choose either lines or dots.
Color--Select a color for the grid from the pop-up color palette.

Snap to Grid
Show Grid

Onion Skin command (View menu)
Onion skinning allows you to view several cast members blended into an image in the
paint window. The blended-in cast members serve as a reference while you paint a new
cast member.

To activate onion skinning, open the paint window, and choose Onion Skin from the View
menu. The onion skin toolbar appears. Click the Toggle Onion Skin button in the toolbar
to enable onion skinning. See Understanding onion skinning.

Click a toolbar button for more information:

Toggle Onion Skinning is an on/off button. When off, no reference images are blended
into the paint window's drawing area. When on, selected reference images are blended
into the drawing area. The current cast member is then drawn on top. Shortcut: Control-
Alt-K enables or disables onion skinning.

Preceding Cast Members indicates the number of cast members immediately
preceding the current cast member shown as reference images in the paint window.
Images further away from the current cast member are dimmer than images closer to it
in the cast.

Following Cast Members indicates the number of cast members immediately following
the current cast member that will be shown as reference images in the paint window.
Images further away from the current cast member are dimmer than images closer to it
in the cast.

Set Background selects the current cast member to be the background cast member.
This cast member will be used as a reference image if Show Background is on.

When Show Background is on, the background cast member is blended into the paint
window as a reference image.

When you click Track Background, Director marks the current foreground and
background cast members as the beginning members of a foreground and background
series of cast members. From then on, as you select different foreground cast members,
the corresponding member of the background series is used as a reference image.

Insert menu
Click a command or submenu for more information:

Frame command
Remove Frame command
Media Element: Bitmap
Media Element: Text
Media Element: Color Palette
Control: Push Button, Radio Button, or Check Box
Control: Field
OLE Object
Film Loop

Frame command (Insert menu) Control+]

The Insert Frame command inserts a frame into your movie at the location of the
playback head and a copy of the current frame is added to the score. This can cause an
apparent pause in the animation as two identical frames are played.

The new frame is inserted for all channels, and adds a frame to the movie's length.

Remove Frame command (Insert menu) Control+[

Remove Frame deletes the frame at the location of the playback head, making the movie
one frame shorter in length.

Media Element: Bitmap command (Insert menu)
Choose the Insert Bitmap command to create a new bitmapped cast member. When you
choose this command, Director opens the paint window.

Unless you first select an empty position in the cast window, Director assigns the new
cast member to the first empty position after the current cast member.

Media Element: Text command (Insert menu)
Choose the Insert Text command to create a new text cast member and open the text
window.

Unless you first select an empty position in the cast window, Director assigns the new
cast member to the first empty position after the current cast member.

Understanding text and fields
Text window

Media Element: Color Palette command (Insert menu)
Choose the Color Palette command to create a new palette cast member. When you
choose this command a dialog box appears and prompts you to enter the name of the
new color palette. Once you enter a name and click OK, Director opens the color palettes
window and you can change the new palette as needed.

Unless you first select an empty position in the cast window, Director assigns the new
cast member to the first empty position after the current cast member.

Color Palettes command (Window menu)

Control: Push Button, Radio Button, or Check Box (Insert menu)
Choose one of these commands to create a button or checkbox cast member on the
stage. First, select the channel and frame in the score where you want to create the
button or checkbox, and then choose the command. A button or checkbox will appear on
the stage and you can begin entering text.

Unless you first select an empty position in the cast window, Director assigns the new
cast member to the first empty position after the current cast member.

You must then attach a script to a button or checkbox so that it responds appropriately
when clicked.

Control: Field command (Insert menu)
Choose the Insert Field command to create a new field cast member. First, select the
channel and    frame in the score where you want to create the new field, and then select
the Filed command. A field will appear on the stage and you can begin entering text.

Unless you first select an empty position in the cast window, Director assigns the new
cast member to the first empty position after the current cast member.

Use fields primarily for text that must be editable in a projector. For most text
applications you should use normal text.

Understanding text and fields
Field (Window menu)

OLE Object command (Insert menu)
The OLE Object command creates cast members from OLE objects. You can create a new
OLE Object using the source application, or by linking to an existing file.

Note: OLE objects only work in Windows 95 and Windows NT.

To create an OLE cast member:
1. Choose OLE Object from the Insert menu.
2. In the Insert Object dialog box, choose Create New or Create from File.

If you choose Create New, choose the type of OLE Object you want from the Object
Type list. The Objects available depend on the OLE-compatible applications installed
in your system. The source application of the OLE server is launched. When you finish
creating the object and choose Update from the File menu (in the source application),
the object appears in Director as a cast member.
If you choose Create from File, enter the path to the file or use Browse to select the
file. The object is immediately placed in the cast.

4. Click OK to continue.

Shortcut: You can place OLE objects in Director by dragging a file from the Navigator
into the cast window.

Using Paste Special

Use Paste Special to create cast members that display selected portions of OLE (object
linking and embedding) objects. This is most useful for showing items like cells in a
spreadsheet or particular fields in a database instead of the entire record.

Begin by copying a selected portion of a document to the clipboard in another
application that supports OLE. Then choose Paste Special using OLE. The OLE object
appears as a cast member and is updated when the source document changes.

Using OLE Objects in Director

Film Loop command (Insert menu)
The Film Loop command changes a selected animation sequence into a repeating loop
that appears as a single cast member. A film loop is a score fragment that refers to a
group of cast members.

To create a film loop, first select an animated sequence in the score and then choose
Create Film Loop from the Insert menu. The sequence can include as many channels as
you need. You can also select the sequence in the score and then drag it to the cast.

If you copy a film loop, you need to copy the referenced cast members, too.

Modify menu
Click the name of a menu command for more information:

Cast Properties In-Between
Cast Member Properties In-Between Special
Cast Member Script Font
Sprite Properties Paragraph
Sprite Script Borders
Frame: Tempo Arrange
Frame: Palette Align
Frame: Transition Tweak
Frame: Sound Reverse Sequence
Frame: Script Sort
Movie Properties Cast to Time
Movie Casts Space to Time

Transform Bitmap
Convert to Bitmap

Cast Properties command (Modify menu)
Use Cast Properties to view properties and change settings for the currently selected
cast.

Dialog box options

Name displays the name of the current cast for you to view or change.

Storage indicates whether the cast is internal or external and, if the cast is external,
where it is stored.

Size displays the size of the cast in kilobytes.

Preload defines how the cast is loaded into memory when the movie runs. The choices
are:

When Needed: The cast does not load into memory until it is required by the movie.
After Frame One: The cast is loaded when the movie exits frame one.
Before Frame One: The cast is loaded before the movie plays frame one.

Understanding internal and external casts
Memory management techniques Memory management techniques

Cast Member Properties command (Modify menu)
Cast Member Properties displays a dialog box containing information about the selected
cast member: its name, cast position, type, and its size in kilobytes. The Cast Member
Properties dialog box also displays additional information and options for each cast
member type. Use the options in the dialog box to define the behavior and appearance
of the selected cast members.

The type of information in the Cast Member Properties dialog box depends on the type of
cast member.

Bitmap PICT
Button Script
Digital Video Shape
Field Sound
Film Loop Text
Director Movie Transition
Palette Xtras

Multiple cast members selected

 In the cast window, select a cast member and click the Info button as a shortcut for
choosing this command. If you are editing the cast member in the paint, text, digital video,
or script window, you can click the window's Info button as a shortcut for choosing this
command.

Select a cast member in the cast or on the stage and then right-click and choose Cast
Member Properties from the pop-up.

Cast Member Properties: Bitmap (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes
Dimensions

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

File Name displays the location of linked external files. This appears only if the selected
cast member is linked to an external file. Click the file name to choose a new location.

Options: Highlight When Clicked makes the current cast member invert when it is
clicked by the user. Use this option to create buttons. Even if Highlight When Clicked is
checked, the cast member will not do anything unless it is controlled by a Lingo script.

Color Depth displays the color depth of the cast member.

Palette assigns a different palette to the cast member, while maintaining the cast
member's original palette references, so the image is not changed. You can change the
palette assignment at any time by choosing another palette from the menu.

Unload controls how Director removes the cast member from memory if memory is low.
3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Button (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Type lists the button types--push button, check box, or radio button.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Digital Video (Modify menu)
Use the Cast Member Properties for digital video cast members to view information about
the current cast member and to change optional settings. The following information
about the current cast member appears on the left side of the dialog box:

The cast member number
The cast member name
The cast name
The length of the movie in seconds
The size in kilobytes
Dimensions

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

File Name displays the location of the digital video movie. Click the file name to choose
a new location.

Video plays the video portion of the digital video movie. If unchecked, the video portion
does not play. Deselect this option and check the Sound if you want to play the audio-
only portion of a movie.

Sound plays the sound portion of the digital video movie.

Paused pauses the digital video movie when it first appears on the stage (while playing
the Director movie).

By default, a digital video movie starts playing the moment it first appears. If you check
Paused, you can later start the movie using the statement:

set the movieRate of sprite n to R

where:
n is the sprite number in the current frame
R is a number representing the rate. For example, 0 = stop, 1 = normal speed, 2 =

2x speed, and -1 = reverse.

 Lingo elements -- digital video

Loop loops the digital video movie from the end back to the beginning and continues to
play.

Crop retains the movie's original size if you resize the bounding rectangle. The edges of
the movie may be clipped.

Center centers the movie when you resize the bounding rectangle. If Center is not
checked, the loop maintains its original position when you resize its bounding rectangle.
Center is only available if Crop is checked.

Scale scales the movie if you resize the bounding rectangle.

Direct to Stage plays the movie in front of any cast members on the stage, regardless
of the channel that contains the movie. Inks are not visible on a movie that plays with
this option. In general, use Direct to Stage when you want the best possible performance
from a digital video movie and you don't need ink effects or compositing. Results may
vary, so you may have to experiment.

Show Controller displays a controller bar below the movie to allow the user to start,
stop, and step through the movie. This option is only available if Direct to Stage is
checked.

Video defines how the movie is synchronized. If you choose Play Every Frame, every
frame of the digital video movie plays. The digital video movie's soundtrack will not play,
since the movie can't play the soundtrack asynchronously while the video portion plays
frame-by-frame. If you choose Sync to Soundtrack, the movie skips frames as necessary
to keep up with the tempo of the soundtrack. These options are only available if Direct to
Stage is checked.

Rate determines at what rate the movie plays. The options on the Rate menu are only
available if Play Every Frame is checked. The following options appear on the Rate pop-
up menu:

Normal: Each frame plays at its normal rate, and no frames are skipped.
Maximum: The movie plays as fast as possible while still displaying each frame.
Fixed: Play the movie using a specific frame rate. Enter the number of frames per

second in the field to the right. Use this option only for digital video movies that use the
same frame rate for each frame of the movie.

Enable Preload preloads the entire movie (or as much of the movie as can fit into
available memory) using the preLoad or preLoadMember Lingo commands. If there is not
enough memory to load the entire movie, Director loads only what can fit into memory. If
this option is unchecked, Director does not load the movie into memory and instead
plays it from disk. This results in slower animation speeds, since each frame must be
retrieved from disk before it is played.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast. The script remains attached to the cast
member if the cast member is cut or copied and pasted.

Cast Member Properties: Film Loop (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Crop retains the film loop's original size if you resize the bounding rectangle of the
sprite. The edges of the movie may be clipped.

Scale scales the film loop if you resize the sprite bounding rectangle.

Center centers the film loop when you resize the bounding rectangle. If Center is not
checked, the loop maintains its original position when you resize its bounding rectangle.
Center is only available if Crop is checked.

Play Sound enables sound during playback. If not checked, sound is disabled during
playback.

Loop returns the animation from the last frame back to the first and continues to play. If
this option is not checked, the animation doesn't loop, and the last frame remains on the
stage.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Linked Director Movie (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

File Name displays the location of the external file associated with the linked movie.
Clicking the file name lets you choose a new location.

Crop retains the linked Director movie's original size if you resize the bounding
rectangle. The edges of the movie may be clipped.

Scale scales the movie if you resize the bounding rectangle.

Center centers the linked Director movie when you resize the bounding rectangle. If
Center is not checked, the movie maintains its original position when you resize its
bounding rectangle. Center is only available if Crop is checked.

Enable Scripts activates the linked movie's scripts when the movie is used in the score.
If this option is not checked, Director ignores the movie's scripts.

Play Sound enables sound during playback. If not checked, sound is disabled during
playback.

Loop returns the movie from the last frame back to the beginning and continues to play.
If this option is not checked, the movie doesn't loop, and the last frame remains on the
stage when the movie finishes playing.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Palette (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Cast Member Properties: PICT (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.
Dimensions

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Script (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Type displays the script type (movie, score, or parent) for the selected cast member, and
lets you change it. A movie script's handlers are global, and can be called from other
scripts. A score script's handlers are local, and cannot be called from other scripts. If you
change a movie script into a score script, it appears in the Script pop-up menu in the
score.

Cast Member Properties: Shape (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Shape displays the current shape--rectangle, round rectangle, or oval--and lets you
change the shape into any of the other available shapes.

Filled fills the currently selected shape with the current fill pattern and colors as
specified in the tool palette.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Sound (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes
Sample rate, sample size and channels

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

File Name displays the location of linked external sound files. This appears only if the
selected cast member is linked to an external file. Click the file name to choose a new
location.

Loop makes the sound play continuously. If not checked, the sound plays once, even if
the movie loops.

Unload controls how Director removes the cast member from memory if memory is low.
3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Play plays the sound at its pre-recorded sampling rate.

Cast Member Properties: Field (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name field displays the name of the current cast member for you to view or change.
The name remains attached to the cast member if it is moved to a new position in the
cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Framing displays framing options for the current field.
Adjust to Fit causes the field to expand vertically when text is entered that extends

beyond the current size of the box.
Scrolling attaches a scroll bar to the right side of the field. This is useful for a large

amount of text.
Fixed causes the box to retain its original size. If text is entered that extends beyond

the limits of the box, the text is not displayed.
Limit to Field Size sets the field's width to be fixed to the size of the field. Characters

that don't fit are ignored.

Editable makes field cast members editable during movie playback. You can use this
option instead of using the Lingo command set the editable of sprite to TRUE.

If you set a field cast member to be editable in the cast, it is always editable. Director
overrides the score's editable checkbox setting for the sprite.

Word Wrap makes words move to the next line when they reach the edge of the box. If
unchecked, text that extends beyond the right edge is truncated and you must use the
Enter key to generate a new line.

Tab to Next Field causes the Tab key to advance the cursor to the next editable field on
the stage during playback. Note that the editable checkbox must be checked, or the
Lingo command set the editable of sprite to TRUE must be specified for this option
to have any effect.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu.

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Text (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name displays the name of the current cast member for you to view or change. The
name remains attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Framing displays framing options for the current text cast member.
Adjust to Fit causes the text box to expand vertically when text is entered that

extends beyond the current size of the box.
Scrolling attaches a scroll bar to the right side of the text box. This is useful for a

large amount of text.
Cropped causes the text box to retain its original size. If you enter text that extends

beyond the limits of the box, the text is not displayed.

Anti-Alias Text: dramatically improves the appearance of large text, but it can blur or
distort smaller text. Experiment with the size setting to get the best results for the font
you are using.

All Text anti-aliases all the text in the text block.
Larger Than anti-aliases text larger than the point size entered in the points field.
None--no text is anti-aliased in the current text block.

Unload controls how Director removes the cast member from memory if memory is low.
3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Script opens a script window for the cast member. The script remains attached to the
cast member if the cast member is cut or copied and pasted.

Cast Member Properties: Transition (Modify menu)
The following information about the current cast member appears on the left side of the
dialog box:

The cast member number
The cast member name
The cast name
The size in kilobytes.

Click a dialog box option for more information:

Name displays the name of the current cast member for you to view or change. The
name remains attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu:

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Options button is only available if you have installed Xtra transitions in the Xtras folder
(within the Director application folder). The contents of the Options dialog box is
determined by the developer of the Xtra. Refer to any documentation supplied with the
Xtra.

Cast Member Properties: Multiple Items (Modify menu)
Use Cast Member Properties to view and change settings for several selected cast
members at once.

Click a dialog box option for more information:

Since multiple cast members are selected, no cast member name is shown.

Type displays "Multiple" when several cast members are selected, unless all the selected
cast members are the same type.

Selected displays the number of cast members in the selection.

Total Size displays the total size, in kilobytes, of the selected cast members.

Palette lets you choose the palette used by the selected cast members.

Unload controls how Director removes the cast members from memory if memory is low.
Choose one of these options from the pop-up menu:

3--Normal: The selected cast members will be removed from memory after all purge
priority 3 cast members have been purged.

2--Next: The selected cast members will be among the next to be removed from
memory.

1--Last: The selected cast members will be the last to be removed from memory.
0--Never: The selected cast members remain in memory and is never purged.

Cast Member Properties: Xtras (Modify menu)
Xtras are cast members created as plug-in extensions to Director. They can be new
media types or add-on transitions. Xtra cast members may have additional settings
accessible through an Options button.

Click a dialog box option for more information:

 Installing Xtras.

Name displays the name of the current cast member for you to view or change. The
name remains attached to the cast member if it is moved to a new position in the cast.

Director does not prevent you from creating duplicate cast member names, but you
should avoid using them. If more than one cast member has the same name, Lingo uses
the cast member with the lowest number in the cast. Use cast member names instead of
numbers to address cast members in a Lingo script, so that you don't have to update
your scripts if your cast members are renumbered or sorted.

Unload controls how Director removes the cast member from memory if memory is low.
Choose one of these options from the pop-up menu:

3--Normal: The selected cast member will be removed from memory as necessary.
2--Next: The selected cast member will be among the next to be removed from

memory.
1--Last: The selected cast member will be the last to be removed from memory.
0--Never: The selected cast member remains in memory and is never purged.

Options opens a dialog box containing special controls and options for the Xtra cast
member. Not all Xtra cast member have options available. The contents of the Options
dialog box is determined by the developer of the Xtra. Refer to any documentation
supplied with the Xtra.

Cast Member Script command (Modify menu)
Choose this command to open the script associated with the selected cast member. This
is the same as clicking the Script button in the Cast Member Properties dialog box or in
the cast window.

Shortcuts: To open the cast member script:
Press Control-' (Control-hyphen).
In the cast window, select a cast member and click the Script button.
In the media editor window, click the window's Script button.

Sprite Properties command (Modify menu)
Use the Sprite Properties command to change the size, location, and blend percentage of
a selected sprite. If you select more than one sprite, this command lets you edit them as
a group.

Click a dialog box option for more information:

The size of a sprite on the stage is controlled by its parent cast member unless you change
the sprite's size using these options, or by manually resizing the sprite on the stage.
Thereafter, any changes in the size of the parent cast member do not affect the size of the
sprite on the stage.

    In-Between Special

Size changes the sprite's size. Enter an exact size or a scaling percentage.
Height, Width: Enter a specific width and height for the sprite, in pixels.
Scale: Enter a percentage in the Scale field. The sprite is scaled relative to its current

size, not to the size of its parent cast member.
Maintain Proportions: Check this box to maintain the same proportions of width and

height when the object is resized.

Location changes the top left corner position of the sprite on the stage.
Left: Enter the number of pixels you wish to offset the sprite from the left edge of the

stage.
Top: Enter the number of pixels you wish to offset the sprite from the top edge of the

stage.

Blend specifies the blend percentage for selected sprites in the score. You can apply a
blend effect to sprites that use the blend, background transparent, mask, or matte ink.
Each sprite in the same frame can store its own blend value.   

Use the Blend option in the In Between Special dialog box to fade sprites in or out of the
stage as they are animating.

Sprite Script command (Modify menu)
Sprite Script opens a script window for the currently selected sprite.

Script window

Frame Tempo command (Modify menu)
Use this command to set a tempo or pause in your movie. The tempo setting determines
how the playback head moves from frame to frame.

Click a dialog box option for more information:

When you set a tempo, it also applies to all frames to the right of the tempo setting, until
another tempo is encountered in the tempo channel.

Shortcuts: To open the Frame Tempo dialog box:
Double-click a cell in the tempo channel.
Right-click a cell in the tempo channel and choose Tempo.

If you place tempo settings in the same frame as a transition, some tempo channel
settings such as wait and sound playing become disabled. To avoid this, don't place a
transition in the same frame as your tempo settings. Instead, place the tempo settings in
the frame immediately before or after the transition.

Tempo sets a new tempo for the movie. Use the arrows or slide the box to change the
settings. This is the same as changing the tempo in the control panel.

Wait stops the movie at the current frame for the time specified. Use the arrows or slide
the box to change the settings.

Wait for Mouse Click or Key Press pauses the playback head until the user clicks the
mouse or presses a key. The cursor changes to a blinking mouse to indicate that the
movie is paused.

You might want to include some text on the screen telling users to click the mouse or
press a key to continue.

Wait For End of Sound in Channel 1 pauses the playback head until a sound in sound
channel 1 finishes playing.

Wait For End of Sound in Channel 2 pauses the playback head until a sound in sound
channel 2 finishes playing.

Wait for End of Digital Video in Channel pauses the playback head until a digital
video finishes playing. If you have several digital videos, make sure you specify the
channel of the longest playing digital video when using this option.

Frame Palette command (Modify menu)
Use the Frame Palette command to change palettes in a selected frame of the palette
channel. When you set a palette in the palette channel of the score, the color of the cast
members in the movie is determined by that palette until another palette is encountered
in the palette channel.

When you specify a new palette in the palette channel, cast members change color
depending on the position of their colors in the palette. For example, if one of your cast
members is yellow, and yellow occupies the fifth color in your palette, the cast member
will become whatever color is in the fifth position in the new palette.

Click a dialog box option for more information:

The options in the dialog box change depending on whether you choose Palette Transition or
Color Cycling.

When Palette Transition is selected, these options appear in the dialog box (click for more
information):

When Color Cycling is selected, these options appear in the dialog box (click for more
information):

Shortcuts: To open the Frame Palette dialog box:
Double-click a frame in the palette channel.
Right-click a frame in the palette channel and choose Palette.

 Understanding color depth
Understanding color palettes

Palette lets you choose the palette used for the selected cells in the palette channel.

Palette Transition changes the palette at the current frame, or the beginning of the
current selected range. Choose Palette Transition when you want a smooth transition
from one palette to another. Instead of your cast member abruptly changing colors when
you switch palettes, this option gradually blends from one palette to the next.

Color Cycling changes the palette by rotating the colors in a selected range of the
palette. For example, if a cast member's color is the fifth color in the palette, and you
select a range of colors from four to six, the cast member changes colors when the
movie is played, cycling through colors four, five, and six.

To select a range to cycle, drag across the colors to be cycled in the dialog box. You can
also click a color, and Shift-click another color to select those colors and all the colors in
between.

Rate displays the rate at which the palette changes between frames. Use the arrow keys
or slide the box to change the setting. This setting does not apply if you select Span
Selected Frames.

Between Frames changes the palette between frames. The Rate setting determines
the length of the transition.    All animated movement will halt as the transition takes place.
This option appears only if you first select a range of frames in the palette channel.

Span Selected Frames changes the palette while the selected frames are playing. The
number of frames selected determines the length of the transition. Any movement in those
frames will take place as usual. This option appears only if you first select a range of frames
in the palette channel.

Palette Transition options

Fade to Black fades the entire screen to black. Like other palette transitions, this can
occur over time, or in between frames. A nice way to end a movie is to make the final
frame a black cast member that covers the whole stage, and then fade to black over
several frames before the last frame.

Fade to White fades the entire screen to white. Like other palette transitions, this can
occur over time, or in between frames. A nice way to end a movie is to make the final
frame a white cast member that covers the whole stage, and then fade to white over
several frames before the last frame.

Don't Fade changes the palette without fading the screen during the palette transition.

Note: Palette transitions including Fade to Black and Fade to White do not work in 16-,
24-, and 32-bit environments. These features require either that palettes be in use or
that a video card set to 256 colors is present.

Color Cycling options

Cycles specifies the number of cycles per frame.

Auto Reverse reverses the direction of color cycling when the cycle completes.

Loop returns the colors cycle to the beginning when it reaches the end.

Frame Transition command (Modify menu)
Use this command to define and select a transition. To set a transition, select a cell in the
transition channel of the score window, and choose Frame Transition from the Modify
menu. The transition occurs when the playback head reaches that cell.

Different options are available for different transitions.

Transition Xtras

You can add new transitions to Director as Xtras. Xtra transitions appear with special
icons in the Frame Properties: Transitions dialog box. Install Xtra transitions by placing
them in the Xtras folder in the Director application. For more information, see Installing
Xtras.

Once they are defined, transitions appear in the cast window as cast members. You can
place them in the transition channel by dragging them from the cast to the score.

Xtra transitions may offer extra options provided by the developer. If the Options button
is available when you choose an Xtra transition, click it to view and change the transition
options.

Click a dialog box option for more information:

Shortcuts: To open the Frame Transition dialog box:
Double-click a cell in the transition channel.
Right-click a cell in the transition channel and choose Transition.

To play a sound while a transition takes place, place the sound in the frame
immediately before the transition.

If you are developing a movie for Macintosh and Windows computers, don't use the
Dissolve Pixels, Dissolve Pixels Fast, or Dissolve Patterns transitions. These transitions
produce entirely different results on a Windows computer.

If you export a movie that contains transitions as a digital video or PICS file, the
transitions will not be included.

Categories lists the categories of transitions. If you select a category, such as dissolve,
then only the dissolve transitions are listed in the transitions list. If you select the All
category, then all available transitions are listed.

Transitions lists the available transitions.

Duration indicates the approximate amount of time (in seconds) of the entire transition.
Adjust the slider to change the setting.

Smoothness selects the smoothness of the transition. Adjust the slider to change the
degree of smoothness

Affects indicates where the transition place on stage.
Entire Stage makes the transition take place over the entire stage area.
Changing Area Only makes the transition takes place over the changing area of the

frame.

Frame Sound command (Modify menu)
Use this command to select and preview sounds. Select one or more cells in one of the
sound channels, and then choose this command. If you have not made a selection in one
of the sound channels in the score, this command is not available.

The dialog box lists all sounds in the currently opened casts. Select a sound from the list
and click OK to place the sound in the selected frames.

To play a sound, select one from the list and click Play.

Shortcuts: To open the Frame Sound dialog box:
Double-click a frame in the sound channel.
Right-click a frame in the sound channel and choose Sound.

Frame Script command (Modify menu)
Choose this command to open the script for the current frame.

Shortcut: To open the script for the current frame:
Double-click a frame in the script channel.
Right-click a frame in any channel and choose Frame Script from the shortcut menu.

Movie Properties command (Modify menu) Control-Shift-D

The Movie Properties command lets you specify options such as stage size and color for
the currently open movie.

Click a dialog box option for more information:

Projector Options dialog box
Understanding Font Mapping

Stage Size defines the size of the stage. Changing the stage size is useful if you want to
display movies on a smaller or larger stage, or if you want to change the stage size to
match the size of a digital video movie. Change the size of the stage by choosing a
setting from the menu, or by entering the width and height of the stage.

If you choose a setting from the pop-up menu, the values in the Width and Height fields
automatically update.   

Stage Location changes the location of the stage.
Centered places the stage window in the center of your monitor. This option is useful

if you play a movie that was created for a 13-inch screen on a larger screen. You can also
use this option if you are creating a movie on a larger screen that will be seen on smaller
screens.

Upper Left places the stage in the top left corner. Alternatively, the values you type in
the Left and Top boxes represent the number of pixels the stage is moved from the top left
corner of the screen. These values apply only if the stage is smaller than the current
monitor's screen size.

Default Palette defines the palette Director uses for the movie until it encounters a
different palette setting in the palette channel.

Stage color determines the color of the stage. Click to select a new background color
from the current palette.

Lock Frame Durations locks the current playback rate so that Director plays the movie
at the same speed on all types of computers. For frames without recorded durations,
Director uses the current tempo.

To unlock the playback rate, remove the check from this option or make an editing
change to your movie, such as adjusting the tempo, or adding or deleting a frame in your
movie. Unlocking the playback rate lets you record frame durations as you play the
movie.

Locked movies will not play faster when played on a faster computer, but may play
slower on a slower computer.

Pause When Window Inactive specifies when movies in windows play. When this
option is set, a movie in a window only plays when the main movie is playing or it is the
frontmost window; otherwise the movie in a window continues to animate.

Remap Palettes When Needed remaps the current palette when cast members with
different palettes appear on the stage. If this box is checked, Director automatically
creates a common palette and remaps all images on the stage that have a different
palette to the common palette. The cast members themselves are not modified. The
common palette determines how the cast member is remapped. For example, if a cast
member uses a grayscale palette, it will be drawn on the stage using whatever grays are
available in the common palette.

Allow Outdated Lingo lets you include Lingo commands used by Director 4.0 that are
no longer acceptable.

Save Font Map saves the current font map settings in a text file. You can then edit this
file to change the mapping. The font mapping table tells Director which Macintosh fonts
to use in place of which Windows fonts--and vice versa--when a text cast member
created on one platform is displayed on the other. The font map table consists of a text
file that contains the font mapping information.

When you create a new movie, Director looks for a file called FONTMAP.TXT in the same
folder as the Director application. This file specifies how Director maps fonts between the
Macintosh and Windows platforms. If Director finds this file, it uses it to create an internal
font map for the movie. If no FONTMAP.TXT file exists, the new movies uses no font map.

When you open the movie on the PC, Director uses the movie's internal font map to
determine the appropriate substitute Windows fonts for text cast members that were
created on a Macintosh. If the movie has no font map, Director substitutes other
available fonts.

Load Font Map loads the font mapping assignments specified in the chosen font map
file.

Movie Casts command (Modify menu) Control-Shift-C

Use Movie Casts to view the casts in the current movie, create new casts, and link
external casts to the movie. The Movie Casts dialog box displays a list of all the casts in
the current movie, including internal casts and linked external casts.

Dialog box options

New opens the New Cast dialog box so that you can create a new cast.

Link attaches existing external casts to the movie. Use the dialog box that appears to
select an external cast file to link to the movie.

Remove unlinks or deletes a cast from the movie. Select a cast from the list and click
Remove. If the cast is internal, it is deleted. If it is external, it is unlinked from the movie.
You cannot delete the first internal cast in the movie.

Properties opens the Cast Properties dialog box for the cast selected on the list.

Understanding internal and external casts

Font command (Modify menu) Ctrl+Shift+T

Use the Font dialog box to specify all the formatting options for characters and lines of
text. Not all options are available for fields.

To change character formatting, first select the text you want to change, and then
choose Font from the Modify menu. If you select the cast member, all the text changes.

Dialog box options

Font lists all the fonts installed in your system. Select a new font by clicking one on the
list. Director may not be able to anti-alias certain fonts in your system (such as bitmap
fonts and some variations of TrueType fonts). When you select a font that can't be anti-
aliased, the message "This font cannot be anti-aliased" appears above the font preview.

Style: Bold, Italic, and Underline each apply the character attribute to the selected
text.

Size controls the font size, in points.

Color determines the color of the selected text. Click to choose a new color from the
current color palette.

Line Spacing sets the total height for all lines in the paragraph in points. This option is
not available for fields.

Kerning increases or decreases the amount of space (in points) between selected
characters. This option is not available for fields.

Understanding text and fields
Cast Member Properties: Text

Text Inspector
Properties: Field

Paragraph command (Modify menu) Alt+Control+ShiftT

Use the Paragraph dialog box to view and change paragraph formatting. The Paragraph
command is only available for text cast members.

Dialog box options

Alignment determines how the selected paragraph is aligned with the text box. The
choices are Left, Right, Center, and Justify. (The Justify setting aligns text to both the left
and right margins.)

Margin:
Left and Right defines the left and right margin settings of the text box. Click the

arrows or enter a number to change the amount the paragraph is indented.
First Indent controls the indent setting of the first line of text in the paragraph.

Changing the setting is the same as moving the margin markers on the text ruler.

Spacing increases or decreases the amount of space before or after the current
paragraph. Click the arrows or enter a value in points.

Text ruler
Understanding text and fields

Borders submenu (Modify menu)
The commands on the Borders submenu only apply to fields. You cannot use them to
change text cast members.

Line adds a box around the field on the stage. Choose the line thickness from the
submenu.

Margin changes the distance between the edges of the field and the characters inside.
Choose the margin width from the submenu.

Box Shadow adds a drop shadow to the text box. Choose the drop shadow width from
the submenu.

Text Shadow adds a drop shadow to paint window text or field text. Choose the shadow
width from the submenu. Drop shadow on text is a good way to ensure that your text will
remain legible in color if you are planning to overlay text to videotape.

In-Between command (Modify menu) Control-B

Use In-Between when you want a sprite to move in a straight line across the stage, grow
or shrink smoothly, or remain stationary for a number of frames. Director fills in the
selected cells in the score with the sprite's incremental motion between frames.

In-Between interpolates the incremental positions of a sprite between key frames. Key
frames are the starting and ending point for the sprite's motion. If the starting and
ending points are the same, the sprite remains stationary. If the starting and ending
points are different, In-Between generates new sprites in the right locations between the
key frames. In-Between also works with sprites that are stretched or squeezed.

In-Between is also a quick way to fill in several frames with the same sprites. You can use
In-Between on several channels at once.

In-Between Special

In-Between Special command (Modify menu) Control-Shift-B

Use In-Between Special when you want a sprite to move in a curved path, to accelerate
or decelerate across the stage, or to change color or blend.

Click a dialog box option for more information:

To make your sprite follow a curved path, you must set the sprite in at least three positions
on the stage in different frames. As with In-Between, select all the cells between the first
and last position of the sprite, and then choose this command.

Tween specifies the parameters to be modified. These include Location, Size,
Foreground Color, Background Color, and Blend. Check the parameters that you want to
in-between.

Ease-In and Ease-Out add realism to your animations by gradually accelerating sprites
to full speed or decreasing their speed as they come to a halt.

Ease-In selects the number of frames over which you want to accelerate the sprite. If
you choose to accelerate a sprite over the first eight frames, for example, a stationary sprite
will ramp up to full speed over that many frames. To enter a number other than the choices
in the pop-up menu, choose Other.

Ease-Out selects the number of frames over which you want to decelerate the sprite.
For example, decelerating a sprite over eight frames will gradually bring the sprite to a halt
by the eighth frame. To enter a number other than the choices in the pop-up menu, choose
Other.

Circular only affects sprites that begin and end in the same point. If checked, the sprite
will circle around the stage, but it won't pass through the starting point. The effect is to
make a rounder circle. If this option is not checked, the sprite passes through the starting
point during the animation.

The Inside/Outside slider controls the degree to which the sprite's curved path follows
the inside or outside boundaries of the path. If you drag the slider to the left, the sprite
follows a curved path that is inside the sprite positions you set before choosing In-
Between Special. If you move the slider to Linear, the sprite will travel in straight lines
between the points you set earlier. Dragging the slider all the way to the right causes the
sprite to pass through the points you set as it travels a curved path.

Inside, Linear, and Outside define the path the sprite follows when it is in-betweened. If
the beginning and ending points of the sprite are the same, the diagram in the dialog
box will be circular, indicating that the sprite will travel in a circle when in-betweened. If
the beginning and end points are not the same, the diagram describes a curved path,
indicating that the sprite ends in a position different than the starting point. This diagram
does not show the actual path of the sprite, just the type of curve it will follow.

Apply to Film Loop applies the current in-between settings to a film loop. For example,
if you have a sequence of six sprites that make a walking person, you can store all six as
a single sprite, called a film loop. Then, the film loop can be in-betweened as if it were a
single sprite. Be sure that a film loop is selected in the cast window before choosing In-
Between Special.

 Cast Member Properties: Film Loop

Arrange submenu (Modify menu)
The Arrange submenu contains four commands that move sprites up or down in the
score, changing their order on the stage. Sprites appear on the stage in order, starting
with the first channel. A sprite in channel two appears on top of a sprite in channel one.

Bring to Front (Control+Shift+Up arrow) moves the selected cells to the last channels in
the score. The sprites in those cells move in front of all other sprites.

Move Forward (Control+Up arrow) switches the selected cells with the cells immediately
below. This command is the same as clicking the Move Forward button at the bottom of the
score window.
Move Backward (Control+Alt+Down arrow) switches the selected cells with the cells
immediately above. This command is the same as clicking the Move backward command at
the bottom the score window.

Send to Back (Control+Alt+Shift+Down arrow) moves the selected cells to the first
channels in the score. The sprites in those cells move behind all other sprites.

Align command (Modify menu)Control-K

Use the align palette to align sprites on the stage. You can align sprites in multiple
channels and frames. Align is especially useful for making sure that a sprite does not
move from frame to frame.

To align sprites:
1. Select the sprites you want to align on the stage or in the score.

You can select sprites in as many different frames or channels as you need. All of the
sprites will be aligned to the last sprite you select.

2. Choose Align from the Modify menu.
The vertical and horizontal alignment options appear on two pop-up menus.

3. Select the options you want and click Align to align the selected sprites.
The align palette stays open until you close it.

Dialog box options

Horizontal alignment options include No Change, Align Lefts, Align Centers, Align
Rights, Align Reg. Points.

Vertical alignment options include No Change, Align Tops, Align Centers, Align
Bottoms, Align Reg. Points.

You can also click the preview to experiment with sprite alignment.

You can also click the preview to experiment with sprite alignment.

Using registration points

Tweak (Modify menu) Control-Shift-K

Use the tweak window to move one or more selected sprites in any direction with
precision. Drag the point on the left side of the window, or enter the number of pixels in
the fields for horizontal and vertical change and click the tweak button.

Continue clicking the Tweak button to repeatedly move the selected sprites the same
distance.

Reverse Sequence command (Modify menu)
Reverses the order of selected cells in the score.

Sort (Modify menu)
Use Sort to rearrange selected cast members in the cast and eliminate empty cast
member positions. To rearrange an entire cast, first choose Select All from the Edit menu
before choosing this command.

Director automatically updates the score with the new number for each repositioned cast
member.

Note: Because cast member numbers may change when you use this command, cast
member number references in scripts may become invalid. If you use Sort Cast
Members, you may have to go through your scripts to update them with the new
numbers. Use cast member names instead of numbers to address cast members in a
Lingo script so that you don't have to worry if your cast members get re-numbered.

Dialog box options

Usage in Score sorts selected cast members in the order in which they appear in the
score. If a cast member does not appear in the score it is placed after all the cast
members that are referenced from the score.

Media Type sorts selected cast members by type (bitmap, palette, button, text, sound,
shape, PICT, digital video, film loop, movie, script, field, Xtra, transition, OLE).

Name sorts selected cast members alphabetically by name.

Size sorts selected cast members by file size, in decreasing size order.

Empty at End places empty cast members at the end.

Cast to Time command (Modify menu)
Use Cast to Time to speed the creation of a cast member sequence in your movie. This
command places selected cast members sequentially into separate frames in the score.

If you select a single cell in the score before choosing this command, the selected cast
members are added to the score beginning at the selected cell. Any existing score data
is replaced by the Cast to Time sequence. If you set an insertion point in the score before
choosing this command, the Cast to Time sequence is inserted in channel 1, beginning at
the insertion point. If you select a range of score cells before choosing this command, the
Cast to Time sequence that is inserted will only be as long as the number of selected
cells in the score.

Shortcut: You can also place selected cast members across time in the score by Alt
dragging from the cast.

 Recording with Cast to Time

Space to Time command (Modify menu)
Space to Time moves selected sprites in one frame to a single channel in the score so
they play in a sequence of frames.

The dialog box lets you specify the number of frames apart to spread sprites.
Consecutive cells (1 frame apart) is the default.

For example, if you are animating a bouncing ball, it's difficult to lay out each position of
the ball without comparing it to previous positions. With Space to Time, you can drag the
ball from the cast window repeatedly to lay out your sequence, select the cells in the
score that contain the sprites you just positioned on the stage, then choose Space to
Time, and all the sprites shift from their vertical positions in one frame to horizontal
positions in one channel. You might also find this a useful way to lay out sprites before
using In-Between Special.

Recording with Space to Time

Transform Bitmap command (Modify menu)
Transform Bitmap changes the size, color depth, and palette of selected cast members.
Any change you make to a cast member's color depth or palette affects the cast member
itself--not just its appearance on the stage. As a result, color depth and palette changes
can't be undone. If you want to keep a cast member's original bitmap unchanged but
temporarily apply a different palette, use Cast Member Properties instead. To change
the size of only the sprite on the stage, use Sprite Properties.

The Transform Bitmap dialog box displays values for the current selection. If more than
one cast member is selected, a blank value indicates that cast members in the selection
have different values. To maintain a cast member's original value, leave that value blank
in the dialog box.

Click a dialog box option for more information:

Understanding color palettes
Understanding color depth
Image Options

Size determines the dimensions of the selected cast member. If multiple cast members
are selected, you can resize all the cast members to the dimensions you enter. You can
either enter new measurements (in pixels) in the Width and Height fields, or enter a
scaling percentage in the Scale box.

Check the Maintain Proportions box to keep the width and height of the selected cast
member in proportion. If you change the width, the proportional height is automatically
entered in the Height field.

Color Depth sets the color depth of the selected cast member. A cast member's color
depth is determined at import by the selection set in the import dialog. A movie's color
depth is determined by the cast member with the highest color depth.

You can change color depth to save memory and disk space when you are creating a
color movie. For more information about color depth settings, see Understanding color
depth.

Palette selects the palette for the selected cast member. The palettes listed in the pop-
up menu are the default Director palettes, plus any additional ones found in the casts.
You can create a common palette that contains most of the colors your cast member
needs.

When you use the Transform Bitmap command to remap the color in a cast member,
Director matches the colors of the cast member with similar colors in the new palette.
For example, if the original artwork is red and the closest red available in the new palette
is pink, the red is changed to pink.

If the movie is playing, the active palette is the one that is currently in use at any given
time, as specified in the score. The palette active when you use Transform Bitmap may
be different from the palette used by the movie.

Remap Colors replaces the image's colors with the most similar solid colors in palette
you select from the pop-up menu.

Dither blends the colors in the new palette to approximate the original colors in the
graphic.

Convert to Bitmap command (Modify menu)
This command converts fields to bitmapped cast members. The converted graphic can
then can be edited in the paint window. Once you convert a cast member to a bitmapped
graphic, you cannot undo the change.

You can't convert a shape to a bitmap.

Control menu
Click the name of a menu command for more information:

Play
Stop
Rewind
Step Forward
Step Backward
Loop Playback
Selected Frames Only
Volume
Disable Scripts
Toggle Breakpoint
Watch Expression
Remove All Breakpoints
Ignore Breakpoints
Step Script
Step Into Script
Run Script
Recompile All Scripts

Play command (Control menu) Control+Alt+P

The Play command starts the movie. If you press the Shift key while choosing Play, the
menu bar is hidden and the stage is cleared of all open windows as the movie plays.

Shortcut: The keypad + key toggles between Play and Stop.

 Control Panel

Stop command (Control menu) Control+period (.)

The Stop command halts the movie.

Shortcut: The keypad + key toggles between Play and Stop.

 Control Panel

Rewind command (Control menu) Control+Alt+R

Rewind moves the playback head back to frame 1. If the animation is playing, it also
stops.

Shortcut: Keypad 0 rewinds the movie.

 Control Panel

Step Backward command (Control menu)
Step Backward steps the movie backward one frame at a time.

Shortcut: Keypad 1 or Control+left arrow steps the movie backward.

 Control Panel

Step Forward command (Control menu)
The Step Forward command advances the movie forward one frame. When using the
step recording technique it can be used to record cast members to the next frame of
animation.

Shortcut: Keypad 3 or Control+right arrow steps the movie forward.

 Control Panel

Volume submenu (Control menu)
The Volume submenu specifies the sound level of the movie. Click the menu and choose
a level from 0 (mute) to 7 (loud).

Shortcut: Keypad 7 toggles between sound on and sound off.

 Control Panel

Loop Playback command (Control menu) Control+Alt+L

If selected, the Loop Playback command causes the movie to repeat continuously when
played. When the movie reaches the last frame, it automatically starts again from frame
1. By default, this option is on.

Shortcut: Keypad 8 causes the movie to loop.

 Control Panel

Selected Frames Only command (Control menu)
If selected, Selected Frames Only designates a range of frames that can be played. This
is convenient if you are working on just one part of a movie.

To play a portion of a movie, open the score and select the frames to be played. Choose
Selected Frames Only, make sure loop is turned on, and play the movie.

When a portion of the score has been marked as selected frames, a green bar appears at
the top of the score over the selected frames.

Turn off Selected Frames Only when you want to return to normal play mode.

This command is dimmed if no frames are selected in the score.

 Control Panel

Disable Scripts command (Control menu)
This command lets you ignore scripts during playback. If this command is not selected,
Director executes all scripts during playback. This is the default. If this command is
selected, Director ignores all scripts in the movie during playback.

This command is useful when you want to control whether interactivity is on or off during
playback, or if you want to preview exporting a range of frames as a digital video movie.

Toggle Breakpoint command (Control menu)          Control+Shift+Alt+K

This command inserts and removes breakpoints for the line of Lingo that the script
window cursor is in. Director opens the debugger window whenever it encounters a
breakpoint in Lingo.

When the line of Lingo has a breakpoint, the Toggle Breakpoint command removes it and
when there is no breakpoint it inserts one.

Debugger window

Watch Expression command (Control menu) Control+Shift+Alt+W

The Watch Expression command adds any expressions and variables to the watcher
window that are in the line of Lingo that the script window's text cursor is currently in.
This has the same effect as clicking the Watch Variable button in the script window.

Remove All Breakpoints command (Control menu)
This command removes all breakpoints from the movie's scripts.

Debugger window

Ignore Breakpoints command (Control menu)Control+Shift+Alt+I

This command has Lingo ignore any breakpoints in the movie's scripts as the movie
plays.

Debugger window

Step Script command (Control menu) Control+Shift+Alt+down arrow

The Step Script command runs the current line of Lingo but doesn't run any handlers that
the line calls.

Debugger window

Step Into Script command (Control menu)Control+Shift+Alt+right arrow

The Step Into Script command runs the current line of Lingo and follows Lingo's normal
flow through any handlers called by that line.

Debugger window

Run Script command (Control menu) Control+Shift+Alt+Up arrow

The Run Script command is only available when Lingo has stopped at a breakpoint. Use
this command to restart Lingo.

Debugger window

Recompile All Scripts command (Control menu)Control+Shift+Alt+C

This command recompiles all Lingo scripts and checks them for errors. If a script error is
found, the appropriate script window opens and the error is selected.

If a script window is the active window, Director first saves any unsaved changes in the
current script window and compiles its script before continuing.

Xtras menu
Click a command or submenu for more information:

Update Movies
Filter Bitmap
Auto Filter
Auto Distort

Update Movies command (Xtras menu)
Use the Update Movies command on the Xtras menu to:

Update movies from Director 4.x movies to the latest file format
Remove redundant and fragmented data in movie and cast files
Prevent users from opening movie and cast files.
Batch-process movie and cast files in large projects.

Protecting and compacting with Update movies
Converting Director 4 movies

Click a dialog box option for more information:

Update and Compact

Update and Compact updates movies from Director 4 or later. As it updates movies,
Director consolidates and removes fragmented data. You can also use this option to
compact files from the current version of Director. (To update movies from older versions,
you must first convert them to the Director 4 file format.)

Protect

Protect makes a movie or cast uneditable. It prevents users from opening the movie or
cast and making changes. Protect compacts the movie in the same way as Update and
Compact, but it makes the movie even smaller by removing lingo script text and
thumbnails. Once a movie is protected, there is no way to "unprotect" it, so be sure to
keep an unprotected copy.

Back Up Into Folder

Back Up Into Folder specifies that the original files should be placed in a selected folder.
Click Browse to select the folder for the original files. To avoid overwriting old backups,
you should choose a new folder each time you run Update Movies.

Delete

Delete specifies that the original files should be overwritten by the newly updated files.
Be very careful using this option, especially if you are protecting files. Once a file is
protected, you cannot open it in Director.

Filter Bitmap command (Xtras menu)
The Filter Bitmap command displays all the filters you have installed as Xtras. Filters are
plug-in image editors that apply effects to bitmapped images. You can also install Adobe
Photoshop and Premiere.

Filter Bitmap Dialog options

Categories displays the categories of available filters. These categories are defined by
the filters themselves. When you select a category, the filters in that category appear in
the Filters list to the right. Choose All to view filters in all categories.

Filters displays all the filters in the current category.

Filter button activates the current filter and opens the filter controls.

Applying a filter to a bitmapped cast member
Installing Xtras

Auto Filter command

Auto Filter command (Xtras menu)
Use Auto Filter to create dramatic animated effects with filters. Auto Filter applies a filter
incrementally to a series of cast members. You can use it either to change a range of
selected cast members, or to generate a series of new filtered cast members based on a
single cast member. You define a beginning and ending setting for the filter, and then
Auto Filter applies an intermediate filter value to each cast member.

For example, if a filter converts an image to look as if it is breaking apart like glass, you
can apply it to a cast member with Auto Filter and create a series of ten cast members.
The first would show the pieces just coming apart and the last would show the pieces
completely fragmented. You could then show the image breaking apart in an animation.

Click a dialog box option for more information:

Auto Filter generates new cast members and places them in empty positions following the
cast member you selected. If you selected a range of cast members, no new cast members
appear, but the cast members in the range you selected are changed incrementally.

 Installing Xtras.
Using Auto Filter

Categories displays the categories of available filters. These categories are defined by
the filters themselves. When you select a category, the filters in that category appear in
the Filters list to the right. Choose All to view filters in all categories.

Filters displays all the filters in the current category.

Set Values:
Start defines the filters settings of the first cast member to be filtered.
End defines the filter settings for the last cast member to be filtered.

Create _ New Cast Members defines the number of new cast members that will be
created. This option is not available if you select a range of cast members.

Filter activates the current filter and opens the filter controls.

Auto Distort command (Xtras menu)
The Auto Distort command automatically generates in-between positions for any cast
member that is free rotated, made into a perspective, slanted, distorted, or stretched.
After artwork has been altered with one of these five effects, and before you deselect the
artwork, choose Auto Distort, and enter the number of in-between cast members in the
Create New Cast Members field in the Auto Distort dialog box. The new cast members
are placed in the next available cast member positions.

For a rotated bitmap image, Auto Distort uses the center of the image as the rotation
point. Consequently, you will have to use the paint window's registration tool to reset the
registration point of each in-betweened cast member created by the Auto Distort
operation.

Using registration points

Use the Auto Distort command in conjunction with Rotate Left, Rotate Right, Free Rotate,
Perspective, Slant, or Distort (buttons in the Effect toolbar) to quickly create a number of
cast members in between the artwork you selected and the artwork that has been
changed. Auto Distort also works with artwork that is stretched or squeezed in the paint
window.

Director 5.0 includes many new features in response to user requests:

Anti-aliased text support
Font dialog box
Paragraph dialog box
Text Inspector
Importing text

Multiple casts
Cast Properties dialog box

Grid on stage
Alignment
Photoshop filter support
Importing at different color depths

Xtras

New Lingo elements
Lingo that has changed in 5.0
Lingo that is outdated

Debugger window
Watcher window
Script window enhancements

Director 5.0 includes many new features in response to user requests:

Anti-aliased text support
Font dialog box
Paragraph dialog box
Text Inspector
Importing text

Multiple casts
Cast Properties dialog box

Grid on stage
Alignment
Photoshop filter support
Importing at different color depths

Xtras

New Lingo elements
Lingo that has changed in 5.0
Lingo that is outdated

Debugger window
Watcher window
Script window enhancements

Click a category for more information:

Shortcut menus

File menu shortcuts
Edit menu shortcuts
View menu shortcuts
Insert menu shortcuts
Modify menu shortcuts
Control menu shortcuts
Window menu shortcuts

Stage shortcuts
Cast window & cast editor shortcuts
Paint window shortcuts

Click a category for more information:

Shortcut menus

File menu shortcuts
Edit menu shortcuts
View menu shortcuts
Insert menu shortcuts
Modify menu shortcuts
Control menu shortcuts
Window menu shortcuts

Stage shortcuts
Cast window & cast editor shortcuts
Paint window shortcuts

Shortcut menus
Director supports shortcut menus throughout the user interface.

To display a shortcut menu, right-click a sprite or cast member, or in any window. A menu
of commonly used commands is displayed.

File menu shortcuts
Command Shortcut
__

New Movie Control+N
New Cast Control+Alt+N
Open Control+O
Close Control+F4
Save Control+S
Import Control+R
Export Control+Shift+R
Page Setup Control+Shift+P
Print Control+P
General Preferences Control+U

Exit Alt+F4

Edit menu shortcuts
Command Shortcut
__

Undo Control+Z
Repeat Control+Y
Cut Control+X
Copy Control+C
Paste Control+V
Clear Delete
Duplicate Control+D
Select All Control+A
Find Text Control+F
Find Handler Control+Shift+;
Find Cast Member Control+;
Find Selection Control+H
Find Again Control+Alt+F
Replace Again Control+Alt+E
Exchange Cast Members Control+E

View menu shortcuts
Command Shortcut
__

Next Marker Control+right arrow
Previous Marker Control+left arrow
Zoom In Control++
Zoom Out Control+-
Show Grid Command+Shift+Alt+G
Snap to Grid Control+Alt-G

Insert menu shortcuts
Command Shortcut
__

Insert Frame Control+]
Remove Frame Control+[

Modify menu shortcuts
Command Shortcut
__

Cast Member Properties Control+I
Cast Member Script Control+' (apostrophe)
Sprite Properties Control+Shift+I
Sprite Script Control+Shift+' (apostrophe)
Movie Properties Control+Shift-D
Movie Casts Control+Shift+C
Font Ctrl+Shift+T
Paragraph Control+Shift+Alt+T
In-Between Control-B
In-Between Special Control-Shift-B
Bring to Front Control+Shift+Up arrow
Move Forward Control+Up arrow
Move Backward Control+Alt+Down arrow
Send to Back Control+Alt+Shift+Down arrow
Align Control-K
Tweak Control-Shift-K

Control menu shortcuts
Command Shortcut
__

Play Control+Alt+P
Stop Control+period (.)
Rewind Control+Alt+R
Step Backward Control+Option+left arrow
Step Forward Control+Option+right arrow
Loop Playback Control+Alt+L
Volume: Mute Control+Alt+M
Toggle Breakpoint F9
Watch Expression Shift+F9
Ignore Breakpoints Alt+F9
Step Script F10
Step Into Script F8
Run Script F5
Recompile All Scripts Control+Shift+Alt+C

Window menu shortcuts
Command Shortcut
__

Toolbar Control+Shift+Alt-B
Tool Palette Control+7
Text Inspector Control+T
Stage Control+1
Control Panel Control+2
Markers Control+Shift+M
Score Control+4
Cast Control+3
Paint Control+5
Text Control+6
Field Control+8
Color Palettes Control+Alt+7
Video Control+9
Script Control+0
Message Control+M
Debugger Control+`(back single quote)
Watcher Control+Shift+`(back single quote)

Stage shortcuts
Action Shortcut
__

Open cast member editor Double-click sprite
Open paint window Control+5
Inks pop-up Control+click
Toggle record light on and off Alt-click
Real-time record Control-Spacebar-drag sprite on the stage
Display shortcut menu for selection right-click
   

Score window shortcuts
Action Shortcut
__

Duplicate selected cells Alt+drag
Open cast editor for selected sprite Double-click cast thumbnail
Select entire range of a cast member Double-click cell with a sprite in it
Select channel Double-click channel number
Select multiple channels Double-click channel number and drag up or down
Toggle record light Alt+click channel number
Move playback head to end of movie Tab
Move playback head to beginning Shift+Tab
      of movie
Move playback head to beg/end Control+Shift+left/right arrow
Open settings dialog box Double-click tempo, palette, or transition channel
Go to next marker comment Control+right arrow
      (or jump 10 frames)
Previous marker comment Control+left arrow
    (or back 10 frames)
Shuffle backward Control+up arrow
Shuffle forward Control+down arrow

Cast window & cast editor window shortcuts
Action Shortcut
__

Open cast member editor Double-click a paint, text, palette or script cast
member or select the cast member and press Return

Cast member script Control+' (apostrophe)
Switch selected cast member Alt+double-click thumbnail
      with score selection
Display cast member info Control-click cast thumbnail
Open script in new window Alt+Script button
Place button Control+Shift+L (places selected cast member in

center of stage)
Cast to Time (Option-Place button) Control+Shift+Alt+L
*Add button (new cast member) Control+Shift+A
*Left arrow (previous cast member) Control+left arrow
*Right arrow (next cast member) Control+right arrow
* same function, in a new window Alt+left/right arrow
Scroll up/down one window Page up, Page down
Scroll to top left of cast window Home
Scroll to show last occupied End
      cast member
Type-select by cast member Type number.

Paint window shortcuts
Action Shortcut
__

Undo                              ~ (tilde)
Next/previous cast member                                  Keypad left/right arrow keys
Turn selected tool into    D key, while pressed
      foreground eyedropper
Turn selected tool                          Shift-D key
      into background eyedropper
Turn selected tool into destination Alt+D key
        eyedropper
Turn selected tool into hand tool Spacebar, while pressed
Nudge selection rect. or lasso selectionKeypad arrows with selection rectangle or lasso
Change airbrush size (while painting) Keypad up/down arrows with airbrush selected
Change airbrush flow (while painting) Keypad left/right arrows with airbrush selected
Change foreground color (not painting) Keypad up/down arrows, all tools
Change background color (not painting) Shift-keypad up/down arrows, all tools
Change destination color (not painting)Alt+keypad up/down arrows, all tools
Draw border w/current pattern Alt+shape or line tools
Select background color Shift-eyedropper
Select destination color Alt+eyedropper
Toggle between custom and Alt+click pattern
      grayscale patterns
Polygon lasso Alt+lasso
Duplicate selection Alt+drag
Stretch Control+drag
Draw with background color Alt+pencil tool
Open Gradient Settings dialog box Double-click paintbrush, rectangle,
      and set ink to gradient paint bucket, or polygon tool
Open Air Brush Settings dialog box Double-click airbrush
Clear visible part of window Double-click eraser
Open color palettes window Double-click foreground, background, or destination

color chip
Open Pattern Settings dialog box Double-click pattern chip
Open Brush Settings dialog box Double-click paintbrush
Open Paint Window Preferences Double-click line width selector
Open Transform Bitmap dialog box Double-click color resolution indicator
Toggle Zoom in/Zoom out Control+click in window or double-click pencil tool

Window menu
The commands in the Window menu open and close Director's authoring windows. Open
windows have checkmarks next to their names.

Click the name of a menu command or submenu for more information:

New Window
Toolbar
Tool Palette
Text Inspector
Memory Inspector
Stage
Control Panel
Markers
Score
Cast
Paint
Text
Field
Color Palettes
Video
Script
Message
Debugger
Watcher

Director automatically hides all open windows if you choose Stage from the Window
menu.

New Window command (Window menu)
The New Window command duplicates the front-most window and its contents, creating
another view of it. This command only works if a text, cast, digital video, or script window
is the front-most window.

Duplicating a window is useful if the window's contents are large and you want to look at
or edit different sections of the window simultaneously. It is especially useful for viewing
several casts at once. Changes you make in the window are automatically reflected in all
other views of the same window.

Shortcut:    Press Alt while choosing a text, digital video, script, cast, or field window
from the Window.

Toolbar    (Window menu)          Control+Shift+Alt+B

The buttons on the toolbar provide shortcuts for common commands and functions.

The Toolbar command on the Window menu shows or hides the toolbar underneath the
menu bar. Click a tool for more infomation:

New Movie Rewind
New Cast Stop
Open Play
Save Cast window
Print Score window
Import Paint window
Undo Text window
Cut Script window
Copy Message window
Paste
Find Cast Member
Exchange Cast Members
In-Between
Align

Tool palette (Window menu) Control+7

 Click a tool shown at the left for more information.

Text, shapes, and buttons you create with tools appear as cast members in the
cast window and the score window.

Shapes are QuickDraw graphics, not bitmaps.

Shapes print better than bitmaps, but they animate more slowly.

Understanding shapes and bitmaps
Creating shapes

Selection (arrow) tool
The selection tool is a standard selection arrow.

Text tool
The text tool creates text cast members directly on the stage. Click the text tool and
then drag to define the area on the stage where you want text. When you release the
mouse button, a text insertion point appears in the area you just defined and you can
begin entering text. The new text cast member is placed in the first available position in
the current cast. The sprite is placed in the first open score cell in the current frame.

Click the arrow to select text that is already on the stage. You can change the color of
selected text using the foreground and background color chips in the tools window.

To edit the text cast member on stage, click once to select and move the sprite or double-
click to edit the text. Click and drag the handles to change the size of the text box. Add the
onstage ruler and define tab settings in the text box by choosing Ruler from the View menu.
When you make a change, Director updates all instances of the text cast member.

The text tool is an alternative to the text window for creating text. The Text window is
faster and more convenient for working on substantial amounts of text.

You can use Sprite Properties in the Modify menu to change or determine the size,
location, or blend of a selected sprite. Any changes to a sprite's properties only affects
the sprite's appearance on the stage and does not alter the actual properties of the cast
member.

Understanding text and fields
Text Inspector
Font
Paragraph

Line tool
Click the line tool and drag it across the stage to draw. You can choose the color for the
line with the foreground and background pop-up that appears when you click the color
chips. The width of the line tool is controlled by the line width selector at the bottom. The
line tool is constrained to horizontal, vertical, or 45-degree lines with the Shift key.

Understanding shapes and bitmaps

Shape tools
Click the tools on the right to draw an outline of the selected shape or on the left to draw
shapes with a solid color or pattern.

Choose the color for the shape with the foreground and background palettes that appear
when you press on the color chips.

Use the pattern chip to select the current pattern. Use the line width selector at the
bottom of the tools window to control the thickness of the borders of the shape tools.

Understanding shapes and bitmaps
Creating shapes
Shape Cast Member Properties

Field tool
The field tool creates field cast members directly on the stage. Click the field tool and
then drag to define the area on the stage where you want the field.

Use fields for creating user-editable text in movies or text that you want to format with
Lingo. Use the text tool to create all other types of text.

Understanding text versus fields
Field window
Text window

Button tools
Director provides three tools for creating buttons, checkboxes, and radio buttons. Click
the checkbox tool, button tool, or radio button tool and drag a rectangle on the stage to
create the button. Then type the text that you want to appear on or next to the button.
Set the font, style, and size. The button is placed in the cast as a button cast member.
You can edit the button's text on the stage or in a text window.

Buttons do not perform any special function until you write a Lingo script for them.

Button Cast Member Properties

Foreground and background color chips
The foreground and background color chips in the tool palette set the color of text,
shapes, and sprites.

To set the color for a sprite, select the sprite in the score or on the stage and choose a
new foreground color using the foreground color chip, or a new background color using
the background color chip.

To set the color of text, select the text you want to change and then choose a text color
using the foreground color chip. To set the text's background color, choose a color using
the background color chip.

If you apply color to a 1-bit cast member, Director changes the color of the sprite on the
stage but does not change the color of the actual cast member, which remains black and
white.

Pattern Settings
The pattern selector lets you select the current pattern for a shape tool. It also provides
access to the Tile Settings and pattern settings dialog box.

Line width selector
Lets you select the current width of the line tool, or the border for a shape tool.

Text inspector (Window menu) Control+T

The text inspector is a floating window that provides tools to edit text cast members
directly on the stage. The tools are shortcuts for the formatting options in the
Paragraph and Font dialog boxes.

Font pop-up is used to choose any font in your system.

Bold, italic, underscore buttons apply character formatting to selected text.

Size specifies the font size. Choose a size from the pop-up menu, or enter a size in the field.
You may need to adjust the line spacing.

Line spacing displays the line spacing in points. Click the up and down arrows to change
the setting, or enter a value in points.

Alignment aligns selected paragraphs, left aligned, centered, right aligned, or fully justified.

Memory inspector (Window menu)
The memory inspector displays information about how much memory is available to
Director for your movie. It also indicates how much memory different parts of the current
movie use and the total disk space the movie occupies.

Total Memory shows you the total memory available in your system. This number
depends on the amount of RAM installed on your computer and any virtual memory
that's available.

Physical Memory indicates the memory the amount of RAM available on your
computer.   

Free Memory indicates how much more memory is currently available in your system.

Other Memory indicates the amount of memory taken up by Windows, by
DIRECTOR.EXE, and by other applications.

Used by Program indicates the amount of memory used by Director(excluding the
amount of memory taken up by DIRECTOR.EXE).

Mattes & Thumbs shows how much memory is used by cast members that use the
Matte ink in the score and by thumbnail images in the cast window.

Cast & Score indicates the amount of memory used by the cast members in the cast
window and the notation in the score window. Cast members include all the artwork in
the paint window, all the text in the text windows, and any sounds, palettes, buttons,
digital video movies, or linked files imported into the cast and currently loaded into
memory.

Screen Buffer shows how much memory Director reserves for a "working area" while
animating on the stage.

Memory Limit indicates the memory limit assigned to Director in the Limit Memory Size
to box of the General Preferences dialog.

Total Used indicates how much RAM is being used for a movie.

Purge button removes all purgeable items from RAM, including all thumbnail images in
the cast window. All cast members that have Unload (purge priority) set to    a priority
other than "0-Never" (as specified in the Cast Member Properties dialog box) are
removed from memory. This is useful for gaining as much free memory as possible
before importing a large file. Edited cast members don't get purged.

Stage (Window menu)            Control+1

The stage is the backdrop for all Director movies. Set the size of the stage with the Movie
Properties command on the Modify menu. In most cases, the edges of the stage window
extend to the edges of your screen, so you can use all of the monitor for your movie.
Movies continue to play on the stage when other windows are open and active. This
permits you to study the movie in the score, for example, while keeping an eye on the
stage.

The Stage command in the Window menu brings the stage to the front of the screen. It
temporarily hides all open windows. To open a menu just click and hold.

Resizing sprites on the stage

Movie Properties command (Modify menu)

Control Panel (Window menu)            Control+2

The control panel has controls similar to a VCR. Use it to Play, Stop, Step Forward or
Backward, or Rewind your movie. The control panel is also used to loop animation, set
tempo, and turn sound on and off. The control panel indicates the current frame number,
the current tempo, and the actual duration of the current frame.

Choose Control Panel from the Window menu to show or hide the control panel. The
control panel buttons have corresponding commands on the Control menu.

Click part of the control panel for more information:

Click the name of a control panel indicator for more information:

Frame counter
Tempo display
Actual tempo display

Frame counter (control panel)

The frame counter displays the number of the frames currently on the stage. To go to a
specific frame number, click the field, type a frame number, and press Enter.

Tempo display (control panel)

The tempo display shows the tempo of the current frame. You can view the tempo in either
FPS (Frames Per Second), or SPF (Seconds Per Frame). Click the tempo mode button and
choose the mode you want from the pop-up menu. Seconds per frame measures the
duration of a frame in milliseconds.

To change the tempo, click or press the up or down arrow next to the tempo indicator. To use
a specific tempo, click into the tempo display area, type a tempo, and press Enter. If you are
entering a tempo in frames per second (FPS), you must enter a whole number. If you are
entering a tempo in seconds per frame (SPF), you must type a decimal (.) before entering a
value.

The tempo displayed is the tempo defined for the current frame, but the actual tempo may
be different. Director attempts to play the movie at the specified tempo setting, but the
speed of the computer and the complexity of the movie also affect the tempo. Use the
actual tempo display to determine the real tempo of the movie.

If there are no tempo settings in the tempo channel, the control panel displays the
default tempo. (If there is a tempo setting in the tempo channel, the control panel
displays the tempo of the current frame.)

You should always enter a tempo setting in the first frame in the tempo channel.

Related topic: Actual tempo display

Actual tempo display (control panel)

While a movie is playing, the actual tempo display shows how fast the movie is going. Click
the actual tempo mode button and choose a mode for viewing the tempo from the pop-up.
There are four different modes:

FPS (Frames Per Second) shows the actual duration of the previous frame in frames
per second (FPS), including the time necessary to execute any Lingo scripts except Exit
Frame scripts. If the movie is stopped, the display shows the duration of the current frame.
Frames that don't have a recorded tempo value display "--" instead of a value for the actual
tempo.

SPF (Seconds Per Frame) shows the duration of the current frame in milliseconds.
Running Total provides a quick summary of elapsed seconds from the beginning of

the movie to the current frame.
Estimated Total provides a more accurate but slower calculation of elapsed time. It is

useful if you want to include transitions and palette changes in determining frame durations.

Computing estimated frame durations can reduce playback speed, so don't leave the
Actual display in Estimated Total mode.

If the movie is locked (using the Lock Frame Durations option in the Movie Properties
dialog box), the Actual display shows the previously recorded frame durations.

Clear all recorded frame durations from the movie if you want to record frame
durations for a section of the movie and lock them. To clear all recorded frame durations,
press Alt while clicking the Lock option in the Movie properties dialog. During playback,
frames that don't have a recorded duration instead display "--" .

Since not all computers are equally fast, you can step through the movie frame-by-
frame and compare the actual frame durations to the tempos you've set for the movie. To
find frames that have longer durations than the current tempo, set both the Tempo and
Actual displays to show seconds per frame (SPF); then step through the range of frames, and
look for any frame whose actual duration is longer than the current tempo.

Tempo display

Markers window (Window menu)            Control+Shift+M

The markers window lets you write comments associated with markers you set in the score.
For example, a Director animation can have staging or acting directions, storyboard scripts,
or speaker's notes written in the markers window and tied to specific frames in the score. A
storyboard, transparencies, or handouts can be printed that include pictures of selected
frames of your movie along with the comments written in the markers window. Double-
clicking a marker in the score opens the markers window to the comment associated with
that frame.

Once you've labeled a frame in the score, use the marker name in your scripts. This is
important because references to frame numbers may become invalid if you insert or delete
frames in the score. Marker names remain constant no matter how much you edit the score.

The left column of the markers window displays the marker names from the score
window. Clicking a marker name or clicking the left or right arrow in the markers window
moves the playback head to the selected marker location in the score window, and
displays the comments associated with the marker in the markers window.

To enter a comment, click a marker name to select it. You can then enter your comments
beginning at the insertion point that appears in the right column of the markers window.
By default, the marker name appears as the first line of text in the right column. If you
edit the marker name, your changes are also reflected in the score window. If you don't
want to edit the marker name, press Enter to start a new line, and enter your comments
on the new line.

Next Marker (View menu) and Previous Marker (View menu)

Score window (Window menu)            Control+4

Click an element for more information or click a name of part of the score window:

    Script preview button
    Trails checkbox
    Script pop-up
    Moveable checkbox
    Ink pop-up
    Editable checkbox
    Display pop-up
    Selecting cells
    Moving selections within the score
    Moving around the score
    Applying color to cells
    Step-recording in a channel
    Real-time recording in a channel
    Turning a channel on and off

The score window contains the notation that describes your movie and is the primary
tool for creating and editing animation. The score window contains a record of everything
that happens on the stage.

Cells (score)
The smallest unit in the score is a cell. Each cell contains information about one cast
member at one point in time, called a sprite. When you select a cell, a small image of the
sprite that occupies that cell appears in the upper left corner of the score window.
Double-click the sprite's image to open a window in which you can edit the cast member.

Frames (score)
A frame contains information about everything you see on the stage when you stop a
movie at the moment that corresponds to the frame. Like a frame in a movie, a Director
frame shows what each sprite is doing on the stage at one point in time. Each frame is
numbered.

Special effects channels (score)
A channel is a row of frames. The first five rows, called channels, keep track of special
effects for each frame:

Tempo
Palette
Transition
Sounds (two channels)
Script.

Sprite channels (score)
A channel is a row of frames. Each sprite channel (located below the tempo, palette,
transition, sound, and script channels) describes the state of one cast member through
all the frames in the movie.

The order of sprites in the 48 animation channels determines which sprites appear in the
foreground and which appear in the background. Think of the stage as a pile of
transparent sheets, 48 sheets thick. The sprite that occupies a channel closer to the top
of the score is like the object drawn on the last sheet of acetate. It appears behind any
sprite in a channel closer to the bottom of the score.

Sprites in channels closer to the bottom of the score appear in front of, or take priority
over, those in channels closer to the top of the score.

Markers (score)
Markers help you coordinate the comments in the markers window with specific frames
of your movie or to identify frames of your movie for printing. You can drag any number
of markers from the left side of the score window and position them in any frame. Use
this feature to add comments, speaker notes, or storyboard notes to specific frames of
animation.

When you position a marker in the score, an insertion point appears to the right of the
marker so you can type a short comment for that marker. Use the Markers window to
review and edit marker comments.

Special effects channel toggle (score)
Displays and hides the special effects channels (tempo, palette, transition, sound, and
script) of the score.

Cast member preview (score)
Displays a small preview of the cast member for the selected sprite in the score.

Shuffle forward/backward buttons (score)
Moves the selected cell or cells up or down a channel.

Jump button (score)
Moves the view of the score to the position of the playback head.

Channel playback toggle (score)
Click this diamond-shaped toggle to turn a channel on or off.

Turning a channel off tells Director to ignore the channel during playback. By default, no
channels are ignored (i.e., all channels are active). Clicking the button next to a channel
turns the channel off, causing Director to ignore that channel when you play the movie.

If you turn the script channel off, Director ignores all scripts during playback. (This is the
same as checking the Disable Scripts command in the Control menu.)

Display pop-up menu (score)
The Display pop-up lets you change the type of information displayed in each cell of the
score. It is located in the lower left corner of the score window. Use it to view different
types of notation in the score. By default, the score displays cast member notation.

Display submenu (View menu)

Cast member display notation

The cast display depends on how you have chosen to view cast members in the selected
cast window using the Cast Preferences command on the File menu. If the cast window
displays cast members by decimal number, or by Number:Name, the cast display shows
the last two digits of the cast member's position number. If the cast window displays cast
members by name, the cast display shows the first two letters of the cast member's
name, if a name exists for that cast member.

Script display notation

The script display shows the number of the script associated with each sprite. Each script
has an identifying number associated with it. Sprites without scripts display 00. Sprites
with cast member scripts display a plus (+) sign in the cell.

Motion display notation

The motion display shows the direction of the cast member's movement on stage and
whether or not a new cast member appears in that cell.

Ink display notation

The ink display indicates which ink effect has been applied to each sprite.

Ink popup menu

Blend display notation

The blend notation shows the blend percentage that's applied to the sprite. Choose
Sprite Properties in the Modify menu to set the blend display notation.

Extended display notation

The extended display enlarges the score and displays all the sprite information at once.

Select Score Preferences from the File menu to choose the information you want to
appear in the extended display.

If you choose to view cast members by name in the cast, the extended display shows the
first few letters of the cast member's name instead of the cast member's number.

Notation in the tempo channel is determined by the settings specified in the Frame
Tempo dialog box.

Notation in the palette channel is determined by the settings specified in the Frame
Palette dialog box.

Notation in the transition channel is determined by the settings specified in the
Frame Transition dialog box.

Script preview button (score window)

The script preview button displays the first two lines of the script associated with one or
more selected cells in the Script channel. If the selection has no script associated with it, the
Script preview button is blank. Clicking the Script preview button opens a new script window.

To hide the Script pop-up menu and the preview button, click the show/hide script button.

Script pop-up menu (score window)

The script pop-up menu lists all the frame and sprite scripts used in the current movie. The
script pop-up menu displays the script number associated with a selected frame in the script
channel. If the selected cell has no script associated with it, the pop-up menu is blank. You
can use this pop-up menu to assign existing scripts to areas of the score. Select the cells you
want to apply the script to; then choose the script you want from the script pop-up menu.

Choose New Script to create a new score script. Choose Clear Script to remove the script
from the selected cell or just the delete the cell.

Script window
Script Properties
Types of Scripts
Writing Scripts

Ink pop-up menu (score window)
You apply ink to sprites to change the way they appear on the stage. The Ink pop-up
menu also indicates the current ink applied to selected sprites in the score.

The best way to see how each of the following ink effects work is to play the sample
movie Ink Effects on the Director CD.

Copy is the default ink and is useful for backgrounds or for sprites that do not appear in
front of other artwork. If the cast member is not rectangular, a white box appears around
the sprite when it passes in front of another sprite, or is displayed on a non-white
background. Sprites with the Copy ink animate faster than sprites with any other ink.

Matte removes the bounding box (rectangular area) around a sprite. Artwork within the
boundaries is opaque. Matte functions much like the lasso in the paint window, in that
the artwork is outlined rather than enclosed in a rectangle. Matte, like Mask, uses more
memory than the other inks, and sprites with this ink animate more slowly than other
sprites.

Bkgnd Trans. makes the pixels in the background color of the selected sprite appear
transparent and permits the background to be seen. This effect uses more memory and
may make your sprite animate more slowly.

Transparent makes all colors transparent so you can see the artwork through it.

Reverse reverses overlapping colors. A pixel that was originally white becomes
transparent and lets the background show through unchanged. Reverse is good for
making custom masks.

Ghost is useful for reversing black and white. When it is applied to the foreground sprite,
any black pixel turns the pixel beneath it white. Anything white becomes transparent.

Not Copy, Not Transparent, Not Reverse, and Not Ghost are variations of the above
four effects. The foreground image is first reversed, then the Copy, Transparent, Reverse,
or Ghost inks are applied. These are good for odd effects. Like Transparent, the Not
Transparent ink is good for reversing black and white. Just choose Not Transparent, select
a white fill, then draw a rectangle on stage on top of the artwork you want to reverse.

Mask ink allows you to define exactly what parts of a sprite are transparent and opaque.
For mask ink to work, you must place a 1-bit "mask" cast member in the cast window
position immediately following the cast member to be masked. The black areas of the
mask make the sprite opaque and the white areas make the sprite transparent. This ink
is especially useful for sprites in which you want some white areas to be transparent, and
some opaque.

For example, to show a white car you would want the white body of the car to be opaque
and the windows to be transparent. To create a mask, make a copy of the car in the next
cast position, convert it to 1-bit color depth with the Transform Bitmap command, and
then fill in the body of the car with black. In the score, apply Mask ink to the sprite of the
car. The body of the car becomes opaque and the windows transparent.

Blend ensures that the sprite uses the blend percentage specified in the Sprite
Properties dialog box.

Darkest compares pixel colors in the foreground and background, and uses whichever
pixel color in the foreground or background is darkest.

Lightest compares pixel colors in the foreground and background, and uses whichever
pixel color in the foreground or background is lightest.

Add creates a new color that is the result of adding the color value of the foreground
sprite with the color value of the background sprite. If the value of the two colors
exceeds the maximum color value, the addition wraps around the color scale.

Add Pin is similar to Add. The foreground sprite's color is added to the background
sprite's color, but the value of the new color cannot exceed the maximum color value.

Subtract subtracts the value of the foreground sprite's color from the value of the
background sprite's color to arrive at the new color. If the color value of the new color is
less than the minimum color in the color scale, the new color is determined by wrapping
around and starting at the top of the color scale.

Subtract Pin subtracts the color value of the foreground sprite from the value of the
background sprite. The value of the new color does not wrap around the color scale.

Mask and Matte use twice the memory of any other ink because Director has to internally
create a duplicate of the artwork.

About score window inks

Trails checkbox (score window)

If Trails is checked, the selected sprite remains on the stage, leaving a trail of images along
its path as the movie plays. If Trails is unchecked, the selected sprite is erased from previous
frames as the movie plays. The checkbox also reflects the current selection.

Moveable checkbox (score window)
This option is only available if you select one or more cells in the sprite channels in the
score. If Moveable is checked, users can move the selected sprite(s) around on the stage
during playback and in projectors. If checked, the moveable setting is in effect only when
the playback head is executing those frames that contain the moveable sprites. The
checkbox also reflects the current selection.

The Moveable checkbox displays a dash (-) if the current selection includes sprites that
don't all have the same setting.

Editable checkbox (score window)
This option is only available if you select one or more field sprites. If Editable is checked,
users can edit the selected field sprites on the stage during playback. This option is
convenient for making a field sprite editable in some frames, and noneditable in others.
You can turn this setting off when it is no longer required. If checked, the editable setting
is in effect only when the playback head is executing those frames that contain the
editable sprites. The checkbox also reflects the current selection. If the current selection
includes sprites that don't all have the same setting, the Editable checkbox displays a
dash (-).

You can set a field cast member to always be editable using the Field Cast Member
Properties dialog box. If you set a field cast member to be editable in the cast, it is
always editable when used in the score. Director ignores the score's Editable checkbox
setting for the cast member.

Using the Lingo statement set the editable of sprite to TRUE is the same as
checking the Editable checkbox in the score.

Cast window (Window menu)            Control+3

The cast window displays the cast members in the current cast. A cast is a database of
graphics, sounds, color palettes, Lingo scripts, buttons, transitions, digital video movies,
and text used in a Director movie.

Click on part of the cast window for more information:

Click a topic for more information:

Cast window positions and thumbnails
Understanding internal and external casts
Placing cast members on the stage
Placing cast members over time
Dragging cast members to the score
Moving cast members between casts
Creating a digital video cast member
Cast Preferences
Cast Properties

Viewing multiple casts

You can open as many cast windows as you need to display the different casts in your
movie, or you can select a different cast for display in the current window.

To open a new cast window for a particular cast in the current movie, choose Cast
from the Window menu and then select the name of the cast from the submenu.

To open a new cast window for the current cast, make a cast window active and then
choose New Window from the Window menu.

 To change the cast displayed in a cast window, click the cast selector and choose the cast
you want to display from the pop-up.

The cast window title bar indicates whether a cast is internal, external linked, or external
unlinked.

Cast window size

A movie's cast can contain up to 32,000 cast members. You control the row width and
the number of visible rows using Cast Preferences in the File menu.

Selecting cast members

Clicking any cast member selects it. Select a range of cast members by Shift-clicking.
Control-click selects multiple non-adjacent cast members. Individual cast members can
be cut, copied, pasted, or cleared from the cast window.

Cast window positions and thumbnails
Each cast member position is identified by a number and, optionally, a name. For every
occupied position in the cast window, a thumbnail image is displayed that represents the
cast member's type.

Note: Thumbnail images for Xtra castmembers vary.

Cast members with scripts display a script indicator icon in the lower left corner. To
control whether or not Director displays a script indicator icon in the cast, use the Show
Cast Member Script Icons checkbox in the Cast Preferences dialog box.

Double-clicking a cast member is a shortcut for opening the paint window for a graphic
cast member, the text window for a text cast member, the color palettes window for a
palette cast member, the script window for a script cast member, and the digital video
window for a digital video cast member. Alt-double-clicking is a shortcut for opening the
cast member in a new window.

Cast selector

Use the cast selector to select which cast is displayed in the current cast window. You can
choose between any internal cast or external cast linked to the current movie. You can
also choose New Cast to create a new cast.

To open a new cast window, make sure a cast window is active and then choose New
Window from the Window menu.

Place button

This button lets you move the selected cast members to the stage or score, or move it
within the cast. When cast members are moved within the cast window, the score
window is updated with their new position. When you press and hold down this button,
the cursor changes to an open hand to let you drag one or more selected cast members.
Using this button is the same as clicking and dragging a selected cast member in the
cast window. Use this button to move selected cast members that may not currently be
visible in the cast window, if you've scrolled to a new location.

To use the Place button to move a cast member to a new location within the cast window:
1. Select the cast members you want to move.
2. Scroll to the new location in the cast window where you want to insert the selected

cast member.
3. Drag from the Place button to the new location in the cast window. As you drag within

the cast window, a blinking insertion bar indicates the location where the cast
member will be inserted.

4. Release the mouse to insert the selected cast member at the new location.

Previous, Next arrows

These arrows let you navigate to the previous or next cast member, skipping over empty
cast members.

Shortcut The keyboard equivalents are:
Previous - Control+Shift+left arrow
Next - Control+Shift+right arrow.

Cast Member Properties button

Cast Member displays the Cast Member Properties dialog box for the selected cast
member. If the selection consists of more than one cast member, the dialog box displays
the number of cast members selected, their total size, and purge priority.

Shortcut: Control+I also opens the Cast Member Properties dialog box.

Open Script button

Opens a new script window or makes an existing script window active for the selected
cast member, or for the first selected cast member if more than one are selected. If the
selected cast member has no script associated with it, clicking this button opens a new
script window, creating a script for the cast member. This is the same as clicking the
Script button in the Cast Member Properties dialog box.

Shortcut:    Pressing Control+' (apostrophe) is the same as clicking this button.

Cast member number

Cast Member number displays the position of the selected cast member in the cast
window or the position of the first selected cast member in a multiple selection.

When the cast window is front-most, typing the number of an existing cast member
automatically scrolls the cast window to the cast member's location and selects it. After
you've stopped typing the cast window will scroll to show the new selection.

Cast member name

Cast Member name displays the name of the selected cast member, or the first selected
cast member in a multiple selection. Click and type into the name area to enter or edit
the name of a cast member. Press Enter to confirm your changes.

Paint window (Window menu)            Control+5

The paint window has a complete set of paint tools and inks you can use to create and
edit bitmapped cast members for your movies.

Paint Window Preferences
Bitmap cast member properties
Onion Skin command (View menu)
Understanding onion skinning

Click on part of the paint window illustrated below or to the left for more information:

   

Click a topic for more information:

Paint window tools
Ink pop-up menu
Gradient destination color chip

Foreground color chip
Background color chip
Gradient Settings

Pattern chip

Tile Settings
Line width selector
Color resolution indicator

Paint toolbar

Creating a new bitmap cast member
Using rulers
Zooming in and out
Selecting colors and patterns
Drawing with the shape tools

Shortcut:    A shortcut for opening the paint window is to double-click a bitmapped cast
member on the stage or in the score or cast windows. The paint window opens with that
cast member showing.

The paint window tools

The list below shows whether clicking and/or dragging makes the tool work. Click the
name of paint window tool for more information:

Lasso--(Drag) Selects irregular shapes
Selection marquee--(Drag) Selects rectangular areas
Hand--(Drag) Moves artwork within window
Paint bucket--(Click) Fills with foreground color or current pattern
Air brush--(Click or drag) Sprays foreground color or current pattern
Paintbrush--(Click or drag) Paints foreground color or current pattern
Text--(Click) Starts text entry
Pencil--(Click or drag) Toggles pixels between foreground and background color
Rectangle--(Drag) Draws hollow or filled rectangles and squares
Eraser--(Drag) Erases artwork
Ellipse--(Drag) Draws hollow or filled ellipses and circles
Polygon--(Click) Draws hollow or filled polygons
Line --(Drag) Draws straight lines
Arc--(Drag) Draws arcs (one quarter of an ellipse or circle)
Registration--(Click) Sets registration point
Eyedropper--(Click or drag) Picks foreground color
Zoom--(Click) Scales the view.

If you press the Control+click the image in the paint window, your view of the artwork
will zoom in to a magnified view. In most cases, pressing the Shift key while dragging a
tool constrains it to horizontal or vertical. The ellipse and rectangle tools are constrained
to a perfect circle or square when Shift-dragging.

Lasso (paint window)

The lasso can be used to select an area. Once selected, you can drag, cut, copy, or clear
the artwork. You can also use the following buttons on the effects toolbar: Invert Colors,
Trace Edges, Fill, Darken, Lighten, Smooth, and Switch Colors. (The last four commands
are only available on a color Macintosh.)

When artwork is selected with the lasso, hold down the Alt key while dragging the
artwork to make a copy of it.

If you press the Alt key while dragging the lasso, the lasso draws straight lines to
select a polygon shape. Click the lasso to anchor a point and draw another straight line.
Double-click when you reach the end of your selection.

Pressing the Shift key while dragging the object constrains its movement to a
horizontal or vertical line. To move the cast member in one-pixel increments, select it on the
stage and use the arrow keys on your keyboard.

Note:    Use the lasso to select everything but the pixels of a certain color. The color of
the pixels not selected is determined by where you begin to drag the lasso. For example,
if you're selecting an object that is red, white, and blue, and you only want to select the
red and white pixels in the object, begin your drag on a blue pixel. Then, only the red and
white pixels will be selected. If you want to avoid this effect, use the No Shrink option in
the Lasso pop-up.

Lasso pop-up (paint window)
Pressing and holding the mouse button while the pointer is on the lasso tool causes the
lasso pop-up to appear.

Choosing a command from the lasso pop-up modifies how the lasso works.
Shrink causes the lasso to tighten around the selected object so that only the object

is selected.
No Shrink permits you to select the entire area you drag around. The lasso selects

whatever is inside the selected area.
See Thru causes your selection to become transparent, as if the Transparent ink

effect were applied.

Selection marquee (paint window)
The marquee can be used to select artwork in the paint window. When selected with the
marquee, artwork can be dragged, cut, copied, and cleared. It can also be modified with
the commands on the paint toolbar.

Select the contents of the visible part of the current cast member by double-clicking the
marquee.

Stretch and compress art that is selected with the marquee by Control+drag.
Make a copy of artwork that is selected with the selection marquee, by Alt+drag.

 Selection marquee pop-up menu

Selection marquee pop-up (paint window)
If you press and hold the mouse button when the pointer is positioned on the selection
rectangle tool, the selection rectangle pop-up menu appears with commands to modify
the action of the tool.

Shrink causes the rectangle to shrink around the selected artwork.
No Shrink permits you to select everything within the selection rectangle.
Lasso makes the selection rectangle tighten around your selection like the lasso tool.

The selection tightens around the object and selectively selects the pixels according to the
color of the pixel beneath the crosshair when you started your drag.

See Thru Lasso makes the selection rectangle tighten around your selection like the
lasso and applies the Transparent ink.

Any artwork selected with the lasso or selection rectangle can be further modified with
ink effects or commands on the paint toolbar.

Double-clicking the selection marquee tool selects the entire cast member.

As with the lasso, you can reposition the selected area of the cast member. Move the
crosshair into the selected area so that the crosshair turns into an arrow pointer and drag
the selected area to reposition it. There are several key combinations that affect the
selected area when you drag. They include:

Copy--Alt+drag
Stretch--Control+drag
Stretch proportionally--Control+Shift+drag
Constrain to horizontal or vertical--Shift-drag
Clear--Backspace or Delete
Scale--Control+Alt+drag

Use the keyboard arrow keys to horizontally or vertically nudge a selection.

Hand tool (paint window)
The hand tool moves the view within the paint window, changing your position in the
window relative to the artwork. Click the hand tool to select it, then drag the artwork to
pan the view.

A shortcut for using the hand is pressing the Spacebar. This turns any tool into the hand
tool when the mouse is clicked.

Zoom tool (paint window)
Click to zoom in on an area. Shift-click to zoom out.

Text tool (paint window)
The text tool lets you type in any font, size, or style in the paint window. Use it to set the
font, size, and style of the text.

The text you create in the paint window is bitmapped. It can be dragged around the paint
window before you deselect the text. However, once you click outside the field after
creating the text, you cannot edit its font, size, or style. To change the font, size, or style
after clicking, you must erase the text and replace it with new bitmapped text.

You can modify selected text with ink effects from the Ink pop-up, patterns from the
patterns pop-up, or foreground and background colors with the foreground and
background color chips in the paint window.

Text window
Field window
Understanding text and fields

Paint bucket (paint window)
The paint bucket fills any enclosed area with the currently selected color and pattern.
The fill can be further modified with the ink effects in the Ink pop-up menu in the paint
window. If there is a break in the outlined area you are filling, the paint will leak out and
fill the surrounding area. If this happens, immediately choose Undo Bitmap from the Edit
menu. Then Zoom In from the View menu to get a magnified view and inspect the outline
for breaks.

Double-clicking the paint bucket tool opens the Gradient Settings dialog box.

Air Brush (paint window)
The air brush sprays the currently selected color and pattern. The spray can be further
modified by choosing the ink effects from the Ink pop-up menu in the paint window. The
longer you hold the airbrush in one spot, the darker it fills in the area.

Air brush pop-up menu

If you press and hold the mouse button when the pointer is positioned on the air brush,
the air brush pop-up menu appears. Each of the five settings in the pop-up menu can be
defined so you can have several types of spray available without opening the Air Brush
Settings dialog box.

To define a setting:
1. Choose the menu item you want to define from the Air Brush pop-up menu.
2. Click the air brush again and choose Settings from the Air Brush pop-up menu.
3. Select the type of spray you want in the Air Brush Settings dialog box.
4. Click Set.

The choices you make in the Air Brush Settings dialog box are assigned to the menu item
and remain until you change them.

Air Brush Settings dialog box

The Air Brushes dialog box defines the size of the area the air brush covers, the size of the
dots in the air brush's spray, and the flow speed of the air brush's paint. The three radio
buttons at the top of the Air Brushes dialog box control whether the air brush sprays
uniformly sized dots, randomly sized dots, or dots shaped like the currently selected
paintbrush.

Double-clicking the air brush in the tool palette opens the Air Brush dialog box. Use this
dialog box to set the size of the air brush's spray, the size of the dots of paint it sprays, and
how fast it sprays paint.

Uniform Spray causes drops sprayed by the air brush to be uniformly sized.

Random Sizes sprays with randomly sized drops.

Current Brush sprays with drops shaped like the current paintbrush.

Spray Area sets the size of the air brush's spray area. To change the spray area, drag
the Size scrollbar.

Dot Size sets the size of the dots sprayed by the air brush. To change the dot size, drag
the Dot Size scrollbar.

Flow Rate controls how fast the air brush covers an area with paint. To change the flow,
drag the Flow Speed scrollbar.

Paintbrush (paint window)
The paintbrush draws with the currently selected colors, ink effect, or fill pattern. Double-
click the paintbrush to change the size and shape of the brush. When the Brush Settings
dialog box appears, click the brush shape you need, and then click Set.

Paintbrush pop-up menu

The paintbrush pop-up menu is similar to the air brush pop-up menu. Press and hold the
mouse button while the pointer is positioned on the paintbrush tool to open the pop-up
menu.

Each of the five settings in the pop-up menu can be defined so you can have several
brush shapes available without opening the Brush Settings dialog box.

To define a setting:
1. Choose the menu item you want to define from the Paintbrush pop-up menu.
2. Click the paintbrush tool again and choose Settings from the Paintbrush pop-up

menu.
3. Select the brush shape you want in the Brush Settings dialog box.
4. Click Set.

The choices you make in the Brush Settings dialog box are assigned to the menu item in
the pop-up and remain until you change them.

Brush Settings dialog box

The Brush Settings dialog box lets you change the shape of the paintbrush. You can
double-click the paintbrush in the paint window's tool palette.

Click a dialog box option for more information:

Custom/Standard selects standard default brush shapes or lets you create your own
brush shapes from the set of custom brush shapes. Only the custom brush shapes are
editable.

Change a custom brush shape by clicking one of the brush shapes on the right. You can
edit the current brush shape by clicking the magnified image of the brush shape. Clicking
a blank pixel fills it and clicking a filled pixel makes it blank.

Clicking outside the Brush Shapes dialog box picks up the shape on the screen at the
point you click.

Right/Left arrows move the brush shape one pixel to the right or to the left.

Up/Down arrows move the brush shape up or down one pixel.

Black/White square reverses the colors of the brush shape (e.g., black becomes white
and white becomes black).

Copy copies the brush shapes to the clipboard.

Paste pastes the brushes into the custom set of brush shapes.

Pencil (paint window)
The pencil creates a one-pixel-wide line. On a black and white cast member, the pencil
draws black pixels on a white background and white pixels on a black background. On a
color cast member, the pencil draws with the currently selected foreground color unless
you are drawing on pixels that are the foreground color. In that case, the pencil draws in
the background color.

Double-clicking the pencil tool magnifies your view of the artwork in the paint window. It
magnifies the current window at the point last clicked with any of the paint tools. You can
also zoom in while using the pencil or any other tool by Control-clicking.

Once you are in a magnified view you can edit the cast member pixel by pixel. You can
use any of the paint tools while in a magnified view. Clicking the reduced view in the
upper right corner of the paint window returns you to a 100% view. Double-clicking the
pencil in the tool palette while in magnified view also returns you to a 100% view.

Move around the magnified view using the paint window's scroll bars or by using the
hand tool.

Rectangle tool (paint window)
The rectangle tool draws rectangles of any size. When you click the hollow rectangle tool,
it draws an outline in the current foreground color as you drag the crosshair. When you
click the filled rectangle tool, the rectangle you draw is filled with the current foreground
and background colors in the current ink and pattern. The thickness of the rectangle's
border is controlled with the line width selector at the bottom of the tool palette.

Double-clicking the filled rectangle tool opens the Gradient Settings dialog box.

To constrain the rectangle to a square, press the Shift key as you drag with the crosshair
pointer. If you press the Alt key while drawing a rectangle, the border is drawn with the
current pattern.

Eraser (paint window)
The eraser clears the portion of the cast member you drag across. The eraser always
clears to white. Double-clicking the eraser tool erases everything in the paint window's
visible area.

Ellipse tool (paint window)
The ellipse tool creates circles and ovals. Like the rectangle tool, the ellipse is an outline
if you click the hollow tool. The ellipse tool is filled with the selected foreground and
background colors, ink, and pattern when you click the filled tool. The thickness of the
border is controlled by clicking the line width selector at the bottom of the tool palette.

Double-clicking the filled ellipse tool opens the Gradient Settings dialog box.

When you hold down the Shift key as you draw, the circle tool draws perfect circles. If
you use the circle tool while pressing the Alt key, the border of the circle is drawn with
the currently selected pattern.

Polygon tool (paint window)
The polygon tool draws polygons with as many sides as you want. As with the rest of the
shape tools, the hollow tool creates an outline and the filled tool draws an area filled with
the current foreground and background colors, ink, and pattern. When you click the tool,
the pointer becomes a crosshair. Click in the paint window to start drawing the side of
the polygon. Each time you click, a line is drawn from the spot you clicked previously. To
connect the end-point of the shape to the beginning of the shape, double-click.

The thickness of the lines drawn with the polygon tool is controlled by the line width
selector at the bottom of the tool palette. If you press the Alt key while drawing a
polygon, the border is drawn with the currently selected pattern.

Double-clicking the filled polygon tool opens the Gradient Settings dialog box.

Line tool (paint window)
The line tool draws straight lines at any angle. When you hold down the Shift key, the
line tool draws vertical, horizontal, or 45-degree lines, depending upon the direction you
begin to drag. Change the line width by clicking the line width selector in the tool
palette.

The line is drawn with the currently selected foreground color and ink effect.

Pressing the Alt key while drawing a line causes the line to be drawn in the currently
selected pattern.

Arc tool (paint window)
The arc tool draws one quarter of an ellipse or circle. When the tool is active, the pointer
becomes a crosshair. Drag the crosshair from the starting point of the line and move the
pointer to see the curve. Experiment with dragging the tool until it produces the line you
need. The thickness of the arc is controlled with the line width selector at the bottom of
the tool palette.

The line is drawn with the currently selected foreground color and ink unless you press
the Alt key while dragging, in which case the arc is drawn with the current pattern.

Registration tool (paint window)
The default registration point for a bitmap image is the center of the cast member in the
paint window. However, the registration point for shapes, buttons, and text cast
members is always the upper left corner of the image. Clicking a point in the paint
window sets the registration point at that location.

To set a registration point:
1. Display the cast member you want to change in the paint window.
2. Click the registration tool .

The dotted lines in the paint window intersect at the registration point. The default
registration point is the center of the cast member.
The pointer changes to a crosshair when you move it to the paint window.

3. Click a location in the paint window to set the registration point.
You can also drag the dotted lines around the window to reposition the registration
point.

To reset the default registration point at the center of the cast member, double-click the
registration tool.

Using registration points

Eyedropper (paint window)
The eyedropper is used to match colors. When you select the eyedropper, any color you
click in the paint window becomes the foreground color. Use it to match colors without
opening the color palette.

Ink pop-up menu (paint window)
The result of the ink you choose depends on whether you are working in color or black
and white. Also, some inks work better when painting with patterns and others work
better when painting with solid colors.

Ink (click
    for info) B&W Color Works best with
__

Normal   Solids and patterns
Transparent   Patterns
Reverse   Solids and patterns
Ghost   Solids (b&w) and patterns (color)
Gradient   Paintbrush, paint bucket, shape tools
Reveal   Paintbrush, shape tools
Cycle  Solids and patterns
Switch  Paintbrush
Blend  Solids and patterns
Darkest  Patterns
Lightest  Patterns
Darken  Paintbrush
Lighten  Paintbrush
Smooth  Paintbrush
Smear  Paintbrush
Smudge  Paintbrush
Spread   Paintbrush
Clipboard   Paintbrush

Normal (Ink pop-up of the paint window)
Normal is the default ink. It is opaque and maintains the color of the current foreground
color and pattern.

Transparent (Ink pop-up of the paint window)
Transparent ink makes the background color of patterns transparent so you can see
artwork drawn previously in the current cast member through the pattern.   

Reverse (Ink pop-up of the paint window)
Reverse ink makes overlapping colors reverse. Any pixel in the foreground art that was
originally white becomes transparent. Any pixel that was black reverses the color of the
background art.

Ghost (Ink pop-up of the paint window)
Ghost in black and white creates an image than can only be seen when drawn over a
black background. In color, Ghost draws with the current background color.

Gradient (Ink pop-up of the paint window)
Gradient lets you paint with the gradient fill selected in the Gradient Settings dialog
box. A gradient fill is one that progresses from one color, the foreground, to another color
called the destination color. You can paint with Gradient ink with the paintbrush, paint
bucket, or shape tools.

Reveal (Ink pop-up of the paint window)
 Reveal works indirectly with the art in the previous cast position. Imagine the previous
cast member's artwork covered with a white area. Reveal erases the white area to show
the artwork in the previous window. Reveal can be used to create specific shapes from
shades created with the air brush. Since it is impossible to mask certain shapes for the
air brush, spray an area with the air brush first; then in the next cast member, paint the
shapes you need with a Reveal ink. As you paint your object, you will expose the air
brush pattern in the previous window.

Cycle (Ink pop-up of the paint window)
Cycle is a color ink. As you draw with a cycling ink, the colors change as the ink
progresses through the palette. The beginning and ending points of the color cycle are
determined by the foreground and destination colors. If you want to cycle through the
whole palette, choose white as the foreground color and black as the destination color.

Switch (Ink pop-up of the paint window)
Switch changes any pixel that is the current foreground color to the current gradient
destination color as you paint over that color.

This ink only works when your computer is set to 256 colors.

Blend (Ink pop-up of the paint window)
Blend creates a translucent color ink. You can see the background object, but its color is
blended with the foreground object's color. You can choose the percentage of blend in
the Paint Window Preferences dialog box.

Darkest (Ink pop-up of the paint window)
Darkest is a useful ink for colorizing black and white artwork. For example, if you are
painting yellow over black and white, black will remain black since it is darker than
yellow, and white will become yellow because yellow is darker than white.

Lightest (Ink pop-up of the paint window)
Lightest is another useful ink for colorizing black and white artwork. For example, if you
are painting yellow over black and white, black objects become yellow when painted with
the Lightest ink effect, and white remains white because it is lighter than yellow.

   

Darken (Ink pop-up of the paint window)
Darken makes colors darker. The more the paintbrush passes over an area, the darker it
becomes. The color of the foreground, background, or destination inks have no effect on
Darken. Darken creates an effect that is the same as reducing a color's brightness with
the controls in the color palettes window. You can vary the rate of this ink effect in the
Paint Preferences dialog box.

Lighten (Ink pop-up of the paint window)
Lighten makes existing artwork lighter. The more times you pass over the artwork with
the paintbrush, the lighter it becomes. The color of the foreground, background, or
destination inks have no effect on Lighten. Lighten creates an effect that is the same as
increasing a color's brightness with the controls in the color palettes window. You can
vary the lightness of this ink effect in the Paint Preferences dialog box.

Smooth (Ink pop-up of the paint window)
Smooth blurs existing artwork when painted with the paintbrush. It is not directional like
Smear and Smudge. The color of the foreground, background, or destination inks have no
effect on Smooth. Smooth only works with art already in the paint window. Use it to
smooth out jagged edges.

Smear (Ink pop-up of the paint window)
Smear works with the paintbrush and is similar to mixing paint. Any area you drag across
with a Smear ink is spread in the direction of the brush and fades as it gets farther from
its source. The color of the foreground, background, or destination inks have no effect on
Smear. Smear only works with art already in the paint window.

Smudge (Ink pop-up of the paint window)
Smudge is a color ink for the paintbrush that is similar to Smear. It is also like mixing
paint. The colors fade faster as they are spread. The color of the foreground, background,
or destination inks have no effect on Smudge. Smudge only works with art already in the
paint window.

Spread (Ink pop-up of the paint window)
Spread works with the paintbrush in color. Whatever is under the paintbrush when you
start to drag is picked up as the ink for the brush. Copies of what is beneath the brush
are pushed across the window as you draw.

Clipboard (Ink pop-up of the paint window)
Clipboard uses the current contents of the Clipboard as a pattern to paint with.

Gradient destination color chip (paint window)
A gradient is a blend of a range of colors that can be used for shading, highlights,
backgrounds, and special effects. On a black-and-white monitor, gradients are created
with a pattern of black and white pixels that fade from black to white or vice versa. With
a color monitor, the two colors that form the beginning and end of a gradient are the
foreground color and the destination color. The range of colors between the foreground
and destination colors is used with the Gradient, Cycle, and Switch inks. Select the
destination color using the gradient destination color chip.

To set the current foreground color, click the left side of the selector and choose a color
from the pop-up color palette. To set the gradient destination color, click the right side of
the selector and choose a color from the pop-up palette.

Hold down the Alt key while pressing the up or down arrow key to cycle through the
colors in the Gradient color chip.

Gradient (paint window)
The gradient effect creates a blend of colors that you can use for backgrounds,
highlights, shading, and special effects. Limited gradient effects can be created with a
black-and-white cast member.

The foreground color and gradient destination color can be selected in the paint window
with the destination color chip or with the controls in the Gradient Settings dialog box.
When in the paint window, use the popup palette on the foreground color chip to select
the foreground color. Pick the destination color with the pop-up palette at the right side
of the gradient selection bar above the foreground and background color chips. The
current foreground color is displayed to the left of the gradient destination color chip and
the current destination color is displayed on the right side of the gradient destination
color chip.

To change gradient settings, click the area between the foreground and destination color
chips and choose Gradient Settings from the pop-up.

Gradient Settings dialog box

In the Gradients Settings dialog box, you can set the foreground and destination colors
as well as the pattern to use with your gradient. The Gradients Settings dialog box also
has several pop-up menus with drop-down lists to control the style of your gradient fill.
Each choice you make is immediately previewed on the left.

Click a dialog box option for more information:

Type (Gradient Settings)
This setting determines whether the gradient is made with the pattern you select with
the pattern chip pop-up palette in the paint window, or with a dithered pattern. If you
choose Dither, only dithering options appear on the Method pop-up below. If you choose
Pattern, only pattern options appear.

Method (Gradient Settings)
Method determines the way the gradient fills an area in the paint window. The options on
the menu list determine where the dark and light colors of your blend are located.

Pattern Best Colors ignores the order of the colors in the palette and only uses
colors that create a continuous blend of the foreground and destination colors.

Pattern Best Colors See Thru ignores the order of the colors in the palette and
only uses those colors that create a continuous blend of the foreground and destination
colors. White pixels in patterns created with this method are transparent.

Pattern Adjacent Colors uses all the colors in the palette between the foreground
and destination for the gradient.

Pattern Adjacent Colors See Thru uses all the colors in the palette between the
foreground and destination for the gradient. White pixels in patterns created with this
method are transparent.

Dither Best Colors ignores the order of the colors in the palette and only uses
colors that create a continuous blend from foreground to destination colors and blends them
with a dithered pattern. Dithering is a technique of creating color with two or more colors of
pixels interspersed together.

Dither Adjacent Colors uses all colors between the foreground and destination
colors and blends them with a dithered pattern.

Dither Two Colors uses only the foreground and the destination colors and blends
them with a dithered pattern.

Dither One Color uses only the foreground color and fades it with a dithered
pattern.

Standard Dither ignores all colors between foreground and destination and adds
several blended colors with a dithered pattern to create the gradient.

Multi Dither ignores all the colors between foreground and destination and adds
several blended colors with a randomized dithered pattern to create a smooth gradient. You
can interrupt the drawing of this kind of dither by clicking anywhere in the dialog box.

Direction (Gradient Settings)
The Direction popup menu list determines the way the gradient fills an area in the paint
window. The options on the menu list determine where the dark and light colors of your
blend are located.

Click the name of a gradient direction to see an illustration:
Top to Bottom puts the foreground color at the top and the destination color at the

bottom
Bottom to Top puts the destination color at the top and the foreground color at the

bottom.
Left to Right puts the foreground color on the left and the destination color on the

right.
Right to Left puts the foreground color on the right and the destination color on the

left.
Directional you determine the direction of the gradient. You set the direction of the

gradient in the paint window with the paint tool used to fill the area.
Sun Burst starts filling at the edge of the artwork and moves in concentric circles to

the center.

Cycles (Gradient Settings)
Cycles control the number of times the gradient is created within one filled area, and
whether or not the colors cycle through the palette in one direction only, or auto reverse
at the end of one pass through the palette. Sharp cycles have a banded appearance,
while smooth cycles go from foreground to destination, then back to foreground.

Click the name of a gradient cycle to see an illustration:
One Cycle takes the gradient once through the range of colors you define.
Two Sharp takes the gradient through the range of colors twice, from foreground to

destination and from foreground to destination.
Two Smooth takes the gradient from foreground to destination, then from

destination to foreground.
Three Sharp takes the gradient from foreground to destination three times.
Three Smooth takes the gradient from foreground to destination, destination to

foreground, foreground to destination.
Four Sharp takes the gradient from foreground to destination four times.
Four Smooth takes the gradient from foreground to destination, destination to

foreground, foreground to destination, and destination to foreground.

Spread (Gradient Settings)
Spread options let you choose how to distribute colors between the foreground and the
destination colors of the gradient.

Equal provides an even spacing of colors between the foreground and the
destination colors.

More Foreground increases the amount of the foreground color in the gradient.
More Middle increases the amount of the middle color in the gradient.
More Destination increases the amount of the destination color in the gradient.

Range (Gradient Settings)
Range options determine whether the full range of the gradient is created over the paint
object, cast member, or the entire paint window. The options provide greater control over
how the gradient is created relative to the cast member's position on the stage or in the
paint window.

Paint Object paints the full gradient as the fill or brush stroke of the object,
regardless of the object's location in the paint window.

Cast Member paints the full gradient with respect to the size of the cast member.
Window paints a full gradient only if the object is the length or width of the entire

window, otherwise it paints a partial gradient corresponding to the object's location in the
window.

Foreground color chip (paint window)
The foreground color is the color displayed in the foreground color chip. It's also
displayed in the color chip on the left side of the gradient color selector. The foreground
color is the color you work with when you're using the solid pattern solid and the Normal
ink effect.

Press the up or down arrow key to cycle through the colors in the color palette associated
with the Foreground color chip.

Double-click the foreground, background, or destination color chip to open the color
palettes window.

Background color chip (paint window)
The background color is the color displayed in the lower right color chip. The background
color is the secondary color that appears in a pattern. When used with the Transparent
ink, the background color in a pattern is transparent.

Hold down the Shift key while pressing the up or down arrow keys to cycle through the
colors in the color palette associated with the Background color chip.

Pattern chip (paint window)
The current pattern is displayed in the pattern chip below the two color chips in the tool
palette.

Click the pattern chip to select a new pattern from the pop-up palette.

Pressing the Alt key before displaying the pattern palette permanently changes the
patterns to shades ranging from the foreground color to the background color rather than
the set of patterns you see without pressing the Alt key. Press the Alt key again to return to
the default set of patterns.

Double-click the pattern chip to open the Pattern Settings dialog box. Use the
dialog box to edit or select new sets of patterns.

Pattern Settings
Click part of the illustration for more information:

Custom/Standard selects from the standard default patterns and permits you to create
your own patterns from the set of custom patterns. Only the custom patterns are
editable.

Change a custom pattern by clicking one of the patterns on the left. You can edit the
current pattern by clicking the magnified image of the pattern. Clicking a blank pixel fills
it and clicking a filled pixel makes it blank.

Right/Left arrows move the pattern one pixel to the right or to the left.

Up/Down arrows move the pattern up or down one pixel.

Black/White square reverses the colors of the pattern (e.g., black becomes white and
white becomes black).

Copy/Paste copies or pastes the pattern you want to use.

Tile Settings (paint window)
Tiles are a useful way to create patterns with more than two colors. Cast members in the
paint window form the basis for creating a tile. When you choose a portion of a cast
member to be made into a tile, the cast member becomes a building block for a pattern
created with a field of tiles. You can use tiles in the paint window or with the shapes in
the tools window.

 To open the Tile Settings dialog box, click the Pattern chip and choose Tile Settings from
the pop-up.

Dialog box options

The Tiles dialog box lets you select the tile position, the cast member to make into a tile,
what portion of the cast member to use for the tile, and the tile size.

Click a dialog box option for more information:

The selection rectangle in the cast member box at the upper left of the Tiles dialog box
determines which part of the cast member is used for the tile. Drag the rectangle to
reposition it on a different part of the cast member or click a new spot in the cast member
view to reposition the dotted rectangle.

Source controls which cast member is the basis for your tile. Click Built In to indicate
that the selected tile is one of the default tiles. Click the Cast Member if you want to
make a tile from a cast member in your movie. When you click the Cast Member radio
button, left and right arrows appear that permit you to step through all the graphic cast
members in your movie.

Edit lets you select the tile you want to edit. An enlarged version of the tile is displayed
in the dialog box.

Width, Height lists the available tile sizes in pixels. You can make a tile as small as 16
by 16 pixels or as large as 128 by 128 pixels. As the size of the tile increases, more of the
cast member is used for the tile.

Line width selector (paint window)
The line width selector controls the thickness of the line drawn by the line or arc tool and
the thickness of the borders drawn by the shape tools.

The width of the line drawn by the line, arc, rectangle, ellipse, and polygon tools can be
changed with the line width palette. The line width palette has several settings for line
width ranging from No Line (the dotted line in the line selector) to Other. Use the dotted
line setting when you want to draw filled shapes without borders. If you choose Other,
the line width is determined by the Other Line Width setting in the Paint Preferences
dialog box.

Double-click the line width selector to open the Paint Preferences dialog box. Use it to set
the Other Line Width.

Color resolution indicator (paint window)
The color resolution indicator displays the color resolution of the current cast member in
the paint window.

Double-click the color resolution indicator to open the Transform Bitmap dialog box.
Use the Transform Bitmap dialog box to change the color resolution of the current cast
member in the paint window. Changing the color resolution from color to black and white
saves disk space. You can still make a selected 1-bit sprite a color other than black by
selecting colors with the foreground and background color chips in the tool palette after
it has been reduced to 1-bit. (This colorizes the sprite on the stage, but does not affect
the original cast member, which remains black and white.)

If you import black and white cast members, changing their color resolution to multiple
colors permits you to colorize them with any color in the current palette.

Paint toolbar
Paint toolbar buttons provide effects that modify bitmapped cast members.

Click toolbar buttons for a description:

Flip Horizontal
Flip Vertical
Rotate Left
Rotate Right
Rotate Free
Skew
Warp
Perspective
Smooth
Trace Edges
Invert Colors
Lighten
Darken
Fill
Replace
Repeat Effect

Flip Horizontal

Flip Horizontal mirrors the selected area in the paint window horizontally from right to
left.

Flip Vertical

Flip Vertical mirrors the selected area in the paint window vertically from top to bottom.

Rotate Left

Rotate Left rotates the selected area in the paint window 90 degrees counterclockwise.

Rotate Right

Rotate Right rotates the selected area in the paint window 90 degrees clockwise.

Free Rotate

Free Rotate allows you to rotate the selected area in the paint window any number of
degrees clockwise or counterclockwise. When you choose Free Rotate, handles appear at
the corners of the selection rectangle. To rotate the artwork, drag any handle in the
desired direction.

The Free Rotate command is one of four special effects you can apply to artwork selected
with the selection rectangle in the paint window. The other special effects are
Perspective, Slant, and Distort. When you choose one of the special effects after
selecting the artwork, handles appear at each corner of the selection. Dragging the
handle produces the desired effect.

Skew

The Slant command skews the selected artwork. When you choose Slant, handles appear
at the corners of the selection rectangle. Dragging a handle in the desired direction
moves the opposing corner an equal amount in the same direction, maintaining a
parallelogram shape.

Warp

When you choose Distort, handles appear at the corners of the selection rectangle. Each
corner can be dragged in any direction independent of the other corners. When you
release the mouse button, the selected artwork assumes the shape that you have
created.

Perspective

Perspective stretches the selected artwork to give it a perspective effect. When you
choose Perspective, handles appear at the corners of the selection rectangle. Drag one
or more handles to create the effect you want. For example, you can bring the two top
handles closer together to create the illusion of linear perspective.

To make artwork appear to be vanishing into the distance, choose Perspective and move
the handles on one side of your selection together and the handles on the opposite side
of your selection apart.

Smooth

Smooth softens the edges of the selected artwork by adding pixels of blended color to
the artwork's edges.

Trace Edges

Trace Edges creates an outline around the edges of the selected artwork. The outline is
the same color as the selected line, if the line is a solid color. If the original line is
multicolored, an outline is created for each section of the line. You can add multiple
outlines by clicking Trace Edges repeatedly.

Invert Colors

The Invert Colors command reverses the colors of the selected area in the paint window.
For 2-, 4-, and 8-bit cast members, to see what the reverse colors are, open the color
palettes window, select all the colors in the palette, and click Reverse Color Order in the
Color Palettes window; you'll see that the effect is an upside-down mirror image of the
palette. For 16- and 32-bit cast members, a true RGB-complement of each color is
shown. If you are working in black and white, Invert Colors changes black to white and
vice versa.

Lighten

Lighten increases the brightness of anything in the selection rectangle

Darken

Darken reduces the brightness of the selected artwork.

Fill

The Fill command fills a selected area with the current foreground color and pattern.

Replace Color

Replace Color changes each pixel that is the currently selected foreground color to the
currently selected destination color.

Note:    This command only works for images whose color depth is 8-bits or less.

Repeat Effect
Control+Y

Repeat Effect repeats the last color effect command chosen from the Modify menu for
the selected area.

Text window (Window menu)            Control+6

Use the text window to create and edit text cast members. Enter and edit text in the text
window using standard word processing procedures. You select text in the text window or
on the stage by dragging across the text, or by double-clicking to select a whole word.
Triple-clicking selects all text in the cast member, which is the same as choosing Select
All from the Edit menu.

The ruler and toolbar across the top of the text window provide several formatting
shortcuts.

To open the text window:
Choose Text from the Window menu.
Click the text window tool on the toolbar.
Double-click a text cast member in the cast or on the stage.

Click a topic for more information:

Creating text cast members
Understanding text and fields
Editing text on stage
Importing text
Text ruler
Text Inspector
Applying color to text
Paragraph command (Modify menu)
Font command (Modify menu)
Editable text (Field window)

To create another view of the same text window, click New Window in the Windows
menu. This is useful if you are editing a large text cast member, since you can display
different sections of the text in each view and cut and paste between them.

Text ruler
Use the text ruler to set tabs and indents for paragraphs. To show or hide the text ruler,
choose Ruler from the View menu. To set units of measure for the ruler, choose General
Preferences from the File menu.

Setting tabs
To set tabs, click the tab well until the symbol for the type of tab you want is

displayed and then click the ruler where you want to place the tab.

To remove a tab, drag the tab up or down off of the ruler.
To move a tab, drag the tab to the new location on the ruler.
If you don't define your own tab stops, pressing the Tab key advances the cursor to

the next preset tab.

Setting indents

To set an indent for selected paragraphs, drag the left and right indent markers on the
ruler. To change the indent for only the first line of text, drag the marker that points down
from the top of the ruler. Setting a special first line indent is useful for creating bulleted
paragraphs and "hanging indents."

Field window (Window menu)            Control+8

Use the field window to enter and edit text for field cast members. It is identical to the
text window except that the ruler is not available for setting tabs and indents. When you
use the alignment and spacing tools on toolbar, the changes affect all the paragraphs in
the cast member.

To open the field window:
Choose Field from the Window menu.
Double-click a field cast member.

Understanding text and fields
Field Cast Member Properties

Color palettes window (Window menu)            Control+Alt+7

The color palettes window provides several ways of changing color palettes.

Click a topic name for more information:

Reserve selected colors
Select reserved colors

Select used colors

Invert selection

Sort colors

Reverse sequence

Cycle colors

In-Between colors

Color picker

All the functions in the color palettes window involve changing the currently active color
palette. You choose the active palette by selecting a palette from the pop-up.

Director has ten built-in palettes:
System--Mac (the standard 256-color Macintosh system palette)
System--Win (the standard 256-color Windows system palette)
Rainbow palette
Grayscale palette
Pastels palette
Vivid palette
NTSC palette
Metallic palette
VGA palette, a special palette for VGA 4-bit displays. It provides consistent results

when playing Director movies under Windows in 4-bit mode.
System-Win (Dir4), a palette that is included for compatibility with movies created in

Director 4.

If you add new palettes to your movie from other graphics applications, those palettes
also appear in the pop-up and in the cast.

In Windows, if you use any palette other than the two System-Win palettes (or a palette
that does not include the Windows colors in its top and bottom rows), Director switches
to Classic user interface look, and switches Windows itself to black and white. This is to
maintain legibility while editing your movies.

Note: Choosing a new palette in the Color Palettes window does not change the palette

for the movie, or any frame in the movie. Use Movie Properties on the Modify menu to
choose the movie's default color palette, or Frame Palette on the Modify menu to
change the color palette at a particular frame.

Use the hand tool to drag colors in the palette to reposition them.

Use the eyedropper to match the color of any pixel on the stage with the same color in
the palette. Click the eyedropper tool and then move the pointer to the stage. When you
click, the color matching the pixel you clicked is selected in the color palette.

Clicking the arrow changes your pointer back to the arrow pointer.

Understanding color palettes
Editing colors

 Reserve selected colors
Reserve selected colors in the color palettes window isolates specific colors used in
palette effects like color cycling. For example, if you are cycling colors and don't want to
inadvertently use the cycling colors on a noncycling cast member, reserve the cycling
colors to prevent them from being used.

To reserve colors, select them in the color palettes window and then click the reserve
selected colors button.

When the Reserve Selected Colors dialog box appears, choose Reserve Currently
Selected Colors and then click OK.

 Reserved colors appear striped in the color palettes window. The Select Reserved button
(shown at the left) also appears in the window to help you see which colors are reserved.

Click the Select Reserved button to select all reserved colors.

To make all the reserved colors available again, click the reserve selected colors button
and choose All Colors Available in the dialog box.

 Select reserved colors
Select reserved colors in the color palettes window highlights the colors in the current
palette that have been reserved.

 Select used colors
Select used colors in the color palettes window highlights the colors in the current
palette used in selected cast members.

 Invert selection
Invert selection in the color palettes window replaces the color or range of colors you
selected with a new selection. The new selection consists of all the colors that were not
part of your original selection.

 Sort Colors
The Sort button in the color palettes window reorders the selected colors in the palette
by Hue, Saturation, or Brightness.

To use the sort button, select a range of colors in the color palettes window and then
click the button. When the Sort Colors dialog box appears, choose either Hue, Saturation,
or Brightness. When you click OK, the colors appear in the palette according to the
sorting order selected.

If you sort colors after drawing cast members, the cast members that use the selected
colors will also change color as the colors are sorted.

 Reverse sequence
The reverse sequence button in the color palettes window reverses the order of the
selected colors: the first color of the palette becomes the last. The colors themselves
remain unchanged.

 Cycle colors
The Cycle colors button displaces all the selected colors in the color palettes window one
square to the left. The leftmost color wraps around and appears at the last right square.
Each time you click the cycle button, the selected colors shift by one more square. As the
colors reach the left edge of the selection, they wrap around to the right edge and
continue their journey. It is similar to the movement of color within a palette that you can
see while colors cycle.

This is precisely what goes on when you use color cycling. If you are using a paint tool in
the paint window with a cycling ink effect, the colors rotate through the palette as you
draw. Another example of color cycling is in the Frame Palette dialog box in the Modify
menu. You can select a range of colors to cycle as your movie plays. Any cast member
that is the same color as one of the cycled colors will change as the colors rotate through
the palette.

 In-Between colors Control+B

The In-Between colors button changes the current palette to create a blend of the first
and last colors of a selected range in the color palettes window. Use it to create blends of
color for color cycling or smooth gradients.

To use the In-Between color button, select a range of colors in the color palettes window
and then click the button.

If you choose one of the nine built-in palettes, Director creates a new palette. A prompt
appears for you to name the new palette.

Color picker
You can define a new color in the current color palette either with the controls at the
bottom of the color palettes window, or with the Windows Color dialog box.

To use the Windows Color dialog box, select the color you want to change and then click
the set color button. For information about using the Color dialog box, see the user's
guide that came with Windows.

To edit selected colors in the color palettes window using the HSB (Hue, Saturation,
Brightness) system, click the arrows at the bottom of the window to increase or decrease
the value of hue, saturation, or brightness.

Hue is the primary or secondary color created by mixing two primaries.    Saturation is
a measure of how much white is mixed in with the color. A fully saturated color is vivid; a
less saturated color is a washed out pastel or even a shade of gray.

Brightness controls how much black is mixed in with a color. Colors that are very bright
have little or no black. As the brightness is reduced, the color gets darker as if more
black were added. If brightness is reduced to 0, then no matter what the values for hue
or saturation, the color will be black.

Video window (Window menu)            Control+9

The Video Window lets you play digital video movies. Use the controls at the bottom of
the window to play, stop, advance, or rewind the movie. When the movie is stopped, you
can cut, copy, and paste frames from the movie into another digital video window.

Choose Video from the Window menu, or double-click a digital video cast member in the cast
window or on the stage to display the video window.

Note:    On a Macintosh, the term "digital video" refers only to QuickTime movies.
However, Director for Windows supports Microsoft's Video for Windows (.AVI) and
QuickTime for Windows.

The Place, Previous, Next, Info, and Script buttons work the same as they do in the
cast window.

Creating a digital video cast member
Using multiple video
Digital Video Cast Member Properties

Script window (Window menu)            Control+0

Use the script window to enter and edit Lingo scripts. A script can contain up to 32K of
text.

For a description of the buttons at the top of the script window, see the cast window topic.

For descriptions of the tools on the script toolbar, see the Script toolbar topic.

The help topics for Lingo commands include examples that you can paste into your scripts
and use.

Director saves changes you make in the script window when you click anywhere outside of
the window, close it, click the Previous or Next buttons to go to a different script, or if you
choose Recompile All Scripts in the Control menu.

Double-clicking a cell in the script channel opens the script window.

Script Cast Member Properties
Debugger
Message
Watcher

Script window toolbar
The script window toolbar has the following tools (click one for more information):

Handler name pop-up

Lists the name of each handler that is used in the current movie. Go to
a handler by selecting its name from the pop-up.

Go to Handler

Goes to the handler that is in the current line of Lingo and inserts the
cursor there.

Comment

If the current line of Lingo is not commented out, this command
comments out the line by putting two dashes at the beginning of the
line.

Uncomment

If the current line of Lingo is commented out, this command
uncomments the line by removing the two dashes at the beginning of
the line.

Alphabetical Lingo menu

Displays an alphabetical menu of all Lingo elements. Choosing one of
the elements from the menu inserts it in the script at the cursor.

Categorized Lingo menu

Displays a menu of Lingo elements grouped according to the features
that they can implement. Choosing one of the elements from the menu
inserts it in the script at the cursor.

Toggle Breakpoint

Inserts and removes breakpoints in the current line of Lingo.
When the current line of Lingo has a breakpoint, clicking Toggle breakpoint removes

it.
When the current line of Lingo has no breakpoint, clicking Toggle breakpoint inserts

one.

Watch Expression

Adds the selected expression or variable to the list in the watcher
window.

Recompile

Recompiles the movie's scripts without closing the script window.

Debugger window (Window menu) Control+`

The debugger helps with troubleshooting. The window helps to locate and correct bugs in
lingo scripts. It includes several tools that let you:

See the current line of Lingo
Run the current handler line by line
Track the sequence of handlers that were called as part of getting to the current

handler
Display the value of any local variable, global variable, or property related to the

Lingo that you're investigating
Open related windows such as the watcher window and script window.

Click part of the illustration for more information:

Any of the following actions opens the debugger window:
 Choosing Debugger from the Window menu
 Encountering a breakpoint in a script
 Clicking Debugger in an error message that appears when Director encounters a

syntax error in a script.

You can't edit the script directly in the debugger; you must return to the script window.

Script
Message
Watcher

Handlers history pane displays the order of handlers that ran to get to the current
script. Clicking a handler name displays the script. Using the Step Into or Step Over
button always focuses the debugger back to the bottom-most active handler in the pane.

Variable pane rapidly displays local variables, global variables, and property    settings
that Lingo encountered as it ran up to the current line. Only values are displayed; you
can't change them directly in the debugger. To edit Lingo, return to the script window. To
change any of these values while working with the debugger, use a set or put statement
in the message window.

Script pane displays the current script and highlights the current line of Lingo.
Breakpoints are indicated by a red dot to the left of the line of Lingo. The current line is
indicated by a green arrow to the left of the line. The Lingo that appears in the script
pane is only a display. You must return to the script window to edit the script.

Step script runs the current line of Lingo, runs any handlers that the line calls, and then
stops at the next line in the current handler. This is useful when you are confident that
handlers called from the current line are performing as expected and want to
concentrate on Lingo in the current handler.

Step into script follows Lingo's normal flow, line by line from the current line from the
current line through any nested handlers. Lingo advances one line each time you click
Step into script. This is useful when you want to examine the handlers called from the
current line of Lingo.

Run Script exits debugging and returns to the current handlers.

Toggle Breakpoint turns the breakpoint in the line of Lingo that is highlighted in the
script display pane on and off. When the highlighted line has no breakpoint, clicking
Toggle Breakpoint inserts one at that line. When the highlighted line has a breakpoint,
clicking Toggle Breakpoint removes the breakpoint.

Ignore Breakpoints has Lingo pass over any breakpoints in the movie's scripts.

Watch Epression adds the selected variables or expressions to the watcher window.

Watcher window opens the watcher window, which displays the current value of
variables that you select. For more information about the watcher, See Watcher
window.

Go to Handler goes to the handler in the script window whose name is selected in the
debugger. After you are in the script window, you can edit the script normally.

Watcher window (Window menu)          Control+Shift+`

The Watcher window shows the values of simple expressions and variables in the movie's
scripts.

The variable or expression appears at the left of the window followed by an equal sign
(=) and the expression or variable's current value. If Director can't obtain the value of an
expression or variable in the current context, the term "<void>" appears to the right of
the equal sign. Director updates values in the watcher window when the user steps
through lines of a script while in debug mode or continuously while the movie plays.
Some variables, such as the time or the mouseH are updated even while the movie is
not playing.

Note: Watching too many variables can decrease Director's response noticeably. For
example, the cursor may blink slowly or windows may resize sluggishly. Reducing the
amount of data the watcher window must continuously update will immediately improve
Director's performance level.

To add variables or expressions to the list in the watcher window by selecting
them in the script window:
1. Open a script window in which the variable or expression appears.
2. Select the variable or expression.

3. Click the Watch Expression button
 at the top of the script window.

Director adds the selected variables or expressions to the list in the watcher window
and also displays those changes in the variable pane.

To change the value of a variable or expression:
1. Select the value or expression in the watcher window.
2. Type the new value in the field next to the Set button.
3. Click Set.

To add variables or expressions to the list directly from the watcher
window:
1. Type the variable or expression in the field to the left of the Add button.
2. Click Add.

The variable or expression appears in the list.

To remove a variable or expression:
1. Select the variable or expression in the watcher window.
2. Click Remove.

Debugger
Message
Script

Message window (Window menu)          Control+M

The message window is a convenient place to experiment with and test Lingo scripts.
Actions occur immediately when you press the Enter key, so you can see the results
before you insert your scripts into a movie. This allows you to see the results of any
script, including whether it is a valid script.

For descriptions of the tools on the message toolbar, see the Message toolbar topic.

To move around the message window, use the arrow keys or scrollbar. Press Control+up
arrow to move the insertion point to the top of the window. Press Control+down arrow to
move the insertion point to the bottom of the window.

Debugger
Script
Watcher

Message window toolbar
The message window toolbar has the following tools (click one for more information):

Alphabetical Lingo menu

Displays an alphabetical menu of all Lingo elements. Choosing one of
the elements from the menu inserts it in the script at the cursor.

Categorized Lingo menu

Displays a menu of Lingo elements grouped according to the features
that they can implement. Choosing one of the elements from the menu
inserts it in the script at the cursor.

Trace

Click the Trace button to have the message window display all the Lingo that runs as the
movie plays. Using Trace slows down animation, so click Trace to turn it off.

Go to Handler

Goes to the handler that is in the current line of Lingo and inserts the
cursor there.

Watch Expression

Adds the selected expression or variable to the list in the watcher
window.

