
Atapi_Cd

Georg Campana



Atapi_Cd ii

Copyright © 1995 CD++



Atapi_Cd iii

COLLABORATORS

TITLE :

Atapi_Cd

ACTION NAME DATE SIGNATURE

WRITTEN BY Georg Campana July 1, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



Atapi_Cd iv

Contents

1 Atapi_Cd 1

1.1 Atapi_Cd.doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 cd.device/CD_ADDCHANGEINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 cd.device/CD_ATTENUATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 cd.device/CD_CHANGENUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 cd.device/CD_CHANGESTATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 cd.device/CD_CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 cd.device/CD_EJECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 cd.device/CD_GETGEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.9 cd.device/CD_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.10 cd.device/CD_MOTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.11 cd.device/CD_PAUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.12 cd.device/CD_PLAYLSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.13 cd.device/CD_PLAYMSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.14 cd.device/CD_PLAYTRACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.15 cd.device/CD_PROTSTATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.16 cd.device/CD_QCODELSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.17 cd.device/CD_QCODEMSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.18 cd.device/CD_READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.19 cd.device/CD_READXL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.20 cd.device/CD_REMCHANGEINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.21 CD_SCSI_DIRECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.22 cd.device/CD_SEEK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.23 cd.device/CD_TOCLSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.24 cd.device/CD_TOCMSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.25 CD32 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.26 SCSI_II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



Atapi_Cd 1 / 22

Chapter 1

Atapi_Cd

1.1 Atapi_Cd.doc

~CD_ADDCHANGEINT~

~CD_ATTENUATE~

~CD_CHANGENUM~

~CD_CHANGESTATE~

~CD_CONFIG~

~CD_EJECT~

~CD_GETGEOMETRY~

~CD_INFO~

~CD_MOTOR~

CD_PAUSE

CD_PLAYLSN

CD_PLAYMSF

CD_PLAYTRACK

~CD_PROTSTATUS~

~CD_QCODELSN~

~CD_QCODEMSF~

~CD_READ~

~CD_READXL~

~CD_REMCHANGEINT~



Atapi_Cd 2 / 22

~CD_REMFRAMEINT~

~CD_SCSI_DIRECT~

~CD_SEEK~

~CD_TOCLSN~

~CD_TOCMSF~

Compatibility

SCSI II Emulation

1.2 cd.device/CD_ADDCHANGEINT

NAME
CD_ADDCHANGEINT -- add a disk change software interrupt handler.

FUNCTION
With this command you can add an interrupt handler to the Atapi
disk device that gets invoked whenever a disk insertion or removal
occurs.

You must pass in a properly initialized Exec Interrupt structure
and be prepared to deal with disk insertions/removals immediately.
The interrupt is generated by the exec Cause function, so you must
preserve A6 .

To set up the handler, an Interrupt structure must be initialized.
This structure is supplied as the io_Data to the CD_ADDCHANGEINT
command. The handler then gets linked into the handler chain and
gets invoked whenever a disk change happens. You must remove the
handler before you exit.

This command only returns when the handler is removed. That is,
the device holds onto the IO request until the

CD_REMCHANGEINT
command

is executed with that same IO request. Hence, you must use SendIO()
with this command.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_ADDCHANGEINT
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

NOTE
Full compatible with the CD$^3$$^2$



Atapi_Cd 3 / 22

SEE ALSO

CD_REMCHANGEINT
, <devices/Atapi_Cd.h>, <exec/interrupts.h>,

exec.library/Cause()

1.3 cd.device/CD_ATTENUATE

NAME
CD_ATTENUATE -- Attenuate CD audio volume (only immediately )

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_ATTENUATE
io_Data NULL
io_Length NULL ( not used now, will be the attenuate time

in future version of the device)
io_Offset target volume level (0 - 0x7FFF) (-1 = status only)

RESULTS
io_Actual last volume level (in future versions you can

monitoring the fade in the time )

FUNCTION

This command will set the CD audio volume to the value contained in
io_Offset. The range is 0 (silence) to 0x7FFF (full volume).
If -1 is specified as the target, the attenuation will not be
modified; the current attenuation value will be returned in io_Actual.

In future versions io_Length will contain the duration of the fade.
In seconds, this is io_Length divided by the current frame rate (75).

EXAMPLE

NOTES
The Atapi cd.device supports only the immediate attenuation .
This command has no effect on Amiga audio volume, only CD audio.
If the drive does not support volume attenuation, but does support
mute, a value of under $0800 should be considered mute, and equal
to or above should be full volume. If chunky attenuation is
supported, the drive should do the best it can.
Even if only mute is supported, if gradual attenuation is requested,
the device should still emulate the volume command based on the $0800
boundary.

BUGS

SEE ALSO



Atapi_Cd 4 / 22

CD_INFO

1.4 cd.device/CD_CHANGENUM

NAME
CD_CHANGENUM -- return the current value of the disk-change counter.

FUNCTION
The command returns the current value of the disk-change counter
wich is incremented each time a disk is inserted or removed from
the Atapi drive.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CHANGENUM

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - if io_Error is 0, this contains the current value of the

disk-change counter.

1.5 cd.device/CD_CHANGESTATE

NAME
CD_CHANGESTATE -- check if a there is a valid disk in the cd-drive.

FUNCTION
This command checks to see if there is a valid disk in a drive.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CHANGESTATE

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - 0 means there is a disk while anything else indicates

there is no disk.

NOTES
A valid disk is a disk with a readable table of contents ,
but a pure Audio-Cd is considered a not valid disk ( with only
Audio Tracks )

1.6 cd.device/CD_CONFIG



Atapi_Cd 5 / 22

NAME
CD_CONFIG -- Set the drive preferences

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_CONFIG
io_Data pointer to first entry of TagList
io_Length 0

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION
You can set one or more of the configuration items.
The configuration items are:

TAGCD_PLAYSPEED Default: 75 (at present this remains
fix)

TAGCD_READSPEED 75,150,300 (it depends on the
cd-drive)

TAGCD_READXLSPEED " " " " "
TAGCD_SECTORSIZE Default: 2048
TAGCD_XLECC (not supported)
TAGCD_EJECTRESET (Is always 0 -> No reset at

Diskchange)

The speed setting is described number of frames per second.
All CD-ROM drives are capable of the 75 frames/second rate.
The 2x drives are capable of 150 frames/second, and some even more
and more (4x and 6x).
To determine the maximum frame rate of the drive, use the

CD_INFO
command.

You should always make sure the drive is capable of the
Check to see if there was an error , if the asked speed is not ok .

There are three different types of CD-ROM sectors. Mode 1 sectors
(2048 bytes), mode 2 form 1 sectors (2048 bytes), and mode 2 form 2
sectors (2328 bytes). Normally, disks are encoded in Mode 1 format.
Mode 2 form 1 is basically the same as mode 1; however, the mode 2
form 2 sector format contains no CD-ROM error correction information
and is usable for MPEG streams .

In order to read information encoded in this sector format, the
drive’s sector size must be configured to 2328 byte sectors.
(this option is at present not supported , to read this sector
you must use the SCSI_Direct command with READ_CD ) .

EXAMPLE

NOTES



Atapi_Cd 6 / 22

BUGS
TAG_IGNORE, TAG_MORE, and TAG_SKIP do not work.
Do not use these in the TagList.

SEE ALSO

CD_INFO

1.7 cd.device/CD_EJECT

NAME
CD_EJECT -- Open or close the CD’s drive tray

IO REQUEST
io_Command CD_EJECT
io_Data NULL
io_Length requested state of drive door (0 == close, 1 == open)
io_Offset 0

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual previous state of drive door

FUNCTION
This command causes the CD-ROM drive’s tray to open or close.
The previous state of the drive door is returned in io_Actual.

EXAMPLE

NOTES

BUGS

SEE ALSO

1.8 cd.device/CD_GETGEOMETRY

NAME
CD_GETGEOMETRY -- return the geometry of the drive.

FUNCTION
This command returns the informations about the geometry of the drive.

The information is returned in the DriveGeometry structure
pointed to by io_Data.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()



Atapi_Cd 7 / 22

io_Command CD_GETGEOMETRY
io_Data pointer to a DriveGeometry structure
io_Length sizeof(struct DriveGeometry)

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - length of data transferred.

SEE ALSO
CD_GETNUMTRACKS, <devices/trackdisk.h>

1.9 cd.device/CD_INFO

NAME
CD_INFO -- Return informations and status of the CD-Drive

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_INFO
io_Data pointer to CDInfo structure
io_Length sizeof(struct CDInfo)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual length of data transferred

FUNCTION

This command returns the current configuration and status of the
Atapi drive .

EXAMPLE

struct CDInfo Info;

ior->io_Command = CD_INFO; /* Retrieve drive info. */
ior->io_Data = (APTR)Info; /* Here’s where we want it */
ior->io_Length = sizeof(struct CDInfo); /* Return whole structure */
DoIO(ior);

if (!ior->io_Error) { /* Command succeeded */

if (Info.Status & CDSTSF_PLAYING) printf("Audio is playing\n");
else printf("Audio not playing\n");
}

NOTES

BUGS

SEE ALSO



Atapi_Cd 8 / 22

<devices/Atapi_Cd.h>

1.10 cd.device/CD_MOTOR

NAME
CD_MOTOR -- control the state of the drive motor.

FUNCTION

The command is present only for compatibilty with the CD$^3$$^2$
but it does NOTHING because some Filesystems put off the motor
after each read sequence .

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_MOTOR
io_Length the requested state of the motor, 0 to turn the motor

off, and 1 to turn the motor on.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - if io_Error is 0 this contains the previous state of the

drive motor.

NOTE

To put off really the CD-Motor use the SCSI_Direct command

The Atapi device will also stop the motor after 10 mins of
inactivity (if no kind off audio playing is in progress )

1.11 cd.device/CD_PAUSE

NAME
CD_PAUSE -- Pause or unPause play command.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PAUSE
io_Data NULL
io_Length pausemode : 1 = pause play; 0 = do not pause play;
io_Offset 0

RESULTS
io_Actual - if io_Error is 0, this contains the previous pause state.

FUNCTION
This command will place the CD in, or take the CD out of pause mode.
The desired pause state is placed in io_Length. This command only



Atapi_Cd 9 / 22

effects play commands. When the audio is playing and the pausemode
is set, this command will immediately pause the audio output
suspending the play command until the play is unpaused. When audio
is not playing and the pausemode is set, this command will set the
pause mode (having no immediate effect). When a play command is
submitted, the laser will seek to the appropriate position and pause
at that spot. The play command will be suspended until the play is
unpaused (or the play is aborted).

EXAMPLE

NOTES

BUGS

SEE ALSO

1.12 cd.device/CD_PLAYLSN

NAME
CD_PLAYLSN -- Play a selected portion of CD audio (LSN form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYLSN
io_Data NULL
io_Length length of play
io_Offset starting position

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION
This command causes the drive to start playing CD audio from the
specified position until the specified length has passed.

io_Offset specifies the starting position. io_Length contains
the amount of time to play. All data is specified in LSN format.

A DoIO() will not return until the requested number of sectors
have been played. A SendIO() will return as soon as the PLAY
has been started. At this time other commands can be sent (like
CD_PAUSE). To stop a play before the specified length has been
reached, use AbortIO().

EXAMPLE
/* Play two minutes, ten seconds of audio starting at 20 minutes, */
/* 58 seconds, and 10 frames. */

ior->io_Command = CD_PLAYLSN; /* Play CD audio */
ior->io_Offset = 94360; /* 20*(60*75) + 58*75 + 10 */
ior->io_Length = 9750; /* 02*(60*75) + 10*75 + 00 */
DoIO (ior);



Atapi_Cd 10 / 22

NOTES

BUGS

SEE ALSO

CD_PLAYTRACK
,
CD_PAUSE
,

CD_ATTENUATE

1.13 cd.device/CD_PLAYMSF

NAME
CD_PLAYMSF -- Play a selected portion of CD audio (MSF form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYMSF
io_Data NULL
io_Length length of play
io_Offset starting position

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION
This command causes the drive to start playing CD audio from the
specified position until the specified length has passed.

io_Offset specifies the starting position. io_Length contains
the amount of time to play. All data is specified in MSF format.

A DoIO() will not return until the requested number of sectors
have been played. A SendIO() will return as soon as the PLAY
has been started. At this time other commands can be sent (like
CD_PAUSE). To stop a play before the specified length has been
reached, use AbortIO().

EXAMPLE
/* Play two minutes, ten seconds of audio starting at 20 minutes, */
/* 58 seconds, and 10 frames. */

ior->io_Command = CD_PLAYMSF; /* Play CD audio */
ior->io_Offset = 0x00143A0A; /* $14=20, $3A=58, $0A=10 */
ior->io_Length = 0x00020A00; /* $02=02, $0A=10, $00=00 */
DoIO (ior);

NOTES



Atapi_Cd 11 / 22

BUGS

SEE ALSO

CD_PLAYTRACK
,
CD_PAUSE
,

CD_ATTENUATE

1.14 cd.device/CD_PLAYTRACK

NAME
CD_PLAYTRACK -- Play one or more tracks of CD audio.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PLAYTRACK
io_Data NULL
io_Length number of tracks to play
io_Offset start playing at beginning of this track

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
FUNCTION

This command causes the drive to play the specified audio track(s).
The command will return when the audio has completed.

io_Offset specifies the track number (starting from 1).

io_Length specifies the number of tracks to play (0 is invalid).

EXAMPLE

ior->io_Command = CD_PLAYTRACK; /* Play audio tracks */
ior->io_Offset = STARTTRACK; /* Start with this track */
ior->io_Length = 3; /* Play three tracks */
DoIO(ior);

NOTES

PLAY commands are asynchronous with many other CD commands.
Using a separate I/O request, other commands can be sent to the device
that can change the behavior of the PLAY command.

BUGS

SEE ALSO

CD_PLAYMSF
,
CD_PLAYLSN



Atapi_Cd 12 / 22

,
CD_PAUSE
,
CD_ATTENUATE

1.15 cd.device/CD_PROTSTATUS

NAME
CD_PROTSTATUS -- return whether the current disk is write-protected.

FUNCTION
This command is used to determine whether the current disk is
write-protected.
At present, this function always returns write-protected status.
In future if CD-WO are made avalaible this may change.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_PROTSTATUS

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - 0 means the disk is NOT write-protected, while any other

value indicates it is.

1.16 cd.device/CD_QCODELSN

NAME
CD_QCODELSN -- Report current disk position.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_QCODELSN
io_Data pointer to QCode structure
io_Length 0 - MUST be zero (for future compatibility)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION
This command reports current subcode Q channel time information. This
command only returns data when CD Audio is playing (or paused). At
any other time, an error is returned. The Q-Code packet consists of:

struct QCode {

UBYTE CtlAdr; /* Data type / QCode type */



Atapi_Cd 13 / 22

UBYTE Track; /* Track number */
UBYTE Index; /* Track subindex number */
UBYTE Zero; /* The "Zero" byte of Q-Code packet */
union LSNMSF TrackPosition; /* Position from start of track */
union LSNMSF DiskPosition; /* Position from start of disk */
};

EXAMPLE

struct QCode qcode;

ior->io_Command = CD_QCODELSN; /* Retrieve TOC information */
ior->io_Length = 0; /* MUST be zero */
ior->io_Data = (APTR)qcode; /* Here’s where we want it */
DoIO (ior);

if (!ior->io_Error) { /* Command succeeded */

printf("Current position is: %ld\n", qcode.DiskPosition.LSN);
}

NOTES
This function may not return immediately. It may take several frames
to pass by before a valid Q-Code packet can be returned. Use SendIO()
and CheckIO() if response time is critical, and the information is
not.

BUGS

SEE ALSO
<devices/Atapi_Cd.h>

1.17 cd.device/CD_QCODEMSF

NAME
CD_QCODEMSF -- Report current disk position.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_QCODEMSF
io_Data pointer to QCode structure
io_Length 0 - MUST be zero (for future compatibility)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION
This command reports current subcode Q channel time information. This
command only returns data when CD Audio is playing (or paused). At
any other time, an error is returned. The Q-Code packet consists of:

struct QCode {



Atapi_Cd 14 / 22

UBYTE CtlAdr; /* Data type / QCode type */
UBYTE Track; /* Track number */
UBYTE Index; /* Track subindex number */
UBYTE Zero; /* The "Zero" byte of Q-Code packet */
union LSNMSF TrackPosition; /* Position from start of track */
union LSNMSF DiskPosition; /* Position from start of disk */
};

EXAMPLE

struct QCode qcode;

ior->io_Command = CD_QCODEMSF; /* Retrieve TOC information */
ior->io_Length = 0; /* MUST be zero */
ior->io_Data = (APTR)qcode; /* Here’s where we want it */
DoIO (ior);

if (!ior->io_Error) { /* Command succeeded */

printf("Current position is: %02d:%02d:%02d\n",
qcode.DiskPosition.MSF.Minute,
qcode.DiskPosition.MSF.Second,
qcode.DiskPosition.MSF.Frame);

}

NOTES
This function may not return immediately. It may take several frames
to pass by before a valid Q-Code packet can be returned. Use SendIO()
and CheckIO() if response time is critical, and the information is
not.

BUGS

SEE ALSO
<devices/Atapi_Cd.h>

1.18 cd.device/CD_READ

NAME
CD_READ -- read data from disk.

FUNCTION
Reads data from the ATAPI CD into memory. Data may be accessed on
WORD boundaries ( and not only sector multiplies as with normal disk
devices). Data lengths can also be described in WORD amounts.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_READ
io_Data pointer to the buffer where the data should be put
io_Length number of bytes to read, must be a WORD multiple.
io_Offset byte offset from the start of the disk describing

where to read data from, must be a WORD multiple.



Atapi_Cd 15 / 22

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual - if io_Error is 0, number of bytes actually transferred

NOTES

If an error occurs the device will retry the read for 4 times .

Reads with sector bounded Lenghts and Offsets are very fast .

SEE ALSO

CD_READXL

1.19 cd.device/CD_READXL

NAME
CD_READXL -- Read from ATAPI DRIVE into mem following a transfer list.

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_READXL
io_Data pointer to the transfer list (must be struct List *).
io_Length maximum transfer length (WORD multiple) or 0.
io_Offset byte offset from the start of the disk describing

where to read data from, must be a WORD multiple.

RESULTS
io_Error 0 for success, or an error code as described in

<devices/Atapi_Cd.h>
io_Actual if io_Error is 0, number of bytes actually transferred

FUNCTION
This command starts reading data off the disk at the specified
location and deposits it into memory according to the nodes in a
transfer list. The pointer to the list of transfer nodes is placed
in io_Data. If you have a non-circular transfer list, simply set
io_Length to 0 (0 is special and means ignore io_Length) -- your
transfer will end when your transfer list has been exhausted. If you
have a circular transfer list, the list will never end. In this case,
the transfer will terminate when io_Length bytes have been
transferred.

The fields in the CDXL node structure are:

struct CDXL {

struct MinNode Node; /* double linkage */
char *Buffer; /* data destination */
LONG Length; /* must be even # bytes */
LONG Actual; /* bytes transferred */
APTR IntData; /* interrupt server data segment */



Atapi_Cd 16 / 22

VOID (*IntCode)(); /* interrupt server code entry */
};

The philosophy here is that you set up the buffers you want filled,
create CDXL nodes describing the locations and sizes of these
buffers, link all the nodes together in the order that you’d like
(even make a circular list for animations), and execute the command.
The data will be streamed into the appropriate buffers until the
list has been exhausted, an entry with a Length of zero is
encountered, io_Length bytes have been transferred (if io_Length is
non-zero), or the command is aborted with AbortIO().

If you fill in the (*IntCode)() field with a pointer to an interrupt
routine, your routine will be called when the transfer for the node
is complete. Your code will be called before the driver proceeds to
the next node. The interrupt should follow the same rules as standard
interrupts (see AddIntServer of Exec autodocs). Register A2 will
contain a pointer to the node just completed. You may manipulate the
list from within the interrupt. Your code must be brief (this is an
interrupt). When returning from this interrupt, D0 should be cleared
and an RTS instruction should be used to return.

Servers are called with the following register conventions:

D0 - scratch
D1 - scratch

A0 - scratch
A1 - server is_Data pointer (scratch)
A2 - pointer to CDXL node just completed

A5 - jump vector register (scratch)

all other registers must be preserved

EXAMPLE

NOTES
Try to make sure that small buffers are not overused. Each time
a node is completed, an interrupt is generated. If you find that
your computer is acting sluggish, or the CD_READXL command is
aborting, you are probably generating too many interrupts. It is
not efficient to have more than a few of these interrupts generated
within a vertical blank.

BUGS

SEE ALSO
CMD_READ,

CD_SEEK
, Autodocs - AddIntServer

1.20 cd.device/CD_REMCHANGEINT



Atapi_Cd 17 / 22

NAME
CD_REMCHANGEINT -- remove a disk change software interrupt handler.

FUNCTION
This command removes a disk change software interrupt added
by a previous use of

CD_ADDCHANGEINT
.

IO REQUEST INPUT
The same IO request used for

CD_ADDCHANGEINT
.

io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_REMCHANGEINT
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

SEE ALSO

CD_ADDCHANGEINT
, <devices/Atapi_Cd.h>

1.21 CD_SCSI_DIRECT

NAME
CD_SCSI_DIRECT -- send a SCSI command sequence to the ATAPI Drive

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_SCSI_DIRECT
io_Data pointer to a struct SCSICmd
io_Length sizeof(struct SCSICmd)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

FUNCTION

This command allows you to send directly a SCSI command to the
Atapi CD-Drive and is full compatible with HD_SCSICMD of the
scsi.device .

For Version < 2.10 this is the only way to Play Audiotracks on
the Drive .



Atapi_Cd 18 / 22

Note: Play operation started with SCSI_Direct are always
asynchronous .
Using CD_PLAYLSN etc. you have to wait the end of the
play operation or abort the command .

The drive appears with this command like a Scsi CD-Drive , with
the exeption for some SCSI II commands .

Our device emulates some of these SCSI II commands ,
to have a better compatibility .

EXAMPLE

NOTES

This command is not present in the real cd.device of the CD$^3$$^2$
but it is included allowing you to use all the Filesystems
for SCSI CD-Drives and so much other programs like players etc..

BUGS

SEE ALSO
<devices/Atapi_Cd.h> <devices/scsidisk.h>

1.22 cd.device/CD_SEEK

NAME
CD_SEEK -- position laser at specified location.

FUNCTION
CD_SEEK moves the laser to the approximate position specified. The
io_Offset field should be set to the offset to which the head is
to be positioned.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_SEEK
io_Offset position where head is to be moved (always LSN format)

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>

NOTES

Do not use this command , because there is no reason .

1.23 cd.device/CD_TOCLSN



Atapi_Cd 19 / 22

NAME
CD_TOCLSN -- Get table of contents information from CD (LSN form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_TOCLSN
io_Data pointer to buffer where TOC is to be stored
io_Length number of CDTOC entries to be fetched
io_Offset entry to begin at (entry 0 is summary information)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual Actual number of entries copied

FUNCTION
This command returns the table of contents of the disk currently in
the drive. The table of contents consists of up to 100 entries.
Entry zero is summary information describing the number of tracks
and the total number of minutes on the disk. Entries 1 through N
contain information about each individual track. All position
information will be in LSN format.

The io_Data field points to an array of CDTOC structures to receive
the TOC data.

The io_Length field specifies the total number of entries to be
fetched. The array pointed to by io_Data must be at least this many
elements in size.

The io_Offset field specifies the entry number at which to start
copying TOC data into *io_Data.

Entry zero (the summary entry) contains the following:

struct TOCSummary {

UBYTE FirstTrack; /* First track on disk (always 1) */
UBYTE LastTrack; /* Last track on disk */
union LSNMSF LeadOut; /* Beginning of lead-out track */
};

Track entries (entries 1 through number of tracks) contain:

struct TOCEntry {

UBYTE CtlAdr; /* Q-Code info */
UBYTE Track; /* Track number */
union LSNMSF Position; /* Start position of this track */
};

CDTOC is described as a union between these two structures:

union CDTOC {



Atapi_Cd 20 / 22

struct TOCSummary Summary; /* First entry is summary info. */
struct TOCEntry Entry; /* Entries 1-N are track entries */
};

EXAMPLE

NOTES

BUGS

SEE ALSO

1.24 cd.device/CD_TOCMSF

NAME
CD_TOCMSF -- Return table of contents information from CD (MSF form).

IO REQUEST
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CD_TOCMSF
io_Data pointer to array where TOC is to be stored
io_Length number of CDTOC entries to be fetched
io_Offset entry to begin at (entry 0 is summary information)

RESULTS
io_Error 0 for success, or an error code as defined in

<devices/Atapi_Cd.h>
io_Actual Actual number of entries copied

FUNCTION
This command returns the table of contents of the disk currently in
the drive. The table of contents consists of up to 100 entries.
Entry zero is summary information describing the number of tracks
and the total number of minutes on the disk. Entries 1 through N
contain information about each individual track. All position
information will be in MSF format.

The io_Data field points to an array of CDTOC structures to receive
the TOC data.

The io_Length field specifies the total number of entries to be
fetched. The array pointed to by io_Data must be at least this many
elements in size.

The io_Offset field specifies the entry number at which to start
copying TOC data into *io_Data.

Entry zero (the summary entry) contains the following:

struct TOCSummary {

UBYTE FirstTrack; /* First track on disk (always 1) */



Atapi_Cd 21 / 22

UBYTE LastTrack; /* Last track on disk */
union LSNMSF LeadOut; /* Beginning of lead-out track */
};

Track entries (entries 1 through number of tracks) contain:

struct TOCEntry {

UBYTE CtlAdr; /* Q-Code info */
UBYTE Track; /* Track number */
union LSNMSF Position; /* Start position of this track */
};

CDTOC is described as a union between these two structures:

union CDTOC {

struct TOCSummary Summary; /* First entry is summary info. */
struct TOCEntry Entry; /* Entries 1-N are track entries */
};

EXAMPLE

NOTES

BUGS

SEE ALSO

1.25 CD32 Compatibility

ATAPI CD DEVICE
---------------

© 1995 , 1996 by Georg Campana ---> CD++

Compatibilty with the CD$^3$$^2$ :

Not Implemented commands of the original CD$^3$$^2$:

CD_ADDFRAMEINT \
I think i will never implement this commands

CD_REMFRAMEINT /

CD_SEARCH



Atapi_Cd 22 / 22

Other things to do :

1) - Volume attenuation with time fade CD_Attenuate
2) - Ejectreset CD_Config
3) - read command switch to read 2338 bytes sectors CD_Read

1.26 SCSI_II

SCSI II Emulation :

The Atapi SFF 8020 standard is a translation of the SCSI standard
to the IDE bus .

The command set is a subset of the original SCSI II CD extension
command set and some commands are not present.

To have a better compatibility following SCSI II commands are
emulated by our device :

READ (6)

MODE SELECT (6)

MODE SENSE (6)

PLAYTRACKINDEX


	Atapi_Cd
	Atapi_Cd.doc
	cd.device/CD_ADDCHANGEINT
	cd.device/CD_ATTENUATE
	cd.device/CD_CHANGENUM
	cd.device/CD_CHANGESTATE
	cd.device/CD_CONFIG
	cd.device/CD_EJECT
	cd.device/CD_GETGEOMETRY
	cd.device/CD_INFO
	cd.device/CD_MOTOR
	cd.device/CD_PAUSE
	cd.device/CD_PLAYLSN
	cd.device/CD_PLAYMSF
	cd.device/CD_PLAYTRACK
	cd.device/CD_PROTSTATUS
	cd.device/CD_QCODELSN
	cd.device/CD_QCODEMSF
	cd.device/CD_READ
	cd.device/CD_READXL
	cd.device/CD_REMCHANGEINT
	CD_SCSI_DIRECT
	cd.device/CD_SEEK
	cd.device/CD_TOCLSN
	cd.device/CD_TOCMSF
	CD32 Compatibility
	SCSI_II


