AmigaFlight Data Movement Instructions

Andrew Duffy Morris

AmigaFlight Data Movement Instructions

COLLABORATORS

TITLE :

AmigaFlight Data Movement Instructions

ACTION NAME DATE SIGNATURE
WRITTEN BY Andrew Duffy Morris July 1, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

AmigaFlight Data Movement Instructions

Contents

1 AmigaFlight Data Movement Instructions 1
1.1 AmigaFlight® Help: Data Movement Instructions 1
1.2 AmigaFlight® Help: Exchange Registers 2
1.3 AmigaFlight® Help: Load Effective Address 3
1.4 AmigaFlight® Help: Link and Allocate e 4
1.5 AmigaFlight® Help: Move Data from Source to Destination 5
1.6 AmigaFlight® Help: MOVE to Condition Codes it 8
1.7 AmigaFlight® Help: MOVE from Status Register 9
1.8 AmigaFlight® Help: Move Address e e e e 10
1.9 AmigaFlight® Help: Move Multiple Registers 12
1.10 AmigaFlight® Help: Move Peripheral Data 13
1.11 AmigaFlight® Help: Move Quick e e 14
1.12 AmigaFlight® Help: Push Effective Address 16
1.13 AmigaFlight® Help: Swap Data Register Halves 17
1.14 AmigaFlight® Help: Unlink e 17

AmigaFlight Data Movement Instructions

1/18

Chapter 1

AmigaFlight Data Movement Instructions

1.1 AmigaFlight® Help: Data Movement Instructions

Data Movement Instructions

The basic method of data aquisition (transfer and storage) is provided by
the move instruction. The move instruction and the effective addressing
modes allow both address and data manipulation. Data move instructions
allow byte, word, and long word operand transfers and ensure that only
legal address manipulations are executed. In addition to the general move
instruction, there are several special data movement instructions.

Move
MOVE <ea>, <ea>
Move Data from Source to Destination
MOVE SR, <ea>
Move from Status Register
MOVE <ea>, SR Move to Status Register (Privileged)

MOVE <ea>,CCR
Move to Condition Codes

Move Multiple

MOVEM
Move Multiple Registers

MOVEA <ea>, An
Move Address

Load Effective Address

AmigaFlight Data Movement Instructions

2/18

LEA
Load Effective Address

Push Effective Address

PEA <ea>
Push Effective Address

Move Peripheral Data

MOVEP
Move Peripheral Data

Move Quick

MOVEQ #d,Dn
Move Quick

Register Swap and Exchange

SWAP Dn
Swap Data Register Halves

EXG
Exchange Registers

Link and Unlink

LINK An, #<dis>
Link and Allocate

UNLK An
Unlink

1.2 AmigaFlight® Help: Exchange Registers

EXG Exchange Registers

Exchange the contents of the source and destination

registers.

All

32-bits are always exchanged. Any two registers may be specified.

Rx <—=> Ry

Assembler Syntax

AmigaFlight Data Movement Instructions 3/18

Addressing Modes

Mode Source Destination
Data Register Direct *
Address Register Direct * %

Address Register Indirect - -
Postincrement Register Indirect - -
Predecrement Register Indirect - -
Register Indirect with Offset - -
Register Indirect with Index - -
Absolute Short - -

Absolute Long - =

P.C. Relative with Offset - -

P.C. Relative with Index - -
Immediate - -

Data Size

N Not affected
Z Not affected
V Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute

= no. of program bytes
p = no. of instruction clock periods

1.3 AmigaFlight® Help: Load Effective Address

LEA Load Effective Address

Load the calculated (effective) address into the destination
address register.

Destn —-> An

Assembler Syntax

AmigaFlight Data Movement Instructions 4/18

LEA{.L} <ea>, An

<ea> - control

Addressing Modes

Mode Source Destination

Data Register Direct - -

Address Register Direct - %
Address Register Indirect * =
Postincrement Register Indirect - -
Predecrement Register Indirect * =
Register Indirect with Offset * =
Register Indirect with Index * =
Absolute Short * =

Absolute Long * —

P.C. Relative with Offset * =

P.C. Relative with Index * =
Immediate - -

Data Size

N Not affected
Z Not affected
V Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute

<ea> #p

(An) 2 4

dl6 (An) 4 8
d8 (An,Ri) 4 12
Abs short 4 8
Abs long 6 12
dle6 (PC) 4 8
dg8 (PC,R1i) 4 12

= no. of program bytes
p = no. of instruction clock periods

1.4 AmigaFlight® Help: Link and Allocate

AmigaFlight Data Movement Instructions 5/18

LINK Link and Allocate

Push the current contents of the destination address register onto
the stack. Load the contents of the stack pointer into the
destination address register. Add the immediate value to the stack
pointer.

This instruction is commonly used at subroutine entry to allocate
a new frame pointer and local temporary storage. This is normally
done with a negative displacement.

An -> SP@- : SP —> An : SP + 4 —> SP

Assembler Syntax

LINK{.W} An,#<displacement>

where the displacement is a sign extended 16 bit value

Data Size

Unsized

Status Flags

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

= no. of program bytes
p = no. of instruction clock periods

1.5 AmigaFlight® Help: Move Data from Source to Destination

MOVE Move Data from Source to Destination

Copy the source operand to the destination operand. The upper byte
of data is ignored when moving data to the condition code
register. The move instructions that load and store the user stack
pointer from and to an address register may only be executed while
in supervisor mode.

Source -> Destn

AmigaFlight Data Movement Instructions 6/18

Assembler Syntax
MOVE{. [B/W/L]} <ea>,<ea>
MOVE{.[W/L]} <ea>,An
MOVE{.W} <ea>,CCR
MOVE{.W} <ea>, SR
MOVE{.W} SR, <ea>
MOVE{.L} An,USP
MOVE{.L} USP,An

Source <ea> - all modes

Destination <ea> -data alterable only
USP - User Stack Pointer

CCR - Condition Code Register

Addressing Modes

Mode Source Destination
Data Register Direct * %
Address Register Direct * =
Address Register Indirect * %

Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset *
Register Indirect with Index *
Absolute Short *
Absolute Long * x

P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate * =

* X% % o

Data Size

Byte, Word, Long

Status Flags
N Set if negative
Z Set if zero
V Always cleared
C Always cleared
X Not affected

Instruction Size and Cycles to Execute

BYTE/WORD DESTINATTION

Source Dn (An) (An) + - (An)
<ea> # P # P ¥ P # P
Dn 2 4 2 8 2 8 2 8

An (word) 2 4 2 8 2 8 2 8

AmigaFlight Data Movement Instructions

7/18

(An) 2 8 2 12 2 12
(An) + 2 8 2 12 2 12

- (An) 2 10 2 14 2 14
dl16 (An) 4 12 4 16 4 16
d8 (An,Ri) 4 14 4 18 4 18
Abs short 4 12 4 16 4 16
Abs long 6 16 6 20 6 20
dl6 (PC) 4 12 4 16 4 16
dg8 (PC,Ri) 4 14 4 18 4 18
Immediate 4 8 4 12 4 12
= no. of instruction bytes

p = no. of instruction clock periods
BYTE/WORD DESTIDNATTION
Source d (An) d(An,Ri) AbsW
<ea> # P # P # P
Dn 4 12 4 14 4 12

An (word) 4 12 4 14 4 12
(An) 4 16 4 18 4 16
(An) + 4 16 4 18 4 16

- (An) 4 18 4 20 4 18
d1l6 (An) 6 20 6 22 6 20
d8 (An,Ri) 6 22 6 24 6 22
Abs short 6 20 6 22 6 20
Abs long 8 24 8 26 8 24
dl6 (PC) 6 20 6 22 6 20
d8 (PC,Ri) 6 22 6 24 6 22
Immediate 6 16 6 18 6 16
= no. of instruction bytes

p = no. of instruction clock periods

LONG DESTINATTIO
Source Dn (An)
<ea> # P # P #
Dn 2 4 2 12 2
An (word) 2 4 2 18
(An) 2 12 2 20 2
(An) + 2 12 2 20 2
- (An) 2 14 2 22 2
d1l6 (An) 4 16 4 24

d8 (An,Ri) 4 18 4 26

Abs short 4 16 4 24

Abs long 6 20 6 28

dl6 (PC) 4 16 4 24

dg8 (pC,Ri) 4 18 4 26
Immediate 4 12 4 20

= no. of instruction bytes

p = no. of instruction clock periods

N
(An) +
P

12

2 12

20

20

22
24
26
24
28
24
26
20

T @) W ST SN

LONG DESTINATTION
Source d (An) d(An,Ri) AbsW
<ea> # P # P # P

Dn 4 16 4 18 4

16

2 12
2 12
2 14
4 16
4 18
4 16
6 20
4 16
4 18
4 12
AbsL
L
16
6 16
6 20
6 20
6 22
8 24
8 26
8 24
10 28
8 24
8 26
8 20
- (An)
p
12
2 12
2 20
2 20
2 22
4 24
4 26
4 24
6 28
4 24
4 26
4 20
AbsL
* p
20

AmigaFlight Data Movement Instructions

8/18

- (An)
dl6 (An)

d8 (An, Ri)
Abs short

Abs long
dl6 (PC)

d8 (PC, R1i)
Immediate

= no.
P = no.

1.6 AmigaFlight® Help: MOVE to Condition Codes

24

24

26
28
30
28
32
28
30
24

Oy O O O O O O

4
4
4

Oy O O O O O O

26
26
28

18

30
32
30
34
30
32
26

of instruction bytes
of instruction clock periods

4
4
4

O Oy O O O O O

MOVE_CCR MOVE to Condition Codes

16
24
24
26

28

30

28

32

28

30

24

Copy the source operand to the
byte of data is ignored when moving data to

register.

Source —> CCR

Assembler Syntax

MOVE{.W}

<ea> - data only

<ea>, CCR

Addressing Modes

Data Register Direct

Source

Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset

Register Indirect with Index

Absolute Short
Absolute Long
P.C. Relative with Offset
P.C. Relative with Index

Immediate

Data Size

* -

*

*

Destination

*

* -

Condition Code Register.

>*

32
34
32
36
32
34
28

the

condition

The upper

code

AmigaFlight Data Movement Instructions

9/18

Status Flags

N Set
Z Set
V Set
C Set
X Set

Instruction Size and Cycles to Execute

according
according
according
according
according

to
to
to
to
to

source
source
source
source
source

operand
operand
operand
operand
operand

of instruction bytes

<ea> #p

Dn 2 12

(An) 2 16
(An) + 2 16

- (An) 2 18
dl16 (An) 4 20
d8 (An,Ri) 4 22
Abs short 4 20
Abs long 6 24
dl6 (PC) 4 20
ds8 (pC,R1i) 4 22
Immediate 4 16
= no.

P = no.

1.7 AmigaFlight® Help: MOVE from Status Register

MOVE_SR

of instruction clock periods

MOVE from Status Register

Copy the Status Register to the destination operand.

SR —-> Destination

Assembler Syntax

MOVE{ .W}

SR, <ea>

<ea> - data alterable

Addressing Modes

Source

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect

Destination

- %

AmigaFlight Data Movement Instructions 10/18

Register Indirect with Offset - x
Register Indirect with Index -
Absolute Short - %

Absolute Long - *

P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

N Not affected
Z Not affected
V Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute

<ea> #p

Dn 2 6

(An) 2 12

(An) + 2 12

—(An) 2 14

d1l6 (An) 4 16

d8 (An,Ri) 4 18

Abs short 4 16

Abs long 6 20

= no. of instruction bytes

p = no. of instruction clock periods

1.8 AmigaFlight® Help: Move Address

MOVEA Move Address

Copy the source operand to the destination operand. This opcode is
a subset of the MOVE opcode, and requires that the destination be
an address register. If the wvalue 1is loaded as a 16-bit word
value, this value is automatically sign-extended.

Source —-> Address register

Assembler Syntax

MOVE{. [W/L]} <ea>,An

AmigaFlight Data Movement Instructions

11/18

<ea> - all modes

Addressing Modes

Data Register Direct
Address Register Direct
Address Register Indirect

Postincrement Register Indirect
Predecrement Register Indirect
Indirect with Offset
Indirect with Index

Register
Register
Absolute
Absolute

Immediate

Data Size

Word, Lon

Status Flag

Short
Long
P.C. Relative with Offset
P.C. Relative with Index

g

S

Not affected
Not affected

Not affected

N
Z
V Not affected
C
X

Not affected

Instruction Size and Cycles to Execute

Dn 2

(An) 2
(An) + 2
- (An) 2
d1l6 (An)

d8 (An, Ri)
Abs short
Abs long
dle6 (PC)

ds (pPC,R1)
Immediate

= no.
P = no.

#

12
14
12
16
12
14

*

*

(@) T SNY SN o) QT eSS

Source

*

Destination

16
18
16
20
16
18
12

of instruction bytes
of instruction clock periods

>*

AmigaFlight Data Movement Instructions

12/18

1.9 AmigaFlight® Help: Move Multiple Registers

MOVEM Move Multiple Registers

Transfer the selected registers from the register list to or from
the consecutive memory locations starting at the memory location
specified by the effective address. The register list is evaluated

to a mask that specifies the 1list of the registers
transferred.

Registers —-> Destination
Source —> Registers

Selected registers are transferred to or from consecutive memory

starting at <ea>

Assembler Syntax
MOVEM{ . [W/L]} <register list>,<ea>
MOVEM{. [W/L]} <ea>,<register list>

<ea> destination - control alterable and predecrement
<ea> source — control alterable and postincrement

register list example: D3-D7/A1/A6/D1

Addressing Modes

Mode Source Destination

Data Register Direct - -

Address Register Direct - -
Address Register Indirect - %
Postincrement Register Indirect - %
Predecrement Register Indirect -
Register Indirect with Offset -
Register Indirect with Index -
Absolute Short - %
Absolute Long - %

P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

*

Data Size

Word, Long

Status Flags

N Not affected

AmigaFlight Data Movement Instructions 13/18

Not affected
Not affected
Not affected
Not affected

X Q<N

Instruction Size and Cycles to Execute

WORD <list>,<ea> <ea>,<list>
P # o)

(An) 4 8+4n 4 12+4n

(An) + invalid 4 12+4n

- (An) 4 8+4n invalid

d1l6 (An) 6 124+4n 6 16+4n

d8 (An,Ri) 6 14+4n 18+4n

6

Abs short 6 12+4n 6 16+4n
Abs long 8 l6+4n 8 20+4n
dle (PC) invalid 6 16+4n
d8 (PC,Ri) invalid 6 18+4n
= no. of instruction bytes
p = no. of instruction clock periods
n = no. of registers in list
LONG <list>,<ea> <ea>,<list>

p o # P
(An) 4 8+8n 4 12+8n
(An) + invalid 4 12+8n
- (An) 4 8+8n invalid
dl16 (An) 6 124+8n 6 16+8n
d8 (An,Ri) 6 144+8n 6 18+8n
Abs short 6 12+8n 6 16+8n
Abs long 8 16+8n 8 20+8n
dle (PC) invalid 6 16+8n
d8 (PC,R1i) invalid 6 18+8n
= no. of instruction bytes
p = no. of instruction clock periods
n = no. of registers in list

1.10 AmigaFlight® Help: Move Peripheral Data

MOVEP Move Peripheral Data

Copy the source operand to the destination operand. This
instruction transfers data in alternate bytes to or from memory.
The starting address 1s specified by the displacement of the
specified address register, and the remaining addresses are
specified by incrementing the transfer location by two. This
instruction is designed to facilitate the transfer of data between
8-bit devices and the 16-bit data bus.

Source —> Destination

AmigaFlight Data Movement Instructions

14/18

Transfer bytes of data register (high order byte first) to or from
alternate bytes of memory starting at d(Ay) and incrementing by
two.

Assembler Syntax
MOVEP{. [W/L]} Dx,d(Ay)
MOVEP{.[W/L]} d(Ay),Dx

Addressing Modes

Mode Source Destination

Data Register Direct - -

Address Register Direct - -
Address Register Indirect - -
Postincrement Register Indirect - -
Predecrement Register Indirect - -
Register Indirect with Offset - -
Register Indirect with Index - -
Absolute Short - -

Absolute Long - -

P.C. Relative with Offset - -

P.C. Relative with Index - -
Immediate - -

Data Size

Word, Long

Status Flags
N Not affected
Z Not affected
V Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute

#p
Word 4 16
Long 4 24
= no. of instruction bytes
p = no. of instruction clock periods

1.11 AmigaFlight® Help: Move Quick

AmigaFlight Data Movement Instructions 15/18

MOVEQ Move Quick

Copy the source operand to the destination operand. This opcode
requires that the source be an 8-bit immediate value. The value is
sign-extended before loading it as a 32-bit number into the
specified data register.

Immediate Data —> Destination

Assembler Syntax

MOVEQ{.L} #<data>,Dn

Addressing Modes

Mode Source Destination

Data Register Direct - =

Address Register Direct - -
Address Register Indirect - -
Postincrement Register Indirect - -
Predecrement Register Indirect - -
Register Indirect with Offset - -
Register Indirect with Index - -
Absolute Short - -

Absolute Long - -

P.C. Relative with Offset - -

P.C. Relative with Index - -
Immediate - -

Data Size

N Set if negative
Z Set if zero

V Always cleared
C Always cleared
X Not affected

Instruction Size and Cycles to Execute

= no. of instruction bytes
p = no. of instruction clock periods

AmigaFlight Data Movement Instructions

16/18

1.12 AmigaFlight® Help: Push Effective Address

PEA Push Effective Address

Push the calculated (effective) address onto the stack.

Destination —-> SPQ@-—

Assembler Syntax

<ea> - control

Addressing Modes

Mode Source Destination

Data Register Direct - -

Address Register Direct - -
Address Register Indirect * =
Postincrement Register Indirect - -
Predecrement Register Indirect
Register Indirect with Offset * =

Register Indirect with Index * =
Absolute Short * =
Absolute Long * —

P.C. Relative with Offset - -
P.C. Relative with Index - -
Immediate - -

Data Size

N Not affected
Z Not affected
V Not affected
C Not affected
X Not affected

Instruction Size and Cycles to Execute

<ea> # p
(An) 2 14
dl6 (An) 4 18

d8 (An,Ri) 4 22
Abs short 4 18

AmigaFlight Data Movement Instructions

17/18

Abs long 6 22
dl6 (PC) 4 18
d8 (PC,R1i) 4 22

= no. of program bytes
p = no. of instruction clock periods

1.13 AmigaFlight® Help: Swap Data Register Halves

SWAP Swap Data Register Halves

Exchange the upper 16 bits of the destination data register with

the lower 16 bits of the same register. Store the result in
destination register.

Register b31..16 <-> Register bl5..b0

Assembler Syntax

SWAP{.W} Dn

Data Size

N Set if bit 31 of result is set, else cleared
Z Set if result = 0, else cleared

V Always cleared

C Always cleared

X Not affected

No.of program bytes: 2
No. of instruction clock periods: 4

1.14 AmigaFlight® Help: Unlink

UNLK Unlink

Load the stack pointer from the destination address register,

the

then

pop the long value from the new top of the stack and place it in
the destination register. This instruction is commonly used at
subroutine exit to restore an old frame pointer and free up any

local temporary storage.

An —> SP : SP@+ —-> An

AmigaFlight Data Movement Instructions 18/18

Assembler Syntax

UNLK <ea>

Data Size

Unsized

Status Flags
N Not affected
Z Not affected
V. Not affected
C DNot affected
X Not affected

Instruction Size and Cycles to Execute
#p
Unsized 2 34

= no. of program bytes
p = no. of instruction clock periods

	AmigaFlight Data Movement Instructions
	AmigaFlight® Help: Data Movement Instructions
	AmigaFlight® Help: Exchange Registers
	AmigaFlight® Help: Load Effective Address
	AmigaFlight® Help: Link and Allocate
	AmigaFlight® Help: Move Data from Source to Destination
	AmigaFlight® Help: MOVE to Condition Codes
	AmigaFlight® Help: MOVE from Status Register
	AmigaFlight® Help: Move Address
	AmigaFlight® Help: Move Multiple Registers
	AmigaFlight® Help: Move Peripheral Data
	AmigaFlight® Help: Move Quick
	AmigaFlight® Help: Push Effective Address
	AmigaFlight® Help: Swap Data Register Halves
	AmigaFlight® Help: Unlink

