
Sheridan’s Class Assist is an ambi-
tious, intriguing Visual Basic 4.0 add-

on. It overcomes a key VB weakness —
implementing inheritance, and supplies
an easy way to tap the power of the Win-
dows API, too. It requires Windows 95 or
NT 3.51 to run, although code generated
with Class Assist and 16-bit VB 4.0 runs

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 1 0
P E R S O N A L C O M P U T E R W O R L D
M A Y 1 9 9 6

under Windows 3.1.
Class Assist installs itself as a VB add-

in. There is an executable file which runs
the Class Assist integrated development
environment and which opens automati-
cally with VB, plus several supporting
OCX controls and DLLs.

The Class Assist IDE is a browser and
editor for classes stored in
Access .MDB library files.
Source control is built in
since classes are general-
ly checked out to a work
area for editing. A Team
Development Manager
controls user access privi-
leges but there is no inte-
gration with SourceSafe.

Initial impressions are
good. When you open or
create a library, Class
Assist shows classes in a
hierarchical list.

To create a new base
class, right-click on the top
level and choose New
class. To inherit from an

existing class, right-
click on the class
name and this time
the new class will
be based on the
existing one. In the
ensuing dialogue,
you can add new
properties and
methods, and over-
ride methods from
the parent class as
required. You can
then move classes
into the current VB
project by drag-
and-drop or from a
pop-up menu

Visual Basic 4.0 gets inheritance, thanks to Class Assist. And where now
for Delphi? Tim Anderson gets the lowdown from Borland’s Zack Urlocker.

A touch of Class

‘ The following line calls the overridden method.
‘ Remove this line to totally override method.

CAboutBox_Show
‘ TODO: Add your override code here
Beep

Public Sub Show()
MsgBox “MyApp “ & Chr$(169) & “ 1996 by Me”
End Sub

option. You can also import existing class
modules, in order to inherit from previous
designs or to avoid writing code in Class
Assist’s primitive editor.

Under the bonnet, it is less appealing.
The best way to see how Class Assist
works is via a small example: imagine you
have a CAboutBox class with just one
method, Show. We are keeping things
simple, so here is the code (Fig 1).

However, for some applications you
require an about box that beeps when you
close it. In ClassAssist you create a new
class, CBeepAbout, derived from CAbout-
Box. Choose the option to override the
Show method, and the code shown in Fig
2 is displayed.

Inheriting from ancestors
In this case, the new method inherits the
functionality of its ancestor, as well as
adding its own code. To effect a total
replacement, delete the call to CAbout-
Box_Show.

For this to work, the generated .CLS file
which is pasted into your VB project has to
include the code from any ancestor files. In
this example, ClassAssist generated the
following methods in the CBeepAbout
class in addition to the standard Initialize
and Terminate:
CAboutBox_Init()
CAboutBox_Term()
CAboutBox_Show()
CBeepAbout_Show()
Show()

The point to grasp is that when you call
an ancestor method, you are not really
calling the method in the ancestor class
but a copy of that method which Class
Assist has pasted into the derived class.

If Class Assist is used correctly, the two
should be the same, but it is all rather clunky.
In cases where an extensive class hierarchy
is designed, with several generations of

The Class Assist IDE shows classes in a

hierarchical list. Double-click a class to edit its

properties and methods, or to create new ones

Fig 1

Fig 2

H A N D S O N ● V I S U A L P R O G R A M M I N G

At runtime, and before it
is drawn on the form, the
visual control calls meth-
ods in the associated OLE
server. This means that VB
code can modify the visual

control at a lower level than is normally
possible; for example, drawing a different
style of button or listbox. You can also
intercept and respond to any Windows
message sent to that control. In effect,
Visual Base Controls enable you to create
your own custom controls with VB code.

Introducing oblets
Visual Base Controls make extensive use
of WinAPI oblets, the third key element in
the Class Assist package.

Oblets are in-process OLE automation
objects which encapsulate the Windows
API. As an example, Fig 3 (page 313)
shows how to set a form to be always on
top, using oblets. Note that this is the

3 1 1
P E R S O N A L C O M P U T E R W O R L D

M A Y 1 9 9 6

Where next for Delphi?

We talked to Zack Urlocker, Bor-
land’s director of Delphi product
management, about future
plans. Will there be a version
2.0 of 16-bit Delphi? For
Zack, it’s an ironic question:
Delphi 2.0 was originally meant
to be a straight port to 32-bits,
but according to Urlocker “It devel-
oped into something better.
There’s no decision yet about a
revised 16-bit product.”

Asked about other platforms,
like OS/2 or the Macintosh, Zack
commented that “Windows has won on
the client side. We might license the Visual
Component Library (VCL) for another plat-
form.” Even so, Zack claims the compiler
has the potential to target other platforms
and could, for instance, compile for Power-
PC, Alpha or MIPS.

Delphi 2.0 has a problem with OCX
controls. “You can write OCXs in Delphi but
it’s a lot of work,” Zack agreed. “By later
this year we will make it easy.”

Delphi 2.0 already contains
components for creating OLE automation
servers. What is envisaged includes an
Expert for making OCXs and a means of

The eyes in this VB

application follow the

mouse pointer, even when it

is over another application.

It’s done using WinAPI

hook oblets, along with

Class Assist and a couple

of Visual Base controls

converting a Delphi
visual component into an OCX.

But despite the prevalence of
OCX as a Windows-universal
component, it is not yet a firm
standard. OLE lacks support

for inheritance and has a long
way to go in its evolution.

Will Delphi also support
OpenDoc and CORBA-compli-
ance? “We have cautious support
for OpenDoc. But we’ve never
had a customer ask for it,” says
Urlocker. Some developers

dream of a Delphi C++ version; but there
are no plans for such a thing. “C++ develop-
ers find the Object Pascal language is up to
strength and we want it to be easy to learn.
We couldn’t achieve the same ease of use
in C++.”

Another problem is that the great com-
plexity of C++ means more work for the
compiler, so Delphi’s near-instant compila-
tion would be impossible. “But Java has a
similar object model to Delphi. There’s no
multiple inheritance, or pointer problems.
We’ve licensed Java and our goal is to
encompass the same tools as in Delphi, but
with the Java language,” says Urlocker.

Urlocker: “We

typically win any

technical

evaluation.”

derived classes, there will be a huge prolif-
eration of duplicated methods in your pro-
ject. Even so, it delivers what it promises:
inheritance for Visual Basic.

If that’s what it takes to get inheritance,
you might decide to do without it. But
Class Assist has two other tricks up its
sleeve.

One is Visual Base Controls, a set of
basic OCX controls which can be linked to
VB classes in order to modify their behav-
iour. When you drag a Visual Class onto a
VB form, Class Assist places the control
and also creates a new OLE server class
module. For this reason you need the
Professional, or Enterprise, versions of
VB 4.0 to use visual classes.

● Doing Objects in Visual Basic 4.0 will help VB developers make use
of version 4.0’s new OO features. There’s a common-sense introduc-
tion to object-orientated programming and masses of advice on sub-
jects like coding standards and user-interface design. One section
describes how to fake inheritance in VB; another explains how to
build a VB AppWizard add-in. Along the way, a relational contact
management system is developed, using the techniques described
and storing the data in a JET .MDB. There is useful technical material
here but the book’s strength is in the theoretical framework it provides,
especially for those already familiar with VB 3.0.

H A N D S O N ● V I S U A L P R O G R A M M I N G

entire code. There is no need for declara-
tions or constant definitions: all that is
needed is a reference to the WinAPI oblets.

There are 24 oblets which encapsulate
most of the Windows API, including areas
traditionally difficult for VB, such as call-
backs and hook procedures. Working with
the API becomes a matter of interacting with
the properties and methods of these oblets,
using familiar dot notation. Another advan-
tage is that oblets are non-visual, so you
can use an ssTimer oblet in a procedure
without needing a timer control on a form.

This is cool stuff, but there’s a price to
pay. Oblets are OLE servers, and instantiat-
ing an OLE object takes significant time.
Once the object is created, performance is
good, although slower than direct API calls.
For example, we wrote a routine using ssDC,
ssRect and ssWnd oblets, making repeated
calls to FillRect. The inner loop took about
50ms for oblets, as opposed to 20ms for
direct calls. At those speeds it may not mat-
ter. But the whole routine, including oblet cre-
ation, took 450ms with no equivalent over-
head for the direct approach. That is 20 times
slower. Careful application design is needed
to avoid creating oblets, or any other OLE

ly subscription service (call 0800 96 02 79
for details). It contains documentation for
most Microsoft products along with bug
lists, books and a host of further documen-
tation and examples. It is excellent value for
Windows developers, but is not much use
for DOS work.

objects, at time-critical moments.
Class Assist is a superb extension to

Visual Basic 4.0 and demonstrates what
can be done with OLE. If you’re happy with
VB’s performance and want more power,
look no further. On the other hand, if you
like the idea of inheritance, custom con-
trols and an object-orientated approach to
the Windows API, maybe Delphi is worth
another look.

Secret Rich Text Format
M. Hodges writes: “I write DOS programs
which create text files intended for import
into Word 6. I would find it a great advan-
tage to incorporate RTF formatting control
codes but Microsoft has not been helpful:
its technical support people do not seem
to have heard of RTF. You refer to a
‘Developer Network CD’; I’m not familiar
with this. Is there any other way I could get
hold of RTF documentation?”

The document is called “Rich Text For-
mat specification” and is Microsoft Product
Support Services Application Note 1/95 —
GC0165. It should be obtainable from the
Word product support team.

The Developer Network CD is a quarter-

3 1 3
P E R S O N A L C O M P U T E R W O R L D

M A Y 1 9 9 6

PCWContacts
Tim Anderson welcomes your Visual
Programming comments and tips. He
can be contacted at the usual PCW
address, or on
freer@cix.compulink.co.uk

Class Assist £175 from Contemporary
Software 01727 811999.
Books
All books available from Computer
Manuals 0121 706 6000 (prices shown
include VAT).
Jet Database Engine Programmer’s
Guide Book and CD £37.49; Microsoft
Press.
Inside Visual C++ 4.0 Book and CD
£41.99; Microsoft Press.
Doing Objects in Visual Basic 4.0, by
Deborah Kurata. Book and disk £37.49;
Ziff-Davis Press.

Not before time Microsoft has published
the Jet Database Programmer’s Guide,
by Dan Haught and Jim Ferguson.

Eagle-eyed readers will spot some
overlap with the Data Access Objects
(DAO) SDK included with Visual Basic
and Visual C++. A poster insert displays
the DAO hierarchy in more detail than
any of the online charts. There’s a good
chapter on security, and plenty of tips for
optimising performance with both local
and remote data access. Although spoilt
by a weak chapter specific to C++, this
title is recommended for any database
developer using JET, the database
engine behind Visual Basic and Access.

● Visual C++ developers will welcome Inside Visual C++ 4.0, a
major update of Kruglinski’s standard tutorial. It has grown by 300
pages, of which over 100 are devoted to OLE in all its incarnations:
OLE automation, OLE structured storage, and the OLE Component
Object Model.

Kruglinski does not aim to be a comprehensive reference but
to give a clear introduction, with examples, using the Microsoft
Foundation Classes throughout. In particular, this is an excellent
guide to the document/view architecture espoused by MFC and the
VC++ AppWizard.

Books for Visual Programming

JET programmers need to learn this chart, the Data

Access Objects hierarchy. The JET Programmer’s Guide

explores the model in detail

Dim MyWnd As New ssWnd ‘ declare the oblet
MyWnd.Attach Form1.hWnd ‘ attach it to the form
MyWnd.SetWindowPos ssSWPHwndtopmost, 0, 0, 0, 0, ssSWPNomove Or ssSWPNosize ‘ call the SetWindowPos API function
MyWnd.Detach ‘ clean up

☎

☎

Fig 3

