
Several issues ago you published an
‘ideal’ configuration for a standard
PC with 4Mb of RAM. I followed this

and have freed up some extra RAM, but
I’m not too sure which of the resident pro-
grams and drivers are loaded where. To
make the most of my setup, I would like to
know if there is any way of telling where a
program is located. Is it in upper memory,
for example, since I don’t think my config-
uration is making the best use of upper
memory.”

PCW Upper memory is not difficult to
deal with and is a very useful area in
which to store resident drivers out of con-
ventional memory. The upper memory
area lies between the 640Kb and the
1Mb mark and is supposedly reserved for
use by hardware. A video card or net-
work adaptor will have a fixed address in
upper memory that transfers data to and
from the processor. Since these devices
use a fixed address, you need a special
memory manager that spots if an
address is in use and which range is
unused.

A memory manager, such as DOS’
EMM386, will associate these UMB (upper
memory blocks) with real memory loca-
tions above 1Mb. Once this is done, you
can store resident programs or data in the
UMBs. The first step is to check that you
have told your memory manager to look
after the upper memory area and support
UMBs. In the case of DOS’ EMM386 you
have to follow it with one of two parame-
ters: the NOEMS switch will provide UMB
but not EMS support, while the RAM
switch will provide support for both UMBs
and EMS memory. 

I have covered how to set up UMBs
and EMS in depth in previous columns,
including the one to which you refer, so I’ll
skip this section and move on to your
question: how do you see which program
is using which area of memory. To do this,
you can use the standard DOS MEM

H A N D S O N ● D O S

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

2 6 5
P E R S O N A L C O M P U T E R W O R L D

N O V E M B E R  1 9 9 5

MICROMART
CLASSIFIED

H A N D S O N ● D O S

CYAN•MAGENTA•YELLOW•BLACK 
PERSONAL COMPUTER WORLD

2 6 4
P E R S O N A L C O M P U T E R W O R L D
N O V E M B E R  1 9 9 5

The upper hand
Locating resident programs and drivers in Upper
memory, speeding up indexing and sprucing up
MSDOS 5, all calmly dealt with by Simon Collin.

Windows 95: how does it affect DOS users?

Fig 1 MEM report

With the arrival of Windows 95, the number of letters I have received about its effects on
DOS users has increased exponentially. I mentioned some of the more cosmetic changes
that DOS users can expect, together with the use of the scalable TrueType font technology,
in last month’s column. 

As far as readers of this column go, at the heart of Windows 95 beats a new version of
MSDOS. Microsoft was initially going to remove all traces of DOS from Win95, but has
bowed to pressure and added what would have been MSDOS 7 to the setup. There are also
rumours that Microsoft will be releasing this as a separate, standalone product, although
when is not clear.

When you start up Win95 there is little sign of MSDOS unless you are loading device
drivers or TSRs from the CONFIG.SYS file, in which case Win95 switches mode to load
these programs, then goes back to its native mode. The DOS commands under Windows
are tucked away in the \WINDOWS\COMMAND directory and include all the standard
MSDOS files that you would expect. The Windows tools, such as antivirus and backup, are
integrated within Win95 so no longer appear in the COMMAND directory. There are only a
few enhancements to the basic feature set, with a new switch for the DIR command and, of
rather more interest, a new command called START.

The DIR command has gained a “/V” switch to display the files in verbose mode. This
lists one filename per line together with date, size, version, and full attribute set. In addition,
the listing ends with the total disk space and the percentage that is used up.

The new START command is far more exciting, since it lets you run any DOS or
Windows application from the DOS command line. Not only can you start Windows
programs from DOS, but you can also define how they run: the options include minimised
on startup and full-screen. 

For example, if you want to run the Windows calculator from the DOS command line,
just enter “START CALC” and Win95 will load and run the file. There are four option switch-
es to START: “/m” runs the programs as a background (minimised) job; “/max” runs it full-
screen in the foreground; “/r” runs it in its default mode; and “/w” will wait until the program
has finished before returning to the DOS prompt.

As you can imagine, this suddenly gives a whole new range of possibilities to the humble
batch file since it can now run Windows programs and process their results. In short, batch-
file programming can be used as a simple scripting language to control Win95 and DOS.

SETVER is using the following memory:
Segment  Region Total        Type
———-  ———  ———————— ————-
0E801     2 768   (1K)   Program installed:SETVER

————————
Total Size: 768   (1K)

PCWContacts
Write care of PCW or via email to
scollin@cix.compulink.co.uk or 
CompuServe 72241,601

command with the switch, MODULE. This
will display a detailed listing showing
where a particular program is stored in
memory and how much memory it’s using.
For example, if you have loaded SETVER
high (with the LH command) you could
see where it is located using the line
MEM /MODULE:SETVER

MEM displays a report with details
about the program; in this case it would
look something like Fig 1.

To check if a program has been loaded
into upper memory, look at the Region col-
umn: if there’s a number in there, it means
that the program has been loaded into
upper memory. If there are several num-
bers under the Region column, don’t
worry, it just means that the program was
too large to fit into one managed UMB and
has been split over several.

Up against the BUFFERS
“I use my PC for indexing book manu-
scripts and would like to speed up the
process. The DOS program looks through
each chapter file and builds an index. For
many of the large scientific works there
can be hundreds of sections. The culprit is
probably the hard disk since its activity
light is on the whole time. I have tried to
adjust the BUFFERS and the FILES com-
mands in the CONFIG.SYS file but I’m not
sure how high to set each.”

PCW BUFFERS will always cause
problems, for the reason that users are
never quite sure what it does. If you just

increase its setting, you could easily cut
performance rather than boost it.
However, if you use it properly you can
increase the read-write performance of
your disk drives and regain a little RAM.

DOS reads data from a disk in 512-byte
chunks, representing one disk sector; this
data is temporarily stored in a buffer. If the
data doesn’t fill up the buffer, then data
from the next file is also read in, which —
with a cacheing algorithm — is used if you
then request the next sequential file. In
short, the buffers try and cut down the
number of reads and writes to disk to
speed up your programs.

A single buffer is 512 bytes long
(although it actually has an extra 16 bytes
tacked on for system use by DOS). Many
users think that if they increase the num-
ber of buffers, so the performance will
increase. This is true up to a point, but
after you’ve passed the optimum setting
you’re just wasting memory. The setting
depends a lot on the size of the hard disk,
so start with these basic values:
less than 40Mb 20
40-79Mb 30
80-119Mb 40
>120Mb 50

If you don’t have any cache software
such as SMARTDRV installed, then there
are more ways to improve performance
using the BUFFERS command which are
particularly useful when accessing
sequential files. The BUFFERS command
can (from MSDOS 4.0 or later) take a
second parameter,
BUFFERS=30,4

The second parameter, in this case 4,
defines the number of consecutive sectors
that are read in each time DOS carries out
a disk read. This is particularly useful
when accessing lots of sequential files and
can dramatically improve access times.

Since your indexing program reads a
mass of sequential files, getting the
BUFFERS statement set up correctly
should produce good results.

Catching up with commands
“You have been concentrating on the
newer features of DOS 6 and its contem-
pories and are leaving me behind! I am still
using an elderly version of MSDOS 5, and
use batch files to spruce it up and give it a

bit more zing. I would like to add that the
overwrite copy protection that I have seen
is part of MSDOS 6.2; is there any way of
doing this with a batch file command that
would work on my system?”

PCW There is a neat way of detecting an
existing file that has the same name as
the source file using the IF EXIST com-
mand in a batch file. The simplest way of
using the EXIST command is to write it
into a batch file called CHECK.BAT. If
you enter this with a filename as an argu-
ment (for example, CHECK
LETTER.DOC) it will report back if there
is already a file with this name.
FOR %%I IN (%1) DO IF EXIST %2/%%I 
ECHO %%I already exists

The FOR loop uses a variable called “I”
(it could be any single letter) and looks at
the two command-line parameters that
were used with the batch file. You would
use CHECK.BAT as follows:
CHECK LETTER.DOC \FILES

The line of code would check through
all the files in the directory named in the
second parameter (%2) for the file that is to
be named in the first parameter (%1).

This line does nothing more than check
if the named file already exists in the target
directory: if it does exist, the batch file will
display a warning message. To turn this
into a copy routine that prevents overwrit-
ing takes a slightly different line of code:
FOR %%I IN (%1) DO IF NOT EXIST
%2/%%I COPY %%I %2

The complete batch file, now called
COPY2.BAT, would have two lines and
look like this:
@ECHO OFF
FOR %%I IN (%1) DO IF NOT EXIST 
%2/%%I COPY %%I %2

This technique is very useful, not only
for updating old versions of DOS, but also
to pass on processing to another program.
The only snag is that it cannot manage
wildcard copies, but for most applications
this is not a handicap.


