AmigaFlight System Control Instructions

Andrew Duffy Morris

AmigaFlight System Control Instructions

COLLABORATORS

TITLE :

AmigaFlight System Control Instructions

ACTION NAME DATE SIGNATURE
WRITTEN BY Andrew Duffy Morris July 1, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

AmigaFlight System Control Instructions ii

Contents

1 AmigaFlight System Control Instructions 1
1.1 AmigaFlight® Help: System Control Instructions 1
1.2 Check register against bounds 2
1.3 AmigaFlight® Help: Illegal e 3
1.4 MOVEto Status Register e e e e 4
1.5 MOVE User Stack Pointer e 5
1.6 Reset External Devices e e e 6
1.7 Return from EXception e e e e e e 6
1.8 Load Status Register and Stop L. e e 7
1O Trap e 8
1.10 Trapon Overflow L . e 9
1.11 AmigaFlight® Help: No operation 0t i i it e e e e e e e e e e 10

AmigaFlight System Control Instructions 1/10

Chapter 1

AmigaFlight System Control Instructions

1.1 AmigaFlight® Help: System Control Instructions

System Control Instructions

System control operations are accomplished by using privileged
instructions, trap generating instructions, and instructions that use or
modify the status register.

Privileged instructions

ANDI #d, SR AND Immediate with Status Register
EORI #d, SR Exclusive or Immediate with Status Register

MOVE <ea>, SR
Move to Status Register

MOVE USP
Move User Stack Pointer
ORI #d, SR Logical Or Immediate with Status Register

RESET
Reset External Devices

RTE
Return from Exception

STOP
Load Status Register and Stop

Trap generating instructions

CHK <ea>,Dn
Check register against bounds

TRAP #n
Trap

AmigaFlight System Control Instructions

2/10

TRAPV
Trap on Overflow

Non privileged status register operations

ANDI #d,CCR AND Immediate with Condition Codes

EORI #d,CCR Exclusive or Immediate with Condition Codes
MOVE <ea>, CCR Move to Condition Codes

MOVE SR, <ea> Move from Status Register

ORI #d,CCR Logical Or Immediate with Condition Codes

Miscellaneous operations

NOP
No Operation

ILLEGAL
Illegal Operation

1.2 Check register against bounds

CHK Check register against bounds

The contents of the specified data register are compared to the

upper bound effective address and 0. If the value of the

register 1s not Dbetween 0 and the upper bounds, the processor
initiates exception processing. The CHK instruction vector is used

as the address to continue processing.

If Dn < 0 or Dn > (<ea>) then TRAP

Assembler Syntax

CHK{.W} <ea>,Dn

<ea> - data only

Addressing Modes

Mode Source Destination

Data Register Direct * %

Address Register Direct - -
Address Register Indirect * =
Postincrement Register Indirect * =
Predecrement Register Indirect * =
Register Indirect with Offset * =
Register Indirect with Index * =
Absolute Short * =

Absolute Long * -

P.C. Relative with Offset * =

AmigaFlight System Control Instructions

3/10

P.C. Relative with Index
Immediate

Data Size

* —

Set if Dn < O,

Undefined
Undefined
Undefined

Not affected

clear if Dn >

*

(<ea>)

uction Size and Cycles to Execute

Instr

Trap No Trap
<ea> # #
Dn 2 <40 2
(An) 2 <44 2
(An) + 2 <44 2
- (An) 2 <46 2
dl6 (An) 4 <48
d8 (An,Ri) 4 <50
Abs short 4 <48
Abs long 6 <52
dl6 (PC) 4 <48
dg8 (PC,R1i) 4 <50
Immediate 4 <44

e @) WSS AN

= no. of program bytes
p = no. of instruction clock periods

1.3 AmigaFlight® Help: lllegal

ILLEGAL Illegal

This instruction will

exception.

Assembler Syntax

ILLEGAL

Data Size

Unsized

18
20
18
22
18
20
14

always

generate an

else undefined

illegal

instruction

AmigaFlight System Control Instructions 4/10

Staus Flags
N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

1.4 MOVE to Status Register

MOVE_SR MOVE to Status Register

Copy the source operand to the Status Register.

Source —-> SR

Assembler Syntax

MOVE{.W} <ea>, SR

<ea> - data only

Addressing Modes

Mode Source Destination
Data Register Direct * =

Address Register Direct - -
Address Register Indirect * =
Postincrement Register Indirect * =

*
|

Predecrement Register Indirect
Register Indirect with Offset * =

Register Indirect with Index * =
Absolute Short * =

Absolute Long * —

P.C. Relative with Offset * =
P.C. Relative with Index * =
Immediate * =

Data Size

N Set according to source operand
Z Set according to source operand
V Set according to source operand
C Set according to source operand

AmigaFlight System Control Instructions 5/10

X Set according to source operand

This is a privileged instruction

Instruction Size and Cycles to Execute

- (An)
d16 (An) 4 20
d8 (An,Ri) 4 22
Abs short 4 20
Abs long 6 24
dle6 (PC) 4 20
dg8 (pC,Ri) 4 22
Immediate 4 16

= no. of instruction bytes
p = no. of instruction clock periods

1.5 MOVE User Stack Pointer

MOVE_USP MOVE User Stack Pointer

Copy the User Stack Pointer to the destination operand, or copy
from the source operand to the User Stack Pointer.

USP -> An
An —> USP

Assembler Syntax
MOVE{.L} USP, An
MOVE{.L} An,USP

Data Size

N Not affected
Z Not affected
V Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute

AmigaFlight System Control Instructions

6/10

= no. of instruction bytes
p = no. of instruction clock periods

This is a privileged instruction

1.6 Reset External Devices

RESET Reset External Devices

The reset line on the processor is asserted, causing all external
devices to be reset. This instruction does not affect the
processor state other than to wupdate the program counter to
continue execution at the next instruction.

Assembler Syntax

Unsized

Status Flags
N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

p
Unsized 2 132

= no. of program bytes
p = no. of instruction clock periods

This is a privileged instruction

1.7 Return from Exception

AmigaFlight System Control Instructions

7/10

RTE Return from Exception

Load the exception state information from the top of stack and
continue with execution. This instruction reloads the status
register stack pointer and program counter in the appropriate
manner for the chip, and continues execution at the old program
counter address.

SP@+ -> SR : SP@+ -> PC

Assembler Syntax

Data Size

Unsized

Status Flags

Set according to word on stack

Instruction Size nnd Cycles to Execute

p
Unsized 2 20

= no. of program bytes
p = no. of instruction clock periods

This is a privileged instruction

1.8 Load Status Register and Stop

STOP Load Status Register and Stop

Load the immediate data into the status register, advance the
program counter to the next instruction, and make the
microprocessor pause. The processor resumes executing instructions
when a trace, interrupt request or reset execption is initiated.
If an interrupt request arrives whose priority is higher than the
current processor priority, an interrupt exception occurs;
otherwise the interrupt request has no effect.

Immediate operand -> SR

Wait for trace, interrupt or reset exception to occur

AmigaFlight System Control Instructions

8/10

Assembler Syntax

STOP #<datal6>

Data Size

Unsized

Status Flags

Set according to immediate operand

Instruction Size and Cycles to Execute

p
Unsized 4 4

= no. of program bytes
p = no. of instruction clock periods

This is a privileged instruction

1.9 Trap

Initiates exception processing. The program counter is incremented

to the next instruction, then saved on the system stack,

by the current contents of the status register. Program execution

then continues at an address obtained from the exception
table.

PC -> SSP@- : SR —-> SSP@-

(Vector) —-> PC

Assembler Syntax

TRAP #<vector>

where <vector> 1is a 4 bit value

Data Size

Unsized

Status Flags

AmigaFlight System Control Instructions 9/10

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

p
Unsized 2 34

=+
|

= no. of program bytes
p = no. of instruction clock periods

1.10 Trap on Overflow

TRAPV Trap on Overflow

This instruction will initiate exception processing if the V flag
is set when it executed.

If V =1 then TRAP

Assembler Syntax

Unsized

Status Flags
N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute
#p
Trap Taken 2 34
Trap Not Taken 2 4

= no. of program bytes
p = no. of instruction clock periods

AmigaFlight System Control Instructions 10/10

1.11 AmigaFlight® Help: No operation

NOP No operation

This instruction does not affect the processor state other than to
update the program counter to continue execution at the next
instruction.

It can be used to replace instruction that are no longer needed,
without having to recompute displacements, to produce a precise
time delay, or to temporarily replace instructions you do not want
to execute when debugging. It is rarely found in finished
programs.

Assembler Syntax

Unsized

Status Flags
N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute
#p
Unsized 2 4

= no. of program bytes
p = no. of instruction clock periods

	AmigaFlight System Control Instructions
	AmigaFlight® Help: System Control Instructions
	Check register against bounds
	AmigaFlight® Help: Illegal
	MOVE to Status Register
	MOVE User Stack Pointer
	Reset External Devices
	Return from Exception
	Load Status Register and Stop
	Trap
	Trap on Overflow
	AmigaFlight® Help: No operation

