
Using Qtcp to Measure Network Service Quality

Introduction
Qtcp is a tool, derived from Ttcp, that can be used to measure end-to-end network service quality. Qtcp
sends a sequence of test packets through a network, then reports on the queuing delay experienced by
each packet. Packets that do not arrive at the destination are recorded as dropped packets. Qtcp relies on
a kernel-mode timestamping module that can be run only on MicrosoftÒ WindowsÒ 2000.

Features of Qtcp:

· Qtcp is able to report very precise delay variations, on the order of microseconds.
· By default, Qtcp invokes network Quality of Service (QoS) and is useful for the purpose of

evaluating QoS mechanisms.
· Qtcp can simulate traffic flows for a range of user selectable packet sizes.
· Qtcp can simulate traffic flows shaped to a range of token bucket parameters.
· Qtcp can be used on an isolated, controlled network or a production network.
· Qtcp generates detailed result logs.
· Qtcp can collate a group of .sta files and produce a statistics summary across variables.

Network Under Test
Qtcp may be used on either a production network or on a controlled network that may be artificially
congested. Devices in the network under test may provide quality of service through any number of QoS
mechanisms or may not provide quality of service at all. The following diagram illustrates the usage of
Qtcp in a production network:

In this diagram, a Qtcp sender and a Qtcp receiver are located at opposite ends of the network. The
network under test is a production network. Other senders and receivers compete with the Qtcp session
for network resources. In this scenario, the Qtcp user has no control over the current network load.

The following diagram illustrates the use of Qtcp on a controlled network:

qtcp sender

qtcp receiver

qtcp sender

noise source

qtcp receiver

noise sink

Using Qtcp to Measure Network Service Quality Page 2

In this diagram, the Qtcp sender and receiver are again located at the opposite ends of the network under
test. In these scenarios, the network under test tends to be smaller and simpler to facilitate the evaluation
of specific network elements in isolation. Note that, unlike the production network, there are only four
hosts attached to this network. Two hosts are used to run the Qtcp test session. The other two hosts act as
a noise source and noise sink. In these type of tests, the user controls the amount of noise generated
across the network during any specific test run. Generally, noise sources are selected to mimic the
distribution of packet sizes and the traffic level that would be encountered on a production network.

Theory of Operation
A Qtcp session is invoked on both a sending and a receiving host. After invocation, Qtcp sets up a TCP
control channel between sender and receiver to properly negotiate the test. At the same time, it uses the
GQoS API (part of Winsock2) to invoke QoS from local traffic control and from the network. The Qtcp
sender will cause an RSVP PATH message to be sent towards the receiver and will wait until a response
is received. The Qtcp receiver will wait for an RSVP PATH message from the sender and will respond by
transmitting an RSVP RESV message.

Receipt of the RESV message at the sender triggers the measurement phase. At this time, the sender
begins submitting buffers to the kernel for transmission. (Note that kernel traffic control must be
installed). The kernel paces the transmission of traffic according to the token bucket parameters and
service type selected by the user via the Qtcp command line. As packets are transmitted, the timestmp
module stamps a sequence number and the local time (to a precision of 100ns) in each packet. If the
timestmp module is not installed, Qtcp uses a user mode timestamp that is less accurate than the kernel
mode module.

When packets are received at the receiver's traffic control, the timestmp module stamps in each packet
the local time of the receiving host, then passes the packet up to the receiving Qtcp peer. The receiving
Qtcp process maintains a list of all received packets, including the packet sequence number, the time sent
and the time received.

The test terminates on the sending side when the transmitter has sent the required number of packets
(default is 2048 packets, may be overriden via the Qtcp command line). Following transmission of the
last packet, the sender sends a terminating sequence of ten 'termination' packets. The test terminates on
the receiving side upon receipt of a termination packet or upon receipt of the required number of packets
(default 2048, may be overriden via the receiver Qtcp command line). Note that, on particularly
congested links, the receiver may never receive the required number of packets and the termination
packets may be dropped. The TCP control channel should still get through its ‘DONE’ message, in which
case the receiver will terminate normally. If both of these methods fail, the receiver may be terminated
manually, by typing 'q' <return>.

Upon termination, the receiver Qtcp parses and processes the log of received packets. Three logs are
generated; filename.sta, filename.raw and filename.log. The first of these contains summary statistics. It
reports the total number of packets received and specifies the sequence number of each dropped packet.
The second file (.raw) contains a detailed log showing normalized send time and receive time for each
packet, the latency (difference between sent and received time), packet size and sequence number.
Finally, the third file (.log) is a result of normalizing the results of the second file, to account for clock
drift between the two hosts (see Appendix A).

Usage
The simplest invocation of Qtcp is as follows:

On sender: qtcp -l64 -t 2.3.4.5
On receiver: qtcp -f"filename" -r

The -l option on the sender specifies the buffer size to be used in the test. The -t option specifies that this
is the Qtcp sender. This option must be followed by the IP address of the receiving host. On the receiver,

Using Qtcp to Measure Network Service Quality Page 3

the -f option is used to specify the prefix of the report files that will be generated. The -r option indicates
that this is the Qtcp receiver.

Initially, the sender prints the message: Initiated QoS connection. Waiting for receiver. The receiver
prints the message: Waiting for QoS sender to initiate QoS connection. At this time, the receiver and the
sender are awaiting the required exchange of RSVP messages before beginning the data transfer. Once
the data transfer begins, the sender will start sending 64 byte buffers (as specified in the -l option on the
sender), to kernel traffic control, for transmission to the receiver at address 2.3.4.5. By default, kernel
traffic control will pace transmitted packets to a rate of 100 KBps (kilobytes per second).

Qtcp will print a series of dots to the console, both on the receiver and on the sender. Each dot
corresponds to 100 packets sent or received. Note that the first dot is printed on the receiver prior to the
actual receipt of the first 100 packets. The dots should be used as an indication that Qtcp is 'alive'.

Upon transmission of the specified number of packets (2048 by default), the sender terminates with a
message regarding the transmission rate. Note that the transmission rate and other statistics printed by the
sender are from its perspective alone. That is, the rate it prints is the rate at which it sends packets and
does not necessarily correspond to the rate at which packets are received. Upon receipt of the required
number of packets (or the termination packets) at the receiver, it terminates with the message: Received
2048 buffers. This is followed by statistics, which are not reliable. At this time, the receiving Qtcp will
generate the files: filename.sta, filename.raw and filename.log.

Usage Variations
In this section, we discuss the usage variations and optional parameters that may be used. In the table
below, the third column indicates whether each option is useful on the Qtcp sender (T), Qtcp receiver (R)
or both (B). Note that options are case-sensitive.

Optional Parameters
Option Description Sender (T)

Receiver (R)
Both (B)

Default and Range

-B This is the Token Bucket size. The token bucket size
represents the largest burst that traffic control will
transmit to the network. It should generally be set to be
equal to the buffer size. See notes below.

T Default is 64 bytes.
Must be no smaller
than buffer size and
no smaller than
MTU size.

-m Minimum policed size advertised by RSVP signaling. T Default is buffer
size.

-R This is the Token Rate. The token rate is the average
rate at which data will be transmitted in Kbytes per
second. This parameter may be used to control the
inter-packet gap on the sending host. See notes below.

T Default is 100
Kbytes. Should be
lower than the
media rate.

-R##B Token Rate as above expressed in bytes per second. T See above.
-S This is the intserv service type that will be signaled to

the network and that will be used for local traffic
control. See notes below.

T GR or CL.

-e This option forces shaping to the token rate T Default is off (GR
shapes, CL does
not)

-W This will suppress waiting for an RSVP reservation. See
notes below.

B No parameters.

-v This option is used to set up an RSVP reservation only
and then wait for the user to exit. No data is sent.

T Data is sent by
default.

-f This option is used to specify the prefix name for the R By default no files

Using Qtcp to Measure Network Service Quality Page 4

logging and statistics files on the receiver. will be generated.
-F This option is used to convert a raw file to a log file. See notes below.
-n Number of buffers transmitted. B See notes below.
-c Number of calibration buffers to be sent. B See notes below.
-k# 0: Do not calculate clock skew

1: Calculate clock skew based on a linear regression
with goodness of fit measured by sum of squared error.
2: Calculate clock skew based on a bracketing and
bisection root finding method with goodness of fit
measured by sum of absolute error.
3: Same as 2, except also try to compensate for clock
jumps (see appendix A).

R Default is 2

-y This option skips waiting for user confirmation to
continue after the calibration phase has been
completed.

T Default is to wait
for confirmation.

-p Destination IP port number on receiving host. In order
to run multiple simultaneous Qtcp tests between the
same pair of hosts, it is necessary to use separate ports
for each test. This option may be used to force a
specific port to be used. Otherwise all streams will
attempt to send to the default port on the receiver. This
option must be used on both sender and receiver.

B Default is port
5003.

-l Length of user level buffers generated by Qtcp. See
notes below on relationship of buffer size to token
bucket size and MTU size.

T Default is 1472.
Must be greater
than 48 bytes.

-d By default, dropped packets omitted from the log. If
this option is specified, they are represented by dummy
entries in the log files showing a sent and received
timestamp of zero and the maximum latency
experienced by any packet in the test run. This option
can be used to facilitate accommodate different types of
log file post processing.

R Default is no
dummy entries.

-N Causes raw file to be dumped after normalization. R Default is pre-
normalization. See
notes below.

-M MaxSDUSize to be used in signaling messages T Default is buffer
size.

-P Suppresses console reporting of dropped packets. R Default is to report.
-u Report user-mode timestamps in logfiles. R Default is kernel

mode.
-i Use more compressible data in the packets. T Default is less

compressible.
-q Log only every nth packet. For instance, -q2 will log

every other packet (0,2,4,…).
R Default is –q1 (log

every packet)
-A Used to tell Qtcp to collate all the .sta files in a

directory and produce a statistics summary output. For
instance, to collect the results in c:\results, you would
enter qtcp –A”c:\results”

B Not involved in
default operation.

Notes Regarding Parameter Usage
Fragmentation Avoidance - Relationship of Token Bucket Size, Buffer Size and Packet Size
Under certain conditions, the protocol stack on the sending host would have to fragment user level
buffers into multiple packets in order to transmit them over the network. Fragmentation is undesirable for
a number of reasons, as described below:

Using Qtcp to Measure Network Service Quality Page 5

1. Certain network QoS mechanisms are unable to handle fragmented packets.
2. The loss of a single packet results in loss of the entire corresponding buffer at the receiving host,

even though all packets may have successfully traversed the network.
3. The user level Qtcp process on the receiving host recognizes buffers, not individual packets. As a

result timestamps and sequence numbers would be recovered only from the first packet comprising
each buffer. Information stamped by the sending timestmp module in the remaining packets of the
buffer, would not be recoverable.

The size of user level buffers generated by the sending Qtcp is determined by the -l option (default is
1472 bytes since 1472(buf size)+20(IP Header)+8(UDP Header) = 1500(MTU size)). If the buffer is
larger than the token bucket size (selected by the -B option) used by traffic control, or larger then the
MTU size defined for the network interface, then the sending protocol stack will have to fragment each
buffer into multiple packets. Since fragmentation is undesirable, this condition is to be avoided. Qtcp will
prevent the user from defining a buffer size that is larger than the token bucket size. However, the user is
responsible for determining the MTU size for the interface and assuring that the buffer size is no larger
than the MTU size.

On the other hand, if the buffer size is smaller than the token bucket size, then multiple user level buffers
may be transmitted by sending traffic control in a single burst. As a result, the transmit timestamps in
these packets will be closely related. This tends to distort the results of the measurement. Optimal results
are obtained when packets are sent at a steady rate with equal inter-packet gaps between successive
packets.

In conclusion, for best results, it is recommended that the buffer size be equal to the token bucket size
and that both are equal or smaller to the MTU size.

Token Rate
As discussed previously, optimal results are obtained when the sending host sends packets at a constant
rate. If the token bucket size is chosen to be equal to the buffer size, then the token rate (determined by
the -R option) will determine the constant packet rate. So, for example, for a token bucket and buffer size
of 64 bytes and a token rate of 16, packets will be sent at the uniform rate of 250 packets per second.

Each packet can be considered to be taking a snapshot of the network conditions at the time it is sent.
Thus, the token rate can be used to select a sampling interval for the network under test. Too low a
sampling interval may cause transient network conditions to be missed. On the other hand, the token rate
should be selected so that the packet rate is relatively low compared to the measuring processes in the
sending and receiving hosts. Measurement error increases with higher packet rates.

The token rate selected should be lower than the media rate. When using Qtcp to evaluate the effects of
QoS on telephony traffic (for example), we usually select token rates on the order of 3 - 10 Kbytes per
second.

Service Type
The service type (selected by the -S option) can be used to select the intserv service type requested by the
RSVP signaling messages and to control the mode of the sending host's traffic control. The two types of
service are GR (guaranteed service) and CL (controlled load) service. See RFC 2210 for a description of
these services. Guaranteed service is selected by default.

If there are RSVP/Intserv aware devices in the network under test, then the choice of service type will
affect the handling of the test traffic by these devices (as described in RFC 2210). Regardless of the
existence of RSVP/Intserv aware network devices, the choice of service will affect traffic control on the
sending host by determining the mode in which the packet scheduler operates. Unless configured
otherwise, the packet scheduler on the sending host will operate in shape mode for guaranteed service
and in borrow mode for controlled load service. In shape mode, the packet scheduler will shape
transmitted traffic to the token bucket parameters. In borrow mode, the packet scheduler will not shape

Using Qtcp to Measure Network Service Quality Page 6

traffic to the token bucket parameters. Instead, it will transmit traffic up to the media rate, demoting in
priority, those packets that are transmitted in excess of the media rate.

Operating Qtcp in borrow mode tends to result in bursts of traffic and is not recommended for
measurement purposes. However, it may be desirable to select controlled load service to compare the
effect of various service types when there are RSVP/Intserv aware devices in the network under test. In
this case, we recommend configuring the packet scheduler to operate in shape mode for controlled load
flows. This can be accomplished by specifying the –e flag when running Qtcp.

No Wait Flag
By default, Qtcp will not begin data transmission until an RSVP reservation is in place. The -W option
allows data transmission to proceed even when there is no reservation in place. This option can be
invoked in order to enable testing when the network under test prevents a reservation from being
installed. This could happen for the following reasons:

1. A firewall in the path between sender and receiver is configured to block RSVP messages.
2. An RSVP aware device in the network is rejecting the RSVP request due to lack of resources, policy

or other reasons.

Note that by using the -W option, the synchronization inherent in RSVP is lost. This means that the
sender will not wait for the receiver to be started. Thus, it is necessary to start the receiver before the
sender.

Number of Buffers
The -n option can be used to select the number of buffers which the transmitter sends or which the
receiver expects to receive during a test run.

Too small a number of buffers will result in the error message "Time interval too short for valid
measurement." Too large a number of buffers on the receiver will result in the error message "Could not
allocate X bytes for log buffer.", indicating that the receiver was unable to allocate sufficient memory to
record timing data for the number of buffers it would have to receive.

Note that both sender and receiver use 2048 as the default number of buffers. If the -n option is used on
the sender to restrict the number of buffers sent to less than the default, then no action is required on the
receiver. However, if the sender is configured to transmit more than the default, then the corresponding
option must also be selected on the receiver to prevent it from terminating after the default number of
buffers have been received.

If you would like to send buffers for an approximate amount of time, you can use the ‘s’ suffix to the n
parameter. If, for example, you want to send buffers for 3600 seconds, you would specify –n3600s.

Calibration
The -c option can be selected to enforce a calibration phase. This option takes a number of calibration
buffers as an argument. On the sender, the specified number of calibration buffers is sent in addition to
the number of buffers specified by the -n parameter (or the default of 2048). On the receiver, the best-fit
curve calculations used to normalize for clock skew (see Appendix A) are based on the calibration
buffers received only (unless none are specified, in which case they are based on all buffers). (Other
statistics are based on all buffers including both calibration buffers and none-calibration buffers).

When calibration buffers are specified on the sender, it sends the number of calibration buffers specified
then pauses and prompts the user with the message "Calibration complete. Type 'c' to continue." When
the network under test is isolated and under user control, this mechanism facilitates the evaluation of the
network. In this case, the user should begin the test run on a quiescent network. Data obtained during the
calibration phase of the run is used by the receiving Qtcp to improve the integrity of the latency reports
generated and of clock skew normalizing (see Appendix A). Once the calibration phase has completed,

Using Qtcp to Measure Network Service Quality Page 7

the user should start any noise generating tools being used to congest the network under test. After noise
generation has been started, the user should type 'c' to continue with the measurement phase of the test.

The following sample invocation may be used:

On sender: qtcp -c1000 -n1000 -l64 -t 2.3.4.5
On receiver: qtcp -c1000 -f"filename" -r

This will cause the sender to transmit 1000 calibration buffers, followed by 1000 non-calibration buffers.
The receiver will use the first 1000 buffers received to normalize for clock skew.

Converting a raw file
The –F option will convert a given raw file into a log file, sending no network traffic of any kind. This
can be used in case there are improvements to the normalizing algorithm, for instance, on an old raw file.
If you used calibration packets in the run that created the raw file, you should specify their number when
invoking this conversion by adding the –c## option; i.e., for 1000 calibration packets, -c1000.

Example:

To convert test.raw into a log file, use qtcp –F”test”
The output will be in test.log

Diffserv Codepoint, TOS/Precedence and 802.1p
Because Qtcp invokes QoS on the sending host, it will cause traffic control to mark transmitted packets
for certain QoS service levels. Specifically, traffic control will mark the diffserv codepoint (DSCP,
formerly known as TOS and precedence bits) in the IP header. It will also mark 802.1p tags in the MAC
header of packets sent on an 802.1p capable network (such as 802.1p enabled Ethernet). The user should
consider the effects of these packet markings when evaluating the results of Qtcp tests.

The user may control the markings applied by traffic control in order to study the effects of particular
markings on network service quality. By default, packet markings are determined by the service level
(guaranteed or controlled load) selected for test traffic. Default mappings are as follow:

Service Level DSCP 802.1p
Guaranteed IP precedence 5 5
Controlled Load IP precedence 3 3
Best effort IP precedence 0 0
Non-conforming traffic IP precedence 0 1

The user may alter the markings by creating a marking table in the registry under the Psched/Parameter
key for the appropriate interface.

Usage Hints and Troubleshooting

Waiting for RSVP Reservations
Before Qtcp begins sending test data, it waits for an RSVP reservation to be established between the
sender and receiver. Reservations may take up to 30 seconds to be established and may not be established
at all under certain conditions. If an RSVP reservation is failing to be established it may be because there
is a network device in the path between sender and receiver, which is rejecting or blocking the
reservation. Firewalls may do so by simply blocking all RSVP messages. RSVP enabled routers may do
so if they are not provisioned to allow the requested reservation. Check for the presence of such devices.
If it is not possible to complete the RSVP reservation, it may be necessary to run using the -W flag,
which allows Qtcp to transmit test data without a reservation in place.

Using Qtcp to Measure Network Service Quality Page 8

TCMON
TCMon enables the user to observe traffic control behavior. Install tcmon on the Qtcp sender, then select
the interface over which Qtcp will be running and enable auto-refresh. As soon as Qtcp is invoked on the
sender, tcmon should indicate two flows - one for the RSVP messages themselves (identifiable by the
service type Network Control). The other flow is for the Qtcp data. This flow is identifiable initially by
the service type Best Effort. However, upon completion of the RSVP reservation, the service type of the
data flow should change to either Guaranteed or Controlled Load. Note that the rate indicated for the
data flow will actually be higher than the token rate specified. This is because the QoS service provider
prorates the requested data rate to account for network layer packet headers. As data is being sent, the
Bytes Sent counter in tcmon should increase in value.

Invalid Log File Data
If the data in the .log file appears invalid, it may be as a result of a number of conditions. The receive and
send timestamps should each be monotonically increasing. If either the receive timestamps or the send
timestamps are all equal, it is likely that the timestmp module did not install correctly on the
corresponding host. Remove and re-install the timestmp module.

If timestamps are not equal, but appear to vary widely, it may be the result of an error in the processing
step that normalizes for clock skew. This can be confirmed by comparing the contents of the .log file to
the contents of the .raw file. The .raw file is generated any normalizing processing is applied. The results
in the .raw file may be used if clock skew is considered negligible.

If the .log file is completely empty, check the .sta file. It may indicate that all packets have been dropped.

Receiver Termination
If the network under test is extremely congested, the Qtcp receiver may not receive its termination
sequence and may not receive sufficient packets to terminate automatically. It should still get the
message to terminate over its control channel. If it does not, however, type ‘q’<return> at the receiver
console some time after the sender has indicated that its transmission is complete. This will terminate the
receiver session causing the log files to be generated based on whatever data was successfully received at
that time.

Error Messages
Network transmission rejected - This error indicates that the sender attempted to send to a closed
socket. This can occur when the RSVP session is torn down by an RSVP aware network device on the
path from sender to receiver. In this case, the offending device should be corrected and the test should be
re-run.

This message may also be received under normal conditions at the end of a test. In this case, it indicates
that one of the first termination sequences caused the receiving Qtcp session to shut down the Qtcp
receiving socket, sending an RSVP teardown message to the sender. This may cause the sending socket to
close before the last termination sequence has been submitted to the network, resulting in the behaviour
described. In this case, the logged data can be considered valid.

 Appendix A
Upon receiver termination and before the Qtcp receiving application exits, it parses the list of sent and
received times in its received packet log. Assume for the purpose of this example that receiving
timestamps are always later than sender timestamps (logic is implemented to allow for the case in which
the receiver's timestamps are actually earlier than the sender's timestamps). Qtcp looks for the lowest sent
time stamp (should be the first) and for the lowest difference between sent time and received time across
all pairs of timestamps (lowest latency). It records these two values as 'LowestSendTime' and
'LowestLatency'. These are used in the subsequent normalizing process.

Using Qtcp to Measure Network Service Quality Page 9

Once Qtcp has completed parsing the list, it subtracts the LowestSendTime from all sent timestamps.
This has the effect of normalizing the first packet's send timestamp to zero and each following packet's
timestamp to the difference between the time the first packet was sent and the time the following packet
was sent. Next Qtcp subtracts the LowestSendTime from all received timestamps. Finally, Qtcp subtracts
LowestLatency, from each packet's received timestamp. This has the effect of normalizing all received
timestamps such that they represent the latency in excess of the minimum latency seen. For example,
consider the following set of timestamps:

TimeSent TimeReceived Latency
10 13 3
11 19 8
12 18 6

Upon parsing the records, Qtcp determines that LowestSendTime is 10 and LowestLatency is 3.

After the first normalizing step, the table looks as follows:

TimeSent TimeReceived Latency
0 13 3
1 19 8
2 18 6

During the next normalizing step, LowestSendTime is subtracted from all received time stamps, yielding
the following results:

TimeSent TimeReceived Latency
0 3 3
1 9 8
2 8 6

In the final normalizing step, LowestLatency is subtracted from all received time stamps and the latency
is updated to reflect the difference between the normalized send and receive time stamp pairs. This yields
the following results:

TimeSent TimeReceived Latency
0 0 0
1 6 5
2 5 3

Note that the first packet shows a latency of zero. This does not mean that the transmission delay is zero.
Rather, it means that this packet's delay represents the best case or fixed delay that occurs between sender
and receiver. Normalized latencies that are greater than zero indicate the amount of delay beyond the
fixed delay or beyond the minimum delay. As such, these latencies represent the variable delay
component that results from queuing and congestion. This is considered more interesting than the fixed
delay component from the perspective of Qtcp.

Validity of Results
No attempts are made to determine the actual latency between sender and receiver. Instead, Qtcp
attempts to determine the variable delay component that is considered to be indicative of queuing delays
and congestion effects. This approach will not always yield valid results. It is based on the assumption
that one of the following two requirements are met:

1. The test includes a calibration phase - if the network under test is an isolated network, controlled
exclusively by the tester, then it is recommended that the calibration option (-c) be used. During the

Using Qtcp to Measure Network Service Quality Page 10

calibration phase, no noise should be generated on the network. This assures that queues in network
devices will be empty and that the minimal latency logged by Qtcp will indeed be indicative of the fixed
delay component of the network.

2. Sufficient packets are sent - if a large enough number of packets is sent during a test run, it is
statistically very likely that at least one of the packets will end up in a very short (or zero length) queue
and will not be subjected to congestion delay. The minimum delay used by Qtcp will be the delay
experienced by this packet. This assumption fails on a heavily congested network in which queues never
drop to zero length.

Normalizing for Clock Skew - Difference Between .raw and .log Files
PC clocks are based on a crystal oscillator timebase. Oscillators are subject to deviation from their
nominal frequency, which is on the order of several parts per million. As a result, send time stamps and
receiving timestamps are generated based on a slightly different speed clock. When measuring queuing
delays on the order of milliseconds over a period of seconds or minutes, the skew between the sending
oscillator's rate and the receiving oscillator's rate is negligible. However, when measuring queuing delays
that are much lower (such as on a high speed LAN) or when measuring delays over a long period of time,
the clock skew may become significant.

To compensate for the clock skew, Qtcp normalizes the output of the raw file into the log file. This
normalizing step is based on the assumption that the clock skew is constant, while queuing delay is
variable. In order to normalize for the effects of clock skew, Qtcp attempts to fit the latency reports to a
constant slope line. There are several options for this clock skew normalization. The –k0 option turns off
the normalization. –k1 fits to a straight line using the sum of squared error as the goodness of fit measure
(this makes an implicit assumption that latency is normally distributed). The default, -k2, option uses
absolute deviation as the goodness of fit measure (the assumption here is that latency is more like a
double exponential about the mean).

The –k3 option is only to be used in special cases. It is designed to fix a known problem. On certain
machines, those with a piix4 timer chip (Qtcp should warn you if you have a clock chip whose frequency
matches that of the piix4), the clock sets itself forward backward a specific amount every so often. The –
k3 option tells Qtcp to try to detect and compensate for this. It is not certain to detect the clock jumps and
only the clock jumps, but it has succeeded in all tests so far.

As a consequence of all this, any constant variation in latency will be removed from the log file. In the
rare case that the user is interested in measuring constant changes in latency over time, the user should
work from the raw file (not the log file) and should account for the fact that part of the latency is
attributable to clock skew. (Clock skew measured on current technology PCs between two PCs is on the
order of 10 microseconds per second).

Appendix B - Known Bugs
Disclaimer - Qtcp has not been subjected to extensive testing and is provided 'as is', with no guarantees.
Comments, suggestions and questions may be sent to rkinput@microsoft.com. Qtcp has been used over a
limited range of parameter values and has been found to operate correctly over these values. The
following parameter values have been used and as such, can be considered to have been partially tested:

Option Values Tested
-B Primarily 64 bytes. Occasional testing up to 1500 bytes.
-m Never used.
-R Primarily 3 to 8 Kbytes. Occasional use up to 100 Kbytes.
-S Rarely used. Most often defaulted to guaranteed service.
-W Used occasionally.
-f Always used.

Using Qtcp to Measure Network Service Quality Page 11

-n Primarily 1000 - 2000. Occasionally up to 10000.
-c Primarily 1000, occasionally less.
-p Never used.
-l Primarily 64 bytes. Occasional testing up to 1500 bytes.
-d Rarely used.
-a Rarely used. Occasionally increased from default of 3, to 20.

The following are known bugs:

1. None

Appendix C - Post Processing
The .log file and the .raw file data should be interpreted as follows:

Column 1: Send time stamp in units of 100 nsec.
Column 2: Receive time stamp in units of 100 nsec.
Column 3: Latency in units of 100 nsec.
Column 4: Packet size.
Column 5: Sequence number.

It is helpful to plot the data captured in the .log file in order to interpret the results of the test runs. You
may use a MicrosoftÒ Excel macro contained in the file Qtcpmacros.xls to read the log file and plot the
results. Instructions are contained in the .xls file itself. If you do not have this macro file, simply use the
File Open menu to load the data file. Specify that a colon will be used as the delimiter. Once Excel has
loaded the data file, highlight the third column (latency) . Next, chart it using the Line chart. You may
also select the Data Analysis tools to obtain statistics and histograms regarding the distributions of
latencies. When applying the data analysis tools, be sure not to include log entries generated during the
calibration phase of the test (if calibration was used), as this will skew the results.

Appendix D - Sample Results
Here we present sample results. Two test trials were run. Both trials were run across an isolated network
consisting of two RSVP capable routers connected by a 128 Kbps serial line. Each router was also
equipped with an ethernet interface. The Qtcp sender was connected to one of the router's ethernet
interfaces, the Qtcp receiver was connected to the other.

In addition, the sending port of a 'Smartbits' noise generator was connected to the same ethernet network
as the Qtcp sender. The receiving port of the 'Smartbits' was connected to the same ethernet network as
the Qtcp receiver. The 'Smartbits' was programmed to send 100 Kbps of noise traffic from sending port to
receiving port such that the traffic generated by the 'Smartbits' would compete with the traffic generated
by the Qtcp session for resources on the 128 Kbps link. The 'Smartbits' was programmed to generate a
mix of packet sizes that simulates the typical load on a real corporate WAN link.

Qtcp was invoked in a manner intended to simulate a telephony traffic flow. The following parameters
were used:

Sender: qtcp -l64 -R3 -c1000 -n1000 -t 2.2.2.2
Receiver: qtcp -f"test" -c1000 -r

This results in a test traffic flow of 64 byte packets sent at a rate of 24 Kbps.

The purpose of the test was to examine the utility of RSVP in protecting the signal flow on a WAN link
driven to near saturation. To this end, the first trial was run without RSVP enabled on the routers. The
second trial was run with RSVP enabled on the routers. In both cases, RSVP signaling was used between
the sender and receiver. The results are illustrated below. Plots were generated using the technique

Using Qtcp to Measure Network Service Quality Page 12

described in Appendix C. The X-axis represents the packet sequence number. The Y-axis represents the
normalized latency in units of 100 nsec.

This plot illustrates the latency experienced by the signal packets without RSVP protection. Note that the
first 1000 packets (sent during the no-noise calibration phase) show negligible latency. The second 1000
packets however, sent while background noise was generated) show a steadily increasing latency, up to
over 1.6 seconds. Also, note the set of points aligned horizontally near the top of the plot. These
correspond to the entries generated for dropped packets (which are represented by the maximum latency
experienced by any of the received packets).

This plot illustrates the latency experienced by the signal packets with RSVP protection. Again, the first
1000 calibration packets show very low latency (note that the Y-axis scale is different between the two

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 201 401 601 801 1001 1201 1401 1601 1801

Series1

0

200000

400000

600000

800000

1000000

1200000

1 197 393 589 785 981 1177 1373 1569 1765 1961

Series1

Using Qtcp to Measure Network Service Quality Page 13

plots). The second 1000 packets show a distribution of latencies. However, the maximum latency is
limited to 100 msec. Furthermore, no packets have been dropped.

For questions or feedback concerning this tool, please contact rkinput@microsoft.com.

© 1985-2000 Microsoft Corporation. All rights reserved.

	Using Qtcp to Measure Network Service Quality
	Introduction
	Network Under Test
	Theory of Operation
	Usage
	Usage Variations
	Optional Parameters
	Notes Regarding Parameter Usage
	Converting a raw file

	Diffserv Codepoint, TOS/Precedence and 802.1p
	Usage Hints and Troubleshooting
	Waiting for RSVP Reservations
	TCMON
	Invalid Log File Data
	Receiver Termination
	Error Messages

	Appendix A
	Validity of Results
	Normalizing for Clock Skew - Difference Between .raw and .log Files

	Appendix B - Known Bugs
	Appendix C - Post Processing
	Appendix D - Sample Results

