KiXtart 95�Version 3.60� TOC \o "1-2" �
KiXtart 95 Version 3.60	� GOTOBUTTON _Toc466889326 � PAGEREF _Toc466889326 �1��
System Requirements	� GOTOBUTTON _Toc466889327 � PAGEREF _Toc466889327 �3��
KiXtart 95 Files	� GOTOBUTTON _Toc466889328 � PAGEREF _Toc466889328 �4��
Installing KiXtart	� GOTOBUTTON _Toc466889329 � PAGEREF _Toc466889329 �5��
To install KiXtart 95 on the network	� GOTOBUTTON _Toc466889330 � PAGEREF _Toc466889330 �5��
To install KiXtart 95 on a client	� GOTOBUTTON _Toc466889331 � PAGEREF _Toc466889331 �5��
To install the KiXtart RPC service	� GOTOBUTTON _Toc466889332 � PAGEREF _Toc466889332 �5��
Required files for Windows 2000 Clients	� GOTOBUTTON _Toc466889333 � PAGEREF _Toc466889333 �5��
Required files for Windows Clients	� GOTOBUTTON _Toc466889334 � PAGEREF _Toc466889334 �6��
Uninstalling KiXtart	� GOTOBUTTON _Toc466889335 � PAGEREF _Toc466889335 �6��
Updating from previous versions	� GOTOBUTTON _Toc466889336 � PAGEREF _Toc466889336 �6��
KiXtart 95 and the year 2000	� GOTOBUTTON _Toc466889337 � PAGEREF _Toc466889337 �6��
Thunking and the KiXtart RPC Service	� GOTOBUTTON _Toc466889338 � PAGEREF _Toc466889338 �7��
Choosing Where to Install the KiXtart RPC Service	� GOTOBUTTON _Toc466889339 � PAGEREF _Toc466889339 �7��
Starting the KiXtart RPC Service	� GOTOBUTTON _Toc466889340 � PAGEREF _Toc466889340 �8��
Running KiXtart	� GOTOBUTTON _Toc466889341 � PAGEREF _Toc466889341 �9��
Running KiXtart from a Batch File	� GOTOBUTTON _Toc466889342 � PAGEREF _Toc466889342 �9��
Locating Files	� GOTOBUTTON _Toc466889343 � PAGEREF _Toc466889343 �10��
Running KiXtart with Lmscript Emulation	� GOTOBUTTON _Toc466889344 � PAGEREF _Toc466889344 �10��
Troubleshooting KiXtart	� GOTOBUTTON _Toc466889345 � PAGEREF _Toc466889345 �11��
Known Problems of KiXtart on Windows 	� GOTOBUTTON _Toc466889346 � PAGEREF _Toc466889346 �13��
The ‘MAP ROOT’ issue.	� GOTOBUTTON _Toc466889347 � PAGEREF _Toc466889347 �14��
Debug mode	� GOTOBUTTON _Toc466889348 � PAGEREF _Toc466889348 �15��
General Syntax Rules	� GOTOBUTTON _Toc466889349 � PAGEREF _Toc466889349 �15��
Dynamic Program Variables	� GOTOBUTTON _Toc466889350 � PAGEREF _Toc466889350 �16��
Expressions	� GOTOBUTTON _Toc466889351 � PAGEREF _Toc466889351 �19��
KiXtart Command Reference	� GOTOBUTTON _Toc466889352 � PAGEREF _Toc466889352 �22��
KiXtart Function Reference	� GOTOBUTTON _Toc466889353 � PAGEREF _Toc466889353 �37��
Return Values	� GOTOBUTTON _Toc466889354 � PAGEREF _Toc466889354 �37��
Registry Functions	� GOTOBUTTON _Toc466889355 � PAGEREF _Toc466889355 �37��
KiXtart Macro Reference	� GOTOBUTTON _Toc466889356 � PAGEREF _Toc466889356 �84��
KiXtart Error Codes	� GOTOBUTTON _Toc466889357 � PAGEREF _Toc466889357 �86��
Feedback	� GOTOBUTTON _Toc466889358 � PAGEREF _Toc466889358 �104��
�
KiXtart 95 is a logon script processor and enhanced batch scripting language for computers running Microsoft(Windows(2000 or Microsoft(Windows(95/98 in a Windows Networking environment.

The KiXtart 95 free-format scripting language is used to display information, set environment variables, start programs, connect to network drives, read or edit the registry, and change the current drive and directory.

This latest update of KiXtart 95 offers various new features and enhancements:

New commands, functions, macros

DecToHex()	returns hexadecimal representation of a decimal value.

Dir()	allows enumeration of directories.

Execute()	executes a piece of script.

GetFileAttr()	retrieves attributes of a file.

GetFileSize()	returns the size (in bytes) of a file.

SetFileAttr()	sets attributes of a file.

SetFocus()	sets focus to a specific application.

SendKeys()	sends keystrokes to the application that currently has the focus.

@SITE	name of the site in which the system currently resides.

Enhanced commands, functions

Arrays	KiXtart now supports the concept of single dimension arrays of variables.

Hexadecimal numbers	numbers can now be specified in hexadecimal notation.

Local variables	variables can now be declared as local to a specific script or subroutine.

GetFileVersion()	can now return the language of a file.

Mathematical And and Or	2 new operators have been added (& and |) which enable mathematical And and Or operations.

Enhancements

Windows 2000 support	this version of KiXtart 95 has been enhanced to work both on Windows 2000 clients and in combination with Windows 2000 servers.

GetDiskSpace	enhanced to work correctly on pre-OSR2 Windows 95 (but it is still limited to a maximum of 2 gigabytes (GB)).

AT	fixed bug in AT that could occur when output was redirected to a file.

COPY	corrected handling of target that did not end with a BACKSLASH (\) or file name.

Internationalization	both KIX32 and KXRPC have been ‘internationalized’. As a result, all macros are now available in the correct codepage, both on Windows 2000 as well as on Windows 95/98.

‘Smart’ information retrieval	in previous versions of KiXtart, all user information was automatically retrieved at the startup of Kix32. This behavior has been changed so that at startup, only local information is retrieved, and any information that requires access to the network is only retrieved if and when it is requested. This enhancement greatly speeds up the startup of KiXtart, and makes it possible to make scripts intelligent about network access, for example depending on whether or not the current system is connected via remote access server.

Note
For information about the latest changes to KiXtart 95, see Kix32rel.txt, in the Kix32 subdirectory.

System Requirements
KiXtart 95 is supported on systems with an Intel 80386 or better microprocessor running Windows 2000 (Server and Professional), Windows NT 3.5 and later, and Windows NT version 4.0 and later (Server and Workstation), Windows 95 or Windows 98 or later (referred to in this document as Windows 95/98).

KiXtart is also available for the MS-DOS platform. Please check the following Web locations for the latest versions available:

http://netnet.net/~swilson/kix.html
http://script.kixtart.to
http://www.scriptlogic.com
http://www.comptrends.com
http://www.cyberramp.net/~musicon/kix/index.html
KiXtart 95 Files
The Kix95 directory contains the following files.

Kix32.doc�This document��Kix32.exe�KiXtart 95 program file��Kxrpc.exe�KiXtart RPC service for Windows 95 clients��Kx95.dll�Dynamic link library (DLL) for KiXtart on Windows 95/98��Kx16.dll, Kx32.dll�Support DLLs to connect to Netapi.dll on Windows 95/98��Kixplay.exe�16-bit tool to play SPK files on Windows 95/98��Delkey.kix, Demo.kix, Demo2.kix, Enumdir.kix, Enumkeys.kix, Fly.kix, Fun.kix, Kick.kix, Kixtart.kix, Recur.kix, Test.kix�Sample script files��Adaams.spk, Bouree.spk, Cabaret.spk, Jbond.spk, Treksong.spk�Sample SPK files��Chimes.wav�Sample WAV files��Kix32rel.txt�Release notes, containing information about the latest changes to KiXtart 95��
The subdirectory called ALPHA contains the ALPHA-specific executable extensions (KIX32.ALPHA and KXRPC.ALPHA). To install these executable files, copy the files to your system and change the file extension to .exe.

The subdirectory called Xnet contains Xnet.exe and a sample batch file that demonstrates the use of XNET to install the KiXtart RPC service on a remote computer.
Installing KiXtart
KiXtart consists of five executable components:
Kix32.exe, the main program file
Kx16.dll, a 16-bit DLL used to connect to Netapi.dll on Windows 95/98 clients
Kx32.dll, a 32-bit DLL used to connect to Netapi.dll on Windows 95/98 clients
Kxrpc.exe, a Windows NT service to support Windows 95/98 clients
Kx95.dll, a 32-bit dynamic link library (DLL) used to connect to the KiXtart RPC service
All executable components can be installed on and run from the network or from the local hard disk of the client systems.
To install KiXtart 95 on the network
To install KiXtart on the network, copy the required files to the NETLOGON share of the logonserver(s).
To install KiXtart 95 on a client
To install KiXtart on a client, copy the required files to a directory on the local hard disk. Optionally, the dynamic-link libraries (DLLs) can be copied to the windows or the windows\system directory.
To install the KiXtart RPC service
	1.	Copy Kxrpc.exe to a directory on the server that will run the service.
	2.	At the command prompt, switch to that directory and type the following command:
KXRPC –install
The KiXtart RPC service can be installed on a remote server using a tools such as RSERVICE or XNET. KiXtart 95 comes with a batch file called Xinst.cmd, which demonstrates installing the KiXtart RPC service on a remote computer using XNET.

Note
The KiXtart RPC service is available for both Intel and Alpha systems. To install the Alpha version, please copy the file called KXRPC.ALPHA to the Alpha system, and rename the file to KXRPC.EXE.

Note
The KiXtart RPC service should only be installed when necessary. Please see the separate chapter on the KiXtart RPC service for details on when and where to install the service.

Required files for Windows 2000 Clients
Windows 2000 clients need only install Kix32.exe.
Required files for Windows 95/98 Clients
Windows 95/98 clients must install both Kix32.exe and two dynamic-link libraries (DLLs) called KX16.DLL and KX32.DLL.

If Windows 95/98 clients are to communicate with the KiXtart RPC service, an additional DLL, called KX95.DLL, should also be installed. Please see the separate paragraph on the KiXtart RPC service for full details.

Note
KX95.DLL should only be installed if the KiXtart RPC service will be used. Without the KiXtart RPC service, KX95.DLL will generate unnecessary network traffic and delay the start of KiXtart.

Uninstalling KiXtart
To uninstall KiXtart 95, simply delete the executable components and scripts.

The KiXtart RPC service can be removed at the command prompt by typing the following command :
KXRPC –remove
Updating from previous versions
To update KiXtart for Windows 2000 clients, replace Kix32.exe.

To update KiXtart for Windows 95/98 clients, make sure to replace all components: KIX32.EXE, KX32.DLL, KX16.DLL. If the KiXtart RPC service is used, make sure to also replace KX95.DLL and KXRPC.EXE.

Note
Failing to replace all the components can cause unexpected behavior. As a precaution, KiXtart checks for the correct components and will report an error in KIXTART.LOG if it finds an outdated component.

To update the KiXtart RPC service, stop the service (NET STOP KXRPC), replace KXRPC.EXE and restart the service.
KiXtart 95 and the year 2000
There are no known issues with KiXtart 95 and the year 2000.

KiXtart 95 uses standard Win32 API’s to retrieve date information that is available through the macros (such as @YEAR and @DAY).

The only calculation in KiXtart involving dates (to determine the @YDAY macro) does take the year 2000 correctly into account.
Thunking and the KiXtart RPC Service
Unlike Windows 2000, Windows 95/98 does not provide all the Win32 APIs that KiXtart 95 needs to gather information, such as the user's full name and group memberships. KiXtart uses two programming methods to solve this problem: thunking and Remote Procedure Calls (RPCs)

Thunking is the term used when connecting to a 16-bit API from a 32-bit application. The 16-bit APIs required by KiXtart are provided by Netapi.dll. Kx16.dll and Kx32.dll provide the so-called thunking layer required to connect to Netapi.dll.

Unfortunately, Netapi.dll does not provide all the information that is of interest to KiXtart. Most notably, Netapi.dll does not provide access to the logon domain, the security identifier (SID), the primary group, the home drive and local groups. The KiXtart RPC service provides these missing pieces of information to KiXtart using RPCs. The client side of the RPC interface is provided in Kx95.dll

The server side of the RPC interface is provided in Kxrpc.exe, and this should be installed and run on one or more Windows 2000 systems. The KiXtart RPC service can run on any Windows 2000 system: a workstation, a standalone server, or a logon server. The system must be either a member of the logon domain or a member of a resource domain that has a trust relationship with the logon domain.

Note
Using the KiXtart RPC service is optional. However, without it, extended information, such as local groups, is not available to Windows 95/98 systems.

Choosing Where to Install the KiXtart RPC Service
When considering where to install the KiXtart RPC service, you must decide how KiXtart 95 locates servers running the KiXtart RPC service. The simplest choice is to install the KiXtart RPC service on all the logon servers in the logon domain, which also provides load balancing. KiXtart automatically attempts to connect to the KiXtart RPC service on the logon server that authenticated the user.

If the KiXtart RPC service cannot be installed on all logon servers, KiXtart must be directed to locate a specific server running the service. This can be achieved by:

Setting an environment variable before running KiXtart 95.
Adding a subkey to the registry of Windows 95/98 clients.
Adding an initialization file to the KiXtart 95 startup directory.

These methods are described in the following sections.

Setting a KXRPC Environment Variable
The KXRPC environment variable is set to a comma-delimited list of the full name of the server running the KiXtart RPC service. For example:
set kxrpc= \\MyServer
– Or –
set kxrpc= \\MyServer,\\AnotherServer

Adding a KiXtart Subkey to the Windows Registry
Another way to direct KiXtart to a server running the KiXtart RPC service is to add the following subkey to the registry of Windows 95/98 clients:

HKEY_LOCAL_MACHINE\Software\Microsoft\KiXtart
In the new KiXtart subkey, add an entry called KXRPC with a REG_SZ data type. Set the value of KXRPC to a comma-delimited list of the full names of the KiXtart RPC servers.
Adding a Kixtart.ini File
KiXtart can also be directed to the KXRPC server by creating a Kixtart.ini file and placing it on the NETLOGON share of the logon server, or in the directory from which KiXtart is started.

Kixtart.ini contains a [KXRPCMapping] section, which can include an entry for each domain or workgroup that is to be enabled for use of KiXtart 95. Optionally, a Default= entry can be added to refer all unknown workgroups or domains to a specific KXRPC server.

The following is a sample Kixtart.ini file:

[KXRPCMapping]
MyDomain=\\MyServer1,\\MyServer2,\\MyServer3
YourDomain=\\YourServer
Default=\\ServerA,\\ServerB

Note
If multiple KXRPC servers are specified for one mapping, KiXtart connects to them in the sequence specified.

Starting the KiXtart RPC Service
When it is installed, the KiXtart RPC service is configured to start automatically at system startup. After the initial installation, the service can be started from the Services feature in Control Panel or from the command prompt.

To start the KiXtart RPC service
	1.	In the Services feature in Control Panel, select the KiXtart RPC service, and then click Start.
– Or –
	2.	At the command prompt, type the following command:
net start kxrpc

Running KiXtart
KiXtart can be run manually or automatically during the logon sequence.
To run KiXtart manually
At the command prompt, type the following command:
kix32

To run Kix32.exe automatically when a user logs on
	1.	In User Manager, select the user.
	2.	On the File menu, click Properties, and then click Profile.
	3.	In the Logon Script Name box, type ”Kix32”.

Note
For Windows 95/98 clients, do not specify a KiXtart script in the Logon Script Name box in the User Environment Profile dialog box in User Manager. To specify a script for Windows 95/98 clients, use a batch file as the logon script, and start KiXtart from the batch file.

Running KiXtart from a Batch File
Kix32.exe can be run from a batch file that is used as the logon script for the user. For example, if Kix32.exe is in the root directory of the NETLOGON share, the batch file might contain the following commands:

@ECHO OFF
%0\..\Kix32.exe

Note
Use of the syntax %0\..\ is discussed in Knowledge Base article Q121387.

If Kix32.exe was installed on the client's local hard disk, you must refer to the local directory, for example: C:\Kixtart\Kix32.exe. By default, KiXtart automatically looks for a personal script for the current user (Username.kix). If it does not find one, it looks for the default script, Kixtart.kix. You can override this behavior by specifying one or more scripts after Kix32.exe on the commandline. If an extension is not specified, KiXtart attempts to use two default extensions: ”.KIX” and “.SCR”.

KiXtart also supports declaring variables at the command prompt, demonstrated in the following example:

kix32 Demo.kix $Key=HKEY_LOCAL_MACHINE\Software
For information about valid variable names and values, see “Dynamic Program Variables” later in this document.

�symbol 183 \f "Symbol" \s 6�·�	
Note
On computers running Windows 95/98, KiXtart can also be started by using Lmscript emulation. For more information, see “Lmscript Emulation” later in this document.

Locating Files
During the logon sequence, KiXtart 95 automatically tries to locate all files that it is asked to open (SPK, WAV, TXT, and so on) by searching for them first on the NETLOGON drive, then on the drive where KiXtart 95 was started from, and finally in the current directory. This behavior can be overridden by prepending the file name with a drive letter or a UNC path.

For example, the following command:
play file "Kbond.spk"
causes KiXtart to search for Kbond.spk on the NETLOGON share, in the KiXtart startup directory, and in the current directory.

If this command is used:
play file "C:Kbond.spk"
KiXtart searches for Kbond.spk only in the current directory of the C drive.
Running KiXtart with Lmscript Emulation
Normally, when a user logs on to a LAN Manager or Windows 2000 domain from Windows 95/98, the Windows API responsible for processing the logon request starts a program called Lmscript to run the logon script. The sole responsibility of Lmscript is to inform the logon API when the logon script has finished by creating a semaphore file (also called a cookie).

Unfortunately, the original Lmscript.exe takes up a lot of memory. To solve this issue, KiXtart can be used as a replacement for Lmscript.exe. This not only saves memory, but also means that the Kix32.exe does not have to be read from the network during the logon sequence, as it is automtically run from the local hard disk. The benefit of this is minimal in a normal LAN environment, but can be substantial in a WAN or RAS environment.
	To enable Lmscript emulation on computers running Windows 95/98
	1.	In the Windows\System folder, rename the original Lmscript.exe.
	2.	Rename Kix32.exe to Lmscript.exe and then copy it to the Windows\System folder.
	3.	In User Manager, in the Logon Script Name box, specify a KiXtart script as the logon script for the user (for example, Kixtart).
	4.	At the end of the specified KiX script, add a line containing the COOKIE1 command to create the semaphore file.

�symbol 183 \f "Symbol" \s 6�·�	
Note
Users who do not use Lmscript emulation (such as users running Windows 95/98 on the LAN or users running Windows NT Workstation) cannot run the logon script unless there is also a batch file with the same name as the KiX script specified for the user.

The following example illustrates the use of such a batch file for a user named Fred.

User name�Fred��Logon script�Script1��Contents of the Scripts directory on the logon server�Script1.bat�Script1.kix�Kix32.exe��Contents of Script1.bat�@ECHO OFF�%0\..\Kix32 Script1�EXIT��Contents of Script1.kix�CLS�BIG�? “Hi, @USERID”�SLEEP 10�COOKIE1�EXIT��
If Fred uses a computer running Windows NT to log onto the network, or if he uses a computer running Windows 95/98 with the original Lmscript.exe, Script1.bat starts and then in turn starts Kix32.exe with Script1.kix as the logon script. If he uses a computer running Windows 95/98 and logs on with Kix32.exe renamed as Lmscript.exe, Script1.kix runs automatically.
Troubleshooting KiXtart
KiXtart provides extensive logging of system errors, such as failure to locate support DLLs, failure to connect to the RPC service, and so on. On computers running Windows NT, these errors are logged in the system event log. On computers running Windows 95/98, they are logged in a text file named Kixtart.log, which is stored in the Temp or Windows directory.

The following table describes the most common problems encountered by KiXtart.

Error�Meaning�Solution����The macro @ADDRESS returns an empty string ("").�KiXtart failed to find a NetBIOS interface on any of the network bindings.�Make sure a NetBIOS interface is available on one of the bindings.��The macro @FULLNAME returns an empty string ("").�KiXtart cannot retrieve the network information.�On Windows NT, make sure the Workstation service is running.
On Windows 95/98, make sure that the support DLLs are available.
Also check the event log or kixtart.log for any errors.��KiXtart seems to hang when at startup.�KiXtart cannot connect to the logon server to retrieve user information.�Determine the name of the logon server (using @LSERVER) and try to connect to it manually.��KiXtart does not recognize certain commands.�Although KiXtart is a free-format language, some literals, such server names that contain a hyphen (-), can cause errors. �Enclose literals in quotation marks.��Errors such as “Label not found” or “Unknown command” appear in an otherwise faultless script.�There is probably an unmatched quotation mark or similar error somewhere in the script.�Proofread your script.��Failed to initialize RASMAN.DLL.�Caused by a ‘half-installation’ of the RAS client software. Installation either wasn’t completed, or the uninstallation left RASAPI32.DLL on the system.�Remove RASAPI32.DLL from the system, or complete the installation of the RAS client.��Application error c0000006H / ‘IN_PAGE_ERROR’ / ‘SWAP_ERROR’ or an Invalid Page Fault is generated intermittently.�The operating system has failed to read code from executable file(s) because the KiXtart startup drive has become unavailable.�Make sure that you do not, in any way, disconnect or re-redirect the drive from which KIX32.EXE was started. Also, these faults can be caused by antivirus software. If you use antivirus software, make sure you are using the latest version and if the problem persists, test if disabling the antivirus software solves the problem.��

Note
Because KiXtart 95 is a true 32-bit application, it writes to the screen using the Win32 Console API. For this reason, screen output may seem slower than the direct screen output used by MS-DOS – based versions of the program.

Tip
To include quotation marks in a string, either use the CHR function, or enclose the entire string in quotation marks. For example,
"String with a quote (‘) in it." 	String with a quote (‘) in it.

Known Problems of KiXtart on Windows 95/98
The following is a list of known bugs and other issues that may be encountered when using KiXtart on Windows 95/98:
If KiXtart is used on systems that are configured to run both Microsoft Networking client software and Novell Netware client software, compatibility issues can cause KiXtart to fail to retrieve network information and/or find any script. If these problems occur, make the following change in the registry of the affected clients:

HKEY_LOCAL_MACHINE
 System
 CurrentControlSet
 Services
 MSNP32
 Network Provider	CallOrder	[00 00 00 40] >change to> [00 00 00 20]
 NOVELLNP
 Network Provider	CallOrder	[00 00 00 20] >change to> [00 00 00 40]
When text is output to bottom-right position of the screen, the screen scrolls.
This issue is related to the Console API on Windows 95/98.
Color is sometimes garbled when the screen is scrolled.
This problem is caused by the way Windows 95/98 handles color attributes.
The LockLog utility (shipped with the MS�DOS – based version of KiXtart) does not work on Windows 95/98.
The SET and SETM commands do not work on Windows 95/98.
As a work around run Winset.exe (available on the Windows 95/98 CD) from within KiX32 using the SHELL command.
On Windows 95/98, SAVEKEY produces a hidden, read-only system file in the Windows System directory. On Windows 2000, the same command produces a normal file in the current directory.

In either operating system, the file can be used with LOADKEY (after it has been made visible using ATTRIB).
On Windows 95/98, if a network drive is removed that was redirected from My Computer or Windows Explorer, the drive remains visible in the Windows interface as a disabled or ghosted drive, and the drive is reconnected when the user clicks it.

This scenario can be prevented with an additional step. After the drive has been removed, delete the corresponding subkey from the registry. For example:
USE E: /d
DELKEY("HKEY_CURRENT_USER\Network\Persistent\E")

The logon script is sometimes skipped completely.

This problem can be caused by a sharing bug in Msnet32.dll. The bug was fixed in version 4.00.951 of Msnet32.dll.
Another reason for the logon script to be skipped on Windows 95/98 is a space in the logon script field in NT User Manager. Although NT User Manager accepts multiple strings (and spaces) in the logon script field, Windows 95/98 fails to run the logon script.
The ShutDown function does not work reliably.
This problem is caused by the underlying Windows API. It may be fixed in a future version of Windows 95/98. As a workaround, try the following command :
SHELL “%windir%\RUNDLL32.EXE user.exe,ExitWindows”
The ‘MAP ROOT’ issue.
The Windows redirector software on Windows 95/98 systems does not support the concept of socalled ‘deep’ redirections (ie: redirecting a drive to a directory below the sharelevel, eg: “\\SERVER\SHARE\USER”). As such, Novell’s MAP ROOT feature cannot be emulated. This is a limitation of the redirector software, and unfortunately, KiXtart cannot work around this.

Note
Deep redirections are possible on Windows 2000 systems, either by using the SUBST command, or by installing the Distributed FileSystem (DFS) client software.

Debug mode

KiXtart provides a simple debug mode. In debug mode, a script can be stepped through statement by statement, and the value of a variable or macro can be displayed. To run a script in debug mode, specify ‘/d’ on the command line.

In debug mode, the top line of the screen is used to display the current line in the script starting at the current statement. Optionally, the second line of the screen is used to display the value of a specific variable or macro.

Whilst debugging, the following keys are available to control script execution :

F5	Run (deactivates debug mode, runs rest of script)
F8, <Space>, <Enter>	Step into (run a single statement, follow thread into subroutines and secondary scripts)
F10	Step over (run a single statement, executes, but skips over subroutines and secondary scripts as far as the debugger is concerned)
<Esc>, ‘q’	Exit

Additionally, the value of a variable or macro can be queried simply by typing its name and pressing <Enter>.
General Syntax Rules
KiXtart is a free-format scripting language. It is not case-sensitive. This means that

IF @PRIV="ADMIN" DISPLAY "ADMIN.TXT" ELSE DISPLAY "USER.TXT" ENDIF

is equivalent to

If @PRIV = "ADMIN"
 Display "ADMIN.TXT"
Else
 Display "USER.TXT"
Endif

When using KiXtart, note the following rules:
Strings can contain any characters, except the \0 (NULL) and \x1a (end of file) characters.
Script commands should be separated by white space — that is, any combination of spaces, tabs, or new line characters.
If a string contains delimiters (-, +, *, and so on), the string must be enclosed in quotation marks. For example
'String with a dash (-) in it.' 	; String with a dash (-) in it.

Dynamic Program Variables
Introduction
In KiXtart, variables are used to temporarily store values during the execution of a script. Variables have a name (the word you use to refer to the value the variable contains) a type (which determines the kind of data the variable can store) and a scope (which determines where in the script you can reference the variable). You can think of a variable as a placeholder in memory for an unknown value.
Storing Data in Variables
Variables can be assigned a particular value by using an assignment statement :

$Variable = 10

or by using a GET or GETS statement :

GET $Variable

Optionally, variables can be created and assigned a value on the command line with which KiXtart is started. To do this, type the variable name followed by an equal sign (=) and the value the variable should have. For example:

KIX32 Demo.kix $Key=Value

Note
On the command line, do not include spaces between the equal sign (=) and the value. If you want to specify a value that contains spaces, enclose it in quotation marks (for example, KIX32 Demo.kix $Key="Hi there").

Declaring Variables
To declare a variable is to tell the program about it in advance. You declare a variable with the Dim or the Global statement, supplying a name for the variable:

DIM variablename

Variables declared with the Dim statement exist only as long as the script is executing. When the script finishes, the variable, and its value, disappear. Variables declared with the Global statement exist during the entire KiXtart session.

A variable name:
Can't contain operator characters (+,-,*,/,&,<,>,=)�
Must not exceed 14 characters.�
Must be unique within the same scope, which is the range from which the variable can be referenced in a script, or script segment.

Note
You can use the same name for variables in different scopes, and if you do, you will only be able to reference the variable in the current scope. Please see the example below for more details:

$Var = 10

IF InGroup(“Admins”)

 DIM $Var	; local variable with same name

 $Var = 20

 ? $Var	; this will display ‘20’

ENDIF

? $Var	; this will display ‘10’

Implicit declaration
Variables don’t have to be declared before they can be used. You can also implicitly declare them simply by assigning a value to them. Note that all variables that are declared in this way have a global scope (see below for details on scope).
Scope of variables
Depending on how and where they are declared, variables can have a local or a global scope. Variables with a global scope are visible anywhere in any script during the entire KiXtart session. Variables with a local scope are only visible to the script or script segment in which they were created.

Examples:

$GlobalVariable = 10�Assuming this is the first reference to ‘$GlobalVariable’, this variable is implicitly declared and will become a global variable, visible everywhere in every script during this KiXtart session.��
DIM $LocalVariable

$LocalVariable = 10
�This variable will become a local variable and will be visible only in the current script.��
IF $X = 1

 DIM $LocalVariable

 $LocalVariable = 10

ENDIF
�In this example, $LocalVariable will only be visible inside the IF statement.��
GOSUB Demo

EXIT 1

:Demo

DIM $LocalVariable

$LocalVariable = 10

RETURN
�In this example, $LocalVariable will only be visible inside the subroutine ‘Demo’.��Variable types
There are two types of variables: string and integer. String variables can contain up to 32,000 characters. Integer variables can contain any value between �2,147,483,648 and 2,147,483,647. The type of a variable is automatically changed to the result of the expression that is assigned to it. This means that if you assign a string to an integer, the integer is changed to a string.

There is no limit on the number of variables that can be defined, other than the amount of memory available to KiXtart.
Arrays
KiXtart supports single dimension arrays. Arrays allow you to refer to a series of variables by the same name and to use a number (an index) to tell them apart. This helps you create smaller and simpler code in many situations, because you can set up loops that deal efficiently with any number of cases by using the index number. Arrays have both upper and lower bounds, and the elements of the array are contiguous within those bounds. Because KiXtart allocates space for each index number, avoid declaring an array larger than necessary.

Unlike normal variables, arrays must be declared explicitly before they can be used.
When declaring an array, follow the array name by the upper bound in square brackets. The upper bound cannot exceed 2,147,483,647.

Examples:

Dim $Counters[14]
Dim $Sums[20]

The first declaration creates an array with 15 elements, with index numbers running from 0 to 14. The second creates an array with 21 elements, with index numbers running from 0 to 20.

Immediately after the declaration, all elements of an array have the same type: integer. Individual elements of an array can subsequently be changed to the string type (just as any other variable) simply by assigning a string expression to them.

Note
Unlike regular variables, arrays can not be used inside strings and can also not be assigned a value on the command line.

Expressions
KiXtart supports two types of expressions: string and numeric.
A string expression can consist of any combination of the following:
Literals (a sequence of characters enclosed in quotation marks)
Functions that return a string
Plus signs (+), which indicate concatenated sub-expressions

Numeric expressions can consist of any combination of:
Sub-expressions
Numeric values (in decimal or hexadecimal notation)
Functions that return a numeric value
 Numeric operators (+, – , *, /, &, |)

KiXtart support the following numeric operators:

+�Used to sum two numbers.��-�Used to find the difference between two numbers or to indicate the negative value of a numeric expression.��*�Used to multiply two numbers.��/�Used to divide two numbers and return an integer result.��&�The & operator performs a bitwise mathematical AND operation on two numbers.��|�The | operator performs a bitwise mathematical OR operation on two numbers.��
To specify a number in hexadecimal notation, prepend it with an ampersand (&).

Both string and numeric expressions can contain the following conditional and logical operators:
<
>
=
<>
<=
>=
And
Or

A string expression can contain up to 32,000 characters. Any macros, or references to environment strings within a string (for example: “String with the macro @USERID in it.”) are resolved before the string is evaluated. For compatibility reasons, references to variables inside strings (for example: “String with a $Var in it.”) are also resolved before the string is displayed. The only exception to this rule are arrays, which can not be used inside strings.

Note
The characters @, %, or $ are normally used to indicate macros, environment strings, or variables. If you want to use these characters in a string, use @@, %%, or $$.

The following examples show the correct use of expressions in KiXtart:

$X = 1 + "20"			; $X type = integer / value = 21.

$X = &10 + &A			; $X type = integer / value = &1A (26).

$X = "1" + "20"			; $X type = string / value = '120'.

$X = @USERID + "1"		; $X type = string / value = 'USER1'.

"Current time = " + @time 	; prints: "Current time = 12:34:00"

"Use @@time to print the time" 	; prints: "Use @time to print the time "

$Y = "And this is how you access environment variables: %USERNAME%..."

IF @Day='Sunday' AND @USERID = 'RuudV'

$X = (@MONTHNO=3 AND @MDAYNO>=20) OR @MONTHNO=4

IF @WKSTA="VLEERBEER" OR @WKSTA="PALOMINE"

$X = ((@YDAYNO + 7) / 7) + 1

; Old style use of variables inside a string:
"Use of a variable $Var inside a string."

New, preferred style to use variables in combination with strings:
"Use of a variable “ + $Var + “ inside a string."

Strings in the script are displayed on the screen in the current character size starting from the current cursor position. For information about character size, see the BIG and SMALL commands.

A string can be enclosed in single or double quotation marks. To specify quotation marks in a string, either use the CHR function or enclose the entire string in the opposite type of quotation marks — .that is, if you want to include single quotation marks in a string, enclose the string in double quotation marks, and vice versa.

The following examples show the correct use of string expressions in KiXtart:

Code�Output��
"Hi "+ @userid
�
Hi Ruudv��
'Double quote in a string: (")’
�
Double quote in a string: (")
��
"Single quote in a string: (')"
�
Single quote in a string: (')
��
"More double quote: " + Chr(34)
�
More double quote: "��
KiXtart determines the type of the expression from the first element of the expression.

�KiXtart Command Reference
KiXtart accepts the commands described in the following sections.

Note
In this documentation, square brackets ([]) indicate optional arguments, and angle brackets (< >) indicate required arguments.

:
Action
Defines a label within the script file to which you can transfer control.

Syntax
:label

Remarks
Labels must be unique within the script. You can define a label in an IF statement, but you cannot jump to one from outside that IF statement.

The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
;
Action
Indicates a comment. Subsequent characters on the script line are ignored.

Syntax
;

?
Action
Indicates a new line. This moves the cursor position to the beginning of the next line.

Syntax
?

BEEP
Action
Causes the system to beep.

Syntax
BEEP

BIG
Action
Changes the character mode to large characters.

Syntax
BIG

Remarks
When BIG is used, subsequent screen output is 8 characters wide and 8 characters high. Use SMALL to reset the character mode to normal.
BIG is ignored when screen output is redirected to a file.

BREAK
Action
Enables (BREAK ON) or disables (BREAK OFF) the ctrl+c/break keys and the Close command. This effectively allows control over whether a script run by KiXtart can be interrupted or not.
Syntax
BREAK <ON | OFF>

Remarks
By default, to prevent users from inadvertently interrupting a script, KiXtart automatically disables the ctrl+c/break keys, disables the Close command in the System menu of the current command-prompt window, and hides the Please wait while your logon script executes message box on Windows 95/98.

In a multi-tasking environment such as Windows NT, you cannot fully prevent users from interrupting a program. (They can end programs by using the Task List, for example.) As an additional protection, on computers running Windows NT Workstation only, when BREAK is OFF (the default) KiXtart also installs a special event handler for the current console. The effect of this handler is that whenever a user forcibly terminates KiXtart, the user is automatically logged off. This means that you must be careful when testing scripts.

Tip : the Please wait while your logon script executes message box contains a Cancel button, which you can hide by opening a copy of Msnet32.dll in Visual C 4.00 WorkBench, selecting the LMWINSCRIPTDLG resource, and making the Cancel button invisible.

CALL
Action
Runs a separate KiXtart script.

Syntax
CALL "script name"

Remarks
When the called script ends or when a RETURN statement is encountered, script execution continues at the statement following the CALL statement in the calling script.

Theoretically, there is no limit to the number of scripts that can be nested. Obviously, the practical limit on the number of scripts you can call is determined by the amount of available memory at the time KiXtart runs, the size of the scripts, the number of variables defined, and so on.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
CD
Action
Changes the current working directory to the directory specified.

Syntax
CD "directory"

Remarks
Check the value of @ERROR to see if CD was successful.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
CLS
Action
Clears the screen and moves the cursor to position 0,0.

Syntax
CLS

Remarks
The CLS command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
COLOR
Action
Sets the color attribute to be used in subsequent display statements.

Syntax
COLOR Xx/Yy

Parameters
X�Foreground color��x�Optional intensity indication��Y�Background color��y�Optional blink indication��
Possible values for the foreground and background colors are:
n�Normal (black)��b�Blue��g�Green��c�Cyan��r�Red��m�Magenta��y�Yellow/brown��w�White��
Remarks
If the foreground color is followed by a plus sign (+), the color is displayed with high intensity.

Specifying a plus sign (+) with the background color causes the color to be displayed blinking.

Examples
COLOR w+/b�Bright white text on a blue background��COLOR g/r+�Green text on a blinking red background��The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
COOKIE1
Action
Creates a cookie, or semaphore-file, that the Windows 95/98 Logon API uses to determine whether the script has finished running. This command is only useful when KiXtart is being used to emulate Lmscript.exe. For more information, see “Lmscript Emulation,” earlier in this document.

Syntax
COOKIE1
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
COPY
Action
Copies one or more files.

Syntax
COPY "source" "destination" [/h]

Remarks
Wildcard characters are supported.
If a file already exists at the destination, it is overwritten without warning.
The /h option can be used to include files with the hidden or system attribute set in the copy.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DEL
Action
Deletes a file.

Syntax
DEL "file name"

Remarks
DEL does not prompt the user to confirm the deletion.
Wildcard characters are supported.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DIM
Action
Declare one or more local variables.

Syntax
DIM "variable1" [<,>"variablex"]

Remarks
Local variables are visible only in the current script or script segment.

Examples
DIM $Variable

DIM $Array[9]	; Note : declaration of an array of 10 elements.

IF $X = 1
 DIM $Var1, $Var2, $Var3
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DISPLAY
Action
Displays the contents of a file on the screen, starting at the current cursor position.
Syntax
DISPLAY "file name"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DO UNTIL
Action
Loops until an expression becomes true.

Syntax
DO ... UNTIL "expression"

Remarks
DO UNTIL loops can be nested as many times as memory allows.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
EXIT
Action
Exits the current KiXtart script, or, if used at the topmost level, exits KiXtart.

Syntax
EXIT [error level / exit code]

Remarks
If EXIT is followed by a numeric expression, then @ERROR is set to the value of that expression and you can check it in the calling script or batch file.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
FLUSHKB
Action
Flushes all pending characters from the keyboard buffer.

Syntax
FLUSHKB
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GET
Action
Accepts a single character from the keyboard and stores the character in a variable.

Syntax
GET $x

Remarks
The character is stored in the specified script variable. If a function key, such as F1, is pressed, GET returns 0, and @ERROR returns the key code of the function key.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GETS
Action
Reads a line of characters from the keyboard until the <enter> key is pressed, and stores the result in a variable.

Syntax
GETS $x
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GLOBAL
Action
Declare one or more global variables.

Syntax
GLOBAL "variable1" [<,>"variablex"]

Remarks
Global variables are visible everywhere in every script during the current KiXtart session.

Examples
GLOBAL $X
GLOBAL $X, $Y, $Z
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
[GO]
Action
Changes the current drive.

Syntax
[GO] drive

Remarks
Use GO if you want to specify a variable as the drive to change to.

Examples
GO A:
A:
GO $2
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GOSUB
Action
Causes script execution to continue at the first statement after a label.

Syntax
GOSUB <label>

Remarks
Label can be an expression.
When a RETURN statement is encountered, script execution continues at the statement following the GOSUB statement.

Examples
? "This demonstrates calling a subroutine"
GOSUB "Demo"
? "End of demonstration…"
EXIT 1
:Demo
? "We are in the subroutine now…"
RETURN
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GOTO
Action
Causes script execution to continue at the first statement after a label.

Syntax
GOTO <label>

Remarks
Label can be an expression.

Examples
GOTO "end"
$string = "end"
GOTO $string
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
IF ELSE ENDIF
Action
Conditionally runs statements.

Syntax
IF expression�statement1��[ELSE�	statement2�	]�ENDIF

Remarks
The body of an IF statement is executed selectively depending on the value of the expression. If expression is true, then statement1 is executed. If expression is false and the ELSE clause is specified, then statement2 is executed.

IF statements can be nested as many times as memory allows.

If the expression does not contain any relational operators, the condition is considered to be true if it is numeric and it evaluates to a value other than zero, or if it is alphanumeric and it evaluates to a string containing at least one character.

Comparisons are not case-sensitive.

Examples
IF $X					; similar to IF $X <> 0
IF @HOMESHR				; similar to IF @HOMESHR <> ""
IF INGROUP("Domain Admins")		; similar to IF INGROUP("Domain Admins") > 0
IF INGROUP("Domain Admins") = 0	; true if user NOT a Domain Admin
IF $X*2 < 10
IF (($X*2) < 10) OR ($Y + 100) /3 >120
IF INSTR(%PATH%,"NETLOGON") AND @DOS = "3.51"
IF (SUBSTR(@WKSTA,11,1)="1" AND @USERID = "PETERV") OR @DOMAIN = "VleerBeer"
IF @USERID = "RUUDV" OR @USERID = "WIMW"
IF (INGROUP("Domain Users") OR INGROUP("Users"))
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
MD
Action
Creates a new directory.

Syntax
MD "directory"

Remarks
Check the value of @ERROR to see if MD was successful (@ERROR = 0).
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
PASSWORD
Action
No function; supported only for compatibility with KiXtart 2.3x.

Syntax
PASSWORD "password"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
PLAY
Action
Plays ‘music’ on the computer's speaker, by using the SPK file format described below, or on a sound card by playing a WAV file.

Syntax
PLAY [FILE "path\filename.spk"] | "string" | "path\filename.wav"
There are four possible syntax forms:
PLAY FILE "Kbond.spk"
PLAY "0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f"
PLAY FILE "Ding.wav"
PLAY "Chimes.wav"

The string or file consists of a sequence of commands indicating the frequency and duration of the tones to play. The following commands are available:
F or f - frequency
This command causes a tone to be produced at the current frequency. The initial current frequency is 1000Hz. To change the value, indicate the desired frequency immediately followed by the f character. For example, to produce a tone at 1500Hz, specify 1500F.
G or g - gap
This command sets the number of timer ticks (1 second = 18 ticks) of silence between individual tones. The number of timer ticks between tones is specified as a number immediately followed by G. The initial value is 0.
D or d - duration
This command sets the length (in timer ticks) of each tone. For example, to make each tone last about a third of a second, use the command 6d.
T or t - tempo
This command scales the duration of each tone. This allows you to change the duration of a series of tones globally, without having to change each of the individual duration commands.

�A tempo value of 256 indicates normal tempo. A value of 4df lasts:
2 timer ticks, when the tempo is set to 128
4 timer ticks, when the tempo is set to 256
8 timer ticks, when the tempo is set to 512

Remarks
KiXtart automatically selects the appropriate action based on the file name extension you provide.
Example
PLAY	"0g256t 0g8d247f 4d165f 247f 8d262f 4d165f 262f 8d277f 4d165f�	277f 8d262f 4d165f 262f 8d247f 4d165f 247f 8d262f 4d165f�	262f 8d277f 4d165f 277f 8d262f"

The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
QUIT
Action
Exits KiXtart.

Syntax
QUIT [error level / exit code]

Remarks
If QUIT is followed by a numeric expression, then the value of that expression is used as the exit code of KiXtart, and you can check it using a batch file.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
RD
Action
Removes the directory specified.

Syntax
RD "directory"

Remarks
Check the value of @ERROR to see if RD was successful.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
RETURN
Action
Causes script execution to continue at the statement following the last CALL or GOSUB statement.

Syntax
RETURN

Remarks
If RETURN is specified in the main script, KiXtart stops.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
RUN
Action
Runs a command.

Syntax
RUN "command"

Remarks
Command can be any 16-bit or 32-bit application. To run command interpreter commands, specify the correct command interpreter as part of the command.
RUN does not wait for the program to complete. Script execution continues immediately. This behavior is different from the MS�DOS – based version of KiXtart, where the RUN command also terminates the script. If you want to emulate the MS�DOS – based version, you must add an EXIT command after the RUN command.

Examples
RUN @LDRIVE + "\UPDATE.EXE"
RUN "%COMSPEC% /e:1024 /c DIR C:"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SELECT CASE … ENDSELECT
Action
A SELECT statement is an efficient way to write a series of IF ELSE statements.

Syntax
SELECT�CASE expression�statement1��CASE expression�statement2��ENDSELECT

Remarks
A SELECT statement consists of one or more conditions (CASE) each of which is followed by one or more statements that are executed only if the condition evaluates to TRUE. The SELECT statement is processed from top to bottom. If an expression evaluates to TRUE, the statements immediately following it are executed, up to the next CASE statement.

Only one CASE statement is executed, regardless of how many statements evaluate to TRUE.

If expression does not contain any relational operators, the condition is considered to be true if it is numeric and if it evaluates to a value other than zero, or if it is alphanumeric and it evaluates to a string containing at least one character.
SELECT statements can be nested as many times as memory allows.

Examples
SELECT
CASE InGroup("Domain Admins") AND @DAY = 1
	? "Whatever…"
CASE InGroup("Office Users")
	? "Etc…"
	? "Etc…"
CASE 1		; this is a nice way to provide a default CASE; if all other
; CASEs fail, this one will always be run
	? "Hmm, you're not in one of our groups?"
ENDSELECT
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SET
Action
Sets environment variables in the environment of the current user (HKEY_CURRENT_USER\Environment).

Syntax
SET "variable=string"

Remarks
After any change to the environment, KiXtart informs running programs that the change was made, prompting them to regenerate their environments. Programs that support this feature (such as Program Manager, Task Manager, and Windows Explorer) update their environments when they receive the WM_SETTINGCHANGE message.

The environment of the current process (KiXtart 95) is not affected.
This command does not work on Windows 95/98. As an alternative, use the SHELL command to run Winset.exe. (Winset.exe is included on the Windows 95/98 CD.)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETL
Action
Sets environment variables in the local environment that you see when you start a program from within a KiXtart script.

Syntax
SETL "variable=string"

Remarks
This command does not affect the current environment. If you start KiXtart from
a batch file, any commands in the batch file that are run after KiXtart exits do not see changes made by the SET or SETL commands. If you want to run batch files or programs that depend on settings set by KiXtart, start them from KiXtart using SHELL or RUN.

SETL sets the value of @ERROR.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETM
Action
Sets environment variables in the environment of the local computer (HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment).

Syntax
SETM "variable=string"

Remarks
After any change to the environment, KiXtart informs running programs that the change was made, prompting them to regenerate their environments. Programs that support this feature (such as Program Manager, Task Manager, and Windows Explorer) update their environments when they receive the WM_SETTINGCHANGE message.

The environment of the current process (KiXtart 95) is not affected.

This command does not work on Windows 95/98. As an alternative, use the SHELL command to run Winset.exe. (Winset.exe is included on the Windows 95/98 CD.)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETTIME
Action
Synchronizes the system clock of the local computer with the time on a specified source.

Syntax
SETTIME "source"

Remarks
Source can be one of the following:
A server name expressed in UNC format�KiXtart connects to the server specified to retrieve the time.��A domain name�KiXtart browses the domain for a server running the Time Source service.��"*"�KiXtart browses the local domain for any server running the Time Source service.��
On Windows NT, SETTIME requires the current user to have the ‘Change the system time’ privilege.
For more information on running the Windows NT Time Source Service, see Knowledge Base article Q131715 (also available on TechNet).

Examples
SETTIME "*"
SETTIME "\\MYTIME"
SETTIME "TIMEDOMAIN"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SHELL
Action
Loads and runs a program.

Syntax
SHELL "command"

Remarks
Command can be any 16-bit or 32-bit application. To run command interpreter commands, specify the correct command interpreter as part of the command.
Script execution is stopped until the program exits.
If the program you want to run needs to set environment variables (as is the case with Smsls.bat, for example), you may need to specify additional environment space by using the /E parameter.

SHELL sets the value of @ERROR to the exit code of the program that is run.

Examples
SHELL @LDRIVE + "\UPDATE.EXE"
SHELL "%COMSPEC% /e:1024 /c DIR C:"
SHELL "SETW USERNAME=@USERID"
SHELL "CMD.EXE /C COPY " + @LDRIVE + "\FILE.TXT C:\"
SHELL "%COMSPEC% /C COPY Z:\FILE.TXT C:\"
SHELL "C:\WINNT\SYSTEM32\CMD /E:1024 /C " + @LDRIVE + "\SMSLS.BAT"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SLEEP
Action
Halts script execution for the number of seconds specified.

Syntax
SLEEP <seconds>
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SMALL
Action
Changes the character mode to small (normal) characters.

Syntax
SMALL

Remarks
After using SMALL, subsequent screen output is normal. For more information, see BIG earlier in this section.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
USE
Action
Lists the current connections. Can also be used to connect a device, such as a drive or a printer, to a network resource; or to disconnect a device from a network resource.

Syntax
USE LIST
USE <* | "device" | "resource"> /DELETE [/PERSISTENT]
USE ["device"] <"resource"> [/USER:user] [/PASSWORD:password] [/PERSISTENT]

Remarks
Use USE “*” /DELETE to delete all current connections except those to a NETLOGON share and those to the drive or share from which KiXtart was started.

If a resource name contains non-alphanumeric characters (such as - or +), enclose the name in quotation marks.

On Windows 2000 only, the /USER and /PASSWORD parameters enable overriding the security context of the current user.

Check the value of @ERROR to see if USE was successful (a value of 0 indicates success).

Examples
USE E: "\\SERVER\PUBLIC" /PERSISTENT
USE * /DELETE
USE E: "\\SERVER\PUBLIC"	/user:Yogi	/password:Bear
USE E: "\\SERVER\PUBLIC"
USE LPT1: "\\SERVER\LASER"	/user:testlan\USER1
USE L: /DEL
USE LIST
USE H: @HOMESHR	; connect to user's home share
IF @ERROR = 0
 	H:			;
	CD @HOMEDIR	; change directory to user's home directory
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
WHILE - LOOP
Action
Runs a set of statements as long as an expression is true.

Syntax
WHILE "expression" ... LOOP

Remarks
WHILE loops can be nested as many times as memory allows.
�KiXtart Function Reference
Most functions take one or more string or numeric expressions as parameters. String parameters are indicated by double quotation marks around the parameter name. Certain functions allow for optional parameters. If you omit these parameters, the function uses a default value instead.
Return Values
Most functions return either a string or a numeric value, and can thus be used anywhere an expression is expected. Most functions also set the value of @ERROR, which allows you to check whether the function was successful.
Registry Functions
All registry functions use the following format to specify registry subkeys:
[\\remote_computer_name\][Key\]Subkey

Remote_computer_name can be any valid computer name in UNC format (preceded by two backslashes). If you do not specify a remote_computer_name, the program defaults to the local registry.

Key can be any of the four main registry trees: HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT, or HKEY_CURRENT_USER. If you do not specify a root key, KiXtart uses HKEY_CURRENT_USER.

Subkey can be any valid registry subkey. If the name of a subkey contains spaces, enclose the entire expression in quotation marks.

The following examples show correct syntax for registry functions:

\\VLEERBEER\HKEY_LOCAL_MACHINE\CONTROL�"HKEY_CURRENT_USER\Program Groups\Games"�"Control Panel\International\Sorting Order"

Note
When gaining access to a remote registry, you can only specify either HKEY_LOCAL_MACHINE or HKEY_USERS. Also, if you want to gain access to a remote registry from Windows 95/98, you must enable remote registry access. For more information, see the instructions in the Admin\Nettools\Remotreg directory on the Windows 95/98 CD.

Caution:
KiXtart does not ask for confirmation when registry values are overwritten or when subkeys are deleted. Always be very careful when changing the registry, and preferably back up your system before changing registry values.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ADDKEY
Action
Adds the specified subkey to the registry.

Syntax
ADDKEY ("subkey")�Parameter
Subkey
A string that specifies the name of the subkey you want to add to the registry.

Returns
0�Subkey added��Error code�Function failed��
Example
$ReturnCode = AddKey("HKEY_CURRENT_USER\EZReg")�If $ReturnCode = 0� ? "Key added...."�Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ADDPRINTERCONNECTION
Action
Adds a connection to the specified printer for the current user.

Syntax
ADDPRINTERCONNECTION ("printer name")

Parameters
Printer name
The name of the printer to which to connect.

Remarks
This function is available only on Windows 2000 and Windows NT, and can be used only to connect to printers on a server running under Windows 2000 and Windows NT.

When Windows 2000 connects to the printer, it may copy printer driver files to the local computer. If the user does not have permission to copy files to the appropriate location, ADDPRINTERCONNECTION fails, and @ERROR returns ERROR_ACCESS_DENIED.

Returns
0�Printer connection established��Error code�Function failed��
Example
If ADDPRINTERCONNECTION ("\\vleerbeer\hp laserjet 4") = 0� ? "Added printer connection...."�Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ADDPROGRAMGROUP
Action
Instructs Program Manager to create a new program group.

Syntax
ADDPROGRAMGROUP ("group name", common group flag)

Parameters
Group name
Identifies the group window to be added.
Common group flag
Optional numeric parameter. This parameter is available only on Windows 2000 and Windows NT. Common group flag can have the following values:
0�Creates a personal group.��1�Creates a common group. The current user must have administrative privileges, or the function fails.��
Returns
0�Program group added��Error code�Function failed��
Example
If AddProgramGroup("NewGroup", 0) = 0� ? "NewGroup has created...."�Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ADDPROGRAMITEM
Action
Instructs Program Manager to add an icon to the active program group.

Syntax
ADDPROGRAMITEM ("command line", "name", "icon path", icon index, "default directory", minimize, replace, run in own space)

Parameters
Command line
Specifies the command line required to run the application. This parameter is a string containing the name of the executable file for the application. It can also include the path of the application and any required parameters.
Name
Specifies the title that is displayed below the icon in the group window.
Icon path
Identifies the file name for the icon to display in the group window. This string identifies a Windows-based executable file or an icon file. If no icon path is specified, Program Manager uses the first icon in the file specified by command line if that file is an executable file.
If command line specifies a file that has been associated with a program, Program Manager uses the first icon provided in the executable file of that program. Association information is obtained from the registry. If command line specifies neither an executable file nor an associated program, Program Manager uses a default icon.
Icon index
This parameter is an integer that specifies the index of the icon in the file identified by the icon path parameter. Program Manager includes five default icons that can be used for programs not written for Windows.
Default directory
Specifies the name of the default (or working) directory. This parameter is a string.
Minimize
Optional numeric parameter. Specifies whether an application window is minimized when first displayed. Possible values for this parameter are:

0�Default system setting��1�Minimize��
Replace
Optional numeric parameter. Specifies whether ADDPROGRAMITEM replaces an existing program item with the same name. Possible values for this parameter are:

0�Adds a new program item without replacing the existing one. This is the default.��1�Replaces any existing program item.��
Run in own space
Optional numeric parameter. Specifies whether the program runs in its own address space. This parameter applies only to 16-bit Windows applications running on Windows NT. This parameter can have the following values:

0�Does not run in separate address space. This is the default.��1�Runs in separate address space.��
Remarks
There is a limit of 50 items that can be added to each program group.
Returns

0�Program item added��Error code�Function failed��
Example
If AddProgramItem("c:\windows\regedit.exe","RegEdit","",0,"c:\",0,0) = 0� ? "Added program item 'RegEdit' to current group..."�Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ASC
Action
Returns the ASCII code of the character specified.

Syntax
ASC (character)

Parameter
Character
Character you want to know the ASCII code of.

Returns
Numeric value representing the ASCII code of the character.

Example
$ASCII = Asc("H")
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
AT
Action
Places the cursor in the position indicated.

Syntax
AT (row, column)
Parameters
Row
Specifies the row at which to position the cursor.
Column
Specifies the column at which to position the cursor.

Remarks
The cursor position is expressed in screen coordinates. A value of 0,0 represents the top left corner of the screen.

The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
Returns

Nothing.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
BOX
Action
Draws a box.

Syntax
BOX (top_left_row, top_left_column, bottom_right_row, bottom_right_column, "line style")

Parameters
Top_left_row, top_left_column, bottom_right_row, bottom_right_column
The four corners of the box to be drawn, expressed in screen coordinates. A value of 0,0 represents the top left corner of the screen.
Line style

Possible values for line style are:
single�Single line outline, space as filler��double�Double line, space as filler��full�Full line, space as filler��grid�Single line, cross as filler��
You can also create a custom box by using a string value for line style. The string can contain as many as 9 characters, which are defined as follows.
This character in the string��Represents this portion of the box��1st�Top-left corner��2nd�Top horizontal��3rd�Top -right corner��4th�Right vertical��5th�Bottom -right corner��6th�Bottom horizontal��7th�Bottom -left corner��8th�Left vertical��9th�Filler��
Remarks
The BOX command is ignored if all output is redirected to a file using the REDIRECTOUTPUT function.
Returns

Nothing.

Example
BOX (10, 10, 12, 15, "+-+|+-+| ") ;

produces the following box:
 +---+� | |� +---+
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
CHR
Action
Insert special characters, such as carriage returns, in a string.

Syntax
CHR (character code)

Parameter
Character code
A numeric expression representing the character code to insert.

Returns
The string representation of the character code.

Example
$Message = "Hello " + @USERID + chr(13) + chr(10) + "Welcome to our network."
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
CLOSE
Action
Closes a file previously opened by the OPEN function.

Syntax
CLOSE (file number)

Parameter
File number
A numeric expression indicating the file number of the file to close. Possible values range from 1 to 10.
Returns

-2�Not valid file number specified��0�File closed��
Example
IF Close(3)
	Beep
	? "Error closing file!"
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
COMPAREFILETIMES
Action
Compares the date and time of two files.

Syntax
COMPAREFILETIMES ("file1", "file2")

Parameter
File1
Identifies the first file you want to compare.
File2
Identifies the second file you want to compare.

Returns
-3�File2 could not be opened (see @ERROR for more information).��-2�File1 could not be opened (see @ERROR for more information).��-1�File1 is older than file2.��0�File1 and file2 have the same date and time.��1�File1 is more recent than file2.��
Example
$Result = CompareFileTimes(@LDRIVE + "\USER.INI", "C:\WINDOWS\USER.INI")
IF $Result = 1 OR $Result = -3
	COPY @LDRIVE + "\USER.INI" "C:\WINDOWS\USER.INI"
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DECTOHEX
Action
Returns the hexadecimal representation of a decimal value.

Syntax
DECTOHEX (Decimal value)

Parameter
Decimal value
The value you want to have the hexadecimal representation of.
Returns
A string representing the hexadecimal value of the input value.

Example
$Result = DexToHex(123)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELKEY
Action
Deletes the specified subkey from the registry.

Syntax
DELKEY ("subkey")

Parameter
Subkey
A string that specifies the name of the subkey you want to delete.
Remarks
This call fails if any subkeys exist within the specified subkey. Use DELTREE if you want to delete a subkey that contains subkeys.
Returns

0�Subkey deleted��Error code�Function failed��
Example
$ReturnCode = DelKey("HKEY_CURRENT_USER\EZReg")�If $ReturnCode = 0� ? "Key deleted...."�Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELPRINTERCONNECTION
Action
Deletes a connection to a printer that was established by using ADDPRINTERCONNECTION.

Syntax
DELPRINTERCONNECTION ("printer name")

Parameters
Printer name
A string that specifies the name of the printer connection to delete.

�Remarks
This function is only available on Windows 2000 and Windows NT.
The DELPRINTERCONNECTION function does not delete any printer driver files that were copied from the server on which the printer resides when the printer connection was established.
Returns

0�Printer connection deleted��Error code�Function failed��
Example
If DelPrinterConnection ("hplaser4") = 0
 ? "Deleted printer connection...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELPROGRAMGROUP
Action
Instructs Program Manager to delete an existing program group.

Syntax
DELPROGRAMGROUP ("group name", common group flag)

Parameters
Group name
Identifies the group to be deleted.
Common group flag
Optional numeric parameter. This parameter is available only on Windows 2000 and Windows NT. Common group flag can have the following values:

0�Deletes a personal group.��1�Deletes a common group. The current user must have administrative privileges, otherwise the function fails.��
Remarks
When this function runs, no confirmation is asked nor warning given.
Returns

0�Program group deleted��Error code�Function failed��
Example
If DelProgramGroup("NewGroup", 0) = 0
 ? "NewGroup deleted...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELPROGRAMITEM
Action
Instructs Program Manager to delete an item from the active program group.

Syntax
DELPROGRAMITEM ("item name")

Parameter
Item name
Specifies the item to be deleted from the active program group.
Returns

0�Program item deleted��Error code�Function failed��
Example
If DelProgramItem("Whatever") = 0
 ? "ProgramItem 'Whatever' deleted from the current group...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELTREE
Action
Deletes a subkey from the registry, including all the subkeys contained in the specified subkey.

Syntax
DELTREE ("subkey")

Parameter
Subkey
Specifies the subkey to be deleted from the registry.
Remarks
When this function runs, no confirmation is asked nor warning given.
Returns

0�Subkey deleted��Error code�Function failed��
Example
$ReturnCode = DelTree("HKEY_CURRENT_USER\EZReg")
If $ReturnCode = 0
 ? "Key deleted...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DELVALUE
Action
Deletes a value entry from the registry.

Syntax
DELVALUE ("subkey", "entry")

Parameter
Subkey
A string that specifies the name of the subkey from which you want to delete an entry.
Entry
A string that specifies the name of the entry you want to delete.
Returns

0�Value entry deleted��Error code�Function failed��

Example
$ReturnCode =DelValue("HKEY_CURRENT_USER\EZReg", "Test")
If $ReturnCode = 0
 ? "Value deleted...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
DIR
Action
Dir can be used to enumerate the files in a directory. Dir returns a string representing the name of a file, directory, or folder that matches a specified pattern. To retrieve subsequent entries in a directory, specify an empty string (“”) as the path.

Syntax
DIR ("path", index)

Parameter
Path
Optional string that specifies a file name — may include directory or folder, and drive. If path is empty (“”), Dir will return the next file of the previously opened enumeration handle. Wildcard characters (‘*’ and ‘?’) are supported.
Index
Optional number indicating which enumeration handle to use. The Dir function can enumerate two directories at the same time. To open the second enumeration handle, specify 1 for the index.
Returns

Returns a string representing the name of a file, directory, or folder that matches a specified pattern. An empty string ("") is returned if path is not found or to indicate that the end of the current enumeration was reached. Dir also sets the value of @ERROR :
0�Dir successful.��Error code�Function failed.��
Example
$FileName = Dir("C:\TEMP")
While $FileName <> “” and @ERROR = 0
	? $FileName
	Dir()	; retrieve next file
Loop
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ENUMGROUP
Action
Enumerates the global groups of which the current user is a member.

Syntax
ENUMGROUP (Index)

Parameter
Index
A numeric value representing the group whose name you want to discover (where 0 is the first subkey).
Returns

String�Global group name��Error code�Function failed��
Example
$Index = 0
DO
 $Group = ENUMGROUP($Index)
UNTIL Len($Group) = 0
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ENUMKEY
Action
Lists the names of the subkeys contained in a registry key or subkey.

Syntax
ENUMKEY ("subkey", index)

Parameters
Subkey
Specifies the key or subkey for which you want to enumerate the subkeys.
Index
A numeric value representing the position of the subkey whose name you want to discover. Zero (0) represents the first subkey in the key.
Returns

0�Function returns a string representing the subkey in the specified key��Error code�Function failed��259�Subkey does not exist��
Example
$Index = 0
:Loop1
$KeyName = ENUMKEY("HKEY_CURRENT_USER\Console\ ", $Index)
If @ERROR = 0
 	? "Name found: $KeyName"
	$Index = $Index + 1
 	goto Loop1
Endif

ENUMLOCALGROUP
Action
Enumerates the local groups of which the current user is a member.

Syntax
ENUMLOCALGROUP (index, "source")

Parameter
Index
A numeric value representing the group whose name you want to discover (where 0 is the first subkey).
Source
Optional string value representing the server or domain whose local groups you want to query.
Returns

String�Local group name��Error code�Function failed��
Example
$Index = 0
DO
 $Group = ENUMLOCALGROUP($Index)
UNTIL Len($Group) = 0

- Or -
$Index = 0
DO
 $Group = ENUMLOCALGROUP($Index, "\\MyServer")
UNTIL Len($Group) = 0
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
ENUMVALUE
Action
Lists the names of the registry entries contained in a specific key or subkey.

Syntax
ENUMVALUE ("subkey", index)

Parameters
Subkey
Specifies the key or subkey for which you want to enumerate the value entries.
Index
A numeric value representing the position of the entry whose name you want to discover. Zero (0) represents the first entry in the subkey.
Returns

0�Function returns a string representing the entry in the specified key or subkey��Error code�Function failed��259�Entry does not exist��Example
$Index = 0
:Loop1
$ValueName = ENUMVALUE("HKEY_CURRENT_USER\Console\Configuration", $Index)
If @ERROR = 0
 	? "Name found: $ValueName"
	$Index = $Index + 1
 	goto Loop1
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
EXECUTE
Action
Executes a piece of KiXtart script code.

Syntax
EXECUTE (script code)

Parameter
Script code
A string expression representing the code to execute.
Returns
The exitcode of the executed script.

Examples
Execute(‘? “This is a demo of the Execute() function”’)

Execute(‘$$X = 10’)	; note the extra ‘$’

Execute(‘$$X = ’ + @USERID)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
EXIST
Action
Checks for the existence of one or more files.

Syntax
EXIST ("file name")

Parameters
File name
Identifies the file(s) you want to locate.
Remarks
Supports wildcards.
Returns

0 �File not found��1�File found��
Examples
IF EXIST (@LDRIVE + “\users.txt")
	DISPLAY @LDRIVE + “\users.txt"
ENDIF
IF EXIST (@LDRIVE + “*.INI")
	; Etc, etc.
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
EXISTKEY
Action
Checks for the existence of a registry subkey.

Syntax
EXISTKEY ("subkey")

Parameter
Subkey
Identifies the subkey you want to locate.
Remarks
The values returned by EXISTKEY have the opposite meaning of the values returned by EXIST.
Returns

0�Subkey found��Error code�Subkey not found��Example
$ReturnCode = ExistKey("HKEY_CURRENT_USER\Console\Configuration")
If $ReturnCode = 0
 ? "Key exists...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GETDISKSPACE
Action
Returns the number of kilobytes (KB) available to the current user on a specific drive.

Syntax
GETDISKSPACE ("drive")

Parameter
Drive
String that specifies a directory on the disk of interest. On Windows 2000 and Windows NT and on Windows 95 OSR2 and later versions, this string can be a UNC name. If this parameter is a UNC name, you must follow it with an additional backslash. For example, you would specify \\MyServer\MyShare as \\MyServer\MyShare\.
If Drive is an empty string, GetDiskSpace obtains information about the disk that contains the current directory.
On Windows 2000 and Windows NT and on Windows 95 OSR2 and later versions, Drive does not have to specify the root directory on a disk. On these platforms, the function accepts any directory on a disk.
Returns
A number representing the number of kilobytes (KB) available to the current user on the drive specified.
Remarks
On Windows 95 OSR1 and earlier versions, the function can only return correct values for volumes that are smaller than 2 gigabytes in size. On Windows 2000 and Windows NT and Windows 95 OSR2 and later versions, the function always returns correct values, regardless of the size of the volume.

Examples
$Result = GetDiskSpace(“C:\”)

$Result = GetDiskSpace(“X:\MARKETING”)

GETFILEATTR
Action
Returns the attributes of a file.

Syntax
GETFILEATTR ("file name")

Parameter
File name
Identifies the file for which you want to retrieve the attributes.
Returns
Zero to indicate the function failed. If the function failed, check @ERROR for details on the error. Otherwise, the return value represents the attributes of the file. The attributes can be one or more of the following values:
1�Read only�The file or directory is read-only. Applications can read the file but cannot write to it or delete it. In the case of a directory, applications cannot delete it.��2�Hidden�The file or directory is hidden. It is not included in an ordinary directory listing.��4�System�The file or directory is part of, or is used exclusively by, the operating system.��16�Directory�The file name identifies a directory.��32�Archive�The file or directory is an archive file or directory. Applications use this attribute to mark files for backup or removal.��64�Encrypted�The file or directory is encrypted. For a file, this means that all data streams are encrypted. For a directory, this means that encryption is the default for newly created files and subdirectories.��128�Normal�The file or directory has no other attributes set. This attribute is valid only if used alone.��256�Temporary�The file is being used for temporary storage. File systems attempt to keep all of the data in memory for quicker access rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.��512�Sparse file�The file is a sparse file.��1024�Reparse point�The file has an associated reparse point.��2048�Compressed�The file or directory is compressed. For a file, this means that all of the data in the file is compressed. For a directory, this means that compression is the default for newly created files and subdirectories.��4096�Offline�The data of the file is not immediately available. Indicates that the file data has been physically moved to offline storage.��
Example
$Result = GetFileAttr(@LDRIVE + "\Kix32.exe")
IF GetFileAttr(“C:\TEMP”) & 16
 ? “C:\temp is a directory !”
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GETFILESIZE
Action
Returns the size of a file in bytes.

Syntax
GETFILESIZE ("file name")

Parameter
File name
Identifies the file for which you want to retrieve the size.
Returns
Size of the file in bytes.
Remarks
The maximum size of files that GetFileSize can correctly report the size of is 2,147,483,647 bytes.

Example
$Result = GetFileSize(@LDRIVE + "\Kix32.exe")
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GETFILETIME
Action
Returns the date and time information of a file.

Syntax
GETFILETIME ("file name")

Parameter
File name
Identifies the file for which you want to retrieve the date and time information.
Returns
A string representing the date and time of the file in the format “YYYY/MM/DD HH:MM:SS”.
Remarks
The information returned represents the time the file was last written to.

Example
$Result = GetFileTime(@LDRIVE + "\Kix32.exe")
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
GETFILEVERSION
Action
Returns a version information string of a file.

Syntax
GETFILEVERSION ("file name",”versionfield”)

Parameter
File name
Identifies the file for which you want to get the version string.
Versionfield
Optional parameter identifying the specific version information field that should be retrieved. By default, the FileVersion field is returned. Possible values for this field are :
Comments 	This field contains any additional information that should be displayed for diagnostic purposes.
CompanyName	This field identifies the company that produced the file. For example, "Microsoft Corporation."
FileDescription	This field describes the file in such a way that it can be presented to users. This string may be presented in a list box when the user is choosing files to install. For example, "Keyboard driver for AT-style keyboards" or "Microsoft Word for Windows".
FileVersion	This field member identifies the version of this file. For example, "3.00A" or "5.00.RC2".
InternalName	This field identifies the file's internal name, if one exists. For example, this string could contain the module name for a dynamic-link library (DLL), a virtual device name for a Windows virtual device, or a device name for an MS-DOS device driver.
Language	Full English name of the language of the file specified in the format defined by ISO Standard 639. (example : “0413Dutch (Standard)”).
LegalCopyright	This field describes all copyright notices, trademarks, and registered trademarks that apply to the file. This should include the full text of all notices, legal symbols, copyright dates, trademark numbers, and so on. In English, this string should be in the format "Copyright Microsoft Corp. 1990–1994".
LegalTrademarks	This field describes all trademarks and registered trademarks that apply to the file. This should include the full text of all notices, legal symbols, trademark numbers, and so on. In English, this string should be in the format "Windows is a registered trademark of Microsoft Corporation".
OriginalFilename	This field identifies the original name of the file, not including a path. This enables an application to determine whether a file has been renamed by a user. This name may not be MS-DOS 8.3-format if the file is specific to a non-FAT file system.
PrivateBuild	This field describes by whom, where, and why this private version of the file was built. For example, "Built by OSCAR on \OSCAR2".
ProductName	This field identifies the name of the product with which this file is distributed. For example, this string could be "Microsoft Windows".

ProductVersion	This field identifies the version of the product with which this file is distributed. For example, "3.00A" or "5.00.RC2".

SpecialBuild	This field describes how this version of the file differs from the normal version. For example, "Private build for Microsoft solving mouse problems on M250 and M250E computers".

Returns
A string representing the file version field.
Remarks
The information returned by this function is the same as the version information displayed in Windows Explorer.
This function applies only to 32-bit Windows – based executable files.

Example
$Result = GetFileVersion(@LDRIVE + "\Kix32.exe")

$Result = GetFileVersion(@LDRIVE + "\Kix32.exe", “ProductVersion”)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
INGROUP
Action
Checks whether the current user is a member of a group.

Syntax
INGROUP ("group name")

Parameter
Group name
Identifies the group in which to check the user's membership.
Remarks
INGROUP can be used to check for groupmembership of groups that exist on the domain or server where the user is logged on, or to check for groupmembership of groups on a specific domain or server.

When checking for a local group, INGROUP identifies that the user is indirectly a member of the group by virtue of being a member of a global group which, in turn, is a member of the local group.

If you want to check for membership in a group on a specific domain or server, use the following format:

"OtherDomain\group"

– Or –
"\\SomeServer\group"

For Windows 95/98 clients, INGROUP works on local groups only if the KiXtart RPC service is running.
Returns

0 �The user is not a member of a group with this name.��1�The user is a member of a global group with this name.��2�The user is a member of a local group with this name.��Example
IF INGROUP("Domain Users")
	DISPLAY "z:\users.txt"
ENDIF
IF INGROUP("Developers") = 2
	? "Member of local group Developers"
ENDIF
IF INGROUP("\\" + @WKSTA + "\Developers") = 2
	? "Member of local group Developers on local system"
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
INSTR
Action
Scans a string for the presence of a second string.

Syntax
INSTR ("string1", "string2")

Parameters
String1
The string to search in.
String2
The string to search for.
Returns

?�Offset of the first character of string2 found in string1��0�String2 not present in string1��
Example
$x = INSTR(@DOMAIN, "TEST") ; check if domain contains the string "TEST"
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LCASE
Action
Returns a string in lowercase.

Syntax
LCASE ("string")

Parameters
String
The string you want to change to lowercase.
Returns
The input string in lowercase.

Example
$x = LCASE(@USERID)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LEN
Action
Returns the length of a string.

Syntax
LEN ("string")

Parameter
String
The string whose length you want to discover.
Returns
The number of characters contained in the specified string.

Example
$x = LEN(@USERID)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LOADHIVE
Action
Creates a subkey under HKEY_USERS or HKEY_LOCAL_MACHINE and stores registration information from a specified file into that subkey. This registration information is in the form of a hive. A hive is a discrete body of keys, subkeys, and values that is rooted at the top of the registry hierarchy. A hive is backed by a single file and .LOG file.

Syntax
LOADHIVE ("key", "file name")

Parameters
Key
The key you want to load the information in. This key must reside under HKEY_LOCAL_MACHINE or HKEY_USERS.
File name
Identifies the file you want to load the information from. This file specified needs to be a legal registry hive (created by SAVEKEY, or from REGEDT32.EXE).
Remarks
On Windows 2000 and Windows NT, using LOADHIVE requires Backup and Restore privileges.

Returns

0�Hive loaded��Error code�Function failed��
Example
$ReturnCode = LoadHive("HKEY_USERS\EZReg", "c:\temp\tst.reg")
If $ReturnCode = 0
 ? "Hive loaded...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LOADKEY
Action
Loads a registry key (including its subkeys and values) from a file.

Syntax
LOADKEY ("subkey", "file name")

Parameters
Subkey
The subkey in which you want to load the information. This subkey must exist for the call to be successful.
File name
Identifies the file from which to import the information. This file must be a valid registry hive file created by using the SAVEKEY function, or by using a registry editor.
Remarks
On Windows NT, using LOADKEY requires Backup and Restore privileges.
Caution: LOADKEY imports information into the registry and overwrites any existing subkey. This replaces all the subkeys and values that might already exist in the subkey you are loading. Any existing values and subkeys are lost.
Returns

0�Subkey loaded��Error code�Function failed��
Example
$ReturnCode = LoadKey("HKEY_CURRENT_USER\EZReg", "c:\temp\tst.reg")
If $ReturnCode = 0
 ? "Key loaded...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LOGEVENT
Action
Logs an event in the Windows 2000 or Windows NT event log.

Syntax
LOGEVENT (type, ID, message, target, source)

Parameter
Type
Number representing the type of the event. Possible values :

0�SUCCESS��1�ERROR��2�WARNING��4�INFORMATION��8�AUDIT_SUCCESS��16�AUDIT_FAILURE��ID
Number representing the event that occurred.
Message
Message text of the event.
Target
Optional parameter representing the UNC name of the system where the event should be logged. By default, all events are logged on the local system.
Source
Optional parameter representing the source of the event. If this parameter is not specified, Kixtart will assume the KIX32.EXE as the source of the event.

Returns

0�Event logged��Error code�Function failed��Remarks
This function is only available on Windows 2000 and Windows NT clients.

Example
$RC = LogEvent(0 , 1 , “Logon script completed successfully” , “”, “MyEvent”)
$RC = LogEvent(0 , 1 , “Logon script completed successfully”)
$RC = LogEvent(1 , 1 , “Logon script failed!” , @LSERVER)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LOGOFF
Action
Logs the current user off and ends the Windows session.

Syntax
LOGOFF (force)

Parameter
Force
During a logoff operation, applications that are shut down are allowed a specific amount of time to respond to the logoff request. If the time expires, Windows displays a dialog box that allows the user to forcibly shut down the application, to retry the logoff, or to cancel the logoff request. If the Force value is true (for example : non-zero), Windows always forces applications to close and does not display the dialog box.

0�Windows does not force applications to close.��1�Windows always forces applications to close and does not display the dialog box.��Returns

0�User logged off��Error code�Function failed��
Example
$RC = LogOff(0)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
LTRIM
Action
Strips leading spaces from an input string and returns the result.

Syntax
LTRIM ("string")

Parameter
String
The string from which to strip leading spaces.
Returns
The input string without leading spaces.

Example
$x = LTRIM(SUBSTR(@IPADDRESS0, 1, 3)); 192
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
MESSAGEBOX
Action
Displays a standard dialog box in Windows.

Syntax
MESSAGEBOX ("message", "title", style, time-out)

Parameters
Message
The message to display in the dialog box.
Title
The title of the dialog box.
Style
Optional numeric expression that is the sum of values specifying the number and type of buttons to display, the icon style to use, the identity of the default button, and the modality. The following table illustrates the values used and the meaning of each group of values.

Buttons to display
Value�Meaning��0�Display OK button only.��1�Display OK and Cancel buttons.��2�Display Abort, Retry, and Ignore buttons.��3�Display Yes, No, and Cancel buttons.��4�Display Yes and No buttons.��5�Display Retry and Cancel buttons.��
Icon to display
Value�Meaning��16�Stop symbol��32�Question mark��48�Exclamation mark��64�Information symbol��
Default button
Value�Meaning��0�First button is default.��256�Second button is default.��512�Third button is default.��
Modality
Value�Meaning��0�Application-modal. The user must respond to the message box before continuing work in the application.��4096�System-modal. All applications are suspended until the user responds to the message box.��
When adding numbers to create a final value for the argument type, use only one number from each group. If style is omitted, a default value of 0 is assumed.
Time-out
Optional numeric expression representing the number of seconds after which to close the dialog box.

Note
The time-out feature only works if the MESSAGEBOX dialog box is the active window for the duration of the time-out. If the user switches away from KiXtart and activates another application, the MESSAGEBOX dialog box is not closed.

Remarks
MESSAGEBOX displays a maximum of 1024 characters in application-modal dialog boxes. Longer messages are truncated after the 1024th character. Message strings longer than 255 characters with no intervening spaces are truncated after the 255th character. For system-modal dialog boxes, the number of characters you can display depends on screen resolution and number of lines in the message.

MESSAGEBOX breaks lines automatically at the right edge of the dialog box. If you want to set line breaks yourself, place a linefeed (ANSI character 10) before the first character of the text that is to begin each new line.

Returns
The value returned by MESSAGEBOX indicates which button was selected, as shown in the following table.

Value�Meaning��-1�User did not respond to the dialog box within the specified time-out period.��1�OK button selected.��2�Cancel button selected.��3�Abort button selected.��4�Retry button selected.��5�Ignore button selected.��6�Yes button selected.��7�No button selected.��
If the dialog box contains a Cancel button, pressing esc has the same effect as choosing Cancel.

Example
$Selection = MessageBox("Do you want to continue ?", "KiXtart", 36)
If $Selection = 6
 ? "Yes selected, continuing...."
Endif

OptionalArgument1
Optional string value representing an argument for the method. Note : all optional arguments must be specified as a string. The actual type of the argument is determined automatically based on the corresponding TypeCharacter in TypeList.

Returns

A string representing the return value of the function. If the call fails, @ERROR will be set to the relevant error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLECALLFUNC
Action
Accesses a method of an OLE Automation object that returns a value.

Syntax
OLECALLFUNC (objecthandle, "methodname", “typelist”, “optionalargument1”, “optionalargument2” , …)

Parameters
ObjectHandle
The handle of the object you want to access. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.
Methodname
The name of the method you want to access.
TypeList
TypeList is a casesensitive series of characters that define the type of each optional argument. Based on the type specified, KiXtart will convert the argument(s) to the correct type before calling the OLE function. This parameter can have the following values:

b�Boolean��c�Currency��D�Date��i�Short integer��I�Long integer��o�Object handle��r�4 byte real��R�8 byte real��Optionalargument
Optional string value representing an argument for the method. Note : all optional arguments must be specified as a string. The actual type of the argument is determined automatically by the corresponding TypeCharacter in TypeList.

Returns
A string representing the return value of the function. If the call fails, @ERROR will be set to the relevant error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLECALLPROC
Action
Accesses a method of an OLE Automation object that does not return a value.

Syntax
OLECALLPROC (objecthandle, "methodname", “typelist”, “optionalargument1”, “optionalargument2” , …)

Parameters
ObjectHandle
The handle of the object you want to access. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.
Methodname
The name of the method you want to access.
TypeList
TypeList is a casesensitive series of characters that define the type of each optional argument. Based on the type specified, KiXtart will convert the argument(s) to the correct type before calling the OLE function. This parameter can have the following values:

b�Boolean��c�Currency��D�Date��i�Short integer��I�Long integer��o�Object handle��r�4 byte real��R�8 byte real��Optionalargument
Optional string value representing an argument for the method. Note : all optional arguments must be specified as a string. The actual type of the argument is determined automatically by the corresponding TypeCharacter in TypeList.

Returns
If the function succeeds, the return value is 0. If the function fails, the return value represents an error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLECREATEOBJECT
Action
OLECreateObject launches (if necessary) the OLE Automation server and returns a handle through which the OLE Automation object can be manipulated.

Syntax
OLECREATEOBJECT (“serverclassname")

Parameters
ServerClassName
The handle of the object you want to create.

Returns
If the function succeeds it returns the handle to the object. If the function fails, it returns 0.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLEGETOBJECT
Action
OLEGetObject gets an object either from a file stored on disk, or from a class name, and returns a handle to the object.

Syntax
OLEGETOBJECT (mode, “objectname" , “classname”)

Parameters
Mode
0�ObjectName specifies a file on disk��1�ObjectName specifies a classname��2�ObjectName specifies a file on disk, and ClassName specifies the class of the object ��ObjectName
The filename or the classname of the object you want to create.
ClassName
Optional parameter (only required if Mode = 2) indicating the class of the object to get.

Returns
If the function succeeds it returns the handle to the object. If the function fails, it returns 0.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLEGETPROPERTY
Action
Returns the value of a specific property of an OLE Automation object.

Syntax
OLEGETPROPERTY (objecthandle , “propertyname”)

Parameters
ObjectHandle
The handle of the object you want to access. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.
PropertyName
The name of the property you want to retrieve the value of.

Returns
If the function succeeds, the return value is the value of the property. If the function fails, the return value will be empty, and @ERROR will be set to the relevant error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLEGETSUBOBJECT
Action
Some methods return handles to sub-objects. OLEGetSubObject is a way to retrieve these handles.

Syntax
OLEGETSUBOBJECT (objecthandle, "methodname", “typelist”, “optionalargument1”, “optionalargument2” , …)

Parameters
ObjectHandle
The handle of the object you want to access. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.
Methodname
The name of the method you want to access.
TypeList
TypeList is a casesensitive series of characters that define the type of each optional argument. Based on the type specified, KiXtart will convert the argument(s) to the correct type before calling the OLE function. This parameter can have the following values:

b�Boolean��c�Currency��D�Date��i�Short integer��I�Long integer��o�Object handle��r�4 byte real��R�8 byte real��Optionalargument
Optional string value representing an argument for the method. Note : all optional arguments must be specified as a string. The actual type of the argument is determined automatically by the corresponding TypeCharacter in TypeList.

Returns
If the function succeeds, the return value is 0. If the function fails, the return value represents an error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLEPUTPROPERTY
Action
Sets the value of a specific property of an OLE Automation object.

Syntax
OLEPUTPROPERTY (objecthandle , “propertyname”, “value”)

Parameters
ObjectHandle
The handle of the object you want to access. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.
PropertyName
The name of the property you want to retrieve the value of.
Value
String representing the value that the property should be set to.

Returns
If the function succeeds, the return value is 0. If the function fails, the return value represents an error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OLERELEASEOBJECT
Action
OLEReleaseObject frees up any resources obtained when the OLE object was created. If you do not explicitly release an object, all its resources will remain allocated until KiXtart exits.

Syntax
OLERELEASEOBJECT (objecthandle)

Parameters
ObjectHandle
The handle of the object you want to release. This handle must have been obtained by a call to OLECreateObject, OLEGetObject, OLEGetSubObject, OLEGetProperty or OLECallFunc.

Returns
If the function succeeds, the return value is 0. If the function fails, the return value represents an error code.
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
OPEN
Action
Opens a text file.

Syntax
OPEN (file number, "file name", mode)

Parameters
File number
A numeric expression indicating the file number of the file to open. Possible values range from 1 to 10.
File name
A string expression indicating the path and name of the ASCII file to open.
Mode
Optional parameter that indicates what should happen if the file does not exist. This parameter can have the following values:

0�If the file does not exist, OPEN fails with return code 2 (default).��1�If the file does not exist, OPEN will create a new file.��2�Opens the file for read access (default).��4�Opens the file for write access.��

Note
These values are cumulative. So if you want to open a file for write access, and create it if it does not yet exist, you should specify 5. Notice however that a file can not be opened for read and write access at the same time.

Remarks
OPEN opens the ASCII file specified by file name, for the internal buffer indicated by file number. KiXtart supports a maximum of ten open files, so file number must be within the range of 1 to 10.

The file-I/O functions in KiXtart (OPEN, READLINE, and CLOSE) process small configuration files. They are not intended for larger operations, such as scanning long files. For the sake of simplicity and speed, OPEN reads an entire ASCII file into memory, and subsequent READLINE commands read lines stored in memory.

Although this design is memory-intensive, it is also very fast and simple.
Returns

-3�File number already in use��-2�Incorrect file number specified��-1�Incorrect file name specified��0�File opened successfully��>0�System error��
Example
IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI") = 0
$x = ReadLine(3)
WHILE @ERROR = 0
 ? "Line read: [" + $x + "]"
 $x = ReadLine(3)
LOOP
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
READLINE
Action
Reads a line from a file.

Syntax
READLINE (file number)

Parameter
File number
A numeric expression indicating the file number of the file to open. Possible values range from 1 to 10.

Remarks
READLINE reads a string ending in a carriage return. If successful, the function returns the string without a carriage return. If it encounters an error, @ERROR returns an error code.

Returns
-4�File not open for reading��-3�File number not open��-2�Incorrect file number specified��-1�End of file��0�Line read successfully��
Example
IF Open(3, @LDRIVE + "\CONFIG\SETTINGS.INI") = 0
$x = ReadLine(3)
WHILE @ERROR = 0
? "Line read: [" + $x + "]"
$x = ReadLine(3)
LOOP
Close (3)
ELSE
BEEP
? "Config file not opened, error code: [" + @ERROR + "]"
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
READPROFILESTRING
Action
Retrieves a string from an initialization file.

Syntax
READPROFILESTRING ("file name", "section", "key")

Parameters
File name
A string that names the initialization file. If this parameter does not include a full path, Windows searches for the file in the Windows directory.
Section
A string that specifies the section containing the key name. If this parameter is empty, READPROFILESTRING returns all section names in the file.
Key
A string containing the key name whose associated string is to be retrieved. If this parameter is empty, all key names in the section specified by section are returned.
Remarks
This function is provided for compatibility with 16-bit Windows – based applications. Win32 – based applications store initialization information in the registry.
Returns

0�Function returns a string representing the value of the specified key��Error code�Function failed��
Example
$dev = ReadProfileString(“win.ini”, "Windows", "Device")
If @ERROR = 0
 ? "Windows device = " + $dev
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
READTYPE
Action
Returns the ASCII representation of a registry entry data type (for example, REG_SZ).

Syntax
READTYPE ("subkey", "entry")

Parameters
Subkey
Identifies the subkey containing the entry.
Entry
Identifies the entry whose data type you want to discover.
Returns

0�Function returns ASCII representation of data type for specified registry entry��Error code�Function failed��
The following data types can be returned:
REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR

Example
$RowsType = ReadType("HKEY_CURRENT_USER\Console\Configuration", "WindowRows")
If @ERROR = 0
 ? "Type of WindowRows: $RowsType"
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
READVALUE
Action
Reads the value of a registry entry.

Syntax
READVALUE ("subkey", "entry")
Parameters
Subkey
Identifies the subkey containing the entry.
Entry
Identifies the entry whose value you want to discover. To read the default entry of a key, specify an empty string as the entry name (“”).
Returns

0�Function returns ASCII representation of the specified registry entry��Error code�Function failed��
REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol (|) used as the separator between strings. If a string contains a pipe symbol character, it is represented by two pipe symbol characters (||).

REG_DWORD variables are returned in decimal format.

Example
$Rows = ReadValue("HKEY_CURRENT_USER\Console\Configuration", "WindowRows")
If @ERROR = 0
 ? "Number of window-rows: $Rows"
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
REDIRECTOUTPUT
Action
Redirects all screen output to a file.

Syntax
REDIRECTOUTPUT ("file name", overwrite)

Parameters
File name
A string that names the file to which to redirect the output. If this parameter is an empty string (""), output is redirected to the screen.
Overwrite
Optional numeric value indicating whether to clear the output file before writing any data to it. This parameter can have the following values:

0�New output data appended to the existing contents of file.��1�All data in file overwritten when the output is redirected to the file.��
Remarks
If all output is redirected to a file, the AT, BIG, BOX, and CLS commands are ignored.
Returns

0�Output redirected��Error code�Function failed��
Example
IF RedirectOutput("logon.log") = 0
	? "Opened 'logon.log' at " + @TIME ?
ENDIF
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
RND
Action
Returns a pseudo random number.

Syntax
RND (Range)

Parameter
Range
Optional parameter indicating the range for the return value (maximum and default value = 32767).
Returns
Pseudo random number.
Remarks
The RND function returns a pseudo-random integer ranging from 0 to the maximum specified. Use the SRND function to seed the pseudo-random-number generator before calling RND.

Example
$x = RND()
$x = RND(10)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
RTRIM
Action
Strips trailing spaces from an input string and returns the result.

Syntax
RTRIM ("string")

Parameter
String
The string from which to strip trailing spaces.
Returns
The input string without trailing spaces.

Example
$x = RTRIM(SUBSTR(@IPADDRESS0, 1, 3)); 192
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SAVEKEY
Action
Saves a registry key (including its subkeys and entries) to a file.

Syntax
SAVEKEY ("subkey", "file name")

Parameters
Subkey
Identifies the subkey you want to save.
File name
Identifies the file in which to save the information.
Remarks
When this function runs, the destination file is overwritten without warning.
On Windows 2000 and Windows NT, running SAVEKEY requires Backup and Restore privileges.
Returns

0�Subkey saved��Error code�Function failed��
Example
$ReturnCode = SaveKey("HKEY_CURRENT_USER\EZReg", "c:\temp\tst.reg")
If $ReturnCode = 0
 ? "Key saved...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SENDKEYS
Action
Sends one or more keystrokes to the active window as if typed at the keyboard.

Syntax
SENDKEYS ("keys")

Parameters
Keys
String specifying the keystrokes to send.
Each key is represented by one or more characters. To specify a single keyboard character, use the character itself. For example, to represent the letter A, use "A" for string. To represent more than one character, append each additional character to the one preceding it. To represent the letters A, B, and C, use "ABC" for string. The plus sign (+), caret (^),tilde (~), and parentheses () have special meanings to SendKeys. To specify one of these characters, enclose it within braces ({}). For example, to specify the plus sign, use {+}. To specify brace characters, use {{} and {}}.
To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that represent actions rather than characters, use the codes shown below:
BACKSPACE�{BACKSPACE}��BREAK�{BREAK}��CAPS LOCK�{CAPSLOCK}��DEL�{DEL}��DOWN ARROW�{DOWN}��END�{END}��ENTER�{ENTER}��ESC�{ESC}��HELP�{HELP}��HOME�{HOME}��INS�{INS}��LEFT ARROW�{LEFT}��NUM LOCK�{NUMLOCK}��PAGE DOWN�{PGDN}��PAGE UP�{PGUP}��PRINTSCREEN�{PRTSC}��RIGHT ARROW�{RIGHT}��TAB�{TAB}��UP ARROW�{UP}��F1�{F1}��F2�{F2}��F3�{F3}��F4�{F4}��F5�{F5}��F6�{F6}��F7�{F7}��F8�{F8}��F9�{F9}��F10�{F10}��F11�{F11}��F12�{F12}��F13�{F13}��F14�{F14}��F15�{F15}��F16�{F16}��
To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key code with one or more of the following codes:
SHIFT�+��CTRL�^��ALT�~��
To specify that any combination of SHIFT, CTRL, and ALT should be held down while several other keys are pressed, enclose the code for those keys in parentheses. For example, to specify to hold down SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed, followed by C without SHIFT, use "+EC".
To specify repeating keys, use the form {key number}. You must put a space between key and number. For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means press H 10 times.
Remarks
SendKeys cannot be used to send keystrokes to an application that is not designed to run in Microsoft Windows. Sendkeys also can't send the PRINT SCREEN key {PRTSC} to any application.
Returns

0�Keystrokes sent��Error code�Function failed��
Example
Shell(“Notepad.exe”)
SetFocus(“Untitled – Notepad”)
$ReturnCode = SendKeys("Hello World”)
Sleep(2)
$ReturnCode = SendKeys("~{F4}Y”)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SENDMESSAGE
Action
Sends a message across the network to another user or workstation.
]
Syntax
SENDMESSAGE ("recipient", "message")

Parameters
Recipient
Identifies the user or workstation to which to send the message.
Message
The message to send.
Returns

0�Message sent��Error code�Function failed��
Example
$ReturnCode = SendMessage("ADMIN" , @USERID + " logged in at " + @TIME)
If $ReturnCode = 0
 ? "Message has been sent.."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETCONSOLE
Action
Changes the display state of the command-prompt window in which KiXtart is running.

Syntax
SETCONSOLE("mode")

Parameters
Mode
String that specifies the new display state. The following table shows the display states that are supported by this function.

SHOW �Show window��HIDE �Hide window��FOREGROUND �Move window to foreground��ALWAYSONTOP �Bring window to top��MINIMIZE �Minimize window��MAXIMIZE �Maximize window��
Remarks
If a window is hidden, it does not disappear from the system, but remains active.
Returns

0�Display state changed��Error code�Function failed��
Example
If SetConsole ("FOREGROUND") = 0
 ? "Console moved to foreground......"
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETDEFAULTPRINTER
Action
Sets the default printer to which applications send print jobs.

Syntax
SETDEFAULTPRINTER ("printer name")

Parameters
Printer name
String that specifies the name of the printer to set as the default printer.
Returns

0�Default printer set��Error code�Function failed��
Example
If SetDefaultPrinter ("hplaser4") = 0
 ? "Set default printer to HP LaserJet 4...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETFILEATTR
Action
Sets the attributes of a file.

Syntax
SETFILEATTR ("file name", attributes)

Parameter
File name
Identifies the file of which you want to set the attributes.
Attributes
Attributes to set for the file. The attributes can be one or more of the following values:
1�Read only�The file or directory is read-only. Applications can read the file but cannot write to it or delete it. In the case of a directory, applications cannot delete it.��2�Hidden�The file or directory is hidden. It is not included in an ordinary directory listing.��4�System�The file or directory is part of, or is used exclusively by, the operating system.��32�Archive�The file or directory is an archive file or directory. Applications use this attribute to mark files for backup or removal.��128�Normal�The file or directory has no other attributes set. This attribute is valid only if used alone.��256�Temporary�The file is being used for temporary storage. File systems attempt to keep all of the data in memory for quicker access rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.��4096�Offline�The data of the file is not immediately available. Indicates that the file data has been physically moved to offline storage.��
Returns
0�Attributes set��Error code�Function failed��

Example
$Result = SetFileAttr(@LDRIVE + "\Kix32.exe", 32)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETFOCUS
Action
Sets the input focus to the application specified. This function is very useful in combination with the SendKeys function.

Syntax
SETFOCUS ("Title")

Parameters
Title
String specifying the title in the title bar of the application window you want to activate. In determining which application to activate, title is compared to the title string of each running application. If there is no exact match, any application whose title string begins with title is activated. If there is more than one instance of the application named by title, one instance is arbitrarily activated.
Returns

0�Focus set to specified application.��Error code�Function failed��
Example
If SetFocus ("Untitled - Notepad") = 0
 ? "Focus set to Notepad...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SETWALLPAPER
Action
Sets the current wallpaper.

Syntax
SETWALLPAPER("wallpaper name")

Parameters
Wallpaper name
String that specifies the name of the bitmap to set as the default wallpaper.
Remarks
The file specified must be a valid BMP file.
Returns

0�Wallpaper set��Error code�Function failed��
Example
If SetWallpaper ("kixtart.bmp") = 0
 ? "Set current wallpaper to KiXtart.bmp...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SHOWPROGRAMGROUP
Action
Instructs Program Manager to minimize, maximize, or restore the window of an existing program group.

Syntax
SHOWPROGRAMGROUP ("group name", show command, common group flag)

Parameters
Group name
Identifies the group window to minimize, maximize, or restore.
Show command
Specifies the action Program Manager is to perform on the group window. This parameter is an integer and it must have one of the following values.
Value�Action��1�Activates and displays the group window. If the window is minimized or maximized, Windows restores it to its original size and position.��2�Activates the group window and displays it as an icon.��3�Activates the group window and displays it as a maximized window.��4�Displays the group window in its most recent size and position. The active window remains active.��5�Activates the group window and displays it in its current size and position.��6�Minimizes the group window.��7�Displays the group window as an icon. The active window remains active.��8�Displays the group window in its current state. The active window remains active.��
Common group flag
Optional numeric parameter. This parameter is available only on Windows 2000 and Windows NT. Common group flag can have the following values:

0�Acts upon a personal group.��1�Acts upon a common group. To manipulate a common group, the user must have administrative privileges, or the function fails.��
Returns

0�Program group maximized, minimized, or restored��Error code�Function failed��
Example
If ShowProgramGroup("NewGroup", 6, 0) = 0
 ? "NewGroup has been minimized...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SHUTDOWN
Action
Shuts down or restarts a computer.

Syntax
SHUTDOWN ("computer", "message", wait, force, reboot)

Parameters
Computer
The name of the computer that is to be shut down or restarted. An empty string("") indicates the local computer.
Message
String that specifies a message to display in the Shutdown dialog box.
Wait
Optional parameter specifying the time in seconds that the dialog box is displayed. While the dialog box is displayed, system shutdown can be stopped by using the Win32 AbortSystemShutdown function.
If wait is not zero, SHUTDOWN displays a dialog box on the specified computer. The dialog box, which displays the name of the user who called the function and the message specified by message, prompts the user to log off. The system beeps when the dialog box is created.
The dialog box remains on top of other windows and can be moved but not closed. A timer counts down the time remaining before a forced shutdown. If the user logs off, the system shuts down immediately. Otherwise, the computer is shut down when the timer expires.
If wait is zero, the computer shuts down without displaying the dialog box, and the shutdown cannot be stopped by AbortSystemShutdown.
Force
Specifies whether applications with unsaved changes are forcibly closed. If force is not zero, applications are closed. If force is zero, a dialog box is displayed prompting the user to close the applications.
Reboot
Optional parameter specifying whether the computer is to restart immediately after shutting down. If reboot is 1, the computer restarts. If reboot is 0, the computer does not start.
Returns

0�Computer shut down��System error code�Function failed��
Remarks
SHUTDOWN does not work reliably on Windows 95/98 due to an issue in the underlying Windows API. As a workaround, try the following command :
SHELL “%windir%\RUNDLL32.EXE user.exe,ExitWindows”

Example
$RC = Shutdown("", "System is being rebooted to enable new settings.", 60, 0, 1)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SRND
Action
The SRND function sets the starting point for generating a series of pseudo-random integers. To reinitialize the generator, use 1 as the seed argument. Any other value for seed sets the generator to a random starting point. RND retrieves the pseudo-random numbers that are generated. Calling RND before any call to SRND generates the same sequence as calling SRND with seed passed as 1.

Syntax
SRND (seed)

Parameter
Seed
Numeric value to seed the generator with.
Returns
Nothing.

Example
SRND(10)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
SUBSTR
Action
Returns part of a string.

Syntax
SUBSTR ("string", start, length)

Parameters
String
The string from which to extract a substring.
Start
Numeric value representing the offset in the string where the substring begins.
Length
Numeric value representing the length of the substring.
Returns
The substring indicated by start and length.

Example
$x = SUBSTR(@USERID, LEN(@USERID) - 2, 2) ; get the last 2 chars of the userid
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
UCASE
Action
Returns a string in uppercase.

Syntax
UCASE ("string")

Parameter
String
The string you want to change to uppercase.
Returns
The input string in uppercase.

Example
$x = UCASE(@USERID)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
UNLOADHIVE
Action
Unloads the specified key and subkeys from the registry.

Syntax
UNLOADHIVE ("key")

Parameters
Key
The key you want to unload. This key must have been created using LoadHive.
Remarks
On Windows NT, using UNLOADHIVE requires Backup and Restore privileges.

Returns

0�Key loaded��Error code�Function failed��
Example
$ReturnCode = UnLoadHive("HKEY_USERS\Fiets")

If $ReturnCode = 0
 ? "Hive unloaded...."
Endif
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
VAL
Action
Returns the numeric value of a string.
Syntax
VAL ("string")
Parameter
String
The string whose numeric value you want to discover. By default, Val expects the string to be in decimal format. To determine the numeric value of a hexadecimal string, start the string with an ampersand ‘&’.
Returns
The numeric value of the input string.

Examples
$x = VAL(SUBSTR(@IPADDRESS0, 1, 3))
$x = VAL(“&A34”)
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
WRITELINE
Action
Appends a line to the end of the file indicated by FileNumber. If WriteLine encounters an error, @ERROR is set to the relevant errorcode.

Syntax
WRITELINE (file number, “linetowrite”)

Parameter
File number
A numeric expression indicating the file number of the file to open. Possible values range from 1 to 10.
LineToWrite
The string you want to write to the file.

Remarks
WriteLine does not automatically append a <Carriage Return>, so if you want to write a <Carriage Return>, you should add it to the string (as in : $LineToWrite + Chr(13) + Chr(10)).

Returns
-4�File not open for writing��-3�File number not open��-2�Incorrect file number specified��-1�End of file��0�Line written successfully��
Example
IF Open(3 , “C:\TEMP\LOG.TXT” , 5) = 0
$x = WriteLine(3 , “KiXtart started at ” + @TIME + Chr(13) + Chr(10))
ELSE
BEEP
? "failed to open file, error code : [" + @ERROR + "]"
ENDIF

The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
WRITEPROFILESTRING
Action
Copies a string to an initialization file.

Syntax
WRITEPROFILESTRING ("file name", "section", "key", "string")

Parameters
File name
String identifying the initialization file.
Section
String containing the name of the section of the initialization file where string is copied. If the section does not exist, it is created. The section name is not case-sensitive, and can contain any combination of uppercase and lowercase letters.
Key
String containing the name of the key to associate with string. If the key does not exist in the specified section, it is created. If this parameter is empty, the entire section, including all entries within the section, is deleted.
String
String to write to the file. If this parameter is empty, the key identified by key is deleted.

Note
On Windows 95/98, use of the tab character (\t) is not supported as part of this parameter.

Remarks
This function is provided for compatibility with 16-bit Windows-based applications. Win32-based applications store initialization information in the registry.
Returns

0�Profile string written��Error code�Function failed��
The AT command is ignored if all output has been redirected to a file using the REDIRECTOUTPUT function.
WRITEVALUE
Action
Assigns a value to a registry entry.

Syntax
WRITEVALUE ("subkey", "entry", "expression", "data type")

Parameters
Subkey
Identifies the subkey where you want to write a value entry.
Entry
The name of the entry. To write to the default entry of a key, specify an empty string as the entry name (“”).
Expression
The data to store as the value of the entry.
REG_MULTI_SZ (multi-string) variables are returned with the pipe symbol (|) used as the separator between strings. If a string contains a pipe symbol character, it is represented by two pipe symbol characters (||).
Data type
Identifies the data type of the entry.
The following data types are supported:
REG_NONE
REG_SZ
REG_EXPAND_SZ
REG_BINARY
REG_DWORD
REG_DWORD_LITTLE_ENDIAN
REG_DWORD_BIG_ENDIAN
REG_LINK
REG_MULTI_SZ
REG_RESOURCE_LIST
REG_FULL_RESOURCE_DESCRIPTOR

Returns

0�Value entry written��Error code�Function failed��
Example
WriteValue("EZReg\Test", "A MultiString variable", "Line 1|Line 2|Line 3 with a || in it|" "REG_MULTI_SZ")
If @ERROR = 0
 ? "Value written to the registry"
Endif
KiXtart Macro Reference
Macros can be used anywhere an expression is expected. Supported macros are defined in the following table.

Macro�Definition��ADDRESS�Address of the network adapter��COMMENT�User comment��CURDIR�Current directory��DATE�Date (in the format YYYY/MM/DD)��DAY�Day of the week (Monday, Tuesday, and so on)��DOMAIN�Domain or workgroup the computer belongs to��DOS�Version of Windows 2000 or Windows NT ��ERROR�Return code of the most recent command or function. A return code of 0 means the command or function was successful. Any other value indicates an error.��FULLNAME�Full name of current user��HOMEDIR�Short name of the directory part of home directory��HOMEDRIVE*�Drive letter of drive containing home directory��HOMESHR�Server and share name part of home directory��HOSTNAME�Fully qualified TCP/IP host name (including TCP/IP domain name)��INWIN�Operating system: 1 = Windows NT; 2 = Windows 95/98��IPADDRESSx�TCP/IP address (possible values for x are 0 - 3). �Note Addresses are padded so that the resulting string always consists of four sets of three characters separated by periods. For example, if your IP address is 123.45.6.7, @IPADDRESS0 is 123. 45. 6. 7.��KIX�Version of KiXtart ��LANROOT�Directory where network software resides (usually Systemroot\System32)��LDOMAIN*�Logon domain��LDRIVE�Drive that is redirected to \\logonserver\NETLOGON��LM�Version of network software ��LONGHOMEDIR�Long name of the directory part of home directory��LSERVER�Logon server��MAXPWAGE�Maximum password age��MDAYNO�Day of the month (1-31)��MONTHNO�Months since January (1-12)��MONTH�Name of the month ��PRIMARYGROUP*�Current user's primary group ��PRIV�User's privilege level (GUEST, USER, ADMIN)��PWAGE�Password age��RAS�Number of active Remote Access Service (RAS) connections��RSERVER*�KXRPC server used for the current session��SCRIPTDIR�Directory of current script��SERROR�Error text corresponding with @ERROR��SID*�Current user's security identifier (SID)��SITE**�Name of the site in which the system resides��STARTDIR�Directory from which KiXtart was started��SYSLANG�Full English name of the language of the operating system specified in the format defined by ISO Standard 639. (example : “0413Dutch (Standard)”).��TIME�Current time (in the format HH:MM:SS)��USERID�Current user's user ID��USERLANG�Full English name of the language selected by the current user specified in the format defined by ISO Standard 639. (example : “0413Dutch (Standard)”).��WDAYNO�Days since Sunday (1 – 7)��WKSTA�Computer name��WUSERID�Current user's Windows user ID��YDAYNO�Days since January 1 (1 – 365)��YEAR�Current year��
*Available on computers running Windows 95/98 only if the KiXtart RPC service is running.
** Only available on clients with full Active Directory support.

Note
During the logon sequence, WUSERID is empty on computers running Windows 95/98 if Windows NT Networking has been configured as the system's primary network provider.

The following examples show the correct use of KiXtart macros:

@LM		"2.10"
@DATE		"1997/10/03"
DISPLAY @USERID + ".TXT"		displays the file "RUUDV.TXT"
CD "\DATA\" + @DOMAIN		changes the current directory to "\DATA\your-domain"
KiXtart Error Codes
To find out if a KiXtart command or function is successful, always check the @ERROR and @SERROR macros. Most functions also return the error code. If @ERROR is zero, the previous command or function was successful. If @ERROR is non-zero, the value corresponds to the error code returned by the most recently executed Win32 API. The following list contains all the possible error codes returned by the Win32 API. Only a limited number of error codes are actually relevant to KiXtart.

Code�Error����0L�NO_ERROR, ERROR_SUCCESS��1L�ERROR_INVALID_FUNCTION��2L�ERROR_FILE_NOT_FOUND��3L�ERROR_PATH_NOT_FOUND��4L�ERROR_TOO_MANY_OPEN_FILES��5L�ERROR_ACCESS_DENIED��6L�ERROR_INVALID_HANDLE��7L�ERROR_ARENA_TRASHED��8L�ERROR_NOT_ENOUGH_MEMORY��9L�ERROR_INVALID_BLOCK��10L�ERROR_BAD_ENVIRONMENT��11L�ERROR_BAD_FORMAT��12L�ERROR_INVALID_ACCESS��13L�ERROR_INVALID_DATA��14L�ERROR_OUTOFMEMORY��15L�ERROR_INVALID_DRIVE��16L�ERROR_CURRENT_DIRECTORY��17L�ERROR_NOT_SAME_DEVICE��18L�ERROR_NO_MORE_FILES��19L�ERROR_WRITE_PROTECT��20L�ERROR_BAD_UNIT��21L�ERROR_NOT_READY��22L�ERROR_BAD_COMMAND��23L�ERROR_CRC��24L�ERROR_BAD_LENGTH��25L�ERROR_SEEK��26L�ERROR_NOT_DOS_DISK��27L�ERROR_SECTOR_NOT_FOUND��28L�ERROR_OUT_OF_PAPER��29L�ERROR_WRITE_FAULT��30L�ERROR_READ_FAULT��31L�ERROR_GEN_FAILURE��32L�ERROR_SHARING_VIOLATION��33L�ERROR_LOCK_VIOLATION��34L�ERROR_WRONG_DISK��36L�ERROR_SHARING_BUFFER_EXCEEDED��38L�ERROR_HANDLE_EOF��39L�ERROR_HANDLE_DISK_FULL��50L�ERROR_NOT_SUPPORTED��51L�ERROR_REM_NOT_LIST��52L�ERROR_DUP_NAME��53L�ERROR_BAD_NETPATH��54L�ERROR_NETWORK_BUSY��55L�ERROR_DEV_NOT_EXIST��56L�ERROR_TOO_MANY_CMDS��57L�ERROR_ADAP_HDW_ERR��58L�ERROR_BAD_NET_RESP��59L�ERROR_UNEXP_NET_ERR��60L�ERROR_BAD_REM_ADAP��61L�ERROR_PRINTQ_FULL��62L�ERROR_NO_SPOOL_SPACE��63L�ERROR_PRINT_CANCELLED��64L�ERROR_NETNAME_DELETED��65L�ERROR_NETWORK_ACCESS_DENIED��66L�ERROR_BAD_DEV_TYPE��67L�ERROR_BAD_NET_NAME��68L�ERROR_TOO_MANY_NAMES��69L�ERROR_TOO_MANY_SESS��70L�ERROR_SHARING_PAUSED��71L�ERROR_REQ_NOT_ACCEP��72L�ERROR_REDIR_PAUSED��80L�ERROR_FILE_EXISTS��82L�ERROR_CANNOT_MAKE��83L�ERROR_FAIL_I24��84L�ERROR_OUT_OF_STRUCTURES��85L�ERROR_ALREADY_ASSIGNED��86L�ERROR_INVALID_PASSWORD��87L�ERROR_INVALID_PARAMETER��88L�ERROR_NET_WRITE_FAULT��89L�ERROR_NO_PROC_SLOTS��100L�ERROR_TOO_MANY_SEMAPHORES��101L�ERROR_EXCL_SEM_ALREADY_OWNED��102L�ERROR_SEM_IS_SET��103L�ERROR_TOO_MANY_SEM_REQUESTS��104L�ERROR_INVALID_AT_INTERRUPT_TIME��105L�ERROR_SEM_OWNER_DIED��106L�ERROR_SEM_USER_LIMIT��107L�ERROR_DISK_CHANGE��108L�ERROR_DRIVE_LOCKED��109L�ERROR_BROKEN_PIPE��110L�ERROR_OPEN_FAILED��111L�ERROR_BUFFER_OVERFLOW��112L�ERROR_DISK_FULL��113L�ERROR_NO_MORE_SEARCH_HANDLES��114L�ERROR_INVALID_TARGET_HANDLE��117L�ERROR_INVALID_CATEGORY��118L�ERROR_INVALID_VERIFY_SWITCH��119L�ERROR_BAD_DRIVER_LEVEL��120L�ERROR_CALL_NOT_IMPLEMENTED��121L�ERROR_SEM_TIMEOUT��122L�ERROR_INSUFFICIENT_BUFFER��123L�ERROR_INVALID_NAME��124L�ERROR_INVALID_LEVEL��125L�ERROR_NO_VOLUME_LABEL��126L�ERROR_MOD_NOT_FOUND��127L�ERROR_PROC_NOT_FOUND��128L�ERROR_WAIT_NO_CHILDREN��129L�ERROR_CHILD_NOT_COMPLETE��130L�ERROR_DIRECT_ACCESS_HANDLE��131L�ERROR_NEGATIVE_SEEK��132L�ERROR_SEEK_ON_DEVICE��133L�ERROR_IS_JOIN_TARGET��134L�ERROR_IS_JOINED��135L�ERROR_IS_SUBSTED��136L�ERROR_NOT_JOINED��137L�ERROR_NOT_SUBSTED��138L�ERROR_JOIN_TO_JOIN��139L�ERROR_SUBST_TO_SUBST��140L�ERROR_JOIN_TO_SUBST��141L�ERROR_SUBST_TO_JOIN��142L�ERROR_BUSY_DRIVE��143L�ERROR_SAME_DRIVE��144L�ERROR_DIR_NOT_ROOT��145L�ERROR_DIR_NOT_EMPTY��146L�ERROR_IS_SUBST_PATH��147L�ERROR_IS_JOIN_PATH��148L�ERROR_PATH_BUSY��149L�ERROR_IS_SUBST_TARGET��150L�ERROR_SYSTEM_TRACE��151L�ERROR_INVALID_EVENT_COUNT��152L�ERROR_TOO_MANY_MUXWAITERS��153L�ERROR_INVALID_LIST_FORMAT��154L�ERROR_LABEL_TOO_LONG��155L�ERROR_TOO_MANY_TCBS��156L�ERROR_SIGNAL_REFUSED��157L�ERROR_DISCARDED��158L�ERROR_NOT_LOCKED��159L�ERROR_BAD_THREADID_ADDR��160L�ERROR_BAD_ARGUMENTS��161L�ERROR_BAD_PATHNAME��162L�ERROR_SIGNAL_PENDING��164L�ERROR_MAX_THRDS_REACHED��167L�ERROR_LOCK_FAILED��170L�ERROR_BUSY��173L�ERROR_CANCEL_VIOLATION��174L�ERROR_ATOMIC_LOCKS_NOT_SUPPORTED��180L�ERROR_INVALID_SEGMENT_NUMBER��182L�ERROR_INVALID_ORDINAL��183L�ERROR_ALREADY_EXISTS��186L�ERROR_INVALID_FLAG_NUMBER��187L�ERROR_SEM_NOT_FOUND��188L�ERROR_INVALID_STARTING_CODESEG��189L�ERROR_INVALID_STACKSEG��190L�ERROR_INVALID_MODULETYPE��191L�ERROR_INVALID_EXE_SIGNATURE��192L�ERROR_EXE_MARKED_INVALID��193L�ERROR_BAD_EXE_FORMAT��194L�ERROR_ITERATED_DATA_EXCEEDS_64k��195L�ERROR_INVALID_MINALLOCSIZE��196L�ERROR_DYNLINK_FROM_INVALID_RING��197L�ERROR_IOPL_NOT_ENABLED��198L�ERROR_INVALID_SEGDPL��199L�ERROR_AUTODATASEG_EXCEEDS_64k��200L�ERROR_RING2SEG_MUST_BE_MOVABLE��201L�ERROR_RELOC_CHAIN_XEEDS_SEGLIM��202L�ERROR_INFLOOP_IN_RELOC_CHAIN��203L�ERROR_ENVVAR_NOT_FOUND��205L�ERROR_NO_SIGNAL_SENT��206L�ERROR_FILENAME_EXCED_RANGE��207L�ERROR_RING2_STACK_IN_USE��208L�ERROR_META_EXPANSION_TOO_LONG��209L�ERROR_INVALID_SIGNAL_NUMBER��210L�ERROR_THREAD_1_INACTIVE��212L�ERROR_LOCKED��214L�ERROR_TOO_MANY_MODULES��215L�ERROR_NESTING_NOT_ALLOWED��230L�ERROR_BAD_PIPE��231L�ERROR_PIPE_BUSY��232L�ERROR_NO_DATA��233L�ERROR_PIPE_NOT_CONNECTED��234L�ERROR_MORE_DATA��240L�ERROR_VC_DISCONNECTED��254L�ERROR_INVALID_EA_NAME��255L�ERROR_EA_LIST_INCONSISTENT��259L�ERROR_NO_MORE_ITEMS��266L�ERROR_CANNOT_COPY��267L�ERROR_DIRECTORY��275L�ERROR_EAS_DIDNT_FIT��276L�ERROR_EA_FILE_CORRUPT��277L�ERROR_EA_TABLE_FULL��278L�ERROR_INVALID_EA_HANDLE��282L�ERROR_EAS_NOT_SUPPORTED��288L�ERROR_NOT_OWNER��298L�ERROR_TOO_MANY_POSTS��317L�ERROR_MR_MID_NOT_FOUND��487L�ERROR_INVALID_ADDRESS��534L�ERROR_ARITHMETIC_OVERFLOW��535L�ERROR_PIPE_CONNECTED��536L�ERROR_PIPE_LISTENING��994L�ERROR_EA_ACCESS_DENIED��995L�ERROR_OPERATION_ABORTED��996L�ERROR_IO_INCOMPLETE��997L�ERROR_IO_PENDING��998L�ERROR_NOACCESS��999L�ERROR_SWAPERROR��1001L�ERROR_STACK_OVERFLOW��1002L�ERROR_INVALID_MESSAGE��1003L�ERROR_CAN_NOT_COMPLETE��1004L�ERROR_INVALID_FLAGS��1005L�ERROR_UNRECOGNIZED_VOLUME��1006L�ERROR_FILE_INVALID��1007L�ERROR_FULLSCREEN_MODE��1008L�ERROR_NO_TOKEN��1009L�ERROR_BADDB��1010L�ERROR_BADKEY��1011L�ERROR_CANTOPEN��1012L�ERROR_CANTREAD��1013L�ERROR_CANTWRITE��1014L�ERROR_REGISTRY_RECOVERED��1015L�ERROR_REGISTRY_CORRUPT��1016L�ERROR_REGISTRY_IO_FAILED��1017L�ERROR_NOT_REGISTRY_FILE��1018L�ERROR_KEY_DELETED��1019L�ERROR_NO_LOG_SPACE��1020L�ERROR_KEY_HAS_CHILDREN��1021L�ERROR_CHILD_MUST_BE_VOLATILE��1022L�ERROR_NOTIFY_ENUM_DIR��1051L�ERROR_DEPENDENT_SERVICES_RUNNING��1052L�ERROR_INVALID_SERVICE_CONTROL��1053L�ERROR_SERVICE_REQUEST_TIMEOUT��1054L�ERROR_SERVICE_NO_THREAD��1055L�ERROR_SERVICE_DATABASE_LOCKED��1056L�ERROR_SERVICE_ALREADY_RUNNING��1057L�ERROR_INVALID_SERVICE_ACCOUNT��1058L�ERROR_SERVICE_DISABLED��1059L�ERROR_CIRCULAR_DEPENDENCY��1060L�ERROR_SERVICE_DOES_NOT_EXIST��1061L�ERROR_SERVICE_CANNOT_ACCEPT_CTRL��1062L�ERROR_SERVICE_NOT_ACTIVE��1063L�ERROR_FAILED_SERVICE_CONTROLLER_CONNECT��1064L�ERROR_EXCEPTION_IN_SERVICE��1065L�ERROR_DATABASE_DOES_NOT_EXIST��1066L�ERROR_SERVICE_SPECIFIC_ERROR��1067L�ERROR_PROCESS_ABORTED��1068L�ERROR_SERVICE_DEPENDENCY_FAIL��1069L�ERROR_SERVICE_LOGON_FAILED��1070L�ERROR_SERVICE_START_HANG��1071L�ERROR_INVALID_SERVICE_LOCK��1072L�ERROR_SERVICE_MARKED_FOR_DELETE��1073L�ERROR_SERVICE_EXISTS��1074L�ERROR_ALREADY_RUNNING_LKG��1075L�ERROR_SERVICE_DEPENDENCY_DELETED��1076L�ERROR_BOOT_ALREADY_ACCEPTED��1077L�ERROR_SERVICE_NEVER_STARTED��1078L�ERROR_DUPLICATE_SERVICE_NAME��1100L�ERROR_END_OF_MEDIA��1101L�ERROR_FILEMARK_DETECTED��1102L�ERROR_BEGINNING_OF_MEDIA��1103L�ERROR_SETMARK_DETECTED��1104L�ERROR_NO_DATA_DETECTED��1105L�ERROR_PARTITION_FAILURE��1106L�ERROR_INVALID_BLOCK_LENGTH��1107L�ERROR_DEVICE_NOT_PARTITIONED��1108L�ERROR_UNABLE_TO_LOCK_MEDIA��1109L�ERROR_UNABLE_TO_UNLOAD_MEDIA��1110L�ERROR_MEDIA_CHANGED��1111L�ERROR_BUS_RESET��1112L�ERROR_NO_MEDIA_IN_DRIVE��1113L�ERROR_NO_UNICODE_TRANSLATION��1114L�ERROR_DLL_INIT_FAILED��1115L�ERROR_SHUTDOWN_IN_PROGRESS��1116L�ERROR_NO_SHUTDOWN_IN_PROGRESS��1117L�ERROR_IO_DEVICE��1118L�ERROR_SERIAL_NO_DEVICE��1119L�ERROR_IRQ_BUSY��1120L�ERROR_MORE_WRITES��1121L�ERROR_COUNTER_TIMEOUT��1122L�ERROR_FLOPPY_ID_MARK_NOT_FOUND��1123L�ERROR_FLOPPY_WRONG_CYLINDER��1124L�ERROR_FLOPPY_UNKNOWN_ERROR��1125L�ERROR_FLOPPY_BAD_REGISTERS��1126L�ERROR_DISK_RECALIBRATE_FAILED��1127L�ERROR_DISK_OPERATION_FAILED��1128L�ERROR_DISK_RESET_FAILED��1129L�ERROR_EOM_OVERFLOW��1130L�ERROR_NOT_ENOUGH_SERVER_MEMORY��1131L�ERROR_POSSIBLE_DEADLOCK��1132L�ERROR_MAPPED_ALIGNMENT��1140L�ERROR_SET_POWER_STATE_VETOED��1141L�ERROR_SET_POWER_STATE_FAILED��1150L�ERROR_OLD_WIN_VERSION��1151L�ERROR_APP_WRONG_OS ��1152L�ERROR_SINGLE_INSTANCE_APP��1153L�ERROR_RMODE_APP��1154L�ERROR_INVALID_DLL��1155L�ERROR_NO_ASSOCIATION��1156L�ERROR_DDE_FAIL��1157L�ERROR_DLL_NOT_FOUND��1200L�ERROR_BAD_DEVICE��1201L�ERROR_CONNECTION_UNAVAIL��1202L�ERROR_DEVICE_ALREADY_REMEMBERED��1203L�ERROR_NO_NET_OR_BAD_PATH��1204L�ERROR_BAD_PROVIDER��1205L�ERROR_CANNOT_OPEN_PROFILE��1206L�ERROR_BAD_PROFILE��1207L�ERROR_NOT_CONTAINER��1208L�ERROR_EXTENDED_ERROR��1209L�ERROR_INVALID_GROUPNAME��1210L�ERROR_INVALID_COMPUTERNAME��1211L�ERROR_INVALID_EVENTNAME��1212L�ERROR_INVALID_DOMAINNAME��1213L�ERROR_INVALID_SERVICENAME��1214L�ERROR_INVALID_NETNAME��1215L�ERROR_INVALID_SHARENAME��1216L�ERROR_INVALID_PASSWORDNAME��1217L�ERROR_INVALID_MESSAGENAME��1218L�ERROR_INVALID_MESSAGEDEST��1219L�ERROR_SESSION_CREDENTIAL_CONFLICT��1220L�ERROR_REMOTE_SESSION_LIMIT_EXCEEDED��1221L�ERROR_DUP_DOMAINNAME��1247L�ERROR_ALREADY_INITIALIZED��1248L�ERROR_NO_MORE_DEVICES��1300L�ERROR_NOT_ALL_ASSIGNED��1301L�ERROR_SOME_NOT_MAPPED��1302L�ERROR_NO_QUOTAS_FOR_ACCOUNT��1303L�ERROR_LOCAL_USER_SESSION_KEY��1304L�ERROR_NULL_LM_PASSWORD��1305L�ERROR_UNKNOWN_REVISION��1306L�ERROR_REVISION_MISMATCH��1307L�ERROR_INVALID_OWNER��1308L�ERROR_INVALID_PRIMARY_GROUP��1309L�ERROR_NO_IMPERSONATION_TOKEN��1310L�ERROR_CANT_DISABLE_MANDATORY��1311L�ERROR_NO_LOGON_SERVERS��1312L�ERROR_NO_SUCH_LOGON_SESSION��1313L�ERROR_NO_SUCH_PRIVILEGE��1314L�ERROR_PRIVILEGE_NOT_HELD��1315L�ERROR_INVALID_ACCOUNT_NAME��1316L�ERROR_USER_EXISTS��1317L�ERROR_NO_SUCH_USER��1318L�ERROR_GROUP_EXISTS��1319L�ERROR_NO_SUCH_GROUP��1320L�ERROR_MEMBER_IN_GROUP��1321L�ERROR_MEMBER_NOT_IN_GROUP��1322L�ERROR_LAST_ADMIN��1323L�ERROR_WRONG_PASSWORD��1324L�ERROR_ILL_FORMED_PASSWORD��1325L�ERROR_PASSWORD_RESTRICTION��1326L�ERROR_LOGON_FAILURE��1327L�ERROR_ACCOUNT_RESTRICTION��1328L�ERROR_INVALID_LOGON_HOURS��1329L�ERROR_INVALID_WORKSTATION��1330L�ERROR_PASSWORD_EXPIRED��1331L�ERROR_ACCOUNT_DISABLED��1332L�ERROR_NONE_MAPPED��1333L�ERROR_TOO_MANY_LUIDS_REQUESTED��1334L�ERROR_LUIDS_EXHAUSTED��1335L�ERROR_INVALID_SUB_AUTHORITY��1336L�ERROR_INVALID_ACL��1337L�ERROR_INVALID_SID��1338L�ERROR_INVALID_SECURITY_DESCR��1340L�ERROR_BAD_INHERITANCE_ACL��1341L�ERROR_SERVER_DISABLED��1342L�ERROR_SERVER_NOT_DISABLED��1343L�ERROR_INVALID_ID_AUTHORITY��1344L�ERROR_ALLOTTED_SPACE_EXCEEDED��1345L�ERROR_INVALID_GROUP_ATTRIBUTES��1346L�ERROR_BAD_IMPERSONATION_LEVEL��1347L�ERROR_CANT_OPEN_ANONYMOUS��1348L�ERROR_BAD_VALIDATION_CLASS��1349L�ERROR_BAD_TOKEN_TYPE��1350L�ERROR_NO_SECURITY_ON_OBJECT��1351L�ERROR_CANT_ACCESS_DOMAIN_INFO��1352L�ERROR_INVALID_SERVER_STATE��1353L�ERROR_INVALID_DOMAIN_STATE��1354L�ERROR_INVALID_DOMAIN_ROLE��1355L�ERROR_NO_SUCH_DOMAIN��1356L�ERROR_DOMAIN_EXISTS��1357L�ERROR_DOMAIN_LIMIT_EXCEEDED��1358L�ERROR_INTERNAL_DB_CORRUPTION��1359L�ERROR_INTERNAL_ERROR��1360L�ERROR_GENERIC_NOT_MAPPED��1361L�ERROR_BAD_DESCRIPTOR_FORMAT��1362L�ERROR_NOT_LOGON_PROCESS��1363L�ERROR_LOGON_SESSION_EXISTS��1364L�ERROR_NO_SUCH_PACKAGE��1365L�ERROR_BAD_LOGON_SESSION_STATE��1366L�ERROR_LOGON_SESSION_COLLISION��1367L�ERROR_INVALID_LOGON_TYPE��1368L�ERROR_CANNOT_IMPERSONATE��1369L�ERROR_RXACT_INVALID_STATE��1370L�ERROR_RXACT_COMMIT_FAILURE��1371L�ERROR_SPECIAL_ACCOUNT��1372L�ERROR_SPECIAL_GROUP��1373L�ERROR_SPECIAL_USER��1374L�ERROR_MEMBERS_PRIMARY_GROUP��1375L�ERROR_TOKEN_ALREADY_IN_USE��1376L�ERROR_NO_SUCH_ALIAS��1377L�ERROR_MEMBER_NOT_IN_ALIAS��1378L�ERROR_MEMBER_IN_ALIAS��1379L�ERROR_ALIAS_EXISTS��1380L�ERROR_LOGON_NOT_GRANTED��1381L�ERROR_TOO_MANY_SECRETS��1382L�ERROR_SECRET_TOO_LONG��1383L�ERROR_INTERNAL_DB_ERROR��1384L�ERROR_TOO_MANY_CONTEXT_IDS��1385L�ERROR_LOGON_TYPE_NOT_GRANTED��1386L�ERROR_NT_CROSS_ENCRYPTION_REQUIRED��1387L�ERROR_NO_SUCH_MEMBER��1388L�ERROR_INVALID_MEMBER��1389L�ERROR_TOO_MANY_SIDS��1390L�ERROR_LM_CROSS_ENCRYPTION_REQUIRED��1391L�ERROR_NO_INHERITANCE��1392L�ERROR_FILE_CORRUPT��1393L�ERROR_DISK_CORRUPT��1394L�ERROR_NO_USER_SESSION_KEY��1395L�ERROR_LICENSE_QUOTA_EXCEEDED��1400L�ERROR_INVALID_WINDOW_HANDLE��1401L�ERROR_INVALID_MENU_HANDLE��1402L�ERROR_INVALID_CURSOR_HANDLE��1403L�ERROR_INVALID_ACCEL_HANDLE��1404L�ERROR_INVALID_HOOK_HANDLE��1405L�ERROR_INVALID_DWP_HANDLE��1406L�ERROR_TLW_WITH_WSCHILD��1407L�ERROR_CANNOT_FIND_WND_CLASS��1408L�ERROR_WINDOW_OF_OTHER_THREAD��1409L�ERROR_HOTKEY_ALREADY_REGISTERED��1410L�ERROR_CLASS_ALREADY_EXISTS��1411L�ERROR_CLASS_DOES_NOT_EXIST��1412L�ERROR_CLASS_HAS_WINDOWS��1413L�ERROR_INVALID_INDEX��1414L�ERROR_INVALID_ICON_HANDLE��1415L�ERROR_PRIVATE_DIALOG_INDEX��1416L�ERROR_LISTBOX_ID_NOT_FOUND��1417L�ERROR_NO_WILDCARD_CHARACTERS��1418L�ERROR_CLIPBOARD_NOT_OPEN��1419L�ERROR_HOTKEY_NOT_REGISTERED��1420L�ERROR_WINDOW_NOT_DIALOG��1421L�ERROR_CONTROL_ID_NOT_FOUND��1422L�ERROR_INVALID_COMBOBOX_MESSAGE��1423L�ERROR_WINDOW_NOT_COMBOBOX��1424L�ERROR_INVALID_EDIT_HEIGHT��1425L�ERROR_DC_NOT_FOUND��1426L�ERROR_INVALID_HOOK_FILTER��1427L�ERROR_INVALID_FILTER_PROC��1428L�ERROR_HOOK_NEEDS_HMOD��1429L�ERROR_GLOBAL_ONLY_HOOK��1430L�ERROR_JOURNAL_HOOK_SET��1431L�ERROR_HOOK_NOT_INSTALLED��1432L�ERROR_INVALID_LB_MESSAGE��1433L�ERROR_SETCOUNT_ON_BAD_LB��1434L�ERROR_LB_WITHOUT_TABSTOPS��1435L�ERROR_DESTROY_OBJECT_OF_OTHER_THREAD��1436L�ERROR_CHILD_WINDOW_MENU��1437L�ERROR_NO_SYSTEM_MENU��1438L�ERROR_INVALID_MSGBOX_STYLE��1439L�ERROR_INVALID_SPI_VALUE��1440L�ERROR_SCREEN_ALREADY_LOCKED��1441L�ERROR_HWNDS_HAVE_DIFFERENT_PARENT��1442L�ERROR_NOT_CHILD_WINDOW��1443L�ERROR_INVALID_GW_COMMAND��1444L�ERROR_INVALID_THREAD_ID��1445L�ERROR_NON_MDICHILD_WINDOW��1446L�ERROR_POPUP_ALREADY_ACTIVE��1447L�ERROR_NO_SCROLLBARS��1448L�ERROR_INVALID_SCROLLBAR_RANGE��1449L�ERROR_INVALID_SHOWWIN_COMMAND��1500L�ERROR_EVENTLOG_FILE_CORRUPT��1501L�ERROR_EVENTLOG_CANT_START��1502L�ERROR_LOG_FILE_FULL��1503L�ERROR_EVENTLOG_FILE_CHANGED��1700L�RPC_S_INVALID_STRING_BINDING��1701L�RPC_S_WRONG_KIND_OF_BINDING��1702L�RPC_S_INVALID_BINDING��1703L�RPC_S_PROTSEQ_NOT_SUPPORTED��1704L�RPC_S_INVALID_RPC_PROTSEQ��1705L�RPC_S_INVALID_STRING_UUID��1706L�RPC_S_INVALID_ENDPOINT_FORMAT��1707L�RPC_S_INVALID_NET_ADDR��1708L�RPC_S_NO_ENDPOINT_FOUND��1709L�RPC_S_INVALID_TIMEOUT��1710L�RPC_S_OBJECT_NOT_FOUND��1711L�RPC_S_ALREADY_REGISTERED��1712L�RPC_S_TYPE_ALREADY_REGISTERED��1713L�RPC_S_ALREADY_LISTENING��1714L�RPC_S_NO_PROTSEQS_REGISTERED��1715L�RPC_S_NOT_LISTENING��1716L�RPC_S_UNKNOWN_MGR_TYPE��1717L�RPC_S_UNKNOWN_IF��1718L�RPC_S_NO_BINDINGS��1719L�RPC_S_NO_PROTSEQS��1720L�RPC_S_CANT_CREATE_ENDPOINT��1721L�RPC_S_OUT_OF_RESOURCES��1722L�RPC_S_SERVER_UNAVAILABLE��1723L�RPC_S_SERVER_TOO_BUSY��1724L�RPC_S_INVALID_NETWORK_OPTIONS��1725L�RPC_S_NO_CALL_ACTIVE��1726L�RPC_S_CALL_FAILED��1727L�RPC_S_CALL_FAILED_DNE��1728L�RPC_S_PROTOCOL_ERROR��1730L�RPC_S_UNSUPPORTED_TRANS_SYN��1731L�RPC_S_SERVER_OUT_OF_MEMORY��1732L�RPC_S_UNSUPPORTED_TYPE��1733L�RPC_S_INVALID_TAG��1734L�RPC_S_INVALID_BOUND��1735L�RPC_S_NO_ENTRY_NAME��1736L�RPC_S_INVALID_NAME_SYNTAX��1737L�RPC_S_UNSUPPORTED_NAME_SYNTAX��1739L�RPC_S_UUID_NO_ADDRESS��1740L�RPC_S_DUPLICATE_ENDPOINT��1741L�RPC_S_UNKNOWN_AUTHN_TYPE��1742L�RPC_S_MAX_CALLS_TOO_SMALL��1743L�RPC_S_STRING_TOO_LONG��1744L�RPC_S_PROTSEQ_NOT_FOUND��1745L�RPC_S_PROCNUM_OUT_OF_RANGE��1746L�RPC_S_BINDING_HAS_NO_AUTH��1747L�RPC_S_UNKNOWN_AUTHN_SERVICE��1748L�RPC_S_UNKNOWN_AUTHN_LEVEL��1749L�RPC_S_INVALID_AUTH_IDENTITY��1750L�RPC_S_UNKNOWN_AUTHZ_SERVICE��1751L�EPT_S_INVALID_ENTRY��1752L�EPT_S_CANT_PERFORM_OP��1753L�EPT_S_NOT_REGISTERED��1755L�RPC_S_INCOMPLETE_NAME��1756L�RPC_S_INVALID_VERS_OPTION��1757L�RPC_S_NO_MORE_MEMBERS��1758L�RPC_S_NOT_ALL_OBJS_UNEXPORTED��1759L�RPC_S_INTERFACE_NOT_FOUND��1760L�RPC_S_ENTRY_ALREADY_EXISTS��1761L�RPC_S_ENTRY_NOT_FOUND��1762L�RPC_S_NAME_SERVICE_UNAVAILABLE��1764L�RPC_S_CANNOT_SUPPORT��1765L�RPC_S_NO_CONTEXT_AVAILABLE��1766L�RPC_S_INTERNAL_ERROR��1767L�RPC_S_ZERO_DIVIDE��1768L�RPC_S_ADDRESS_ERROR��1769L�RPC_S_FP_DIV_ZERO��1770L�RPC_S_FP_UNDERFLOW��1771L�RPC_S_FP_OVERFLOW��1772L�RPC_X_NO_MORE_ENTRIES��1773L�RPC_X_SS_CHAR_TRANS_OPEN_FAIL��1774L�RPC_X_SS_CHAR_TRANS_SHORT_FILE��1775L�RPC_X_SS_IN_NULL_CONTEXT��1776L�RPC_X_SS_CONTEXT_MISMATCH��1777L�RPC_X_SS_CONTEXT_DAMAGED��1778L�RPC_X_SS_HANDLES_MISMATCH��1779L�RPC_X_SS_CANNOT_GET_CALL_HANDLE��1780L�RPC_X_NULL_REF_POINTER��1781L�RPC_X_ENUM_VALUE_OUT_OF_RANGE��1782L�RPC_X_BYTE_COUNT_TOO_SMALL��1783L�RPC_X_BAD_STUB_DATA��1784L�ERROR_INVALID_USER_BUFFER��1785L�ERROR_UNRECOGNIZED_MEDIA��1786L�ERROR_NO_TRUST_LSA_SECRET��1787L�ERROR_NO_TRUST_SAM_ACCOUNT��1788L�ERROR_TRUSTED_DOMAIN_FAILURE��1789L�ERROR_TRUSTED_RELATIONSHIP_FAILURE��1790L�ERROR_TRUST_FAILURE��1791L�RPC_S_CALL_IN_PROGRESS��1792L�ERROR_NETLOGON_NOT_STARTED��1793L�ERROR_ACCOUNT_EXPIRED��1794L�ERROR_REDIRECTOR_HAS_OPEN_HANDLES��1795L�ERROR_PRINTER_DRIVER_ALREADY_INSTALLED��1796L�ERROR_UNKNOWN_PORT��1797L�ERROR_UNKNOWN_PRINTER_DRIVER��1798L�ERROR_UNKNOWN_PRINTPROCESSOR��1799L�ERROR_INVALID_SEPARATOR_FILE��1800L�ERROR_INVALID_PRIORITY��1801L�ERROR_INVALID_PRINTER_NAME��1802L�ERROR_PRINTER_ALREADY_EXISTS��1803L�ERROR_INVALID_PRINTER_COMMAND��1804L�ERROR_INVALID_DATATYPE��1805L�ERROR_INVALID_ENVIRONMENT��1806L�RPC_S_NO_MORE_BINDINGS��1807L�ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT��1808L�ERROR_NOLOGON_WORKSTATION_TRUST_ACCOUNT��1809L�ERROR_NOLOGON_SERVER_TRUST_ACCOUNT��1810L�ERROR_DOMAIN_TRUST_INCONSISTENT��1811L�ERROR_SERVER_HAS_OPEN_HANDLES��1812L�ERROR_RESOURCE_DATA_NOT_FOUND��1813L�ERROR_RESOURCE_TYPE_NOT_FOUND��1814L�ERROR_RESOURCE_NAME_NOT_FOUND��1815L�ERROR_RESOURCE_LANG_NOT_FOUND��1816L�ERROR_NOT_ENOUGH_QUOTA��1817L�RPC_S_NO_INTERFACES��1818L�RPC_S_CALL_CANCELLED��1819L�RPC_S_BINDING_INCOMPLETE��1820L�RPC_S_COMM_FAILURE��1821L�RPC_S_UNSUPPORTED_AUTHN_LEVEL��1822L�RPC_S_NO_PRINC_NAME��1823L�RPC_S_NOT_RPC_ERROR��1824L�RPC_S_UUID_LOCAL_ONLY��1825L�RPC_S_SEC_PKG_ERROR��1826L�RPC_S_NOT_CANCELLED��1827L�RPC_X_INVALID_ES_ACTION��1828L�RPC_X_WRONG_ES_VERSION��1829L�RPC_X_WRONG_STUB_VERSION��1898L�RPC_S_GROUP_MEMBER_NOT_FOUND��1899L�EPT_S_CANT_CREATE��1900L�RPC_S_INVALID_OBJECT��1901L�ERROR_INVALID_TIME��1902L�ERROR_INVALID_FORM_NAME��1903L�ERROR_INVALID_FORM_SIZE��1904L�ERROR_ALREADY_WAITING��1905L�ERROR_PRINTER_DELETED��1906L�ERROR_INVALID_PRINTER_STATE��1907L�ERROR_PASSWORD_MUST_CHANGE��1908L�ERROR_DOMAIN_CONTROLLER_NOT_FOUND ��1909L�ERROR_ACCOUNT_LOCKED_OUT��2000L�ERROR_INVALID_PIXEL_FORMAT��2001L�ERROR_BAD_DRIVER ��2002L�ERROR_INVALID_WINDOW_STYLE��2003L�ERROR_METAFILE_NOT_SUPPORTED��2004L�ERROR_TRANSFORM_NOT_SUPPORTED��2005L�ERROR_CLIPPING_NOT_SUPPORTED��2138L�ERROR_NO_NETWORK��2202L�ERROR_BAD_USERNAME��2250L�ERROR_NOT_CONNECTED��2401L�ERROR_OPEN_FILES��2404L�ERROR_DEVICE_IN_USE��3000L�ERROR_UNKNOWN_PRINT_MONITOR��3001L�ERROR_PRINTER_DRIVER_IN_USE��3002L�ERROR_SPOOL_FILE_NOT_FOUND��3003L�ERROR_SPL_NO_STARTDOC ��3004L�ERROR_SPL_NO_ADDJOB��3005L�ERROR_PRINT_PROCESSOR_ALREADY_INSTALLED ��3006L�ERROR_PRINT_MONITOR_ALREADY_INSTALLED ��4000L�ERROR_WINS_INTERNAL��4001L�ERROR_CAN_NOT_DEL_LOCAL_WINS��4002L�ERROR_STATIC_INIT��4003L�ERROR_INC_BACKUP��4004L�ERROR_FULL_BACKUP ��4005L�ERROR_REC_NON_EXISTENT��4006L�ERROR_RPL_NOT_ALLOWED��6118L�ERROR_NO_BROWSER_SERVERS_FOUND��
�

Feedback
For questions or feedback concerning this tool, please contact rkinput@microsoft.com.

If you are interested in joining an international community of KiXtart users to discuss tips and tricks and share sample scripts, please connect to http://www.brainbuzz.com.
Alternatively, you can also join the discussion on: http://script.kixtart.to.

To find the latest versions of KiXtart, and more sample scripts and tips and tricks on KiXtart, please visit one of the following sites:

http://netnet.net/~swilson/kix.html
http://script.kixtart.to
http://www.scriptlogic.com
http://www.comptrends.com
http://www.cyberramp.net/~musicon/kix/index.html
http://www.hockey.net/~kevinv/kixtart/index.shtml
http://cwashington.netreach.net/

If you are interested in a ‘KiXtart-aware’ script-editor, please visit:
http://versionzero.webjump.com/

© 1985-2000 Microsoft Corporation. All rights reserved.
�page �58� Kixtart.exe

	KiXtart 95 �page �59�

	�page �1�

