
proasm

proasm ii

COLLABORATORS

TITLE :

proasm

ACTION NAME DATE SIGNATURE

WRITTEN BY July 1, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

proasm iii

Contents

1 proasm 1

1.1 pro.guide . 1

1.2 about this manual . 17

1.3 notices . 18

1.4 acknowledgments . 19

1.5 author . 20

1.6 registration . 20

1.7 pro.guide/Introduction . 23

1.8 installation . 26

1.9 starting proasm from the shell . 28

1.10 starting proasm from workbench . 32

1.11 pro.guide/Config File . 33

1.12 pro.guide/Hello World . 34

1.13 pro.guide/Source Line Format . 36

1.14 pro.guide/Expressions . 40

1.15 pro.guide/Registers . 45

1.16 pro.guide/Addressing Modes . 46

1.17 pro.guide/Instruction Set . 49

1.18 pro.guide/END . 50

1.19 pro.guide/Include Files . 51

1.20 pro.guide/OPT Y . 51

1.21 incbin . 52

1.22 pro.guide/INCEQU . 52

1.23 header . 53

1.24 pro.guide/MACLIB . 53

1.25 pro.guide/INCDIR . 54

1.26 pro.guide/Macros . 55

1.27 macro . 56

1.28 pro.guide/Symbols and Keywords for Macros . 57

1.29 pro.guide/Substituting textual symbols in symbol names . 60

proasm iv

1.30 pro.guide/Substituting subsections of strings . 61

1.31 pro.guide/Conditional Assembly . 62

1.32 pro.guide/Repeating Text . 68

1.33 pro.guide/Equates . 71

1.34 pro.guide/EQUR . 72

1.35 reg . 74

1.36 pro.guide/Structure Offsets . 77

1.37 pro.guide/Case Sensitivity . 81

1.38 pro.guide/OPT C . 81

1.39 pro.guide/OPT U . 82

1.40 pro.guide/Syntax Options . 82

1.41 pro.guide/OPT I . 83

1.42 pro.guide/OPT P . 83

1.43 pro.guide/OPT NOTYPE . 83

1.44 pro.guide/Processor Options . 84

1.45 pro.guide/SUPER . 87

1.46 pro.guide/READMODWRITE . 87

1.47 pro.guide/SETKFACTOR . 87

1.48 pro.guide/DEFAULT . 88

1.49 pro.guide/Optimization . 91

1.50 pro.guide/Assembler Message Control . 99

1.51 pro.guide/Controlling the Message Output . 100

1.52 pro.guide/BASE . 103

1.53 pro.guide/Absolute Assembly . 107

1.54 pro.guide/Data Output Directives . 108

1.55 pro.guide/Initialized Data with Restricted Range . 109

1.56 pro.guide/Declaring Data Blocks . 110

1.57 pro.guide/Uninitialized Data Blocks . 111

1.58 pro.guide/Defining Strings . 112

1.59 pro.guide/Alignment Padding . 113

1.60 pro.guide/ALIGN . 114

1.61 pro.guide/Convenience Pseudo-Opcodes . 118

1.62 pro.guide/Controlling the Output File . 121

1.63 pro.guide/Sections . 124

1.64 pro.guide/SMALLOBJ . 128

1.65 pro.guide/Debugging Information . 129

1.66 pro.guide/Object Modules . 132

1.67 pro.guide/Defining and Referencing External Symbols . 132

1.68 pro.guide/Output File Attributes . 134

proasm v

1.69 pro.guide/Auxiliary Output Files . 136

1.70 pro.guide/OPT NOLIST . 139

1.71 pro.guide/LLEN . 140

1.72 pro.guide/OPT . 143

1.73 pro.guide/OPT XPK . 152

1.74 pro.guide/ESCAPESTR . 154

1.75 pro.guide/VERBOSE . 156

1.76 pro.guide/RCRESET . 157

1.77 pro.guide/LOCKSYM . 159

1.78 labseg . 159

1.79 pro.guide/Special Symbols . 161

1.80 pro.guide/Support Libraries . 168

1.81 pro.guide/Errors . 169

1.82 pro.guide/Warnings . 192

1.83 pro.guide/AmigaDOS Error Codes . 201

1.84 pro.guide/Instruction Set Summary . 205

1.85 pro.guide/ProOpts Directives Summary . 205

1.86 pro.guide/Bibliography . 205

1.87 pro.guide/Directive Index . 207

1.88 pro.guide/Concept Index . 223

proasm 1 / 223

Chapter 1

proasm

1.1 pro.guide

== ←↩

P R O A S M
Motorola 680x0-series Professional Macro Assembler

v1.74
==

Copyright © 1989-1996 by Daniel Weber
ProAsm is Shareware

About This Manual
TABLE OF CONTENTS

Notices
Copyrights

Trademarks
Disclaimer

Acknowledgments

Registration Information

The Author

Introduction
o Product Overview

o The Manual
o Conventions Used in this Manual
o Manual Updates
o System Rquirements

Installation
o

proasm 2 / 223

Installation
Running ProAsm

o
Starting ProAsm from the Shell

o
Starting ProAsm from Workbench

Configuration File

Hello World
Assembly Language Syntax

o
Source Line Format

. Labels
. Local Labels
. Scope of Labels

. Mnemonic

. Operands

. Comment
o

Expressions
. Constants

. Integer Constants

. Floating-point Constants
. Numeric Symbols

. Absolute Symbols

. Relocatable Symbols

. External Symbols
. Operators
. Textual Symbols
. Forward References to Numeric

and Textual Symbols
. Assembly Location Counter

o
Registers

. Basic Registers
. Control Registers
. Stack Pointer
. Floating-point Registers
. MMU Registers

o
Addressing Modes

o
Instruction Set

Directives
o Source Code Input

. Terminating the Input File

END

ENDSRC
. Include Files

INCLUDE

OPT Y

proasm 3 / 223

OPT NOINCONCE

OPT INCONCE

INCEQU

INCBIN

IBYTES

HEADER

MACLIB
. Specifying Include Directories

INCDIR

INCPATH
o

Macros
.

MACRO
.

ENDM
.

ENDMAC
.

MEXIT
. Symbols and KEywords for Macro ←↩

Definitions
.

\n
.

\(n)
.

\0
.

\#
.

\@
.

*VAL, *VALOF, *V, *D
.

*HEX, *HEXOF, *H
.

*BIN, *BINOF, *B
.

*OCT, *OCTOF, *O
. Substituting textual symbols in symbol ←↩

names
.

*STRING, *S
.

*STRLEN
. Substituting subsections of strings

.
*LEFT, *L

proasm 4 / 223

.
*RIGHT, *R

.
*MID, *M

. Substituting subsections of strings
.

*UPPER
.

*LOWER
o

Conditional Assembly
.

IFD
.

IFND
.

IFEQ
.

IFNE
.

IFGE
.

IFHI
.

IFLE
.

IFLS
.

IFLT
.

IFMI
.

IFPL
.

IFVC
.

IFVS
.

IFHS
.

IFLO
.

IFC
.

IFNC
.

IF1
.

IF2
.

IFU
.

IFNU
.

ELSE
.

ELSEIF

proasm 5 / 223

.
ENDC

.
ENDIF

.
IIF

.
ENDASM

.
ASM

o
Repeating Text

.
REPT

.
ENDR

.
REPEAT

.
UNTILcc

.
REXIT

o Defining Symbols
. EQU
. EQUATE
. =
. ==
. DEFINE
. SET
. SETVAL
. FEQU
. FSET
.

EQUR
.

EQUSTR
.

FEQUR
.

SETR
.

FSETR
.

REG
.

EQURL
.

SETREG
.

SETRL
.

FREG
.

FSETRL
o

Structure Offsets
.

proasm 6 / 223

RS.x
.

SO.x
.

FO.x
.

RSRESET
.

CLRSO
.

CLRFO
.

RSSET
.

SETSO
.

SETFO
.

RSVAL
.

SOVAL
.

FOVAL
o

Case Sensitivity
.

OPT C
.

CASEON
.

CASEOFF
.

OPT CASE
.

OPT NOCASE
o Local Label Introducer

.
OPT LOCALU

.
OPT LOCALDOT

.
OPT U

.
OPT U1

.
OPT U2

o Assembly Control
.

RELAX
.

NEWSYNTAX
.

OLDSYNTAX
.

OPT CHKIMM
.

OPT NOCHKIMM

proasm 7 / 223

.
OPT I

.
OPT CHKPC

.
OPT NOCHKPC

.
OPT P

. Type Checking
.

OPT TYPE
.

OPT NOTYPE
.

OPT T
. Processor Options

.
MC68000

.
MC68010

.
MC68020

.
MC68030

.
MC68040

.
MC68060

.
MC68EC020

.
MC68EC030

.
MCRELAX

.
MC680X0

.
MC68881

.
MC68882

.
MC68851

.
OPT P=

.
OPT FPSP40

.
OPT NOFPSP40

.
OPT FPSP60

.
OPT NOFPSP60

.
OPT SP60

.
OPT NOSP60

. Code Control

proasm 8 / 223

.
SUPER

.
OPT SUPER

.
OPT SW

.
READMODWRITE

.
SETKFACTOR

. Assembly Options
.

DEFAULT
.

OPT ABL
.

OPT ABW
.

OPT BDL
.

OPT BDW
.

OPT BRL
.

OPT BRW
.

OPT BRS
.

OPT ODL
.

OPT ODW
.

OPT PCBL
.

OPT PCBW
. Optimization

.
OPT AUTOPC

.
OPT NOAUTOPC

.
OPT A

.
OPT O

.
OPTIMIZE

.
NOOPTIM

.
OPT OPTIMON

.
OPT OPTIMOFF

.
OPT Q

.
MULTIPASS

.

proasm 9 / 223

OPT OPTIMLIB
.

OPT NOOPTIMLIB
. Assembler Message Control

.
FAIL

.
WARN

. Controlling the Message Output
.

FAILAT
.

OPT E
.

OPT W
.

OPT WARN
.

OPT NOWARN
.

OPT OW
.

OPT QW
.

ODDOK
.

ODDERROR
.

ODD2OK
.

ODD2ERROR
.

OPT F
.

OPT Z
.

OPT CHKBIT
.

OPT WARNBIT
.

OPT NOCHKBIT
. Baserelative Assembly

.
BASE

.
NOBASE

.
BASEREG

. Absolute Assembly
.

ORG
.

ENDORG
.

RORG
. Data Output Directives

. Initialized Data

proasm 10 / 223

.
DC.x

.
DB

.
DW

.
DL

. Initialized Data with Restricted Range
.

UB
.

UW
.

UL
.

SB
.

SW
.

SL
.

PB
.

PW
.

PL
.

NB
.

NW
.

NL
. Declaring Data Block

. DS.x

. DCB.x

. BLK.x
. Uninitialized Data Blocks

.
DX.x

. Defining Strings
.

CSTRING
.

CSTR
.

ISTRING
.

ISTR
.

PSTRING
.

PSTR
.

Alignment Padding
.

CNOP

proasm 11 / 223

.
ALIGN

.
EVEN

.
DS.W 0

.
QUAD

.
ODD

.
CCNOP

.
ALIGNRS

.
ALIGNSO

.
ALIGNFO

.
Convenience Pseudo-Opcodes

.
PUSH

.
POP

.
PUSHM

.
POPM

.
APUSHM

.
APOPM

.
MEA

.
PFLUSHA (a note)

. Controlling the Output File
. Output File Name

.
OUTPUT

.
OBJFILE

.
OBJ

. Output File Format
.

EXECUTABLE
.

EXE
.

EXEOBJ
.

OPT L
.

LINKABLE
.

LINKOBJ

proasm 12 / 223

.
BINARY

.
BINARYONLY

.
BINRYONLY

.
ASEG

.
PREASM

.
OPT GENSYM

.
NOOBJ

.
SREC

.
Sections

.
SECTION

.
CODE

.
DATA

.
BSS

.
CSEG

.
DSEG

.
SECTION __OLDSECTION

.
SMALLOBJ

.
NORMOBJ

.
SMALLCODE

.
SMALLDATA

.
SMALLBSS

.
Debugging Information

.
DEBUG

.
OPT DEBUG

.
OPT NODEBUG

.
OPT HCLN

.
OPT NOHCLN

.
ADDSYM

.

proasm 13 / 223

NOSYM
.

OPT D
.

OPT XDEBUG
.

OPT NOXDEBUG
.

OPT X
.

SECSYM
.

SELSYM
.

OPT NOHCLN
.

Object Modules
.

IDNT
.

IDENTIFY
. Defining and Referencing External Symbols

.
XREF

.
XDEF

.
PUBLIC

.
AUTOXREF

. Output File Attributes
.

PURE
.

FILEPROTECT
.

FILENOTE
. Auxiliary Output Files

.
ERRFILE

.
EQUFILE

.
LISTFILE

.
CREFFILE

. Controlling the Listing
.

LIST
.

NOLIST
.

OPT LIST
.

OPT NOLIST
.

OPT MD

proasm 14 / 223

.
OPT NOMD

.
OPT MEX

.
OPT NOMEX

.
OPT M

.
LISTSYMS

.
OPT SYMTAB

.
OPT NOSYMTAB

.
OPT S

.
OPT CL

.
OPT NOCL

.
LFCOND

.
SFCOND

.
LISTCHAR

. Formatting the Listing
.

LLEN
.

PLEN
.

SPC
.

FORMAT
.

PAGE
.

PAGEUP
.

NOPAGE
.

TTL
.

TITLE
.

SUBTTL
. Miscellaneous Directives

.
OPT

.
OPTION

.
OPT XPK

.
OPT NOXPK

.

proasm 15 / 223

OPT STO
.

OPT RCL
.

OPT RESET
.

OPT ESS1
.

OPT ESS2
.

OPT ESS3
.

OPT ESS
.

OPT ESS
.

OPT ESS
.

ESCAPESTR
.

CSYMFMT
.

VERBOSE
.

TIMES
.

QUIET
.

ASMPRI
.

COMMENT
.

PRINTX
.

RCRESET
.

RCSET
.

ERRFLAG
.

LOCKSYM
.

UNLOCKSYM
.

LABSEG
.

LABSEG __OLDLABSEG
.

EQUX

Special Symbols
o

__PRO
o

__RS
o

__SO

proasm 16 / 223

o
__FO

o
_MOVEMREGS

o
_MOVEMBYTES

o
_MOVEMLIST

o
__BASE

o
__Vn

o
__PR

o
__CP

o
__DATE

o
__DATE2

o
__DATE3

o
__TIME

o
__DAY

o
_LINENUM

o
__RCODE

o
__LK

o
__NAN

o
__SNAN

o
__INFINITY

o
NARG

o
RARG

o
_MCOUNT

Support Libraries
o Installation and De-installation

o
proasmlang.library

o
proasmoptim.library

Appendices
o

Errors
o

Warnings
o

proasm 17 / 223

AmigaDOS Error Codes
o

Instruction Set Summary
o

Bibliography
Indices

o
Directive Index

o
Concept Index

Additional Manuals:
ASX ProOpts ProUtils

1.2 about this manual

About This Manual
=================

Welcome to the AmigaGuide version of the ProAsm manual.

The original manual was written in TeX and texinfo. You are currently
looking at the AmigaGuide version of it. I used various tools to convert
the primal TeX source into AmigaGuide. They did quite a good job, but the
result was over 700KBytes of length! As a consequence I had to shorten the
whole guide file by hand. Now it is very possible that when browsing
through this manual you will find sentences like:

This node (page) intentionally left blank.
or

This node (page) was intentionally shortened.

Please forgive me for that. I had also to skip various tables that can
be found in the original printed manual. Even I skipped and shortened a lot
of things, but this manual has still a prideful size of about 470KBytes!

Caused by the convertion of the TeX source of the manual into this
AmigaGuide file and the need of some small reorganisation of it, some of
the links go nowhere. Sorry for that, but I had not the time to check all
links. I did check a lot of them, but unfortunately there are still some of
these dead links in the guide file. If you should find any, please feel
free to inform me (

Daniel Weber
). To find a specific directive you should

use the
index page
or the

main Page
.

proasm 18 / 223

One chapter was completely removed from this guide file and splitted into
three other AmigaGuide files:

asx.guide
proopts.guide
proutils.guide

They cover the associated utility software that comes along with the
ProAsm assembler.

If you find some strange (unusal) parts in this AmigaGuide file, please
keep in mind, that this guide initially was written as a book. You can
order a copy of the printed manual, if you wish. Please read the
registration document (register.doc or

Registration
) for

further information.

Daniel Weber
Zurich
November 1995

1.3 notices

Copyrights
==========

ProAsm and associated utility software is copyrighted 1989-1996 by
Daniel Weber. All rights are reserved worldwide.

ProAsm is Shareware, see
registration
.

The ProAsm User’s Manual is copyrighted 1994-1996 by Daniel Weber and
Bryan Ford.
This AmigaGuide file reflects version 1.74 of the ProAsm assembler.

Trademarks
==========

ProAsm and ASX are trademarks of Daniel Weber. MC68000, MC68008,
MC68010, MC68020, MC68030, MC68040, MC68060 MC68EC020, MC68EC030,
MC68EC040, MC68LC040, MC68881, MC68882, MC68851 and Motorola are
trademarks of Motorola, Inc. Amiga is a registered trademark of
ESCOM AG. AmigaDOS, Kickstart, and Workbench are trademarks of ESCOM AG.
SAS and Lattice are registered trademarks of SAS Institute, Inc. Aztec
and Manx are trademarks of Manx Software Systems. ARexx is a trademark
of The Wishful Thinking Development Corp. UNIX is a registered trademark

proasm 19 / 223

of AT&T. OS-9 is a registered trademark of Microware Systems Corporation.
Aminet is a registered trademark of Stefan Ossowskis Schatztruhe.
All products mentioned in this manual are trademarks of their respective
owners.

Disclaimer
==========

The information, the ProAsm program, and all the associated
utilities are provided "as is" without warranty of any kind, either
expressed or implied. The entire risk as to the accuracy of the
information herein is assumed by you. Daniel Weber does not warrant,
guarantee, or make any representations regarding the use of, or the
results of the use of, the information, the ProAsm program, or the
associated utilities in terms of correctness, accuracy, reliability,
currentness, or otherwise. In no event will Daniel Weber be liable for
direct, indirect, incidental, or consequential damages resulting from
any defect in the information, the ProAsm program, or the associated
utilities even if he has been advised of the possibility of such
damages.

1.4 acknowledgments

Acknowledgments
===============

Without the help and guidance of my co-writer, Bryan Ford, this
manual would have been entirely different. His suggestions and
corrections led to substantial improvements. Bryan was likewise an
invaluable resource for all the questions I used to overwhelm him with.

I am also indebted to Stefan Walter for his sever criticism and
various suggestions. He helped me to keep the ball rolling in the
early stages of this project. Stefan contributed also several "routine
files" among them the great GTF interface system. And his S.I.M.
debugging environment helped me through more than a few dark hours of a
programmer.

My thanks to Rene Eberhard for all his constructive comments and
criticisms. His efforts in finding hidden bugs deserves special thanks
as well as investing many hours of work in writing some of the "routine
files".

I also thank Susanne Keller, who loaned her energy and time to the
careful reading of the entire manuscript.

A special word of "thanks" is due to Anja Gemperli for her support,
understanding, and love.

I wish also to thank the following people for their assistance and
encouragement:
Michael Ryffel, Thomas Neubauer, Christian Schneider, U. Dominik Mueller
Friedmann Buergel, Hansruedi Wenger, and Andreas Bobak.

proasm 20 / 223

1.5 author

Author
======

If you have bugreports, questions, ideas, flames or complaints (constructive
criticism is always welcome), or if you just want to contact me, write
or send a letter to:

Daniel Weber

Internet: dweber@amiga.icu.net.ch (preferred)
dweber@iiic.ethz.ch

Mail: Daniel Weber
Hoeflistrasse 32
CH-8135 Langnau
Switzerland.

1.6 registration

Registration Information
========================

Please refer to the registration.doc file that comes with the
distribution for the ASCII version of the following text.

This program, ProAsm, is distributed as Shareware. It may be freely
redistributed, but no charges other than reasonable copying and handling
fees may be collected (not over US $5 per floppy disk, or more than US $50
per CD). The program may be distributed only as originally release, in the
complete archived form.

Please be aware that the registered version of ProAsm and its utilities
will not be available from Aminet.

The standard registration covers:
- The ProAsm assembler and associated utilities and numerous

routine files.

The distribution contains NO include files from Commodore/ESCOM,
as I have no license to include them.

- Free minor updates (probably via E-Mail or a mailing of

proasm 21 / 223

one disk), and one free major update (complete package).
Later major update releases can be ordered for about 30% of
the registration fee.

- Additional future registered updates on request will cost
5 SFr./5 DM/5 $US.

- Possibility to get a full S.I.M. registration for a reduced
fee (10 $US). S.I.M. is a lowlevel debugger and monitor and
its unregistered version can be found on Aminet in the
dev/debug directory as ’sim172.lha’.

The registered version comes with additional features:
- Removed the code and data size limitation. The non-registered

version is limited to 8 kbytes (8192 bytes) output code.

- Complete instruction set: MC68000-MC68060, MC68881/68882,
and MC68851.

- All macro directives enabled.

- Multipass optimization enabled.

- All floating-point directives enabled.

- All optimizations enabled.

- Registration notice removed.

To register send the registration fee in one of the following manners:
- Cash, preferred (in BILLS only). The easiest and for you the

cheapest way is to send money in an envelope. But this is not
the best thing to send through mail.

- A check drawn on a SWISS BANK in Swiss Francs (SFr).

- POSTAL MONEY ORDER, drawn in SFr.

- EuroChecks are also accepted, but they must be in Swiss Francs
and the benificary should be ’Daniel Weber’.

- An INTERNATIONAL MONEY ORDER, drawn in SFr with the address
of a SWISS BANK on the front.

- Private cheques are accepted, but cashing them is very expensive.
So make sure to additionally submit the extra charge when sending
a private cheque: US$ 10.-, £ 6.-, DM 10.-,...

- Swiss residents can use my PostCheck account 80-219240-0.

Any currencies are accepted, please use the US Dollar prices as reference.

proasm 22 / 223

You do not need to send any extra money for return postage, that is
part of the registration fee, except otherwise noted.

If you send the registration form via email, and want to know if I have
received your money, send another email about two weeks after the
registration.

E-Mail: dweber@amiga.icu.net.ch (preferred)
dweber@iiic.ethz.ch

Mail: Daniel Weber
Hoeflistrasse 32
8135 Langnau a/A
Switzerland

----> CUT HERE <----------------> CUT HERE <----------------> CUT HERE <----

===

Name __

Address ___

City__ State____________________

Country_____________________________________ PostCode_________________

E-Mail______________________________________

System [] A500 [] A600 [] A1000 [] A1200
[] A2000 [] A2500 [] A3000(T) [] A4000(T)

Memory______________________________ CPU____________________

KickStart version___________________

Comments (please use additional sheets if necessary)___________________

ProAsm Registration: SFr. DM $US

proasm 23 / 223

[] Shareware Registration................... 30.00 30.00 25.00
[] Plus latest version on disk........... 5.00 5.00 5.00
[] Plus full S.I.M. Registration......... 10.00 10.00 10.00

[] Update to a Major Release................ 10.00 10.00 10.00

Bound Manual (approx. 322 pages, A5)..... ** not available yet **
Extra postage outside Europe for
AirMail (priotitaire)................. ** not available yet **

Total Enclosed.............................. _____ _____ _____

Method of Payment:

[] Cash (in BILLS only).

[] EuroCheque (Swiss Francs only).

[] Check drawn on a SWISS BANK in Swiss Francs

[] Postal money order (Swiss Francs only).

[] International Money Order in Swiss Francs, with the addesss
of a Swiss Bank on the front.

[] Private Cheque (accepted, but cost extra charges:
US$ 10.-, £ 6.-, DM 10.-).

[] My PostCheck account 80-219240-0 (for Swiss residents only!).

Method of Shipment

[] per email to

[] the email address mentioned above.

[] email: __

[] to the postal address above. (The postage is part of the
registration fee.)

===

1.7 pro.guide/Introduction

proasm 24 / 223

You know what your trouble is?

You’re the kind who always reads the handbook. Anything people
build, any kind of technology, it’s going to have some specific
purpose. It’s for doing something that somebody already
understands. But if it’s new technology, it’ll open areas
nobody’s ever thought before. You read the manual, man, and you
won’t play around with it, not the same way. And you get all
funny when somebody else uses it to do something you never thought
of.

William Gibson, the winter market 1985

Product Overview
================

Welcome to ProAsm!

The ProAsm assembler is a traditional two pass assembler that emits
code for the entire Motorola MC68000 Family. ProAsm is a high
performance, full-featured assembler with enough powerful features
to make it appropriate for all assembly tasks. It produces native 68xxx
code, and has special directives to enable the selection of the target
processor and the appropriate code optimization for that processor.
ProAsm supports both addressing mode syntaxes as defined by Motorola.
Programmers find these capabilities of the new syntax mode particularly
useful for handling advanced data structures common to sophisticated
application and high level languages.

The output produced by ProAsm is either an executable file that can
directly be run under AmigaDOS or the Workbench, object modules that are
compatible with the Amiga standard linker and BLINK (the replacement
linker from ’The Software Distillery’), binary output for ROM-able code
(for example), pre-assembled files, or the Motorola S-record format.
Besides the normal output files, ProAsm can also generate four types of
auxiliary output files which reflect the results of the assembly
process: the error file and the equate file, the source listing and the
cross-reference listing.

ProAsm has a tremendous number of switchable optimizations
including the multipass facility to gain an even more optimized code.
ProAsm also has a very rich set of directives including a wide range of
synonyms that allow source code written for other assemblers (Public
Domain software for example) and the Commodore include files to be
assembled. Included as well are directives to deal with structures,
repeat loops and similar code elements very easily. Powerful macros
with unlimited macro arguments and many macro directives are available
to permit code to be easily and clearly arranged.

The rich set of available facilities allows exact control over the
performance of the assembler. This control includes features such as
optimization, case dependency for symbols, syntax control, and the
default behaviour of ProAsm to name a few. More advanced control
features such as precise code control and selectable symbol search

proasm 25 / 223

algorithm are also included.

A valuable feature of ProAsm is the configuration file, which is
automatically included in each assembly. You can customize ProAsm to
suit your particular wishes by including commonly used macros, code and
directives in the configuration file.

No program can be all things to all people. So all assemblers have
limitations - ProAsm tries to put them as far as possible not to narrow
your creativity. This results in the fact that the most limitations are
just limited only by available memory (line length, macro body, macro
nesting, macro arguments, nesting of macro directives, repeat and
include file nesting,...).

However, ProAsm is an ideal assembler for the professional
developer, as well as the high-level language programmer (such as C,
Modula,...) who wants to integrate some assembly language code into his
programs, and the beginner at assembly language programming.

The Manual
==========

This manual is provided as a reference guide to ProAsm and its
associated utilities. It contains information on the operation and the
use of the directives, pseudo-opcodes, and other pertaining to the
effective use of this software.

Two large indices,
Concept Index
, and
Directive Index
, allow you to

find a specific topic quickly and easily.

Please note that this manual makes no effort to be a tutorial for
M68000 Assembly Language Programming. For detailed information on the
complete instruction set of the M68000 family we recommend the ‘M68000
Family Programmer’s Reference Manual’, from Motorola Inc.

Conventions Used in this Manual
===============================

This manual refers to the entire Motorola 68000 series of
microprocessors as the "M68000". It refers to individual chips as the
"MC68000," "MC68010," etc.

M68000 instructions, register names, and symbols are printed in
lower case. Assembler directives are printed in upper case to
distinguish them from instructions. In reality, case does not matter
for instructions, register names, or assembler directives, and only

proasm 26 / 223

matters for symbols if you specifically request it.

Unless otherwise noted, square brackets [] are used to state that
the arguments of a directive they enclose are optional.

Manual Updates
==============

The following is only valid for the printed manual. The AmigaGuide version
of the manual will be updated directly.

This documentation is updated with Change Pages and a read.me file.

Change Pages are issued for minor changes to the manual as pages or
Postscript files or both. The date of issue is printed at the bottom
of each page.

A read.me file is provided on the installation diskette. This file
contains information about recent changes to the software that are not
yet reflected in the manual.

System Requirements
===================

ProAsm requires an Amiga with at least 512k of memory. Kickstart
and Workbench 1.2 or higher are also required. ProAsm is fully compatible
with the entire Amiga family.

1.8 installation

Installation
============

To install the ProAsm Package correctly, you simply have to copy the complete
distribution into a directory (or to a partition) of your choice. The whole
package requires about 1.7 MBytes of disk space.

This can be done using the given Installer script, this is also the recomended
procedure. However, using the Installer script, you have also the possibility
to do a partial installation.
A double-click on ’Install_english’ or ’Install_deutsch’ to start the
installation.

You can also install the package manually, by using the following command

proasm 27 / 223

sequence:

makedir <your_directory>/ProAsm
copy ProAsm/ <your_directory>/ProAsm/ all
copy ProAsm.info <your_directory>
delete <your_directory>/ProAsm/install#?

Where ’<your_directory>’ is the path of your desired location where the ProAsm
Package should be copied to (e.g: ’work:’)

The following two commands copy the configuration files to env: or envarc:
respectively:

copy ProAsm/env/ env: all
copy ProAsm/env/ envarc: all

To assure that the software will work correctly, the following lines should
be added to your user-startup file. Use an editor to add these lines to the
S:User-Startup :

path <your_directory>/ProAsm <your_directory>/ProAsm/c/ add
assign libs: <your_directory>/libs/ add
assign help: <your_directory>/ProAsm/Help add

If you intend to do a partial installation manually, you should take the
following dependencies into account:

ProAsm Assembler: proasm
libs/
Catalogs/

ASX : ASX
ASX.info
rexx/
env/

ProOpts : ProOpts
ProOpts.info

Utilities : c/

Documentation : Help/
Help.info

Examples : Examples/
Examples.info

BLink Archive : BLink.lha

Routine Files : routines/

Include Files : include/

proasm 28 / 223

1.9 starting proasm from the shell

Starting ProAsm from the Shell
==============================

ProAsm is driven by keyword options in any order indicating the
action to be performed. The general command line format is as follows:

ProAsm <source file> [options]
ProAsm -M [options 1] <source file 1> [[options 2] <source file 2> ←↩

[...]]

[options] specifies any optional parameters and <source file> the
name of the file to be assembled. The second form allows you to
assemble multiple source files in one invocation of ProAsm. If no
extension is added to the <source file>, the assembler assumes .s as
the extension.

Command-line Options

Following is the complete list of command-line options supported by
ProAsm, in AmigaDOS command-line description format:

-A=ADDRESS/S,-B=BINARY/S,-D=DEFINE/S,-E=ERRFILE/K,-F=FILEREQ/S,
-G=CONFIGFILE/K,-H=HEADER/K,-I=INCDIR/K,-K=NOKEYWAIT/S,-L=LINKABLE/S,
-M=MULTISOURCE/S,-MA=MULTISOURCEA/S,-N=NOOBJ/S,-O=OBJFILE/K,
-P=LISTFILE/K,-Q=EQUFILE/K,-R=CREFFILE/K,-S=ADDSYM/K,-T=STRING/K,
-U=NOSTDOUT/S,-V0=V0/K,-V1=V1/K,-V2=V2/K,-V3=V3/K,-V4=V4/K,-V5=V5/K,
-V6=V6/K,-V7=V7/K,-V8=V8/K,-V9=V9/K,-W=WINDOW/S,-WS=WINDOWSIZED/K,
-X=EXPSYM/S

The meaning of these options is given below. All options can be
supplied in either upper or lower case. Switch-style options (-A, -B,
etc.) and keyword-style options (ADDRESS, BINARY, etc.) can be mixed
arbitrarily. For options that take arguments, if the keyword style is
used, the keyword must be separated from the argument by at least one
space (e.g. HEADER foo.i). If the switch style is used, a space may be
used but is not necessary (either -Hfoo.i or -H foo.i will work).
Filename or path arguments that contain a whitespace must be enclosed
in double or single quotes (e.g. HEADER "foo bar.i").

A sequence of switch-style options without an argument can be
written all alone (e.g. -L -D) or together (e.g. -LD). Even the
following is a possible combination -LDE foo.err for -L -D -E foo.err.

ADDRESS address
-A address

This option causes ProAsm to assemble source code from an address
in memory rather than from a file. The source code is assumed to
start at address, which can be expressed in any base, in the same

proasm 29 / 223

way that numeric constants are expressed in the source code itself
(e.g. $1000 is the same as 4096). ProAsm assumes that the source
text is a single null-terminated (C-style) string. This option is
mainly provided to support text editors that can run an assembler
from within the editor and provide the source code directly in
memory rather than having to write it to a file first. If you use
this option, no source file name may be specified in the
command-line.

DEFINE symbol=expression[,symbol=expression[...]]
-S symbol=expression[,symbol=expression[...]]

This option defines the specified symbol with the result of the
specified expression as if it had been defined with the EQU
directive at the very beginning of the source code (see

Equates
).

Any amount of whitespace is accepted between the symbol and the equal sign, ←↩
and

between the equal sign and the expression. If more than one
symbol definition is given, they can be separated by a comma (,).

BINARY
-B

This option tells the assembler to produce a "raw" binary file,
containing only the data explicitly defined in the source code.
No linking or debug information can be generated. See
Output File Format.

ERRFILE filename
-E filename

This option specifies the name of the error file to be used, and
it overrides any ERRFILE directive specified in the actual source
code. See

Auxiliary Output Files
, for more information. You may

also use a window specification instead of a filename, e.g.:

ProAsm mySource.s ERRFILE con:0/0/640/150/mySource_Errors

FILEREQ
-F

This option causes ProAsm to open a file requester in which you
can choose the source file to be assembled, rather than specifying
its name on the command line. If you cancel the file requester,
ProAsm will abort without assembling anything. If you use this
option, no source file may be specified in the command-line,
unless the MULTISOURCE or MULTISOURCEA option is also used.
ProAsm uses the ASL file requester if you have Kickstart version
2.04 or later, or the REQ file requester on an earlier version of
Kickstart.

CONFIGFILE filename
-G filename

This option tells ProAsm to use the file filename as ProAsm’s
configuration file, instead of the default file named
ProAsm.config. This can be used, for example, to use a
different configuration for individual projects. See

proasm 30 / 223

Config File
,

for more information.

HEADER filename
-H filename

The HEADER option tells ProAsm to assemble the file specified as
filename before assembling the main source code, as if it had been
included with INCLUDE at the very beginning of the source file.
See

Include Files
, for more information about include files. It

is still processed after the configuration file, however.

INCDIR directory[,directory[...]]
-I directory[,directory[...]]

This option adds the specified directory to the list of
directories to search for include files. Directory names
containing one or more whitespace must be enclosed in double or
single quotes. You can specify more than one directory by
separating each directory name with a comma (,). See
Include Directories, for more information.

NOKEYWAIT
-K

This option instructs ProAsm not to wait for a key to be pressed
at the end of assembly. This only has an effect if the WINDOW or
WINDOWSIZED option is also used.

LINKABLE
-L

This option tells ProAsm to create an object file which can be
linked with other object files by a linker such as BLink. See
Output File Format, for more information.

MULTISOURCE
-M

This parameter keyword forces the assembler to accept more than
just one source file on the command line. All source files will be
assembled sequentially, in the order of their occurrence on the
command line. Using this keyword the command line must be of the
following syntax:

MULTISOURCE [options 1] <source file 1> [[options 2] <source file ←↩
2> [...]]

For example:
ProAsm MULTISOURCE BINARY BinImage.s ADDSYM helloworld.s

First of all the source code BinImage.s is assembled to a binary
image file according to the BINARY flag. Afterward the
helloworld.s source file is processed using the ADDSYM keyword.

MULTISOURCEA
-MA

This is an extension of the above described MULTISOURCE keyword.
MULTISOURCEA aborts assembly after the source file in which the
first error occurred, instead of assembling all source files
whether or not any errors occured.

proasm 31 / 223

NOOBJ
-N

If this option is used, the assembler will not produce any output
file at all. It is useful if you want to run a test assembly to
check for syntax errors in the source code. This option overrides
any other command-line options or directives in the source code
specifying an output file to be produced. See Output File Format,
for more information on the NOOBJ directive and the different
types of output files ProAsm can produce.

OBJFILE filename
-O filename

This option specifies the name of the object file to be produced.
The actual format of this output file depends on the output file
format selected; see Output File Format, for more information.
This option overrides any OBJFILE directive contained in the
actual source code.

LISTFILE filename
-P filename

This option specifies the filename of the listing file; see

Auxiliary Output Files
, for information about listing files. It

also automatically enables listing generation, and overrides any
LISTFILE directive present in the actual source code.

EQUFILE filename
-Q filename

This option directs ProAsm to generate an equate file in filename.
It overrides any EQUFILE directive in the source code. See
The Equate File, for more information.

CREFFILE filename
-Rfilename

This option causes ProAsm to create a cross reference listing in
filename. It overrides any CREFFILE directive in the source code;
see

Auxiliary Output Files
, for more information.

ADDSYM
-S

This option tells the assembler to add symbol information to the
output file (see

Debugging Information
). This option is ignored

unless you specify an EXECUTABLE or a LINKABLE output file.

STRING symbol=string[,symbol=string[...]]
-T symbol=string[,symbol=string[...]]

This option is used to assign the specified string to the symbol,
as with the EQUR directive; see Textual Symbols, and

Equates
, for

more information. Any number of whitespaces are accepted between

proasm 32 / 223

the symbol name and the equal sign, and between the equal sign and
the string. If the string contains whitespace it must be enclosed
in double or single quotes, or between angle brackets (< and >).
If more than one symbol definition is given, they can be separated
by a comma (,). In this case, strings that contain a comma should
be enclosed within angle brackets (< and >).

NOSTDOUT
-U

This tells ProAsm to perform assembly quietly; no output text will
be displayed.

Vn=value
-Vn=value

Specifying one of these options will cause the specified value to
be used as the definition of the special built-in symbol __Vn,
where n is between 0 and 9. For example, if you specify -V0=12345
on the command-line while assembling a particular program, the
symbol __V0 will be defined as if you had included the statement
__V0 EQU 12345 at the beginning of the assembly language source
file. See

Special Symbols
, for more information on the __Vn

symbols.

WINDOW
-W

This option instructs the assembler to send all output text to a
window instead to the standard output. This can be useful if you
run ProAsm as a background process or from a script file. The
window will be of the size of 640x200, or smaller if necessary.
After assembly the message ‘Press a key to continue’ will be
displayed in the window and ProAsm will wait for a key to be
pressed before terminating, to give you a chance to see any errors
or other messages generated during assembly. This behavior can be
suppressed by using the NOKEYWAIT option. The WINDOW option
overrides the NOSTDOUT option.

WINDOWSIZED dimension
-WS dimension

This is exactly the same as WINDOW, except that it allows you to
specify the window dimensions. The dimension must be in the format
x/y/width/height (without the quotes), with coordinates in pixels.

EXPSYM
-X

This option tells the assembler to add only the information of the
exported symbols to the output file; any ADDSYM option used
previously will be overridden. It is only useful if LINKABLE
output files are being generated (see Output File Format).

1.10 starting proasm from workbench

proasm 33 / 223

Starting ProAsm from Workbench
==============================

To start ProAsm from the Workbench, double click on the ProAsm icon
to load the assembler from disk. ProAsm will then display a file
requester that is used to specify the filename of the source code to be
assembled.

All output text is sent to a window of the size of 640x200, or
smaller if necessary. After assembly the message ‘Press a key to
continue’ will be displayed in the window and ProAsm will wait for a
key to be pressed before terminating, to give you a chance to see any
errors or other messages generated during assembly.

1.11 pro.guide/Config File

Configuration File
==================

The ProAsm assembler supports a configuration file that allows you
to set assembler options for a project. The configuration file itself
can be regarded as an include file that is automatically loaded at the
very beginning of each assembly (even before the header files). You
can use it to customize ProAsm to suit your particular wishes. It is
not restricted in its contents. This allows you to put any assembler
directive and pieces of code that you want to have included each time
(such as startup codes etc.) in the config file.

The default configfile name is proasm.config. The assembler first
looks in the home directory of the main source code, and after that in
the ENV: and S: (1) assigns. Searching this way
through the directories gives you the possibility to have local and
global configurations. Local configurations are stored in the same
directory as your main source code and the global configurations in the
ENV: assign. For permanent global configuration, copy your config file
into the ENVARC: assign.

If you want to use another name than the default config file name,
you may use the -G/CONFIGFILE command line option to specify a new name.
For example:

pro helloworld.s CONFIGFILE asm:myconfig.i

The use of the configuration file can be suppressed if a name of
file is given that does not exist. For example:

pro helloworld.s -G nil:
pro helloworld.s CONFIGFILE qwjhbciu

As mentioned above, the configuration file is an ASCII file that
can be regarded as a variant of an include file. It can be edited
using a texteditor or the ProOpts program (see ProOpts, for more
details). Remember that the use of a configuration file may have
unwished side effects, by the presence of certain directives in the
config file. An example to illustrate this is: if the config file
contains any symbols, an error could be reported by the assembler, if

proasm 34 / 223

it encounters an OPT C- or similar directives, that change the case
dependency for symbols.

Below you find two examples of configuration files which may give
you an impression how they can look like.

Configuration file #1 is a simple config file, that just sets up
often used include pathes:

EXEOBJ
INCDIR include:
INCDIR routines:

Configuration file #2 shows you a way how a startup code and a
standard version string can be put into a config file:

EXEOBJ
INCDIR include:
INCDIR routines:

jmp AutoDetach(pc)
dc.b "$VER: ",progname," ",version," (",__date2,")",0
EVEN

INCLUDE startup4.r ; the startup code
The startup4.r startup code requires two symbol definitions in the

main source code, clistartup and wbstartup, to work properly. Progname
and version may be set by the -T/STRING command line option:

pro mySource.s -T progname="HelloWorld" -T version="1.00"

(1) Under Kickstart version 1.3 or earlier, ENV: and ENVARC: may

not exist. Use S: instead.

1.12 pro.guide/Hello World

Hello World
===========

Now that you have an idea how to run ProAsm, it is time to assemble
the first program. The source code below shows the famous Hello World.
If you are new to assembly programming, take a little time to look over
this program.

*
*
* HelloWorld.s - a small helloworld example in assembler

*
*

OUTPUT ’ram:HelloWorld’ ; write executable to ram:HelloWorld

;
; exec function offsets
;

proasm 35 / 223

_LVOOpenLibrary EQU -552
_LVOCloseLibrary EQU -414
;
; dos function offsets
;
_LVOOutput EQU -60
_LVOWrite EQU -48

;
; program start
;
start: lea DosName(pc),a1

moveq #0,d0
move.l 4,a6 ; load execbase
jsr _LVOOpenLibrary(a6) ; open dos.library
move.l d0,DosBase
beq.s NoDosLibrary ; could not open library

move.l d0,a6
jsr _LVOOutput(a6) ; get StdOut handle (handle in d0)

move.l d0,d1
move.l #Text,d2
moveq #TextLength,d3
move.l DosBase,a6
jsr _LVOWrite(a6) ; write text to StdOut

Exit: move.l DosBase,a1
move.l 4,a6
jsr _LVOCloseLibrary(a6) ; close dos.library

NoDosLibrary:
moveq #0,d0 ; set AmigaDOS return code
rts ; exit program

;
; data
;
Text: DC.B "Hello World!",$a,0
TextLength EQU *-Text

DosName: DC.B "dos.library",0
EVEN

DosBase: DC.L 0

END

To assemble the above program write the following line into the
shell and press RETURN:

ProAsm HelloWorld.s

After a few ticks the output file is written to RAM:HelloWorld and
ready to be executed. Run it by simply typing its name into the shell

proasm 36 / 223

followed by a RETURN, and a nice Hello World! will be displayed.

1.13 pro.guide/Source Line Format

Source Line Format
==================

An M68000 assembly language source code file is a normal ASCII text
file containing an arbitrary number of lines. Each line has the
following general layout:

label mnemonic operands comment

The following sections describe each of these four fields in detail.

Labels

The label field can have two slightly different formats. In the
first format, The label starts at the first character of a line, with
no whitespace (space or tab characters) in front of it, and is
separated from the mnemonic field (if present) with at least one
whitespace. In the second format, the label is followed immediately
with a colon (:) character. In this case, whitespace may be used at
the beginning of the line before the label. In addition, no whitespace
is needed before the mnemonic field (the colon is sufficient to
separate the two fields), although it may still be present.

For normal instructions and assembler pseudo-ops that generate data
(such as DC), the label is optional, and is used to assign the address
of the current position to a symbol. If you don’t specify a label at
all, then you must have at least one whitespace character at the
beginning of the line before the mnemonic field.

You may also put a label on a line of its own. In this case, the
current position is assigned to the label without doing anything else.
You can assign the same position to several different labels by putting
each on a separate, otherwise empty line.

To demonstrate how labels are defined, the following code fragments
all do the same thing (they produce a program which loops forever
uselessly):

loop bra loop

loop: bra loop

loop
bra loop

loop:
bra loop

loop:bra loop

proasm 37 / 223

loop: bra loop

loop:
bra loop

Many assembler directives make special use of the label field. For
example, the EQU directive assigns a numeric value to the specified
label, instead of the current position. In these cases, the label is
usually (but not always) required, depending on the directive being
used. In this case, a colon can still be used to separate the symbol
from the assembler directive, but they must be on the same line.

A valid symbol name may contain up to 256 characters. The first
character must be one of the following characters: A through Z (in
either upper or lower case), a period (.), a backslash (\), an
underscore (_), or an ‘at’ symbol (@). The rest of the symbol name
can consist of the characters A through Z (also in upper or lower case),
the digits 0 through 9, periods (.), and underscores (_). Symbols are
normally case-sensitive, but can be made case-insensitive depending on
an option you can set (see

Case Sensitivity
). Names corresponding to

M68000 registers such as D0 are reserved (see
Registers
), as well as

the names of special assembler symbols (see
Special Symbols
).

Local Labels
............

Local labels are a special form of labels that are strictly local
to the block of assembly instructions and directives between two
nonlocal (global) labels. Local labels provide a convenient means of
generating labels for loops, branch instructions and such. The use of
local labels reduces the possibility of multiply defined labels in a
program, and it separates entry point labels from local references,
such as the top of a loop.

Local labels cannot be referenced from outside the current assembly
block.

Normally a local label begins with a dot (.) or the slash character
/. You can use an underscore (_) to introduce a local label if the OPT
U+ option is turned on (see Local Label Introducer). The assembler
also accepts local labels of the form n$, where n is any integer.
Valid local labels include:

.local
/local
..label
2$
1994$
.2

proasm 38 / 223

Note that the local label 2$ is the same as 02$ or 0000002$ and so
on (leading zeros are ignored).

Scope of Labels
...............

The section of program text in which a label is defined is called
its scope. An ordinary label which tags a location in the program or
data is visible only within the current assembly, except otherwise
declared by using the XREF directive that makes a label visible to
other assembly units at link time.

A local label has a scope that extends between one nonlocal label
and the next. Every time a non local label is defined, the previous
span of local labels is discarded, and a new local label scope is
created. Consider the following example that illustrates the scopes of
the different kinds of labels:

FirstLabel: ; a new local label scope is created
moveq #15,d7

.loop: move.b (a0)+,(a1)+ ; first appearance of the local label

.loop
dbra d7,.loop

SecondLabel: ; the above local label scope has gone away,
move.l a2,a1 ; and a new scope is created

.loop: cmp.b (a1)+,d0 ; another (different) local label .loop
bne.s .loop ; branches to .loop above

ThirdLabel: ; the above local label scope has gone away,
move.l a1,d0 ; and a new scope is created
beq.s .loop ; generates an error message - no .loop

symbol found
FourthLabel:

The scope of the first local label .loop spans from the FirstLabel
to the SecondLabel label. The second appearance of the local label
.loop has a scope which extends between the SecondLabel and the
ThirdLabel label. After the definition of the ThirdLabel label, the
branch to .loop will generate an error message because that label is no
longer defined within this scope.

Mnemonic

The mnemonic field contains the name of an instruction (also known
as an opcode) or a special assembler directive (a pseudo-opcode)
defining exactly what ProAsm is supposed to do with this line.
Mnemonics are always case-insensitive: for example, move, Move, and
MOVE are the same.

This manual does not describe the instructions ProAsm understands;
these can be found in any M68000 assembly language book such as the

proasm 39 / 223

‘M68000 Programmer’s Reference Manual’, published by Motorola, Inc.
However, ProAsm accepts a large number of pseudo-opcodes which make
assembly language programming easier; these are described in Directives.
Finally, you can defined your own mnemonics with ProAsm’s powerful
macro facility (see

Macros
, for more information).

Operands

The operands field contains any additional data needed by the
selected mnemonic. The field may contain multiple operands separated
by commas. In general, whitespace may be used within the operands
field, but only within quoted strings (e.g. "Hello world!"). In this
case, the whitespace is considered to be part of the string. As a
special case, the DC and related directives also allow whitespace
immediately after a comma (e.g. 1, 2, 3). This type of whitespace is
merely padding and is ignored by ProAsm.

For M68000 instructions, the operands themselves have special
formats dictated by the addressing modes in use. The addressing modes
are described later in

Addressing Modes
. For assembler directives, the

operands are usually symbolic constants, numeric expressions, or text
strings.

Comment

At the end of any line may be placed a comment, which is completely
ignored: comments are purely for the benefit of humans reading the
source code. Comments are usually separated from the rest of the
source line with a semicolon (;) or asterisk (*), which explicitly
tells ProAsm to ignore everything on the rest of the line starting with
the semicolon or asterisk. However, ProAsm automatically considers the
contents of a line after a mnemonic and its operands as "comment," so
in this case you do not need to use a semicolon at the beginning of the
comment. However, for clarity we recommend that you still use one.

You can also reserve a whole line for a comment by making the first
non-whitespace character a semicolon or an asterisk.

You can create comments that span many lines by preceding it with
/* and terminating it with */. Note that this is the standard
comment format in the C language. However, unlike in C, the initial /*
sequence must be first on a line (like * comments). Additionally,
ProAsm ignores all text up to and including the entire line on which
the */ appears.

proasm 40 / 223

Here are some examples of lines containing valid comments, although
we do not recommend the last three examples to be used as comments:

* This is a comment.
; This is a comment.

* This is a comment.
; This is a comment.

foo * This is a comment.
foo: ; This is a comment.

nop * This is a comment.
move.l d0,a0 ; This is a comment.

nop This is a comment.
move.l d0,a0 This is a comment.

/* This is
one big
comment. */

1.14 pro.guide/Expressions

Expressions
===========

An expression is a combination of symbols, constants, numbers,
labels, and algebraic operations. The expression is used to specify a
value which is to be used as an operand.

Constants

There are two forms of integer constants supported by ProAsm,
namely numeric integer constants and string constants. All integer
constants are considered absolute quantities when they appear in an
expression.

Integer Constants
.................

ProAsm accepts numeric quantities in decimal (base 10), hexadecimal
(base 16), octal (base 8), or binary (base 2) radices, or ASCII string.
Integer constants can represent quantities up to 32 bits.

Decimal numbers
Decimal numbers consist of between one and ten decimal digits (in
the range 0 through 9). The range of decimal numbers is between
-2147483648 and 2147483647.

proasm 41 / 223

Hexadecimal numbers
Hexadecimal constants are preceded by the dollar character ($) and
can then have between one and eight hexadecimal digits. The
hexadecimal digits consist of the decimal digits from 0 to 9 and
the letters ‘a’ to ‘f’ (case does not matter).

Octal numbers
Octal numbers are preceded by the atSign (@) and can then have
one to eleven octal digits. Octal digits consist of the decimal
digits from 0 to 7. Note that eleven octal digits can have 33
bits, thus the largest octal number is @37777777777.

Binary numbers
Binary numbers are indicated by the presence of the percent sign
(%) and can then have between one and 32 binary digits.
The binary digits are the decimal digits 0 and 1.

ASCII strings
The ASCII string in an expression is a non-numeric constant. The
string data is represented by a sequence of characters enclosed by
a pair of matching single or double quotes (’ or "). Strings of
one to four characters will generate a valid 32 bit numeric value.
This can be used as any other integer constant within an
expression.

For example, the following strings generate the indicated
hexadecimal integer values:

’a’ = $00000061
’ab’ = $00006162
’abc’ = $00616263
’abcd’ = $61626364

The following example shows all integer constants within an
expression:

move.l #1994+$7f347+@47946+%100111011101101+"gh&",d0
; => move.l #523064,d0

Floating-point Constants
........................

ProAsm accepts two notations for floating-point numbers: the pure
fractional number and the engineering (exponential) notation. The
fractional notation should already be familiar to you; the decimal-point
method of writing numbers:

3.1415926
0.1994
32145.1123
-46.732
and so on.

The engineering notation includes a fractional part and an
exponential part. Taking the same numbers from above, they could be
written as:

3.1415926E0
1.994E-1

proasm 42 / 223

3.21451123E4 (or 3.21451123E+4)
-4.6732E1

The E, meaning exponent, can be either written in upper- or
lowercase. An exponent of n effectively "moves" the decimal point n
places to the right if n is positive and to the left if negative,
preserving the correct value of the number.

Notice that when you write a floating-point number in the source
code, the assembler also accepts numbers without a fractional part:

foo FEQU 3
; is the same as
foo FEQU 3.0
(The assembler automatically recognizes the integer value (3) as a

floating-point number because FEQU was used instead of EQU.)

Numeric Symbols

A numeric symbol is a symbol that represents a number. The exact
value that a numeric symbol actually represents, however, is not always
known by the assembler. There are three types of numeric symbols: absolute,
relocatable, and external.

Absolute Symbols
................

An absolute symbol has an exact, known value. It can be used
anywhere a numeric constant can be used, and works in exactly the same
way. Absolute symbols are commonly defined with the EQU directive,
like this:

the_answer EQU 42

Relocatable Symbols
...................

A relocatable symbol refers to the address of a specific position
within the output file the assembler is producing: for example, the
address of a specific instruction or data item. However, the assembler
may not know exactly where in the computer’s address space the output
it is producing will be loaded. In such cases, relocatable symbols are
used.

While ProAsm does not know exactly where a relocatable symbol will
fall in memory, it does know where the symbol will fall relative to
other symbols in the same segment. If one relocatable symbol is
subtracted from another one in the same segment, they "cancel out" into
a known value as if an absolute symbol had been used. In the following
example, ProAsm knows the value to put into the last DC.L statement
because the two relocatable symbols cancel each other out in the
expression:

proasm 43 / 223

start:
DC.L 1,2,3

finish:
DC.L finish-start ; => 12

An implicit form of "cancelling out" occurs when a relocatable
symbol is used as an operand in a PC-relative addressing mode. In the
following example, ProAsm knows the exact value to use in the LEA
instruction, because the relocatable symbol "cancels out" with the
(relocatable) address of the LEA instruction:

somewhere:
...
LEA (somewhere,pc),a0

Note that branch instructions (Bcc) are always PC-relative.

If ProAsm is generating a BINARY or otherwise non-relocatable
output file, but no ORG directive is used, "cancelling out" is the only
way relocatable references may be used. (If an ORG directive is used,
then ProAsm knows exactly where its output will be loaded, so it always
uses absolute symbols instead of relocatable symbols.)

If ProAsm is generating a relocatable output file, such as an
AmigaDOS executable or a linkable object module, then relocatable
symbols can also be used when defining longwords in instructions or
data. This causes ProAsm to include in the output file a fixup for the
longword in question, which instructs the linker or loader to "fix" the
value once the address is known exactly. For example, the following
statements are valid only when producing a relocatable file:

foo:
...
jmp foo
...
DC.L bar+10
...

bar:

Only one relocatable symbol may be used in an expression this way;
all other parts of the expression must be known values (or pairs of
relocatable symbols cancelling each other out, which amounts to the
same thing). Also, no special arithmetic may be applied to such a
relocatable symbol. For example, bar*2 or -bar would not work in the
DC.L above.

External Symbols
................

External symbols are symbols declared by the XREF directive,
meaning that the symbol is actually defined in a different module to be
linked later with the module being generated. In this case, ProAsm
does not even know where the symbol is located relative to other
symbols: all it knows is that the symbol exists. Because of this,

proasm 44 / 223

external symbols are the most restrictive type, and can only be used at
all when ProAsm is generating a linkable object file (see
Output File Format).

Since the relative positions of symbols are not known to ProAsm,
external symbols cannot "cancel out" like relocatable symbols, and a
fixup is produced every time one is used. There are three ways an
external symbol can be used:

32-bit Absolute
In instructions or data definitions that expect full 32-bit
addresses, ProAsm can generate 32-bit absolute fixups (external
symbol information), which are "fixed" once the exact address of
the symbol is known. These examples use 32-bit absolute fixups:

XREF foo,bar
...
jmp foo
...
DC.L bar-15

Note that this is the easiest way to use external symbols, and you
only need to worry about the other two if you are worried about
the size or efficiency of your program.

PC-Relative
In instructions expecting PC-relative values, ProAsm can create
PC-relative fixups which will be reduced to constants by the
linker. Most PC-relative external references are 16-bit, but
8-bit and 32-bit external references are also possible. 8-bit
references are not very useful due to their severely limited range,
and 32-bit PC-relative references only work in code for 68020 and
higher processors, since earlier processors do not have any 32-bit
PC-relative addressing modes.

To generate PC-relative references, ProAsm must assume that the
segment containing the reference will be merged by the linker into
the same segment as the one in which the symbol is actually
defined. If this assumption is not satisfied, the linker will
produce an error while linking the object files together.

Here are examples that generate 16-bit PC-relative fixups:

XREF foo,bar
...
move.w (bar+10,pc),d0
jmp (foo,pc)

Base-Relative
In instructions expecting 16-bit non-PC-relative values, ProAsm
creates 16-bit base-relative fixups. It makes the assumption that
the symbol will reside in a special "global data segment" produced
by the linker, containing all data accessed this way. The linker
creates a special symbol called _LinkerDB, which is the base
address of all global data. You reference this data by loading
the address of _LinkerDB into an address register with 32-bit
absolute mode, then use this register as the base address for

proasm 45 / 223

referencing 16-bit base-relative data. Here are some examples of
how this is done:

XREF _LinkerDB
XREF foo,bar
...
; Load base register
lea _LinkerDB,a5
...
; 16-bit access to foo
move.w (foo,a5),d0
...
; 16-bit indirect access to bar
move.w (indirect,pc),d0
move.l (d0.w,a5),d1

indirect:
DC.W bar

1.15 pro.guide/Registers

Registers
=========

All M68000 processors contain the following basic set of registers,
which are the ones primarily used during normal programming:

D0-D7
General-purpose 32-bit data registers, normally used to hold
integer values, counters, etc.

A0-A6
General-purpose 32-bit address registers, normally used to hold
pointers into main memory.

A7 or SP
The last address register is the Stack Pointer, and may be
referred to by either A7 or SP.

CCR
The 8-bit Condition code Register holds condition codes generated
during test and comparison instructions, and is used by
conditional branch instructions.

SR
The 16-bit Status Register holds various processor status and
configuration bits. It is actually a superset of the CCR, which
is contained in the lower 8 bits of the SR.

In addition, different members of the M68000 family support various
extended registers, listed in the following table. Many of the
registers can only be accessed using special instructions. All of the
M68000 registers are described fully in the ‘M68000 Family Programmer’s
Reference Manual’.

proasm 46 / 223

Basic Registers

MC680x0, MC68EC030, MC68EC040, MC68LC040: D0-D7, A0-A7, CCR, SR, USP

Control Registers

MC68000, MC68008: None
MC68010: SFC, DFC, VBR
MC68020: SFC, DFC, VBR, CACR, CAAR
MC68030: SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC , TT0, TT1,

MMUSR
MC68030: SFC, DFC, VBR, CACR, CAAR, ACR0, ACR1, ACUSR
MC68040, MC68LC040: SFC, DFC, VBR, CACR, URP, SRP, TC, DTT0, DTT1, ITT0,

ITT1, MMUSR
MC68EC040: SFC, DFC, VBR, CACR, DACR0, DACR1, IACR0, IACR1
MC68060: SFC, DFC, VBR, CACR, URP, SRP, TC, DTT0, DTT1, ITT0,

ITT1, BUSCR

Stack Pointer

MC68000, MC68008, MC68010: USP, SSP
MC68020, MC68030, MC68040, MC68060: USP, SSP (MSP, ISP)

Floating-Point Registers

MC68881, MC68882, MC68040, MC68060: FP0-FP7, FPCR, FPIAR, FPSR

MMU Registers

MC68851: AC, BAC0-BAC7, BAD0-BAD7, CRP, CAL, DRP, PCSR,
PSR, SCC, VAL

MC68030: CPR, SRP, TC, MMUSR, TT0, TT1
MC68040, MC68LC040, MC68060: URP, SRP, TC, DTT0, DTT1, ITT0, ITT1

1.16 pro.guide/Addressing Modes

Addressing Modes
================

This node (page) was intentionally shortened.

proasm 47 / 223

[...]
ProAsm supports both addressing mode syntax as defined by Motorola

for the M68000 Family. Below you will find a list of all
addressing modes.

The following notation conventions are used in this section:

Dn
Any data register (Example: D4 is data register 4)

An
Any address register (Example: A1 is address register 1)

Xn
Either an address register or a data register

PC
Program Counter

ZDn
Pseudo register that represents the suppressed data register n.
Only valid for the program counter and address register relative
addressing modes.

ZAn
Pseudo register that represents the suppressed address register n.
Only valid for the address register relative addressing modes.

ZSP
Pseudo register that represents the suppressed address register A7.
Only valid for the address register relative addressing modes.

ZPC
Pseudo register that represents the suppressed program counter.
Only valid for the program counter relative addressing modes.

d8
Signed displacement up to 8 bits wide (-128-127)

d16
Signed displacement up to 16 bits wide (-32768-32767)

d32
Signed displacement up to 32 bits wide

bd
Base Displacement up to 32 bits wide

od
Outer Displacement up to 32 bits wide

.size
Size of an index: either .W for 16 bits or .L for 32 bits

proasm 48 / 223

.B, .W, .L
Fixed size specifiers: byte, word, or long word, respectively

*scale
Scale factor for an index: 1,2,4, or 8, for no scaling, word, long
word, or quad word scaling, respectively

imm
An immediate value up to 32 bits wide

()
Identifies first-level indirect addressing

[]
Identifies second-level indirect addressing

- Data Register Direct: Dn

- Address Register Direct: An

- Address Register Indirect: (An)

- Address Register Indirect with Postincrement: (An)+

- Address Register Indirect with Predecrement: -(An)

- Address Register Indirect with Displacement: (d16 ,An)
- (old syntax): d16 (An)

- Address Register Indirect with Index (8 Bit Displacement): (d8 .B,An,Xn .size * ←↩
scale)

- (old syntax): d8 (An ,Xn .size *scale)

- Address Register Indirect with Index (Base Displacement): (bd .size

- Memory Indirect Postindexed: ([bd .size ,An],Xn .size *scale ,od.size)

- Memory Indirect Preindexed: ([bd .size ,An ,Xn .size *scale],od.size)

- Program Counter Indirect with Displacement: (d16 ,PC)

proasm 49 / 223

- (old syntax): d16 (PC)

- Program Counter Indirect with Index (8 Bit Displacement): (d8.B,PC,Xn .size * ←↩
scale)

- (old syntax): d8 (PC,Xn .size *scale)

- Program Counter Indirect with Index (Base Displacement): (bd .size,PC,Xn .size * ←↩
scale)

- Program Counter Memory Indirect Postindexed: ([bd .size ,PC],Xn.size *scale ,od ←↩
.size)

- Program Counter Memory Indirect Preindexed: ([bd .size ,PC,Xn .size*scale],od . ←↩
size)

- Absolute Short Addressing: (d16).W
- (old syntax): d16 .W

- Absolute Long Addressing: (d32)
- : (d32).L
- (old syntax): d32
- : d32 .L

- Immediate Data: #imm

1.17 pro.guide/Instruction Set

Instruction Set
===============

ProAsm supports the instruction set of the complete M68000 family.
For a complete overview refer to

Instruction Set Summary
. This section

discusses some peculiarities of the assembler and the instructions:

* Some instructions have variant forms that can be specified by the
user or will be automatically used by the assembler. The ADD and
SUB instructions have ADDA, SUBA, ADDI, SUBI, ADDQ, SUBQ as
variants. The CMP instruction has CMPA and CMPM as variants. The
AND, OR, and EOR instructions have their immediate variant (ANDI,
ORI, and EORI).

The assembler will automatically use the appropriate form if
possible. Note that the correct forms are always assembled faster

proasm 50 / 223

than if the "stubs" have to be converted by the assembler.

* A Bcc.B is equivalent to Bcc.S.

* If a short branch is specified to the following instruction, the
branch will be replaced by a NOP instruction to avoid an execution
error. A warning will be reported if such a conversion is made.

Example:
bra.s foo ; => converted to NOP

foo: ...

* There are two extensions to the standard condition codes: HS
(higher or same - unsigned) and LO (lower - unsigned). They are
equivalent to CC (carry clear) and CS (carry set).

For branch instructions BHS is equivalent to BCC, and BLO is
equivalent to BCS. This will also work for the DBcc and the Scc
instructions.

* If a MOVEQ instruction is used with an immediate source operand
from 128-255 a warning is issued. The MOVEQ instruction expects
an 8-bit (-128-127) immediate value that, during execution, is
sign-extended to long (32-bit). Thus any 8-bit number greater
than 127 will automatically become negative when sign-extended to
long.

To suppress this warning you have to add a longword size specifier
(.L).

* A LINK instruction with a positive or odd integer value as second
argument reports a warning.

* The BTST instruction is the only bit manipulating instruction that
allows program counter relative addressing modes.

BTST allows also an immediate addressing mode as destination if a
data register is taken as source.

Consider the following example:

btst d0,#%111100000011101 bne.s foo This example
jumps to foo if the data register d0 contains a value of zero, a
value from 2-4, or from 11-14.

1.18 pro.guide/END

- Stop reading the input file: END
- : ENDSRC

The END directive indicates the logical end of the source, and the
assembler ignores the remainder of the file. This directive is
optional; the end-of-file will be detected if no END directive is
given. If the assembler detects an unexpected end-of-file (for

proasm 51 / 223

example within an expression) an error will be issued.

The END directive may also be used to indicate the end of an
included file. If END is encountered in an include file, instead
of stopping assembly entirely, ProAsm merely "drops out" of the
include file and resumes with the source file that included it.

1.19 pro.guide/Include Files

Include Files

- Include source from file: INCLUDE filename
The INCLUDE directive allows you the inclusion of external files
into the program source. The loaded files must be either source
or preasm files.

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

If no explicit path is given (e.g. DF0:...) the assembler will
first search in the current directory for the requested file, and
after that in each of the directories defined by the
INCDIR/INCPATH directives, and the -I/INCDIR command
line option.

The included files have no restrictions on their content. They
are only read in the first pass, but processed on all passes.

The INCLUDE directive can be nested as deeply as available memory
allows.

Example:
INCLUDE "exec/types.i"
INCLUDE "exec/memory.i"

1.20 pro.guide/OPT Y

- Ignore multiple includes (default): OPT Y+
- : OPT NOINCONCE
- Do not ignore multiple includes: OPT Y-
- : OPT INCONCE

These options control the inclusion of files. The first two forms
force the assembler to ignore multiple file inclusion. A file can
be included as many times as you like to.

The last two forms tell the assembler to do not ignore multiple
includes. The files are only allowed to be included once. Any
further inclusion will be skipped by the assembler.

proasm 52 / 223

These options work together with the following directives:
INCLUDE, INCEQU, MACLIB, and HEADER.

By default, multiple includes are ignored.

1.21 incbin

- Include a binary file: INCBIN filename [,size[,seek]]
- : IBYTES filename [,size[,seek]]

These directives are used to include raw binary data (such as
graphic data, sound samples, sprite data, etc.) directly into the
object code at the current position. The program counter is
updated accordingly.

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

If no explicit path is given (e.g. DF0:...) the assembler will
first search in the current directory for the requested file, and
after that in each of the directories defined by the
INCDIR/INCPATH directives, and the -I/INCDIR command
line option.

Normally the complete file is loaded into the object code, except
one of the optional parameters size or seek is given.

Size represents the number of bytes that are maximally read of the
file filename. To avoid complications, the smaller size of both
sizes (size and the file size) is taken into account for reading
the data. If no size is given, the file size is taken instead.

The seek value defines the position in the file to start the
reading. A positive value sets the position relative to the start
of the file, and a negative value relative to its end. For
example, 20 is the position 20 bytes forward from start, -20 is 20
bytes back from the end of file. If seek is set to zero, reading
begins at the first byte of the file.

Consider the following example:
INCBIN "TheImage1.raw" ; include the whole file
INCBIN "TheImage2.raw",1024 ; include max. the first 1024 bytes
INCBIN "TheImage3.raw",512,-512 ; include the last 512 bytes of the ←↩

file
INCBIN "TheImage3.raw",,-512 ; same as above
INCBIN "TheImage4.raw",117,25 ; read 117 bytes from byte 25

1.22 pro.guide/INCEQU

- Include source from file in the first pass only: INCEQU filename
The INCEQU directive allows you the inclusion of external files
into the program source so they are processed in the first pass

proasm 53 / 223

only. The loaded files must be either source or preasm files.

Files included using INCEQU have restrictions on their content,
because they are read and processed in the first pass only. Only
symbol and macro definitions should be used in a file loaded by
the INCEQU directive, since that is the only time ProAsm evaluates
symbols and macro definitions. Code or data generating directives
and temporary symbols are not allowed in such a file. An error is
reported if any M68000 instruction or illegal directive is found
in the included file.

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.
The INCEQU directive can be nested as deeply as available memory
allows.

If no explicit path is given (e.g. DF0:...) the assembler will
first search in the current directory for the requested file, and
after that in each of the directories defined by the
INCDIR/INCPATH directives, and the -I/INCDIR command
line option.

1.23 header

- Include source from file at the very beginning: HEADER filename
The HEADER directive allows you the inclusion of external files
into the program source before assembling the main source code.
The loaded files must be either source or preasm files. This
directive must be used before any code or data generating
directive, or an error will be reported by the assembler. Note
that it is still processed after the configuration file, however.

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

If no explicit path is given (e.g. DF0:...) the assembler will
first search in the current directory for the requested file, and
after that in each of the directories defined by the -I/INCDIR
command line option.

The included files have no restrictions on their content. They
are read in the first pass only, but processed on all passes.

1.24 pro.guide/MACLIB

- Include preasm file: MACLIB filename
The MACLIB is a special variant of the INCLUDE directive. It
allows you only the inclusion of preassembled (preasm) files into
the program source.

The filename must be in normal AmigaDOS format and must be

proasm 54 / 223

enclosed in double or single quotes if it contains any whitespaces.

If no explicit path is given (e.g. DF0:...) the assembler will
first search in the current directory for the requested file, and
after that in each of the directories defined by the
INCDIR/INCPATH directives, and the -I/INCDIR command
line option.

The file that is to be included using the MACLIB directive must be
a preasm file, otherwise an error will be reported.

This directive is not the only one that allows the inclusion of
preasm files. Alternative directives are INCLUDE, INCEQU, and
HEADER.

1.25 pro.guide/INCDIR

- Define include search path: INCDIR path [,path[,...]]
- : INCPATH path [,path[, ...]]

This directives add the specified directory names to the list of
directories that tell the assembler where to look for files to be
included by the INCLUDE or INCBIN directives, or their synonyms.
The assembler normally looks for includes in the current directory,
then in the first directory in the search path, then in the second,
and so on.

The INCDIR directive takes as its parameter a sequence of
directory names separated by commas (,). Directory names
containing whitespaces or commas must be enclosed in double or
single quotes.

If you find yourself frequently referring to files with the same
directory name, it might be worthwhile adding a line like the
following to the top of your source code:

INCDIR "horribly/long/directory/name"

This way you can refer to the files like this:

INCLUDE "myIncludeFile.i"

instead of:

INCLUDE "horribly/long/directory/name/myIncludeFile.i"

We also recommend using multiple INCDIR directives each with just
one search path, instead of multiple comma-separated directories
in one directive, to provide a better overview of the entire
search path.

Example:
INCDIR "Include:" ; specify first search path,
INCDIR "asm:myInclude/" ; specify another search path

proasm 55 / 223

INCLUDE "exec/memory.i" ; Definitions used by the
INCLUDE "intuition/intuition.i" ; operating system.
INCLUDE "project1/myDefinitions.i" ; Definitions for my project

1.26 pro.guide/Macros

Macros
======

Identical of similar instruction sequences may often be repeated in
different place in a program. Writing a sequence of instructions
repeatedly can be tedious if the sequence is long or must be used many
times.

A macro is a shorthand notation for something else. That
"something else" may be much longer than the macro name itself,
difficult to type, or it can be made more readable by using a macro for
it.

A macro can contain M68000 instructions, assembler directives, and
other macro calls. Thus, macro substitution is a process of replacing
the macro name by its defined substitution code, called the macro body.
A macro body is not limited in its size (limited only by available
memory).

The example:
myMacro MACRO

lea \1,a0
bsr WriteStr ; write string
ENDM

...
myMacro titletext

will be assembled to:
...
lea titletext,a0
bsr WriteStr ; write string

This example illustrates the fact that everything in the macro body
(including the comments you may write in the definition) replaces the
macro name when the macro is invoked.

Typical uses for macros include also the definition of structure
elements and structures themselves. For example you want to expand the
PSTRING directive (see PSTRING) in a way that it supports strings
longer than 255 characters:

PSTRING_ MACRO
dc.w *STRLEN(\1)
dc.b "\1"
EVEN
ENDM

...
PSTRING_ <Strings up to 65535 characters allowed>
; => DC.W 38 / DC.B "Strings up to 65535 characters allowed"

proasm 56 / 223

While defining a macro, you must take care of the two following
important points:

* You can call macros within macros, but you cannot define macros in
macros.

* If you want to use local symbols within a macro body, then use the
’.’ (’.symbol’) or a double backslash (’\’). The ’\’ will be
assembled to a single backslash.

foo MACRO
...
tst.l d0
beq.s \bar
moveq #0,d0
bra.s .out

\bar: ...
.out:

ENDM

CAUTION: When you use macros, you should carfully document them.
Macros can impair the readability of a program if they are used
indiscriminately and unnecessarily. This can make it extremely
difficult to understand and to follow the program logic.

1.27 macro

- Begin macro definition: symbol MACRO
- End macro definition: ENDM
- : ENDMAC

The block of code between the MACRO and the matching ENDM
directive is the contents of the macro, called the macro body, and
may contain parameters. The provided symbol is used as macro name.
When the assembler finds the macro name in the opcode field of the
source code, the contents of the macro is expanded and inserted
into the source code at the point of the macro name. Together
with the macro name in the opcode field, you may supply any number
of arguments in the operand field.

Arguments supplied in the operand field must be separated by
commas. If an argument contains whitespaces or a comma then the
argument should be enclosed in a matching set of angle brackets (<
and >).

Consider the following example:
foo MACRO

DC.B "\1","\2"
ENDM

foo Argument1,Argument2 ; => DC.B "Argument1","Argument2"
foo <A,B,C>,<D,E,F> ; => DC.B "A,B,C","D,E,F"
foo <Hello World>,! ; => DC.B "Hello World","!"

See
Symbols and Keywords for Macros
, for more information about

proasm 57 / 223

macro arguments and macro directives.

- Exit from macro: MEXIT
This directive can be used to terminate the current macro call
prematurely (as thought there were no more source code in the
macro body). Usually this directive is used in association with a
conditional directive. This allows you to have more control over
a macro:

foo MACRO
move.l \1,d0
IFEQ NARG-1 ; just one argument given?

MEXIT ; => exit macro.
ENDC
move.\0 \2,d1

1.28 pro.guide/Symbols and Keywords for Macros

Symbols and Keywords for Macro Definitions
--

This section describes a number of special symbols and keywords
which can be used within macro definitions to build more powerful
macros.

Keywords start with a backslash character (\) and can be used
anywhere in a line, even embedded within a symbol name, while special
symbols such as NARG can only be used where ordinary symbols could be
used. The *S(symbol) keyword can be used to embed special (or even
ordinary) symbols anywhere in the source text; see

Substituting textual symbols in symbol names
, for more information.

- Argument n to macro: @{i}n
- : \(n)

Macro invocations can take parameters just like M68000
instructions and assembler directives. A symbol consisting of a
backslash and a number greater than zero is substituted with the
nth argument to the macro. For example, the following macro
generates a synonym for the moveq #0,reg instruction:

clrd MACRO
moveq #0,\1
ENDM

After this macro is defined, you can use, for example, clrd d0
instead of moveq #0,d0.

With the @{i}n form, n can be a single digit from 1 to 9 to indicate
one of the first nine parameters, or a lowercase letter from a to z
to indicate parameters 10-35, respectively. With the \(n) form, n
can be any number or constant numeric expression (e.g. \(16+i),
\(34), ...).

proasm 58 / 223

Macro arguments are textually substituted before they are
evaluated, so be careful of possible side-effects. For example,
this code sequence does not have the result that was probably
intended:

times2 MACRO
moveq #\1*2,d0
ENDM

times2 2+4 ; => moveq #10,d0

This is because the text 2+4 is substituted for \1 before the
expression is evaluated. The expression that actually gets
evaluated is 2+4*2, which ends up as 10 because of arithmetic
precedence rules.

To avoid situations like this, you may want to surround any @{i}n
symbols used in arithmetic expressions with parentheses. For
example, the above piece of code could be fixed like this:

times2 MACRO
moveq #(\1)*2,d0
ENDM

times2 2+4 ; => moveq #12,d0

You can take advantage of textual substitution to dynamically
construct symbol names within a macro. For example, the following
macro, when invoked with part of a symbol name as a parameter,
defines three new symbols with names based on the one supplied:

one_two_three MACRO
\1_plus_one EQU (\1)+1
\1_plus_two EQU (\1)+2
\1_plus_three EQU (\1)+3

ENDM

- Size tag used to invoke macro: \0
This symbol is replaced by the single-letter size tag used on the
macro invocation. If the macro is invoked without any size
specifier, word size (.w) is assumed.

For example, this macro definition clears a byte, word, or
longword at a0, and post-increments a0 appropriately:

stuff0 MACRO
clr.\0 (a0)+
ENDM

stuff0.b ; stuff a byte with 0
stuff0.w ; stuff a word with 0
stuff0 ; (same as above)
stuff0.l ; stuff a longword with 0

- Unique number: \#
- Unique number prefixed with _: @

proasm 59 / 223

These symbols are replaced with some arbitrary number which is
guaranteed to be unique for every macro invocation. The @ form
prefixes the number with an underscore, while the \# form
generates the number alone.

These symbols are generally used to generate unique labels within
macros that can be used many times. For example, this macro
stores the value in d0 into somewhere, but only if d0 is not zero:

foo MACRO
tst.l d0
beq.b lab
move.l d0,somewhere

lab:
ENDM

Unfortunately, this macro can be used only once--if you try to use
it more than once, ProAsm will generate a Symbol defined twice
error, because lab gets defined once in each macro invocation.
This can be fixed by changing the code to look like this:

foo MACRO
tst.l d0
beq.b lab@
move.l d0,somewhere

lab@:
ENDM

In this case, each time the macro is invoked, a new symbol of the
form lab_n is generated, so multiple invocations of the macro do
not conflict with each other.

Unfortunately, this macro definition still is not perfect. It will
cause problems if it is used in code that defines local symbols, as
in the following fragment:

tst.l d1
bne.b .nearby
foo

.nearby

In this example, the global label generated in the invocation of
foo will "chop" all local labels at that point, and ProAsm will
generate an Undefined symbol error. The macro can be fixed once
and for all by making its internal symbol local, like this:

foo MACRO
tst.l d0
beq.b .lab@
move.l d0,somewhere

.lab@:
ENDM

- Value of expression as decimal text: *VAL
- : *VALOF
- : *V
- : *D

proasm 60 / 223

- Value of expression as hexadecimal text: *HEX
- : *HEXOF
- : *H
- Value of expression as binary text: *BIN
- : *BINOF
- : *B
- Value of expression as octal text: *OCT
- : *OCTOF
- : *O

When ProAsm sees one of these symbols, it first calculates
expression, which must evaluate to a numeric constant, and then it
textually substitutes the computed value of that expression in
place of the original symbol. The *D(expression) and
*V...(expression) forms substitute the number in decimal, the
*H...(expression) forms substitute the value in hexadecimal, the
*B...(expression) forms in binary, and the *O...(expression)
forms in octal.

For example, the following macro can be used to automatically
generate a linked list:

counter SET 1 ; Initial value

defnode MACRO
node_*D(counter): ; This node’s label

DC.L node_*D(counter+1) ; Pointer to next node
counter SET counter+1 ; Bump node counter

ENDM

Each invocation of defnode will then define a new node in a linked
list, with the first longword containing a pointer to the next
node.

1.29 pro.guide/Substituting textual symbols in symbol names

- Text contained in textual symbol: *STRING
- : *S

This keyword allows textual symbols such as those defined by the
EQUR directive (see

EQUR
) to be used in places where such a symbol

could not normally be used; for example, as part of a symbol name.
ProAsm first expands the textual symbol, then substitutes it
directly into the source code.

Example:
foo EQUR bar

bar_one EQU 1
bar_two EQU 2

DC.B *S(foo)_one,*S(foo)_two ; 1, 2

proasm 61 / 223

- Decimal value of string length: *STRLEN
When ProAsm encounters this macro directive, it first evaluates
the length of the given string, and then it textually substitutes
the decimal value of resulting string length in place of the
original macro directive.

For example, the following macro can be used to automatically
generate a linked list of given strings:

counter SET 1 ; Initial value

defstring MACRO
node_*D(counter): ; This node’s label

DC.L node_*D(counter+1) ; Pointer to next node
counter SET counter+1 ; Bump node counter

DC.B *STRLEN(\1) ; insert string length
DC.B ’\1’ ; insert given string
EVEN
ENDM

defstring Count
defstring Zero

1.30 pro.guide/Substituting subsections of strings

- Specified number of characters from left: *LEFT
- : *L
- Specified number of characters from right: *RIGHT
- : *R

These macro directives determine the substring out of the given
string argument. Expr specifies the number of characters that are
taken from left (*LEFT()) or from right (*RIGHT()) respectively
of string as substring. Expr is taken as unsigned value, and zero
will be similar to an empty string.

Is string shorter than the requested length for the substring, the
complete string is taken.

The substring then is textually substituted in place of the
original macro directive.

Consider the following example:
foo MACRO

DC.B "*LEFT(\1,\2)","*RIGHT(\1,\2)"
ENDM

foo ABCDEF,2
; => DC.B "AB","EF"
foo ABCDEF,4
; => DC.B "ABCD","CDEF"
foo ABCDEF,6

proasm 62 / 223

; => DC.B "ABCDEF","ABCDEF"
foo ABCDEF,8
; => DC.B "ABCDEF","ABCDEF"

- Specified number of characters, starting at position n: *MID
- : *M

This macro directive textually substitutes the substring, defined
by the given arguments, in place of the macro directive.

This substring is ascertained by m characters starting at position
n. If there are less than m characters left to the right of
position n, the remainder of the string is taken as substring.

The expressions n and m are taken as unsigned values, and at least
one expression resulting in zero will produce an empty substring.

For example:
...
DC.B "*MID(ABCDEF,3,2)"
; => DC.B "CD"
DC.B "*MID(ABCDEF,4,8)"
; => DC.B "DEF"
...

- string converted to uppercase: *UPPER
- string converted to lowercase: *LOWER

These macro directives allow strings to be converted in upper or
lowercase, and then the converted strings are textually substituted
in place of the original macro directive.

For example, the following macro can be used to generate a list
with zero terminated upercased strings:

Upper_ MACRO dc.b "*UPPER(\1)",0 ENDM

Upper_ Appleseed ; => dc.b "APPLESEED",0 Upper_
Rumpelstiltskin ; => dc.b "RUMPELSTILTSKIN",0 Upper_
Orion ; => dc.b "ORION",0

1.31 pro.guide/Conditional Assembly

Conditional Assembly
====================

The purpose of conditional assembly directives is to determine
whether a section of source code is to be assembled or not.

These directives commonly are used in include files containing
symbol and macro definitions to determine if the file has already been
included.

This mechanism works like this (the example is taken from the
Commodore exec/types.i include file):

proasm 63 / 223

IFND EXEC_TYPES_I
EXEC_TYPES_I SET 1

... ; definition body

ENDC ; EXEC_TYPES_I

But what does this code fragment? This code fragment first checks
if the symbol EXEC_TYPES_I has already been defined. If it has been
defined, the whole part between the IFND and the ENDC directive will be
skipped by the assembler. The other way round if the symbol has not
been defined, the next line defines the symbol and the definition body
gets assembled. The ENDC directive informs the assembler that this
conditional directive is completed.

This construction prevents multiple definitions of the include file
body, while enabling you to include exec/types.i wherever and whenever
you feel you have to.

All the following described conditional directives have two things
in common: they all end with an ENDC directive (or by its synonym), and
they all control the inclusion or exclusion of one or more groups of
code lines. Conditional assembly directives may be nested up to
2147483647 () times.

- Assemble if symbol defined: IFD symbol
- Assemble if symbol not defined: IFND symbol

Depending on whether or not the symbol in question has been
defined, the assembler will include or exclude the source code
lines until a matching ENDC or ELSE directive is found.

Symbol may relate to a symbol of any type.

Consider the following example:
IFND DefaultValue

DefaultValue EQU 10
ENDC

- Assemble code if expression is equal to zero: IFEQ expression
- Assemble code if expression is not equal to zero: IFNE expression
- Assemble code if expression is greater than or equal to zero: IFGE expression
- Assemble code if expression is greater than zero: IFGT expression
- Assemble code if expression is higher than zero: IFHI expression
- Assemble code if expression is less than or equal to zero: IFLE expression
- Assemble code if expression is lower or same as zero: IFLS expression
- Assemble code if expression is less than zero: IFLT expression
- Assemble code if expression is minus: IFMI expression
- Assemble code if expression is plus: IFPL expression

The expression is evaluated and its result is used to determine
whether or not the following code lines will be assembled (up
until an ENDC or ELSE).

For example:
IFD SymbolA ; SymbolA defined?

proasm 64 / 223

IFMI SymbolA ; if so, check if its value is negative.
neg.l d0 ; if TRUE, add this code line.
ENDC
ENDC

Even more fancy expressions are possible:

IFNE (Counter1<>0)&(FlagB) ; IFNE = ‘‘IF TRUE’’
...
ENDC

- Assemble code depending on the comparison of both expression: IFEQ e,e
- : IFNE expression,expression
- : IFCC expression,expression
- : IFHS expression,expression
- : IFCS expression,expression
- : IFLO expression,expression
- : IFGE expression,expression
- : IFGT expression,expression
- : IFHI expression,expression
- : IFLE expression,expression
- : IFLS expression,expression
- : IFLT expression,expression
- : IFMI expression,expression
- : IFPL expression,expression
- : IFVC expression,expression
- : IFVS expression,expression

Both expressions are evaluated and the comparison of their results
is used to determine whether or not the following code lines will
be assembled (up until an ENDC or ELSE).

Both expressions are compared before the condition is checked. If
the comparison of the expressions is not true according to the
defined condition, assembly is disabled.

Example:
IFLE foo,bar
PRINTX ’bar’ is less or equal than ’foo’
ENDC

The tests for the conditions are equal to the ones for the
conditional branch instructions of the M680x0 family:
CC

carry clear

CS
carry set

EQ
equal

GE
greater or equal

proasm 65 / 223

GT
greater than

HI
higher

HS
carry clear (synonym to CC)

LE
less or equal

LO
carry set (synonym to CS)

LS
lower or same

LT
less than

MI
minus

NE
not equal

PL
plus

VC
overflow clear

VS
overflow set

- Assemble code if strings are the same: IFC string,string
- Assemble code if strings are not the same: IFNC string,string

These directives compare the two given strings. Depending on
whether or not the strings are identical, the assembler will
include or exclude the source code lines until a matching ENDC or
ELSE directive is found.

If a string contains any whitespaces or comma then it must be
enclosed within single or double quotes.

Note that the strings are compared case dependently.

These directives are often used within macro bodies to check the
validity of a macro parameter, as shown in the following example:

MyMacro MACRO
IFC ’’,’\1’ ; first is a null string
FAIL *** MyMacro: no parameter given!
ENDC
...

proasm 66 / 223

ENDM

- Assemble code if within the first pass: IF1
- Assemble code if within the last pass: IF2

These directives can be used to let the assembler do certain
operations only in the first or last pass of the assembly.

For example:
IF1

SymbolA EQU 1
SymbolB EQU 12

ENDC

IF2
PRINTX *** Pass 2 in progress...
ENDC

Please note: Never ever put any code within these two directives,
it may cause a difference in the object code size produced between
the passes!

- Assemble code if macro is used: IFU macro
- Assemble code if macro is not used: IFNU macro

These directives can be used to determine whether the macro in
question has been used until now, the assembler will include or
exclude the source code lines till a matching ENDC or ELSE
directive is found.

For example:
MyMacro MACRO

...
ENDM

...
IFU MyMacro
INCLUDE "MyMacro_Routines.s" ; include additional routines
ENDC ; used by the MyMacro macro.

- Toggle assembly condition: ELSE
- : ELSEIF

These directives reverse the condition whether the code is
assembled or not from the last IF condition. The ELSE/ELSEIF
directive matches the most recent IF directive.

Consider the following example:
IFEQ number
PRINTX ’number’ is zero.
ELSE
PRINTX ’number’ is not zero.
ENDC

proasm 67 / 223

- Toggle assembly condition and check expression: ELSEIF expression
The use of the ELSEIF directive together with an expression is an
extension to the standard ELSE/ELSEIF directive.

The ELSEIF expression statement is an abbreviation for
ELSE
IFNE expression

It reverses whether the code is assembled or not from the last IF
condition. If the toggles to TRUE (the previous condition was
FALSE) and the expression is unequal to zero the assembler will
include the source code lines until a matching ENDC or ELSE
directive is found.

For example:
IFND bar
PRINTX *** bar not defined!
ELSEIF bar
add.l #bar,d0 ; this line is only assembled if ←↩

the
ENDC ; symbol bar is defined and not ←↩

zero.

- Terminate conditional assembly: ENDC
- : ENDIF

Returns the assembly status to what it was before the last IF
condition. An ENDC/ENDIF directive is required for each IF
directive. It matches the most recent IF directive.

- Immediate IFNE: IIF expression instruction
This is the immediate form of the IFNE directive and it is only
effective on instruction. Neither the ENDC nor the ELSE can be
used together with this directive.

IIF enables the assembly of instruction if the result of the given
expression is unequal to zero.

For example:
IIF foo PRINTX *** foo is unequal to zero.

The preceding example is similar to the following:
IFNE foo
PRINTX *** foo is unequal to zero.
ENDC

- Break assembly: ENDASM
- Continue assembly: ASM

The ENDASM and ASM directives are a special form of conditional
assembly directives. They can be used to explicitly exclude the

proasm 68 / 223

source code lines between the ENDASM and the next ASM directive.

...
ENDASM
; this source code line will not be assembled.
ASM
...

A similar construction can be obtained by using one of the standard
conditional directives, for example:

...
IFEQ 1
; these source code lines will not be assembled,
; since the condition of the IF directive
; is always FALSE.
ENDC
...

This can be useful if you want to have old code fragments to be
included in the source code but not being assembled, for example
as comment or for archive reasons.

These directives can not be nested.

1.32 pro.guide/Repeating Text

Repeating Text
==============

Frequently the same sequence of instructions has to be repeated
several times in the same source file, for example if you are
generating data tables or some kind of routine that consists of similar
parts. To make it easier to define repeated sections of code or data,
ProAsm features two kinds of repeat loops: the REPT - ENDR loop and the
REPEAT - UNTILcc loop. The assembler will repeat the block between the
repeat loop introducer and the matching repeat terminator. After
assembling this block the repeat condition will be checked and then the
assembly will be recommenced at the beginning of the repeat or the
repeat will be terminated.

- Begin repeat loop: REPT expression
- End repeat loop: ENDR

The block of code between the REPT and the matching ENDR directive
will be repeated expression number of times. If expression
evaluates to zero the assembler will skip the instructions within
this loop.

Example:
REPT 4
move.l d0,(a0)+
ENDR
; the statement above is the same as the lines below

proasm 69 / 223

move.l d0,(a0)+
move.l d0,(a0)+
move.l d0,(a0)+
move.l d0,(a0)+

- Begin repeat loop: REPEAT
- End repeat loop: UNTILcc expression [,expression]

The block of code between the REPEAT and the matching UNTILcc
directive will be repeated as long as the result of the expression
satisfies the condition cc.

The UNTILcc directive marks the end of the repeat loop and has two
or three parameters: a condition and one or two expressions. The
given expression is evaluated and according to the cc condition
the loop is recommenced or terminated. If two expressions are
given the results of both expressions are compared before the
condition is checked. The cc may specify the following conditions:
CC

carry clear

CS
carry set

EQ
equal

GE
greater or equal

GT
greater than

HI
higher

LE
less or equal

LS
lower or same

LT
less than

MI
minus

NE
not equal

PL
plus

VC

proasm 70 / 223

overflow clear

VS
overflow set

The advantage of this loop is that the expressions may involve
variables that are undefined when the repetition started. For
example, a counting loop may be expressed as:

i EQU 0
REPEAT
...
i SET i+1 ; increment the loop counter
UNTILEQ j,n ; process loop n times

The termination condition is checked each time after the source
sequence within the loop. As a consequence, the sequence is
assembled at least once. The REPEAT loop introduces the danger of
a nonterminating loop. Evidently, such loops must be used with
care. Consider, for example:

REPEAT
i EQU i-2
UNTILEQ i

It is easy to realize that the above loop only terminates if i is
higher than zero and even (divisible by two).

Since ProAsm supports also comparison operators within an
expression, UNTILcc directives with two given arguments may be
reduced into a more obvious statement:

UNTILLE i,n
; can be reduced to
UNTILEQ i<=n

See Operators, for more information about the comparison operators.

- Exit from a repeat loop: REXIT
This directive can be used to terminate the current repeat loop
prematurely. Usually this directive is used in association with a
conditional directive. This allows you to have more control over
a repeat loop:

REPT -1 ; loop forever!
IFNE i>=n

REXIT ; ...except we can break out here
ENDC
; ...
i SET i+1
ENDR

This is a quite similar to a REPEAT-UNTILcc construct, except that
this loop will terminate immediately if i is already greater or
equal to n before the repeat loop started. The block of code
within a REPEAT-UNTILcc loop will be assembled at least once.

A counting loop may be expanded as:
i EQU 0
REPEAT
...
i SET i+1

proasm 71 / 223

UNTILEQ j=n

; or
REPT n
...
ENDR

1.33 pro.guide/Equates

Equates

- Define numeric symbol: symbol EQU expression
- : symbol EQUATE expression
- : symbol = expression
- : symbol == expression
- : DEFINE symbol = expression

Equates symbol to the value of the result of expression. The
expression is calculated immediately, and must resolve to a
numeric constant or a relocatable address. symbol can then be
used in place of the value of expression. The symbol may be a
forward reference to a symbol defined later in the program,
subject to the rules explained in
Forward References to Numeric and Textual Symbols.

- Define numeric symbol: symbol SET expression
- : symbol SETVAL expression

These directives assign the result of expression to the symbol.
The expression is calculated immediately, and must resolve to a
numeric constant or a relocatable address. symbol can then be
used in place of the value of expression. These directives are
identical to the EQU directives, with the exception that the
assignment is temporary and the symbol may be redefined. You can
always change the value of a numeric symbol later in the program.

The symbol may be a forward reference to a symbol defined later in
the program, subject to the rules explained in
Forward References to Numeric and Textual Symbols.

Consider the following example:
foo SET 1994

move.l #foo,d0
foo SET 1995

move.l #foo,d1

will be assembled to:

move.l #1994,d0
move.l #1995,d0

proasm 72 / 223

- Define numeric floating-point symbol: symbol FEQU expression
Equates symbol to the floating-point value of the result of
expression. The expression is calculated immediately, and must
consist of valid floating-point numbers and resolve to a numeric
floating-point constant. symbol can then be used in place of the
value of expression.

The symbol may be a forward reference to a symbol defined later in
the program, subject to the rules explained in
Forward References to Numeric and Textual Symbols.

Example:
pi FEQU 3.14159265359

...
fmove.d #pi,fp0

- Define numeric floating-point symbol: symbol FSET expression
Equates symbol to the floating-point value of the result of
expression. The expression is calculated immediately, and must
consist of valid floating-point numbers and resolve to a numeric
floating-point constant. symbol can then be used in place of the
value of expression. This directive is identical to the FEQU
directive, with the exception that the assignment is temporary and
the symbol may be redefined. You can always change the value of a
numeric floating-point symbol later in the program by using FSET.

The symbol may be a forward reference to a symbol defined later in
the program, subject to the rules explained in
Forward References to Numeric and Textual Symbols.

Example:
foo FSET 3.14159265359

fmove.d #foo,fp0
foo FSET 2.71828182845

fmove.x #foo,fp1

will be assembled to:

fmove.d #3.14159265359,fp0
fmove.x #2.71828182845,fp1

1.34 pro.guide/EQUR

- Define textual symbol: symbol EQUR text
- : symbol EQUR <text>
- : symbol EQUSTR text
- : symbol EQUSTR <text>
- : symbol FEQUR text
- : symbol FEQUR <text>

proasm 73 / 223

Attaches text to symbol, without actually evaluating or
interpreting the text in any way. When symbol is used in an
operand field somewhere else in the program, it is substituted
with text before the operands are otherwise evaluated. The second
form (<text>) allows you to include commas, semicolons, or
whitespace in the text.

The EQUR directive is historically meant specifically as an
EQU-like directive which applies to M68000 registers, or
register lists for movem instructions, instead of numeric values.
Hence the name: "EQUate Register." (FEQU, as you may guess, was
the same for floating-point registers).

For example, this code will push all the data registers onto the
stack:

dregs EQUR d0-d7
movem.l dregs,-(sp)

ProAsm extends the historical definition of EQUR to allow you to
define a symbol to be equal to any piece of text.(1)
For example, this code fragment will work under ProAsm:

msg EQUR "Hello world"
DC.B msg

will be assembled to:

DC.B "Hello world"

If you want to include commas, semicolons, or whitespace in the
EQUR replacement text, you must surround the entire text string
with angle brackets, like this:

foo EQUR <d0,d1>
move.l foo ; => move d0 to d1

See Textual Symbols, for more information on how textual symbols
defined by EQUR are expanded by ProAsm.

- Define textual symbol: symbol SETR text
- : symbol SETR <text>
- : symbol SETSTR text
- : symbol SETSTR <text>
- : symbol FSETR text
- : symbol FSETR <text>

Attaches text to symbol, without actually evaluating or
interpreting the text in any way. When symbol is used in an
operand field somewhere else in the program, it is substituted
with text before the operands are otherwise evaluated. The second
form (<text>) allows you to include commas, semicolons, or
whitespace in the text.

proasm 74 / 223

These directives are identical to the EQUR directive (see
EQUR
),

with the exception that the assignment is temporary and the symbol
may be redefined. You can always change the text of a textual
symbol later in the program by using one of these directives.

The EQUR and SETR directives allow you to define a symbol to be
equal to any piece of text. For example, this code fragment will
work under ProAsm:

msg EQUR "Hello world"
DC.B msg

msg SETR "Hello again"
DC.B msg

will be assembled to:

DC.B "Hello world"
DC.B "Hello again"

If you want to include commas, semicolons, or whitespace in the
SETR replacement text, you must surround the entire text string
with angle brackets, like this:

foo SETR <d0,d1>
move.l foo ; => move d0 to d1

See Textual Symbols, for more information on how textual symbols
defined by EQUR or SETR are expanded by ProAsm.

(1) <C programmers will notice that this directive is similar to the

#define directive of the C preprocessor.

1.35 reg

- Equate register list mask to a symbol: symbol REG register list
- : symbol EQURL register list

These directives assign a register list to a symbol that can be
used in place of the register list for a MOVEM instruction. The
format of the register list is the same as for the MOVEM
instruction. The advantage of using it is that if you decide to
change the register list, you only have to change the register list
on the REG directive instead of changing every MOVEM instruction
that uses it.

Example:
foo REG d0
bar REG d0-d3/d5-d6/a0-a6

proasm 75 / 223

movem.l bar,-(a7)
...
movem.l (a7)+,bar

This directive performs the historical function of the EQUR
directive: it will only work with register lists, not with
arbitrary text strings as EQUR does.

- Equate register list mask to a symbol: symbol SETREG register list
- : symbol SETRL register list

These directives assign a register list to a symbol that can be
used in place of the register list for a MOVEM instruction. These
directives are identical to the REG directive, with the exception
that the assignment is temporary and the symbol may be redefined.
You can always change the register list of a register list mask
symbol later in the program by using one of these directives.

The format of the register list is the same as for the MOVEM
instruction.

For example:
foo SETR d0-d2/d5-d6/a0-a6

movem.l foo,-(a7)
...
movem.l (a7)+,foo

foo SETR d0-a6
movem.l foo,-(a7)
...
movem.l (a7)+,foo

will be assembled to:

movem.l d0-d2/d5-d6/a0-a6,-(a7)
...
movem.l (a7)+,d0-d2/d5-d6/a0-a6

movem.l d0-a6,-(a7)
...
movem.l (a7)+,d0-a6

- Equate floating-point register list mask to a symbol: symbol FREG register list
This directive assigns a floating-point register list to a symbol
that can be used in place of the register list for a FMOVEM
instruction. The format of the register list is the same as for
the FMOVEM instruction. The advantage of using it is that if you
decide to change the register list, you only have to change the
register list on the FREG directive instead of changing every
FMOVEM instruction in the source code that uses it.

proasm 76 / 223

The FREG directive can be used for both, the floating-point data
and the floating-point control registers.

Example:
foo FREG fp0
bar FREG fp0-fp3/fp5-fp6 ; floating-point data registers
abcd FREG fpcr/fpsr/fpiar ; floating-point control register

fmovem.x bar,-(a7)
fmovem.l abcd,-(a7)
...
fmovem.l (a7)+,abcd
fmovem.x (a7)+,bar

This directive performs the historical function of the FEQUR
directive: it will only work with register lists, not with
arbitrary text strings as FEQUR does.

- Equate floating-point register list mask to a symbol: symbol FSETRL register ←↩
list
This directive assigns a floating-point register list to a symbol
that can be used in place of the register list for a FMOVEM
instruction. The format of the register list is the same as for
the FMOVEM instruction. This directive is identical to the FREG
directive, with the exception that the assignment is temporary and
the symbol may be redefined. You can always change the register
list of a register list mask symbol later in the program by using
one of these directives.

The FSETRL directive can be used for both, the floating-point data
and the floating-point control registers.

Example:
foo FSETRL fp0-fp3/fp5-fp6 ; floating-point data registers

fmovem foo,-(a7)
...
fmovem (a7)+,foo

foo FSETRL fp0-fp6 ; floating-point data registers

fmovem foo,-(a7)
...
fmovem (a7)+,foo

will be assembled to:

fmovem fp0-fp3/fp5-fp6,-(a7)
...
fmovem (a7)+,fp0-fp3/fp5-fp6

fmovem fp0-fp6,-(a7)
...
fmovem (a7)+,fp0-fp6

proasm 77 / 223

1.36 pro.guide/Structure Offsets

Structure Offsets

Highlevel languages usually have language elements to declare a
structure:
C/C++

struct

Pascal/Modula/Oberon
RECORD

...
Structures in highlevel languages are declarations of a collection

of elements as a unit, even if the elements are of different types
(heterogeneous structures). The origin of this data structures lies in
commercial data processing. (1)

Accessing and defining structures in assembler can demand great
toil and effort. A structure as used in the assembly language is a
collection of symbols which represent an offset in that structure. To
access an element of a structure in assembly language, you typically
use the "Address Register Indirect with Displacement" addressing mode
or one if its variations (see

Addressing Modes
), with the address of

the beginning of the structure in the address register and the offset
of the element you want to access as the displacement. For example, to
load the element named LN_TYPE from a structure pointed to by address
register A2, you could use the instruction move.b (LN_TYPE,a2),d0.

Accessing structures from assembly language is not difficult; what
can be a pain is figuring out the offset of each element and declaring
a symbol for it. That’s what the assembler directives described in
this section are useful for.

You can declare structures in several ways. The most common
methods are shown below as examples. The List Node Structure from the
exec/nodes.i include file from Commodore is taken as a base for the
examples.

The simplest, most straightforward way to declare a structure is by
using the EQU directive.

LN_SUCC EQU 0
LN_PRED EQU 4
LN_TYPE EQU 8
LN_PRI EQU 9
LN_NAME EQU 10
LN_SIZE EQU 14
However, this method requires careful computing of the offset of

each element based on the size and offset of the preceding element.
Also, it provides no easy way to insert or change the size of an

proasm 78 / 223

element: for example, if a new element is to be inserted at the
beginning of a long structure, all of the elements following the new
one have to be corrected by hand.

Another technique of declaring structures is by using macros as
(for example) defined in the exec/types.i include file of Commodore.

...
BYTE MACRO
\1 EQU SOFFSET
SOFFSET SET SOFFSET+1

ENDM

WORD MACRO
\1 EQU SOFFSET
SOFFSET SET SOFFSET+2

ENDM
...

More data storage macros can be found in the exec/types.i include
file from Commodore.

The advantages of using these macros is that the defined structures
can be ported very easily to other languages such as C/C++, and that
the type of an element can be seen clearly from its declaration in the
source code.

STRUCTURE LN,0
APTR LN_SUCC
APTR LN_PRED
UBYTE LN_TYPE
BYTE LN_PRI
APTR LN_NAME
LABEL LN_SIZE

A disadvantage of using macros to define structures is that macros
are textual replacements and therefore it assembles more slowly than
the first and the following method.

The easiest method of declaring structures is using the structure
offset directives that are described later:

RSRESET
LN_SUCC RS.L 1
LN_PRED RS.L 1
LN_TYPE RS.B 1
LN_PRI RS.B 1
LN_NAME RS.L 1
LN_SIZE RSVAL
Using these directives, elements can be inserted, removed, or

changed with hardly any effort at all.

To make it easier to declare data structures, ProAsm features two
different kinds of structure offset directives. These directives do
not directly affect your code or data space at all; they only define
symbols for use in other parts of the program.

Each of the structure offset counters (__RS, __SO, and __FO) is a
special symbol and can only be affected by its directives (see __RS).

proasm 79 / 223

- : [symbol] RS.size expression
- : [symbol] SO.size expression

These directives will assign the current value of the structure
offset counter symbols (__RS and __SO, respectively) to the
specified symbol, and then increment the counter according to size
and expression. The expression is the number of data items of the
size size the assembler reserves space for; in this way the
structure offset directives work much like the DS directive. The
symbol does not have to be specified; if it is omitted, then the
directive only increments the structure offset counter.

The size specifier must be one of the following:

Example:
RSRESET

pa_next RS.L 1
pa_registers RS.L 16
pa_fpuregisters RS.X 16
pa_SIZEOF RSVAL

Note that the RS and SO directives work exactly the same way, but
they use different and independent structure offset counters.
Therefore, you can use either directive to define a structure and
get the same results, but in the definition of one particular
structure you have to be consistent in which set of directives you
use (either just RS or just SO).

- : [symbol] FO.size expression
This directive will decrement the frame offset counter according
to size and expression and then assign its value to the optionally
given symbol. It can be used to define a list of offset for a
stack frame data structure (e.g. for the link instruction). In
other respects it works just like the RS and SO directives.

For example, suppose you define a stack frame data structure this
way:

CLRFO ; => 0
fx_Pred FO.L 1 ; => -4
fx_Succ FO.L 1 ; => -8
fx_Flags FO.B 1 ; => -9
fx_pad ALIGNFO.W ; => -10
fx_SIZEOF FOVAL ; => -10

Within the source code you could use this stack frame definition
as shown in the following code fragment:

link a5,#fx_SIZEOF ; allocate 10 bytes on the stack
movem.l d0/d1,fx_Pred(a5) ; store fx_Pred and fx_Succ
move.b #$80,fx_Flags(a5)
...
move.l fx_Pred(a5),a0
...
unlk a5 ; unlink

proasm 80 / 223

- Clear offset counter __RS: RSRESET
- Clear offset counter __SO: CLRSO
- Clear offset counter __FO: CLRFO

These directives clear their associated structure offset counters
to zero. They are typically used at the beginning of a new
structure definition.

RSRESET
is equal to RSSET 0

CLRSO
equals to SETSO 0

CLRFO
is equal to SETFO 0

- Set offset counter __RS: [symbol] RSSET expression
- Set offset counter __SO: [symbol] SETSO expression
- Set offset counter __FO: [symbol] SETFO expression

These directives can be used to set the corresponding offset
counters to a specific desired value (expression).

An optionally given symbol will be set to zero.

Consider the following example:
MH RSSET LN_SIZE ; sets initial counter value to LN_SIZE
MH_ATTRIBUTES RS.W 1
MH_FIRST RS.L 1
MH_LOWER RS.L 1
MH_UPPER RS.L 1
MH_FREE RS.L 1
MH_SIZE RSVAL

This defines the MH structure as an extension of the LN structure,
by starting its structure offset counter at LN_SIZE instead of
zero.

The preceding structure is actually the Memory Region Header,
defined in the exec/memory.i Commodore include file:

STRUCTURE MH,LN_SIZE
UWORD MH_ATTRIBUTES
APTR MH_FIRST
APTR MH_LOWER
APTR MH_UPPER
ULONG MH_FREE
LABEL MH_SIZE

- Assign __RS offset value to symbol: symbol RSVAL
- Assign __SO offset value to symbol: symbol SOVAL

proasm 81 / 223

- Assign __FO offset value to symbol: symbol FOVAL
These directives can be used to assign the current offset counter
value to the given symbol.

RSVAL
is equal to symbol EQU __RS

SOVAL
equals to symbol EQU __SO

FOVAL
is equal to symbol EQU __FO

(1) Programming language COBOL.

1.37 pro.guide/Case Sensitivity

Case Sensitivity

By default, all symbols in ProAsm are case-sensitive: foo, Foo,
FOO, and FoO are all different symbols. However, code written for
other assemblers may depend on symbols being case-insensitive, for
example by making a reference foo to a symbol defined as Foo. ProAsm
provides the following directives to control case sensitivity.

1.38 pro.guide/OPT C

- Make symbols case-sensitive (default): CASEON
- : OPT C+
- : OPT CASE
- Make symbols case-insensitive: CASEOFF
- : OPT C-
- : OPT NOCASE
- Make the first part of symbols case-sensitive: OPT Cn+
- Make the last part of symbols case-sensitive: OPT Cn-

The first four forms turn case sensitivity on or off as specified.
OPT Cn+ makes the first n characters of every symbol case
sensitive, and the rest case-insensitive. OPT Cn- does just the
opposite: it makes the first n characters of every symbol
case-insensitive, and the rest case-sensitive. n must be in the
range of 1 to 256.

These options should only be used before any symbols are defined or
an option must be at beginning error will be reported.

proasm 82 / 223

1.39 pro.guide/OPT U

- Use underscore character (_) to indicate local labels: OPT LOCALU
- : OPT U+
- Use period (.) to indicate local labels (default): OPT LOCALDOT
- : OPT U-

The first two forms should be used if the underscore (_) rather
than the dot (.) should introduce a local label. This option is
useful if you assemble source codes developed with other
assemblers which use the underline sign to introduce a local label.
The character used to introduce a local label defaults to the dot.

These options should only be used before any symbols are defined
or an option must be at beginning error will be issued.

- Enable period (.) as local label introducer (default): OPT U1+
- Disable period as local label introducer: OPT U1-
- Enable underscore (_) as local label introducer: OPT U2+
- Disable underscore as local label introducer (default): OPT U2-

These options similar to the preceding options, except that they
can be used to individually enable or disable each type of local
label introducer, so all four combinations are possible.

1.40 pro.guide/Syntax Options

Syntax Options

- Accept both new and old syntax: RELAX
- Accept new syntax only: NEWSYNTAX
- Accept old syntax only: OLDSYNTAX

Normally, ProAsm accepts new M68000 syntax (e.g., move.l
(16,a0),d0), and old syntax (e.g., move.l 16(a0),d0).
However, you can use the NEWSYNTAX or OLDSYNTAX directives to make
ProAsm accept only new or old syntax, respectively, and generate
an Addressing mode not recognized error if it encounters the
"forbidden" syntax. The RELAX directive returns ProAsm to its
normal state where it allows both new and old syntax. See

Addressing Modes
, for the exact differences between new and old

syntax.

proasm 83 / 223

1.41 pro.guide/OPT I

- Check absolute addresses for missing #: OPT CHKIMM
- : OPT I+
- Do not check absolute addresses (default): OPT NOCHKIMM
- : OPT I-

When this option is turned on the assembler will report a probably
immediate addressing mode error on all instructions using the
absolute addressing mode as source operand, unless it is the
AbsExecBase (4).

This option may be very useful for detecting typing errors, since
a missing pound sign (#) can cause subtle, hard-to-find bugs in
which an instruction reads an operand from some arbitrary location
in memory when an immediate value was intended.

You may force the assembler to use absolute addresses by appending
one of the absolute address size specifiers .L or .W.

Example:
OPT I+
move.l 4,a6 ; no error will be reported.
move.l 123456,d0 ; immediate addressing mode

; was probably meant.
move.l $f80000.L,d0 ; no error will be reported.

1.42 pro.guide/OPT P

- Ensure that code is position-independent: OPT CHKPC
- : OPT P+
- Disable check: OPT NOCHKPC
- : OPT P-

If this option is enabled the assembler reports a relocation not
allowed error on any instructions that require relocation. Using
this option you can make sure that the produced code will be
position-independent.

Note that addresses defined by the ORG directive do not produce an
error since they do not require relocation.

1.43 pro.guide/OPT NOTYPE

- Enable type checking: OPT TYPE
- : OPT T+
- Disable type checking: OPT NOTYPE
- : OPT T-

These options forces the assembler to do or to omit checks for the
correct use of symbols and expressions in certain addressing modes.

If type checking is enabled (OPT T+) relocatable symbols are not

proasm 84 / 223

allowed in absolute word and address register indirect (indexed or
not) addressing modes. These addressing modes require absolute
values. However, sometimes type checking can be more of an
obstacle than a help, so the checking can be disabled (OPT T-).

Examples:
; default
move.l (foo).w,d0 ; => error
move.l foo(a4),d7 ; => ok

OPT T+
move.l (foo).w,d0 ; => error
move.l foo(a4),d7 ; => error

OPT T-
move.l (foo).w,d0 ; => ok
move.l foo(a4),d7 ; => ok

foo:

By default, the assembler adopts a middle course. The type
checking is done only for the absolute word addressing mode. To
have the type checking completely enabled or disabled, these
options have to be used.

1.44 pro.guide/Processor Options

- Select processor specific instruction set: MC68000
- : MC68008
- : MC68010
- : MC68020
- : MC68030
- : MC68040
- : MC68060
- : MC68EC020
- : MC68EC030
- Select complete instruction set of the M68000 family: MCRELAX
- : MC680X0

These directives are used to specify the processor to be
programmed for. They tell the assembler the instruction set to be
used, valid addressing modes, and the best code optimization
possibilities.

You can use MCRELAX or MC680X0 to force the assembler to allow the
complete instruction set of the M68000 family.

These directives do not have a negative form. By default, ProAsm
is set to MC68000.

- Select allowed coprocessor: MC68881
- : MC68882
- : MC68851

These directives tell the assembler what coprocessor you want to
program for to allow their instruction set.

proasm 85 / 223

To decline a selected coprocessor you can use the OPT
P=-coprocessor option (see OPT P=).

The following example specifies the MC68020 processor together
with the MC68882 FPU and MC68851 MMU coprocessors:

MC68020 ; only the 68020 instruction set
MC68882 ; plus the 68882 FPU
MC68851 ; and the 68851 MMU instruction set
...
OPT p=-68851 ; disables the MC68851 instructions

- Select processor specific instruction set: OPT P=[-][processor][coprocessor]
This option can be used to specify the processor and coprocessor
to be programmed for. It tells the assembler the instruction set
to be used, valid addressing modes, and the best code optimization
possibilities.

The optional given processor argument must be one of the following:
68000
68010
68020
68030
68040
68060
68EC030
68EC020
Valid coprocessor arguments are:
68881
68882
68851
A list of coprocessors can be selected just by separating them
using a forward slash (/):

OPT P=68882/68851

If more than one processor is selected, the last one is taken into
account:

OPT P=68020/68040 ; => MC68040 processor selected

The advantage of this option is that you have the possibility to
unselect coprocessors by putting a minus sign (-) in front of the
first (co)processor. Note that processor selections have no
negative form, therefore they cannot be unselected. (By default
only the MC68000 processor is specified).

Consider the following examples:
OPT P=68030/68882 ; select MC68030 and MC68882
...

OPT P=-68040/68882/68851 ; select MC68040, but
... ; unselect MC68882 and MC68851

OPT P=68000 ; select the MC68000 processor,
OPT P=68851 ; and the MC68851 coprocessor

proasm 86 / 223

...

OPT P=-68882 ; unselect the MC68882 coprocessor

- Enable MC68040 software-supported instructions (default): OPT FPSP40
- Enable MC68060 software-supported instructions (default): OPT FPSP60
- Forbid MC68040 software-supported instructions: OPT NOFPSP40
- Forbid MC68060 software-supported instructions: OPT NOFPSP60

Both the MC68040 and the MC68060 processor have an optimized
floating-point unit to directly execute the most commonly used
subset of the extensive MC68881/MC68882 instruction set through
hardware. The remaining instructions are emulated by Motorola’s
floating-point software package to ensure complete compatibility
to the floating-point coprocessors.

These options can now be used to control the allowance of the
software-supported instructions for the specified processor.

By default, all software-supported instructions are enabled.

Example:
MC68060 ; select the MC68060 as target processor,
OPT NOFPSP60 ; but forbid the floating-point emulation.
...
fadd.x fp1,fp0 ; allowed FPU instruction.
fasin.x fp0 ; a ’MC68060 software-supported instruction ←↩

used’
... ; error will be reported.

- Enable MC68060 integer instruction emulation (default): OPT SP60
- Forbid emulated instructions: OPT NOSP60

The MC68060 left some low-use integer instructions unimplemented to
streamline internal operations. These unimplemented integer
instructions are software emulated to provide user object-code
compatibility with the M68000 family.

These options can now be used to control the allowance of the
software-supported integer instructions for the MC68060.

By default, the software-supported instructions are enabled.

The unimplemented integer instructions include 64-bit divide and
multiply, move peripheral data, cas2, chk2, and cmp2. In
addition, CAS used with a misaligned effective address is also
unimplemented. The unimplemented integer instructions are:

divu.l <ea>,Dr:Dq 64/32 => 32r,32q
divs.l <ea>,Dr:Dq 64/32 => 32r,32q
mulu.l <ea>,Dr:Dq 32*32 => 64
muls.l <ea>,Dr:Dq 32*32 => 64
movep Dx,(d16,Ay) size = W or L
movep (d16,Ay),Dx size = W or L

proasm 87 / 223

chk2 <ea>,Rn size = B, W, or L
cmp2 <ea>,Rn size = B, W, or L
cas2 Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) size = W or L
cas Dc,Du,<ea> size = W or L, misaligned <ea>

Refer to the ‘M68000 Family Programmer’s Reference Manual’ for
details on these instructions.

1.45 pro.guide/SUPER

- Enable warnings on supervisor-only opcodes (default): SUPER ON
- : OPT SUPER
- : OPT SW+
- Disable warnings: SUPER OFF
- : SUPER
- : OPT NOSUPER
- : OPT SW-

This option tells the assembler either to enable or disable the
warnings reported if a privileged instruction is assembled. SUPER
OFF should be used if you are writing code that will run in
supervisor mode, but it is a good idea to leave SUPER ON for
normal use to help avoid accidentally using instructions that are
unavailable.

1.46 pro.guide/READMODWRITE

- Disable warnings for read/modify/write instructions: READMODWRITE
- : READMODWRITE OFF
- Enable warnings (default): READMODWRITE ON

This directive can be used to control the warnings produced by the
CAS, CAS2, or the TAS instructions. These instructions trigger a
special bus cycle, intended for multiprocessor support, which many
models of the Amiga do not handle correctly. Using these
instructions can conflict with system DMA, and are documented by
Commodore as being unsuitable for use on the Amiga. The BSET
instruction can be used as a substitute for TAS on the Amiga. By
default the assembler will report a warning message.

1.47 pro.guide/SETKFACTOR

- Set default static k-factor for FPU Packed Decimal: SETKFACTOR expression
This directive sets the default k-factor used for the FMOVE
floating-point instruction if the destination format is Packed
Decimal, to specify the format of the decimal string.

The default k-factor is only used if no k-factor (static or
dynamic) is given to the FMOVE.P instruction. Format of the

proasm 88 / 223

instruction with a given and suppressed k-factor:
fmove.p fpn,<ea>{dx } ; dynamic k-factor given in a

; data register dx
fmove.p fpn,<ea>{#k} ; static k-factor given as value k

fmove.p fpn,<ea> ; no k-factor given,
; the assembler uses
; the default k-factor instead.

The given expression must be in the range of -64 to +63, where the
value defines the format as follows:
-64 to 0

Indicates the number of significant digit to the right of the
decimal point (Fortran "F" format).

+1 to +17
Indicates the number of significant digits n the mantissa
(Fortran "E" format).

+18 to +63
Sets the OPERR bit in the FPSR exception byte, treated as +17.

The following table gives several examples of how the k-factor
value affects the format of the decimal string that is produced by
the FPU.

k-Factor Source Operand Value Destination String
-5 +12345.678765 +1.234567877 E+4
-3 +12345.678765 +1.2345679 E+4
-1 +12345.678765 +1.23457 E+4
0 +12345.678765 +1.2346 E+4

+1 +12345.678765 +1 E+4
+3 +12345.678765 +1.23 E+4
+5 +12345.678765 +1.2346 E+4

The k-factor value defaults to zero if not specified. Refer to
the ‘MC68881/MC68882 Floating-Point Coprocessor User’s Manual’ or
any other manual that describes the MC68881/MC68882 coprocessors
for detailed information about the k-factor.

1.48 pro.guide/DEFAULT

- Define default behaviour: DEFAULT type@,mode
This directive can be used to set the default behaviour of ProAsm.
In almost all cases this defines the size the assembler should use
for either instructions or addressing modes if forward referenced
addresses are found.

The most types are only useful when code utilizing the new
addressing modes of the MC68020 or later processors is written.

As default type the following keywords are accepted:
_ADRBASEDISP

As mode either _WORD or _LONG can be given. This sets the
default size for the forward referenced address register base

proasm 89 / 223

displacements to 16 or 32 bit respectively. By default, the
assembler uses 16 bit displacements (_WORD).

_BASEDISP
This type works exactly like _ADRBASEDISP, with the exception
that it sets the default size for address base displacements
(_ADRBASEDISP) and program counter relative base
displacements (_PCBASEDIP). By default, the assembler uses
16 bit displacements (_WORD).

_BRANCH
Using this type the default size for branch instructions (Bcc
and BSR) can be set to a 32, 16, or 8 bit jump offset
respectively by selecting _LONG, _WORD, or _BYTE as mode.
The _SHORT keyword is also supported as a synonym for the
_BYTE mode. By default, the assembler uses 16 bit jump
offset (_WORD).

_LINKREF
This type can be used to select between two different
linkable object file formats. Using _BASERELATIVE as mode,
the assembler generates a standard object module compatible
with the Amiga standard linker (ALINK) and BLINK (the
replacement linker from ‘The Software Distillery’). Is
_RELATIVE given as mode, object modules compatible with some
older (non-standard) linkers will be generated. By default,
_BASERELATIVE is used.

_OUTERDISP
This type works in the same manner as _ADRBASEDISP, with the
exception that it sets the default size for outer
displacements. Refer to

Addressing Modes
, for detailed

information about the outer displacement. By default, the
assembler uses 16 bit displacements (_WORD).

_PCBASEDIP
This type works precisely in the same manner as _ADRBASEDISP,
except that it sets the default size for program counter
relative base displacements. See

Addressing Modes
, for

detailed information about the program counter relative base
displacement. By default, the assembler uses 16 bit
displacements (_WORD).

All the keywords are case-insensitive, and the leading underscore
(_) of type and mode is optional.

- Set default behaviour: OPT ABL
- : OPT ABW
- : OPT BDL
- : OPT BDW

proasm 90 / 223

- : OPT BRL
- : OPT BRW
- : OPT BRB
- : OPT BRS
- : OPT ODL
- : OPT ODW
- : OPT PCBL
- : OPT PCBW

These options are abridged versions of the DEFAULT directive and
can be used to set the default behaviour of ProAsm.

Here you find a list of these options and their matching DEFAULT
directive:
ABL

DEFAULT _ADRBASEDISP,_LONG

ABW
DEFAULT _ADRBASEDISP,_WORD

BDL
DEFAULT _BASEDISP,_LONG

BDW
DEFAULT _BASEDISP,_WORD

BRL
DEFAULT _BRANCH,_LONG

BRW
DEFAULT _BRANCH,_WORD

BRB
DEFAULT _BRANCH,_BYTE

BRS
DEFAULT _BRANCH,_SHORT

ODL
DEFAULT _OUTERDISP,_LONG

ODW
DEFAULT _OUTERDISP,_WORD

PCBL
DEFAULT _PCBASEDISP,_LONG

PCBW
DEFAULT _PCBASEDISP,_WORD

See
DEFAULT
, for more information about the meaning of each

DEFAULT argument.

proasm 91 / 223

1.49 pro.guide/Optimization

- Automatic PC-relative addressing: OPT AUTOPC
- : OPT A+
- Disable automatic PC-relative addressing: OPT NOAUTOPC
- : OPT A-

If OPT AUTOPC is specified the assembler uses the PC-relative
addressing mode where possible, instead of the absolute long
addressing. The use of this option may result in considerable
reduction of the object code size and runtime.

This transformation is made before the instruction is actually
assembled so if the address is out of range an error will be
reported. To override this transformation you can force the
assembler to use the absolute long addressing mode by appending
the .L size specifier, as with the absolute word addressing mode.

OPT NOAUTOPC is the default. See
Addressing Modes
, for more

information about the PC-relative addressing mode.

OPT A+
move.l foo,d0
; will be assembled to:
move.l foo(PC),d0

move.l (foo).L,d0
; will be left unaffected

- Enable all optimizations: OPTIMIZE
- : OPT O+
- Disable all optimizations (default): NOOPTIM
- : OPT O-
- Enable optimizations n, m, ...: OPTIMON n[,m ...]
- Enable optimization n: OPT On+
- Disable optimizations n, m, ...: OPTIMOFF n[,m ...]
- Disable optimization n: OPT On-

ProAsm is capable of performing various optimizations causing
instructions to be smaller and faster. No optimizations are
performed by default.

All optimizations performed will be reported by a warning. You
can control these warnings using the OW+ or OW- options. If any
optimization has been done the assembler will report the number of
optimizations made and bytes saved at the end of the assembly.

You may specify single optimizations by inserting a number between
the O letter and the plus (+) or minus (-) sign. On+ will enable
the optimization and On- is used to disable it.

Example:
OPT o+ ; turns all optimizations on

proasm 92 / 223

OPT o+,o1-,o6- ; turn all optimizations on, except 1 and 6
OPT o-,o3+,o2+ ; only optimizations 2 and 3 are turned on
OPT o5+ ; allow the optimization of add and sub

The following specific optimizations are available:
O1+
O1-

Optimizes backwards branches to their short form if in range
of -128-0 bytes.

Example:
foo: ...

bra foo
; will be optimized to
bra.s foo
; (2 bytes saved)

O2+
O2-

Optimizes the address register indirect with displacement
addressing mode to the address register indirect, if the
displacement is zero.

Example:
bar EQU 0

move.l 0(a2),d0
move.l bar(a1),d2
; will both be optimized to
move.l (a2),d0
move.l (a1),d2
; each optimization saved 2 bytes

O3+
O3-

Absolute long addressing mode within the range of -32768-32767
will be optimized to absolute word.

Example:
move.l 4,a6
; will be optimized to
move.l 4.W,a6
; and 2 bytes saved

Note that if the address size is given specifically as
absolute long (.L) no optimization will be made.

O4+
O4-

move.l #x,dn statements with an immediate value within the
range of -128-127 will be optimized to moveq #x,dn. This
optimization saves four bytes.

O5+
O5-

The add and sub instructions with an immediate number between
1 and 8 as source operand will be optimized to their quick
forms.

proasm 93 / 223

Example:
add.w #2,counter(a5)
add.l #4,d0
; can be optimized to
addq.w #2,counter(a5)
addq.l #4,d0
; and 2 respectively 4 bytes saved

O6+
O6-

This is not really an optimization. The assembler just
reports a warning on all forward branches that can be
shortened.

You can optimize it by hand; saves two bytes.

Example:
...
beq.s foo ; shortened forward branch to foo
...

foo:

O7+
O7-

Backward referencing absolute long addressing modes will be
optimized to PC-relative addressing modes if within the range
of -32768-0 bytes.

Note that if the absolute long address size is given
specifically no optimization will be made.

Example:
foo: ...

lea foo,a0
; will be optimized to
lea foo(PC),a0
; and 2 bytes saved, but
lea (foo).L,a0
; won’t be optimized

O8+
O8-

movea.l, adda.l, and suba.l instructions with an immediate
value within the range of -32768-32767 will be shortened to
word operation size (e.g. movea.w).

Example:
adda.l #$100,a0
; will be shortened to
adda.w #$100,a0
; and 2 bytes saved

O9+
O9-

cmp, cmpi, and cmpa instructions with an immediate source
operand will be optimized to a tst instruction if the

proasm 94 / 223

immediate value is zero. This optimization saves either two
or four bytes, depending on the used operation size.

Note that a cmpa instruction will only be optimized if code
generation for a MC68020 or higher processor is enabled.
Refer to MC68020 for more information on the processor
selection.

O13+
O13-

A base displacement within the range of -32768-32767 will be
optimized to word size.

Note that if the address size is given specifically to the
base displacement (.L) no optimization will be made. See

Addressing Modes
, for detailed information about the base

displacement.

O14+
O14-

An outer displacement within the range of -32768-32767 will
be optimized to word size.

Note that if the address size is given specifically to the
outer displacement (.L) no optimization will be made. See

Addressing Modes
, for detailed information about the outer

displacement.

O16+
O16-

This is not really an optimization. The assembler reports a
warning on all forward referencing absolute long addressing
modes that can be made PC-relative.

You can optimize it by hand; two bytes can be saved.

O17+
O17-

This is not really an optimization. A warning will be
displayed if an address register indirect with displacement
addressing mode can be optimized to an address register
indirect, if the forward referenced displacement is zero.

You can optimize it by hand; two bytes can be saved.

O18+
O18-

This is not really an optimization. The assembler reports a
warning on all forward referenced absolute long addressing
modes that can be shortened to absolute word.

Note that no warning is displayed for all absolute long
addressings with an absolute address size specifier (.L).

proasm 95 / 223

You can optimize it by hand; two bytes can be saved.

- Enable all additional optimizations: OPT Q+
- Disable all additional optimizations (default): OPT Q-
- Enable additional optimization n: OPT Qn+
- Disable additional optimization n: OPT Qn-

Next to the set of the standard optimizations, ProAsm supports
various additional optimizations. In the most cases these
optimizations convert instructions into other instructions or set
of instructions with the same result to gain a smaller and faster
code. No optimizations are performed by default.

All optimizations performed will be issued by a warning. You can
control these warnings using the QW+ or QW- options. If any
optimization has been done the assembler will report the number of
optimizations made and bytes saved at the end of the assembly.

You may specify single optimizations by inserting a number between
the Q letter and the plus (+) or minus (-) sign. on+ will enable
the optimization and on- is used to disable it.

Example:
OPT q+ ; turns all additional optimizations on
OPT q+,q1-,q7- ; turn all optimizations on, except 1 and 7
OPT q-,q3+,q2+ ; only optimizations 2 and 3 are turned on
OPT q5+ ; allow the optimization of add and sub

The following specific optimizations are available:
Q1+
Q1-

Optimizes clr.l with a data register operand to a moveq #0,dn
instruction. This optimization saves no bytes, but it is
faster than the clear instruction.

Q2+
Q2-

An asl instruction will be optimized to an add instruction if
a data register is arithmetically shifted by one bit. It
optimizes also the roxl instruction to addx if a data
register is rotated by one bit. The result of this
optimization is a gain in time.

Example:
asl.w #1,d3 ; => add.w d3,d3
roxl.l #1,d4 ; => addx.l d4,d4

Q3+
Q3-

Optimizes a movea instruction with an immediate source operand
of zero to suba. This optimization saves either two or four
bytes, depending on the used operation size.

Example

proasm 96 / 223

movea.l #0,a4 ; => suba.l a4,a4

Q4+
Q4-

If this optimization is turned on any adda and suba
instruction will be skipped by the assembler if the immediate
source operand is zero:

suba.l #0,a4 ; => instruction skipped
adda.w #0,a2 ; => instruction skipped

An addition or subtraction of zero has no effect to the
address register in the destination operand. This
optimization saves either four or six bytes, depending on the
used operation size.

Q5+
Q5-

A move.l instruction with an immediate source operand and a
data register as destination will be optimized to a
combination of a moveq and a not.b or not.w instruction.

The immediate value must be within the range of 128-255,
65408-65535, or -65409--65536. This optimization saves two
bytes.

Example:
move.l #65409,d1

will be optimized to:

moveq #126,d1
not.w d1

Q7+
Q7-

A move.l instruction with an immediate source operand and a
data register as destination will be optimized to a
combination of a moveq and a subq.l instruction.

The immediate value must be within the range of -136--129.
This optimization saves two bytes.

For example:
move.l #-132,d0

will be optimized to:

moveq #128,d0
subq.l #4,d0

Q8+
Q8-

A move.l instruction with an immediate source operand and a
data register as destination will be optimized to a
combination of a moveq and a swap instruction.

The immediate value must have the lower 16 bits set to zero

proasm 97 / 223

and be within the range of 65536-8323072 or -8323073--65537.
This optimization saves two bytes.

Example:
move.l #$10000,d6

will be optimized to:

moveq #1,d6
swap d6,d6

Q9+
Q9-

A move.l instruction with an immediate source operand and a
data register as destination will be optimized to a
combination of a moveq and a add.b instruction.

The immediate value must be even and within the range of
128-254 or -256--130. This optimization saves two bytes.

Example:
move.l #200,d2

will be optimized to:

moveq #100,d2
add.b d2,d2

Q11+
Q11-

Optimizes a move.b instruction with an immediate source
operand to a st.b instruction if the immediate value is -1.
This optimization saves two bytes.

Example:
move.b #-1,(a0)

will be optimized to:

st.b (a0)

Caution, the move.b #-1,<ea> instruction affects the
condition code flags, while the ST.B <ea> instruction does
not. Refer to the ‘M68000 Family Programmer’s Reference
Manual’ for more details about these instructions.

Q12+
Q12-

eor and eori instruction with an immediate source operand
will be optimized to a not instruction if the immediate value
is zero. This optimization saves either two or four bytes,
depending on the used operation size.

For example:
eori.w #-1,foo_flag(a3)

will be optimized to:

proasm 98 / 223

not.w foo_flag(a3)

- Enable multipass optimization: MULTIPASS
The MULTIPASS directive causes the assembler to use more than two
passes for an assembly task if needed. This allows to gain an
even more optimized code.

Due to the nature of a two pass assembler forward references
cannot be optimized. Forward references are only known in the
second pass and the assembler is thereby unable to generate an
optimized code.

With the possibility to use more than two passes, unknown forward
references vanish and multiple forward references "hopes" can be
resolved. All these previously unknown references can now be
taken into account by optimizations.

The assembler terminates a task, if no more passes have to be done
or any circular references were found.

The termination criteria for a multipass assembly are fulfilled
when no more optimization can be made and when no label had to be
changed due an optimization in the last pass.

Circular references are symbol definitions that assign themselves
to themselves:

a EQU a ; a circular reference

a EQU b ; another circular reference
b EQU c ; spread over three symbols
c EQU a ;

For all of the above written examples ProAsm reports an unresolved
symbol found error if multi-passing is enabled.

The MULTIPASS directive will have no effect if never any
optimizations were enabled (using the OPT O or OPT Q options or
any synonym).

This directive has no negative form. By default, the assembler
performs only two passes.

- enable the use of the optimizer library: OPT OPTIMLIB
- disable the use of the optimizer library: OPT NOOPTIMLIB

These options control the use of the optimization support library.
This library can be used by ProAsm to recognize more and complex
optimization possibilities.

The possible optimizations will be displayed. A short description
informs the user about the saved space and whether the

proasm 99 / 223

optimization could be made or not. If it could not be made by the
library, the way how the optimization can be achieved is described.

If the library could not be opened by OPT OPTIMLIB, a warning will
be reported.

See The proasmoptim.library, for more information about the use of
this library and its function.

1.50 pro.guide/Assembler Message Control

Generating Warnings and Errors
..............................

Sometimes you may want to make your source code do some automatic
"sanity checking" on macro parameters or other conditional assembly
options. The following directives make this possible.

- Generate an assembler error: FAIL message
This directive generates an error, causing the assembler to
display this source line and refuse to produce an output file.
For example, this macro generates an error if it is invoked with
more or less than four arguments:

ListEntry MACRO
IFNE NARG-4
FAIL ** wrong number of arguments passed!
ELSE
dc.w \1,\2
dc.l \3,\4
ENDC
ENDM

- Generate a warning message: WARN message
This is like FAIL, except it is not fatal and does not prevent the
assembler from producing an output file; it only displays the
source line containing the WARN directive. For example, this
macro produces a warning if invoked without any parameters:

DataEntry MACRO
IFC ’\1’,’’
WARN ** no argument, using default value.
dc.w 0
ELSE
dc.w \1
ENDC
ENDM

proasm 100 / 223

You can use special backslash symbols such as @{i}n within FAIL and
WARN messages; they will be expanded before the message is printed.
This example demonstrates how it can be useful:

Entry MACRO
IFLT \1,4
FAIL ** argument must be at least 4, was \1
ELSE
dc.w \1
ENDC
ENDM

If this macro is called with the parameter 5, ProAsm will fail with
this message:

FAIL ** argument must be at least 4, was 5

1.51 pro.guide/Controlling the Message Output

- Specify maximum number of errors: FAILAT expression
The expression specifies the maximum number of errors to be
reported before aborting assembly. An expression of zero sets the
limit to unlimited number of errors. This can be used to prevent
screenfuls of error message "spewage" from being dumped onto the
display because of one minor error in the source code which
cascades through and causes many other errors.

- Show errors messages (default): OPT E+
- Suppress error messages: OPT E-

This option enables or disables the report of error messages to the
standard output and the error file. It may be useful when the
assembler is used within a script file or something similar and
the report of error messages would be disturbing.

By default, all errors are displayed.

- Show warning messages (default): OPT WARN
- : OPT W+
- Suppress warning messages: OPT NOWARN
- : OPT W-

Use this option if you wish to display or to suppress the warnings
produced by the assembler. See

Warnings
, for detailed information

on the warnings generated by ProAsm.

proasm 101 / 223

- Show all warnings caused by optimizations (default): OPT OW+
- Suppress all warnings caused by optimizations: OPT OW-
- show warnings caused by optimization n: OPT OWn+
- suppress warnings caused by optimization n: OPT OWn-

The first two forms are used to control the warnings produced by
all optimizations.

You can also control the warnings produced by one particular type
of optimization by using either OWn+ or OWn-. The number n is the
number denoting the type of optimization; see OPT O, for more
details.

- Show all warnings caused by additional optimizations (default): OPT QW+
- Suppress all warnings caused by additional optimizations: OPT QW-
- show warnings caused by additional optimization n: OPT QWn+
- suppress warnings caused by additional optimization n: OPT QWn-

The first two forms are used to control the warnings produced by
all advanced optimizations.

You can also control the warnings produced by one particular type
of advanced optimization by using either QWn+ or QWn-. The number
n is the number denoting the type of optimization; see OPT Q, for
more details.

- Disable misalignment and odd access checks: ODDOK
- Enable checks: ODDERROR

These directives can be used to control the check for misalignment
and odd accesses.

Designing code for the MC68020 or higher microprocessors it is not
always necessary to check for word alignement for data, since
these processors can access data at any alignement. However,
should the code be downwards compatible the right data alignement
has to be ensured.

The ODDERROR directive tells the assembler to report any not word
aligned code and data, and any non-byte accesses to odd addresses.

By default, the checks are enabled.

Example:
...
ODDOK
move.l d0,DosBase ; => ok
add.w counter(pc),d1 ; => ok

ODDERROR
move.l d0,DosBase ; => error
add.w counter(pc),d1 ; => error
...

proasm 102 / 223

flag: dc.b 0
counter: dc.w 2 ; counter is odd aligned => error
DosBase: dc.l 0

- Disable misalignment and odd access checks: ODD2OK
- Enable checks: ODD2ERROR

These directives are extentensions to the above described ODDOK
and ODDERROR.

They enable or disable the same misalignment and odd access checks
as the ODDOK and ODDERROR do. In addition the ODD2ERROR directive
forces the assembler to report any odd displacement for the
address register indirect with displacement and the address
register indirect with index addressing modes (see

Addressing Modes
).

Consider the following example:
ODD2ERROR

progstart: lea progstart(pc),a4 ; set program base in A4
clr.l counter(a4) ; => ok
clr.b flag(a4) ; => ok
clr.w foo(a4) ; => error
...

counter: DC.L 0
flag: DC.B 0
foo: DC.W 0

The main goal of the additional checks are that possible odd
accesses through the use of the address register indirect with
displacement and address register indirect with index addressing
modes can be spotted. But these checks are only useful if the
address register is set to a 2-byte boundary. The assembler
assumes that the address register holds an even address, since its
contents is not known during assembly.

By default, these checks are disabled.

- Display filenames of all loaded files: OPT F+
- Do not display filenames (default): OPT F-

This option allows you to enable or disable the report of all
names of the files loaded by the either INCLUDE, INCBIN, or one of
their synonyms.

This messages will only be issued during the first pass.

proasm 103 / 223

- Show the preprocessed source line with messages: OPT Z+
- Show the original source line (default): OPT Z-

Whenever an error or a warning message is displayed, the assembler
also displays the corresponding source code line. Using this
option you can tell the assembler to display either the original
written line or the preprocessed line, with EQUR and similar
symbols expanded. It can be very useful to determine the actual
cause of an error in the presence of elaborate textual symbols.
The original source code line is shown as default.

The following example reports in both cases an undefined symbol
error, but different source lines will be displayed.

foo EQUR D8

OPT z- ; display the original written source code line
move.l foo,d0 ; move.l foo,d0 is shown next to the error message

OPT z+ ; show the assembled source code line
move.l foo,d0 ; move.l D8,d0 is written to the standard output

- Report error if bit number not in bounds: OPT CHKBIT
- Report warning if bit number not in bounds: OPT WARNBIT
- Do not check bit number (default): OPT NOCHKBIT

These options tell the assembler to report either an error message,
a warning message, or nothing at all, if the bit number specified
in the immediate source operand of a bit manipulation instruction
is not in bounds. The bit number must be either from 0 to 7 for
byte operations or from 0 to 31 for long word operations.

Bit manipulating instructions are the bchg, bclr, bset, and btst
instructions. When the destination is a data register, the M68000
processors automatically uses the bit number specified by the
modulo 32 bit number. When the destination is a memory location,
the operation is a byte operation, and any bit number is modulo 8.

Example:
OPT warnbit
btst #8,(a0)
; you get a warning from the assembler
OPT chkbit
bset #32,d0
; an error message will be displayed
OPT nochkbit
bclr #13,14(a4)
; nothing reported, bit 5 will be cleared

1.52 pro.guide/BASE

proasm 104 / 223

- Set base location: BASE expression
This directive forces the assembler to use a base for the address
register indirect with displacement (indexed or not) addressing
modes.

ProAsm allows the use of relocatable symbols as displacement for
the above mentioned addressing modes. If no base is defined (as
it is by default), the offset of the relocatable symbols are taken
into account for the displacements. (What is exact the same as a
base defined to the start of the current section, or a base of
zero respectively.)

move.l foo(a4),d0
...

foo:

To assure now a correct effective address calculation, the
assembler must know the base that is used. The example above
works only if the address register a4 is assigned to the beginning
of the current section. But what if the address register is set
to another location within the program code (but still within the
same section)? Moving the base that is hold in the base register
(a4 in the example) to another location, allows us to access
data in a wider range (from 0-32767 up to -32768-32767).

To tell the assembler the location of the new base you can apply
the BASE directive, with the expression set to this new location.
The effective address is corrected by subtracting the offset of
the base location (expression) from the displacement of the
mentioned addressing modes.

The expression describes the new location relative to the start of
the current section. An expression of zero forbids the effective
address correction. It must be a relocatable expression, absolute
expressions are not allowed and an error is reported. (With the
exception that zero (0) can be used to disable the use of bases.)

Examples:
BASE progstart+4096
; Set base 4kbytes from program start,
; effective access range is -4096--32767.

BASE progbase
; Using a special symbol for the base,
; you have the possibility to set it manually.

The advantage of using the BASE directive is that if you decide to
change the base location, you only have to change the expression
on the BASE directive instead of changing every displacement of a
base relative access:

start: ...
; traditional base relative access
lea start(pc),a4 ; load a4 with the base address
move.l foo-start(a4),d0 ; base relative access

; new method
BASE start ; set the base location to start
BASEREG a4 ; use only a4 as base register

proasm 105 / 223

lea start(pc),a4 ; load a4 with the base address
move.l foo(a4),d0 ; base relative access
...

foo:

The following example shows you two different methods to assign
the base to the base register:

BASE progbase

lea progbase(pc),a4
; common way to set the register

lea __base(pc),a4
; setting the register using the __BASE symbol
...

progbase:
This example works only if the base is in the same section as the
register assignment.

To handle section overlapping bases correctly, consider the
following example:

BASE Data+32766
SECTION "code",CODE
...
lea __base,a4
; set base register to the data section.
; the same as lea Data+32766,a4
...
move.l d0,DosBase(a4)

SECTION "data",DATA
Data: ; mark start of data section
DosBase: dc.l 1
ImageData:

Note that a base movement done by the BASE directive affects the
effective address calculation of all address register indirect
with displacement addressing modes for all address registers
(except a7). To restrict this correction to one or to a list of
address registers, use the BASEREG directive (see its description
below).

The __BASE symbol contains the current base address, if any
defined. See

Special Symbols
, for the description of the __BASE

symbol. Be aware that when no base is defined this symbol
contains the absolute value of zero. Assigning __BASE to a
address register in such a situation will load the address
register with the value of zero (identical to lea 0,a4).

You can use the BASE directive more than once within a program
code. For a temporary change of the base location the following
mechanism can be used:

oldBase EQU __base ; store current base
BASE newbase ; set new base
...

proasm 106 / 223

BASE oldbase ; restore previously used base

Consider also the following example that uses the OPT T in
combination with the BASE and BASEREG directives for a stronger
typechecking:

BASE progbase
BASEREG a4
OPT T+ ; enable typechecking

progbase:
...
lea progbase(pc),a4
move.l d0,foo(a4)
move.l d1,bar(a5) ; => ERROR
...

foo: dc.l 0
bar: dc.w 0

If in the example above the typechecking would be disabled, no
error would be reported by the assembler.

By default, no base is defined.

- Forbid base correction: NOBASE
- : BASE 0

These directives forbid the effective address correction for all
address register indirect with displacement (indexed or not)
addressing modes.

By setting the base to zero (as NOBASE does) the base offset is
resetted to its default, and effective address correction is
turned off.

These directives can be used in combination with the BASE
directive more than once in the program code if desired.

- Declare base register list mask: BASEREG address register list
Using the BASEREG directive, a list of address registers (or a
single address register) can be defined, that are accepted as base
registers.

The address register list is a standard register list, as known
from the MOVEM instruction, but only address registers are allowed.

If a BASE directive is used to define a new location for the
program base, the displacements of all address register indirect
with displacement addressing modes are corrected. Using the
BASEREG directive you can select the base registers for which the
correction is made.

For example:
BASEREG a4 ; select only a4 as base register

proasm 107 / 223

BASEREG a2/a4-a5 ; select a2, a4, and a5 as base registers

BASEREG a0-a7 ; select all registers

BASEREG a0-a6 ; select all registers form a0 to a6 (default)

By default, the address registers a0-a6 are accepted for
displacement correction.

1.53 pro.guide/Absolute Assembly

- Set absolute origin: ORG expression
The ORG directive forces the assembler to enter absolute assembly
mode. The location counter is set to the expression in the
operand field.

This directive is normally used to set the starting address of ROM
based code when the BINARY directive is used (see BINARY).

Note that ProAsm generates a warning when this directive is used
if the location counter is unequal to zero. Using the ORG
directive while generating executable or linkable object code is
not recommended. The Amiga is a multitasking platform and
therefore assumption about absolute memory addresses should not be
made.

For example:
ORG $F80000 ; set location counter to $F80000
...

ORG $F80000-$10000 ; set location counter to $F70000
...

The location counter defaults to zero at the start of the assembly.

- Terminate absolute assembly mode: ENDORG
This directive can be used to terminate absolute assembly mode
introduced by the ORG directive (even if more than one ORG
directive was used).

Example:
bsr foobar
moveq #0,d0
rts
...

ORG $f70000 ; start absolute code with the
foo: ... ; location counter set to $F70000.

ENDORG ; end absolute code

proasm 108 / 223

foobar: ...

- Re-define program origin: RORG expression
The RORG directive defines a new offset for the subsequent code.
Expression is the new offset relative to the start of the current
section, and it must not contain any forward references.

For example:
...
movem.l (a7)+,d1-a6
rts

RORG 1024
...

Should the result of the given expression be smaller than the
current program counter, the assembler would have to overwrite
already generated code. In such a case an error is reported.

1.54 pro.guide/Data Output Directives

- Define Bytes: label DC.B value [,value [,...]]
- : label DB value [,value [,...]]

Reserves memory for one or more bytes in the output file, and
initializes them to the specified values. Numeric values are
stored directly in single bytes. They can be either signed or
unsigned, and must be in the range from -128 to 255. (The values
-128 to -1 are equivalent to the values 128 to 255.) String
operands can be included as well, enclosed in single or double
quotes. They can be of arbitrary length, and are stored in order
as sequences of bytes.

- Define Words: label DC.W value [,value [,...]]
- : label DW value [,value [,...]]

Reserves 16-bit words. Numeric operands must be in the range from
-32768 to 65536. You can use quoted strings, but they must be
only one or two characters long. Single quoted characters are
zero-extended to 16 bits. (The high-order byte of the word is set
to zero, and the low-order byte is set to the character specified.)
Strings of two characters are placed in a single 16-bit word with
the first character in the upper byte and the second character in
the lower byte.

- Define Longwords: label DC.L value [,value [,...]]
- : label DL value [,value [,...]]

proasm 109 / 223

Reserves 32-bit long words. Numeric operands can be anywhere in
the range -2147483648 to 4294966295. Quoted strings must be from
one to four characters in length. They are packed into single
longwords, with the last character occupying the least-significant
byte in the longword. The longword is zero-extended to 32 bits if
the string is less than four bytes in length.

In addition to constants, you can use relocatable values such as
labels in DC.L directives, as long as the output file is in a
relocatable or linkable format. Such values generate 32-bit
relocations or 32-bit external references in the output file.

Here are some examples demonstrating the use of these directives:

DC.B 1,2,3,$23,-1,"hello",’world’
; => $01020323 ff68656C 6C6F776F 726C64

DC.W 1,2,3,$1234,-1,"a","b","cd"
; => $00010002 00031234 FFFF0061 00626364

DC.L 1,$1234,-1,"a","bcd",my_label
; => $00000001 00001234 ffffffff 00000061 00626364 (reloc32)

Note that if you want a string to be null-terminated (as most
operating system functions and C programs expect), you must add the
null byte at the end yourself, like this:

msg DC.B "This is a message.",0
; => $54686973 20697320 61206D65 73736167 652E00

1.55 pro.guide/Initialized Data with Restricted Range

- Define Unsigned Bytes: label UB value [,value [,...]]
- Define Unsigned Words: label UW value [,value [,...]]
- Define Unsigned Longwords: label UL value [,value [,...]]

These directives work like DB, DW, and DL, respectively, except
that their operands are restricted to unsigned numbers only: using
a negative number as a value generates an error. For example, UB
accepts only numbers between 0 and 255, while DB accepts anything
between -128 and 255. Note that these directives do not actually
restrict the output data you can generate, because large unsigned
numbers can always be used instead of negative numbers.

- Define Positive Bytes: label SB value [,value [,...]]
- Define Positive Words: label SW value [,value [,...]]
- Define Positive Longwords: label SL value [,value [,...]]

These directives are the converse of UB, UW, and UL; their
operands are restricted to signed numbers only. For example, SB
only accepts numbers between -128 and 127.

proasm 110 / 223

- Define Positive Bytes: label PB value [,value [,...]]
- Define Positive Words: label PW value [,value [,...]]
- Define Positive Longwords: label PL value [,value [,...]]

These directives work like UB, UW, and UL, except that their range
is further restricted to only numbers whose binary representations
have their high bit clear: signed positive numbers. For example,
PB only accepts numbers between 0 and 127 instead of 0 and 255.

- Define Negative Bytes: label NB value [,value [,...]]
- Define Negative Words: label NW value [,value [,...]]
- Define Negative Longwords: label NL value [,value [,...]]

These directives are the converse of PB, PW, and PL: they accept
negative numbers only. For example, NB only accepts numbers
between -128 and -1.

Examples:
DB -50 ; => $CE
UB -50 ; => Error!
SB -50 ; => $CE
PB -50 ; => Error!
NB -50 ; => $CE

DB 50 ; => $32
UB 50 ; => $32
SB 50 ; => $32
PB 50 ; => $32
NB 50 ; => Error!

DB 150 ; => $96
UB 150 ; => $96
SB 150 ; => Error!
PB 150 ; => Error!
NB 150 ; => Error!

1.56 pro.guide/Declaring Data Blocks

- define storage: [label] DS.size length [,expression]
- define constant block: [label] DCB.size length [,expression]
- : [label] BLK.size length [,expression]

These directives can be used to reserve memory space within the
object code. The given expression is stored in memory length times
with the size of size. The length must be an absolute integer
expression. The expression can be an expression of any type,
unless the given size contradicts with expression (as in DS.B
4,-1.34E14). If no expression is given a value of zero is used.

The size specifier must be one of the following:

proasm 111 / 223

For example:
ALIGN.L

fileinfo: DS.B fib_SIZEOF,0 ; dos/dos.i
is the same as:

ALIGN.L
fileinfo: DS.B fib_SIZEOF ; dos/dos.i

These directives are used within BSS sections to declare storage.
If such a directive is found within a BSS section with an
expression unequal to zero, a warning is reported.

Defining storage in a BSS section can look like this:
SECTION "bss",BSS

DosBase DS.L 1
GfxBase DS.L 1,0
IntBase BLK.L 1
Flag DC.B 0

ALIGN.W
Image DS.B 1024,0

A special form of these directives will align the program counter
to an even boundary by using DS.W 0, likewise, DS.L 0 will align
the program counter to a longword boundary, and so on for all
remaining sizes. See

Alignment Padding
, for more information.

1.57 pro.guide/Uninitialized Data Blocks

- Define uninitialized extra storage: [label] DX.size length ←↩
[,0]

This directive can be used to reserve memory space within the
object code. The assembler reserves space in the program code
depending on the given size specifier size and length (length is
the number of data items of the size size).

The length must be an absolute integer expression, and the size
specifier must be one of the following:

Memory blocks defined by the DX directive must be at the end of a
section (unless within a BSS section) and no other code or data
generating directive is allowed after a DX directive.

Unlike the data block declaring directives (see

Declaring Data Blocks
), the DX directive does no memory

initialization. If your program requires the memory to be cleared
then you must write a small routine to clear that memory block (as
a part of the initialization of your program). For example:

...
lea DXStart(pc),a1
move.w #DXEnd-DXStart-1,d7

proasm 112 / 223

.clrdx: clr.b (a1)+
dbra d7,.clrdx
...

DXStart:
DosBase: DX.L 1 ; allocate 4 bytes
GfxBase: DX.L 1
ArgStr: DX.L 1
ArgLen: DX.B 4 ; allocate 4 bytes

foo: DX.X 1 ; allocate 12 bytes
bar: DX.D 3 ; allocate 24 bytes
DXEnd:

END

The advantage of the DX directive is that the program code can be
made smaller and, as a consequence, will be loaded faster by the
AmigaDOS loader.

1.58 pro.guide/Defining Strings

- Define a null-terminated string: [label] CSTRING string
- : [label] CSTR string

This directive is an extension to the DC.B directive. It works
similar to the DC.B directive except that an additional null byte
is appended after the string. The result is a null-terminated
(C-style) string as used for strings in the programming language C.

Consider the following example:
CSTRING "Hello World"
; => DC.B "Hello World",0

CSTRING $9b,"1mHello World",$9b,"0m"
; => DC.B $9b,"1mHello World",$9b,"0m",0

- Define an OS-9 string: [label] ISTRING string
- : [label] ISTR string

This directive is an extension to the DC.B directive. It works
similar to the DC.B directive except that bit 7 of the last byte
in the given string is inverted.

For example:
ISTRING "error occurred" ; => DC.B "error occure","d"|$80

Since the bit 7 is inverted, characters with an ASCII value higher
than 127 can also be handled.

This directive has the advantage that a string intensive program
can save a lot of space by using it instead the CSTRING directive

proasm 113 / 223

(for example).

It is easy to write string handling routines that can detect the
end of such a string. For example a simple string copy routine
that just copies the string:

;
; A0: pointer to the source i-string
; A1: place the string is copied to
;
copy_string:

move.b (a0)+,(a1)+ ; copy character
bpl.s copy_string ; until a negative byte detected (bit 7 ←↩

set),
bchg #7,-1(a1) ; invert bit 7 of the last copied byte.
rts

Note that the small routine above does not handle ASCII values
greater than 127 (they would be seen as the end of the string).

Within your program it can look like that:
...
lea title(pc),a0
lea buffer,a1
bsr copy_string

...
title: ISTRING "Example Copy_String v1.0"

- Define a BCPL string: [label] PSTRING string
- : [label] PSTR string

This directive is an extension to the DC.B directive. It works
similar to the DC.B directive except that an additional byte is
added in front of the string that contains the length of the given
string.

Due to the fact that the length is stored as byte, the string may
not be longer than 255 characters.

For example:
PSTRING "BCPL Strings" ; => DC.B 12,"BCPL Strings"

So defined strings (BCPL strings) were used by the AmigaDOS (up to
OS1.3).

1.59 pro.guide/Alignment Padding

Alignment Padding

It is often necessary or desirable for certain data structures or
other constructs to have certain alignment properties, such as being
aligned on a 2-byte or 4-byte boundary. For one thing, all code for

proasm 114 / 223

the M68000 family has to obey certain alignment conventions:

* All machine instructions must start on even-byte boundaries.
That should not be a problem unless byte sized data and code get
mixed. For instance:

bra.s foo
DC.B "Hello world!",0 ; 13 bytes

foo: moveq #0,d0 ; this instructions lies on an uneven ←↩
boundary

The assembler reports a odd address error if an instruction is
located at an odd address. To ensure that the program counter
is forced to an even address use the EVEN directive or one of
its alternate forms:

bra.s foo
DC.B "Hello world!",0 ; 13 bytes.
EVEN ; ensure word boundary!

foo: moveq #0,d0

* When working with word or long word sized data you must ensure
that they are on an even address. (This is not necessarily for the
MC68020 or higher microprocessors, since they can access data

at any alignement, but it is recommended for downwards
compatibility and for better performance). The assembler
gives an odd address error message if an instruction that would
access a misaligned word- or longword-sized data item is
detected:

move.l myData,d0
...
dc.b 0

myData: dc.l 5 ; myData is misaligned

Data structures in the Amiga Operating System must be word aligned,
except for a few structures that need to lie on a long word boundary.
(For detailed information on the data structures of the AmigaOS refer to
‘AMIGA ROM Kernel Reference Manual: Includes and Autodocs’).

The start of a new section is always automatically long word
aligned.

1.60 pro.guide/ALIGN

- Align program counter: CNOP expression [,expression]
- : ALIGN expression [,expression]

These directives allow you to align code or data to any specified
boundary.

If only one argument is supplied with these directives then it is
the desired boundary. When both arguments are supplied the first
expression is the offset beyond this alignement and the second
expression is the desired alignement.

The program counter is padded to the desired boundary by inserting

proasm 115 / 223

the required number of null-bytes if necessary. The offset (given
by the first expression) will then be added to the program counter
and filled with null-bytes.

Example:
CNOP 2 ; aligns program counter to word boundary
CNOP 0,4 ; aligns program counter to long word boundary
CNOP 2,4 ; aligns PC to long word boundary and adds 2 ←↩

bytes
CNOP 13,24 ; aligns PC to the next 24-byte boundary

; and adds 13 bytes

CNOP 6,2
; is similar to
EVEN
DS.B 6

- Align program counter: ALIGN.size
The ALIGN directive supplied with an operation size is an
alternate form for the CNOP directive described above.

The program counter is padded to the desired boundary as specified
by size. Null-bytes will be inserted as filler if necessary.

The following operation sizes are allowed for size:
.W

word, align the program counter to word boundary. (equal to
CNOP 0,2.)

.L
long word, align program counter to long word boundary.
(equal to CNOP 0,4.)

.S
single precision, align program counter to long word boundary.
(equal to CNOP 0,4.)

.D
double precision, align the program counter to 64-bit
boundary. (equal to CNOP 0,8.)

.X
extended precision, align the program counter to 96-bit
boundary. (equal to CNOP 0,12.)

.P
packed, align the program counter to 96-bit boundary. (equal
to CNOP 0,12.)

.Q
quad word, align program counter to 64-bit boundary. (equal
to CNOP 0,8.)

proasm 116 / 223

- Align output to word boundary: EVEN
- : DS.W 0[,pad-value]

This directive pads the output data to the next word boundary
(even address), by inserting a pad byte if necessary. If EVEN or
DS.W is used with only one parameter, the pad byte will be zero.
If DS.W is used with two parameters, the second parameter will be
used as the pad byte. If the output data is already on the
desired boundary, the directive will have no effect.

Example:
ORG $100

a: ; at $100
dc.b "A"

b: ; at $101
EVEN ; generates a pad byte

c: ; at $102
dc.b "B"

- Align program counter to long word boundary: QUAD
This directive pads the output to the next long word boundary, by
inserting the required number of null pad bytes. If the program
counter is already on the desired boundary, the directive will
have no effect.

- Align output to odd byte boundary: ODD
The ODD directive forces the assembler to align the output to the
next odd byte address (the next address with bit 0 equal to 1).
This directive will have no effect if the output is already on the
desired boundary.

- Align program counter: CCNOP expression[,expression]
This directive allows you to align code or data to any specified
boundary. It is functionally identical to the CNOP directive
above. The only difference is that the program counter is padded
to the desired boundary by inserting NOP’s ($4e71) instead of
null-bytes. This directive is specially intended to align program
code to the desired boundary.

If only one argument is supplied with these directives then it is
the desired boundary. When both arguments are supplied the first
expression is the offset beyond this alignement and the second
expression is the desired alignement.

Example:
moveq #14,d7

proasm 117 / 223

CCNOP 0,4
loop: ...

dbra d7,loop

A null-byte will still be inserted if the pad length needed to
obtain the desired alignement is odd. Consider the following
example:

DC.B 0
CCNOP 0,4
rts

The code lines above is identical to:
DC.B 0
DC.B 0
; insert a null-byte filler
; to obtain an even alignement
; for the NOP instruction
NOP
NOP
rts

A odd address or offset detected warning will be reported if the
offset (given by the first expression) or the current program
counter is odd.

- Align __RS offset counter: ALIGNRS expression[,expression]
- Align __SO offset counter: ALIGNSO expression[,expression]
- Align __FO offset counter: ALIGNFO expression[,expression]
- Align DX area: ALIGNDX expression[,expression]

These directives are in their function identical to the CNOP
directive described above except that they are intended for the
use with structure, frame offset or DX directives. (See

Structure Offsets
, or
Uninitialized Data Blocks
, for more

information.)

No null-bytes are inserted.

Example:
RSRESET

foo RS.B 1
ALIGNRS 0,2 ; align __RS counter to word boundary

bar RS.L 1

Note that any of these directives will only work with its counter.
Using ALIGNRS instead of ALIGNSO won’t work.

- Align __RS offset counter: ALIGNRS.size
- Align __SO offset counter: ALIGNSO.size

proasm 118 / 223

- Align __FO offset counter: ALIGNFO.size
- Align DX area: ALIGNDX.size

These directives work in the same manner as the ALIGN.size
directive described above except that they are intended for the
use with the structure offset, the frame offset or the DX
directives. (See

Structure Offsets
, or
Uninitialized Data Blocks
,

for more information.)

No null-bytes are inserted.

Example:
foo DX.B 3

ALIGNDX.W ; align DX counter to word boundary
bar DX.L 1

Note that any of these directives will only work with its counter.

1.61 pro.guide/Convenience Pseudo-Opcodes

Convenience Pseudo-Opcodes
==========================

Pseudo-Opcodes are special assembler statements that generate
object code but do not correspond to actual M68000 family instructions.
These Pseudo-Opcodes are merely implemented for a programmer’s sake.
The way they are named or the functions they fulfill, are all done to
make the life of a programmer easier.

It is not guaranteed that all assemblers support Pseudo-Opcodes or
that they are compatible to others. ProAsm understands the most
commonly used Pseudo-Opcodes, and in addition it comes with some new
ones.

You find the descriptions of all Pseudo-Opcodes known by ProAsm in
the following sections.

Stack Manipulation

- Move ea on stack: PUSH.size ea
- Move ea from stack: POP.size ea

These pseudo-opcodes are abbreviations for MOVE.size instructions
when dealing with the stack.

PUSH moves an ea on the stack similar to the MOVE ea,-(SP).

POP is the opposite form of PUSH. It can be used if an ea is

proasm 119 / 223

moved from the stack (MOVE (a7)+,ea).

Example:
POP.W (a0)
; => move.w (a0),-(sp)

PUSH.L (foo,a3,d0.w)
; => move.l (a7)-,(foo,a3,d0.w)

Valid sizes are byte, word, and longword. But note, when you use
byte as operation size, the stack pointer will automatically align
the stack to the next word boundary downwards before the byte is
written on the stack.

- Move register list on stack: PUSHM register list
- Move register list from stack: POPM register list

These pseudo-opcodes are alternatives for the MOVEM.L instructions
when dealing with the stack.

The PUSHM pseudo-opcode moves the given register list on the stack,
and POPM removes the registers from the stack.

The register list is identical to the one used by the MOVEM
instruction. The used operation size is longword.

The _MOVEMREGS, _MOVEMBYTES, and _MOVEMLIST symbols are updated if
one of these pseudo-opcodes is used. See

Special Symbols
, for

more detailed information about these three symbols.

For example:
PUSHM d0-d4/d7/a2-a6
; => movem.l d0-d4/d7/a2-a6,-(a7)

POPM d0-a6
; => movem.l (a7)+,d0-a6

- Push automatically generated register list on stack: APUSHM
- Pop automatically generated register list from stack: APOPM

[register list]
These pseudo-opcodes are special variations of the above described
PUSHM and POPM.

They generate automatically a register list of all used registers
between an APUSHM and a matching APOPM. The APUSHM will then be
replaced by a MOVEM.L instruction that moves these registers on
the stack. APOPM will be replaced by a MOVEM.L that moves these
registers from the stack.

The optionally given register list (as argument of APOPM)

proasm 120 / 223

describes the registers that are excluded from the generated
register list. This register list is identical to the one used by
the MOVEM instruction. The used operation size is longword.
Consider the following example:

APUSHM
move.l d0,a0
move.w (a0),d1
neg.w d1
move.l (a0,d1.w),d0
APOPM d0 ; exclude d0 from the generated register ←↩

list.

will be assembled to:

movem.l d1/a0,-(a7)
move.l d0,a0
move.w (a0),d1
neg.w d1
move.l (a0,d1.w),d0
movem.l (a7)+,d1/a0

The _MOVEMREGS, _MOVEMBYTES, and _MOVEMLIST symbols are updated if
one of these pseudo-opcodes is used. See

Special Symbols
, for

more detailed information about these three symbols.

Move Effective Address

- Move effective address: MEA ea1,ea2
This is a special pseudo-opcode that is implemented to make
program counter relative assembly easier.

It moves the effective address of the first operand (ea1) to ea2
using the stack. MEA is splitted into a PEA ea1 and a MOVE.L
(a7)+,ea2 instruction.

For example:
MEA foo(pc),d0

will be assembled to:

pea foo(pc)
move.l (a7)+,d0

If the destination (ea2) is an address register or an address
register indirect with predecrement with the stack pointer as
register (-(A7)), the assembler automatically optimizes the MEA
pseudo-opcode to a LEA ea1,varea2 instruction or a PEA ea1
instruction respectively:

MEA foo(pc),a2 ; => LEA foo(pc),a2
MEA foo(pc),-(a7) ; => PEA foo(pc)

The advantage of using the MEA pseudo-opcode lies in the

proasm 121 / 223

possibility to avoid relocatable references. This is useful for
writing program counter relative code. A move.l #foo,d0
instruction can simply be replaced by MEA foo(pc),d0 (as far as
foo is a relocatable symbol).

The PFLUSHA instruction

Both the MC68030 and MC68040 processors have an instruction called
PFLUSHA. Unfortunately, these instructions have different encodings on
the two processors. Therefore, when ProAsm sees a PFLUSHA instruction,
it must somehow be told what kind of PFLUSHA instruction to write.

- PFLUSHA instruction: PFLUSHA operands
If either the MC68030 or MC68040 directive is in effect, ProAsm
uses its setting to control the encoding of PFLUSHA. If MCRELAX
is in use, ProAsm always generates the MC68030 form.

This is an instruction of the M68000 family, refer to the ‘M68000
Family Programmer’s Reference Manual’ for more information about
the PFLUSHA instruction.

- Pseudo-Opcode for the MC68030 PFLUSHA: PFLUSHA30 operands
- Pseudo-Opcode for the MC68040 PFLUSHA: PFLUSHA40 operands

To allow both forms of PFLUSHA to be produced while using MCRELAX
mode, ProAsm also provides these two alternate instruction forms,
which always produce the MC68030 or MC68040 forms, respectively.

1.62 pro.guide/Controlling the Output File

Output File Name

- Set assembly output file: OUTPUT filename
- : OBJFILE filename

This directive is used to specify the filename for the output file.
This filename can be overridden by the ‘-O’/OBJNAME command line
option. For example, this line tells ProAsm to place the
assembled output into the file ram:test:

OUTPUT ’ram:test’

If more than one OUTPUT directive is present, the first one will
define the output name; any others that specify a
different filename will generate a warning.

- Set name of linkable object file: OBJ filename
This directive is equivalent to the following:

proasm 122 / 223

OUTPUT filename
LINKABLE

In other words, it sets the output filename and instructs ProAsm
to make it a linkable AmigaDOS object file (see
Output File Format).

Output File Format

By default, ProAsm creates an AmigaDOS executable.

- Generate an AmigaDOS executable: EXECUTABLE
- : EXE
- : EXEOBJ
- : OPT L-

Any of these directives instruct ProAsm that the output file
should be an AmigaDOS executable, ready to load and run from the
command line or Workbench. The program may not reference any
external symbols, since it will not be linked with anything, and
it may not use ORG, because AmigaDOS may load the program at any
place in memory. See Executables, for more information about
AmigaDOS executables.

- Generate a linkable object module: LINKABLE
- : LINKOBJ
- : OPT L+

These directives instruct ProAsm to create an object file which
can be linked with other object files by a linker such as BLink,
eventually resulting in an AmigaDOS executable. This is one way
to write big programs spread over several source files, although
this can also be done using include files (see

Include Files
).

More importantly, this allows you to link assembly language
programs assembled by ProAsm with object files generated by a
high-level language compiler, such as a C compiler. See

Object Modules
, for more information about linkable object modules.

- Generate a binary image: BINARY
- : BINARYONLY
- : BINRYONLY
- : ASEG

These directives instruct ProAsm to output a "raw" binary file,

proasm 123 / 223

containing only the data explicitly defined in the source code.
No linking or debug information can be generated, so XREF may not
be used. Labels may not be referenced in 32-bit absolute modes
unless ORG is used to specify the precise address at which the
image is going to be run (see ORG).

- Generate a preassembled file: PREASM
- : OPT GENSYM

The PREASM directive tells the assembler to generate a
preassembled file. Use the OUTPUT or the OBJFILE directive to
name the resulting file.

A preassembled file contains specially formatted symbol and macro
lists that can immediately be added to the symbol and macro tables
without further parsing of directives and expressions, as must be
done with non-preassembled include file. The use of files
produced using the PREASM directive will result in faster assembly
times and less memory usage.

Next to these tables a list of all included files is likewise
stored in a preassembled file. The assembler checks all new
include files for matches in this list before including them.
Only files that do not match will be loaded since all the others
are already included in the preasm file.

The following symbol types are stored in the preasm file along
with the macro definitions and include file names:
Absolute symbols

(declared with either EQU or SET)

External references
(declared with XREF)

Relocatable symbols
Symbols assigned register lists
Symbols that are defined as synonyms for other symbols
Symbols equated to FPU constants
Symbols assigned to FPU register lists
Temporary symbols
Textual symbols
The following directives and their synonyms will be ignored if
used with the PREASM directive: ADDSYM, CSYMFMT, DEBUG, OPT DEBUG,
OPT HCLN, OPT X+, SECSYM.

You will get a warning if any code or data producing statements,
the XDEF directive, or section statements are used together with
the PREASM directive, since they are meaningless in this context.

A preasm file can later be loaded using one of the following
directives: INCLUDE, INCEQU, MACLIB, HEADER.

proasm 124 / 223

- Suppress output: NOOBJ
This directive forces the assembler not to create any output file
at all. It is useful if you want to run a test assembly to check
for syntax errors in the source code.

It is the same as the NOOBJ and -N command line arguments.

- Generate Motorola S-record output: SREC format,record length,address[,name]
This directive instructs ProAsm to generate a Motorola S-record
output file. The S-record format is for encoding programs or data
files in a portable format for transportation between computer
systems. It is often used for writing embedded M68000
applications. For more information on the S-record format, refer
to the ‘M68000 Family Programmer’s Reference Manual’ (see

Bibliography
).

format is the Motorola Record format type and must be a value from
1 to 3.

record length is the count of character pairs in the record,
excluding the type and record length; the value must be from 16 to
255.

address is the load address. ProAsm sets the location counter
offset to this address (see ORG).

name can be used to specify the module name. A module name that
contains a whitespace must be enclosed in double or single quotes.
If no name is given, ProAsm will be used.

Example:
SREC 2,64,$f20000,"foobar"

If several directives, controlling the output file format, appear
in the source code, only the last one is used.

1.63 pro.guide/Sections

Sections
........

When building AmigaDOS executables, it is often desirable to divide
a program up into a few separate sections or hunks. Each section is a
contiguous block of memory which has certain attributes. All of the
code or data within a particular section is guaranteed to remain in the
order in which you defined it, but different sections can be loaded
anywhere in memory by AmigaDOS. This is known as scatter-loading. The
following directives are used to define sections in ProAsm:

proasm 125 / 223

- Begin section: SECTION name[,type[,memtype[,typecode]]][,
reloctype]

This directive ends any previous section and starts adding code
and data to a new section. The name is a string up to 256
characters long. It must be quoted if it contains special
characters such as whitespace or commas. It can be anything you
want, but code sections are usually called code or text, while
data and bss sections are usually called data or __MERGED.
Section names are case-sensitive.

The type may be CODE, DATA, or BSS. (They do not need to be
written in uppercase, however.) Any data defined in a BSS section,
such as data produced by DC statements, is lost: only its size is
remembered, and AmigaDOS initializes the entire section to zero
when the program is loaded. The default section type is CODE.

If the memtype is present, it specifies that the section must be
loaded in a certain type of memory. It can be either CHIP, FAST,
PUBLIC, MEMF, or ADVISORY. If memtype is MEMF, then the
additional typecode argument must be supplied, which is a numeric
value to be passed to the operating system’s memory allocator
(AllocMem()) when loading this section. This is usually some
combination of the MEMF_ values defined in the include file
exec/memory.i.

Programs assembled with the MEMF option can only be loaded on
Kickstart 2.0 or later, and object files which use this feature
may not be compatible with some linkers. Therefore, we recommend
that you do not use the MEMF option if you are only specifying
chip or fast memory; use CHIP or FAST instead.

The memtype ADVISORY is only supported by AmigaDOS 3.0 (V39) or
later. A hunk marked with ADVISORY will be ignored by the loader
if its type is not understood. When ignored, the marked hunk is
threated like a debug hunks. Under AmigaDOS versions prior to 3.0
executables marked with ADVISORY will fail to load with a bad hunk
type error.

You can combine the type and the memtype by appending an
underscore (_) and the first letter of the memtype to the type.
For example, CODE_C is the same as CODE,CHIP.

The reloctype, if specified, can be RELOC32 or RELOC32SHORT.
RELOC32 is the default setting, and generates a standard
relocation hunks (hunk_reloc) in the output. RELOC32SHORT
generates a hunk_reloc32short chunk if possible to save some space
in the output file and make loading slightly faster. The
hunk_reloc32short chunk is functionally identical to hunk_reloc.
It is only more compact and applicable only to smaller programs.
Also, this chunk type is only supported under AmigaDOS 2.0 or
later, so it should not be used in programs that must be able to
run under earlier versions of AmigaDOS.

If a previous section was defined earlier with the same name as

proasm 126 / 223

this section, ProAsm continues adding code and data to that section
instead of creating a new section. The type and memtype may not
conflict with the previous definition. If they are not specified
at all, they are assumed to be the same. Case is always
significant when comparing section names.

If any code or data is defined before the first SECTION directive
(or one of its equivalents below), this data will be placed in a
default code section, as if CODE had been included at the very
beginning of the file.

Some examples:
SECTION "foo",code,public,reloc32short
; same as SECTION "foo",code,,reloc32short
...
SECTION "bar",data,chip
...
SECTION "foofoo",data,memf,(MEMF_REVERSE|MEMF_PUBLIC)
...
SECTION "foobar",bss
...

- Begin CODE section: CODE [memtype[,typecode]][,reloctype]
- : CODE name[,memtype][,reloctype]
- Begin DATA section: DATA [memtype[,typecode]][,reloctype]
- : DATA name[,memtype[,typecode]][,reloctype]
- Begin BSS section: BSS [memtype[,typecode]][,reloctype]
- : BSS name[,memtype[,typecode]][,reloctype]
- Begin CODE section: CSEG [memtype[,typecode]][,reloctype]
- : CSEG name[,memtype[,typecode]][,reloctype]
- Begin DATA section: DSEG [memtype[,typecode]][,reloctype]
- : DSEG name[,memtype[,typecode]][,reloctype]

These are short forms of the SECTION directive, which begin new,
facultatively unnamed, sections of type CODE, DATA, and BSS,
respectively, optionally with a specified memtype. Since the name
is optional, names that are similar to memtype keywords are invalid
(CHIP, FAST, PUBLIC, MEMF, and ADVISORY).

If MEMF is given as memtype an additional argument must be
supplied with the directive which is a numeric value to be passed
to the operating system’s memory allocator (AllocMem()) when
loading this section. This is usually some combination of the
MEMF_ values defined in the include file exec/memory.i.

The reloctype, if specified, can be RELOC32 or RELOC32SHORT.
RELOC32 is the default setting, and generates a standard
relocation hunks (hunk_reloc) in the output. RELOC32SHORT
generates a hunk_reloc32short chunk if possible to save some space
in the output file and make loading slightly faster. The
hunk_reloc32short chunk is functionally identical to hunk_reloc.
It is only more compact and applicable only to smaller programs.
Also, this chunk type is only supported under AmigaDOS 2.0 or
later, so it should not be used in programs that must be able to

proasm 127 / 223

run under earlier versions of AmigaDOS.

If a previous section was defined earlier with the same name (or
no name) as this section, ProAsm continues adding code and data to
that section instead of creating a new section. The type and
memtype may not conflict with the previous definition. If they
are not specified at all, then they are assumed to be the same.
Case is always significant when comparing section names.

Refer to SECTION, for detailed information about defining sections.

Some Examples:
CODE "Function",,reloc32short
; same as CODE "Function",,reloc32short
; and SECTION "Function",code,,reloc32short
...
DATA "Images",chip
...
CODE
...
BSS
...
BSS memf,MEMF_CLEAR
...

- Revert to the previous section: SECTION __OLDSECTION
This directive reverts to the section that was in effect before
the most recent SECTION (or equivalent) directive. This can be
used in include files, for example, to temporarily switch to a
different section and then later switch back to the section that
was in use by the "parent" source file. This feature does not
stack, however; additional SECTION __OLDSECTION directives merely
toggle between the two most recent sections.

The keyword __OLDSECTION is case-insensitive.

Example:
moveq #0,d0
SECTION ’lolo’,code ; Section: lolo
nop
SECTION __OldSection ; Section: default (CODE),
rts ; where moveq is
SECTION __OldSection ; Section: lolo
rts
END

I implemented it for an easy code/data handling for something
like ‘runtime generated’ structures:

MyImage MACRO
section "GUI_Structures_Images",data,chip

\1:

proasm 128 / 223

dc.l \2,\3
dc.b \4,0
even
incbin "dh1:asm/images/\5"
...
section __OldSection
ENDM

Now within the code you may have a more structured ‘‘layout’’:

*
* Handle Image #1

*
HandleMyImage1:

jsr xxx(a6)
...
rts

MyImage image1,$14,0,"Add Font",FontImage.iff

At the absolute minimum, a program really only needs one section
containing all the program’s code and data. However, it is often
considered good practice to divide a program into at least two separate
sections: a CODE section containing instructions and a DATA section
containing the program’s data. While AmigaDOS does not currently
require this, some other operating systems, such as Unix, do and
AmigaDOS may will in the future. In addition to the code and data
sections, a "bss" section is often used to hold variables that do not
need to be initialized to explicit values on startup, conserving space
in the executable file.

If your program contains graphics, sampled sounds, copper lists, or
other data that must be accessed directly by the Amiga’s custom chips,
remember to place this data into a CHIP section. Otherwise, the
program will not work on any machine with fast memory. It is
permissible to put all your code and data into one CHIP section.
However, this may make your program run more slowly, since machine code
runs faster from FAST memory.

1.64 pro.guide/SMALLOBJ

- Merge all hunks into one: SMALLOBJ
- Disable merging: NORMOBJ

The SMALLOBJ directive tells the assembler to merge all hunks into
one single CODE hunk. The default is to keep individual chunks
separate in the output. NORMOBJ can be used to counteract
SMALLOBJ.

- Merge all code hunks into one: SMALLCODE

proasm 129 / 223

- Merge all data hunks into one: SMALLDATA
- Merge all bss hunks into one: SMALLBSS

These directives force the assembler to merge all hunks of the
specified type (code, data or bss) into one single hunk. The
default is to keep individual chunks separate in the output.
There is no negative form to empower merging.

1.65 pro.guide/Debugging Information

Debugging Information
.....................

AmigaDOS executables and object modules have the capability to
store debug information of various types, which are not necessary for
actually running the program, but can be used by debuggers to make
debugging the program easier. You can instruct ProAsm to attach debug
information to its output files with the DEBUG directive.

- Output debugging information: DEBUG [keyword[,keyword...]]
This directive instructs ProAsm to output debugging information,
and specifies exactly what kind of debugging information to
generate.

The keywords are used to specify the kind of information to be
produced.

The following modes specify the debugging output format. If none
of them is used, it defaults to LINE or the last specified:

LINE
produces line number information (SAS/C compatible debug hunk
format).

HCLN
produces compressed line number information (SAS/C compatible
debug hunk format).

FULL
is an alias for LINE,ALL.

OFF
turns of the debugging information generation.

The types below are used to specify the type of debugging
information that is to be produced. If none is used, it defaults
to CODE,DATA or the last specification:

CODE
generates debugging information for the M68000 instruction
set.

NOCODE
is the complement of the CODE keyword.

proasm 130 / 223

DATA
generates debugging information for the data producing
directives.

NODATA
is the complement of the DATA keyword.

ALL
generates debugging information for all included files.

ADDSYM
adds symbol information to all hunks of an executable or a
linkable output file, see ADDSYM.

NOSYM
is the complement of the ADDSYM keyword, see NOSYM.

If you just specify DEBUG with no operand, it defaults to DEBUG
LINE,CODE,DATA or the last set specification.

The DEBUG directive will generate a warning if used for neither an
executable nor a linkable output file.

DEBUG HCLN
DEBUG LINE,CODE,NODATA,ALL
DEBUG

- Enable debugging information: OPT DEBUG
- Disable debugging information: OPT NODEBUG

These directives enable or disable debugging information without
changing the options specified with DEBUG. You can use these
directives to output debugging information selectively for only
certain parts of your program.

- Enable compressed debugging information: OPT HCLN
- Disable compressed debugging information: OPT NOHCLN

These directives enable or disable compressed debugging
information. The options specified with the DEBUG directive may
be changed. This is a more efficient way of encoding debugging
information in a file since it reduces the size of the output file.

You can use these options to output debugging information
selectively for only certain parts of your program.

- Generate symbol information: ADDSYM
- : OPT D+
- Disable symbol information: NOSYM

proasm 131 / 223

- : OPT D-
The ADDSYM directive tells the assembler to add symbol information
to all hunks of an executable or a linkable output file. Only
global labels representing a relocatable location within the hunk
will be added to the symbol information.

The ADDSYM directive will be ignored if neither an executable nor
a linkable output file is generated.

The produced symbol information can be used by any symbolic
debugger which supports the AmigaDOS symbol hunk format. Note
that this option mutually excludes the x+ option.

- Generate symbol information for exported symbols only: OPT XDEBUG
- : OPT X+
- Suppress symbol information (default): OPT NOXDEBUG
- : OPT X-

These options are equivalent to the above, except that they only
control symbol information generation for exported (XDEF) symbols
(see XDEF). It is only useful if linkable code is produced. For
executables, symbol information for all symbols will be generated,
as if ADDSYM was used.

- Generate symbol information for current section: SECSYM
This directive is a special form of the above mentioned ADDSYM
directive. The SECSYM forces the assembler to add symbol
information to the executable or linkable output file only for the
current section (while ADDSYM adds symbol information to all
hunks). Only global labels representing a relocatable location
within the hunk will be added to the symbol information.

Using this directive you can choose the sections from whom symbol
information should occur in the output file. The SECSYM is
normally used in the following way:

SECTION "code",CODE ; add symbol information only
SECSYM ; for the code section
...
SECTION "foo",DATA
...

The SECSYM directive will be ignored if neither an executable nor
a linkable output file is generated.

- Generate symbol information for single symbols: SELSYM symbol [,
symbol [, ...]]

The SELSYM directive is another special variant of the ADDSYM
directive. Using this directive you can force the assembler to
add the symbol information of the symbol given as arguments to an

proasm 132 / 223

executable or a linkable output file. Only global labels
representing a relocatable location within the hunk can be added
to the symbol information.

Example:
SELSYM foo,bar ; generate symbol information
... ; only for the foo and bar symbols

foo:
foobar:
bar:
foofoo:

The SELSYM directive will be ignored if neither an executable nor
a linkable output file is generated.

1.66 pro.guide/Object Modules

Creating Linkable Object Modules

Object modules are usually divided into sections just like
executables are. However, in this case, the names assigned to sections
assume more importance, because the linker always merges sections with
the same name into a single section in the final executable.

- Specify program unit name: IDNT string
- : IDENTIFY string

This directive will set the module name (hunk_unit) to the given
string. The name can be up to 128 characters long and should be
enclosed in double or single quotes if it contains any whitespaces.
The directive is only useful if a linkable output is produced;
else it is ignored. Only the last of these directives appearing
in the source will be used.

1.67 pro.guide/Defining and Referencing External Symbols

- Reference an external symbol: XREF symbol[,symbol[,...]]
The XREF directive is used to specify a list of symbols that is
referenced within this object module but is defined in another
object module (via XDEF). If this directive is used while no
linkable or preassembled output is being generated, a warning will
be reported and the directive will be ignored.

Example:
XREF GetThis,GetThat,DoThis,DoThat
XREF start
...
jsr GetThis
jsr DoThat

proasm 133 / 223

- Declare a symbol as externally visible: XDEF symbol[,symbol[,
...]]

For each symbol defined in the symbol list following the XDEF
directive, the assembler generates an external symbol definition,
making it possible for other object modules to reference these
symbols. A warning will be issued if this directive is use while
no linkable or preassembled output is generated.

Example:
XDEF GetThis,GetThat,DoThis,DoThat
XDEF start

start:
...

GetThis:
...

GetThat:
...

DoThis:
...

DoThat:
...

- Defining and referencing external symbols: PUBLIC symbol[,symbol[,...]]
The PUBLIC directive is treated as either XREF or XDEF directive,
depending on whether the symbol in question has been defined in
the current object module or not.

Symbols defined in the object module will be exported by the
assembler, making it possible for other object modules to
reference these symbols. The other symbols that are not defined
in the object module will be referenced by the assembler as
external symbols.

If this directive is used while no linkable or preassembled output
is being generated, a warning will be reported and the directive
will be ignored.

Example:
PUBLIC GetThis,DoThat,Start
...

Start: jsr GetThis
jsr DoThat

- Reference all unknown symbols as external symbols: AUTOXREF

proasm 134 / 223

The AUTOXREF directive forces the assembler to treat all undefined
symbols as external symbols.

If this directive is used while no linkable or preassembled output
is being generated, a warning will be issued and the directive
will be ignored.

For example:
AUTOXREF

...
Start: jsr GetThis

jsr DoThat
GetThis and DoThat are not defined within the object module and
therefore they will be referenced by the assembler as external
symbols. The same result can be achieved in the example above
when the AUTOXREF is replaced by XREF GetThis,DoThat.

If case insensitivity is in effect, symbol names that are written
to the AmigaDOS object file are written in all-uppercase.

1.68 pro.guide/Output File Attributes

Output File Attributes

See ‘The AmigaDOS Manual’, 3rd Edition, Bantam Computer Books, for
more information about AmigaDOS file attributes.

Protection Flags
................

- Set pure bit on the output file: PURE
If this directive appears in the assembly source file, the
assembler’s output file will be marked pure (the file’s p
protection bit is set). This will allow the file to be made
resident with the AmigaDOS Resident command.

Note that ProAsm does not check to see if your code really is
pure. It is your responsibility to make sure the program does not
use any statically allocated data.

PURE is just a special form of the FILEPROTECT directive.

- Set output file protection bits: FILEPROTECT +flags
- : FILEPROTECT -flags
- : FILEPROTECT =flags

proasm 135 / 223

The FILEPROTECT directive sets the AmigaDOS file protection flags
for the output file. Which bits are set, cleared, or left alone
depends on the first character in the operand:

+
Set the specified flag bits, leaving all others unchanged.

-
Clear the specified flag bits, leaving all others unchanged.

=
Set the specified flag bits and clear all others

Here is a list of the supported flags and their meanings under
AmigaDOS.

r
Read permission

w
Write permission

e
Execute permission

d
Delete permission

a
Archived

p
Pure (can also be set with the PURE directive)

s
Script

h
Hidden

For example, this line causes the pure and archive bits to be set
on the output file:

FILEPROTECT +pa

Comment
.......

- Set the output file comment: FILENOTE comment
This directive allows you to set the AmigaDOS comment attached to
the output file, which can be up to 79 characters long. (This
string is displayed when the file is listed with the AmigaDOS List
command, for example.) If the comment includes spaces, tabs, or
semicolons, it must be enclosed in single or double quotes. If no
comment argument is given, any existing filenote will be deleted

proasm 136 / 223

from the output file.

Example:
FILENOTE "my first program"

If no FILENOTE directive appears in the source file, the comment
on the output file is left unchanged (or the comment is set to an
empty string, if the output file did not exist before ProAsm was
run).

1.69 pro.guide/Auxiliary Output Files

Auxiliary Output Files
======================

Besides its normal output of assembled code, ProAsm can also
generate two types of auxiliary output files which reflect the results
of the assembly process: error files, equate files, source listings,
and cross-reference listings.

An error file is a file listing all errors ProAsm encountered
during assembly. Many text editors have the capability of
automatically invoking an assembler on source code being edited and
reading the resulting error file. The user can then step through each
error in turn, and the editor automatically positions the cursor at the
place in the source code where the error was found, allowing the user
to correct it easily. See your editor’s reference manual for
information about using features like this.

An equate file contains all symbols and labels defined in the
source code.

A listing file can be generated, which will contain a copy of the
original source code re-formatted in a way that clearly indicates how
ProAsm interpreted the source code. For example, macros and include
files are usually expanded in the listing, making it easier to
determine their behavior and debug them.

A cross-reference listing file shows the usage of symbols, of
labels with the number of references made to them and to the label’s
offset, and of absolute symbols with their values. The file gives also
additional information on the hunk structure of the produced executable
or linkable object file.

- Set the name of the error file: ERRFILE filename
This directive sets the name of the file to which ProAsm writes
error and warning messages. If the assembler encounters more than
one ERRFILE directive, only the first one is used and a warning
message will be issued for all other occurrences. The filename
specified by this directive can be overridden with the -e option
on the command line (see Invoking).

proasm 137 / 223

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

Note that no error file is generated unless at least one error or
one warning message is reported.

The messages written to the error file are of a shorter form than
the ones displayed in the shell (CLI), to allow easier processing
by other software (e.g. by a text editor’s ARexx interface).

The following example shows different errors and their depiction
in the error file:

foo:
foo: ; the same symbol ‘foo’ is defined twice

mova.l d2,a0 ; movea.l would be the correct ←↩
instruction

The two errors in the code lines above are displayed in the error
file like this:

Pass 1
2 : symbol defined twice
3 : unrecognized instruction ’mova’

- Set the name of the equate file: EQUFILE filename
This directive sets the name of the file to which the assembler
writes the equate listing.

If the assembler encounters more than one EQUFILE directive, only
the last one is used. The filename specified by this directive
can be overridden with the -q option on the command line (see
Invoking).

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

All symbols and labels defined in the source code (this includes
also external source files loaded into the program source) will be
written to the equate file.

The following example shows the equate file (shortened) of the
perfmon.s example source code:

**
** ProAsm Equate Listing

**
** created on: 07.10.92

** for: dh1:sources/perfmon.s

**

...
progbase equ $00000000
clistartup equ $00000028
wbstartup equ $0000003A
main equ $000001A4
DoQuit equ $00000352

proasm 138 / 223

DoAbout equ $00000358
mulu32 equ $00000370
divu32 equ $0000038E
PrintTitle equ $000003B8
smc_PrintText equ $000003C0
smc_afterPrintText1643 equ $000003E8
DoRawFmt equ $000003E8
InstallDaemon equ $00000402
DaemonCode equ $00000464
waitloop equ $000004EA
de_closedevice equ $00000512
de_remport equ $0000051E
de_freesignal equ $0000051E
de_exit equ $0000052C
de_signal equ $0000052E
DaemonName equ $0000053E
DaemonNameReal equ $00000552
Switch equ $0000056A
Launch equ $000005A4
...

end

- Set the name of the list file: LISTFILE filename
This directive sets the name of the file to which ProAsm writes
the listing. If ProAsm encounters more than one LISTFILE
directives, only the last one is used. Note that no listing file
is generated unless listing is actually turned on with the LIST
directive at some point in the program The filename specified by
this directive can be overridden with the -p option on the command
line (see Invoking). If no listing file is specified, the listing
will be sent to PRT: by default.

- Set the name of the cross-reference file: CREFFILE filename[,expression]
This directive sets the name of the file to which the assembler
writes the cross reference listing.

If the assembler encounters more than one CREFFILE directive, only
the last one is used. The filename specified by this directive
can be overridden with the -r option on the command line (see
Invoking).

The filename must be in normal AmigaDOS format and must be
enclosed in double or single quotes if it contains any whitespaces.

An expression can optionally follow the filename (separated by a
comma), that specifies the lowest number of references for the
symbols which you want to have in the cross reference listing.

The following example shows the cross reference listing (shortened)
for the perfmon.s example source code:

proasm 139 / 223

1.70 pro.guide/OPT NOLIST

- Enable listing: LIST
- : OPT LIST
- Disable listing: NOLIST
- : OPT NOLIST

The LIST directive enables listing generation, while NOLIST
disables it. By default listings are not generated.

Pairs of NOLIST followed by LIST directives can be nested. For
example, if listing is enabled and three NOLIST directives are
encountered, then listing will be disabled until after three LIST
directives.

- List macro definitions: OPT MD
- Suppress macro definitions in listing: OPT NOMD

This option includes or suppresses the macro definition text in
the listing. By default, macro definitions are included in the
listing.

- List expanded macros: OPT MEX
- : OPT M+
- Leave macros collapsed in listing: OPT NOMEX
- : OPT M-

This option includes or suppresses the complete macro text for all
macro expansions in the listing. All lines in the expanded macros
are preceded by a plus sign (+) in the listing. By default, the
macros are not expanded in the listing.

- Generate symbol listing in listing file: LISTSYMS expression
- : OPT SYMTAB
- : OPT S+
- Suppress symbol listing (default): OPT NOSYMTAB
- : OPT S-

This option creates or suppresses the printing of a symbol listing
at the end of the list file. Only the last option of this type is
taken into account.

The LISTSYMS directive supports an expression as additional
argument. This expression will be used to confine the listing to
only those symbols that have been referenced at least that many
times in the program code.

proasm 140 / 223

- List conditional assembly directives (default): OPT CL
- Suppress listing of conditional assembly directives: OPT NOCL

This option enables or disables the printing of conditional
assembly directives in the listing file. Refer to

Conditional Assembly
for more information on conditional assembly.

- List false branches of conditionals: LFCOND
- Suppress false branches of conditional in listing: SFCOND

These directives are used to control the inclusion in the listing
file of conditional expressions that evaluated false. By default,
only the conditional expressions that evaluated true (i.e. the
ones that actually got assembled) are included in the listing.

Example:
LFCOND
foo EQU 1
IFNE foo
...
ELSE
...
; this block will be written to the listing
ENDC

- Send special strings to the listing file: LISTCHAR expression[,expression...]
The given stream of expressions will be broken down into an ASCII
string as with DC.B, and sent to the listing file instead of the
output file. This can be used, for example, to send control codes
to a printer or console window to which the listing is being sent.

Example:
LIST ; Enables the listing
LISTFILE "CON:0/0/640/200/Listing File"

; Sends the listing to a console window
LISTCHAR $9b,"1","m"

; Sets the typeface to bold
...

1.71 pro.guide/LLEN

- Set line length: LLEN line-length
The LLEN directive sets the line length in characters of the
assembly listing to line-length, which may be from 38 to 255. By
default, the line length is set to 132 characters per line. For

proasm 141 / 223

example, this statement sets the line length to 80 characters:

LLEN 80

- Define page length: PLEN page-length
The PLEN directive sets the page length for the assembly listing
to page-length, which may be from 12 to 255. A value of zero
turns paging off. By default, the page length is set to 60 lines.
For example, this line instructs the assembler to assume pages of
88 lines:

PLEN 88

- Insert blank lines in listing: SPC lines
This directive is used to waste paper. The integer expression in
the operand field specifies the number of blank lines that are to
be put in the listing. It won’t space past the top of a new page.

Example:
SPC 15 ; output 15 blank lines in the listing

- Control listing format: FORMAT option[,option[,...]]
This directive may be used to alter the default listing format by
controlling various options. All options are specified by one
digit followed by a plus (+) or minus (-) sign. n+ will enable
the format option and n- disables it. Multiple options can be set
by separating them with a comma (,).

0+
0-

This option can be used to control the inclusion of line
numbers in the listing. By default, the line numbers are
written to the listing (O+).

1+
1-

This option tells the assembler to include (1+) or suppress
the section number and program counter offset in the listing.

2+
2-

This option enables (2+) or disables the writing of the
produced code as hexdump to the listing.

2:expression
Specify the allowed number of bytes in the hexdump field.
The range of a valid expression is from 0-22. An odd
expression will be aligned to the next word boundary. An

proasm 142 / 223

expression of zero disables the hexdump. The assembler
defaults to a field size of 2 bytes.

Example:
FORMAT 2:8 ; specifies a hexdump field of 8 bytes

4+
4-

This option includes (4+) or suppresses the complete macro
text for all macro expansions in the listing. By default,
the macros are not expanded in the listing. It is identical
to the OPT M option.

5+
5-

This option includes (5+) or suppresses the contents of an
included file (via INCLUDE) in the listing.

7+
7-

This option forces the assembler to include (7+) or suppress
all titles and subtitles (defined using TTL and SUBTTL) in
the listing.

- Next page: PAGE
- : PAGEUP

Unless paging has been inhibited (page size is zero) or listing is
disabled, this directive causes the listing to move to the top of
the next page.

- Disable paging: NOPAGE
This directive turns off the output of page headers and form-feed
characters. This is equivalent to PLEN 0.

- Set page title: TTL title
- : TITLE title

The TTL directive sets the page title to title. The string will
be printed in the third line of the page header at the top of each
page in the listing until a new title is set or paging is disabled.
The title string may be up to 256 characters long. If it contains
spaces, tabs or semicolons, it must be enclosed in single or
double quotes. If no title string is defined, the line is either
left blank or the name of the current include file is written.

Example:
TTL ’listing of my first program’

proasm 143 / 223

- Set page subtitle: SUBTTL subtitle
The SUBTTL directive sets the page subtitle to subtitle. The
supplied subtitle will be printed below the listing title (in the
fourth line respectively the third line in the listing header if
no title is given). until a new subtitle is specified or paging
is disabled. The string may be up to 256 characters long. If it
contains any whitespaces or semicolons, it must be enclosed within
single or double quotes. To turn off the printing of the subtitle
in the listing a null string can be used as subtitle argument. By
default, no subtitle string is defined.

Consider for example:
TTL "Example for TTL and SUBTTL"

SUBTTL "subtitle for page 1" ; pre-define subtitle for first page
SUBTTL "subtitle for page 2" ; pre-define subtitle for 2nd page
SUBTTL "subtitle for all the other pages"

LIST ; start listing...
...

1.72 pro.guide/OPT

- control assembler options: OPT option[,option[,...]]
- : OPTION option[,option[,...]]

These directives may be used to alter the assemblers default
behavior by controlling various options.

Most options are specified by one or two letters followed by a
plus (+) or minus (-) sign. However, some options have two forms:
the base form which enables the option, and the option name
preceded by NO which will disable the option. As an example, the
following lines will enable and disable, respectively, the
printing of macro definitions in the listing file:

OPT MD
OPT NOMD

Multiple options can be set by separating them with a comma (,).
Unless otherwise noted, all options may be used as many times as
you wish. All options are case-insensitive.

The options themselves are described in the appropriate places in
other parts of this manual. For quick reference, here is a list
of the supported options, each with a reference to the place in
the manual where it is described:

A
Automatic PC-relative assembly.

See
OPT AUTOPC
.

proasm 144 / 223

ABL
Set default address register base displacement size to
longword.
See

Set default behaviour
.

ABW
Set default address register base displacement size to word.
See

Set default behaviour
.

AUTOPC
Enable automatic PC-relative assembly.
See OPT AUTOPC.

BDL
Set default base displacement size to longword.
See

Set default behaviour
.

BDW
Set default base displacement size to word.
See

Set default behaviour
.

BRL
Set default size for branch instructions to longword.
See

Set default behaviour
.

BRW
Set default size for branch instructions to word.
See

Set default behaviour
.

BRB
Set default size for branch instructions to byte.
See

Set default behaviour
.

BRS
Set default size for branch instructions to byte.
See

Set default behaviour
.

C
Case sensitivity control.

See
Case Sensitivity

proasm 145 / 223

.

CASE
Case sensitivity.

See
Case Sensitivity
.

CHKBIT
Report error if bit number not in bounds.

See
OPT CHKBIT
.

CHKIMM
Check absolute addresses for missing #.
See

OPT CHKIMM
.

CHKPC
Enable position-independent code check.

See
Position-independent code
.

CL
List conditional assembly directives in the listing file.
See

OPT CL
.

D
Control output of a symbol table for debugging.

See
ADDSYM
.

DEBUG
Enable debugging information.

See
OPT DEBUG
.

E
Control display of error messages.

See
OPT E
.

ESSn{ub}
Select symbol search algorithm.
See

OPT ESSn
.

F

proasm 146 / 223

Control filename display during assembly.
See

OPT F
.

FPSP40
Enable MC68040 software-supported instructions.

See
OPT FPSP40
.

FPSP60
Enable MC68060 software-supported instructions.

See
OPT FPSP60
.

GENSYM
Generate a preassembled file.

See
PREASM
.

HCLN
Enable compressed debugging information.

See
OPT HCLN
.

I
Check for immediate operands accidentally written in absolute
addressing mode.
See

OPT CHKIMM
.

INCONCE{UB}
Ignore or allow duplicate includes of the same file.
See

OPT Y
.

L
Specify creation of linkable or executable output.
See

LINKABLE
.

LIST
Enable listing.

See
LIST
.

LOCALDOT
Use the period (.) character to introduce local labels.

See

proasm 147 / 223

Local Label Introducer
.

LOCALU
Use the underscore (_) character to introduce local labels.
See

Local Label Introducer
.

M
Include or suppress macro expansions in the listing file.

See
OPT M
.

MD
List macro definitions.

See
OPT MD
.

MEX
Include macro expansions in the listing file.

See
OPT MEX
.

NOAUTOPC
Disable automatic PC-relative assembly.

See OPT NOAUTOPC.

NOCASE
No case sensitivity.

See
Case Sensitivity
.

NOCHKBIT
Do not check bit number.

See
OPT NOCHKBIT
.

NOCHKBIT
Do not report error if bit number not in bounds.

See
OPT NOCHKBIT
.

NOCHKPC
Disable position-independent code check.

See
OPT NOCHKPC
.

NOCL

proasm 148 / 223

Do not list conditional assembly directives in the listing file.
See

OPT NOCL
.

NODEBUG
Disable debugging information.

See
OPT NODEBUG
.

NOFPSP40
Disable MC68040 software-supported instructions.

See
OPT NOFPSP40
.

NOFPSP60
Disable MC68060 software-supported instructions.

See
OPT NOFPSP60
.

NOHCLN
Disable compressed debugging information.

See
OPT NOHCLN
.

NOINCONCE
Do not ignore or allow duplicate includes of the same file.
See

OPT NOINCONCE
.

NOLIST
Disable listing.

See
OPT NOLIST
.

NOMD
Suppress macro definitions in listing.

See
OPT NOMD
.

NOMEX
Suppress macro expansions in the listing file.

See
OPT NOMEX
.

NOOPTIMLIB
Disable the use of the optimizer library.
See

OPT NOOPTIMLIB

proasm 149 / 223

.

NOSP60
Forbid MC68060 integer instruction emulation.

See
OPT NOSP60
.

NOSUPER
Enable warnings on supervisor-mode-only instructions.

See
OPT NOSUPER
.

NOSYMTAB
Suppress symbol listings in the list file.

See
OPT NOSYMTAB
.

NOTYPE
Disable type checking.
See

OPT NOTYPE
NOWARN

Disable assembler warning messages.
See

OPT NOWARN
.

NOXDEBUG
Suppress debug symbol table in the output file for exported
symbols only.

See
OPT NOXDEBUG
.

NOXPK
Disable XPK support.
See

OPT NOXPK
.

O
Optimization options.

See
Optimization
.

ODL
Set default size for outer displacement to longword.
See

Set default behaviour
.

ODW
Set default size for outer displacement to word.

proasm 150 / 223

See
Set default behaviour
.

OPTIMLIB
Enable the use of the optimizer library.
See

OPT OPTIMLIB
.

OW
Optimization warnings.

See
OPT OW
.

P
Check position-independent code.
See

Position-independent code
.

P=processor
Specify processor type.

See
OPT P=
.

PCBL
Set default size for program counter relative base
displacement to longword.
See

Set default behaviour
.

PCBW
Set default size for program counter relative base
displacement to word.
See

Set default behaviour
.

Q
Advanced optimization options.
See

OPT Q
.

QW
Advanced optimization warnings.
See

OPT QW
S

Generate or suppress symbol listings in the list file.
See

Symbol listing
.

proasm 151 / 223

SP60
Enable MC68060 integer instruction emulation.
See

OPT SP60
.

SUPER
Disable warnings on supervisor-mode-only instructions.
See

OPT SUPER
.

SW
Enable or disable warnings on supervisor-mode-only
instructions.

See
OPT SW
.

SYMTAB
Generate symbol listings in the list file.
See

Symbol listing
.

T
Enable or disable type checking.
See

Type Checking
.

TYPE
Enable type checking.
See

OPT TYPE
.

U
Specify whether the underscore (_) or period (.)
character is used to introduce local labels.
See

Local Label Introducer
.

W
Enable or disable assembler warning messages.

See
OPT W
.

WARN
Enable assembler warning messages.

See
OPT WARN
.

proasm 152 / 223

WARNBIT
Report warning if bit number not in bounds.

See
OPT WARNBIT
.

X
Create or suppress debug symbol table in the output file for
exported symbols only.

See
OPT X
.

XDEBUG
Create debug symbol table in the output file for exported
symbols only.

See
OPT XDEBUG
.

XPK
Enable XPK support.
See

OPT XPK
.

Y
Ignore or allow duplicate includes of the same file.
See

OPT Y
.

Z
Show original or preprocessed source lines with error and
warning messages.

See
OPT Z
.

1.73 pro.guide/OPT XPK

- Enable XPK support (default): OPT XPK
- Disable support: OPT NOXPK

If the XPK support is enabled, any packed file (with XPK) will be
automatically unpacked by the assembler. Note that encryption
sublibraries are not supported.

The XKP package is not required by ProAsm to run. It enlarges
only capacity of ProAsm if installed.

But should you force the XPK support to be enabled (by using the
OPT XPK option) and ProAsm cannot open the required
xpkmaster.library library, an error will be reported.

proasm 153 / 223

By default, the assembler enables the XPK support if the
xpkmaster.library can be opened successfully. No message will be
displayed if it failed.

For more information about the XPK Data Compression Package, refer
to the package itself that is freely distributed and can be found
on Aminet and many public domain libraries. There is also a
developer package for all programmers that can also be found on
Aminet.

- Temporarily store states: OPT STO
- Recall stored states: OPT RCL
- Reset states: OPT RESET

OPT STO and OPT RCL can be used to force the assembler to
temporarily store and recall the states of almost all options,
modes, and settings of ProAsm.

The possibility to store and recall these states can be used to
make routines, that are included into the source code, more
modular. The states can be stored at the beginning of a routine,
then changed to the routines needs, and finally restored at the
end of the routine to their previous settings.

Consider the following example:
A routine that is included into the source code if used, but it
should not get in conflict with the current settings and states.

IFND RESET_FPU_R ; This IFND mechanism forbids
RESET_FPU_R EQU 1 ; this include file to be loaded twice

OPT STO ; store current states,
OPT O+,OW-,Q+,QW- ; enable optimization
MC68882 ; and select MC68882

ResetFPU:
...
rts

OPT RCL ; restore temporarily saved states
; => previous used states

ENDC

The use of OPT STO and OPT RCL cannot be nested. Only the last
stored states can be recalled. If OPT RCL is used when no
settings were stored previously, the option is ignored.

OPT RESET causes the assembler to initialize most of the options,
modes, and states to their default.

The states of the following directives and options are stored,
recalled, and resetted by using the described options (Note that
only the names of the directives and options are used below,
without any further declarations and without their negative
respectively positive form):

proasm 154 / 223

- Select symbol search algorithm: OPT ESS1+
- : OPT ESS2+
- : OPT ESS3+
- Unselect symbol search algorithm: OPT ESS1-
- : OPT ESS2-
- : OPT ESS3-

Next to ProAsm’s default symbol search algorithm, three
additional, enhanced algorithms can be selected.

They do not only differ in the resulting search time, but also in
the memory usage. OPT ESS1+ uses 131072 bytes, OPT ESS2+ 32768
bytes, and OPT ESS3+ 524288 bytes! (The last one is probably not
usable on machines with less than 2MB of memory).

The memory usage an algorithm uses does still not guarantee a
faster search. For example, source code produced by any
reassembler contains tons of symbols that look quite similar (i.e.
Lxx00002 etc.). In such cases the OPT ESS1+ option is usually
better than the other two algorithms.

If you often use a reassembler, you probably have to experiment
which one of these algorithms brings you the most advantage in
assembling the produced source codes.

If not enough memory is available for the selected algorithm,
ProAsm drops back to its default algorithm.

These options should only be used before any symbols are defined
or an option must be at beginning error will be reported. By
default, none of these additional algorithm is selected.

1.74 pro.guide/ESCAPESTR

- Enable escape sequences: ESCAPESTR
- : ESCAPESTR ON
- Disable escape sequences: ESCAPESTR OFF

The ESCAPESTR directive can be used to control the allowance of
escape characters inside quoted strings of data generating
directives (such as DC, CSTRING and many more).

Escape character in strings are represented by a backslash
character (\) and a second character.

The legal escape sequences and their meaning are listed below:
\0

Zero byte (DB 0)

\b
Backspace (DB 8) [ANSI C]

proasm 155 / 223

\c
Control sequence introducer (DB $9b)

\e
Escape (DB 27)

\f
Form feed (DB 12) [ANSI C]

\n
Newline (DB 10) [ANSI C]

\r
Carriage return (DB 13) [ANSI C]

\t
Horizontal tab (DB 9) [ANSI C]

\v
Vertical tab (DB 11) [ANSI C]

\xnn
Insert a two digit hex value (DB $nn)

\
Backslash (DB "\") [ANSI C] The escape sequences marked with

[ANSI C] are defined by the ANSI C standard.

Even through you need two keystrokes to write these sequences into
your source code, they occupy exactly one byte in the produced
object code.

For example:
ESCAPESTR
DC.B "Hello\nworld!\0"

; => DC.B "Hello",$a,"world!",0

CSTRING "\c1mA\c0m\B\n" ; make ’A’ bold
; => CSTRING $9b"1mA",$9b,"0m\B",$a

- Achieve C symbol format: CSYMFMT
This directive forces the assembler to prefix all symbols with an
underscore (_) that are written either as external references or
as external definitions to the object file. No underscore
character is added to a symbol if it starts with an atSign
character (@).

The advantage of using this directive is that the generated object
code can be made linking compatible with common C compilers
without the need of manually add an underscore as prefix to each
symbol.

The CSYMFMT directive is ignored if no linkable output is

proasm 156 / 223

generated.

1.75 pro.guide/VERBOSE

- Report object and timing information: VERBOSE
- Report timing information: TIMES
- Suppress all additional information (default): QUIET

These directives can be used to control the information output that
the assembler reports when it finishes the last pass.

Using the TIMES directive ProAsm displays the needed time for the
current task and the resulting "lines per minute" (LPM) ratio.
Also the number of defined and used macros are displayed.

In addition VERBOSE displays also hunk information and a list of
unused registers.

By default, QUIET, no additional information is reported.

- Set assembler task priority: ASMPRI value
Since the Amiga is a multitasking machine, it uses priority
numbers assigned to each task to determine the relative importance
they should be serviced. This directive can be used to set
ProAsm’s task priority during assembly.

The range of the priority are the integers from -128 to 127. The
CLI and the most tasks have a priority of 0, and it is suggested
that you do not set the priority higher than 10. A priority
higher than zero means that the assembler will not be slowed down
as much by other tasks. Setting the priority lower than 0 will
prevent ProAsm from slowing down other programs with normal
priority.

Example:
ASMPRI 3 ; Raise assembler priority level to 3

- Define comment block: COMMENT delimiter comment delimiter
This directive can be used to define easily a comment that spawns
one or more lines.

The first character found is taken as delimiter except if it is a
whitespace character. The text following this delimiter becomes
the comment block until the next occurrence of the delimiter.
Should the delimiter character be used inside the comment block,
then double the delimiter character to tell the assembler that
this is not the end-delimiter.

During assembly the comment blocks are ignored completely.

proasm 157 / 223

The advantage of using the COMMENT directive is that you do not
need to comment each line using the semicolon (;) or the asterisk
(*).

For example:
COMMENT |

This is a comment block
spawned over as many lines as required.
A delimiter character used inside the comment block
must be doubled (||) to tell the assembler that
this is not the end-delimiter.

|

- Print remaining line: PRINTX remaining line...
This directive can be used to output the remainder of the line to
the standard output.

For example:
IFD __DEMO__
PRINTX ** demo version generated.
ELSE
PRINTX ** full version generated.
ENDC

1.76 pro.guide/RCRESET

- Reset return code: RCRESET
This directive sets the __RCODE symbol to zero. The __RCODE
symbol contains the return code ProAsm returns to AmigaDOS if the
source file ended (see __RCODE).

- Set return code: RCSET expression
The RCSET directive sets the __RCODE symbol to the desired
expression. This symbol contains the return code ProAsm returns to
AmigaDOS if the source file ended (see __RCODE).

Setting the return code can be useful if ProAsm is used inside
batch files.

- Enable additional error information: ERRFLAG
This directive instructs ProAsm to display additional information
to the error messages and warning reports.

These information can be used to determine the state the assembler
was in when the error or warning occurred. This information may

proasm 158 / 223

be irrelevant for the user, but can be important to us if internal
error messages (e.g. INTERNAL: ...) have occurred. This directive
was especially implemented for beta testing reasons.

The flags will be printed after the error descriptions, enclosed
in square brackets ([flags]).

The flags have following meaning:
error occurred...

C
during conditional assembly.

I
inside an included source code.

M
inside a macro body.

R
inside REPT/ENDR loop.

r
inside REPEAT/UNTILcc loop.

with the following flag set:

e0
Standard symbol search algorithm used.

e1
OPT ESS1+ option selected.

e2
OPT ESS2+ option selected.

e3
OPT ESS3+ option selected.

N
Both syntax modes accepted (RELAX).

o0
Executable output format selected.

o1
Linkable output format selected.

o2
Binary output format selected.

o3
Motorola S-record as output format selected.

o4
Preasm as output format selected.

proasm 159 / 223

1.77 pro.guide/LOCKSYM

- Lock symbols: LOCKSYM symbol[,symbol[...]]
- Unlock symbols: UNLOCKSYM symbol[,symbol[...]]

The LOCKSYM directive is used to specify a list of symbols as
"locked", meaning that these symbols cannot be referenced anymore.
Any references are reported by an error message.

The UNLOCKSYM directive on the other hand removes the "lock" mark
from the symbols of the given symbol list.

This mechanism of locking symbols allows you to check symbol
references. If, for example, symbols were just defined for
clearness and should not be referenced in the program code, they
can be locked using the LOCKSYM directive:

LOCKSYM write_to_StdOut

PrintText:
...

write_to_StdOut: ; this symbol might be inserted
move.l DosBase(pc),a6 ; for commenting a code fragment
jsr _LVOOutput(a6)
move.l d0,d1
jmp _LVOWrite(a6)

1.78 labseg

- Begin new labseg scope: LABSEG name
When ProAsm sees a LABSEG directive, it takes the current symbol
and macro tables, stores them away somewhere for safe keeping,
then creating new empty ones. Only the special internal symbols
(__RS, etc.) remain.

The name is a string up to 256 characters long. It must be quoted
if it contains special characters such as whitespaces or
semicolons (;). LABSEG names are case-unsensitive and are used to
identify the new created tables.

Symbols within a LABSEG scope (from the LABSEG directive to the
next one or to the end of the source code) can have the same names
as symbols outside this scope, since they are stored in different
symbol tables. The same is also valid for any macros. You have
to use the EQUX directive to import symbols from other LABSEG
scopes. See below for the EQUX description for more details.

The immediate usefulness of this directive is that you can
encapsulate a piece of code that performs some specific function,
and ensure that it does not make any (forbidden) references to
anything outside that LABSEG scope.

proasm 160 / 223

With the LABSEG directive you have also the possibility to include
source codes of other programs without renaming all the duplicate
symbols these sources may have.

If a LABSEG scope was defined earlier with the same name as the
new scope, ProAsm continues adding the symbols and macros to the
first scope instead of creating new tables. Any symbols and
macros defined before the first LABSEG directive will be placed in
the default tables. The default tables are unnamed, as if a
LABSEG directive had been included at the very beginning of
the source file with an empty string as name ("").

For example:
eval EQUX "calculator",eval ; import a symbol
...
bsr eval

LABSEG "calculator" ; create new tables
INCLUDE "sources:otherprojects/calculator.s"
LABSEG __OldLabseg ; drop back to previous used ←↩

tables

Another example:
...
rts

LABSEG "foo" ; create new tables named foo
foo: ...

LABSEG "bar" ; create new tables named bar
bar: ...

LABSEG "foo" ; use tables labeled foo
foofoo: ...

LABSEG "" ; drop back to initial symbol
; macro tables

- Revert to the previous LABSEG scope: LABSEG __OLDLABSEG
This directive reverts to the LABSEG scope that was in effect
before the most recent LABSEG directive.

This can be used in include files, for example, to temporarily
switch to a different section and than later switch back to the
LABSEG scope that was in use by the "parent" source file. This
feature does not stack, however; additional LABSEG __OLDLABSEG
directives merely toggle between the two most recent scopes.

The keyword __OLDLABSEG is case-insensitive.

Example:
foo EQUX "foo",bar ; import symbol bar from LABSEG foo

dots
LABSEG "foo" ; create new tables named foo

bar: dots
LABSEG __OldLabseg ; toggle back to previous scope

proasm 161 / 223

bar: dots
bra foo ; jump to symbol bar within LABSEG foo

- Import a symbol from another LABSEG scope: symbol EQUX scope,xsymbol
This directive allows you to import a symbol from another LABSEG
scope.

The symbol in question is the symbol xsymbol from the LABSEG scope
scope, and it will be added to the current symbol table as symbol.

Consider the following example:
LABSEG "mainscope"

foo: ...

LABSEG "subscope_1"
foo2 EQUX "mainscope",foo ; import symbol foo named as foo2
foo: ...

bsr foo2 ; go to foo from the mainscope LABSEG scope
bra foo ; jump to foo of this scope

It works similar to the EQU directive, except that you have to
name the LABSEG scope, the symbol in question (xsymbol) is taken
from. Note that symbols can only be imported and never exported.

1.79 pro.guide/Special Symbols

Special Symbols

ProAsm defines a variety of built-in symbols which are automatically
substituted with certain values when you use them. Some of these are
useful at any point in the program, while others are useful only in
certain places like inside macro bodies. You may use these symbols in
any combination of uppercase and lowercase: for example, __DATE,
__date, and __Date are equivalent. These symbols cannot be
redefined with EQU, SET, etc. If you try to, ProAsm reports a reserved
symbol error.

Besides the special symbols listed here, there are a few others
which are only useful inside macro bodies; they are listed in

Symbols and Keywords for Macros
.

- ProAsm version number: __PRO
This symbol is replaced by the version number of ProAsm, in binary
coded decimal. Bits 8-15 contain the version number and bits 0-7
the revision number.

proasm 162 / 223

$0082 means version 0, revision 82
$0102 means version 1, revision 02

Most of the modern assemblers support a similar type of
identification to make it possible for the source code to
determine which assembler is currently being used. For example,
the following source code ensures that ProAsm 1.74 or later is
being used to assemble the source code:

IFND __PRO
FAIL You need ProAsm to assemble this source code.
ENDC

IFGT __PRO,$0174
FAIL ProAsm version 1.74 or higher required.
ENDC

- RS structure offset: __RS
- SO structure offset: __SO
- FO frame offset: __FO

These symbols always represent the current values of the structure
offset maintained by the RS... and SO... directives, and the frame
offset maintained by the FO... directives, respectively. See

Structure Offsets
, for information on these directives.

Note that __RS and __SO represent the value that will be assigned
to the label in the next RS... or SO... directive, respectively,
while __FO represents the value that was assigned to the label in
the previous FO... directive. This is because the RS... and SO...
directives are post-incrementing, while the FO... directives are
pre-decrementing.

- Number of registers moved in last MOVEM: _MOVEMREGS
- Number of bytes moved in last MOVEM: _MOVEMBYTES
- Register list moved in last MOVEM: _MOVEMLIST

The symbol _MOVEMREGS always contains the number of registers
moved in the last movem instruction seen by the assembler.

_MOVEMBYTES contains the number of bytes moved by that movem.
_MOVEMBYTES is always twice _MOVEMREGS if the last movem was a
word (16-bit) instruction, and four times _MOVEMREGS if the last
movem was a longword (32-bit) instruction.

The symbol _MOVEMLIST contains the register list moved in the last
movem instruction seen by the assembler, as if it had been defined
with REG.

These symbols are useful to an assembly language routine for
accessing parameters stored "C-style" on the stack, when the

proasm 163 / 223

function uses movem to save and restore registers:

myroutine:
movem.l d2-d5/a2,-(sp) ; Save registers
move.l _MOVEMBYTES(sp),d0 ; First parameter

...

movem.l (sp)+,_MOVEMLIST ; Restore registers
rts

This way, you do not have to change the offset for each
instruction that accesses these parameters whenever you change the
number of saved registers.

Notice that these three symbols are prefixed with only one
underscore (_), unlike most of the other built-in symbols, which
are prefixed with two underscores (__). This is for compatibility
with existing assemblers.

- Current base address: __BASE
This symbol always contains the current base address, if any is
defined. For example, after the statement BASE base_addr, __BASE
will be the same as the symbol base_addr. If no base is defined,
__BASE is zero. See

BASE
, for information about the BASE

directive.

- Command-line variable n: __Vn
These symbols are replaced with the values you specify in the
-Vn=value command-line options of ProAsm, where n is
between 0 and 9, as described in Invoking. If you do not specify
a value for one of these symbols on the command line, value is set
to zero by default.

- Host processor: __PR
ProAsm replaces this symbol with a number indicating which M68000
family processor ProAsm is currently executing on. It will
contain one of the following values:

0 68000

1 68010

2 68020

3 68030

proasm 164 / 223

4 68040

6 68060

13 68EC030 (a 68030 without an MMU)

14 68LC040 (a 68040 without an MMU) or 68EC040 (a 68040 without
an MMU or FPU)

Note: This symbol represents the processor ProAsm is executing on
(the host processor), not the processor ProAsm is writing code for
(the target processor). This directive has nothing to do with the
MC... directives, which select the target processor.

- Host coprocessors: __CP
This symbol is replaced with a number indicating what coprocessors,
if any, are installed in the computer ProAsm is running on. Any
of the following bits may be set in the number:

Bit 0
Either a 68881 or a 68882 math coprocessor is installed.
(The built-in FPU on the 68040 does not cause this bit to be
set.)

Bit 1
A 68882 math coprocessor is installed (not a 68881 or the
68040 FPU).

Bit 2
A 68851 MMU is installed. (The built-in MMU on the 68030 or
68040 does not cause this bit to be set.)

The actual values you may get for the various M68000 series
processors are broken down in the following table:

68000
0

68010
0

68020
0 No coprocessors installed.

1 68881

3 68882

4 68851

5 68881 and 68851

proasm 165 / 223

7 68882 and 68851

68030
0 No external coprocessors installed.

1 68881

3 68882

68040
0

- Current date: DD-MMM-YYYY: __DATE
- Current date: DD.MM.YY: __DATE2
- Current date: MM/DD/YY: __DATE3
- Current time: HH:MM:SS: __TIME
- Current day of the week: __DAY

As their names indicate, these symbols are automatically replaced
with the current date or time (i.e. when ProAsm is assembling the
current program), expressed as an ASCII string which you can use
in a DC.B directive.

The date can be formatted in three different ways, depending on
which symbol you use:

__DATE
The date is formatted as DD-MMM-YYYY, where DD is the
two-digit day of the month (between 01 and 31), MMM is the
month as an abbreviated name (Jan, Feb, etc.), and YYYY is the
year, expressed as a four-digit number (i.e. 1992).

__DATE2
The date is formatted as DD.MM.YY (European format), where DD
is the day, MM is the month (from 01 to 12), and YY is the
last two digits of the year (i.e. 92 for 1992).

__DATE3
The date is formatted as MM/DD/YY (U.S. format)--exactly like
__DATE2, except the month and day are swapped, and the
periods are replaced with slashes.

__TIME is substituted with the current time, in the standard
HH:MM:SS format.

__DAY is replaced with the current day of the week (i.e. Monday).

Here is a code fragment that demonstrates the use of these symbols:

DC.B ’Assembled on ’,__DAY,’ ’,__DATE,’ at ’,__TIME,0
; => e.g. Assembled on Monday 16-Aug-1993 at 19:51:08

proasm 166 / 223

- Current line number: _LINENUM
This symbol always contains the current line number of the program
text.

- Built-in Symbol: __RCODE
If ProAsm has detected any errors during assembly at this point,
__RCODE is set to 10; otherwise it is set to zero. In effect, it
is the return code ProAsm would return to AmigaDOS if the source
file ended at the point of the __RCODE. You can change the return
code ProAsm returns (and thus the contents of __RCODE) with the
RC... directives (see

RCRESET
, and RCSET).

- Output object type: __LK
This symbol is replaced with a number describing the type of
object file to be produced from this assembly. To set the output
file format, see Output File Format.

0
No object file is being produced

2
Raw binary

3
AmigaDOS linkable object module

4
AmigaDOS executable

5
Preasm file

6
Motorola S-record

- Not-a-number: __NAN
- Signaling not-a-number: __SNAN
- Infinity: __INFINITY

__NAN (not-a-number) represents the result of operations that have
no mathematical interpretation, such as infinity divided by
infinity. Any computation for which a NAN is provided as input
will generate a NAN as output: NANs propagate through
floating-point computations like a virus. This symbol allows you

proasm 167 / 223

now to use NANs, for example, to invalidate floating-point
variables so that any computations that accidentally use them will
produce clearly invalid results.

__SNAN represents a signaling not-a-number (SNAN). When an SNAN
is used in a computation, the processor generates a floating-point
exception.

The symbol __INFINITY represents a positive infinite
floating-point number. Infinities represent real values that
exceeded the overflow threshold.

These symbols can only be used with floating-point instructions or
directives.

Example
fmove.x #__INFINITY,fp0 ; load FP0 with positive infinity
fmove.d #-__INFINITY,fp1 ; and FP1 with negative infinity

Refer to the ‘MC68881/MC68882 Floating-Point Coprocessor User’s
Manual’ or any other manual that describes the MC68881/MC68882
coprocessors for detailed information about the data formats.

- Number of arguments to macro: NARG
This symbol is replaced by the number of arguments the macro was
invoked with, as illustrated by this code:

foo MACRO
dc.l NARG
ENDM

foo ; => 0
foo a ; => 1
foo a,b ; => 2

This feature is usually used to create macros that can operate on
different numbers of arguments, performing slightly different
functions as appropriate. Therefore, NARG is usually used with IF
directives.

- Number of real arguments to macro: RARG
RARG is quite similar to the NARG symbol, except that NARG contains
the number of arguments passed to the macro and RARG the number of
arguments that actually contain anything ("real" arguments).

myMacro 1,2,3,4,5 ;NARG=5, RARG=5
myMacro 1,2,,4,5 ;NARG=5, RARG=4
myMacro 1,2,,,,5 ;NARG=6, RARG=3
myMacro.b 1,2,3,4,5 ;NARG=6, RARG=6
myMacro.w 1,2,,4,5 ;NARG=6, RARG=5

proasm 168 / 223

- Current macro number: _MCOUNT
This symbol can always be used to determine the number of macros
currently used. (How many times macros have been expanded.)

1.80 pro.guide/Support Libraries

Support Libraries

The support libraries are shared Amiga libraries that can be used
to increase the power and flexibility of ProAsm. They are not required
by ProAsm or any of its associated utilities to run. Install the
libraries to enlarge the capacity of ProAsm and de-install them to
remove these additional capacities.

Installation and De-installation
================================

The installation and de-installation process is quite as easy as
flipping a power switch.

To use the features of one or more libraries, install them by
copying the library to the search path of ProAsm. ProAsm searches its
libraries in the libs: assign, the libs:proasm directory, and in
ProAsm’s home directory.

To de-install a library, just remove it from the ProAsm’s library
search pathes. Instead of removing a library we recommend to rename it
(e.g. add an underscore (_)to its name). This way that the libraries
vanish from your harddisk or disk.

The proasmlang.library
======================

ProAsm fully supports the AmigaDOS 2.1 localization library
mechanism for the error texts. Some locale catalogs are included with
this release.

To use localization install this library and the desired catalog
file. When installed correctly, all during an assembly process
reported errors will be issued in the selected language.

The proasmoptim.library

proasm 169 / 223

=======================

The proasmoptim.library looks at the generated code while assembly
is in progress and makes suggestions about possible optimizations.

The current library reports only the recognized optimizations and
does not lay its hands on the produced code. A future version may have
the possibility to optimize the code, but for the actual version all
optimizations have to be made by hand.

See also see OPT OPTIMLIB.

1.81 pro.guide/Errors

Errors
======

This appendix lists in alphabetical order the error messages ProAsm
generates, and describes their cause and how to fix the problem.

.W or .L as index size expected
The size specifier of an index register in an indirect addressing
mode with index must be either word or long word. (See

Addressing Modes
).

absolute expression must evaluate
The expression supplied with the RORG directive is too small. The
program counter cannot be set to the new location, because it
would overwrite already generated code. As shown in the following
example:

...
movem.l (a7)+,d1-a6
moveq #0,d0
rts

RORG 4 ; => error
...

To ensure a correct argument for the RORG directive, the
expression argument - current program counter must always be
positive.

absolute not allowed
The operation will not allow the absolute addressing mode.

abuse of textual symbol (equr/equstr)
You tried to use a textual symbol defined with the EQUR or EQUSTR
directives (see

EQUR
) in a situation in which they are not allowed,

such as within a *LEFT(), *RIGHT(), or *MID() directive (see

Substituting subsections of strings

proasm 170 / 223

). To fix this, simply "wrap"
the textual symbol name in a *STRING() directive (see

Substituting textual symbols in symbol names
).

additional LABSEG on pass 2
An additional LABSEG directive was encountered in pass 2, but not
in pass 1. Possibly caused by a misuse of the IF1 or IF2
directive.

additional symbol found
additional symbol on pass 2

A symbol was defined in pass 2, but not in pass 1. Possibly
caused by a misuse of the IF1 or IF2 directive.

addressing mode not allowed
The specified addressing mode is not allowed for this instruction.
Refer to Motorola’s Programmer’s Reference Manual (see

Bibliography
) for detailed information about the instruction and

its addressing modes.

addressing mode not recognized
ProAsm could not recognize the addressing mode used for an
assembly language instruction. Make sure the instruction’s
operands conform to one of the valid addressing modes in

Addressing Modes
.

address register expected
An address register direct was expected as effective address.

bad address size, .W or .L expected
As valid sizes for absolute addressing modes only word and
longword sizes are accepted. If no size is given, the assembler
defaults to longword size. (See

Addressing Modes
, for more

details about the absolute addressing modes.)

Example:
move.l (4).W,a6
lea $dff000.l,a6

bad arguments
The supplied argument for a directive is not valid. To fix this,
refer to the description of the directive that caused this error
message. Example:

FILEPROTECT +PX ; => error, X is an invalid argument

bad character in expression
An unexpected character was encountered in the expression.

bad line length

proasm 171 / 223

This error should not occur. If it does, please report it.

bad macro name
The specified macro name contains an invalid character. A macro
name is like an ordinary symbol name, with the exception that the
point (.) is not accepted as a valid character.

bad operation size for FPU instruction
The specified operation size for the floating-point instruction is
not valid. Refer to the ‘M68000 Family Programmer’s Reference
Manual’ or the ‘MC68881/MC68882 Floating-Point Coprocessor User’s
Manual’, for the correct operation sizes.

For example:
fmovem.l (a7)+,fp0-fp7 ; => error

fmovem.x (a7)+,fp0-fp7 ; => ok

bad operation size for register
The specified operation size for the instruction is not valid for
the used register. Usually, valid operation sizes for registers
are only byte, word, or longword.

Refer to the ‘M68000 Family Programmer’s Reference Manual’, for
the correct operation sizes.

bad register
The instruction that caused this error expected another register.

MC68030
pflush a0,0 ; => error, either sfc, dfc,
... ; or a data register expected

bad scale factor
Only the numbers 1,2,4, or 8 are allowed for the scaling factor.
(See

Addressing Modes
).

bad size, .B or .W expected
bad size, .B, .W or .L expected
bad size, .W or .L expected
bad size, byte expected
bad size, word expected
bad size, long expected

These errors occur if the specified operation size is not valid
for the instruction. These error messages display also all valid
size specifiers for that specific instruction.

For example:
move.d d0,d7
; => error, bad size, .B, .W or .L expected

add.b d0,a2
; => error, bad size, .W or .L expected

bit field offset/width out of range

proasm 172 / 223

The specified field offset or field width were out of range. The
value of the offset field must be in the range of 0-31, and the
value of the width field in the range of 1-32 (a width field of
zero specifies a width of 32).

bit number must be from 0-7
bit number must be from 0-31

These error messages only occur when OPT CHKBIT was selected. OPT
CHKBIT forces the assembler to be more strict when checking the
immediate bit number for the bit manipulating instructions (bclr,
bchg, bset, and btst). The accepted bit number depends on the
destination addressing modes specified. If the destination is a
data register, the bit numbering is from 0 to 31. For memory
location, the bit numbers are from 0 to 7.

Generally this additional check is not needed, since the processor
uses the bit number modulo 8 respectively 32. But it may be useful if
you want to generate a "correct" code. (See OPT CHKBIT, for the
descriptions of OPT CHKBIT, and refer to ‘M68000 Family
Programmer’s Reference Manual’ for detailed information on the bit
manipulating instructions.)

Example:
OPT CHKBIT
btst #10,foo(a5)

branch out of range (by number bytes)
A branch was specified outside of the range that can be reached by
two bytes (-32768-32767).

byte displacement out of range (by number bytes)
The byte displacement of an "address register indirect with index
(8 bit displacement)" or "program counter with index (8 bit
displacement)" addressing mode is out of range.

calculator buffer overflow
This error should not occur. If it does, please report it.

cannot nest MACRO definitions
The assembler has found a macro definition within another macro
definition (a MACRO directive was found inside a macro definition).
(See

Macros
, for more details about defining macros.)

closing brace ’}’ expected
The assembler expected a closing brace } but did not find one.
Braces are used by a bitfield selection ({offset:width}. You
should check the bitfield selection perhaps it was improperly
declared.

colon expected
A colon (:) is used within a bitfield selection ({offset:width},
to separate the higher and lower long word of a quad word
(highlong:lowlong), and to represent a pair of registers as
used by certain instructions. These instructions are:
cas2 Dc1:Dc2,Du1,Du2,(Rn1):(Rn2)

proasm 173 / 223

divs.l <ea>,Dr:Dq
divsl.l <ea>,Dr:Dq
divu.l <ea>,Dr:Dq
divul.l <ea>,Dr:Dq
muls.l <ea>,Dh:Dl
mulu.l <ea>,Dh:Dl
fsincos <ea>,FPc:FPs
fsincos FPm,Fpc:FPs
(Dc1, Dc2 ,Du1 ,Du2, Dr, Dq, Dh, Dl any data registers; Rn1, Rn2
any data or address registers; FPc, FPs, FPm any floating-point
data registers). Refer to ‘M68000 Family Programmer’s Reference
Manual’ for detailed information about these instructions.

Examples:
bfclr (a0){3:16} ; bitfield selection
pmove #$007e0004:$80200000,crp ; quadword
divu.l foo(pc),d0:d1 ; 64-bit dividend in d0:d1

comma expected
The operand field of an instruction or directive may contain
multiple operands. These operands must be separated by commas.

move.l (a0) (a2)
; the assembler expects a comma between the two addressing modes

Whitespaces may be used within the operands field, but only within
quoted strings:

move.l #"opt ",d0
dc.b "Hello world!"

could not examine file ’filename’
The assembler cannot get the information concerning the file
filename. Check the spelling of filename and that the supplied
pathname is correct.

could not open asl.library or req.library.
ProAsm uses the ASL file requester if you have Kickstart version
2.04 or later, or the REQ file requester on an earlier version of
Kickstart. None of these libraries could be found. Install one
of these libraries (according to your Kickstart version), or try
not to run ProAsm with the -F/FILEREQ command line option set.

could not open file
could not open file ’filename’ (DOS error code)

The assembler cannot open the specified file. Check the spelling
of filename and that the supplied pathname is correct. The DOS
error code may give you more detailed information why the
assembler could not open the file (see

AmigaDOS Error Codes
).

could not open xpkmaster.library
The xpkmaster.library could not be found. The XPK Data
Compression Package is probably not installed to your system. To
fix the problem, you can either remove the option (OPT XPK) or
install the XPK software package to your system. (Refer to

proasm 174 / 223

OPT XPK
for further details about the XPK package.)

could not read file (DOS error code)
While reading the main source file, an AmigaDOS error occurred.
Refer to the AmigaDOS error codes listed below for detailed
information (

AmigaDOS Error Codes
).

data register expected
An operand that should be a data register is not a data register.

For example:
moveq #0,(a0) ; => error

data too large
A given operand is larger than it is allowed to be. To fix this,
refer to the description of the directive that caused this error
message to get details about operand ranges etc.

For example:
DS.B -2,0 ; => error

If an instruction causes this error message, refer to the ‘M68000
Family Programmer’s Reference Manual’ for detailed information
about this instruction.

divide by zero
During the evaluation of an expression the assembler encountered a
division by zero. Check the concerning expression for any
division by zero, you may also have to look at the symbol values.
For example:

foo EQU 0
...
move.l #2*(bar/foo),d0

DX only in executable object files allowed
The use of the DX directive is only in executable object files
allowed. In other object files the use of DS is recommended.
(See

Declaring Data Blocks
, for more detailed information about

these directives).

DX section cannot contain data or code
The DX directive must be at the end of a section (unless within a
BSS section) and no other code or data generating directive is
allowed after a DX directive.

ENDR/UNTILcc changed by mistake
The REPT - ENDR loop and the REPEAT - UNTILcc loop are two
different kind of loops. This error is caused, because either
their loop introducers (REPT, REPEAT) or their loop terminators
(ENDR, UNTILcc) are changed by mistake. (See

Repeating Text
,

proasm 175 / 223

for more information about this directives.)

error while writing source file ’filename’ (DOS error code)
An AmigaDOS error occurred while writing the source file. Refer
to the AmigaDOS error codes listed below for detailed information
(

AmigaDOS Error Codes
).

fatal error: unable to open window
ProAsm is unable to open an output window. Try to use other
window dimensions if any were given. Another way to force ProAsm
to send all its output to a window is to redirect it to a
CON-window:

pro >CON:0/0/640/200/ProAsm_output mySource.s
This version has the disadvantage, that it does not wait for a
keystroke after the assembly job has finished.

file load error (DOS error code)
An AmigaDOS error occurred while loading a file. (See

AmigaDOS Error Codes
, for a list of the AmigaDOS error codes.)

fatally out of memory!
There is not enough memory available for the assembler to complete
its task. This error occurs only if there is not enough memory to
start the assembly or if the memory for the object code could not
be allocated.

floating-point number value error
This error occurs if a floating-point constant has not the correct
format. ProAsm accepts two notations for floating-point numbers:
the pure fractional number and the engineering (exponential)
notation. (See Floating-point Constants, for more details about
the floating-point constants and their formats.)

For example:
foo FEQU .E1 ; => error

fmove.x #1.1.2,fp0 ; => error

flow of assembly changed
This error should not occur except by the abuse of the IF1 or IF2
directive. Check all the IF1 and IF2 conditional statements in
your source code. None of them should contain code- or
data-generating instructions or directives, or macro definitions.

This example below causes the assembler to report this error
message:

IF1
foo MACRO

...
ENDM
ENDC

IF2
foo MACRO

proasm 176 / 223

...
ENDM
ENDC

This construct is not valid, because the assembler finds one macro
name with two different definitions.

forward reference not allowed (OPT A+)
A forward reference was found while the automatic PC-relative
addressing mode was enabled. When this mode is turned on (by
using the OPT A+ or OPT AUTOPC options, see OPT AUTOPC), the
assembler transforms all absolute long addressing modes into
PC-relative addressing modes. This error is only reported if the
assembler transformed a forward referenced absolute long
addressing mode only in the first pass, since in the second pass
this reference may be out of range for the PC-relative addressing
mode. To bypass this transformation you can append the .L size
specifier to the absolute long addressing mode. (See OPT AUTOPC,
and

Addressing Modes
, for more details.)

FPU data register expected
An operand that should be a floating-point data register is not a
floating-point data register. For example:

fadd.x fp0,(a0) ; a FPU data register is expected
; as destination operand

FPU register expected
An operand that should be a floating-point register is not a
floating-point register.

For example:
lreg EQUR FP0
lregn EQU 1

...
fmove (a0),lregn
; probably symbol names changed by mistake

garbage following instruction
The assembler issues this error when something unexpected follows
an instruction or operand. For example:

SECTION __OldSection, ; => error

illegal address mode for CPU type
This error occurs if you try to use an addressing mode that is
only valid on 68020 and higher processors while in MC68000 or
MC68010 mode. If you want the code to run on any M68000 processor,
fix the instruction to use a simpler addressing mode (see

Addressing Modes
). Otherwise, set the processor type appropriately

with one of the MC... directives (see
Processor Options
).

illegal arithmetic on xref symbol
External symbol operations are limited in their combinations.

proasm 177 / 223

This error is reported if an illegal arithmetic operation is
performed on an external symbol. Refer to the table in the
section Operators (Operators) for an overview on all allowed
operations and combinations with external symbols.

illegal BSR.S
The destination of the BSR.S is the following instruction, which
is an illegal branch offset for the short (1-byte) form of BSR.
To branch to the following instruction, you must use BSR.W. For
example:

bsr.s foo
foo: ...

illegal directive inside INCEQU file
Files included using the INCEQU directive have restrictions on
their content, because they are read and processed in the first
pass only. Only symbol and macro definitions should be used in a
file loaded by the INCEQU directive. Code or data generating
directives and temporary symbols are not allowed in such a file.

illegal instruction for processor options
The selected processor type does not support the opcode specified.
(See Processor Type.)

illegal operator
Check the operand field for a bad operator. (See Operators, for a
list of all operators that ProAsm recognizes.)

illegal public symbol (xdef) definition
You try to declare a symbol as externally visible (using XDEF)
that is neither a label nor a numeric symbol. Check all symbols
in the operand field of the particular XDEF directive for their
types. Not allowed as arguments of the XDEF directive are symbols
of the following types: any local symbols, register lists masks,
textual symbols (EQUR), external references (XREF), floating-point
constants, and undefined symbols.

illegal symbol name
A symbol with an illegal name was encountered. Check the spelling
of the symbol in question (you may refer to Labels for more details
about symbols and their formats).

illegal type combination
An attempt was made to combine quarrelsome symbol types and/or
constants in an arithmetical expression. Consider the following
example:

foo FEQU 2
bar EQU 8

move.l #foo*bar,d0 ; => error

Check all symbols and constants in the expression for their
correct type.

illegal use of external reference (xref)
An operation will not allow an external symbol to be used as
operand. Refer to the description of the particular directive or

proasm 178 / 223

instruction for more information about its usage.

illegal use of inside ’incequ’ defined symbol
Files included using the INCEQU directive have restrictions on
their content, so have symbols defined in these files. These
restrictions come from the concept of the INCEQU directive. Files
included into the main source code using INCEQU are read and
processed in the first pass only. If you try to change an inside
’incequ’ defined symbol, this symbol cannot be set back to the
initial value during the next pass. (See

INCEQU
).

Use the INCLUDE directive if you have to redefine symbols defined
in external files.

illegal value
The expression evaluator could not find a valid value: a symbol,
constant, or an expression. An invalid prefix to a number or a
bad symbol name in an operand may also generate this error message.
For example:

move.l #14+),d0 ; => error
move.l ##14,d0 ; => error
move.l #{2+3}*4,d0 ; => error

immediate value expected
Some instructions of the M68000 family require immediate data as
source operand. The value is specified by the expression
following the pound sign #. Either the pound sign is missing or
the wrong instruction is used. The following examples generate
this message:

subq.l 3,d0
trap #8
andi %1101011,d2

invalid argument for this keyword
An argument of a keyword is invalid. Refer to the description
about this keyword to get more details about what type of argument
is requested.

Consider the following example:
foo MACRO

dc.b *STRING(\1),0 ; textual symbol as argument expected
EVEN
ENDM

foo 1 ; => error

invalid default mode
A DEFAULT directive was encountered with an invalid mode argument
that cannot be combined with the given type argument.

Refer to the description of the DEFAULT directive for more
detailed information about the default types and their accepted
modes.

invalid k-factor

proasm 179 / 223

The k-factor of the FMOVE.P instruction or the SETKFACTOR directive
is out of range. The range of a k-factor must be from -64 to +63.
(See

SETKFACTOR
).

invalid number
An invalid digit was encountered in a number. For example, using
a 2 or 3 in a binary number:

move.l #%1010201,d0

invalid option
The options specified does not exist. (See

OPT
, for an overview

of all supported options.)

invalid parameter
A directive was encountered with one or more invalid parameters in
its operand field. See the description of the directive that
generated this message for full details about the accepted
parameters.

invalid parameter line, consult ProAsm manual for more details.
The parameter line has not the requested format, or one or more
unknown parameters have been encountered. Start ProAsm with the
question mark (?) as only argument to get a small usage
information displayed, or refer to Invoking for a complete list of
all supported command line parameters and the accepted command
line format.

invalid section memory requirement
Only CHIP, FAST, PUBLIC, MEMF, and ADVISORY are allowed as valid
section memory requirements. (Refer to SECTION for more detailed
information about these memory requirements.)

invalid section type
Only CODE, DATA, and BSS are allowed as valid section types.
(Refer to SECTION for more details.)

invalid size
An instruction has either no size at all or it does not support
the used size. Example:

add.p #12,d0 ; invalid size packed for the add
; instruction

label from other section
This error occurs if you try to make PC relative references to
another section. To fix this error avoid PC relative references,
try to use absolute addressing modes

Consider the following example:
SECTION "bar",code
jsr foo(pc) ; relative jump => error,
... ; use jsr foo instead.

bra foo ; relative jump => error,

proasm 180 / 223

... ; use jmp foo instead.

SECTION "foobar",code
foo:

label value changed between passes
This indicates an assembler error where the label does not have
the same value on pass 2 as it does on pass 1.

This error may also be caused by a misuse of the IF1 or IF2
directive (see IF1).

line malformed
The line that caused this error message has not the prescribed
form. Each line has the following general layout:

label mnemonic operands comment

(For more details about the line format see
Source Line Format
.)

linker format restriction
This error occurs only if the linkable object file format was
changed to _RELATIVE (see

DEFAULT
) and a 32-bit data section

relative relocation (hunk_dreloc32) should be generated.

Since the linker reference mode _RELATIVE is implemented only for
compatibility with some older (non-standard) linkers, this error
message should not be a problem at all. These linkers do not
support the hunk_dreloc32 hunk format.

If you are using either ALINK (the Amiga standard linker) or BLINK
(the replacement linker from ‘The Software Distillery’) the linker
reference mode should be set to _BASERELATIVE (with DEFAULT
_LINKREF,_BASERELATIVE).

Note that ProAsm defaults to _BASERELATIVE.

local label not allowed
The directive that caused this error does not allow local labels
as arguments. Refer to the description of this directive for more
detailed information.

For example:
linkable
xdef .foo,1$; local symbols cannot be exported.
...

.foo:
1$:

locked symbol used
A symbol that was marked previously as "locked" using the LOCKSYM
directive is used within an expression or addressing mode. Check
why the symbol is "locked", or unlock it using the UNLOCKSYM

proasm 181 / 223

directive (see UNLOCKSYM).

macro defined twice
The macro label name is multiply defined in the same program. You
will need to change at least one of them to a unique name.

MC68040 software-supported instruction used
A floating-point instruction is used that has to be emulated by
Motorola’s floating-point software package on the MC68040
processors to ensure complete compatibility to the floating-point
coprocessors.

You can either enable the software-supported instructions using
the OPT FPSP40 option (see OPT FPSP40) or remove this instruction
and replace it by a subroutine (or whatever).

Note that by default all MC68040 software-supported instructions
are enabled.

MC68060 software-supported instruction used
A integer or floating-point instruction is used that has to be
emulated by Motorola’s software package on the MC68060 processors
to ensure complete compatibility to older processor models and the
floating-point coprocessors.

You can use the OPT SP60 option (see OPT SP60) to enable the
MC68060 integer instruction emulation, or the OPT FPSP60 option
(see OPT FPSP60) to enable the floating-point software-supported
instructions.

Note that by default all MC68060 software-supported instructions
are enabled.

misplaced ELSE/ELSEIF encountered
An ELSE or ELSEIF directive was encountered when not currently in
conditional assembly.

misplaced ENDIF/ENDC encountered
An ENDC or ENDIF directive was encountered when not currently in
conditional assembly.

missing close bracket
An unmatched open bracket (() was found in an expression.

missing ENDIF/ENDC
An IF directive is encountered without a matching ENDIF/ENDC
directive. This error commonly occurs if an END directive within
a matching IF - ENDC block was found.

For example:
foo EQU 0

...
IFEQ foo

...
END ; => error

ENDC

proasm 182 / 223

(See
Conditional Assembly
, for more information about conditional

assembly directives and their use.)

missing quote
An unmatched quote (single or double quote) was found in a string.
Make sure the string is correctly enclosed in quotes. You may not
mix single and double quotes.

Remember you must use the sequence " or "" to represent a single
respectively a double quote inside a string. If escape sequences
are allowed (see

ESCAPESTR
), a quote can also be represented by

either \’ for a single or \" for a double quote.

Examples:
dc.b "’Ouch!’",0 ; => ’Ouch!’
dc.b ’’’Ouch!’’’,0 ; => ’Ouch!’

ESCAPESTR
dc.b "\’Ouch!\’",0 ; => ’Ouch!’
dc.b ’\’Ouch!\’’,0 ; => ’Ouch!’

MMU register expected
An operand that should be a MMU register is not. For example:

lreg EQUR TC
lregn EQU 1

...
pmove (a0),lregn ; probably symbol names changed by mistake

more than 2147483647 IFs nested!
Conditional assembly directives can "only" be nested up to
2147483647 times. (See

Conditional Assembly
, for more information

about the conditional assembly directives.)

negative value expected
An operand to a NB, NW, or NL directive was positive. Change the
value or use a normal DC directive instead. (See

Initialized Data with Restricted Range
.)

no code or data allowed ahead of the HEADER directive
The HEADER directive must be at the beginning of a source code.
No code or data generating directives are allowed ahead of the
HEADER directive. To fix this error, move the directive to the
top of the source code or replace it by the INCLUDE directive.

no label on line
No label was specified for the MACRO directive. The given label
represents the macro body later in the code:

CALL_ MACRO
jsr \1

proasm 183 / 223

ENDM

dots
CALL_ PrintTitle
dots

(More about macros can be found on
Macros
.)

no MACRO definitions within REPT/REPEAT loops
Macro definitions within repeat loops are not allowed, since the
same macro would be defined more than once. Just move the macro
definition outside the repeat loop.

no relocation in binary/s-record file
An absolute long addressing mode or a reference that needs a
relocation was encountered (see Relocatable Symbols).

To avoid relocation within binary/s-record files, you can use
PC-relative addressing modes (see

Addressing Modes
) or the ORG

directive (see
Absolute Assembly
).

See also the description of the MEA pseudo-opcode, that can make
program counter relative assembly easier (see
Move Effective Address). If you do not want to use this
pseudo-opcode for certain problems, you have also the possibility
to split up the instruction that generated the error message in
two or more instructions. Look at the following example:

BINARY

move.l #foo,d0 ; => error

split it up to:
pea foo(pc)
move.l (a7)+,d0

no size expected
An unsized instruction was assembled with a size specifier. For
example:

nop.l ; => error

not allowed in binary/s-record file
The directive that caused this error is not allowed if a binary or
s-record output file is generated. Refer to the description of
the particular directive for more detailed information.

not a valid effective address
A MOVEM or FMOVEM instruction was encountered with an invalid
effective address. Refer to the description of the instruction to
get details about the allowed addressing modes.

A misuse of the given register lists may also generate this error
message. Consider for example:

proasm 184 / 223

foo REG d0-d7/a2
bar REG d0-a6

movem.l bar,foo(a5)

not a valid FPU control register list
The control register list in a FMOVEM instruction or FREG
directive is malformed. A register list must contain one or more
FPU control registers (fpcr, fpiar, fpsr). The registers must be
separated by a slash (/) or a minus sign (-).

not a valid FPU register list
The register list in a FMOVEM instruction or FREG directive is
malformed. A register list must contain one or more FPU data
registers (fp0-fp7). The registers must be separated by a slash
(/) or a minus sign (-).

not a valid register list
The register list in a MOVEM instruction or REG directive is
malformed. A register list must contain one or more registers.
The registers must be separated by a slash (/) or a minus sign (-).
Consider the following example:

foo REG d0/d2-d4/d7-a2/a4-a5
The symbol foo is a register list mask for the registers d0,d2
through d4, d7 through a2, a4, and a5.

no value given
No term given, or the expression evaluator could not find a valid
term. A symbol, constant, or expression might be invalid.

no XPK archives supported
You tried to load an XPK archive file using a file including
directive (such as INCLUDE). ProAsm accepts only normal source
files or XPK packed files to be included into the program source.

object filename already specified
More than one OUTPUT or OBJFILE directive was present in the
source code, specifying conflicting filenames. Find the
conflicting directives and eliminate one of them, or change the
filenames to match.

object size differs between passes
The object size does not have the same value after pass 2 as it
had after pass 1.

This error may be caused by a misuse of the IF1 or IF2 directive
(see IF1).

odd address
Instructions of the M68000 Family must always be on a word (even)
address. Use the alignement directives (see

Alignment Padding
) to

ensure word boundary. For example:
DC.B "Hello world!",0 ; 13 byte long string...
EVEN ; the EVEN directive ensures word alignement
moveq #0,d0

proasm 185 / 223

opening brace ’{’ expected
The assembler expected a opening brace } but did not find one.
Bitfield manipulating instructions expect bitfield selections
straight after the last operand. This message may be generated if
too many operands were given for such an instruction. For example:

bftst d0,d11:6 ; too many operands for bftst

operand too large, byte expected
The operand, in most cases an immediate addressing mode, is too
large to fit in the expected byte size. For example

move.b #300,d0 ; value not within a signed 8 bit range

operand too large, word expected
The operand, in most cases an immediate addressing mode, is too
large to fit in the expected word size. For example

move.w #100000,d0 ; value not within a signed 16 bit range

option must be at beginning
The used option must be placed at the beginning of the source code.
This error occurs if a symbol concerning option (such as CASEON,
OPT C, OPT ESS1 etc.) is used after a symbol is defined. Just
move this option to a place before the first symbol is defined:

; begin of source code
foo: ...

OPT C- ; invalid location in the source code

; begin of source code
OPT C- ; correct location in the source code

foo: ...

out of memory
There is not enough memory available for the assembler to complete
its task. To get more memory you probably have to quit other
running applications, etc. If you still have not enough memory,
cut the program into smaller portions, assemble the portions of
the program separately and then bind them together using a linker.

overflow
This error is reported if an overflow occurs while evaluating an
expression. In other words, the result of the evaluated expression
is larger than $ffffffff, +$7fffffff, or -$80000000.

For example:
move.l #$7fffffff+1,d0 ; => overflow

PC value changed between passes!
This error message occurs rarely and indicates an inconsistency;
mostly by abusing the IF1 and IF2 directives. No code or data
generating instruction or directive should be inside a IF1/IF2
condition statement (see IF1). Consider the following example:

IF2
DC.L "this text is placed very unhappily"
ENDC

It is also unwise to make constructions as shown in the following

proasm 186 / 223

example:
IF1
DS.B 8,0
ENDC

IF2
DS.B 8,$20
ENDC

No error message will be reported by the assembler, since the
program counter does not differ. However, such hacks may
complicate the task of finding any bugs in the code.

positive value expected
An operand to a PB, PW, or PL directive was negative. Change the
value or use a normal DC directive instead. (See

Initialized Data with Restricted Range
).

preasm file expected
You tried to load a file using the MACLIB directive that is not a
preassembled file. The MACLIB directive is used to import symbol
and macro definitions only from preassembled files. (See

MACLIB
,

for more information about this directive.)

premature end byte reached
An end of file (EOF) was encountered while the assembler expected
more source code. This error occurs also if a null byte was found
in the source file. Examples:

addq.l #2,<NULL>d0
move.l #12<EOF>

probably immediate addressing mode
An absolute addressing mode as source operand was given where it
was not supposed to be. This error will only reported when the
OPT I+ option is selected. There is probably a pound sign #
missing. You can force the assembler to use absolute addresses by
appending one of the absolute address size specifiers .L or .W.

Example:
OPT I+
move.l 4,a6 ; no error will be reported
add.l $100,d0 ; immediate addressing mode was probably meant
move.l $f80000.L,d0 ; no error will be reported

quite a heap of code (PC overflow!)
The code you tried to generate was greater than 4294967295 bytes.
(Since the Amiga is a 32 bit machine you cannot access more than 4
GBytes of memory.) You probably used one or more DS directives (or
its synonyms) with too large arguments.

Consider for example:
...
rts

proasm 187 / 223

ds.b $7fffffff,0 ; => error

register or immediate value expected
An operand that should be a register or immediate value is not.

For example:
MC68851

pflushs (a0),#0 ; => error
In the example above, the first operand should be either a data
register, a sfc, or a dfc register, instead of the address
register indirect addressing mode ((a0)).

If an instruction causes this error message, refer to the ‘M68000
Family Programmer’s Reference Manual’ for detailed information.

relative not allowed
The operation requires that the operand is not relative (not a
label).

relocation not allowed (OPT P+/A+/T+, DSEG)
An instruction or directive was encountered that produced a
relocation (absolute addressing modes, etc.).

Check the use of the OPT P+, OPT A+, or OPT T+ options and/or the
DSEG directive. These options and this directive dictate the
assembler a certain behaviour when a relocation is encountered.

Remove these options and directive or avoid relocation. To avoid
relocation you can use PC-relative addressing modes (see

Addressing Modes
), or the ORG directive if you want to produce

absolute code (see
Absolute Assembly
).

See also the description of the MEA pseudo-opcode that can make
program counter relative assembly easier (see
Move Effective Address). If you do not want to use this
pseudo-opcode for certain problems, you also have the possibility
to split up the instruction that generated the error message into
two or more instructions. Look at the following example:

BINARY

move.l #foo,d0 ; => error

split it up to:
pea foo(pc)
move.l (a7)+,d0

reserved register
A processor register name was used as a symbol name. (Refer to

Registers
, for an overview of all supported processor registers.)

proasm 188 / 223

reserved symbol
You tried to redefine a reserved symbol such as __DATE. (See

Special Symbols
.)

short branch out of range (by number bytes)
A short branch was specified outside of the range that can be
reached by one byte (-128-127). Use a branch or jump instruction
which can access a larger range.

source and object files are the same
The name of the specified output file is identical to the name of
the processed source file. This is to prevent the source file
from been overwritten.

source expired prematurely
An END directive or a zero byte (end of source code) was found
during conditional assembly within a macro body or a repeat loop.
In most cases an ENDC, ENDM, ENDR, or an UNTILcc directive is
missing.

spurious APOPM encountered
An APOPM pseudo opcode was encountered without matching APUSHM.

spurious ENDORG encountered
An ENDORG directive is encountered when not currently in absolute
assembly mode (see

Absolute Assembly
).

spurious ENDR or UNTILcc encountered
An ENDR or UNTILcc directive is encountered outside a repeat loop
(see

Repeating Text
).

spurious REXIT encountered
A REXIT directive is encountered outside a repeat loop (see

Repeating Text
).

string expected
An operand that should be a string is not a string. Refer to the
description of the directive that caused this error for more
information.

string too long
This error occurs if a given string is longer as expected by the
directive. See the description of the particular directive for
more information.

symbol defined twice
You tried to use the same symbol name in two different places in
the same program. You will need to change at least one of them to
a unique name.

proasm 189 / 223

If you find yourself accidentally reusing symbols often, you may
want to use local symbols more often (see Local Labels). Using
local symbols as much as possible can greatly reduce the number of
symbols you have to keep track of throughout your program.

symbol expected
No symbol was specified for a directive that must have one. Refer
to the description of the directive that caused this error message
for more information.

symbol not defined
A symbol is used that is not defined in the source code.

symbol name too long
The symbol name was longer than 256 characters.

too many close brackets
Too many close brackets ()) are found. Either more open brackets
have to be inserted or the superfluous close brackets have to be
removed to get properly balanced brackets.

too many brackets
The assembler supports brackets to be nested up to 255 levels.
This error occurs if more brackets are nested within an expression,
than accepted by the assembler.

too many sections (max 256)
The assemblers allows the definition of maximal 256 different
sections. This error occurs if you try to define more sections as
allowed. (See SECTION, for more information about defining
sections.)

unable to define preassembled symbol ’symbol name’
The symbol ‘symbol name’ in the preassembled file may be already
defined or has an illegal name. (Refer to Labels for more details
about symbols and their formats.)

Check your source code for any, already defined, symbols that are
named as symbol name.

unable to define symbol
This error is reported when a symbol is not correctly defined via
command line parameters (-S/DEFINE and -T/STRING, Invoking)

Check the spelling of the symbol in question (you may refer to
Labels for more details about symbols and their formats), and
ensure the correct use of the command line parameters.

unable to import symbol
An attempt was made to import a symbol (using the XREF directive)
that is already defined or has an illegal name. (You may refer to
Labels for more details about symbols and their formats.)

unable to open list file ’filename’ (DOS error code)
An AmigaDOS error occurred while trying to open the listing file.
Refer to the AmigaDOS error codes listed below for detailed

proasm 190 / 223

information.

undefined symbol
You tried to use a symbol that has not been defined in the program.
Check if the symbol is not misspelled in either its definition or
its reference.

One common cause of this error is referencing a symbol with
different case than it is defined while case sensitivity is turned
on, as this example demonstrates:

Foo:
...
bsr foo ; Error: Undefined symbol

To fix this, turn case sensitivity off (see
Case Sensitivity
) or

change the symbol names to match exactly.

Another common cause of this error is trying to reference a local
label "across" a global label. This often happens just after
inserting a new global label in the middle of existing code. In
the following example, an entrypoint bar has just been inserted
into the routine foo:

foo:
...

.loop:
...

bar:
...
bra .loop ; Error: Undefined symbol

To fix this, turn the global label (bar in this example) into a
local label, or turn the local label (.loop) into a global label.

unexpected ENDM or MEXIT encountered
An ENDM or MEXIT directive was encountered when not inside a macro
definition.

unknown keyword for this directive
A directive with an unknown keyword was encountered. See the
description of the directive that generated this error message for
information about the allowed keywords.

unrecognized default mode
This error is reported if the mode argument of the DEBUG directive
is not recognized by the assembler. Check the spelling of the
mode argument. (See also

DEFAULT
, for more information about

the DEFAULT directive and its arguments.)

unrecognized default type
This error is reported if the type argument of the DEBUG directive
is not recognized by the assembler. Check the spelling of the

proasm 191 / 223

type argument. (See also
DEFAULT
, for more information about

the DEFAULT directive and its arguments.)

unrecognized instruction
unrecognized instruction ’instruction’

The assembler did not recognize the instruction mnemonic. Check
the spelling of the instruction or the macro.

unresolved symbol ’symbol’ found
This error is reported if circular references are found while
multi-pass optimization is enabled.

unsupported preasm file entry encountered
An unsupported entry is encountered while processing the preasm
file. This error only occurs if the included preasm file is
crippled.

Try the same assembly job with a new generated preasm file. (See
PREASM, for more information about this directive.)

unsupported preasm file version
You tried to load an unsupported version of a preasm file.

Try the same assembly job with a new generated preasm file. (See
PREASM, for more information about this directive.)

user error
The FAIL directive was assembled (see FAIL, for more details).

value between 1 and 8 expected
An operand has to be within the range of 1-8. Refer to the
description of the particular directive for more information. If
an instruction causes this error message, refer to the ‘M68000
Family Programmer’s Reference Manual’ for detailed information
about this instruction.

value must be zero
An operand that should result in a value of zero is not. Refer to
the description of the directive that caused this error for more
information.

For example:
...
DX.B 6,4 ; => error, DX.B 6,0 expected.

value not in bounds
An operand is not within valid bounds as dictated by the directive.
Refer to the description of the particular directive for
information about the range of accepted values.

word displacement out of range (by number bytes)
A word displacement, as for address register indirect with
displacement and program counter indirect with displacement
addressing modes, is not within the range of -32768-32767 by
number of bytes. (See

proasm 192 / 223

Addressing Modes
, for more information

about word displacements and addressing modes.)

XPK error, XPK specific error message
This error is displayed when the XPK software package returns an
error to ProAsm. Refer to the XPK software documentation for more
information about errors and their causes.

** error occurred trying to create error file ’filename’ (DOS error code)
An AmigaDOS error occurred while creating the error file filename.
(See

AmigaDOS Error Codes
, for a list of the AmigaDOS error codes.)

** Panic! premature end byte reached
An unexpected null byte (end of file) is encountered while the
assembler expected more source code. Please check your source
code for any misplaced null bytes or crippled instructions at the
end of the source code.

INTERNAL: ...
These are internal error messages which should never occur. If
the assembler does report one of them, please report it. Please
provide as many details as possible about the situation in which
the error occurred; this will greatly aid correcting the problem
(see ERRFLAG, to get more information about the error).

1.82 pro.guide/Warnings

Warnings
========

This appendix lists in alphabetical order the warning messages
generated by ProAsm, and describes their cause and meaning. Although
you can often safely ignore warning messages, sometimes they indicate a
problem; in general you should at least examine each warning once and
make sure you understand it. Fixing the code, so the warning is not
generated at all is usually better, though.

ADDA/SUBA #0,An instruction skipped
This warning is generated when the assembler skipped an adda or
suba instruction with an immediate source operand of zero. This
optimization is only made if the Q4 option is turned on (see

Optimization
).

These instructions can be skipped unproblematically, since they do
not affect the condition codes and an addition or subtraction of
zero has no effect to the address register.

absolute long address mode made short

proasm 193 / 223

The assembler optimized an absolute long address to its short form
(absolute word address). Only absolute addresses are optimized.

This optimization is only made if the O3 option is turned on (see

Optimization
).

absolute short address mode possible
The assembler encountered a forward referenced absolute long
address that can be shortened to absolute word. You may optimize
it yourself to save two bytes. This optimization possibility is
only reported if the O18 option is turned on (see

Optimization
).

APUSHM and APOPM directives converted to (two) NOPs each
The assembler encountered a pair of APUSHM and APOPM pseudo-opcodes
with empty register lists and replaced each of them with two nop
instructions.

(See Stack Manipulation, for the descriptions of the APUSHM and
APOPM pseudo-opcodes.)

ASL/ROXL #1,Dx converted to ADD/ADDX Dx,Dx
This warning is issued when the assembler could convert a asl.y
#1,dx instruction to add.y dx,dx, or a roxl.y #1,dx instruction to
addx.y dx,dx. This optimization is only made if the Q2 option is
enabled (see

Optimization
).

AUTOXREF only in linkable files allowed
You used the AUTOXREF directive while generating non-linkable
output, like an executable. (See

Defining and Referencing External Symbols
, for the description of

the AUTOXREF directive.)

base displacement shortened
The assembler reports this message when a base displacement within
the range of -32768-32767 is optimized from long to word size.
This optimization is only made if the O13 option is enabled (see

Optimization
).

To suppress this optimization you may add a longword size specifier
(.L) to the base displacement.

bit number should be from 0-7
bit number must be from 0-31

These warning messages only occur when OPT WARNBIT was selected.
OPT WARNBIT forces the assembler to be more strict when checking
the immediate bit number for the bit manipulating instructions
(bclr, bchg, bset, and btst). The accepted bit number depends

proasm 194 / 223

on the destination addressing modes specified. If the destination
is a data register, the bit numbering is from 0 to 31. And for
memory location, the bit numbers are from 0 to 7.

Generally this additional check is not needed, since the processor
uses the bit number modulo 8, respectively 32. But it may be
useful if you want to be informed where immediate bit numbers are
"out of range."

Example:
OPT WARNBIT
btst #10,foo(a5)

(See OPT WARNBIT, for the descriptions of this option, and refer
to ‘M68000 Family Programmer’s Reference Manual’ for detailed
information on the bit manipulating instructions.)

branch made short
A branch was optimized to its short form (see

Optimization
, for

information about the O1 option).

CLR.L converted to MOVEQ
The assembler converted a clr.l dn instruction to moveq #0,dn,
where dn is a valid data register. (See

Optimization
, for more

information on the Q1 option.)

CMPI.x #0,<EA> converted to TST.x <EA>
If the O9 option is turned on (OPT O9+), the assembler converts
cmp, cmpi, and cmpa instructions with an immediate source
operand of zero to a tst instruction. (See

Optimization
.)

code ahead of the ORG directive
The assembler found code or data ahead of the ORG directive.
Using the ORG directive while generating executable or linkable
object code is not recommended (see

Absolute Assembly
). However,

this warning message can be ignored when the use of absolute code
within executable or linkable code is desired.

code/data is not allowed in preasm files, ignored
Since a preasm file contains only the symbol and macro table, all
code and data generating directives are useless and therefore
ignored by the assembler. Only their sizes are taken into account
to update the program counter. (See PREASM, for the description
of this directive.)

DX statement in empty hunk found
This warning message is reported when a DX directive is found
within an empty code or data hunk. A code or data hunk that
contains only DX directives, is in its function equivalent to a

proasm 195 / 223

bss hunk. You may use a bss hunk instead. (See ‘The AmigaDOS
Manual’ for more information about AmigaDOS hunk formats.)

EOR(I).x #-1,<EA> converted to NOT.x <EA>
The assembler converted an eor or an eori instruction with an
immediate source operand of zero to a not instruction. This
conversion is only made if the Q12 option is turned on (see

Optimization
).

error file already specified, directive ignored
This warning is reported if more than one ERRFILE is present in
the source code, specifying conflicting filenames for the error
file. (See The Error File, for more information about the use of
this directive.)

external references (xref) only in linkable files allowed
You used the XREF directive while generating non-linkable output,
like an executable. If you actually try to use the symbol defined
as XREF, an error will occur. (See

Defining and Referencing External Symbols
, for the description of

the XREF directive.)

f-line exception will be generated!
This warning messages is issued when the assembler encounters a
ptest that specifies an address translation cache search with an
address register operand while the MC68030 processor is selected.
The MC68030 processor takes an F-line unimplemented instruction
exception when this ptest instruction is executed. (Refer to the
‘M68000 Programmer’s Reference Manual’ for more details about the
ptest instruction on a MC68030 processor.)

For example, the following code fragment generates this warning:
MC68030
ptestr d0,4(a2),#0,a0 ; => warning
; level 0 specifies searching the address
; translation cache only.

instruction has no effect on a MC68EC030
The MC68EC030 executes all instructions just as the MC68030 does,
except that the MC68EC030 does not execute all memory management
unit instructions. The pflush and pflushn instructions have no
effect when executed. (Refer to the ‘M68000 Family Programmer’s
Reference Manual’, for complete details on the MC68EC030
instruction set.)

instruction made quick
This warning is reported when the assembler optimized an
instruction to its ‘quick’ form. Instructions with quick variants
are: add (addq) and sub (subq). (See

Optimization
, for more

details O5 option.)

proasm 196 / 223

invalid LINK displacement
The assembler found a positive or odd link displacement. Example:

link #16,a5

long MOVEA/ADDA/SUBA converted to word
A movea.l, adda.l, or suba.l instruction with an immediate value
within the range of -32768-32767 is shortened to word operation
size.

This optimization is only made if the O8 option is enabled (see

Optimization
).

Motorola reserved Constant ROM offset used
The fmovecr instruction, that causes this warning, uses a Constant
ROM offset that is reserved by Motorola. (Refer to the ‘M68000
Family Programmer’s Reference Manual’ for a list of valid offsets
and their meanings.)

The use of reserved constants is not recommended, since they are
useful only to the on-chip microcode routines and may be different
on various mask sets of the floating-point coprocessor.

MOVEA #0,An converted to SUBA An,An
This warning message is reported when the assembler optimized a
movea instruction with an immediate value of zero to suba an,an.

This optimization is only made if the Q3 option is enabled (see

Optimization
).

MOVE.L converted to MOVEQ
This warning is reported when the assembler optimized a move.l
instruction to its ‘quick’ form (moveq).

This optimization is only performed if the O4 option is turned on.
(See

Optimization
, for more details O4 option.)

MOVE.L #n,Dx converted to MOVEQ #m,Dx & NOT
The assembler optimized a move.l #n,dx instruction to a shorter
form by splitting it in a combination of a moveq #m,dx and a not
instruction.

This optimization is only made if the Q5 option is enabled (see

Optimization
).

MOVE.L #n,Dx converted to MOVEQ #-128,Dx & SUBQ.L #n+128,Dx
This warning is issued when the assembler optimized a move.l #n,dx
instruction to a shorter form by splitting it in a combination of
a moveq #-128,dx and a subq.l #n+128,dx instruction.

proasm 197 / 223

This optimization is only made if the Q7 option is enabled (see

Optimization
).

MOVE.L #n,Dx converted to MOVEQ #m,Dx & SWAP Dx
The assembler optimized a move.l #n,dx instruction to a shorter
form by splitting it in a combination of a moveq #m,dx and a swap
dx instruction.

This optimization is only made if the Q8 option is turned on (see

Optimization
).

MOVE.L #n,Dx converted to MOVEQ #m,Dx & ADD.B Dx,Dx
This warning message is reported when a move.l #n,dx instruction
was optimized to a shorter form by splitting it into a combination
of a moveq #m,dx and a add.b dx,dx instruction.

This optimization is only made if the Q9 option is enabled (see

Optimization
).

MOVE.B #-1,<EA> converted to ST.B <EA> (CCR changed!)
The assembler optimized a move.b #-1,<EA> instruction to a st.b
<EA> instruction. This optimization is only made if the Q11
option is turned on (see

Optimization
).

Caution, the move.b #-1,<ea> instruction affects the condition
code flags, while the st.b <ea> instruction does not. (Refer to
the ‘M68000 Family Programmer’s Reference Manual’ for more details
about these instructions.) To avoid any problems you should ensure
that no condition code afflicted instructions (such as bcc, dbcc,
and scc) follow directly the optimized instruction.

no code allowed in BSS sections
A M68000 instruction or any other code or data generating
directive was found inside a BSS section. The BSS section
specifies a block of uninitialized workspace that is allocated by
the AmigaDOS loader, therefore no specific data is stored in a BSS
section. This warning is only reported once, even if there is
more code or data generating directives inside a BSS section. The
assembler ignores these directives and just uses their size to
reserve the appropriate space. To reserve space inside a BSS
section correctly, the following directives (or their synonyms)
should be used:
DS.size expression[,0]
DX.size expression[,0]
DC.size 0
SB 0, SW 0, SL 0
PB 0, PW 0, PL 0
UB 0, UW 0, UL 0
(For detailed information about these directives see

proasm 198 / 223

Initialized Data,
Initialized Data with Restricted Range
and

Declaring Data Blocks
.)

no external references (xref) in preasm file, ignored
An external reference (xref) is encountered while a preasm file
is generated. Such references are only allowed in linkable files.
Since a preasm file contains only the symbol and macro table, all
external references will be useless, and therefore ignored by the
assembler. (See PREASM, for the description of this directive.)

no section statements in preasm files, ignored
A preasm file contains only symbol and macro definition in a
preassembled form. No code and date is written to this file,
therefore any section directives have no effect, and are ignored
by the assembler. (See PREASM, for the description of this
directive.)

object filename already specified
More than one OUTPUT or OBJFILE directive is present in the source
code, specifying conflicting filenames. Find the conflicting
directives and eliminate one of them, or change the filenames to
match.

odd address or offset detected
This warning is issued if the assembler encounters a CCNOP
directive that needs an odd pad length to obtain the desired
alignement. CCNOP pads the program counter to the desired boundary
by inserting nop’s. If the pad length is odd, a null-byte has to
be inserted first by CCNOP. (See CCNOP).

offset removed
An address register indirect addressing mode with a displacement
of zero is optimized to the address register indirect addressing
mode.

This optimization is only made if the O2 option is enabled (see

Optimization
).

other case sensitivity or significance in preasm file
The symbols stored within the preasm file have another case
dependency than you currently use. This can have unwished
sideeffects: symbols that are expected to be case-sensitive can be
converted to case-insensitive and vice versa. Note that
case-sensitive symbols are stored in upper case in the preasm file.
(See

Case Sensitivity
, and PREASM.)

outer displacement shortened
The assembler reports this message if an outer displacement within
the range of -32768-32767 is optimized from long to word size.

proasm 199 / 223

This optimization is only made if the O14 option is enabled (see

Optimization
).

To suppress this optimization you may add a longword size specifier
(.L) to the outer displacement.

public symbols only in linkable files allowed
A public symbol definition is encountered but no linkable file is
generated. Refer to the description of the PUBLIC directive for
more details (

Defining and Referencing External Symbols
).

Read-Modify-Write cycle opcode
This warning is reported if a cas, cas2, or tas instruction was
encountered. Since the system DMA can conflict with this
instruction’s special indivisible read-modify-write cycle. Use
the READMODWRITE directive to control this warning (see

READMODWRITE
).

relative possible
This warning is reported when the assembler encountered a forward
referencing absolute long addressing mode that can be made
PC-relative.

You may optimize it yourself to save two bytes. This optimization
possibility is only reported if the O16 option is turned on (see

Optimization
).

relocation converted to relative
This warning message is issued if a backward referencing absolute
long addressing mode (within the range of -32768-0) is optimized
to PC-relative addressing mode. This optimization is only made if
the O7 option is enabled (see

Optimization
).

To suppress this optimization you may add a longword size specifier
(.L) to the absolute long address.

relocs won’t be written in binary file!
A binary file is a raw binary image without any structures
attached to it, like hunks, etc.. Consequently any reloc
information cannot be stored in such a file. Note that relocation
may be needed by your code. A binary file generation that
produced this warning message may not work properly.

To avoid this warning try to use relative addressing modes for
instructions. For relocatable data structures you may use offset
oriented data.

proasm 200 / 223

short branch converted to NOP
The destination of a short branch was the following instruction,
which is an illegal branch offset. The branch was replaced by a
nop instruction.

short branch possible
The assembler encountered a forward referenced branch instruction
that can be shortened. You may optimize it yourself to save two
bytes. This optimization possibility is only reported if the O6
option is turned on (see

Optimization
).

sign-extended operand
A moveq instruction is encountered with a positive immediate value
within the range of 128-255. The moveq instruction expects an
8-bit (-128-127) immediate value that, during execution, is
sign-extended to long (32-bit). Thus any 8-bit number greater
than 127 will automatically become negative when sign-extended to
long. To suppress this warning you have to add a longword size
specifier (.L).

(Refer to the ‘M68000 Programmer’s Reference Manual’ for the
description of the moveq instruction.)

size should be word
A branch instruction with a longword operation size is encountered
while assembling code for the MC68000 (or MC68010) processor.

It is recommended to change the operation size to word (or to
remove the size specifier), since long branches are not supported
by the MC68000 and MC68010 processors. This can avoid conflicts
when you once decide to use also code for later processors
(MC68020 or higher).

supervisor only opcode
This warning is reported if a privileged instruction was
encountered. Use the SUPER directive (or its synonyms) to control
this warning (see

SUPER
).

this section will be empty
This warning message informs you that the assembler encountered an
empty section (no code and data). An empty section is a code,
data or bss section with no size. In all cases such a section is
useless and can be removed from the object file.

unable to load the proasmoptim.library - option ignored
The proasmoptim.library could not be found. The library is
probably not correctly installed to your system. (See
The proasmoptim.library, for more information. The option (OPT
OPTIMLIB) is ignored.)

user warning
The WARN directive was assembled. (See WARN, for details.)

proasm 201 / 223

XDEF is not allowed in preasm files, ignored
A XDEF directive is encountered while a preasm file is generated.
Such external symbol definitions are only allowed in linkable
files. Since a preasm file contains only the symbol and macro
table, all external symbol definitions will be useless, and
therefore ignored by the assembler. (See PREASM, for the
description of this directive.)

XDEF only in linkable files allowed
A XDEF directive is encountered while generating non-linkable
output such as an executable. (See XDEF.)

zero offset
The assembler encountered a displacement of zero of an address
register indirect with displacement addressing mode that can be
removed. You may optimize it yourself to save two bytes. This
optimization possibility is only reported if the O17 option is
turned on (see

Optimization
).

zero space defined
A DS or DX directive is encountered that reserved no memory space.
For example:

DS.L 0,4
You may have made a typing error. Note that DS.L 0 and DS.W 0
with no second argument can be used to align data (see

Alignment Padding
).

1.83 pro.guide/AmigaDOS Error Codes

AmigaDOS Error Codes
====================

This appendix lists the possible AmigaDOS errors. For detailed
information about the AmigaDOS and the AmigaDOS errors, refer to ‘The
AmigaDOS Manual’, from Commodore-Amiga Inc.

103
Not enough memory

Not enough memory in your Amiga to carry out the operation.

104
Process table full

The limit of the maximal number of possible processes is reached.

114
Bad template

Incorrect command line.

115

proasm 202 / 223

Bad number
The program was expecting a numeric argument.

116
Required argument missing

Invalid command line, an argument that was required was not given.

117
Argument after "=" missing

Invalid command line.

118
Too many arguments

Invalid command line, too many arguments given.

119
Unmatched quotes

Invalid command line.

120
Argument line invalid or too long

Invalid command line.

121
File is not an executable object

Misspelled command name, or file may not be a loadable program or
script file.

122
Invalid resident library

You are trying to use commands with a previous version of AmigaDOS,
for example, Version 2.0 commands with Version 1.3.

202
Object is in use

The specified file or directory is already being used by other
applications. If an application is reading a file, no other
program can write to it and vice versa.

203
Object already exists

The specified name already belongs to another file or directory.

204
Directory not found

AmigaDOS cannot find the directory you specified. You may have
made a typing or spelling error.

205
Object not found

AmigaDOS cannot find the file or directory you specified. You may
have made a typing or spelling error.

206
Invalid window description

This error occurs when specifying a window size for the Output
Window, a Shell, ED or ICONX window. You may have made the window

proasm 203 / 223

too big or too small, or you may have omitted an argument. This
error also occurs with the NEWSHELL command, if you supply a
device name that is not a window.

209
Packet request type unknown

You have asked a device handler to attempt an operation it cannot
do. For example, the console handler cannot rename anything.

210
Object name invalid

There is an invalid character in the filename or the filename is
too long. Remember, filenames cannot be longer than 30 characters
and cannot contain control characters.

211
Invalid object lock

You have used something that is not a valid lock.

212
Object not of required type

You may have specified a filename for an operation that requires a
directory name or vice versa.

213
Disk not validated

If you have just inserted a disk, the disk validation process may
still be in progress. It is also possible that the disk is
corrupt.

214
Disk is write-protected

The plastic tab of the disk is in the write-protect position.

215
Rename across devices attempted

The RENAME command only changes a filename on the same volume.
You can use RENAME to move a file from one directory to another,
but you cannot move files from one volume to another.

216
Directory not empty

This error occurs if you attempt to delete a directory that
contains files or sub-directories.

217
Too many levels

You have exceeded the limit of 15 soft links.

218
Device (or volume) not mounted

If the device is a floppy disk, it has not been inserted in a
drive. If it is another type of device, it has not been mounted
with the MOUNT command. It is also possible that you have made a
typing error when specifying the device name.

219

proasm 204 / 223

Seek error
You have attempted to call Seek() with invalid arguments.

220
Comment is too long

Your filenote has exceeded the maximum number of characters (79).

212
Disk is full

There is not enough room left on the disk to perform the requested
operation.

222
Object is protected from deletion

The D (deletable) protection bit of the file or directory is clear.

223
File is write protected

The W (writable) protection bit of the file is clear.

224
File is read protected

The R (readable) protection bit of the file is clear.

225
Not a valid DOS disk

The disk in the drive is not an AmigaDOS disk, it has not been
formatted, or it is corrupt.

226
No disk in drive

The disk is not properly inserted in the specified drive.

232
No more entries in directory

This indicates that the AmigaDOS call ExNext() has no more entries
in the directory you are examining.

233
Object is soft link

You tried to perform an operation on a soft link that should only
be performed on a file or directory.

303
Buffer overflow

User or internal buffer overflow.

304
Break

A break character was received.

305
Not executable

The r (readable) protection bit of the specified file is clear.

proasm 205 / 223

1.84 pro.guide/Instruction Set Summary

Instruction Set Summary
=======================

This node (Page) intentionally left blank.

1.85 pro.guide/ProOpts Directives Summary

ProOpts Directives Summary
==========================

This node (Page) intentionally left blank.

1.86 pro.guide/Bibliography

Bibliography
============

The following manual covers the complete M68000 family (including
the MC68881, MC68882, and MC68851 coprocessors) instruction set, and is
recommended to those, who wish to learn the 680x0 assembly language:

* Motorola Inc., ‘M68000 Family Programmer’s Reference Manual’,
Motorola Inc.

The following manual is an essential reference tool for all Amiga
programmers, who want to take full advantage of the Amiga’s impressive
capabilities:

* Commodore-Amiga Inc., ‘AMIGA ROM Kernel Reference Manual:
Includes and Autodocs’, third edition, Addison-Wesley Publishing
Co.

The AmigaDOS manual describes this powerful operating system and is
a comprehensive reference to the commands, functions, and innermost
workings of AmigaDOS:

* Commodore-Amiga Inc., ‘The AmigaDOS Manual’, third edition,
Bantam Books.

The user’s manuals listed below contain the information on the
specific microprocessors.

proasm 206 / 223

* Motorola Inc., ‘M68000 8-/16-/32-Bit Microprocessor User’s
Manual’, seventh edition, Prentice Hall.

* Motorola Inc., ‘MC68020 32-Bit Microprocessor User’s Manual’,
third edition, Prentice Hall.

* Motorola Inc., ‘MC68030 Enhanced 32-Bit Microprocessor User’s
Manual’, third edition, Prentice Hall.

* Motorola Inc., ‘MC68EC030 32-Bit Embedded Controller User’s
Manual’, Motorola Inc.

* Motorola Inc., ‘M68040/M68EC040/M68LC040 Microprocessors User’s
Manual’, Motorola Inc.

* Motorola Inc., ‘M68060/M68EC060/M68LC060 Microprocessors User’s
Manual’, Motorola Inc.

* Motorola Inc., ‘MC68881/MC68882 Floating-Point Coprocessor
User’s Manual’, second edition, Prentice Hall.

* Motorola Inc., ‘MC68851 Paged Memory Management Unit User’s
Manual’, Prentice Hall.

The Motorola literature can be obtained from your local Motorola
Sales Office or Distributor. Local Sales offices and Distributors are
listed in the back of any Motorola Master Selection Guide. If you can
not find a local representative, some Motorola Literature Distributions
Center addresses are listed below:

USA:
Motorola Literature Distribution
P.O.Box 20912
Phoenix, Arizona 85036

Europe:
Motorola Ltd.
European Literature Center
88 Tanners Drive
Blakelands
Milton Keynes, MK14 5BP
England

Japan:
Nippon Motorola Ltd.
4-32-1 Nishi-Gotanda
Shinagawa-ku
Tokyo 141 Japan

Asia-Pacific:
Motorola Semiconductors H.K. Ltd
Silicon Harbour Center
No. 2 Dai King Street
Tai Po Industrial Estate
Tai Po
N.T.
Hong Kong

proasm 207 / 223

1.87 pro.guide/Directive Index

Index of Assembler Directives and Special Symbols
===

* *

*

=

==

\#

\(n)

*B

*BIN

*BINOF

*D

*D(expression)

*H

*H(expression)

*HEX

*HEXOF

*L

*LEFT

*LOWER

*LOWER(string)

*M

*MID

*O

*OCT

*OCTOF

proasm 208 / 223

*R

*RIGHT

*S

*STRING

*STRING(textual symbol)

*STRLEN

*UPPER

*UPPER(string)

*V

*V(expression)

*VAL

*VALOF

\0

\@

\n

_LINENUM

_MCOUNT

_MOVEMBYTES

_MOVEMLIST

_MOVEMREGS

__BASE

__CP

__DATE

__DATE2

__DATE3

__DAY

__FO

__INFINITY

proasm 209 / 223

__LK

__NAN

__OLDLABSEG

__OLDSECTION

__PR

__PRO

__RCODE

__RS

__SNAN

__SO

__TIME

__Vn

* A *

ADDSYM

ALIGN

ALIGN.<size>

ALIGNDX

ALIGNDX.<size>

ALIGNFO

ALIGNFO.<size>

ALIGNRS

ALIGNRS.<size>

ALIGNSO

ALIGNSO.<size>

APOPM

APUSHM

ASEG

ASM

ASMPRI

proasm 210 / 223

AUTOXREF

* B *

BASE

BASEREG

BINARY

BINARYONLY

BINRYONLY

BSS

* C *

CASEOFF

CASEON

CCNOP

CLRFO

CLRSO

CNOP

CODE

COMMENT

CREFFILE

CSEG

CSYMFMT

* D *

DATA

DB

DC.B

DC.L

DC.W

DEBUG

DEFAULT

proasm 211 / 223

DEFINE

DL

DS.W 0

DSEG

DW

* E *

ELSE

ELSEIF

END

ENDASM

ENDC

ENDIF

ENDM

ENDMAC

ENDORG

ENDR

ENDSRC

EQU

EQUATE

EQUFILE

EQUR

EQURL

EQUSTR

EQUX

ERRFILE

ERRFLAG

ESCAPESTR

EVEN

EXE

proasm 212 / 223

EXECUTABLE

EXEOBJ

* F *

FAIL

FAILAT

FEQU

FEQUR

FILENOTE

FILEPROTECT

FORMAT

FOVAL

FREG

FSET

FSETR

FSETRL

* H *

HEADER

* I *

IBYTES

IDENTIFY

IDNT

IF1

IF2

IFC

IFCC

IFCS

IFD

IFEQ

proasm 213 / 223

IFEQ

IFGE

IFGE

IFGT

IFGT

IFHI

IFHI

IFHS

IFLE

IFLE

IFLO

IFLS

IFLS

IFLT

IFLT

IFMI

IFMI

IFNC

IFND

IFNE

IFNE

IFNU

IFPL

IFPL

IFU

IFVC

IFVS

IIF

INCBIN

proasm 214 / 223

INCDIR

INCEQU

INCLUDE

INCPATH

* L *

LABSEG

LABSEG __OLDLABSEG

LFCOND
LINKABLE

LINKOBJ

LIST

LISTCHAR
LISTFILE

LISTSYMS

LLEN

LOCKSYM

* M *

MACLIB

MACRO

MC68000

MC68008

MC68010

MC68020

MC68030

MC68040

MC68060

MC680X0

MC68851

MC68881

proasm 215 / 223

MC68882

MC68EC020

MC68EC030

MCRELAX

MEA

MEXIT

MULTIPASS

* N *

NARG

NB

NEWSYNTAX

NL

NOBASE

NOLIST

NOOBJ

NOOPTIM

NOPAGE

NORMOBJ

NOSYM

NW

* O *

OBJ

OBJFILE

ODD

ODD2ERROR

ODD2OK

ODDERROR

ODDOK

OLDSYNTAX

proasm 216 / 223

OPT

OPT A+

OPT A-

OPT ABL

OPT ABW

OPT AUTOPC

OPT BDL

OPT BDW

OPT BRB

OPT BRL

OPT BRS

OPT BRW

OPT C+

OPT C-

OPT Cn+

OPT Cn-

OPT CASE

OPT CHKBIT

OPT CHKIMM

OPT CHKPC

OPT CL

OPT D+

OPT D-

OPT DEBUG

OPT E+

OPT E-

OPT ESS1+

OPT ESS1-

proasm 217 / 223

OPT ESS2+

OPT ESS2-

OPT ESS3+

OPT ESS3-

OPT F+

OPT F-

OPT FPSP40

OPT FPSP60

OPT GENSYM

OPT HCLN

OPT I+

OPT I-

OPT INCONCE

OPT L+
OPT L-

OPT LIST

OPT LOCALDOT

OPT LOCALU

OPT M+

OPT M-

OPT MD

OPT MEX

OPT NOAUTOPC

OPT NOCASE

OPT NOCHKBIT

OPT NOCHKIMM

OPT NOCHKPC

OPT NOCL

OPT NODEBUG

proasm 218 / 223

OPT NOFPSP40

OPT NOFPSP60

OPT NOHCLN

OPT NOINCONCE

OPT NOLIST

OPT NOMD

OPT NOMEX

OPT NOOPTIMLIB

OPT NOSP60

OPT NOSUPER

OPT NOSYMTAB

OPT NOTYPE

OPT NOWARN

OPT NOXDEBUG

OPT NOXPK

OPT O+

OPT O-

OPT On+

OPT On-

OPT ODL

OPT ODW

OPT OPTIMLIB

OPT OW+

OPT OW-

OPT OWn+

OPT OWn-

OPT P+

OPT P-

OPT P=

proasm 219 / 223

OPT PCBL

OPT PCBW

OPT Q+

OPT Q-

OPT Qn+

OPT Qn-

OPT QW+

OPT QW-

OPT QWn+

OPT QWn-

OPT RCL

OPT RESET

OPT S+

OPT S-

OPT SP60

OPT STO

OPT SUPER

OPT SW+

OPT SW-

OPT SYMTAB

OPT T+

OPT T-

OPT TYPE

OPT U+

OPT U-

OPT U1+

OPT U1-

OPT U2+

proasm 220 / 223

OPT U2-

OPT W+

OPT W-

OPT WARNBIT

OPT WARN

OPT X+

OPT X-

OPT XDEBUG

OPT XPK

OPT Y+

OPT Y-

OPT Z+

OPT Z-

OPTIMIZE

OPTIMOFF

OPTIMON

OPTION

ORG

OUTPUT

* P *

PAGE

PAGEUP

PB

PFLUSHA

PFLUSHA30

PFLUSHA40

PL

PLEN

POP.

proasm 221 / 223

POPM

PREASM
PRINTX

PUBLIC

PURE

PUSH

PUSHM

PW

* Q *

QUAD

QUIET

* R *

RARG

RCRESET

RCSET

READMODWRITE

REG

RELAX

REPEAT

REPT

REXIT

RORG

RSRESET

RSVAL

* S *

SB

SECSYM

SECTION

SECTION __OLDSECTION

proasm 222 / 223

SELSYM

SET

SETKFACTOR

SETR

SETREG

SETRL

SETSTR

SETVAL

SFCOND

SL

SMALLBSS

SMALLCODE

SMALLDATA

SMALLOBJ

SOVAL

SPC

SREC

SUBTTL

SUPER

SW

* T *

TIMES

TITLE

TTL

* U *

UB

UL

UNLOCKSYM

proasm 223 / 223

UNTIL

UW

* V *

VERBOSE

* W *

WARN

* X *

XDEF

XREF

1.88 pro.guide/Concept Index

Concept Index
=============

This node (page) intentionally left blank.

	proasm
	pro.guide
	about this manual
	notices
	acknowledgments
	author
	registration
	pro.guide/Introduction
	installation
	starting proasm from the shell
	starting proasm from workbench
	pro.guide/Config File
	pro.guide/Hello World
	pro.guide/Source Line Format
	pro.guide/Expressions
	pro.guide/Registers
	pro.guide/Addressing Modes
	pro.guide/Instruction Set
	pro.guide/END
	pro.guide/Include Files
	pro.guide/OPT Y
	incbin
	pro.guide/INCEQU
	header
	pro.guide/MACLIB
	pro.guide/INCDIR
	pro.guide/Macros
	macro
	pro.guide/Symbols and Keywords for Macros
	pro.guide/Substituting textual symbols in symbol names
	pro.guide/Substituting subsections of strings
	pro.guide/Conditional Assembly
	pro.guide/Repeating Text
	pro.guide/Equates
	pro.guide/EQUR
	reg
	pro.guide/Structure Offsets
	pro.guide/Case Sensitivity
	pro.guide/OPT C
	pro.guide/OPT U
	pro.guide/Syntax Options
	pro.guide/OPT I
	pro.guide/OPT P
	pro.guide/OPT NOTYPE
	pro.guide/Processor Options
	pro.guide/SUPER
	pro.guide/READMODWRITE
	pro.guide/SETKFACTOR
	pro.guide/DEFAULT
	pro.guide/Optimization
	pro.guide/Assembler Message Control
	pro.guide/Controlling the Message Output
	pro.guide/BASE
	pro.guide/Absolute Assembly
	pro.guide/Data Output Directives
	pro.guide/Initialized Data with Restricted Range
	pro.guide/Declaring Data Blocks
	pro.guide/Uninitialized Data Blocks
	pro.guide/Defining Strings
	pro.guide/Alignment Padding
	pro.guide/ALIGN
	pro.guide/Convenience Pseudo-Opcodes
	pro.guide/Controlling the Output File
	pro.guide/Sections
	pro.guide/SMALLOBJ
	pro.guide/Debugging Information
	pro.guide/Object Modules
	pro.guide/Defining and Referencing External Symbols
	pro.guide/Output File Attributes
	pro.guide/Auxiliary Output Files
	pro.guide/OPT NOLIST
	pro.guide/LLEN
	pro.guide/OPT
	pro.guide/OPT XPK
	pro.guide/ESCAPESTR
	pro.guide/VERBOSE
	pro.guide/RCRESET
	pro.guide/LOCKSYM
	labseg
	pro.guide/Special Symbols
	pro.guide/Support Libraries
	pro.guide/Errors
	pro.guide/Warnings
	pro.guide/AmigaDOS Error Codes
	pro.guide/Instruction Set Summary
	pro.guide/ProOpts Directives Summary
	pro.guide/Bibliography
	pro.guide/Directive Index
	pro.guide/Concept Index

