
AmigaFlight Assembly

Andrew Duffy Morris

AmigaFlight Assembly ii

COLLABORATORS

TITLE :

AmigaFlight Assembly

ACTION NAME DATE SIGNATURE

WRITTEN BY Andrew Duffy Morris July 1, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaFlight Assembly iii

Contents

1 AmigaFlight Assembly 1

1.1 AmigaFlight® Help: 68000 Assembly Language . 1

1.2 AmigaFlight® Help: The 68000 Family . 2

1.3 AmigaFlight® Help: The 68000 Address Range . 3

1.4 AmigaFlight® Help: The 68000 Chip Characteristics . 3

1.5 AmigaFlight® Help: The 68000 Data Types . 6

1.6 AmigaFlight® Help: The 68000 Addressing Modes . 6

1.7 AmigaFlight® Help: The 68000 Status Register Flags . 7

1.8 AmigaFlight® Help: The 68000 Stack . 8

1.9 AmigaFlight® Help: 68000 Interrupts . 8

1.10 AmigaFlight® Help: The 68000 Instruction Set . 8

1.11 AmigaFlight® Help: Data Types . 8

1.12 AmigaFlight® Help: Data Types . 9

1.13 AmigaFlight® Help: Data Types . 9

1.14 AmigaFlight® Help: Data Types . 9

1.15 AmigaFlight® Help: Data Types . 9

1.16 AmigaFlight® Help: Addressing Modes . 9

1.17 AmigaFlight® Help: Addressing Modes . 10

1.18 AmigaFlight® Help: Addressing Modes . 10

1.19 AmigaFlight® Help: Addressing Modes . 11

1.20 AmigaFlight® Help: Addressing Modes . 11

1.21 AmigaFlight® Help: Addressing Modes . 12

1.22 AmigaFlight® Help: Addressing Modes . 13

1.23 AmigaFlight® Help: Addressing Modes . 14

1.24 AmigaFlight® Help: Addressing Modes . 15

1.25 AmigaFlight® Help: Addressing Modes . 16

1.26 AmigaFlight® Help: Addressing Modes . 16

1.27 AmigaFlight® Help: About The Stack . 16

1.28 AmigaFlight® Help: Manipulating The Stack . 17

1.29 AmigaFlight® Help: Flags . 18

AmigaFlight Assembly iv

1.30 AmigaFlight® Help: Flags . 18

1.31 AmigaFlight® Help: Z Flag . 18

1.32 AmigaFlight® Help: N Flag . 18

1.33 AmigaFlight® Help: X Flag . 19

1.34 AmigaFlight® Help: T Flag . 19

1.35 AmigaFlight® Help: S Flag . 19

1.36 AmigaFlight® Help: Interrupt Handling . 19

1.37 AmigaFlight® Help: Interrupt Masks . 20

1.38 AmigaFlight® Help: 68000 Assembly Index . 20

AmigaFlight Assembly 1 / 25

Chapter 1

AmigaFlight Assembly

1.1 AmigaFlight® Help: 68000 Assembly Language

Documentation for

Motorola 68000 Assembly Language

Introduction to the 68000 Family

Address Space

Chip Characteristics

Data Types

Addressing Modes

The Stack

Status Register Flags

Interrupts

Instruction Set
AmigaFlight Help

Written by XCNT :

Andrew Duffy
Chris Morris

AmigaFlight Assembly 2 / 25

Copyright © 1994, XCNT Productions

1.2 AmigaFlight® Help: The 68000 Family

The 68000 Family
================
In 1979, Motorola introduced the first inplementation of the M68000 16/32-
bit microprocessor architecture - the MC68000. The MC68000, with a 16-bit
data bus and 24-bit address bus, was only the first in a now extensive
family of processors which implement a comprehensive, extensible computer
architecture. The MC68000 was soon followed by the MC68008, with an 8-bit
data bus and 20-bit address bus, and by the MC68010, which introduced the
virtual machine aspects of the M68000 architecture.

When the 32-bit MC68020 was introduced in 1984, he MC68000 had already
been established as a popular and sucessful microprocessor. The MC68020
extended the basic characteristics of the MC68000 to yield an enhanced
microprocessor in the 32-bit class possessing many capabilities not found
in the earlier 16-bit processors. One important advance was the ability
to be combined with coprocessors such as the floating-point mathematics
coprocessor (MC68881) and the memory management coprocessor (MC68851).

The MC68030 went one step further by combining an improved version of the
MC68020 with the memory management capability of the MC68851 coprocessor
on one chip. This combination increased the performance of a system while
reducing the number of components. The MC68030 also has a MC68882
mathematics coprocessor to allow this two-chip set to function as a
complete processing unit.

The MC68040 combines all the features of the MC68030 with the abilities of
the MC68882 mathematics coprocessor into a single chip for even more speed
and performance.

Evolution of the Motorola Microprocessors
===

1979 MC68000 6Mhz CPU
1980 MC68000 8Mhz CPU
1981 MC68000 10Mhz CPU
1982 MC68000 12.5Mhz CPU

MC68008 CPU (Reduced bus MC68000)
1983 MC68010 CPU (Virtual machine M68000)
1984 MC68012 CPU (Extended virtual machine M68000)

MC68020 CPU (Advanced 32-bit M68000)
1987 MC68030 CPU
1990? MC68040 CPU

The M68000 or the i8086
=======================

The MC68000 has a 16-bit data bus and 16-bit arithmetic logic unit (ALU),

AmigaFlight Assembly 3 / 25

but all of the internal registers are 32 bits wide. This increased
register size is one of the most important ways in which Motorola provides
a clear upgrade path. Programs written for the 68000 family take full
advantage of 32-bit operations and will run on true 32 bit machines.
This upward compatibility is an enormously powerful concept, especially
when contrasted with the approach that Intel took with its 8086 family.

The 8086 family supports compatibility by crippling its high-end
processors. In other words, the 80286 processor runs 8086 programs by
disabling many of the 80286 features. Each generation in Intel’s
processor family advances by "gluing" more features onto the new chip.

Motorola, however, designed a full 32-bit architecture from the begining,
kept that structure as the programming model and implemented it on 16-bit
machines. As a result, most programs written for the 68000 family run
equally well, with very little modification on all members of the family.

1.3 AmigaFlight® Help: The 68000 Address Range

68000 Address Space
===================

The 68000 family supports a full 32-bit (4 gigabyte) address space. Only
the 68020 and upwards brings all of the address lines out of the chip
package, but the 16 megabytes supported by the 68000 is quite
respectable. This is due to the 24-bit address bus :

24
2 bits == 16777216 bits == 16 Mb

1.4 AmigaFlight® Help: The 68000 Chip Characteristics

The 68000 Chip Characteristics
==============================

The Motorola 68000 has a 16/32 bit architecture. It has a 16-bit
data bus and a 24-bit address bus, while the full architecture provides
for 32-bit address and data buses. It is completely code compatible with
the HCMOS MC68000 (a variation of the 68000), MC68008 (an 8-bit data bus
implementation of the 68000) and is upward code compatible to the
MC68010/MC68012 virtual extension and the MC68020, the MC68030EC, the
MC68030, the MC68040EC, the MC68040, and finally, the yet to be released
MC68060 (better than the Pentium any day!). This is possible because the
user programming model is identical for all six processors and the
instruction sets are proper sub-sets of the complete architecture.

Resources available to the MC68000 user consist of the following :-

17 x 32-bit Data and Address registers
16Mb direct addressing range (no pages or extended etc.)
56 powerful instruction types
Operations on 5 main data types

AmigaFlight Assembly 4 / 25

Memory mapped I/O
14 addressing modes

3 1 1
1 6 5 8 7 0
+----------------+--------+--------+
| | | | D0
| | | | D1
| | | | D2
| | | | D3 EIGHT DATA
| | | | D4 REGISTERS
| | | | D5
| | | | D6
| | | | D7
+----------------+--------+--------+

3 1 1
1 6 5 8 7 0
+----------------+--------+--------+
| | | | A0
| | | | A1
| | | | A2
| | | | A3 SEVEN ADDRESS
| | | | A4 REGISTERS
| | | | A5
| | | | A6
+----------------+--------+--------+

3 1 1
1 6 5 8 7 0
+----------------+-----------------+
| | | A7 USP USER STACK
+----------------+-----------------+ POINTER

3 1 1
1 6 5 8 7 0
+----------------------------------+
| | PC PROGRAM COUNTER
+----------------------------------+

7 0
+--------+
| | CCR STATUS REGISTER
+--------+

Figure 1. User Programming Model

As shown in the user programming model (Figure 1.), the MC68000
offers 16 32-bit registers and a 32-bit program counter.

Data Registers

The first eight registers (D0-D7) are used as data registers for byte
(8-bit), word (16-bit), and long word (32-bit) operations. The least
significant bit is addressed as bit zero, the most significant bit is
addressed as bit 31.

AmigaFlight Assembly 5 / 25

Address Registers

The second set of seven registers (A0-A6) and the user stack pointer (USP)
may be used as software stack pointers and base registers. In addition,
the registers may be used for word and long word operations. All of the
16 registers may be used as index registers.

In supervisor mode, the upper byte of the status register and the
supervisor stack pointer (SSP) are also available to the programmer.

These registers are shown in Figure 2. below:

3 1 1
1 6 5 8 7 0

SUPERVISOR +----------------+-----------------+
STACK | | | A7 SSP
POINTER +----------------+-----------------+

1
5 8 7 0

STATUS +--------+--------+
REGISTER | | CCR | SR

+--------+--------+

Figure 2. Supervisor Programming Model

The status register (Figure 3.) contains the
interrupt mask
(eight

levels availabe) as well as the condition codes:
eXtend (X)
,
Negative (N)
,

Zero (Z)
,
oVerflow (V)
, and
Carry (C)
. Additional status bits indicate

that the processor is in
Trace (T)
mode and in

Supervisor (S)
or user

state.

STATUS REGISTER

00
C

AmigaFlight Assembly 6 / 25

01
V

02
Z

USER BYTE 03
N

04
X

05
06
07

08
I

09
I

10
I

SYSTEM BYTE 11
12
13

S
14

15
T

Figure 3. Status Register

1.5 AmigaFlight® Help: The 68000 Data Types

Motorola 68000 Assembly Language

Data Types

Bits

BCD Digits

Bytes

Words

Long Words

1.6 AmigaFlight® Help: The 68000 Addressing Modes

Motorola 68000 Assembly Language

Addressing Modes

AmigaFlight Assembly 7 / 25

Data Register Direct

Address Register Direct

Absolute Short

Absolute Long

Relative with Offset

Relative with Index Offset

Register Indirect

Postincrement Register Indirect

Predecrement Register Indirect

Register Indirect with Offset

Indexed Register Indirect with Offset

Immediate

Quick Immediate

Implied Register

1.7 AmigaFlight® Help: The 68000 Status Register Flags

Motorola 68000 Assembly Language

Status Register Flags

Interrupt Masking

eXtended Flag

Negative Flag

Zero Flag

oVerflow Flag

Carry Flag

Trace Flag

AmigaFlight Assembly 8 / 25

Supervisor Flag

1.8 AmigaFlight® Help: The 68000 Stack

Motorola 68000 Assembly Language

The Stack

About The Stack

Manipulating The Stack

1.9 AmigaFlight® Help: 68000 Interrupts

Motorola 68000 Assembly Language

Interrupts

Interrupt Handling

The Interrupt Mask

1.10 AmigaFlight® Help: The 68000 Instruction Set

Motorola 68000 Assembly Language

Instruction Set

Data Movement Instructions
Integer Arithmetic Instructions

Logical Instructions
Shift and Rotate Instructions

Bit Test and Manipulation Instructions
Binary Coded Decimal Instructions

Flow Control Instructions
System Control Instructions

1.11 AmigaFlight® Help: Data Types

AmigaFlight Assembly 9 / 25

Bits
====

A single bit can only have the value 0 or 1.

1.12 AmigaFlight® Help: Data Types

BCD Digits
==========

Binary Coded Decimal (BCD) digits are made up of four bits.

In binary-coded decimal, BCD, each of the decimal digits of a number is
represented by four bits. The decimal number 72509 for example, is
represented in BCD as 0111 0010 0101 0000 1001.

1.13 AmigaFlight® Help: Data Types

Bytes
=====

A byte is made up of eight bits and allows 256 different values.

1.14 AmigaFlight® Help: Data Types

Words
=====

A word is made up of sixteen bits and allows 65,536 values.

1.15 AmigaFlight® Help: Data Types

Long Words
==========

A long word is made up of thirty two bits and allows 4,294,967,296 values.

1.16 AmigaFlight® Help: Addressing Modes

Register Direct Rn
==========================

In the register direct mode addressing mode, the operand is in the
specified address, or data register. Most instructions use either a data

AmigaFlight Assembly 10 / 25

register or an address register as one of the operands. Registers are most
commonly intermediate values or heavily used variables in a section of
code.

1.17 AmigaFlight® Help: Addressing Modes

Absolute value
=====================

The absolute addressing mode has two variations - absolute short
and absolute long. With absolute short mode, the lower half of the
effective address follows the opcode in memory as a word value. The
specified word value is sign extended and then used as the address of the
operand in question.

The absolute short addressing mode can only access the lowest or
highest 32K memory locations. This mode provides a short, quick way to use
programs or temporary storage. It is short and quick because it saves a
word of memory and a read cycle.

The following example loads the TRAPV vector, and probably would
only be executed in Supervisor Mode.

LEA.L MY_TRAPV_ROUTINE,A0 ;GET A SUBROUTINE ADDRESS
MOVEA.L A0,$001C.W ;SAVE IT IN TRAPV VECTOR

With absolute long addressing, the effective address occupies two
words of memory immediately after the opcode. This addressing mode gives
the user access to any memory location. The labels used are commonly
called global variables. For example, if you assigned the label DATALOC to
a memory location, you could store information in that loaction with the
following line of code (which transfers a word of information from data
register D7 to the memory location DATALOC):

MOVE.W D7,DATALOC ;SAVE SOME DATA

NOTE:
In a multiprocessing environment (such as an Amiga or Apple Mac) a

machine code program should always use labels when referring to any type
of absolute data. This allows the assembler to generate the correct
relocation information. Without relocation information, the machine
language program cannot execute correctly in the multiprocessing
environment.

A multitasking environment must be able to move programs around in
memory. If you assign absolute constants (such as telling the program to
jump to a specific address, "hitting the hardware") without relocation
information, your program will crash whenever it is moved to a different
location in memory. All the absolute addresses will be wrong.

1.18 AmigaFlight® Help: Addressing Modes

Program Counter Relative with Displacement d16(PC)
===

With this addressing mode, the 16-bit displacement value is added

AmigaFlight Assembly 11 / 25

to the program counter and used as the address of the operand fetched or
stored. The program counter is unmodified by this addressing mode.

This has three important uses:

· When the source code makes reference to a label, and the
referenced label is within 32768 bytes of the current location
counter, as in the statement JUMP LABEL

· For constant jumps through a table

· To find the address of the current instruction as in the
following statement: LEA.L -4(PC),A0

1.19 AmigaFlight® Help: Addressing Modes

Program Counter Relative with Index and Displacement d8(PC,Rn)
===
In program counter relative with index and displacement

addressing, the eight bit displacement, the program counter, and the
specified secondary register are added together to generate the address of
the operand. This calculated value is used to fetch or store data used by
the instruction.

Either a data or address register can play the role of the
secondary register, commonly known as the index register. This register
may act as a 16- or 32-bit value. By default, the register will be
accessed as a 16-bit value. To specify the size of this register, append
to the opcode either .L (as in LEA.L) for a 32-bit value, or .W (as in
LEA.W) for a 16-bit value.

This addressing mode is most useful when doing a variable jump
through a jump table as in this example:

MOVE.W INDEX,D0 ;GET JUMP TABLE INDEX
LSL.L #2,D0 ;MULTIPLY BY TWO
JMP 2(PC,D0) ;CALL SUBROUTINE IN TABLE
BRA EXIT

DC.L SUBROUTINE0 ;INDEX 0
DC.L SUBROUTINE1 ;INDEX 1
DC.L SUBROUTINE2 ;INDEX 2

EXIT:

1.20 AmigaFlight® Help: Addressing Modes

Address Register Indirect (An)
====================================

In the address register indirect addressing mode, the address of
the operand is in the specified address register. This 32-bit value is
used to fetch the operand for the calculation. On the MC68000 and MC68010,
only the lowest 24 (out of a possible 32) bits of the address are used. On
the MC68008, only the bottom 20 bits are used. The programmer, however,

AmigaFlight Assembly 12 / 25

should not use the upper 8 bits of the address register for flag bits or
non address data. This trick was used in some early MC68000 programs -
much to their detriment when they were ported to the MC68020, a
microprocessor that uses all 32 address bits.

The address register indirect mode is commonly used just after an
address has been calculated, or when the same address is used repeatedly.
For example, the following code uses the same address multiple times in a
loop, but only calculates it once. After it’s calculated, it’s placed in
address register A0:

LEA USEDALOT,A0
LAB: MOVE.W (A0),D0 ; LOAD A COMMON VARIABLE THAT

; GETS TRASHED
;·
;· ; DO SOME WORK
;·

BRA LAB

This addressing mode does not modify the specified address
register.

1.21 AmigaFlight® Help: Addressing Modes

Address Register Indirect with Postincrement (An)+
===

Address register indirect with postincrement is similar to address
register indirect, but as the name implies, the value in the address
register is automatically increased after each use. If you use this
addressing mode with a long-word instruction (like MOVE.L), the address
register will be incremented by four. If you use it with a word
instruction (like MOVE.W), it will be incremented by two. And if you use
it with a byte instruction (like MOVE.B), it will be incremnted by by one.
This addressing mode provides an easy means of processing arrays, stacks,
queues, and other data structures.

If the address register is the stack pointer (SP or A7) and the
operand size is a byte, then the stack pointer is automatically
incremented by two instead of one. This keeps the stack properly aligned
at all times, ie. on an even address.

If the assembly program has created an upward growing stack, then
a stack push operation may be performed in the following way. (Although
stacks normally grow downward on the Amiga, it is not necessary that the
programmer use stacks in this manner.)

; ; STACK PUSH (STACK GROWING UPWARD)
; (ASSUMING A3 IS STACK POINTER)

MOVE.L D0,(A3)+ ; PUSH D0 TO THE TOP OF THE STACK FOR
; FUTURE USE

Some more examples:

; ; QUEUE SAVE/RETRIEVE (ASSUME A2 IS HEAD
; OF QUEUE, A3 IS TAIL OF QUEUE)
; CHECK QUEUE LIMITS

MOVE.W D1,(A3)+ ; SAVE ITEM
; CHECK QUEUE LIMITS

AmigaFlight Assembly 13 / 25

MOVE.W (A2)+,D1 ; GET ITEM
MOVE.L (A0)+,(A1)+ ; MOVE LONG WORD POINTED TO BY A0 TO LONG

; WORD POINTED TO BY A1, THEN INCREMENT
; BOTH A0 AND A1 BY 4 AFTER THE
; INSTRUCTION.
; THIS IS VERY USEFUL FOR COPYING LARGE
; CHUNKS OF DATA IN A LOOP.

Remember that the amount of increment depends upon on the size
specifier on the actual instruction.

1.22 AmigaFlight® Help: Addressing Modes

Address Register Indirect with Predecrement -(An)
===

Using address register indirect with predecrement causes the
address of the operand contained in the address register to be decremented
by one, two, or four, depending upon the size of the operand specified,
before the operation takes place. The address in the specified address
register is used to fetch the operand or store data. If the address
register is the stack pointer (SP or A7), and the operand size is a byte,
the stack pointer is automatically decremented by two instead of one. This
keeps the stack properly aligned at all times, ie on an even address.

Register indirect with predecrement mode has many uses. These
include, among other things, array, stack, and queue manipulation.

If the assembly program uses a downward growing stack,
automatically available with the SP register, a stack push operation is
readily available.

; STACK PUSH (STACK GROWING DOWNWARD)
MOVE.L D0,-(SP) ; PUSH D0 TO THE TOP OF THE STACK FOR

; FUTURE USE

If the assembly program has created an upward growing stack, then
a stack pop operation may be performed in the following manner:

; STACK POP (STACK GROWING UPWARD)
; (ASSUMING A3 IS STACK POINTER)

MOVE.L -(SP),D0 ; TAKE THE TOP ELEMENT OFF THE STACK
; AND SAVE IT IN D0 FOR LATER USE

Some more examples:

; QUEUE SAVE/RETRIEVE (ASSUME A2 IS
; HEAD OF QUEUE, A3 IS TAIL OF QUEUE)
; CHECK QUEUE LIMITS

MOVE.W D1,-(A3) ; SAVE ITEM
; CHECK QUEUE LIMITS

MOVE.W -(A2),D1 ; GET ITEM
MOVE.W -(A0),-(A1) ; DECREMENT BOTH A0 AND A1 BY TWO, THEN

; MOVE THE WORD POINTED TO BY A0 TO THE
; WORD POINTED TO BY A1.
; THIS IS VERY USEFUL FOR COPYING LARGE
; CHUNKS OF DATA IN A LOOP.

AmigaFlight Assembly 14 / 25

Remember that the amount of decrement depends upon the size
specifier on the actual instruction.

1.23 AmigaFlight® Help: Addressing Modes

Address Register Indirect with Displacement d16(An)
===

Address register indirect with offset uses the address contained
in the specified address register added to a 16-bit displacement value as
the address of the operand to be fetched or stored. The address register
is not modified by this addressing mode.

This addressing mode has many uses. The most common use is
accessing stack variables that exist at constant locations.
Consider the following example:

MOVE.L VAR3,-(SP) ; SAVE THIRD VARIABLE
MOVE.B VAR2,-(SP) ; SAVE SECOND VARIABLE
MOVE.W VAR1,-(SP) ; SAVE FIRST VARIABLE
JSR SUBROUTINE

The stack will now look like this:

| Even Byte Odd Byte |
------+----------------------------------+------
SP+10 | Variable 3 High Word | SP+11
------+----------------------------------+------
SP+8 | Variable 3 Low Word | SP+9
------+-----------------+----------------+------
SP+6 | 0 0 0 0 0 0 0 0 | Variable 2 | SP+7
------+-----------------+----------------+------
SP+4 | Variable 1 | SP+5
------+----------------------------------+------
SP+2 | Return program counter High Word | SP+3
------+----------------------------------+------
SP+0 | Return program counter Low Word | SP+1
------+----------------------------------+------

; RETURN VARIABLES FROM STACK
JSR SUBROUTINE
MOVE.W 4(SP),D0 ; TO ACCESS VARIABLE 1
ADD.B 7(SP),D0 ; TO ACCESS VARIABLE 2
MOVE.L 8(SP),A0 ; TO ACCESS VARIABLE 3
MOVE.L D0,(A0) ; (VARIABLE 3) = VARIABLE 1 + VARIABLE 2

; ANOTHER WAY TO RETURN VARIABLES
JSR SUBROUTINE
TST.W (SP)+ ; POP VARIABLE 1
TST.B (SP)+ ; POP VARIABLE 2
TST.L (SP)+ ; POP VARIABLE 3

; MORE EFFICIENT WAY TO RETURN VARIABLES
JSR SUBROUTINE
ADDQ.L #8,SP ; POP ALL THREE SIMULTANEOUSLY

AmigaFlight Assembly 15 / 25

1.24 AmigaFlight® Help: Addressing Modes

Address Register Indirect with Index and Displacement d8(An,Rn)
===

In this addressing mode, the eight-bit displacement, the
specified address register, and the specified index register are added
together to generate the address of the operand. This calculated value is
used to fetch or store the data used by the instruction.

The second register, commonly known as the index register, is
either a data register or an address register. This register is referenced
as a 16-bit or a 32-bit value. By default, the register acts a a 16-value.
To specify the size of this register, append to the opcode either .L for a
32-bit value, or .W for a 16-bit value.

This addressing mode is very useful for array indexing. Consider
an array of data structures, in which each structure is 16 words long. The
following code fragment totals the second words of the array.

LEA.L ARRAY_OF_STRUCTS,A0
MOVE.L NUM_OF_STRUCTS,D1
LSL.L #4,D1 ; GET MAXIMUM INDEX (NUM*16)
MOVEQ #0,D0 ; INIT INDEX

LOOP: ADD.W 2(A0,D0),D2 ; SUM = SUM + NEXT_ELEMENT
ADD.W #16,D0 ; INDEX = INDEX + STRUCT_SIZE
CMP.W D1,D0 ; IS D0-D1 < 0 ?
BLT LOOP ; YES, DO NEXT ITERATION

·
·
·

rest of the code

WORD
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Structure 1 | | |\times| | | | | | | | | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Structure 2 | | |\times| | | | | | | | | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Structure 3 | | |\times| | | | | | | | | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Structure 4 | | |\times| | | | | | | | | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

·
·
·
·

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Structure 23 | | |\times| | | | | | | | | | | | | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Structure 24 | | |\times| | | | | | | | | | | | | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Structure 25 | | |\times| | | | | | | | | | | | | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Structure 26 | | |\times| | | | | | | | | | | | | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
^

AmigaFlight Assembly 16 / 25

|
Program adds these words together

Another example is a quick multiply by two in an address register:

LEA.L 0(A0,A0.L),A0 ; MULTIPLY A0 BY TWO

1.25 AmigaFlight® Help: Addressing Modes

Immediate #value
======================

The specified value is used as the source operand for the
instruction. This addressing mode is used to load a constant value. Every
time this addressing mode is used, there is one less constant to store in
data space. The data follows immediately after the opcode. The data can be
a byte, a word, or a long word.

The MC68000 has a special immediate mode for small operands. In
this mode, the data is actually contained within the opcode itself. This
quick mode can move a number in the range of -128 to +128 to a register or
memory location, or add or subtract numbers from 1 to 8.

The following is an example of immediate addressing mode.

AND.L #$7F,D0 ; MASK OUT UPPER 25 BITS
OR.W #$8000,D0 ; TURN ON SIGN BIT (WORD SIZED)
BMI CONT ; BRANCH IF MINUS
NOP ; THIS IS NEVER EXECUTED

CONT:
rest of program here

1.26 AmigaFlight® Help: Addressing Modes

Inherent or Implied
===================

Inherent addressing is the easiest of all - the microprocessor
knows from the opcode alone which addresses to use. For example, an RTS
instruction has no operand field, yet the microprocessor knows to fetch
the return address from the stack. Some instructions that require no
operands are NOP (NoOperation), RESET, RTE, TRAP, etc.

1.27 AmigaFlight® Help: About The Stack

About The Stack
===============

A stack is a data structure in which the first element put in is
the last one to be taken out (FILO) or conversely, the last item to be
stacked is the first to be unstacked (LIFO).
A simple use of a data stack is to reverse the order of a list of
numbers or characters.

- The 68000 stacks grow towards the low end of memory (address 0).

AmigaFlight Assembly 17 / 25

- All eight address registers can maintain a stack i.e. be used as
stack pointers.

- Address register 7 ~is only special in that it is used
automatically by the hardware for subroutine linkage. The
mnemonic SP may be used for A7.

- The stack pointer contains the address of the last item on the
stack.

1.28 AmigaFlight® Help: Manipulating The Stack

Manipulating The Stack
======================

MOVE.W D0,-(SP) Stack or push D0
Copy the contents of the low order word of
D0 onto the stack (where SP is pointing
after being decremented by two (bytes).

MOVE.W (A7)+,D0 Unstack or pop into D0.
Copy the contents of the top of the stack
(where A7 ~is ~pointing) ~into ~D0 ~then
increment A7 by two (bytes).

ADD.L (SP)+,D0 Unstack ~and ~add ~a ~~longword ~~to ~~D0,
increment SP by a longword.

Consider the stack before the following instruction has executed:-

MOVE D0,-(SP)

3 1 1
1 6 5 0

+----------------+-----------------+
D0 | | 1 2 3 4 |

+----------------+-----------------+ | |
| |
| |

3 1 1 | |
1 6 5 0 | |

+----------------------------------+ |---------|
SP | | ------> | 5 6 7 8 |Current TOS

+----------------------------------+ |---------|
| |
| Stack |
| area |
| |

Then, after MOVE D0,-(SP) is executed the stack will be :-

3 1 1
1 6 5 0

+----------------+-----------------+
D0 | | 1 2 3 4 |

AmigaFlight Assembly 18 / 25

+----------------+-----------------+ | |
| |
| |
| |

3 1 1 |---------|
1 6 5 0 ---> | 1 2 3 4 | New TOS

+----------------------------------+ | |---------|
SP | | ---- | 5 6 7 8 |

+----------------------------------+ |---------|
| |
| Stack |
| area |
| |

1.29 AmigaFlight® Help: Flags

The Carry Flag C - bit 0
=================================

This bit is set (made equal to 1) when a carry operation occurs,
and reset (or cleared - set to a 0) when a borrow operation occurs. These
may occur as a result of addition or subtraction. For example, say the
addition of two 16-bit numbers generates a 17-bit result. The bottom 16
bits of the result would be placed in the destination register, and the
carry bit would be set to a 1.

1.30 AmigaFlight® Help: Flags

The Overflow Flag V - bit 1
=================================

This bit is set (made equal to 1) when an arithmetic result is too
large to be stored in a register. An example of overflow is adding two
very large 32-bit numbers. If the sum of the two numbers is greater than
the number that can be stored in 32 bits, overflow occurs. In this case,
the overflow bit would be set to alert the program that the result is too
big too be stored in a register.

1.31 AmigaFlight® Help: Z Flag

The Zero Flag Z - bit 2
=================================

This bit is set (made equal to 1) when the result of an operation
is 0. Any non zero results clears this bit.

1.32 AmigaFlight® Help: N Flag

AmigaFlight Assembly 19 / 25

The Negative Flag N - bit 3
=================================

This bit is set to the most significant bit of the result of an
operation. A 1 indicates a negative result, while a 0 means the result is
positive.

1.33 AmigaFlight® Help: X Flag

The Extend Flag X - bit 4
=================================

This bit is used in many Extend instructions, such as ADDX. It
provides a mechanism for multiprecision arithmetic. The extend bit is
usually set or reset the same as the

C
bit.

1.34 AmigaFlight® Help: T Flag

The Trace Flag T - bit 15
==================================

This bit, when set, is used to force the microprocessor into Trace
Mode. The idea of the trace mode is to enable the microprocessor to go
through the program one instruction at a time, enabling the contents of
the registers to be examined between instructions. This is something that
aids debugging of programs, and which can be achieved with virtually any
microprocessor using a suitable monitor program, but it is something which
is more easily implemented with the 68000 and its trace mode.

1.35 AmigaFlight® Help: S Flag

The Supervisor Mode Flag S - bit 13
==

This bit selects the operation mode, when set (equal to 1) the
microprocessor is operating in Supervisor Mode, and when clear, the
microprocessor is operating in User Mode.

1.36 AmigaFlight® Help: Interrupt Handling

Interrupt Handling
==================

The 68000 provides 7 ~levels of ~interrupts, ~all ~of ~which ~are
recognised and serviced based upon the priority set by the

interrupt mask
.

The ~interrupt mask ~consists of ~three ~interrupt mask ~bits (I0, I1, I2)
which are ~part ~of the 16-bit status ~register. These three bits indicate
the current processor interrupt priority level which ranges between 0 and

AmigaFlight Assembly 20 / 25

7. Interrupt request level zero ~indicates ~that no interrupt service is
requested. When ~an ~interrupt level ~from ~1 through 6 is ~requested, the
processor compares the interrupt ~request level to the interrupt mask to
determine whether the interrupt should be processed. Interrupt requests
are ignored for all interrupt request levels that are less than or equal
to the current processor ~priority ~level as determined by the interrupt
mask bits.
Level 7 interrupts are non-maskable i.e. they cannot be interrupted even
by another level 7 interrupt.

1.37 AmigaFlight® Help: Interrupt Masks

The Interrupts Mask I2 I1 I0 - bits 8, 9 and 10
===

This 3-bit number ranging from 000 to 111 indicates the current
level ~of interrupts. ~This mask ~is set ~while in ~supervisor ~state:
interrupts above ~a ~certain priority ~level ~are ~recognised, ~while ~the
remaining ~lower ~interrupts ~are ~ignored. When ~the 68000 is reset, the
initial mask ~is set ~to ~111 so that ~the only interrupt ~that ~will ~be
recognised ~is the non-maskable interrupt (NMI): it overrides any code in
progress and cannot be turned off (masked off) by software.

Interrupt mask | Priority levels | Priority levels
| recognised | ignored

----------------+-----------------------+-----------------
111 | 7 (only NMI) | 1-6
110 | 7 | 1-6
101 | 6-7 | 1-5
100 | 5-7 | 1-4
011 | 4-7 | 1-3
010 | 3-7 | 1-2
001 | 2-7 | 1
000 | 1-7 (all) | None

1.38 AmigaFlight® Help: 68000 Assembly Index

Motorola 68000 Assembly Language

Index

About the 68000 Chip

Address Space

Addressing Modes

Chip Characteristics

AmigaFlight Assembly 21 / 25

Chip Family

Data Types

The Stack

Interrupt Handling
Addressing Modes

Data Register Direct

Address Register Direct

Absolute Short

Absolute Long

Indexed Register Indirect with Offset

Immediate

Implied Register

Postincrement Register Indirect

Predecrement Register Indirect

Quick Immediate

Relative with Offset

Relative with Index Offset

Register Indirect

Register Indirect with Offset
Data Types

BCD Digits

Bits

Bytes

Long Words

Words
Instruction Types

Binary Coded Decimal Instructions
Bit Test and Manipulation Instructions
Data Movement Instructions

AmigaFlight Assembly 22 / 25

Flow Control Instructions
Integer Arithmetic Instructions
Logical Instructions
Shift and Rotate Instructions
System Control Instructions

Interrupts

Interrupt Handling

The Interrupt Mask
Stack

About The Stack

Manipulating The Stack
Status Flags

The Carry Flag

The Interrupt Mask

The Negative Flag

The Trace Flag

The Supervisor Mode Flag

The oVerflow Flag

The eXtend Flag

The Zero Flag
68000 Instruction Set

ABCD Add Decimal with Extend
ADD Add Binary
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add Extended
AND AND Logical
ANDI AND Immediate
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right

BCC Branch if Carry Clear
BCS Branch if Carry Set
BCLR Test a Bit and Clear

AmigaFlight Assembly 23 / 25

BCHG Test a Bit and Change
BEQ Branch if Equal
BGE Branch if Greater or Equal
BGT Branch if Greater
BHI Branch if High
BLE Branch if Less or Equal
BLS Branch if Low or Same
BLT Branch if Less
BMI Branch if Minus
BNE Branch if Not Equal
BPL Branch if Plus
BRA Branch Always
BSR Branch to Subroutine
BSET Test a Bit and Set
BTST Test a Bit
BVS Branch if Overflow
BVC Branch if No Overflow

CHK Check register against bounds
CLR Clear an Operand
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory

DBT No operation (condition always true)
DBF Decr. and Branch Always unless Count = -1
DBHI Decr. and Branch until High or Count = -1
DBLS Decr. and Branch until Low or Same or Count = -1
DBCC Decr. and Branch until Carry Clear or Count = -1
DBCS Decr. and Branch until Carry Set or Count = -1
DBNE Decr. and Branch until Not Equal or Count = -1
DBEQ Decr. and Branch until Equal or Count = -1
DBVC Decr. and Branch until No Overflow or Count = -1
DBVS Decr. and Branch until Overflow or Count = -1
DBPL Decr. and Branch until Plus or Count = -1
DBMI Decr. and Branch until Minus or Count = -1
DBGE Decr. and Branch until Greater or Equal or Count = -1
DBLT Decr. and Branch until Less or Count = -1
DBGT Decr. and Branch until Greater or Count = -1
DBLE Decr. and Branch until Less or Equal or Count = -1
DBRA Decr. and Branch Always unless Count = -1
DIVS Signed Divide
DIVU Unsigned Divide

EOR Exclusive OR Logical
EORI Exclusive OR Immediate
EXG Exchange Registers
EXT Sign Extend

ILLEGAL Illegal Operation

JMP Jump
JSR Jump to Subroutine

LEA Load Effective Address
LINK Link and Allocate

AmigaFlight Assembly 24 / 25

LSL Logical Shift Left
LSR Logical Shift Right

MOVE Move Data from Source to Destination
MOVE_CCR Move to Condition Codes
MOVE_SR Move from Status Register
MOVE_SR Move to Status Register
MOVE_USP Move User Stack Pointer
MOVEA Move Address
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MOVEQ Move Quick
MULS Signed Multiply
MULU Unsigned Multiply

NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement

OR Inclusive OR Logical
ORI Inclusive OR Immediate

PEA Push Effective Address

RESET Reset External Devices
ROL Rotate Left (without Extend)
ROR Rotate Right (without Extend)
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception
RTR Return and Restore Condition Codes
RTS Return from Subroutine

SBCD Subtract Decimal with Extend
SCC Set if Carry Clear
SCS Set if Carry Set
SEQ Set if Equal
SF Set Never
SGE Set if Greater or Equal
SGT Set if Greater
SHI Set if High
SLE Set if Less or Equal
SLS Set if Lower or Same
SLT Set if Less
SMI Set if Minus
SNE Set if Not Equal
SPL Set if Plus
ST Set Always
SVC Set if No Overflow
SVS Set if Overflow
STOP Load Status Register and Stop
SUB Subtract Binary
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick

AmigaFlight Assembly 25 / 25

SUBX Subtract with Extend
SWAP Swap Data Register Halves

TAS Test and Set and Operand
TRAP Trap
TRAPV Trap on Overflow
TST Test an Operand

UNLK Unlink

	AmigaFlight Assembly
	AmigaFlight® Help: 68000 Assembly Language
	AmigaFlight® Help: The 68000 Family
	AmigaFlight® Help: The 68000 Address Range
	AmigaFlight® Help: The 68000 Chip Characteristics
	AmigaFlight® Help: The 68000 Data Types
	AmigaFlight® Help: The 68000 Addressing Modes
	AmigaFlight® Help: The 68000 Status Register Flags
	AmigaFlight® Help: The 68000 Stack
	AmigaFlight® Help: 68000 Interrupts
	AmigaFlight® Help: The 68000 Instruction Set
	AmigaFlight® Help: Data Types
	AmigaFlight® Help: Data Types
	AmigaFlight® Help: Data Types
	AmigaFlight® Help: Data Types
	AmigaFlight® Help: Data Types
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: Addressing Modes
	AmigaFlight® Help: About The Stack
	AmigaFlight® Help: Manipulating The Stack
	AmigaFlight® Help: Flags
	AmigaFlight® Help: Flags
	AmigaFlight® Help: Z Flag
	AmigaFlight® Help: N Flag
	AmigaFlight® Help: X Flag
	AmigaFlight® Help: T Flag
	AmigaFlight® Help: S Flag
	AmigaFlight® Help: Interrupt Handling
	AmigaFlight® Help: Interrupt Masks
	AmigaFlight® Help: 68000 Assembly Index

