
AmigaFlight Flow Control Instructions

Andrew Duffy Morris

AmigaFlight Flow Control Instructions ii

COLLABORATORS

TITLE :

AmigaFlight Flow Control Instructions

ACTION NAME DATE SIGNATURE

WRITTEN BY Andrew Duffy Morris July 1, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaFlight Flow Control Instructions iii

Contents

1 AmigaFlight Flow Control Instructions 1

1.1 AmigaFlight® Help: Flow Control Instructions . 1

1.2 AmigaFlight® Help: Branch if Carry Clear . 4

1.3 AmigaFlight® Help: Branch if Carry Set . 5

1.4 AmigaFlight® Help: Branch if Greater or Equal . 6

1.5 AmigaFlight® Help: Branch if Greater . 7

1.6 AmigaFlight® Help: Branch if High . 8

1.7 AmigaFlight® Help: Branch if Less or Equal . 9

1.8 AmigaFlight® Help: Branch if Low or Same . 10

1.9 AmigaFlight® Help: Branch if Less . 11

1.10 AmigaFlight® Help: Branch if Minus . 12

1.11 AmigaFlight® Help: Branch if Not Equal . 13

1.12 AmigaFlight® Help: Branch if Equal . 14

1.13 AmigaFlight® Help: Branch if Plus . 15

1.14 AmigaFlight® Help: Branch if Overflow . 16

1.15 AmigaFlight® Help: Branch if No Overflow . 17

1.16 AmigaFlight® Help: Branch Always . 18

1.17 AmigaFlight® Help: Branch to Subroutine . 19

1.18 AmigaFlight® Help: No operation (condition always true) . 19

1.19 AmigaFlight® Help: Decrement and Branch Always unless Count = -1 . 20

1.20 AmigaFlight® Help: Decrement and Branch until High or Count = -1 . 21

1.21 AmigaFlight® Help: Decrement and Branch until Low or Same or Count = -1 22

1.22 AmigaFlight® Help: Decrement and Branch until Carry Clear or Count = -1 . 23

1.23 AmigaFlight® Help: Decrement and Branch until Carry Set or Count = -1 . 24

1.24 AmigaFlight® Help: Decrement and Branch until Not Equal or Count = -1 . 25

1.25 AmigaFlight® Help: Decrement and Branch until Equal or Count = -1 . 26

1.26 AmigaFlight® Help: Decrement and Branch until No Overflow or Count = -1 27

1.27 AmigaFlight® Help: Decrement and Branch until Overflow or Count = -1 . 28

1.28 AmigaFlight® Help: Decrement and Branch until Plus or Count = -1 . 29

1.29 AmigaFlight® Help: Decrement and Branch until Minus or Count = -1 . 31

AmigaFlight Flow Control Instructions iv

1.30 AmigaFlight® Help: Decrement and Branch until Greater or Equal or Count = -1 32

1.31 AmigaFlight® Help: Decrement and Branch until Less or Count = -1 . 33

1.32 AmigaFlight® Help: Decrement and Branch until Greater or Count = -1 . 34

1.33 AmigaFlight® Help: Decrement and Branch until Less or Equal or Count = -1 35

1.34 AmigaFlight® Help: Decrement and Branch Always unless Count = -1 . 36

1.35 AmigaFlight® Help: Jump . 37

1.36 AmigaFlight® Help: Jump to Subroutine . 38

1.37 AmigaFlight® Help: Return and Restore Condition Codes . 39

1.38 AmigaFlight® Help: Return from Subroutine . 40

1.39 AmigaFlight® Help: Set if Carry Clear . 41

1.40 AmigaFlight® Help: Set if Carry Set . 42

1.41 AmigaFlight® Help: Set if Equal . 43

1.42 AmigaFlight® Help: Set Never . 44

1.43 AmigaFlight® Help: Set if Greater or Equal . 45

1.44 AmigaFlight® Help: Set if Greater . 47

1.45 AmigaFlight® Help: Set if High . 48

1.46 AmigaFlight® Help: Set if Less or Equal . 49

1.47 AmigaFlight® Help: Set if Lower or Same . 50

1.48 AmigaFlight® Help: Set if Less . 51

1.49 AmigaFlight® Help: Set if Minus . 53

1.50 AmigaFlight® Help: Set if Not Equal . 54

1.51 AmigaFlight® Help: Set if Plus . 55

1.52 AmigaFlight® Help: Set Always . 56

1.53 AmigaFlight® Help: Set if No Overflow . 58

1.54 AmigaFlight® Help: Set if Overflow . 59

AmigaFlight Flow Control Instructions 1 / 60

Chapter 1

AmigaFlight Flow Control Instructions

1.1 AmigaFlight® Help: Flow Control Instructions

Flow Control Instructions
=========================

Flow Control operations are accomplished using a series of conditional and
unconditional branch instructions and return instructions, included in
these instructions are the conditional setting instructions.

Unconditional jump and branch instructions
--

BRA <label>
Branch Always

JMP <ea>
Jump

Conditional branch instructions

BCC <label>
Branch if Carry Clear

BCS <label>
Branch if Carry Set

BEQ <label>
Branch if Equal

BGE <label>
Branch if Greater or Equal

BGT <label>
Branch if Greater

BHI <label>
Branch if High

AmigaFlight Flow Control Instructions 2 / 60

BLE <label>
Branch if Less or Equal

BLS <label>
Branch if Low or Same

BLT <label>
Branch if Less

BMI <label>
Branch if Minus

BNE <label>
Branch if Not Equal

BPL <label>
Branch if Plus

BVS <label>
Branch if Overflow

BVC <label>
Branch if No Overflow

Test condition, decrement and branch instructions

DBT <label>
No operation (condition always true)

DBF <label>
Decr. and Branch Always unless Count = -1

DBHI <label>
Decr. and Branch until High or Count = -1

DBLS <label>
Decr. and Branch until Low or Same or Count = -1

DBCC <label>
Decr. and Branch until Carry Clear or Count = -1

DBCS <label>
Decr. and Branch until Carry Set or Count = -1

DBNE <label>
Decr. and Branch until Not Equal or Count = -1

DBEQ <label>
Decr. and Branch until Equal or Count = -1

DBVC <label>
Decr. and Branch until No Overflow or Count = -1

DBVS <label>
Decr. and Branch until Overflow or Count = -1

AmigaFlight Flow Control Instructions 3 / 60

DBPL <label>
Decr. and Branch until Plus or Count = -1

DBMI <label>
Decr. and Branch until Minus or Count = -1

DBGE <label>
Decr. and Branch until Greater or Equal or Count = -1

DBLT <label>
Decr. and Branch until Less or Count = -1

DBGT <label>
Decr. and Branch until Greater or Count = -1

DBLE <label>
Decr. and Branch until Less or Equal or Count = -1

DBRA <label>
Decr. and Branch Always unless Count = -1

Conditional setting instructions

SCC <ea>
Set if Carry Clear

SCS <ea>
Set if Carry Set

SEQ <ea>
Set if Equal

SF <ea>
Set Never

SGE <ea>
Set if Greater or Equal

SGT <ea>
Set if Greater

SHI <ea>
Set if High

SLE <ea>
Set if Less or Equal

SLS <ea>
Set if Lower or Same

SLT <ea>
Set if Less

SMI <ea>
Set if Minus

AmigaFlight Flow Control Instructions 4 / 60

SNE <ea>
Set if Not Equal

SPL <ea>
Set if Plus

ST <ea>
Set Always

SVC <ea>
Set if No Overflow

SVS <ea>
Set if Overflow

Subroutine call instructions

BSR <label>
Branch to Subroutine

JSR <ea>
Jump to Subroutine

Return instructions

RTE Return from Exception (Privileged)

RTR
Return and Restore Condition Codes

RTS
Return from Subroutine

1.2 AmigaFlight® Help: Branch if Carry Clear

BCC Branch if Carry Clear
=============================

Continue program execution at the specified label, if the ’Carry
Clear’ condition is met. The .S version of this instruction forces
an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BCC instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if C = 0

AmigaFlight Flow Control Instructions 5 / 60

Assembler Syntax

BCC{.[S/L]} <label>

Data Size

Byte, Word

Sataus Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.3 AmigaFlight® Help: Branch if Carry Set

BCS Branch if Carry Set
===========================

Continue program execution at the specified label, if the ’Carry
Set’ condition is met. The .S version of this instruction forces
an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces the an 16-bit displacement to be
generated. This means that the relative offset of the label must
be in the range of -32768 to 32767 bytes in distance from the
current program counter. The current program counter is defined to
be the current instruction location plus two. If the BCS
instruction is used, the assembler automatically decides which of
the two displacements is most appropriate, and generates that
instruction. This is sometimes known as automatic branch
shortening.

Branch if C = 1

Assembler Syntax

AmigaFlight Flow Control Instructions 6 / 60

BCS{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.4 AmigaFlight® Help: Branch if Greater or Equal

BGE Branch if Greater or Equal
==================================

Continue program execution at the specified label, if the ’Greater
or Equal’ condition is met. The .S version of this instruction
forces an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces the an 16-bit displacement to be
generated. This means that the relative offset of the label must
be in the range of -32768 to 32767 bytes in distance from the
current program counter. The current program counter is defined to
be the current instruction location plus two. If the BGE
instruction is used, the assembler automatically decides which of
the two displacements is most appropriate, and generates that
instruction. This is sometimes known as automatic branch
shortening.

Branch if N.V+N’.V’ = 1

where . = Boolean AND
+ = Boolean OR
’ = Complement

AmigaFlight Flow Control Instructions 7 / 60

Assembler Syntax

BGE{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.5 AmigaFlight® Help: Branch if Greater

BGT Branch if Greater
=========================

Continue program execution at the specified label, if the ’Greater
than’ condition is met. The .S version of this instruction forces
an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BGT instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if N.V.Z’+N’.V’.Z’ = 1

where . = Boolean AND
+ = Boolean OR
’ = Complement

AmigaFlight Flow Control Instructions 8 / 60

Assembler Syntax

BGT{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.6 AmigaFlight® Help: Branch if High

BHI Branch if High
======================

Continue program execution at the specified label, if the ’High’
condition is met. The .S version of this instruction forces an
8-bit displacement to be generated. This means that the relative
offset of the label must be in the range of -128 to 127 bytes in
distance from the current program counter. The .L version of this
instruction forces an 16-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -32768 to 32767 bytes in distance from the current program
counter. The current program counter is defined to be the current
instruction location plus two. If the BHI instruction is used, the
assembler automatically decides which of the two displacements is
most appropriate, and generates that instruction. This is
sometimes known as automatic branch shortening.

Branch if C’.Z’ = 1

where . = Boolean AND
’ = Complement

AmigaFlight Flow Control Instructions 9 / 60

Assembler Syntax

BHI{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.7 AmigaFlight® Help: Branch if Less or Equal

BLE Branch if Less or Equal
===============================

Continue program execution at the specified label, if the ’Less
or Equal’ condition is met. The .S version of this instruction
forces an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L
version of this instruction forces an 16-bit displacement to be
generated. This means that the relative offset of the label must
be in the range of -32768 to 32767 bytes in distance from the
current program counter. The current program counter is defined to
be the current instruction location plus two. If the BLE
instruction is used, the assembler automatically decides which of
the two displacements is most appropriate, and generates that
instruction. This is sometimes known as automatic branch
shortening.

Branch if Z+N.V’+N’.V = 1

where . = Boolean AND
+ = Boolean OR
’ = Complement

AmigaFlight Flow Control Instructions 10 / 60

Assembler Syntax

BLE{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.8 AmigaFlight® Help: Branch if Low or Same

BLS Branch if Low or Same
=============================

Continue program execution at the specified label, if the ’Low or
Same’ condition is met. The .S version of this instruction forces
an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BLS instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if C + Z = 1

where + = Boolean OR

AmigaFlight Flow Control Instructions 11 / 60

Assembler Syntax

BLS{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.9 AmigaFlight® Help: Branch if Less

BLT Branch if Less
======================

Continue program execution at the specified label, if the ’Less’
condition is met. The .S version of this instruction forces an
8-bit displacement to be generated. This means that the relative
offset of the label must be in the range of -128 to 127 bytes in
distance from the current program counter. The .L version of this
instruction forces an 16-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -32768 to 32767 bytes in distance from the current program
counter. The current program counter is defined to be the current
instruction location plus two. If the BLT instruction is used, the
assembler automatically decides which of the two displacements is
most appropriate, and generates that instruction. This is
sometimes known as automatic branch shortening.

Branch if N.V’+N’.V = 1

where . = Boolean AND
+ = Boolean OR
’ = Complement

AmigaFlight Flow Control Instructions 12 / 60

Assembler Syntax

BLT{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.10 AmigaFlight® Help: Branch if Minus

BMI Branch if Minus
=======================

Continue program execution at the specified label, if the ’Minus’
condition is met. The .S version of this instruction forces an
8-bit displacement to be generated. This means that the relative
offset of the label must be in the range of -128 to 127 bytes in
distance from the current program counter. The .L version of this
instruction forces an 16-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -32768 to 32767 bytes in distance from the current program
counter. The current program counter is defined to be the current
instruction location plus two. If the BMI instruction is used, the
assembler automatically decides which of the two displacements
is most appropriate, and generates that instruction. This is
sometimes known as automatic branch shortening.

Branch if N = 1

Assembler Syntax

BMI{.[S/L]} <label>

AmigaFlight Flow Control Instructions 13 / 60

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.11 AmigaFlight® Help: Branch if Not Equal

BNE Branch if Not Equal
===========================

Continue program execution at the specified label, if the ’Not
Equal’ condition is met. The .S version of this instruction
forces an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BNE instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if Z = 0

Assembler Syntax

BNE{.[S/L]} <label>

Data Size

Byte, Word

AmigaFlight Flow Control Instructions 14 / 60

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.12 AmigaFlight® Help: Branch if Equal

BEQ Branch if Equal
=======================

Continue program execution at the specified label, if the ’Equal’
condition is met. The .S version of this instruction forces an
8-bit displacement to be generated. This means that the relative
offset of the label must be in the range of -128 to 127 bytes in
distance from the current program counter. The .L version of this
instruction forces an 16-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -32768 to 32767 bytes in distance from the current program
counter. The current program counter is defined to be the current
instruction location plus two. If the BEQ instruction is used, the
assembler automatically decides which of the two displacements
is most appropriate, and generates that instruction. This is
sometimes known as automatic branch shortening.

Branch if Z = 1

Assembler Syntax

BEQ{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

AmigaFlight Flow Control Instructions 15 / 60

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.13 AmigaFlight® Help: Branch if Plus

BPL Branch if Plus
======================

Continue program execution at the specified label, if the ’Plus’
condition is met. The .S version of this instruction forces an
8-bit displacement to be generated. This means that the relative
offset of the label must be in the range of -128 to 127 bytes in
distance from the current program counter. The .L version of this
instruction forces an 16-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -32768 to 32767 bytes in distance from the current program
counter. The current program counter is defined to be the current
instruction location plus two. If the BPL instruction is used, the
assembler automatically decides which of the two displacements
is most appropriate, and generates that instruction. This is
sometimes known as automatic branch shortening.

Branch if N = 0

Assembler Syntax

BPL{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected

AmigaFlight Flow Control Instructions 16 / 60

X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.14 AmigaFlight® Help: Branch if Overflow

BVS Branch if Overflow
==========================

Continue program execution at the specified label, if the
’Overflow’ condition is met. The .S version of this instruction
forces an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BVS instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if V = 1

Assembler Syntax

BVS{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

AmigaFlight Flow Control Instructions 17 / 60

Size... Byte Word

p # p
Branch Taken 2 10 4 10
Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.15 AmigaFlight® Help: Branch if No Overflow

BVC Branch if No Overflow
=============================

Continue program execution at the specified label, if the ’No
Overflow’ condition is met. The .S version of this instruction
forces an 8-bit displacement to be generated. This means that the
relative offset of the label must be in the range of -128 to 127
bytes in distance from the current program counter. The .L version
of this instruction forces an 16-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -32768 to 32767 bytes in distance from the current
program counter. The current program counter is defined to be the
current instruction location plus two. If the BVC instruction is
used, the assembler automatically decides which of the two
displacements is most appropriate, and generates that instruction.
This is sometimes known as automatic branch shortening.

Branch if V = 0

Assembler Syntax

BVC{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p

Branch Taken 2 10 4 10

AmigaFlight Flow Control Instructions 18 / 60

Branch Not Taken 2 8 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.16 AmigaFlight® Help: Branch Always

BRA Branch Always
=====================

Continue program execution at the specified label. The .S version
of this instruction forces an 8-bit displacement to be generated.
This means that the relative offset of the label must be in the
range of -128 to 127 bytes in distance from the current program
counter. The .L version of this instruction forces an 16-bit
displacement to be generated. This means that the relative offset
of the label must be in the range of -32768 to 32767 bytes in
distance from the current program counter. The current program
counter is defined to be the current instruction location plus
two. If the BRA instruction is used, the assembler automatically
decides which of the two displacements is most appropriate, and
generates that instruction. This is sometimes known as automatic
branch shortening.

Assembler Syntax

BRA{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size... Byte Word
p # p
2 10 4 10

= no. of instruction bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 19 / 60

1.17 AmigaFlight® Help: Branch to Subroutine

BSR Branch to Subroutine
============================

The long word address of the instruction immediately following
this instruction is pushed on the stack, and program execution
continues at the specified label. The .S version of this
instruction forces an 8-bit displacement to be generated. This
means that the relative offset of the label must be in the range
of -128 to 127 bytes in distance from the current program counter.
The .L version of this instruction forces an 16-bit displacement
to be generated. This means that the relative offset of the label
must be in the range of -32768 to 32767 bytes in distance from the
current program counter. The current program counter is defined to
be the current instruction location plus two. If the BSR
instruction is used, the assembler automatically decides which of
the two displacements is most appropriate, and generates that
instruction. This is sometimes known as automatic branch
shortening.

Assembler Syntax

BSR{.[S/L]} <label>

Data Size

Byte, Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Size Byte Word
p # p
2 18 4 18

= no. of instruction bytes
p = no. of instruction clock periods

1.18 AmigaFlight® Help: No operation (condition always true)

DBT No operation (condition always true)
==

AmigaFlight Flow Control Instructions 20 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

Assembler Syntax

DBT Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
true na No 4 12

= no. of instruction bytes
p = no. of instruction clock periods

1.19 AmigaFlight® Help: Decrement and Branch Always unless Count = -1

DBF Decrement and Branch Always unless Count = -1
===

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue

AmigaFlight Flow Control Instructions 21 / 60

instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

Decrement data register Dn (low order word) and Branch if result
not -1

Assembler Syntax

DBF Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.20 AmigaFlight® Help: Decrement and Branch until High or Count = -1

DBHI Decrement and Branch until High or Count = -1
===

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction

AmigaFlight Flow Control Instructions 22 / 60

uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If C’.Z’ = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

where . = Boolean AND
’ = Complement

Assembler Syntax

DBHI Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.21 AmigaFlight® Help: Decrement and Branch until Low or Same or Count = -1

DBLS Decrement and Branch until Low or Same or Count = -1
==

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.

AmigaFlight Flow Control Instructions 23 / 60

If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If C+Z = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

where + = Boolean OR

Assembler Syntax

DBLS Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.22 AmigaFlight® Help: Decrement and Branch until Carry Clear or Count = -1

DBCC Decrement and Branch until Carry Clear or Count = -1
==

AmigaFlight Flow Control Instructions 24 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If C = 1 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBCC Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.23 AmigaFlight® Help: Decrement and Branch until Carry Set or Count = -1

DBCS Decrement and Branch until Carry Set or Count = -1
==

AmigaFlight Flow Control Instructions 25 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If C = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBCS Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.24 AmigaFlight® Help: Decrement and Branch until Not Equal or Count = -1

DBNE Decrement and Branch until Not Equal or Count = -1
==

AmigaFlight Flow Control Instructions 26 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If Z = 1 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBNE Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.25 AmigaFlight® Help: Decrement and Branch until Equal or Count = -1

DBEQ Decrement and Branch until Equal or Count = -1
==

AmigaFlight Flow Control Instructions 27 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If Z = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBEQ Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.26 AmigaFlight® Help: Decrement and Branch until No Overflow or Count = -1

DBVC Decrement and Branch until No Overflow or Count = -1
==

AmigaFlight Flow Control Instructions 28 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If V = 1 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBVC Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.27 AmigaFlight® Help: Decrement and Branch until Overflow or Count = -1

DBVS Decrement and Branch until Overflow or Count = -1
===

AmigaFlight Flow Control Instructions 29 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If V = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBVS Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.28 AmigaFlight® Help: Decrement and Branch until Plus or Count = -1

DBPL Decrement and Branch until Plus or Count = -1
===

AmigaFlight Flow Control Instructions 30 / 60

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If N = 1 then Decrement data register Dn (low order word) and
Branch if result not -1

where . = Boolean AND
+ = Boolean OR
’ = Complement

Assembler Syntax

DBPL Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 31 / 60

1.29 AmigaFlight® Help: Decrement and Branch until Minus or Count = -1

DBMI Decrement and Branch until Minus or Count = -1
==

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If N = 0 then Decrement data register Dn (low order word) and
Branch if result not -1

Assembler Syntax

DBMI Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 32 / 60

1.30 AmigaFlight® Help: Decrement and Branch until Greater or Equal or Count =
-1

DBGE Decrement and Branch until Greater or Equal or Count = -1
===

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If N.V+N’.V’ = 0 then Decrement data register Dn (low order word)
and Branch if result not -1

where . = Boolean AND
+ = Boolean OR
’ = Complement

Assembler Syntax

DBGE Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

AmigaFlight Flow Control Instructions 33 / 60

= no. of instruction bytes
p = no. of instruction clock periods

1.31 AmigaFlight® Help: Decrement and Branch until Less or Count = -1

DBLT Decrement and Branch until Less or Count = -1
===

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If N.V’+N’.V = 0 then Decrement data register Dn (low order word)
and Branch if result not -1

where . = Boolean AND
+ = Boolean OR
’ = Complement

Assembler Syntax

DBLT Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

AmigaFlight Flow Control Instructions 34 / 60

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.32 AmigaFlight® Help: Decrement and Branch until Greater or Count = -1

DBGT Decrement and Branch until Greater or Count = -1
==

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If N.V.Z’+N’.V’.Z’ = 0 then Decrement data register Dn (low order
word) and Branch if result not -1

where . = Boolean AND
+ = Boolean OR
’ = Complement

Assembler Syntax

DBGT Dn,<label>

Data Size

Word

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected

AmigaFlight Flow Control Instructions 35 / 60

X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.33 AmigaFlight® Help: Decrement and Branch until Less or Equal or Count = -1

DBLE Decrement and Branch until Less or Equal or Count = -1
==

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

If Z+N.V’+N’.V = 0 then Decrement data register Dn (low order
word) and Branch if result not -1

where . = Boolean AND
+ = Boolean OR
’ = Complement

Assembler Syntax

DBLE Dn,<label>

Data Size

Word

Status Flags

AmigaFlight Flow Control Instructions 36 / 60

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
true na No 4 12
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.34 AmigaFlight® Help: Decrement and Branch Always unless Count = -1

DBRA Decrement and Branch Always unless Count = -1 (Same as DBF)
===

If the specified condition is false, decrement the destination
data register, and then compare the destination register with -1.
If the data register doesn’t equal -1, continue processing at the
specified label. If either of the conditions fail, then continue
instruction execution with the next instruction. This instruction
uses a 16-bit displacement as a label offset. This means that the
relative offset of the label must be in the range of -32768 to
32767 bytes in distance from the current program counter.
This instruction provides a primitive looping construct similar to
the REPEAT UNTIL looping construct of Pascal/ADA/Basic/C etc. The
DBcc instruction may be thought of as a REPEAT loop UNTIL either
the condition becomes true, or the loop counter goes below 0.
This, of course, is assuming that the destination data register
was initially set to a positive value. (This instruction uses the
bottom 16 bits of the destination data register for a loop
counter, 0 to 65535.)

Decrement data register Dn (low order word) and Branch if result
not -1

Assembler Syntax

DBRA Dn,<label>

Data Size

Word

Status Flags

AmigaFlight Flow Control Instructions 37 / 60

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

Condition Counter Branch # p
false <>-1 Yes 4 10
false = -1 No 4 14

= no. of instruction bytes
p = no. of instruction clock periods

1.35 AmigaFlight® Help: Jump

JUMP Jump
============

Continue program execution at the new address specified by the
instruction.

Destination -> PC

Assembler Syntax

JMP <ea>

<ea> - control

Addressing Modes

Mode Source Destination

Data Register Direct - -
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - -
Predecrement Register Indirect - -
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - *
P.C. Relative with Index - *
Immediate - -

Data Size

Unsized

AmigaFlight Flow Control Instructions 38 / 60

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

<ea> # p
(An) 2 8
d16(An) 4 10
d8(An,Ri) 4 14
Abs short 4 10
Abs long 6 12
d16(PC) 4 10
d8(PC,Ri) 4 14

= no. of program bytes
p = no. of instruction clock periods

1.36 AmigaFlight® Help: Jump to Subroutine

JSR Jump to Subroutine
==========================

Push the long-word address of the instruction immediately
following the JSR instruction onto the stack, and then continue
program execution at the new adress specified by the instruction.

PC -> SP@- : Destination -> PC

Assembler Syntax

JSR <ea>

<ea> - control

Addressing Modes

Mode Source Destination

Data Register Direct - -
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - -
Predecrement Register Indirect - -
Register Indirect with Offset - *
Register Indirect with Index - *

AmigaFlight Flow Control Instructions 39 / 60

Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - *
P.C. Relative with Index - *
Immediate - -

Data Size

Unsized

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

<ea> # p
(An) 2 16
d16(An) 4 18
d8(An,Ri) 4 22
Abs short 4 18
Abs long 6 20
d16(PC) 4 18
d8(PC,Ri) 4 22

= no. of program bytes
p = no. of instruction clock periods

1.37 AmigaFlight® Help: Return and Restore Condition Codes

RTR Return and Restore Condition Codes
==

Load the condition code and a new program counter from the stack.
Proceed with execution at the new program counter address.

SP@+ -> CC : SP@+ -> PC

Assembler Syntax

RTR

Data Size

Unsized

AmigaFlight Flow Control Instructions 40 / 60

Status Flags

Set according to word on stack

Instruction Size and Cycles to Execute

p
Unsized 2 20

= no. of program bytes
p = no. of instruction clock periods

1.38 AmigaFlight® Help: Return from Subroutine

RTS Return from Subroutine
==============================

Load a new program counter from the top of the stack, and proceed
with execution at this new address.

SP@+ -> PC

Assembler Syntax

RTS

Data Size

Unsized

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

p
Unsized 2 16

##= no. of program bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 41 / 60

1.39 AmigaFlight® Help: Set if Carry Clear

SCC Set if Carry Clear
==========================

Set the specified byte address to 0xFF if the ’Carry Clear’
condition is met, or to 0x00 if the condition is not met.

If C = 0 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SCC <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13

AmigaFlight Flow Control Instructions 42 / 60

(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.40 AmigaFlight® Help: Set if Carry Set

SCS Set if Carry Set
========================

Set the specified byte address to 0xFF if the ’Carry Set’
condition is met, or to 0x00 if the condition is not met.

If C = 1 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SCS <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected

AmigaFlight Flow Control Instructions 43 / 60

V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.41 AmigaFlight® Help: Set if Equal

SEQ Set if Equal
====================

Set the specified byte address to 0xFF if the ’Equal’ condition is
met, or to 0x00 if the condition is not met.

If Z = 1 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SEQ <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

AmigaFlight Flow Control Instructions 44 / 60

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.42 AmigaFlight® Help: Set Never

SF Set Never
=================

Set the specified byte address to 0xFF if the ’Set Never’
condition is met, or to 0x00 if the condition is not met.

0’s -> destn always

Assembler Syntax

SF <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *

AmigaFlight Flow Control Instructions 45 / 60

Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

<ea> # p
Dn 2 4
(An) 2 13
(An)+ 2 13
-(An) 2 15
d16(An) 4 17
d8(An,Ri) 4 19
Abs short 4 17
Abs long 6 21

= no. of program bytes
p = no. of instruction clock periods

1.43 AmigaFlight® Help: Set if Greater or Equal

SGE Set if Greater of Equal
===============================

Set the specified byte address to 0xFF if the ’Greater or Equal’
condition is met, or to 0x00 if the condition is not met.

If N.V+N’.V’ = 1 then 1’s -> destn else 0’s -> destn
where . = Boolean AND

+ = Boolean OR
’ = Complement

AmigaFlight Flow Control Instructions 46 / 60

Assembler Syntax

SGE <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 47 / 60

1.44 AmigaFlight® Help: Set if Greater

SGT Set if Greater
======================

Set the specified byte address to 0xFF if the ’Greater’ condition
is met, or to 0x00 if the condition is not met.

If N.V.Z’+N’.V’.Z’ = 1 then 1’s -> destn else 0’s -> destn
where . = Boolean AND

+ = Boolean OR
’ = Complement

Assembler Syntax

SGT <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False

AmigaFlight Flow Control Instructions 48 / 60

<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.45 AmigaFlight® Help: Set if High

SHI Set if High
===================

Set the specified byte address to 0xFF if the ’High’ condition is
met, or to 0x00 if the condition is not met.

If C’.Z’ = 1 then 1’s -> destn else 0’s -> destn
where . = Boolean AND

’ = Complement

Assembler Syntax

SHI <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

AmigaFlight Flow Control Instructions 49 / 60

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.46 AmigaFlight® Help: Set if Less or Equal

SLE Set if Less or Equal
============================

Set the specified byte address to 0xFF if the ’Less or Equal’
condition is met, or to 0x00 if the condition is not met.

If Z+N.V’+N’.V = 1 then 1’s -> destn else 0’s -> destn
where . = Boolean AND

+ = Boolean OR
’ = Complement

Assembler Syntax

SLE <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *

AmigaFlight Flow Control Instructions 50 / 60

Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.47 AmigaFlight® Help: Set if Lower or Same

SLS Set if Lower or Same
============================

Set the specified byte address to 0xFF if the ’Lower or Same’
condition is met, or to 0x00 if the condition is not met.

If C+Z = 1 then 1’s -> destn else 0’s -> destn
where + = Boolean OR

Assembler Syntax

SLS <ea>

AmigaFlight Flow Control Instructions 51 / 60

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.48 AmigaFlight® Help: Set if Less

AmigaFlight Flow Control Instructions 52 / 60

SLT Set if Less
===================

Set the specified byte address to 0xFF if the ’Less’ condition is
met, or to 0x00 if the condition is not met.

If N.V’+N’.V = 1 then 1’s -> destn else 0’s -> destn
where . = Boolean AND

+ = Boolean OR
’ = Complement

Assembler Syntax

SLT <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4

AmigaFlight Flow Control Instructions 53 / 60

(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.49 AmigaFlight® Help: Set if Minus

SMI Set if Minus
====================

Set the specified byte address to 0xFF if the ’Minus’ condition is
met, or to 0x00 if the condition is not met.

If N = 1 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SMI <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected

AmigaFlight Flow Control Instructions 54 / 60

Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.50 AmigaFlight® Help: Set if Not Equal

SNE Set if Not Equal
========================

Set the specified byte address to 0xFF if the ’Not Equal’
condition is met, or to 0x00 if the condition is not met.

If Z = 0 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SNE <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -

AmigaFlight Flow Control Instructions 55 / 60

Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.51 AmigaFlight® Help: Set if Plus

SPL Set if Plus
===================

Set the specified byte address to 0xFF if the ’Plus’ condition is
met, or to 0x00 if the condition is not met.

If N = 0 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SPL <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

AmigaFlight Flow Control Instructions 56 / 60

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.52 AmigaFlight® Help: Set Always

ST Set Always
==================

Set the specified byte address to 0xFF if the ’Always’ condition
is met, or to 0x00 if the condition is not met.

1’s -> destn always

AmigaFlight Flow Control Instructions 57 / 60

Assembler Syntax

ST <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

<ea> # p
Dn 2 6
(An) 2 13
(An)+ 2 13
-(An) 2 15
d16(An) 4 17
d8(An,Ri) 4 19
Abs short 4 17
Abs long 6 21

= no. of program bytes
p = no. of instruction clock periods

AmigaFlight Flow Control Instructions 58 / 60

1.53 AmigaFlight® Help: Set if No Overflow

SVC Set if No Overflow
==========================

Set the specified byte address to 0xFF if the ’No Overflow’
condition is met, or to 0x00 if the condition is not met.

If V = 0 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SVC <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13

AmigaFlight Flow Control Instructions 59 / 60

(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

1.54 AmigaFlight® Help: Set if Overflow

SVS Set if Overflow
=======================

Set the specified byte address to 0xFF if the ’Overflow’ condition
is met, or to 0x00 if the condition is not met.

If V = 1 then 1’s -> destn else 0’s -> destn

Assembler Syntax

SVS <ea>

<ea> - data alterable

Addressing Modes

Mode Source Destination

Data Register Direct - *
Address Register Direct - -
Address Register Indirect - *
Postincrement Register Indirect - *
Predecrement Register Indirect - *
Register Indirect with Offset - *
Register Indirect with Index - *
Absolute Short - *
Absolute Long - *
P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

Byte

Status Flags

N Not affected
Z Not affected

AmigaFlight Flow Control Instructions 60 / 60

V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

True False
<ea> # p # p
Dn 2 6 2 4
(An) 2 13 2 13
(An)+ 2 13 2 13
-(An) 2 15 2 15
d16(An) 4 17 4 17
d8(An,Ri) 4 19 4 19
Abs short 4 17 4 17
Abs long 6 21 6 21

= no. of program bytes
p = no. of instruction clock periods

	AmigaFlight Flow Control Instructions
	AmigaFlight® Help: Flow Control Instructions
	AmigaFlight® Help: Branch if Carry Clear
	AmigaFlight® Help: Branch if Carry Set
	AmigaFlight® Help: Branch if Greater or Equal
	AmigaFlight® Help: Branch if Greater
	AmigaFlight® Help: Branch if High
	AmigaFlight® Help: Branch if Less or Equal
	AmigaFlight® Help: Branch if Low or Same
	AmigaFlight® Help: Branch if Less
	AmigaFlight® Help: Branch if Minus
	AmigaFlight® Help: Branch if Not Equal
	AmigaFlight® Help: Branch if Equal
	AmigaFlight® Help: Branch if Plus
	AmigaFlight® Help: Branch if Overflow
	AmigaFlight® Help: Branch if No Overflow
	AmigaFlight® Help: Branch Always
	AmigaFlight® Help: Branch to Subroutine
	AmigaFlight® Help: No operation (condition always true)
	AmigaFlight® Help: Decrement and Branch Always unless Count = -1
	AmigaFlight® Help: Decrement and Branch until High or Count = -1
	AmigaFlight® Help: Decrement and Branch until Low or Same or Count = -1
	AmigaFlight® Help: Decrement and Branch until Carry Clear or Count = -1
	AmigaFlight® Help: Decrement and Branch until Carry Set or Count = -1
	AmigaFlight® Help: Decrement and Branch until Not Equal or Count = -1
	AmigaFlight® Help: Decrement and Branch until Equal or Count = -1
	AmigaFlight® Help: Decrement and Branch until No Overflow or Count = -1
	AmigaFlight® Help: Decrement and Branch until Overflow or Count = -1
	AmigaFlight® Help: Decrement and Branch until Plus or Count = -1
	AmigaFlight® Help: Decrement and Branch until Minus or Count = -1
	AmigaFlight® Help: Decrement and Branch until Greater or Equal or Count = -1
	AmigaFlight® Help: Decrement and Branch until Less or Count = -1
	AmigaFlight® Help: Decrement and Branch until Greater or Count = -1
	AmigaFlight® Help: Decrement and Branch until Less or Equal or Count = -1
	AmigaFlight® Help: Decrement and Branch Always unless Count = -1
	AmigaFlight® Help: Jump
	AmigaFlight® Help: Jump to Subroutine
	AmigaFlight® Help: Return and Restore Condition Codes
	AmigaFlight® Help: Return from Subroutine
	AmigaFlight® Help: Set if Carry Clear
	AmigaFlight® Help: Set if Carry Set
	AmigaFlight® Help: Set if Equal
	AmigaFlight® Help: Set Never
	AmigaFlight® Help: Set if Greater or Equal
	AmigaFlight® Help: Set if Greater
	AmigaFlight® Help: Set if High
	AmigaFlight® Help: Set if Less or Equal
	AmigaFlight® Help: Set if Lower or Same
	AmigaFlight® Help: Set if Less
	AmigaFlight® Help: Set if Minus
	AmigaFlight® Help: Set if Not Equal
	AmigaFlight® Help: Set if Plus
	AmigaFlight® Help: Set Always
	AmigaFlight® Help: Set if No Overflow
	AmigaFlight® Help: Set if Overflow

