
Default

Paul Manias

Default ii

Copyright © Copyright1996-1998 DreamWorld Productions.

Default iii

COLLABORATORS

TITLE :

Default

ACTION NAME DATE SIGNATURE

WRITTEN BY Paul Manias October 30, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Default iv

Contents

1 Default 1

1.1 The Games Master System V1.0 . 1

1.2 Introduction to the Games Master System . 2

1.3 OverView . 3

1.4 Documentation Standards . 4

1.5 Questions and Answers . 7

1.6 How to write new modules. 8

1.7 Really cool features! . 11

1.8 What language to use? . 12

1.9 Hints and Tips . 14

1.10 The Authors . 16

1.11 Resource Tracking . 17

1.12 Copyright Notice . 18

Default 1 / 18

Chapter 1

Default

1.1 The Games Master System V1.0

T H E G A M E S M A S T E R S Y S T E M

BY PAUL MANIAS

VERSION 1.0

GENERAL DOCUMENTATION

INTRODUCTION
1.0

What is GMS?
1.1

General Overview
1.2

Features
PROGRAMMING

2.0
Languages

2.1
Hints and Tips

2.2
Questions and Answers

2.3
Resource Tracking

2.4
Writing a Module

2.5
Documentation Standards

SUMMARY
3.0

The Authors
3.1

Copyright

Default 2 / 18

1.2 Introduction to the Games Master System

This introductory text is taken directly from the web pages ←↩
:

http://gms.ethos.co.nz/gms/

WHAT IS THE GAMES MASTER SYSTEM?

The Games Master System is an Amiga software product that has been in
development since April 1996. Essentially, GMS is an Operating System
specifically tailored towards a gaming focus. It has all the standard
features of an OS (file-system, graphics handling, kernel etc), plus some
very neat features for game developers. This includes easy handling of
joysticks, sound play, special effects, colour handling, pictures etc. It
is fully object oriented, and you won’t even need a special language to
develop 100% OO applications. GMS supports C, Assembler, Amiga E, Basic
and an Amos extension is currently in development.

The system is fully modular and is designed to be ported to other computer
platforms. It can run on top of other operating systems or as an
independent OS. A PC version is to be developed in late 1998 and will
appear some time in 1999. For the first time, games developers will be
able to port their products to other platforms without having to make any
changes. Features like this could enhance the entire game industry, with
developers being able to support large numbers of platforms with just one
set of source code. Computer systems with small market share (Amiga, Mac,
Acorn etc) could get back on equal ground with the PC once again. It is
expected that applications written in C could be distributed in a
garbled/secure state, and then compiled on a user’s platform. This would
give the nearest equivalent of Java style applications without the
sacrifice in speed.

Open System

The most exciting part of all - GMS is a system that is very open to third
party development. After the up and coming official release, we will start
releasing much of the original source code into the general public so that
the system can be enhanced by developers all over the world. This will
also make it easy for hardware manufacturers to develop their own drivers
for graphics, sound cards etc with a minimum of effort. We also envision
the appearance of neat device drivers that can run games in windows rather
than screens for example. The future possibilities are literally endless.

User Support

When this project first started, one of the first things that was
considered was the user support. Far too often this is completely ignored
or is not possible for game developers, often because they have dead-lines
to meet and the necessary time is unavailable. Games players are becoming

Default 3 / 18

more sophisticated and expect better support, especially for their
hardware. Take the release of "Time Crisis" on the PSX as an example. The
programmers developed an interface which worked with a particular kind of
light gun - and as luck would have it, half of the existing light guns
didn’t work with it. GMS solves these issues by abstracting the interface
from the programmer, and providing a standard interface on top of it. You
could plug in a joystick and fool any program into thinking it’s a mouse
for example (can be useful if your mouse is broken :-).

The best feature for users though, is the GMS Preferences program.. This
allows you to select levels of mode promotion, type of joystick used, C2P
routines, task priorities, screen properties, and so on. This solves a lot
of the moans and gripes that users have had in the past, and since this is
all transparent to the programmer, user support is easily achieved. GMS is
the only OS to provide such extensive support to games players, and knowing
what you guys are currently putting up with, it will continue to be for
some time.

Anything else?

Look around the rest of the site to get more detail on the things mentioned
here, and other things that we haven’t gone into yet. The GMS binaries and
documents are available on Aminet, in dev/misc/gms_dev.lha and
dev/misc/gms_user.lha. Remember to ask us if you have any questions about
the project!

Return To Index

1.3 OverView

OVERVIEW OF THE GAMES MASTER SYSTEM

Project GMS started in the beginning of April 1996, in an effort to provide
games support in the Amiga OS. The overall aim is to write the best games
interface we possibly can, which should eventuate into a system that
everyone can enjoy. Although the development of GMS is largely controlled
by myself (Paul Manias) I would like people to see it as a project of the
Amiga community and I am completely open to ideas and comments. The
current objectives of the project are:

1. To erradicate the need to bash the hardware from within games.
2. To make it easier to migrate from the current Amigas to the new Power

Amigas.
3. To make games programming easier, faster, and more productive.
4. To give users the ability to modify any program to suit their

requirements.

GMS has been designed to be fully extendible in ways that will make future
improvements very easy to implement. The system is split into a number of
sub-sections: The kernel, the modules, the debugger, and the preferences

Default 4 / 18

program. This is further enhanced by identifiable data objects, which
allow us to write enhanced system objects in the future, without
overhauling the functions. GMS has no problems with future compatibility,
since hard-coded structure definitions are disallowed and tag-lists are
very well supported.

Looking to the Future
In 1998 I will release all of the module source code to the public domain.
The only thing that I will continue to develop is the Kernel, Preferences,
and System Debugger. I will also continue to define all of the standards,
include files, documentation and so on. In short, I will be moving into
more of a system management role.

This means that somone else will have to write the modules, and that
someone is you. With the source freely available, I am hoping that people
will begin to develop support for graphics and sound cards, enhanced
modules, fixing bugs and so on. I have ended up developing a project that
is finally too big for me to handle alone, and I think this is the best way
to get everyone involved. The PPC version is entirely dependent on you,
because I will not be converting the modules.

Please help me all that you can, because I cannot do it without you.

Return To Index

1.4 Documentation Standards

DOCUMENTATION STANDARDS

Originally the autodocs for GMS were modelled on the autodoc format from
the 1980’s (which was a fairly good design back then) but the GMS docs are
now written in a completely new format. This change was made because the
arrangement of documentation for an object oriented OS needs to be
considerably different from an OS that is not. With the introduction of
AmigaGuide and HTML formatting, there have also been considerable advances
in the way that developer documentation can be written.

Fortunately most of the formatting is quite straight-forward and the
standards are easy to grasp hold of. Here you will find the documentation
templates and information on what certain keywords mean.

Module Documenation
The documentation for each module starts with a header that describes the
details of the document and the module it covers. The following is an
example taken from the kernel documentation:

SYSTEM DOCUMENTATION
Name: DPKERNEL
Version: 1.0

Default 5 / 18

Date: March 1998
Author: Paul Manias
Translator: Julian Boibessot
Copyright: DreamWorld Productions, 1996-1998. All rights reserved.

The field descriptions are as follows:

Name: The name of the module. This should contain a link to the
function list for the module.

Version: Standard version numbers such as 1.0, 2.5B etc.
Date: The date that this documentation was written (not the date

that the module was released).
Author: Who wrote the module/documentation.
Translator: If this is a translated document, the name of the translator

goes here.
Copyright: Use for standard copyright notices.

Following this header may be a list of changes, which describe all the
alterations made since the last time the document was updated.

Function Documentation
Each module document must have a page that lists any objects that it
contains, and a list of all public functions. Each function name must link
directly to a detailed description of what that function does. If
necessary you may categorise your function list into groups, but keep
everything in alphabetical order.

The description of each function must follow a strict standard, here is an
example:

FUNCTION
Name: AllocMemBlock()
Short: Allocate a new memory block.
Synopsis: APTR AllocMemBlock(LONG Size [d0], LONG MemType [d1]);

DESCRIPTION
...

NOTE
...

INPUT
Size - Size of the required memblock in bytes.
MemType - The type of memory to allocate, eg MEM_VIDEO.

RESULT
Pointer to the start of your allocated memblock or NULL if failure.

SEE ALSO
Kernel: FreeMemBlock()

GetMemSize()
GetMemType()

The first header, "FUNCTION", may be replaced with the keyword "ACTION" if

Default 6 / 18

the function is an action call. Following the header are just three
compulsory descriptors:

Name: The name of the function. Remember the () sign.
Short: A one line description of what the function does.
Synopsis: A function definition that both C and assembler programmers can

understand. Notice that registers are shown in [] brackets,
and that pointers to objects are preceeded with a * sign.

The Description then follows, and can contain as much text as you feel
necessary to explain what a particular function does. You may specify
important Notes in their own section if you wish.

The Input section elaborates on the Synopsis by saying what each argument
is for.

The Result is a 1 - 3 line description on what the function returns. If
the function returns void, do not use this section.

"See Also" is a section that specifies anything that relates to the
function. This could be pointers to other functions, include files or
objects. Make sure that everything is linked so that the reader can
quickly navigate to other documents from here.

Object Documenation
Each object in the system is documented individually, with a high degree of
detail. The beginning of an object’s documentation is almost identical to
the module documentation, e.g.

OBJECT DOCUMENTATION
Name: FILE
Version: 1.0
Date: March 1998
Author: Paul Manias
Copyright: DreamWorld Productions, 1996-1998. All rights reserved.

Following this is the second page of the object documentation which will
contain: An object header, description of the object’s functionality, an
action list, a function list, and a field list. The object header is
formatted like this:

OBJECT
Name: File
Version: 1
ID ID_FILE
Module: Files
Include: "files/files.h"
Type: Complex

This is fairly explanatory, except for the Type setting. The Type
describes the complexity of your object, which can either be Simple or
Complex. Simple types have a low number of structure fields (no more than
10) and are geared towards performing straight-forward functions. Complex
objects are larger, may have a number of child objects, and many functions
in its support.

Default 7 / 18

Field Documentation
It is important that each field of an object is documented individually.
The documentation format for a field is as follows:

1. Header
2. Description
3. Notes
4. See Also

A typical header looks like this:

FIELD
Name: Height
Type: WORD
Inheritance: SrcBitmap->Height
To Change: SetBobDimensions()
Status: Read/Init

The Inheritance describes where the field will get its value if it is
specified as NULL on initialisation. The "To Change" specification is the
function that must be called in order to write to the field (if
applicable). The Status is formed from one or more of the following:

Read - If the programmer is allowed to read the field.
Init - If the field can be written on initialisation only.
Write - Write at any time (field is dynamic).

If you set the Write field, then there is no need to specify Init.

1.5 Questions and Answers

QUESTIONS AND ANSWERS

I often get mail from people asking me questions about what you can and
can’t do in GMS. Here I will answer some of these questions, and hopefully
this way everyone can benefit in learning more about how GMS works. If you
have any questions you can mail them to me and they may appear here.

GENERAL
Q. Will you support new machines such as those from PIOS and the upcoming

OS’s like pOS?

A. Buy the 680x0 version, then I can quit my job and put more effort into
this kind of support. Failing that, when the source code is released I
hope that developers will pool their efforts and write hardware and
interface drivers for any machine that you want.

Q. Is it possible to free structures that have not been initialised? [The
idea being that it makes it easier to write the initialisation code]

A. Yes, a standard feature of GMS is to recognise structures that have not
been initialised. Many functions check if you have passed them null or

Default 8 / 18

invalid structures, so the security in this area is very solid.

BLITTING
Q. If I want to have 5 Bobs with the same graphics, may I initialise the

first with NULL in Bob->MaskData and GENMASK set, then copy the pointer
created to the other structures and init them with GENMASK
cleared? Otherwise the masks would be created again several times and
waste memory.

A. Yes, it is legal to copy masks generated in one Bob over to another Bob.
Just remember when you free the "master" bob, all Bob’s containing
pointers to its masks will become invalid. For this reason make sure
that you free the master bob last.

Q. How does CPU assisted blitting work when parallel drawing means that
there could be an instance of data overlap (CPU and blitter draw to
the same area at the same point in time)?

A. It’s a clever trick... What you do is start the blitter drawing the
first 5 lines or so of the bob. While it does that you use the CPU to
start drawing 5 lines from the bottom of the bob. When the CPU
finishes with its section it checks on the blitter. If the blitter has
finished then the CPU sets it blitting the next 5 lines and the CPU
continues on. This keeps going until the blit is finished.

Q. I have successfully initialised a Bob with a Picture attachment. when I
draw it the dimensions are correct but the graphic is corrupt.

A. Make sure that you have specified the MEM_VIDEO or MEM_BLIT flags in the
MemType field of the Picture’s Bitmap. If you forget to set one of
these flags then the blitter will probably be attempting to blit from
fast memory, resulting in corrupt graphics.

SCREENS
Q. How do I create a Screen that can scroll infinitely in all directions?

A. You have to create the Screen with a Bitmap that is double the size
of the Screen in both width and height. By scrolling around this area
and blitting tiles at the top, bottom, left and right sides of the
screen, you can give the illusion of an infinite scroll.

Return To Index

1.6 How to write new modules.

WRITING NEW MODULES

Default 9 / 18

Anyone can write a module, but there are a couple of things you have to do
first. You must decide what kind of module you are going to write,
understand object orientation under the DPKernel, look at the source to
other modules and read the module guidelines. If you don’t know about
child classes, hidden objects, or system classes, go and read the SysObject
document for details.

A module can do basically two things: It can contain system objects (eg
the blitter module carries the Bob and MBob objects), and it can contain
functions that perform certain actions (eg DrawPixel()). The system
modules are pretty much focussed around objects, but you may want to write
one that consists entirely of functions. On the other hand, the JoyPorts
and Picture modules are entirely object orientated, leaving the kernel to
support the functionality of their objects.

An example of writing a new module
Let’s say you wanted to add jpeg support to the Picture class. Because you
will be adding support to a class that already exists, you will be creating
a child class object & module. The first thing to do in this case is write
to paul@ethos.co.nz and ask if such a module has already been written. You
may change your mind if it’s already been done. If everything is well you
will be sent back some information on what to call your module (in this
case, probably "jpeg.mod") and if necessary, a unique module identifier
(not required for child modules).

The next thing to do is write an object referencing file. You can view a
list of reference files in System/References/. You’ll notice that these
files are extremely small, so obviously it won’t take long to write one.
Our particular reference file will end up looking like this:

INCDIR "INCLUDES:"
INCLUDE "dpkernel/dpkernel.i"

SECTION "Reference",DATA

Start: dc.l TAGS_REFERENCE,0
dc.l REFA_ObjectID,ID_HIDDEN
dc.l REFA_ObjectName,.name
dc.l REFA_ModName,.module
dc.l REFA_CheckFile,.checkfile
dc.l TAGEND

.name dc.b "Jpeg",0
even

.module dc.b "jpeg.mod",0
even

.checkfile
cmp.l #$FFD8FFE0,(a1)
bne.s .chk0
cmp.l #"JFIF",6(a1)
bne.s .chk1

.chk2 move.l #99,d0
rts

Default 10 / 18

.chk1 move.l #60,d0
rts

.chk0 move.l #00,d0
rts

[Notice that although ID_HIDDEN was specified as the ObjectID, this only
concerns referencing. The actual Jpeg object itself will be initialised as
a child object later, not a hidden object.]

At this point I’m going to stop, I’ll come back and write some more later
:-)

Conditions of Module Development
Modules are grouped into two different types: Class modules, which carry
master classes and functions, and Support modules, which may carry
functions, hidden objects and child classes. 80% of module programmers
should fit into the second category, for which there are minimal
requirements. Class modules are developed under fairly strict guidelines
because they are much more important. Here are the conditions:

Class Modules
If you intend to write a module that will contain the code for a master
class, you MUST:

1. Register the module and object(s) by writing to paul@ethos.co.nz. [You
will receive the necessary ID’s to start development].

2. Write accurate and comprehensive documentation for the object and
module over their continued development.

3. Four weeks before you intend to release the first version, you must
send the module and any relevant information to paul@ethos.co.nz to
get final approval of object and function definitions. Alternatively
you may show what you’re doing on a regular basis to keep everything
on track.

4. If in the event that you stop writing your module you should pass all of
the development information (ie source code) to a person of your choice.
Alternatively you can send it to DreamWorld Productions so that we can
find someone that wants to continue its support. We don’t like to see
modules created and then dropped without continued development!

Failing to support the above guidelines will cause DreamWorld Productions
to stop giving your work any recognition what so ever. We also reserve the
right to prevent your module from running even if it has been installed on
a user’s system (everything stops at the kernel if we want it to).
Remember there may be a lot of people using your module, so we must ensure
that it’s 100% OK and can be upgraded for the future.

Support Modules
If you are writing a module containing a set of functions, and/or 1 or more
hidden objects or child classes, you should:

1. Register the name of the module by writing to paul@ethos.co.nz. [This
is done simply to prevent naming conflicts in the System/ directory.]

Default 11 / 18

Return To Index

1.7 Really cool features!

CURRENT FEATURES OF THE GAMES MASTER SYSTEM

This is just a summary of the major features that have so far been
implemented. Not all new features and changes have been documented here.
For the complete low-down on all features of GMS check the developer
information files.

* Completely object oriented system design, covering all aspects of OO
including data/function inheritance and polymorphism. This allows for
much more powerful programming, data abstraction and modularity.

* Multiple platform capabilities. A GMS program compiled on a 680x0 Amiga
could also be run on a 680x0 Atari or Mac, all you would need is the
necesary drivers. All PPC compilations will have the same feature and
can also be 680x0 compatible through emulation.

* Resource tracking is fully implemented, a task can exit and all its
resources will be completely freed. A SelfDestruct() function allows
a task to abort itself at any time and the system will free its
resources - extremely useful for debugging purposes. A user may
force a task to abort simply by pressing L-AMIGA and DELETE, 100% safe.

* Debugging support implemented into all initialisation functions, no
need for unnecessary patches to get debug information or track system
calls. A debugger utility exists for receiving and displaying this
data in real time.

* Transparent Chunky-To-Planar, which means it won’t bother wasting time
with conversions or copying if chunky mode is already available in the
hardware.

* Fast blitter functions for drawing bob’s, copying for screen buffers,
3 different screen clears, auto background saving and clearing for
bob’s. Also includes Pixel and Line drawing functions, and support for
list’s for very fast mass-drawing operations. CPU assisted blitting
means that drawing speed is no longer limited to blitter throughput.

* Sound support includes: Support for sound priorities, intelligent
dynamic channel play-back, channel modulation for special effects, IFF
support.

* Proportional colour fading, functions are: PaletteMorph(),
ColourMorph(), PaletteToColour() and ColourToPalette(). Support for
setting speed and colour ranges.

* Full support for raster/copperlists, with effects such as: ColourLists,

Default 12 / 18

Mirror, Flood, and Palette Changes.

* Structure and object pre-processing, allows data to be changed
separately from the main program. This makes GMS the first system to
support up to 100% user editing of game data.

* Allows you to support all different kinds of input devices (joysticks,
joypads, mouse etc) through just one simple function call. This
enables you to support devices that don’t even exist yet.

* User preferences program to allow full configuration of a game’s
functionality. This includes configuration for: Game/Task Priorities,
Joystick emulation, Mode Promotion, Screen Settings, and more.

* Stable memory allocation and a freemem routine that will not crash your
machine if you have written over your memory boundaries. Internal
resource tracking ensures that GMS programs will not chew up your
memory.

* Smart Saving and Loading of files, with automatic packing and depacking
via XPK.

* 320k of assembler, E and C sources, demonstrating all uses of the
library.

* All GMS programs can multi-task with no significant drop in speed or
performance.

Return To Index

1.8 What language to use?

LANGUAGES

As GMS is no more than an extension to the OS, it can work with any
language that you want it to. Currently supported languages in this
archive are:

Assembler
C/C++
E

You could also use Blitz Basic, Pascal, Oberon and others if you know how,
but I currently don’t have any source demos or special include files to
help you with those.

If you’re new to programming then I would recommend starting out with C or
E. In my opinion E is a little easier on the beginner, but C is more
common place in other areas and you might find that useful. If you don’t
know which one to choose, try learning E first, and then C as they are

Default 13 / 18

quite similar languages. Unfortunately E has some portability problems, so
if you intend to do things properly you will definitely need to upgrade to
C at a later date.

If you want to write really fast games, you will have to learn some
assembler. With GMS learning assembler is quite easy, as you don’t have to
think about programming the hardware registers. Look at the demo sources
and make up your own mind if you want to learn it or not. Using GMS you
could become a fairly adequate assembly programmer in as little as 2 months
if you have come from something like C. Bear in mind that assembler makes
programs difficult/impossible to port to other CPU’s.

WHAT COMPILER?

If you know what language you want to use, you will have to think about
what compilers you should get. You can’t program without a compiler! Here
is my opinion on the most common and best compilers available:

Assemblers
The best assemblers are AsmOne, DevPac and PhxAss. I have all three of
these and use each one of them for different situations. You don’t need
that many, but two of these programs are free, so it won’t cost you
anything.

AsmOne has an excellent source-level debugger and I recommend it to
beginners, as you can observe how the 680x0 instructions work. I don’t use
it that much today, but it is useful and has some features that make it
very easy to use. It also has the fastest compiler speeds that you could
imagine. I got the latest AsmOne from the WWW, go to one of the Amiga Web
searches and look for "AsmOne" to find it.

DevPac is a good, robust compiler with many options, but it’s a little slow
and hasn’t been updated in a while. I recently moved to using PhxAss for
these reasons. You can get DevPac from HiSoft and other software dealers,
it’s a commercial product so you will have to pay for it.

I have been using PhxAss for a while and have found it to be a very
impressive asm compiler. It is compatible with DevPac sources and has very
good compiling times. The package is regularly upgraded and it’s freeware.
Good work Frank Wille! You can get PhxAss from Aminet, just download it as
dev/asm/Phx*.lha.

You will also need a text editor if you’re using DevPac or PhxAss, I
recommend CygnusEd as it’s small and you can alter the TAB stops. This
feature is important as it keeps your sources easier to write and manage.
You will notice that all my assembler sources look strange unless you view
them with CED or AsmOne. CygnusEd has been upgraded recently, so now is a
good time to buy.

C Compilers
SAS C/C++ is what I use most often, it’s very reliable and I’ve never had a
problem with it. The documentation is very extensive, so you’ll be able to
get help for all your problems. This product is no longer officially
supported, but you can order the remaining copies on the WWW. You may be
able to get it from various software dealers. Dice C is a nice package but

Default 14 / 18

it doesn’t support any C++. It has recently been released as freeware, so
it’s worth getting as your first C compiler. You can get this one from
Aminet, in dev/c/ I believe.

Again, you will need a good text editor for efficient programming.
CygnusEd is ideal here, and I believe GoldEd is a popular choice as well.

E Compilers
There is only one E compiler available (EC) which you can get as part of
the E package. You can get this from Aminet, along with everything else
that you will need. You will probably have to register, although this
program was put on a coverdisk some time ago.

Return To Index

1.9 Hints and Tips

GAMES MASTER SYSTEM

HINTS AND TIPS

This section is written to offer some friendly advice and tips on how to
get full use from the Games Master System, and what tricks you can use to
make sure your game runs at the highest speed possible. I’m still writing
this section, but if you have a trick of your own that should be here,
please write to me at paul@ethos.co.nz. Even though I wrote the system, I
don’t know everything that can be done with it :-)

1.1 GENERAL CODING TIPS

Less... equals More!

Never call the same routine twice in your main loop unless absolutely
necessary. For example, look at this routine that calls Query() twice:

Loop: move.l DPKBase(pc),a6

move.l KeyStruct(pc),a0
CALL Query
move.l KeyStruct(pc),a0
move.l KEY_Buffer(a0),a0
cmp.b #K_ESC,(a0)
beq Game_Over

...
Rest of main loop
...

move.l KeyStruct(pc),a0
CALL Query

Default 15 / 18

move.l KeyStruct(pc),a0
move.l KEY_Buffer(a0),a0
cmp.b #" ",(a0)
beq .Exit
...
bra.s Loop

KeyStruct:
dc.l 0

Do this instead...

Loop: move.l DPKBase(pc),a6
move.l KeyStruct(pc),a0
CALL Query
move.l KeyStruct(pc),a0
move.l KEY_Buffer(a0),a0
cmp.b #K_ESC,(a0)
beq Game_Over

...
Rest of main loop
...

move.l KeyStruct(pc),a0
move.l KEY_Buffer(a0),a0
cmp.b #" ",(a0)
beq .Exit
...
bra.s Loop

As you can see the second version is faster because it doesn’t make an
extra call to Query(). Simple really, but it often happens to beginners
and in large programs.

1.2 CONTINUATION OF TASK PROCESSING WHILE PAUSED

There are times when pausing of your main task (through WaitAVBL()) will be
inconvenient if it is necessary to continually process information. On the
other hand, if your program continues to run in the background it will
steal the processor for as long as it continues drawing.

Lets say you are writing a game that can connect via the serial port for 2
player communications. If one machine was to stop its processing, the
serial buffer will continue to receive information and could go into
overflow, potentially causing you some problems when your task is
reactivated. The easy solution to this is to activate a secondary task
that will continue to process when the main task is paused. This is a
simple procedure and only requires that you put all your communication
handling into this separate task. Another method is to use an interrupt,
although that is not necessary in this case.

Default 16 / 18

An option that may be more convenient for the user in a TCP environment,
would be to send out a message saying "This machine is temporarily paused"
so that all other machines know that they must not send information to you.
This will give any other TCP tasks running on the paused machine more time
to send/receive data, eg for FTP.

1.3 SUPPORTING HIGHER RESOLUTIONS

Drawing high resolution graphics and supporting them as an option in your
game is a worthwhile exercise, and will make the owners of more powerful
computers happy. But it can be annoying to support - most developers make
two copies of each picture file, one in lo-res and one in hi-res and then
program the game to support both files. This can get in the way of
programming the game itself and results in wasted time. In GMS there is a
way to solve this problem.

Draw all the graphics in high resolution and use them as you normally would
in your game. Use screen tag lists that accept the default screen
dimensions from the user (do not set GSA_ScrWidth, GSA_ScrHeight or
GSA_ScrMode).

Set the RESIZE flag when loading in the pictures and set PIC_Width and
PIC_Height in accordance to the user’s resolution in the screen that you
opened.

Example: If the game graphics were drawn on a 640x512 screen and the user
has asked for a LORES screen, then drop the picture dimension to 320x256
and load it in. The picture will be resized to fit the new dimensions and
you now have the lo-res equivalent of your hi-res screen.

The next step is to proportionalise your bobs to the new settings. There
are two fields to help you do this - PropWidth and PropHeight. These
fields must contain the original dimensions of the Bob’s source picture,
which in the example above was 640x512.

Now, when you call Init(), the function will detect that the Width of the
source Picture does not match the PropWidth setting (same thing for the
height). It will then use a formula to alter your Bob’s Width, Height and
coordinates to reflect the new dimensions.

Bob->Width = (Picture->Width) / (Bob->PropWidth / Bob->Width)

That’s it. There are some proportional demos in this archive, check those
to see how easy the procedure is (note how there is no extra coding needed,
just the addition of a few tags and the RESIZE attribute).

Return To Index

1.10 The Authors

Default 17 / 18

THE AUTHORS

The Games Master System is written in Assembler and C by Paul Manias. Paul
has 5 years 680x0 and games programming experience, and another 2 years in
other languages like C and Pascal. Paul’s favourite past-times are blowing
his nose, staring at the ceiling, and lurking in basements. So far he has
written two games of his own and contributed graphics to two other
commercial ones. None of those games have beeen released (yet?), for all
sorts of various reasons. Luckily this is not the case with GMS.

GMSPrefs was orginally written in E, by Richard Clark. Richard’s favourite
past-times are standing, sending morse code via blinking, and talking to
suspicious items of furniture.

Many thanks to Graeme Chiu, who hosted the GMS pages from April 1996 - May
1997. To see our WWW pages, visit:

http://gms.ethos.co.nz/gms/

To see a detailed list of all the contributors to the GMS project, go to
"The Authors" section on the WWW. Thanks to the people that send in useful
bug reports, and to the many people that sent in ideas when the project
first started (but we still need more!).

Return To Index

1.11 Resource Tracking

RESOURCE TRACKING

GMS is fully supportive of internal resource tracking, which means that it
tracks resources without any effort from the programmer. Resource tracking
is great for programming as it warns you if you have forgotten to free
important system allocations when your program exits. This is not just
memory, but also things like sound, blitter, video display, files and
device allocations. This becomes a life saver in situations such as
forgetting to free a hardware allocation like the blitter, as this would
normally cause a system deadlock and you would have to reset your machine.
Fortunately resource tracking will rescue a situation like this and you can
get the system back with everything intact.

TASK DESTRUCTION

Resource tracking also gives us the opportunity to use an even greater
feature, which is task destruction. Task destruction is the ability to
stop and destroy a task while it is performing its normal processes, and

Default 18 / 18

still leave the system intact. You can stop a program immediately by
holding LEFT-AMIGA and DELETE - even in the middle of a video game! This
powerful feature uses resource tracking to return your system to the same
state that it was in before the program was active. This is quite handy
for users and programmers that want to get back to their system as quckly
as possible, and obviously is very useful for debugging purposes.

Return To Index

1.12 Copyright Notice

--- COPYRIGHT NOTICE ---

The Games Master System archive may be re-distributed on the condition that
its original content is unchanged. Files found in the archive are not
available for separate distribution, unless specified otherwise. Some
files are the copyright of their respective authors and are subject to
their own terms and conditions.

DreamWorld Productions reserves the right to change any of the material
within the Games Master System at any time and without notice. Reverse
engineering of the Games Master System software or the release of
unauthorised programs using or emulating the Games Master System is
strictly prohibited.

DreamWorld Productions will not be held responsible for any smoke, volcanic
activity, illness, acts of God, earthquakes, or any other harmful incidents
caused directly or indirectly through the use of this product.

The Games Master System is a trademark of DreamWorld Productions, (c) 1996
- 1998. All rights reserved.

Return To Index

	Default
	The Games Master System V1.0
	Introduction to the Games Master System
	OverView
	Documentation Standards
	Questions and Answers
	How to write new modules.
	Really cool features!
	What language to use?
	Hints and Tips
	The Authors
	Resource Tracking
	Copyright Notice

