
VB 4.0 may have some great new fea-
tures, but many developers have

found it slow and unwieldy thanks to its
huge runtime files. Others have jumped
ship to Borland’s Delphi. On another front,
Sun’s Java looks set to be an Internet
standard and perhaps popular for general
development as well. Despite VB’s huge
installed base, the pressure is on Microsoft
to restore its tarnished image. The compa-

be part of Internet Explorer. You will have
embedded VB script in HTML on a Web
site, and the VB routine will execute on
the browser. For example, you could do
data-field validation on a Web form.” Web
solutions need to be cross-platform, and
Microsoft aims to achieve this with third-
party help. “Microsoft VB Script will be for
all Windows platforms, 16 and 32-bit, and
for the Mac. Other vendors will supply

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 2 8
P E R S O N A L C O M P U T E R W O R L D
A P R I L 1 9 9 6

ny is responding, first with a cut-down VB
for Internet scripting, and second with a
brand new version of the main product. I
spoke to Jon Roskil, Microsoft’s director of
marketing for Visual Basic, about the new
developments.

“VB Script is a semantic subset of the
Visual Basic for Applications language,
but without file I/O. That makes the lan-
guage safe, sand-boxed like Java. It will

Where next for Visual Basic? Tim Anderson investigates VB Script and the
likely features of Visual Basic 5.0, looks at a strange performance test, and
tries out new balloons and buttons.

Brushing up the VB image

Fig 1 Delphi vs VB — is it really faster?

filter out prime numbers is preferred, since this can only be done by
iteration. A routine to find all prime numbers between 1 and 32000
took VB 1934ms, against Delphi’s 560.

After these brief experiments, I still find Carnegie Technology’s
report surprising. The experience of most developers is that Delphi’s
compiler yields a very substantial speed advantage.

In our tests, Delphi proved about ten times faster than

VB on simple loops

On Microsoft’s Web site are two documents prepared by the
“Carnegie Technology Group”, which benchmarks the performance
of Visual Basic 4.0 against its most obvious competitors. One
compares VB 4.0 (32-bit) with Delphi 1.0 and Oracle’s Power
Objects. The report’s remarkable conclusion is that: “Visual Basic
and Delphi are very closely matched in the language performance.”
For example, one of the tests measured loop performance, and VB
was found to execute 1,000,000 loops in about 1020ms, while
Delphi took 1330ms.

The result is so surprising that I set up a similar
test on a similar PC. Carnegie Technology explains
that the loop looks like this; where α is the number of
loops:
i = 0
t0 = GetTickCount()
do while (i< α)
i = i + 1
loop
t1 = GetTickCount()
total = t1-t0

The result of our test was that VB took 2568ms to
execute one million loops, while Delphi took 261. In
other words, Delphi was nearly ten times faster,
exactly what one would expect. This loop test is
vulnerable to a clever compiler avoiding the loop by
simply setting
i = α
and not bothering with the loop, although neither
Delphi nor VB seem to do this. Traditionally, a loop to

H A N D S O N ● V I S U A L P R O G R A M M I N G

implementations for further platforms.
There will be a C source code reference
as a free download on the Internet.”
Since VB is interpreted, the scripts will run
on any platform for which runtime files
exist. As with Java, this is a key advan-
tage for Internet development. VB Script
should be available by the time you read
this.

As for VB 5.0, Jon expects it to be
released before the end of 1996. It is fur-
ther enhanced for OLE development. “We
can create OLE controls in the next ver-
sion of VB.” A lot of this technology is
already there in version 4.0, which can
create in-process OLE servers, but the
missing piece is an event-layer interface
which goes on top. Naturally, Jon sees
these OLE objects having a role on the
Internet. “VB objects can be called from
HTML. We have some pieces called
‘shims’ in Internet Explorer, which let
HTML talk to ODBC or OLE. Internet
Explorer will also host OLE controls and
OLE document objects.”

Speed is the key
VB 5.0 is rumoured to include the long-
awaited compiler. While he will not con-
firm this, Jon admits that this is “on our
wish-list, and very near the top. But a
compiler is no panacea for performance
issues. In client-server applications, data
access speed is the key. And the VB lan-
guage engine is fast. There are bench-
marks available on our Web site which
show VB against Delphi, PowerBuilder
and Power Objects. The VB language
engine is ahead on four out of nine tests.”
So why have developers found VB 4.0
slow? “We optimised VB for the 32-bit
platform, not 16-bit, although it can create
16-bit applications.” A tacit admission that
VB 4.0 16-bit is too slow.

VB standalone, VBA for Microsoft
Office, and now VB for the Internet. It
sounds promising, except that most Inter-
net users browse with NetScape, and
NetScape is by no means certain to sup-
port VB Script. Performance is another
concern. VB is certainly fast as interpret-
ed languages go, as long as there is
enough RAM to handle the runtime load.
But despite Microsoft’s optimistic perfor-
mance tests (see Fig 1), it is nowhere
near the speed of Delphi or C++. Maybe
the promised compiler will close the
gap. Otherwise, it’s hard to imagine VB
succeeding as a tool for developing OLE
controls.

Getting Resourceful
Visual Basic 4.0 supports standard Win-
dows resource files. These contain

3 2 9
P E R S O N A L C O M P U T E R W O R L D

A P R I L 1 9 9 6

strings, bitmaps and other data, and are
particularly useful for international pro-
jects. By changing the resource file, for
example, you could display text in French
instead of English. Resource files can
improve form load times, since the data is
not loaded into memory until required by
your application. Since the resource files
are standard, they may also be useful if
you decide to port your application to
another environment.

Resource files begin as scripts (.RC
extension) and are compiled as 16 or 32-
bit binary files (.RES). VB can only use the
compiled type, and these must be 16 or
32-bit according to the version of VB 4.0
used. There’s no resource compiler sup-
plied with VB, but there is one supplied
with most C++ packages, including Visual
C++. Here’s a simple example:
1. Run Visual C++ 4.0 and choose File —
New — Resource script.
2. On the Insert menu, choose Resource,
and select String Table.
3. In the grid which appears, double-click
the top row. Enter an ID of
HELLO_STRING and a caption, “Hello”,
and close the dialogue. On the next row,
enter an ID of GOODBYE_STRING and a
caption, “Goodbye”.
4. Use Save As to save the resource. A
good tip is to use a subdirectory of your VB
project. Save it first as a resource script,
and then as a compiled resource called
VBENG.RES.
5. Now amend the captions to “Bonjour”
and “Au revoir”. Use Save As to save the
amended resource to a new directory, and
call it VBFR.RES.
6. Create a suitable VB project. This exam-
ple just displays a label and a button to exit
the application. Use Add File to add
VBENG.RES to the project.
7. Add Const definitions to define the IDs
used in the resource file. For example:
Const HELLO_STRING = 1
If you open the RESOURCE.H file created
by Visual C++, you will find #Defines for
each ID. You can use this as the basis for
the VB Const definitions.
8. Now you can use the VB function Load-
ResString to access the resource file. For
example:
Label1.Caption =
LoadResString(HELLO_STRING)

To change the language of your appli-
cation, remove VBENG.RES from the pro-
ject and replace it with VBFR.RES. When
you compile an executable, the .RES file
will be bound into it, so it does not need to
be distributed.

Finally, do not include an icon resource
with an ID of 1, as this is reserved by VB
for the application icon.

rather than USER.DLL. Next,
integer parameters generally
change to long. Third, Win32
has case-sensitive function
names. A good tip is to use the
API text viewer to find the right
declaration. Next, use compiler
directives to bracket the decla-
rations so VB sees the right
one (Fig 2).

In fact, Alan may have done
this and still seen problems.
There is a bug in VB 4.0 which
causes the topmost setting to

be lost when you task-switch to another
application. The good news is that this only
occurs in the development environment,
and not in VB apps compiled to an .EXE.

Visual Components on the Net
The explosive growth of the World Wide
Web means keen interest in HTML
authoring tools. Visual Components,
which supplies the popular Visual Tools
Suite, has announced Formula One/NET
which lets you embed a spreadsheet com-
ponent into an HTML document. Users
who have NetScape Navigator 2.0 along
with the Formula One/Net add-on can use
the worksheets interactively, entering new
data and performing calculations.

At the time of writing, the product is not
available. The announcement is interest-
ing, however, since the concept of a visual
Web component is a natural extension of

H A N D S O N ● V I S U A L P R O G R A M M I N G

3 3 1
P E R S O N A L C O M P U T E R W O R L D

A P R I L 1 9 9 6

Resourceful

Top There’s no resource editor supplied with VB 4.

In this example, Microsoft Visual C++ is used to

create and compile the script

Above It’s all done with resources — a multi-lingual

VB application

Moving to Visual Basic 4.0
Alan Knox asks:

“I have been trying to use your tip on

how to make a window appear on top of all
others (PCW November 1995) and can’t
get it to work. I am using VB 4 but I
wouldn’t have thought this would make
any difference. The declarations are in a
Global.bas file and I set the topmost flag in
the load section of the form I want to
appear on top. Any ideas?”

A window can be permanently set on
top by calling SetWindowPos. The func-
tion declaration printed in November’s
issue was for Visual Basic 3.0, but should
work the same way in 16-bit VB 4.0. But
the 32-bit version needs changes to API
declarations. For a start, they are located
in different libraries such as USER32.DLL

The standard Windows button is
square, drab and grey. No more, if
Farpoint’s ButtonMaker catches on.
Supplied as 16 and 32-bit VBX, OCX
and DLL, this button control has a
border divided into user-definable
segments so that an enormous
variety of shapes and styles can be
defined. You can also tweak the “grey
area”, by which FarPoint means the
area within the control but outside the
bit that gets clicked. Here you can
place colours, patterns, pictures or
even animation to bring your buttons
to life.

If buttons are not enough, the
ButtonMaker package includes a

Balloons and buttons
balloon control. Balloons are the
ultimate tool-tip, and although not quite
as flexible as buttons in shape, they can
take on a variety of forms, including a
fluffy thought-cloud.

Nice idea; but so what? I guess
there may be occasions when a
ButtonMaker button is just the thing to
make an interface more attractive or
intuitive, but many of the supplied
examples merely look silly. They are
also disappointingly slow to load,
especially in OCX guise. Finally, it
would be nice to see component
vendors recognising the existence of
Delphi by supplying VCL wrappers to
use with their products.

PCWContacts
Contact Tim Anderson with your
comments, queries and suggestions,
either at the usual PCW address or email
freer@cix.compulink.co.uk

Visual Components Europe
01892 834343
FarPoint’s ButtonMaker costs £75 from
Contemporary Software 01727 811999

the visual development model. There are
numerous problems: connection of a Web
worksheet to a backend database is not
trivial, for example. Also, full use of For-

mula One/NET requires
the Windows version of
NetScape. Although
handicapped by the
current battle to estab-
lish Internet standards,
visual components for
the Web look likely to
be the next big growth
area in visual program-
ming.

Visual Components Inc. has become a
subsidiary of Sybase, putting the company
into the same family as PowerBuilder,
Watcom, and the Sybase database server
products.

A button for every occasion, with

FarPoint’s ButtonMaker control

☎

☎

#If Win16 Then
Declare Sub SetWindowPos Lib “User” (ByVal hWnd As Integer, ByVal hWndInsertAfter As Integer,
ByVal X As Integer, ByVal Y As Integer, ByVal cx As Integer, ByVal cy As Integer, ByVal wFlags
As Integer)
#Else
Declare Sub SetWindowPos Lib “User32” (ByVal hWnd As Long, ByVal hWndInsertAfter As Long, ByVal
X As Long, ByVal Y As Long, ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long)
#End If

Fig 2 Directives and declarations

