
ADO Overview
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxADOOverviewC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxADOOverviewS"}

ActiveX Data Objects (ADO™) enables you to write a client application to access and manipulate
data in a database server through a provider (database interface). ADO’s primary benefits are ease of
use, high speed, low memory overhead, and a small disk footprint. This help file is for ADODB, an
implementation of ADO optimized for use with the OLE DB provider.

The ADO object model consists of a core set of interfaces for accessing all types of data. Because a
single set of core interfaces may not serve all client/server developers, the ADO architecture can
extend itself by dynamically creating objects to accommodate specific provider or client application
needs. Such extensions derive their functionality by writing to ADO and to the provider directly. This
mechanism is very flexible and permits considerable freedom of interaction between ADO and its
extended objects; these extensions can supplement or override existing ADO objects, methods, and
properties.

In ADO, the Connection, Recordset, and Command objects are the main interfaces to data. The
minimal Microsoft® Visual Basic™ code to generate a Recordset is as follows:
Sub Main()

' Create a Recordset object.
Dim rstMain as New ADODB.Recordset

' Open a Recordset object using the Source and
' ActiveConnection arguments.
rstMain.Open "SELECT * FROM authors", _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"

End Sub
This generates a forward-only, read-only Recordset object. A slightly more functional Recordset can
be generated as follows:
Sub Main()

' Create a Recordset object.
Dim rstMain as New ADODB.Recordset

' Specify a keyset cursor.
rstMain.CursorType = adOpenKeyset

' Set the locking for batch updating.
rstMain.LockType = adConcurBatchOptimistic

' Open a Recordset object using the Source and
' ActiveConnection arguments.
rstMain.Open "SELECT * FROM authors", _

"ODBC;DATABASE=pubs;UID=sa;PWD=;DSN=Publishers"

End Sub
This creates a fully scrollable and batch-updatable Recordset.

Note This example is written in Microsoft Visual Basic. For applications that use Microsoft Visual
Basic Script™ (for example, Microsoft ActiveX Server™), you need to convert the constants to their
numeric values. These values can be found in the appropriate Help topics for the methods and
properties shown.

In ADO, the object hierarchy is de-emphasized. Unlike DAO, you no longer have to navigate through
a hierarchy to create objects because most ADO objects can be independently created. This allows
you to create and track only the objects you need. This model also results in fewer ADO objects and
thus a smaller working set.

ADO supports key features for building client/server and web-based applications, including the
following:

· Independently-created objects
· Batch updating
· Support for stored procedures with in/out parameters and return values
· Different cursor types including the potential for support of back-end–specific cursors
· Advanced recordset cache management
· Support for limits on number of returned rows and other query goals
· Support for multiple recordsets returned from stored procedures or batch statements
· Free-threaded objects for ISAPI applications

For a sample application using ADO, see the AdventureWorks web site. For more information on the
OLE DB provider, see the OLE DB SDK web site.

ADO Object Model
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxADOObjectModel10C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxADOObjectModel10S"}

The Connection, Command, Recordset, and Field objects also have a Properties collection.

ADO Objects and Collections Reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxADOObjectsandCollectionsReferenceC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxADOObjectsandCollectionsReferenceS"}

In the following table, the type of collection in the first column contains the type of object in the second
column. The third column describes what each type of object represents.

Collection Object Description
NA Command A prepared statement,

such as an SQL
statement.

NA Connection A connection to a data
source.

Errors Error Information about errors
resulting from provider
operations.

Fields Field A column that is part of
a recordset.

Parameters Parameter A parameter for a
command.

Properties Property A provider-defined
("dynamic") property.

NA Recordset A set of records
returned from a
command or table.

ADO Methods by Object
{ewc HLP95EN.dll, DYNALINK, "See Also":"daidxADOMethodsByObjectC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daidxADOMethodsByObjectS "}

This reference groups all ADO methods by object.

Command
Connection
Error
Field

Parameter
Property
Recordset

You can also find the ADO methods for the following collections.

Errors
Fields

Parameters
Properties

ADO Methods Reference
{ewc HLP95EN.dll, DYNALINK, "See Also":"daidxADOMethodsReferenceC "} {ewc HLP95EN.dll, DYNALINK,
"Specifics":"daidxADOMethodsReferenceS "}

This reference alphabetically lists all ADO methods.

AddNew
Append
AppendChunk
BeginTrans
CancelUpdate
CancelUpdateBatch
Clear
Clone
Close
CommitTrans
CreateParameter
Delete
Execute
GetChunk
GetRows

Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
Open
Refresh
Requery
Resync
RollbackTrans
Supports
Update
UpdateBatch

ADO Properties by Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxADOPropertiesByObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxADOPropertiesByObjectS"}

This reference groups all ADO properties by object.

Command
Connection
Error
Field

Parameter
Property
Recordset

You can also find the ADO properties for the following collections.

Errors
Fields

Parameters
Properties

ADO Properties Reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daidxADOPropertiesReferenceC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daidxADOPropertiesReferenceS"}

This reference alphabetically lists all ADO properties.

A-C
AbsolutePage
AbsolutePosition
ActiveConnection
ActualSize
Attributes
BOF
Bookmark
CacheSize

CommandText
CommandTimeout
CommandType
ConnectionString
ConnectionTimeout
Count
CursorType

D-N
DefaultDatabase
DefinedSize
Description
Direction
EditMode
EOF
Filter
HelpContext

HelpFile
IsolationLevel
LockType
MaxRecords
Mode
Name
NativeError
Number

O-Z
OriginalValue
PageCount
PageSize
Prepared
Precision
Provider
RecordCount
Scale

Size
Source
SQLState
Status
Type
UnderlyingValue
Value
Version

Command Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjCommandC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjCommandX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjCommandP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjCommandM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjCommandS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjCommandU":1}

A Command object is a definition of a specific command that you intend to execute against a data
source.

Remarks
You can create Command objects independently of a previously defined Connection object.

Use Command objects to return records and create a Recordset object, to execute a bulk operation,
or to manipulate the structure of a database. Depending on the functionality the provider exposes,
some collections, methods, or properties of a Command object may not be available.

With the collections, methods, and properties of a Command object, you can do the following:

· Associate an open connection and the Command object with the ActiveConnection property to
execute the command.

· Define the text version of the command (for example, an SQL statement) with the CommandText
property.

· Set the number of seconds a provider will wait for a command to execute with the
CommandTimeout property.

· Specify the type of command described in the CommandText property with the CommandType
property prior to execution in order to optimize performance.

· Determine whether or not the provider will save a prepared version of a command with the
Prepared property.

· Manage arguments passed to and from the provider with the Parameters collection.
· Execute a command and return a Recordset object if appropriate with the Execute method.

For a complete list of all collections, methods, and properties available on a Command object, see
the Summary topic.

Command Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumCommandC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumCommandS"}

A Command object contains these collections, these methods, and these properties.

Collections
Parameters (default)
Properties

Methods
CreateParameter
Execute

Properties
ActiveConnection
CommandText
CommandTimeout
CommandType
Prepared

Connection Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjConnectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjConnectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjConnectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjConnectionS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjConnectionU":1}

A Connection object is an object that represents an open connection to an OLE DB data source.

Remarks
You can create Connection objects independently of any other previously defined object.

A Connection object is a non-persistent object that represents an open session with a data source. In
the case of a client/server database system, it literally maps to an underlying network connection to
the server. Depending on the functionality the provider exposes, some collections, methods, or
properties of a Connection object may not be available.

Using the collections, methods, and properties of a Connection object, you can do the following:

· Configure the connection before opening it with the ConnectionString and ConnectionTimeout
properties.

· Choose among various cursor libraries accessible to the provider with the CursorLocation
property.

· Set the default database for the connection with the DefaultDatabase property.
· Set the level of isolation for the transactions opened on the connection with the IsolationLevel

property.
· Set the permissions for the connection with the Mode property.
· Select an OLE DB provider with the Provider property.
· Establish and later break the physical connection to the data source with the Open and Close

methods.
· Execute a command against the connection with the Execute method and CommandTimeout

property.
· Manage transactions on the open connection, including nested transactions if the provider supports

them, with the BeginTrans, CommitTrans, and RollbackTrans methods and the Attributes
property.

· Examine errors returned from the data source with the Errors collection.
· Read the version from the ADO implementation in use with the Version property.

For a complete list of all collections, methods, and properties available on a Connection object, see
the Summary topic.

Connection Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumConnectionS"}

A Connection object contains these collections, methods, and properties.

Collections
Errors
Properties (default)

Methods
BeginTrans
Close
CommitTrans
Execute
Open
RollbackTrans

Properties
Attributes
CommandTimeout
ConnectionString (default)
ConnectionTimeout
DefaultDatabase
IsolationLevel
Mode
Provider
Version

Error Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjErrorP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjErrorM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjErrorS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjErrorU":1}

An Error object contains details about data access errors pertaining to a single operation involving
ADO.

Remarks
You can read an Error object’s properties to obtain specific details about each error, including the
following:

· The Description property, which contains the text of the error alert that will be displayed on the
screen if the error is not trapped.

· The Number property, which contains the Long integer value of the error constant.
· The Source property, which identifies the object that raised the error. This is particularly useful

when you have several Error objects in the Errors collection following a request to a data source.
· The HelpFile and HelpContext properties, which indicate the appropriate Microsoft Windows Help

file and Help topic, respectively, (if any exist) for the error.

When a provider error occurs, it is placed in the Errors collection of the Connection object. If there is
no valid Connection object, you will need to retrieve error information from the Visual Basic for
Applications Err object. ADO supports the return of multiple errors by a single ADO operation to allow
for error information specific to the provider. For example, this is how an error would be processed
when you use ADO with OLE DB:

1. The client makes an ADO call.
2. ADO makes a call to a provider (via OLE DB).
3. The provider encounters an error.
1. Using the OLE DB SDK Error object, the provider creates an OLE Error Info object and puts an

error record into it.
1. The client receives the error(s). By using the OLE Error Info object directly (through Visual Basic

for Applications) or the ADO Errors collection, the client can retrieve detailed error information.

ADO can return the following specific errors:

Constant Name Number Description
adErrInvalidArgument 3001 Invalid argument.
adErrIllegalOperation 3219 Invalid operation.
adErrInTransaction 3246 Transaction error.
adErrFeatureNotAvailable 3251 Operation is not supported for this

type of object.
adErrItemNotFound 3265 Item not found in this collection.
adErrObjectNotSet 3420 Object is invalid or not set.

adErrDataConversion 3421 Data type conversion error.

Just as providers do, ADO clears the OLE Error Info object before making a call that could potentially
generate a new error. However, the Errors collection on the Connection object is cleared and
populated only when ADO or the provider generates a new error. ADO only puts errors from the
provider in the Errors collection; it does not add ADO-specific errors to the collection.

Some properties and methods return warnings which appear as Error objects in the Errors collection
but do not halt a program's execution. Before you call the Delete, Resync, UpdateBatch or
CancelUpdateBatch methods on a Recordset object or before you set the Filter property on a
Recordset object, call the Clear method on the Errors collection so that you can read the Count
property of the Errors collection to test for returned warnings.

For a complete list of all collections, methods, and properties available on an Error object, see the
Summary topic.

Errors Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolErrorP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolErrorM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolErrorS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"dacolErrorU":1}

The Errors collection contains all stored Error objects, all of which pertain to a single operation
involving ADO.

Remarks
Any operation involving ADO objects can generate one or more errors. As each error occurs, one or
more Error objects may be placed in the Errors collection of the Connection object. When another
ADO operation generates an error, the Errors collection is cleared, and the new set of Error objects
may be placed in the Errors collection. ADO operations that don't generate an error have no effect on
the Errors collection. Use the Clear method to manually clear the Errors collection. ADO only puts
errors from the provider in the Errors collection; it does not add ADO-specific errors to the collection.

The set of Error objects in the Errors collection describes one error. Enumerating the specific errors
in the Errors collection enables your error-handling routines to more precisely determine the cause
and origin of an error, and take appropriate steps to recover.

Some properties and methods return warnings which appear as Error objects in the Errors collection
but do not halt a program's execution. Before you call the Delete, Resync, UpdateBatch or
CancelUpdateBatch methods on a Recordset object or before you set the Filter property on a
Recordset object, call the Clear method on the Errors collection so that you can read the Count
property of the Errors collection to test for returned warnings.

Note See the Error object topic for a more detailed explanation of the way a single ADO operation
can generate multiple errors.

For a complete list of all collections, methods, and properties available on an Errors collection, see
the Summary topic.

Error Object, Errors Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumErrorS"}

Error Object
An Error object contains these properties:

Properties
Description (default)
HelpContext
HelpFile
NativeError
Number
Source
SQLState

Errors Collection
The Errors collection appears in each Connection object, and contains this method and this
property:

Method
Clear
Refresh

Property
Count

Field Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjFieldX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"daobjFieldP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"daobjFieldM"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjFieldS"}
{ewc HLP95EN.DLL,DYNALINK,"Summary":"daobjFieldU":1}

A Field object represents a column of data with a common data type and a common set of properties.

Remarks
A Recordset object has a Fields collection made up of Field objects. Each Field object corresponds
to a column in the Recordset. You use the Value property of Field objects to set or return data for the
current record. Depending on the functionality the provider exposes, some collections, methods, or
properties of a Field object may not be available.

With the collections, methods, and properties of a Field object, you can do the following:

· Return the name of a field with the Name property.
· View or change the data in a Recordset with the Value field.
· Return the basic characteristics of a field with the Type, Precision, and Scale properties.
· Return the declared size of a field with the DefinedSize property.
· Return the actual size of the data in a given field with the ActualSize property.
· Determine what types of functionality are supported for a given field with the Attributes property.
· Manipulate fields containing long binary data with the AppendChunk and GetChunk methods.
· Resolve discrepancies in field values during batch updating with the OriginalValue and

UnderlyingValue properties.

To refer to a Field object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

recordset.Fields(0)
recordset.Fields("name")
recordset.Fields!name
recordset("name")

You can only use the exclamation point notation (!) to set or return the value of a Field object.

For a complete list of all collections, methods, and properties available on a Field object, see the
Summary topic.

Fields Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolFieldC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"dacolFieldX":1}
{ewc HLP95EN.DLL,DYNALINK,"Properties":"dacolFieldP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"dacolFieldM"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"dacolFieldS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolFieldU":1}

A Fields collection contains all stored Field objects of a Recordset object.

Remarks
A Recordset object has a Fields collection made up of Field objects. Each Field object corresponds
to a column in the Recordset.
To refer to a Field object in a collection by its ordinal number or by its Name property setting, use any
of the following syntax forms:

recordset.Fields(0)
recordset.Fields("name")
recordset.Fields!name
recordset("name")

You can only use the exclamation point notation (!) to set or return the value of a Field object.

Note See the Field object topic for a more detailed explanation of how to use Field objects.

For a complete list of all collections, methods, and properties available on a Fields collection, see the
Summary topic.

Field Object, Fields Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumFieldC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumFieldS"}

Field Object
A Field object contains this collection, these methods and properties.

Collection
Properties

Methods
AppendChunk
GetChunk

Properties
ActualSize
Attributes
DefinedSize
Name
OriginalValue
Precision
Scale
Type
UnderlyingValue
Value

Fields Collection
A Fields collection appears in each Recordset object, and contains this method and this property.

Method
Refresh

Property
Count

Parameter Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjParameterX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjParameterP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjParameterM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjParameterS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjParameterU":1}

A Parameter object represents a parameter or argument associated with a Command object based
on a parameterized query or stored procedure.

Remarks
Parameter objects represent parameters associated with parameterized queries, or the in/out
arguments or return values of stored procedures. Depending on the functionality the provider
exposes, some collections, methods, or properties of a Parameter object may not be available.

With the collections, methods, and properties of a Parameter object, you can do the following:

· Set or return the name of a parameter with the Name property.
· Set or return the value of a parameter with the Value property.
· Set or return parameter characteristics with the Attributes and Direction, Precision, Scale, Size,

and Type properties.
· Pass long binary data to a parameter with the AppendChunk method.

If you know the names and properties of the parameters associated with the stored procedure or
parameterized query you wish to call, you can create Parameter objects with the appropriate property
settings and use the Append method to add them to the Parameters collection. This lets you set and
return parameter values without having to call the Refresh method on the Parameters collection to
retrieve the parameter information from the provider.

To refer to a Parameter object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

command.Parameters(0)
command.Parameters("name")
command.Parameters!name
command("name")

You can only use the exclamation point notation (!) to set or return the value of a Parameter object.

For a complete list of all collections, methods, and properties available on a Parameter object, see
the Summary topic.

Parameters Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolParameterX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolParameterP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolParameterM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolParameterS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolParameterU":1}

A Parameters collection contains all the Parameter objects of a Command object.

Remarks
A Command object has a Parameters collection made up of Parameter objects.

Using the Refresh method on a Command object's Parameters collection retrieves provider-side
parameter information for the stored procedure or parameterized query specified in the Command
object. The collection will be empty for providers that do not support stored procedure calls or
parameterized queries.

If you access the Parameters collection before calling the Refresh method, ADO will automatically
call the method and populate the collection for you.

You can minimize calls to the provider to improve performance if you know the names and properties
of the parameters associated with the stored procedure or parameterized query you wish to call.
Create Parameter objects with the appropriate property settings and use the Append method to add
them to the Parameters collection. This lets you set and return parameter values without having to
call the provider for the parameter information. If you are writing to a provider that does not supply
parameter information, you must manually populate the Parameters collection using this method to
use parameters at all. Use the Delete method to remove Parameter objects from the Parameters
collection if necessary.

To refer to a Parameter object in a collection by its ordinal number or by its Name property setting,
use any of the following syntax forms:

command.Parameters(0)
command.Parameters("name")
command.Parameters!name
command("name")

You can only use the exclamation point notation (!) to set or return the value of a Parameter object.

For a complete list of all collections, methods, and properties available on a Parameters collection,
see the Summary topic.

Parameter Object, Parameters Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumParameterS"}

Parameter Object
A Parameter object contains this collection, this method and these properties.

Collection
Properties

Method
AppendChunk

Properties
Attributes
Direction
Name
Precision
Scale
Size
Type
Value

Parameters Collection
A Parameters collection appears in each Command object and contains these methods and this
property.

Methods
Append
Delete
Refresh

Property
Count

Property Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjPropertyP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjPropertyM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjPropertyS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjPropertyU":1}

A Property object represents a dynamic characteristic of an ADO object that is defined by the
provider.

Remarks
ADO objects have two types of properties, built-in and dynamic. Built-in properties are those
properties implemented in ADO and immediately available to any new object. However, these built-in
properties do not appear as Property objects in an object’s Properties collection, so while you can
change their values, you cannot modify their characteristics or delete them.

Many OLE DB providers will expose additional object properties to ADO. These dynamic properties
provide information about additional functionality available from the provider. For example, a property
specific to the provider may indicate if a Recordset object supports transactions or updating. These
additional properties will appear as Property objects in that Recordset object’s Properties collection.

A dynamic Property object has four built-in properties of its own:

· The Name property, a string that uniquely identifies the property.
· The Type property, an integer that specifies the property data type.
· The Value property, a variant that contains the property setting.
· The Attributes property, a long value that indicates characteristics of the property specific to the

provider.

To refer to a Property object in a collection by its Name property setting, use the following syntax

form:

object.Properties("name")

With the same syntax form, you can also refer to the Value property of a Property object. The context
of the reference will determine whether you are referring to the Property object itself or the Value
property of the Property object.

For a complete list of all collections, methods, and properties available on a Property object, see the
Summary topic.

Properties Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"dacolPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"dacolPropertyP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"dacolPropertyM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dacolPropertyS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"dacolPropertyU":1}

A Properties collection contains all the Property objects for a specific instance of an object.

Remarks
All ADO objects have a Properties collection made up of Property objects. Each Property object
corresponds to a characteristic of the ADO object specific to the provider.

To refer to a Property object in a collection by its Name property setting, use the following syntax
form:

object.Properties("name")

Note See the Property object topic for a more detailed explanation of how to use Property
objects.

For a complete list of all collections, methods, and properties available on a Property collection, see
the Summary topic.

Property Object, Properties Collection Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumPropertyS"}

Property Object
A Property object contains these properties.

Properties
Attributes
Name
Type
Value

Properties Collection
A Properties collection appears in the Connection, Command, Parameter, Recordset, and Field
objects, and contains this method and this property.

Method
Refresh

Property
Count

Recordset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjRecordsetP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjRecordsetM"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"daobjRecordsetS"} {ewc
HLP95EN.DLL,DYNALINK,"Summary":"daobjRecordsetU":1}

A Recordset object is a data cursor that represents records from a base table or the results from a
command.

Remarks
You can create Recordset objects independently of a previously defined Connection object.

You use Recordset objects to manipulate data from a provider at the record level. When you use
ADO, you manipulate data almost entirely using Recordset objects. All Recordset objects are
constructed using records (rows) and fields (columns). Depending on the functionality the provider
exposes, some collections, methods, or properties of a Recordset object may not be available.

You can use one of four different cursor types when opening a Recordset object:

· Dynamic cursor — allows you to view additions, changes, and deletions by other users, and
allows all types of movement through the Recordset; allows bookmarks if provider supports them.

· Keyset cursor — behaves like a dynamic cursor, except that it prevents you from seeing records
that other users add, and prevents access to records that other users delete from your recordset.
Data changes by other users will still be visible.

· Static cursor — provides a static copy of a set of records for you to use to find data or generate
reports. Additions, changes, or deletions by other users will not be visible.

· Forward-only cursor — behaves identically to a static cursor except that it only allows you to
scroll forward through records. This improves performance in situations where you only need to
make a single pass through a recordset.

Set the CursorType property prior to opening the Recordset object to choose the cursor type of the
Recordset object.

If you don't specify a cursor type, ADO attempts to use the cursor with the fastest query response,
starting with forward-only, and moving if necessary to static, keyset, and dynamic cursors.

You can create as many Recordset objects as needed. Different Recordset objects can access the
same tables and fields without conflicting.

When you create a Recordset object, the current record is positioned to the first record (if any) and
the BOF property is set to True. If there are no records, the RecordCount property setting is 0, and
the BOF and EOF property settings are True.

You can use the MoveNext, MovePrevious, MoveFirst, and MoveLast methods, the Move method,
and the AbsolutePosition and AbsolutePage properties to reposition the current record, assuming
the provider supports the relevant functionality. Forward-only Recordset objects support only the

MoveNext method. When you use the Move methods to visit each record (or enumerate the
Recordset), you can use the BOF and EOF properties to check for the beginning or end of the
Recordset object.

Recordset objects may support two types of updating: immediate and batched. In immediate
updating, all changes to data are written immediately to the underlying data source once you call the
Update method. You can also pass arrays of values as parameters with the AddNew and Update
methods and simultaneously update several fields in a record.

If a provider supports batch updating, you can cache changes to more than one record and then
transmit them in a single call to the provider with the UpdateBatch method. This applies to changes
made with the AddNew, Update, CancelUpdate, and Delete methods. After you call the
UpdateBatch method, you can use the Status property to check for any data conflicts in order to
resolve them.

For a complete list of all collections, methods, and properties available on a Recordset object, see
the Summary topic.

Recordset Object Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dasumRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"dasumRecordsetS"}

A Recordset object contains these collections, methods, and properties.

Collections
Fields (default)
Properties

Methods
Note The methods available on a particular Recordset depend on the provider and the parameters
used to create the Recordset.

AddNew
CancelUpdate
CancelUpdateBatch
Clone
Close
Delete
GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
Open
Requery
Resync
Supports
Update
UpdateBatch

Properties
Note The properties available on a particular Recordset depend on the provider and the
parameters used to create the Recordset.

AbsolutePage
AbsolutePosition
ActiveConnection
BOF
Bookmark
CacheSize
CursorType
EditMode
EOF
Filter

LockType
MaxRecords
PageCount
PageSize
RecordCount
Source
Status

AddNew Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAddNewC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAddNewX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAddNewA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAddNewS"}

Creates a new record for an updatable Recordset object.

Syntax
recordset.AddNew Fields, Values

The AddNew method syntax has these parts:

Part Description
recordset An object variable representing the Recordset

object to which you want to add a new record.
Fields Optional. A Variant representing a single name or a

Variant array representing names of the field(s) in
the new record.

Values Optional. A Variant representing a single value or a
Variant array representing values for the field(s) in
the new record.

Remarks
Use the AddNew method to create and initialize a new record. Use the Supports method to verify
whether you may add records to the current Recordset object.

After you call the AddNew method, the new record is added to the end of the Recordset and
becomes the current record.

If you call AddNew while editing the current record or adding a new record, ADO calls the Update
method to save any changes and then creates the new record.

If Fields is an array, Values must also be an array with the same number of members; otherwise, an
error occurs. The order of field names must match the order of field values in each array.

The behavior of the AddNew method depends on the updating mode of the Recordset object and
whether or not you pass the Fields and Values arguments.

In immediate update mode, calling the AddNew method without arguments sets the EditMode
property to adEditAdd. ADO caches any field value changes locally. Calling the Update method
posts the new record to the database and resets the EditMode property to adEditNone. If you pass
the Fields and Values arguments, ADO immediately posts the new record to the database (no Update
call is necessary) and resets the EditMode property to adEditNone.

In batch update mode, calling the AddNew method without arguments sets the EditMode property to
adEditAdd. ADO caches any field value changes locally. Calling the Update method adds the new
record to the current recordset and resets the EditMode property to adEditNone, but the provider
does not post the changes to the underlying database until you call the UpdateBatch method. If you
pass the Fields and Values arguments, ADO sends the new record to the provider for storage in a
cache and resets the EditMode property to adEditNone; you need to call the UpdateBatch method
to post the new record to the underlying database.

Append Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAppendC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAppendX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAppendA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAppendS"}

Appends an object to a collection.

Syntax
Collection.Append Object

The Collection placeholder represents the collection to which you want to append an object. The
Object placeholder is an object variable representing the object you wish to append.

Remarks
Use the Append method on a collection to add an object to that collection. This method is available
only on the Parameters collection of a Command object. You must set the Name and Type
properties of a Parameter object before appending it to the Parameters collection. If you select a
numeric data type, you must also set the Precision property to a value greater than zero.

You can minimize calls to the provider to improve performance when using stored procedures or
parameterized queries. However, you must know the names and properties of the parameters
associated with the stored procedure or parameterized query you wish to call. Create Parameter
objects with the appropriate property settings and use the Append method to add them to the
Parameters collection. This lets you set and return parameter values without having to call the
provider for the parameter information. If you are writing to a provider that does not supply parameter
information, you must manually populate the Parameters collection using this method to use
parameters at all.

AppendChunk Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthAppendChunkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthAppendChunkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthAppendChunkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthAppendChunkS"}

Appends data to a large text or binary data Field or Parameter object.

Syntax
{field | parameter}.AppendChunk Data

The AppendChunk method syntax has these parts.

Part Description
field An object variable representing a Field object in

the Fields collection of an open Recordset
object.

parameter An object variable representing a Parameter
object in the Parameters collection of a
Command object.

Data A Variant containing the data you want to
append to field or parameter.

Remarks
Use the AppendChunk method on a Field or Parameter object to fill it with long binary data. If
system memory is limited, the AppendChunk method allows you to manipulate long values in
portions rather than in their entirety.

Field
The presence of the adFldLong constant in the Attributes property of a Field object indicates that
you can use the AppendChunk method for that field.

The first AppendChunk call on a Field object writes data to the field, overwriting any existing data.
Subsequent AppendChunk calls add to existing data.

If there is no current record when you call AppendChunk on a Field object, an error occurs.

Parameter
Each AppendChunk call on a Parameter object appends to existing parameter data. An
AppendChunk call that passes a Null value empties the parameter value.

BeginTrans, CommitTrans, RollbackTrans Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthBeginTransC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthBeginTransX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthBeginTransA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthBeginTransS"}

The transaction methods manage transaction processing within a Connection object as follows:

· BeginTrans begins a new transaction.
· CommitTrans saves any changes and ends the current transaction. It may also start a new

transaction.
· RollbackTrans cancels any changes made during the current transaction and ends the

transaction. It may also start a new transaction.

Syntax
[Set Level =] connection.{BeginTrans|CommitTrans|RollbackTrans}

The connection placeholder is an object variable representing an open Connection object.

The Level placeholder represents a Long variable to which the BeginTrans method can return a
value indicating the nesting level of the transaction. The CommitTrans and RollbackTrans methods
do not return any value.

Remarks
Use these methods with a Connection object when you want to save or cancel a series of changes
made to the source data as a single unit. For example, to transfer money between accounts, you
subtract an amount from one and add the same amount to the other. If either update fails, the
accounts no longer balance. Making these changes within an open transaction ensures that either all
or none of the changes goes through. Also, try grouping operations that require disk access into
transaction blocks to improve the performance of your application. This buffers your operations and
may reduce the number of times the disk is accessed.

Once you call the BeginTrans method, the provider will no longer instantaneously commit any
changes you make until you call CommitTrans or RollbackTrans to end the transaction.

For providers that support nested transactions, calling the BeginTrans method within an open
transaction starts a new, nested transaction. The return value indicates the level of nesting: A return
value of "1" indicates you have opened a top-level transaction (that is, the transaction is not nested
within another transaction), "2" indicates that you have opened a second-level transaction (a
transaction nested within a top-level transaction), and so forth. You must resolve the most recently
opened transaction before resolving any higher level transactions.

Calling the CommitTrans method saves changes made within an open transaction on the connection
and ends the transaction. Calling the RollbackTrans method reverses any changes made within an
open transaction and ends the transaction. Calling either method when there is no open transaction
generates an error.

Depending on the Connection object's Attributes property, calling either the CommitTrans or
RollbackTrans methods may automatically start new a transaction. If the Attributes property is set to
adXactCommitRetaining, ADO automatically starts a new transaction after a CommitTrans call. If
the Attributes property is set to adXactAbortRetaining, ADO automatically starts a new transaction
after a RollbackTrans call.

CancelUpdate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCancelUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCancelUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCancelUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCancelUpdateS"}

Cancels any changes made to the current record or to a new record.

Syntax
recordset.CancelUpdate
The recordset placeholder is an object variable representing an open Recordset object.

Remarks
Use the CancelUpdate method to cancel any changes made to the current record or to discard a
newly added record.

If you are adding a new record when you call the CancelUpdate method, the record that was current
prior to the AddNew call becomes the current record again.

If you have not changed the current record or added a new record, calling the CancelUpdate method
generates an error.

CancelUpdateBatch Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCancelUpdateBatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCancelUpdateBatchX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCancelUpdateBatchA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCancelUpdateBatchS"}

Cancels a pending batch update.

Syntax
recordset.CancelUpdateBatch Affect

The CancelUpdateBatch method syntax has these parts:

Part Description
recordset An object variable representing an open Recordset

object.
Affect Optional. A Long expression that determines on how

many records the CancelUpdateBatch method
should act. Can be one of the following constants:
· adAffectCurrent, 1 — Cancel changes only for

the current record.
· adAffectAll, 2 (Default) — Cancel changes for all

the records in the Recordset object.
· adAffectGroupFilter, ??? — Cancel changes for

the records that satisfy the current Filter property
setting. There must be a valid Filter on the
Recordset in order to use this constant.

Remarks
Use the CancelUpdateBatch method to cancel any pending updates in a recordset in batch update
mode. If the recordset is in immediate update mode, calling CancelUpdateBatch generates an error.

If you are editing the current record or are adding a new record when you call CancelUpdateBatch,
ADO first calls the CancelUpdate method to cancel any cached changes; after that, all pending
changes in the recordset are canceled.

It's possible that the current record will be indeterminable after a CancelUpdateBatch call, especially
if you were in the process of adding a new record. For this reason, it is prudent to set the current
record position to a known location in the recordset after the CancelUpdateBatch call. For example,
call the MoveFirst method.

If the attempt to cancel the pending updates fails because of a conflict with the underlying data (for
example, a record has been deleted by another user), the provider returns warnings to the Errors
collection but does not halt program execution. A run-time error occurs only if there are conflicts on all
the requested records.

Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthClearC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthClearX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthClearA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthClearS"}

Removes all of the objects in a collection.

Syntax
Collection.Clear
The Collection placeholder represents the collection whose objects you want to remove.

Remarks
Use the Clear method on the Errors collection to remove all existing Error objects from the
collection. Some properties and methods return warnings which appear as Error objects in the Errors
collection but do not halt a program's execution. Before you call the Delete, Resync, UpdateBatch or
CancelUpdateBatch methods on a Recordset object or before you set the Filter property on a
Recordset object, call the Clear method on the Errors collection so that you can read the Count
property of the Errors collection to test for returned warnings.

Clone Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCloneC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCloneX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthCloneA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCloneS"}

Creates a duplicate Recordset object from an existing Recordset object.

Syntax
Set duplicate = original.Clone
The Clone method syntax has these parts:

Part Description
duplicate An object variable identifying the duplicate

Recordset object you're creating.
original An object variable identifying the Recordset

object you want to duplicate.

Remarks
Use the Clone method to create multiple, duplicate Recordset objects, particularly if you want to be
able to maintain more than one current record in a given set of records. Using the Clone method is
more efficient than creating and opening a new Recordset object with the same definition as the
original.

The current record of a newly created clone is undefined. Changes you make to one Recordset
object are visible in all of its clones regardless of cursor type. Closing either the original recordset or
any of its cloned copies does not close any of the other copies.

You can only clone a Recordset object that supports bookmarks. You can use bookmark references
from one Recordset object in any of its clones to access the same records.

Close Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCloseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCloseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthCloseA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCloseS"}

Closes an open object and any dependent objects.

Syntax
object.Close
The object placeholder is an object variable representing an open Connection or Recordset object.

Remarks
Use the Close method to close either a Connection object or a Recordset object to free any
associated system resources.

Connection
Using the Close method to close a Connection object also closes any active Recordset objects
associated with the connection. A Command object associated with the Connection object you are
closing will persist, but it will no longer be associated with a Connection object, that is, its
ActiveConnection property will be set to Null. Also, its Parameters collection will be cleared.

You can later call the Open method to reestablish the connection to the same or another data source.
While the Connection object is closed, calling any methods that require an open connection to the
data source generates an error.

Closing a Connection object while there are open Recordset objects on the connection rolls back
any pending changes in all of the Recordset objects. Closing a Connection object while a
transaction is in progress generates an error.

Recordset
Using the Close method to close a Recordset object releases any locks on the associated data. You
can later call the Open method to reopen the recordset with the same or modified attributes. While
the Recordset object is closed, calling any methods that require a live cursor generates an error.

If an edit is in progress while in immediate update mode, calling the Close method generates an
error. If you close the Recordset object during batch updating, all unposted changes are lost.

If you use the Clone method to create copies of an open Recordset object, closing the original or a
clone does not affect any of the other copies.

CreateParameter Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateParameterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthCreateParameterX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthCreateParameterA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthCreateParameterS"}

Creates a new Parameter object with the specified properties.

Syntax
Set parameter = command.CreateParameter(Name, Type, Direction, Value)

The CreateParameter method syntax has these parts:

Part Description
parameter An object variable representing the Parameter

object you want to create.
command An object variable representing the Command

object for whose Parameters collection you want to
create a new Parameter object.

Name A String representing the name of the Parameter
object.

Type Optional. A Long value specifying the data type of
the Parameter object. See the Type property for
valid settings.

Direction Optional. A Long value specifying the type of
Parameter object. See the Direction property for
valid settings.

Value Optional. A Variant specifying the value for the
Parameter object.

Remarks
Use the CreateParameter method to create a new Parameter object with the specified name, type,
direction and value. Any values you pass in the arguments are written to the corresponding
Parameter properties.

This method does not automatically append the Parameter object to the Parameters collection of a
Command object. This lets you set additional properties whose values ADO will validate when you
append the Parameter object to the collection.

Delete Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthdeleteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthDeleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthDeleteS"}

Deletes the current record in an open Recordset object or an object from a collection.

Syntax
For a Recordset object:

recordset.Delete Affect

The Delete method syntax for Recordset objects has these parts:

Part Description
recordset An object variable representing an open Recordset

object.
Affect Optional. A Long expression that determines on how

many records the Delete method should act. Can be
one of the following constants:
· adAffectCurrent, 1 (Default) — Delete only the

current record.
· adAffectAll, 2 — Delete all the records in the

Recordset object.
· adAffectGroupFilter, ??? — Delete the records

that satisfy the current Filter property setting.
There must be a valid Filter on the Recordset in
order to use this constant.

For a collection:

Collection.Delete Object

The Collection placeholder represents the collection from which you want to delete an object. The
Object placeholder is a String representing the name of the object you wish to delete.

Remarks
Use the Delete method with a Recordset object to remove the current record or with a collection to
remove one of its objects.

Recordset
Using the Delete method marks the current record in a Recordset object for removal. If the
Recordset object doesn't allow record deletion, an error occurs. If you are in immediate update
mode, deletions occur in the database immediately. Otherwise, the records are marked for deletion
from the cache and the actual deletion happens when you call the UpdateBatch method.

Retrieving field values from the deleted record generates an error. After deleting the current record,
the deleted record remains current until you move to a different record. Once you move away from the
deleted record, it is no longer accessible.

Deleted records can be recovered if you nest the deletes in a transaction and use the RollbackTrans
method or if you are in batch update mode and use the CancelUpdateBatch method.

If the attempt to delete records fails because of a conflict with the underlying data (for example, a
record has already been deleted by another user), the provider returns warnings to the Errors
collection but does not halt program execution. A run-time error occurs only if there are conflicts on all
the requested records.

Collection
Using the Delete method on a collection lets you remove one of the objects in the collection. This
method is available only on the Parameters collection of a Command object. You must use the
Parameter object's Name property when calling the Delete method — an object variable is not a valid
argument.

Execute Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthExecuteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthExecuteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthExecuteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthExecuteS"}

· Command — Executes the query, SQL statement, or stored procedure specified in the
CommandText property.

· Connection — Executes the specified query, SQL statement, or stored procedure.

Syntax
On a Command object:

Set recordset = command.Execute(RecordsAffected, Parameters)
command.Execute RecordsAffected, Parameters

On a Connection object:

Set recordset = connection.Execute(CommandText, RecordsAffected)
connection.Execute CommandText, RecordsAffected

The Execute method syntax has these parts.

Part Description
recordset An object variable representing the Recordset

object in which the results of the query are
stored.

command An object variable representing a Command
object whose CommandText property
contains the query to execute.

connection An object variable representing a Connection
object on which the query is executed.

RecordsAffected Optional. A Long variable to which the provider
returns the number of records that the
operation affected.

Parameters Optional. A Variant array of parameter values
passed with an SQL statement.

CommandText A String containing the SQL statement, query,
or stored procedure to execute.

Remarks
Use the Execute method to execute an existing Command object or a query of your choosing. You
can also specify a Recordset object in which to store the results if any.

Command
Using the Execute method on a Command object executes the query specified in the
CommandText property of the object. If the CommandText property specifies a row-returning query,
any results the execution generates are stored in a new Recordset object. If the command is not a
row-returning query, the provider does not create a Recordset object and only returns a Null object
reference. Most application languages allow you to ignore this return value if no Recordset is
desired.

If the query has parameters, the current values for the Command object's parameters are used
unless you override these with parameter values passed with the Execute call. You can override a
subset of the parameters by omitting new values for some of the parameters when calling the
Execute method. The order in which you specify the parameters is the same order in which the

method passes them. For example if there were four (or more) parameters and you wanted to pass
new values for only the first and fourth parameters, you would pass varArray(var1,,,var4) as
the parameters argument.

Connection
Using the Execute method on a Connection object executes whatever query you pass to the method
in the CommandText argument on the specified connection. If the CommandText argument specifies
a row-returning query, any results the execution generates are stored in a new Recordset object. If
the command is not a row-returning query, the provider does not create a Recordset object and only
returns a Null object reference. Most application languages allow you to ignore this return value if no
Recordset is desired.

The contents of the CommandText argument are specific to the provider and can be standard SQL
syntax or any special command format that the provider supports.

GetChunk Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthGetChunkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthGetChunkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthGetChunkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthGetChunkS"}

Returns all or a portion of the contents of a large Field object.

Syntax
variable = field.GetChunk(Bytes)

The GetChunk method syntax has these parts.

Part Description
variable A String or Variant variable that receives the data.
field An object variable representing a Field object in the

Fields collection of an open Recordset object.
Bytes A Long expression equal to the number of bytes

you want to retrieve.

Remarks
Use the GetChunk method on a Field object to retrieve part or all of its long binary data. If system
memory is limited, the GetChunk method allows you to manipulate long values in portions rather than
in their entirety.

The bytes a GetChunk call returns are assigned to variable. If Bytes is greater than the number of
bytes of remaining data, the GetChunk method returns only the remaining bytes without padding the
data with empty spaces. If the field is empty, the GetChunk method returns Null.
The presence of the adFldLong constant in the Attributes property of a Field object indicates that
you can use the GetChunk method for that field.

If there is no current record when you use the GetChunk method on a Field object, an error occurs.

GetRows Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthGetRowsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthGetRowsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthGetRowsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthGetRowsS"}

Retrieves multiple records of a Recordset into an array.

Syntax
Array = recordset.GetRows(Rows, Bookmark, Fields)

The GetRows method syntax has the following parts.

Part Description
Array A Variant variable in which to store the returned data.
recordset An object variable representing a Recordset object.
Rows A Long expression indicating the number of records to

retrieve. Default is adGetRowsRest, -1.
Bookmark Optional. A String or Variant that evaluates to the

bookmark for the record from which the GetRows
operation should begin.

Fields Optional. A Variant array of field names or ordinal
position numbers. ADO returns only the data in these
fields.

Remarks
Use the GetRows method to copy records from a Recordset into a two-dimensional array. The first
subscript identifies the field and the second identifies the record number. The Array variable is
automatically dimensioned to the correct size when the GetRows method returns the data. The
returned data is read-only.

If you do not specify a value for the Rows argument, the GetRows method automatically retrieves all
the records in the Recordset object. If you request more records than are available, GetRows
returns only the number of available records.

If the Recordset object supports bookmarks, you can specify at which record the GetRows method
should begin retrieving data by passing the value of that record's Bookmark property.

If you want to restrict the fields the GetRows call returns, you can pass either a single field
name/number or an array of field names/numbers in the Fields argument.

After you call GetRows, the next unread record becomes the current record, or the EOF property is
set to True if there are no more records.

Move Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthMoveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthMoveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthMoveS"}

Moves the position of the current record in a Recordset object.

Syntax
recordset.Move Rows, StartBookmark

The Move method syntax has these parts.

Part Description
recordset An object variable representing the Recordset

object whose current record position you want to
move.

Rows A signed Long expression specifying the number of
records the current record position moves.

StartBookmark Optional. A String or Variant that evaluates to a
bookmark.

Remarks
The Move method is supported on all Recordset objects.

If the Rows argument is greater than zero, the current record position moves forward (toward the end
of the recordset). If Rows is less than zero, the current record position moves backward (toward the
beginning of the recordset). If Rows is zero, the current record is refreshed from the provider or the
local cache.

If the Move call would move the current record position to a point before the first record, ADO sets the
current record to the position before the first record in the recordset (BOF is True). An attempt to
move backward when the BOF property is already True generates an error.

If the Move call would move the current record position to a point after the last record, ADO sets the
current record to the position after the last record in the recordset (EOF is True). An attempt to move
forward when the EOF property is already True generates an error.

Calling the Move method from an empty Recordset object generates an error.

If you pass the StartBookmark argument, the move is relative to the record with this bookmark. If not
specified, the move is relative to the current record.

If you are using the CacheSize property to locally cache records from the provider, passing a Rows
that moves the current record position outside of the current group of cached records forces ADO to
retrieve a new group of records starting from the destination record. The CacheSize property
determines the size of the newly retrieved group, and the destination record is the first record
retrieved. ADO will also retrieve a new set of records if you are using a local cache and you pass the
StartBookmark argument.

If the Recordset object is forward-only, a user can still pass a Rows less than zero as long as the
destination is within the current set of cached records. If the Move call would move the current record
position to a record before the first cached record, an error will occur. Thus, you can create a "cached
cursor" that supports full scrolling over a provider that only supports forward scrolling. Because a
cached cursor will load all records into memory, you should avoid caching more records than is
necessary. Even if a forward-only Recordset object supports backward moves in this way, calling the
MovePrevious method on any forward-only Recordset object still generates an error.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthMoveFirstC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthMoveFirstX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthMoveFirstA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthMoveFirstS"}

Move to the first, last, next, or previous record in a specified Recordset object and make that record
the current record.

Syntax
recordset.{MoveFirst | MoveLast | MoveNext | MovePrevious}

The recordset placeholder is an object variable representing an open Recordset object.

Remarks
Use the MoveNext method to move the current record position one record forward (towards the
bottom of the Recordset). If the last record is the current record and you call the MoveNext method,
ADO sets the current record to the position after the last record in the Recordset (EOF is True). An
attempt to move forward when the EOF property is already True generates an error.

Use the MovePrevious method to move the current record position one record backward (towards
the top of the Recordset). The Recordset object must support bookmarks or backward cursor
movement; otherwise, the method call will generate an error. If the first record is the current record
and you call the MovePrevious method, ADO sets the current record to the position before the first
record in the Recordset (BOF is True). An attempt to move backward when the BOF property is
already True generates an error.

If the Recordset object does not support either bookmarks or backward cursor movement, the
MovePrevious method will generate an error. If the recordset is forward-only and you want to support
both forward and backward scrolling, you can use the CacheSize property to create a "cached
cursor" that will support backward cursor movement through the Move method. Because a cached
cursor will load all records into memory, you should avoid caching more records than is necessary.

Use the MoveFirst method to move the current record position to the first record in the recordset.
Using this method with a forward-only Recordset object generates an error.

Use the MoveLast method to move the current record position to the last record in the recordset. The
Recordset object must support bookmarks; otherwise, the method call will generate an error.

NextRecordset Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthNextRecordsetC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthNextRecordsetX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthNextRecordsetA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthNextRecordsetS"}

Retrieves the next Recordset, if any, from a multiple recordset-returning query, and indicates whether
one or more additional Recordset objects are pending.

Syntax
Boolean = recordset.NextRecordset
The NextRecordset method syntax has these parts:

Part Description
Boolean A Boolean variable that indicates if there are any

further query results.
recordset An object variable representing the Recordset object

to which you want to return pending records.

Remarks
Use the NextRecordset method to test for the presence of additional data as the result of a
compound query that returns more than one Recordset object.

Upon execution of a compound query, the results of the first query will be available in the Recordset
object variable to which the Execute method assigns the query results. Using the NextRecordset
method will allow you to obtain the recordsets from subsequent queries.

If Boolean is True, the results from the next part of the compound query are currently available in
recordset. If Boolean is False, no more results are pending and recordset is now empty.

As long as there are still parts of the compound query whose results have not yet been examined, the
NextRecordset method will return True until the last part of the compound query has been tested,
even if some of the intervening recordsets are empty.

Open Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthOpenX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"damthOpenA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthOpenS"}

· Connection Opens a connection to a data source.
· Recordset Opens a cursor.

Syntax
For a Connection object:

connection.Open ConnectionString, UserID, Password

For a Recordset object:

recordset.Open Source, ActiveConnection, CursorType, LockType, Options

The Open method syntax has these parts.

Part Description
connection An object variable representing an existing

Connection object.
recordset An object variable representing an existing

Recordset object.
ConnectionString Optional. A String containing connection

information. See the ConnectionString property for
details on valid settings.

UserID Optional. A String containing a user name to use
when establishing the connection.

Password Optional. A String containing a password to use
when establishing the connection.

Source Optional. A Variant containing a valid Command
object variable name, an SQL statement, a table
name, or a stored procedure call.

ActiveConnection Optional. A Variant containing a valid Connection
object variable name or a String containing a
definition for a connection.

CursorType Optional. A Long expression that determines the
type of cursor that the provider should use when
opening the Recordset. Can be one of the following
constants:
· adOpenForwardOnly, 0 (Default)
· adOpenKeyset, 1
· adOpenDynamic, 2
· adOpenStatic, 3
See the CursorType property for definitions of these
settings.

LockType Optional. A Long expression that determines what
type of locking (concurrency) the provider should
use when opening the Recordset. Can be one of
the following constants:
· adConcurDefault, -1 (Default)
· adConcurReadOnly, 1

· adConcurPessimistic, 2
· adConcurOptimistic, 3
· adConcurBatchOptimistic, 4
See the LockType property for definitions of these
settings.

Options Optional. A Long expression that indicates how the
provider should evaluate the Source argument if it
represents something other than a Command
object. Can be one of the following constants:
· adOpenDefault, 0 (Default) — The client

application calls the provider to determine the
nature of the Source argument.

· adOpenSQLString, 1 — The provider evaluates
the Source argument as an SQL string.

· adOpenStoredProc, 2 — The provider evaluates
the Source argument as a stored procedure.

· adOpenTable, 3 — The provider evaluates the
Source argument as a table name.

Remarks
Use the Open method on a Connection object or a Recordset object to activate the object for use.

Connection
Using the Open method on a Connection object establishes the physical connection to a data
source. After this method successfully completes, the connection is live and you can issue commands
against it and process results.

Use the optional ConnectionString argument to specify a Data Source Name (DSN) or a detailed
connection string containing a series of parameter=value arguments separated by semicolons. If the
argument contains an equal sign ("="), ADO assumes that you are providing a connection string
rather than a DSN. The ConnectionString property automatically inherits the value used for the
ConnectionString argument. Therefore, you can either set the ConnectionString property of the
Connection object before opening it, or use the ConnectionString argument to set or override the
current connection parameters during the Open method call.

The provider determines whether the optional UserID and Password arguments override any user or
password information provided in the ConnectionString parameter.

Recordset
Using the Open method on a Recordset object opens a cursor that represents records from a base
table or the results of a query.

Use the optional Source argument to specify a data source using one of the following: a Command
object variable, an SQL statement, a stored procedure, or a table name. If the Source argument is a
Command object, specifying an ActiveConnection argument or an Options argument in the Open
method generates an error.

The ActiveConnection argument corresponds to the ActiveConnection property and specifies in
which connection to open the Recordset object. If you pass a connection definition for this argument,
ADO opens a new connection using the specified parameters.

For the arguments that correspond directly to properties of a Recordset object (Source,
ActiveConnection, CursorType, and LockType), the relationship of the arguments to the properties is
as follows:

· The property is read/write before the Recordset object is opened.
· The property settings are used unless you pass the corresponding arguments during the Open

method. If you pass an argument, it overrides the corresponding property setting, and the property
setting is updated with the argument value.

· After you open the Recordset object, these properties become read-only.

Note For Recordset objects whose Source property is set to a valid Command object, the
ActiveConnection property is read-only, even if the Recordset object isn't open.

If you pass a Command object in the Source argument and also pass an ActiveConnection
argument, an error occurs. The ActiveConnection property of the Command object must already be
set to a valid Connection object or connection string.

If you pass something other than a Command object in the Source argument, you can use the
Options argument to optimize evaluation of the Source argument. If the Options argument is not
defined, you may experience diminished performance because ADO must make calls to the provider
to determine if the argument is an SQL statement, a stored procedure, or a table name. If you know
what Source type you're using, setting the Options argument instructs ADO to jump directly to the
relevant code. If the Options argument does not match the Source type, an error occurs.

If the data source returns no records, the provider sets both the BOF and EOF properties to True,
and the current record position is undefined. You can still add new data to this empty Recordset
object if the cursor type allows it.

Refresh Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRefreshC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRefreshX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRefreshA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRefreshS"}

Updates the objects in a collection to reflect objects available from and specific to the provider.

Syntax
collection.Refresh
The collection placeholder represents a Parameters, Fields, Errors, or Properties collection.

Remarks
The Refresh method accomplishes different tasks depending on the collection from which you call it.

Parameters
Using the Refresh method on a Command object's Parameters collection retrieves provider-side
parameter information for the stored procedure or parameterized query specified in the Command
object. The collection will be empty for providers that do not support stored procedure calls or
parameterized queries.

You should set the ActiveConnection property of the Command object to a valid Connection object
before calling the Refresh method.

If you access the Parameters collection before calling the Refresh method, ADO will automatically
call the method and populate the collection for you.

Fields
Using the Refresh method on the Fields collection has no visible effect. To retrieve changes to the
underlying database structure, you must use either the Requery method or, if the Recordset object
does not support bookmarks, the MoveFirst method.

Errors
Using the Refresh method on the Errors collection has no visible effect as this collection is always
current.

Properties
Using the Refresh method on a Properties collection of some objects populates the collection with
the dynamic properties the provider exposes. These properties provide information about functionality
specific to the provider beyond the built-in properties ADO supports.

Requery Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthRequeryC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthRequeryX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthRequeryA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthRequeryS"}

Updates the data in a Recordset object by re-executing the query on which the object is based.

Syntax
recordset.Requery
The recordset placeholder is an object variable representing an open Recordset object.

Remarks
Use the Requery method to refresh the entire contents of a Recordset object from the data source
by reissuing the original command and retrieving the data a second time. Calling this method is
equivalent to calling the Close and Open methods in succession. If you are editing the current record
or adding a new record, an error occurs.

While the Recordset object is open, the properties that define the nature of the cursor (CursorType,
LockType, MaxRecords, and so forth) are read-only. Thus, the Requery method can only refresh the
current cursor. To change any of the cursor properties and view the results, you must use the Close
method so that the properties become read/write again. You can then change the property settings
and call the Open method to reopen the cursor.

Resync Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthResyncC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthResyncX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthResyncA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthResyncS"}

Refreshes the data in the current Recordset object from the underlying database.

Syntax
recordset.Resync Affect

The Resync method syntax has these parts:

Part Description
recordset An object variable representing an open Recordset

object.
Affect Optional. A Long expression that determines on how

many records the Resync method should act. Can be
one of the following constants:
· adAffectCurrent, 1 — Retrieves underlying values

only for the current record.
· adAffectAll, 2 (Default) — Retrieves underlying

values for all the records in the Recordset object.
· adAffectGroupFilter, ??? — Retrieves underlying

values for the records that satisfy the current Filter
property setting. There must be a valid Filter on
the Recordset in order to use this constant.

Remarks
Use the Resync method to re-synchronize records in the current Recordset with the underlying
database. This is useful if you are using either a static or forward-only cursor but you want to see any
changes in the underlying database. Calling the Resync method cancels any pending batch updates.

Unlike the Refresh method, the Resync method does not re-execute the Recordset object's
underlying command; new records in the underlying database will not be visible.

If the attempt to resynchronize fails because of a conflict with the underlying data (for example, a
record has been deleted by another user), the provider returns warnings to the Errors collection but
does not halt program execution. A run-time error occurs only if there are conflicts on all the
requested records.

Supports Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthSupportsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthSupportsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthSupportsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthSupportsS"}

Determines whether a specified Recordset object supports a particular type of functionality.

Syntax
Boolean = recordset.Supports(CursorOptions)

The Supports method syntax has these parts:

Part Description
Boolean A Boolean variable that indicates whether the

specified functionality is available.
recordset An object variable representing an open Recordset

object.
CursorOptions A Long expression that consists of one or more of

the constants listed under Remarks.

Remarks
Use the Supports method to determine what types of functionality a Recordset object supports. If
the Recordset object supports the features whose corresponding constants are in CursorOptions, the
Supports method returns True. Otherwise, it returns False.

The CursorOptions argument can be set to any combination of the following:

Constant Value Functionality
adBookmark 8192 You can use the Bookmark

property to access specific records.
adDelete 16779264 You can use the Delete method to

delete records.
adHoldRecords 256 You can retrieve more records or

change the next retrieve position
without committing all pending
changes and releasing all currently
held records.

adMovePrevious 512 You can use the MovePrevious or
Move methods to move the current
record position backward.

adResync 131072 You can update the cursor with the
data visible in the underlying
database.

adApproxPosition 16384 You can retrieve records from
positions based on bookmarks or
approximate positions.

adAddNew 16778240 You can use the AddNew method
to add new records.

adUpdate 16809984 You can use the Edit method to
modify existing data.

adUpdateBatch 65536 You can use batch updating to
transmit changes to the provider in
groups.

Note Although the Supports method may return True for a given functionality, it does not
guarantee that the provider can make the feature available under all circumstances. The Supports
method simply returns whether or not the provider can support the specified functionality assuming
that certain conditions are met. For example, the Supports method may indicate that a Recordset
object supports updates even though the cursor is based on a multi-table join, some of the columns of
which are not updatable.

Update Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthUpdateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthUpdateS"}

Saves any changes you make to the current record of a Recordset object.

Syntax
recordset.Update Fields, Values

The Update method syntax has these parts:

Part Description
recordset An object variable representing an open, updatable

Recordset object.
Fields Optional. A Variant representing a single name or a

Variant array representing names of the field(s).
Values Optional. A Variant representing a single value or a

Variant array representing values for the field(s) in the
new record.

Remarks
Use the Update method to save any changes you make to the current record of a Recordset object
since calling the AddNew or Edit method. The Recordset object must support updates.

To set field values, do one of the following:

· assign values to a Field object's Value property and call the Update method
· pass a field name and a value as arguments with the Update call
· pass an array of field names and an array of values with the Update call

When you use arrays of fields and values, there must be an equal number of elements in both arrays.
Also, the order of field names must match the order of field values. If the number and order of fields
and values do not match, an error occurs.

If the Recordset object supports batch updating, then you can cache multiple changes to one or
more records locally until you call the UpdateBatch method. If you are editing the current record or
adding a new record when you call the UpdateBatch method, ADO will automatically call the Update
method to save any pending changes to the current record before transmitting the batched changes
to the provider.

If you move from the record you are adding or editing before calling the Update method, ADO will
automatically call Update to save the changes. You must call the CancelUpdate method if you want
to cancel any changes made to the current record or to discard a newly added record.

The current record remains current after you call the Update method.

UpdateBatch Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthUpdateBatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthUpdateBatchX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthUpdateBatchA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthUpdateBatchS"}

Writes all pending batch updates to disk.

Syntax
recordset.UpdateBatch Affect

The UpdateBatch method syntax has these parts:

Part Description
recordset An object variable representing an open Recordset

object.
Affect Optional. A Long expression that determines on how

many records the UpdateBatch method should act.
Can be one of the following constants:
· adAffectCurrent, 1 — Transmit changes only for

the current record.
· adAffectAll, 2 (Default) — Transmit changes for

all the records in the Recordset object.
· adAffectGroupFilter, ??? — Transmit changes

for records that satisfy the current Filter property
setting. There must be a valid Filter on the
Recordset in order to use this constant.

Remarks
Use the UpdateBatch method when modifying a Recordset object in batch update mode to transmit
all changes made in a Recordset object to the underlying database.

If the Recordset object supports batch updating, then you can cache multiple changes to one or
more records locally until you call the UpdateBatch method. If you are editing the current record or
adding a new record when you call the UpdateBatch method, ADO will automatically call the Update
method to save any pending changes to the current record before transmitting the batched changes
to the provider.

If the attempt to transmit changes fails because of a conflict with the underlying data (for example, a
record has already been deleted by another user), the provider returns warnings to the Errors
collection but does not halt program execution. A run-time error occurs only if there are conflicts on all
the requested records.

To cancel all pending batch updates, use the CancelUpdateBatch method.

AbsolutePage Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAbsolutePageC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAbsolutePageX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAbsolutePageA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAbsolutePageS"}

Indicates the absolute "page" on which the current record is located.

Settings and Return Values
Sets or returns a Long value from 1 to the number of pages in the Recordset object (PageCount).
The following values are also valid:

Constant Value Description
adAbPosUnknown -1 No current record
adAbPosBOF -2 Before the first record
adAbPosEOF -3 After the last record

Remarks
Use the AbsolutePage property to set or return the "page" number on which the current record is
located. Use the PageSize property to logically divide the Recordset object into a series of pages,
each of which has the number of records equal to PageSize.

Like the AbsolutePosition property, AbsolutePage is 1-based and returns 1 when the current record
is the first record in the Recordset. If the provider cannot determine the absolute page number, it
returns adAbPosUnknown (-1). If either the BOF or EOF property is True, the provider returns the
constants adAbPosBOF or adAbPosEOF respectively.

You can set this property to move to the first record of a particular page. You can obtain the total
number of pages from the PageCount property.

AbsolutePosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAbsolutePositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAbsolutePositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAbsolutePositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAbsolutePositionS"}

Indicates the ordinal position of a Recordset object's current record.

Settings and Return Values
Sets or returns a Long from 1 to the number of records in the Recordset object (RecordCount). The
following values are also valid:

Constant Value Description
adAbPosUnknown -1 No current record
adAbPosBOF -2 Before the first record
adAbPosEOF -3 After the last record

Remarks
Use the AbsolutePosition property to move to a record based on its ordinal position in the
Recordset object or to return the ordinal position of the current record.

Like the AbsolutePage property, AbsolutePosition is 1-based and returns 1 when the current record
is the first record in the Recordset. If the Recordset is empty or the provider cannot determine the
absolute position of the current record, the property value is adAbPosUnknown (-1). If either the
BOF or EOF property is True, the provider returns the constants adAbPosBOF or adAbPosEOF
respectively.

When you set the AbsolutePosition property to a record in the current cache, ADO moves the
current record position but does not reload the data in the cache from the provider. When you set the
AbsolutePosition property to a record outside the current cache, ADO retrieves a new group of
records starting with the record you specified. The CacheSize property determines the size of this
group.

You can obtain the total number of records in the Recordset object from the RecordCount property.
When you add new records, they appear at the end of the Recordset and receive the next largest
AbsolutePosition values. Reading the AbsolutePosition property of a deleted record generates an
error.

Note You should not use the AbsolutePosition property as a surrogate record number. The
position of a given record changes when you delete a preceding record(s). There is also no
assurance that a given record will have the same AbsolutePosition if the Recordset object is
requeried or reopened. Bookmarks are still the recommended way of retaining and returning to a
given position and are the only way of positioning across all types of Recordset objects.

ActiveConnection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproActiveConnectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproActiveConnectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproActiveConnectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproActiveConnectionS"}

Indicates to which Connection object the specified Command or Recordset object currently
belongs.

Settings and Return Values
Sets or returns a String containing the definition for a connection or a Connection object variable.
Default is Null.

Remarks
Use the ActiveConnection property to set or return an open Connection object over which the
specified Command object should execute or the specified Recordset should be opened. If you pass
a connection definition for this argument, ADO opens a new connection using the specified
parameters.

Command
For Command objects, the ActiveConnection property is read/write.

If you attempt to call the Execute method on a Command object before setting this property to an
open Connection object or valid connection string, an error occurs.

Setting this property to Null dis-associates the Command object from the current Connection, clears
the Parameters collection of the Command object, and causes the provider to release any
associated resources on the data source. You can then associate the Command object with the
same or another Connection object. If this property is currently set to an open Connection object
and you change the setting to another open Connection object, the Parameters collection will
remain intact.

Closing the Connection object with which a Command object is associated sets the
ActiveConnection property to Null. Setting this property to a closed Connection object generates
an error.

Recordset
For open Recordset objects or for Recordset objects whose Source property is set to a valid
Command object, the ActiveConnection property is read-only. Otherwise, it is read/write.

You can set this property to a valid Connection object or to a valid connection definition string. In this
case, the provider creates a new Connection object using this definition and opens the connection.
Additionally, the provider may set this property to the new Connection object to give you a way to
access the Connection object for extended error information or to execute other commands.

If you use the ActiveConnection argument of the Open method to open a Recordset object, the
ActiveConnection property will inherit the value of the argument.

If you set the Source property of the Recordset object to a valid Command object variable, the
ActiveConnection property of the Recordset inherits the setting of the Command object's
ActiveConnection property.

Usually, you would set this property on a closed Recordset object and then open the Recordset
object. If you are using batch updating and change the ActiveConnection property setting of an open
Recordset object to another open Connection object, you can post any batched updates in the
Recordset object to the underlying database of the new Connection assuming that the schemas of
the two databases match.

ActualSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproActualSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproActualSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproActualSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproActualSizeS"}

Indicates the actual length of a field's value.

Return Values
Returns a Long value.

Remarks
Use the ActualSize property to return the actual length of a Field object's value. For all fields, the
ActualSize property is read-only.

The ActualSize and DefinedSize properties are different as shown in the following example: a Field
object with a declared type of adChar and a maximum length of 50 characters returns a DefinedSize
property value of 50, but the ActualSize property value it returns is the length of the data stored in the
field for the current record.

Note To get the ActualSize value of a long binary field, the Recordset object must support
bookmarks.

Attributes Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAttributesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproAttributesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproAttributesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproAttributesS"}

Indicates one or more characteristics of an object.

Settings and Return Values
Sets or returns a Long value.

For a Connection object, the value can be any one or more of these constants (default is zero):

Constant Value Description
adXactPollAsync 2 Performs asynchronous commits.

You will not be able to confirm the
outcome of transactions you
commit.

adXactPollSyncPhaseOne 4 Calls commits after phase one of
the two-phase commit protocol.

adXactCommitRetaining 131072 Performs retaining commits, that
is, calling CommitTrans
automatically starts a new
transaction. Not all providers will
support this.

adXactAbortRetaining 262144 Performs retaining aborts, that is,
calling RollbackTrans
automatically starts a new
transaction. Not all providers will
support this.

adXactAbortAsync 524288 Performs asynchronous aborts.
You will not be able to confirm the
outcome of transactions you
rollback.

For a Parameter object, the value can be any one or more of these constants:

Constant Value Description
adParamSigned 16 Indicates that the parameter accepts signed

values. (Default.)
adParamNullable 64 Indicates that the parameter accepts Null

values.
adParamLong 128 Indicates that the parameter accepts long

binary data.

For a Field object, the value specifies characteristics of the field and can be a sum of any one or
more of these constants:

Constant Value Description
adFldBookmark 1 Indicates that the field contains a

bookmark.
adFldMayDefer 2 Indicates that the field is deferred, that

is, the field values are not retrieved
from the data source with the whole
record, but only when you explicitly
access them.

adFldUpdatable 4 Indicates that you can write to the field.
adFldUnknownUpdatable 8 Indicates that the provider cannot

determine if you can write to the field.
adFldFixed 16 Indicates that the field contains fixed-

length data.
adFldIsNullable 32 Indicates that the field accepts Null

values.
adFldMayBeNull 64 Indicates that you can read Null values

from the field.
adFldLong 128 Indicates that the field is a long binary

field. Also indicates that you can use
the AppendChunk and GetChunk
methods.

adFldRowID 256 Indicates that the field contains some
kind of record ID (record number,
unique identifier, and so forth).

adFldRowVersion 512 Indicates that the field contains some
kind of time or date stamp used to
track updates.

adFldCacheDeferred 4096 Indicates that the provider caches field
values and that subsequent reads are
done from the cache.

For a Property object, the value can be any one or more of these constants:

Constant Value Description
adPropNotSupported 0 Indicates that the property is not supported

by the provider.
adPropRequired 1 Indicates that the user must specify a value

for this property before the data source is
initialized.

adPropOptional 2 Indicates that the user does not need to
specify a value for this property before the
data source is initialized.

adPropRead 512 Indicates that the user can read the
property.

adPropWrite 1024 Indicates that the user can set the property.

Remarks
Use the Attributes property to set or return characteristics of Connection objects, Parameter
objects, Field objects, or Property objects.

For Connection objects, the Attributes property is read/write. Also, the adXactPollAsync and
adXactPollSyncPhaseOne constants are mutually exclusive; adding both constants to the
Attributes property generates an error.

For Parameter objects, the Attributes property is read/write. For Field and Property objects, the
Attributes property is read-only.

When you set multiple attributes, you can sum the appropriate constants. If you set the property value
to a sum including incompatible constants, an error occurs (for example, the adXactPollAsync and
adXactPollSyncPhaseOne constants on the Connection object).

BOF, EOF Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBOFC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBOFX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproBOFA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBOFS"}

· BOF indicates that the current record position is before the first record in a Recordset object.
· EOF indicates that the current record position is after the last record in a Recordset object.

Return Values
The BOF and EOF properties return Boolean values.

Remarks
Use the BOF and EOF properties to determine whether a Recordset object contains records or
whether you've gone beyond the limits of a Recordset object when you move from record to record.

The BOF property returns True (-1) if the current record position is before the first record and False
(0) if the current record position is on or after the first record.

The EOF property returns True if the current record position is after the last record and False if the
current record position is on or before the last record.

If either the BOF or EOF property is True, there is no current record.

If you open a Recordset object containing no records, the BOF and EOF properties are set to True,
and the Recordset object's RecordCount property setting is zero. When you open a Recordset
object that contains at least one record, the first record is the current record and the BOF and EOF
properties are False.

If you delete the last remaining record in the Recordset object, the BOF and EOF properties may
remain False until you attempt to reposition the current record.

This table shows which Move methods are allowed with different combinations of the BOF and EOF
properties.

MoveFirst,
MoveLast

MovePrevious,
Move < 0 Move 0

MoveNext,
Move > 0

BOF=True,
EOF=False

Allowed Error Error Allowed

BOF=False,
EOF=True

Allowed Allowed Error Error

Both True Error Error Error Error
Both False Allowed Allowed Allowed Allowed

Allowing a Move method doesn't guarantee that the method will successfully locate a record; it only
means that calling the specified Move method won't generate an error.

Calling the Delete method, even if it removes the only remaining record from a Recordset, won't
change the setting of the BOF or EOF property.

The following table shows what happens to the BOF and EOF property settings when you call various
Move methods but are unable to successfully locate a record.

BOF EOF
MoveFirst, MoveLast Set to True Set to True
Move 0 No change No change
MovePrevious, Move < 0 Set to True No change
MoveNext, Move > 0 No change Set to True

Bookmark Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproBookmarkC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproBookmarkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproBookmarkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproBookmarkS"}

Returns a bookmark that uniquely identifies the current record in a Recordset object or sets the
current record in a Recordset object to the record identified by a valid bookmark.

Settings and Return Values
Sets or returns a variant expression that evaluates to a valid bookmark. (Data type is Variant array of
Byte data.)

Remarks
Use the Bookmark property to save the position of the current record and return to that record at any
time. Bookmarks are only available in Recordset objects that support bookmark functionality.

When you open a Recordset object, each of its records has a unique bookmark. To save the
bookmark for the current record, assign the value of the Bookmark property to a variable. To quickly
return to that record at any time after moving to a different record, set the Recordset object's
Bookmark property to the value of that variable.

The user may not be able to view the value of the bookmark. Also, users should not expect
bookmarks to be directly comparable—two bookmarks that refer to the same record may have
different values.

If you use the Clone method to create a copy of a Recordset object, the Bookmark property settings
for the original and the duplicate Recordset objects are identical and you can use them
interchangeably. However, you can't use bookmarks from different Recordset objects
interchangeably, even if they were created from the same source or command.

CacheSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCacheSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCacheSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCacheSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCacheSizeS"}

Indicates the number of records from a Recordset object that are cached locally in memory.

Settings and Return Values
Sets or returns a Long value which must be greater than 0. Default is 1 for forward-only cursors, 10
for all other types.

Remarks
Use the CacheSize property to control how many records the provider keeps in its buffer and how
many to retrieve at one time into local memory. For example, if the CacheSize is 10, after first
opening the Recordset object, the provider retrieves the first 10 records into local memory. As you
move through the Recordset object, the provider returns the data from the local memory buffer. As
soon as you move past the last record in the cache, the provider retrieves the next 10 records from
the data source into the cache.

The value of this property can be adjusted during the life of the Recordset object, but changing this
value only affects the number of records in the cache after subsequent retrievals from the data
source. Changing the property value alone will not change the current contents of the cache.

If there are fewer records to retrieve than CacheSize specifies, the provider returns the remaining
records; no error occurs.

A CacheSize setting of zero is not allowed and returns an error.

Records retrieved from the cache don't reflect concurrent changes that other users made to the
source data. To force an update of all the cached data, use the Resync method.

CommandText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCommandTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCommandTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCommandTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCommandTextS"}

Contains the text of a command that you want to issue against a provider.

Settings and Return Values
Sets or returns a String value containing an SQL statement, a table name or a stored procedure call.
Default is "" (zero-length string).

Remarks
Use the CommandText property to set or return the text version of the query in a Command object.

The contents of the CommandText property are specific to the provider and can be standard SQL
syntax or any special command format that the provider supports.

If the Prepared property of the Command object is set to True and the Command object is bound to
an open connection when you set the CommandText property, ADO prepares the query when you
call the Execute or Open methods. Depending on the CommandType property setting, ADO may
alter the CommandText property during preparation or execution. After you call the Execute method,
you may read the CommandText property to see if its value has changed.

CommandTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCommandTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCommandTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCommandTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCommandTimeoutS"}

Indicates how long to wait while executing a command before terminating the attempt and generating
an error.

Settings and Return Values
Sets or returns a Long value that indicates, in seconds, how long to wait for a command to execute.
Default is 30.

Remarks
Use the CommandTimeout property on a Connection object or Command object to allow the
cancellation of a command due to delays from network traffic or heavy server use. If the time from the
CommandTimeout property setting elapses prior to execution of the command, an error occurs and
ADO cancels the command. If you set the property to zero, ADO will wait indefinitely until the
execution is complete. Make sure the provider and data source to which you are writing code
supports the CommandTimeout functionality.

For Connection objects, the CommandTimeout property is read/write.

When you use CommandTimeout on a Connection object, you set a global value for all commands
executed and all recordsets opened on that connection. You can override this value for a specific
command by setting the CommandTimeout property of the appropriate Command object.

CommandType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCommandTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCommandTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCommandTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCommandTypeS"}

Indicates the type of a Command object.

Settings and Return Values
Sets or returns a Long value equal to one of the following constants:

Constant Value Description
adCmdDefault -1 ???
adCmdUnknown 0 The type of command in the CommandText

property is not known. (Default)
adCmdText 1 Evaluates CommandText as a textual

definition of a command.
adCmdTable 2 Evaluates CommandText as a table name.
adCmdStoredProc 4 Evaluates CommandText as a stored

procedure.

Remarks
Use the CommandType property to optimize evaluation of the CommandText property. If the
CommandType property value equals adCmdUnknown (0), you may experience diminished
performance because ADO must make calls to the provider to determine if the CommandText
property is an SQL statement, a stored procedure, or a table name. If you know what type of
command you're using, setting the CommandType property instructs ADO to go directly to the
relevant code. If the CommandType property does not match the type of command in the
CommandText property, an error occurs when you call the Execute method.

ConnectionString Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnectionStringC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproConnectionStringX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproConnectionStringA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproConnectionStringS"}

*** THIS TOPIC STILL IN PROGRESS. ***
Contains connection parameters.

Settings and Return Values
Sets or returns a String value.

Remarks
This property reflects the connection string or information used to connect to the data source. You can
set this property while the connection is not actually open but it becomes read-only once the Open
method has succeeded. This property becomes read/write again after the Close method has
succeeded.

This property is set to the actual connection string that was used in creating the connection that gets
returned.

The behavior matches that of DAO 3.5 with respect to passwords.

ConnectionTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnectionTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproConnectionTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproConnectionTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproConnectionTimeoutS"}

Indicates how long to wait while establishing a connection before terminating the attempt and
generating an error.

Settings and Return Values
Sets or returns a Long value that indicates, in seconds, how long to wait for the connection to open.
Default is 15.

Remarks
Use the ConnectionTimeout property on a Connection object if delays from network traffic or heavy
server use make it necessary to abandon a connection attempt. If the time from the
ConnectionTimeout property setting elapses prior to the opening of the connection, an error occurs
and ADO cancels the attempt. If you set the property to zero, ADO will wait indefinitely until the
connection is opened. Make sure the provider to which you are writing code supports the
ConnectionTimeout functionality.

The ConnectionTimeout property is read/write when the connection is closed and read-only when it
is open.

Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproCountA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCountS"}

Indicates the number of objects in a collection.

Return Values
Returns a Long value.

Remarks
Use the Count property to determine how many objects are in a given collection.

Because numbering for members of a collection begins with zero, you should always code loops
starting with the zero member and ending with the value of the Count property minus one. If you want
to loop through the members of a collection without checking the Count property, use the For
Each...Next command.

If the Count property is zero, there are no objects in the collection.

CursorType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproCursorTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproCusorTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproCursorTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproCursorTypeS"}

*** THIS TOPIC STILL IN PROGRESS. ***
Indicates the type of cursor used in a Recordset object.

Settings and Return Values
Sets or returns a Long value equal to one of the following constants:

Constant Value Description
adOpenDefault -1 If the provider is unable to open the

cursor you specify, it may open a
different type and set the CursorType
property accordingly. If the cursor used
by the provider cannot be determined,
CursorType is set to this value.

adOpenForwardOnly 0 Forward-only cursor. Identical to a static
cursor except that you can only scroll
forward through records. This improves
performance in situations when you only
need to make a single pass through a
recordset. (Default)

adOpenKeyset 1 Keyset cursor. Like a dynamic cursor,
except that you can't see records that
other users add, although records that
other users delete are inaccessible from
your recordset. Data changes by other
users are still visible.

adOpenDynamic 2 Dynamic cursor. Additions, changes, and
deletions by other users are visible, and
all types of movement through the
recordset are allowed, except for
bookmarks if the provider doesn't support
them.

adOpenStatic 3 Static cursor. A static copy of a set of
records that you can use to find data or
generate reports. Additions, changes, or
deletions by other users are not visible.

Remarks
Use the CursorType property to determine the type of cursor that should be used when opening the
Recordset object. The CursorType property is read/write when the recordset is closed and read-only
when it is open.

If a provider does not support the requested cursor type, the provider may return another cursor type.
To verify specific functionality of the returned cursor, use the Supports method.

*** TO BE INCLUDED: A chart correlating cursor types to Supports method
features. ***

DefaultDatabase Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefaultDatabaseC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefaultDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefaultDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefaultDatabaseS"}

Indicates the default database for a Connection object.

Settings and Return Values
Sets or returns a String that evaluates to the name of a database available from the provider.

Remarks
Use the DefaultDatabase property to set or return the name of the default database on a specific
Connection object.

If there is a default database, SQL strings may use an unqualified syntax to access objects in that
database. To access objects in a database other than the one specified in the DefaultDatabase
property, you must qualify object names with the desired database name. Upon connection, the
provider will write default database information to the DefaultDatabase property. Some providers
allow only one database per connection in which case you cannot change the DefaultDatabase
property.

DefinedSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDefinedSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDefinedSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDefinedSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDefinedSizeS"}

Indicates the defined size of a Field object.

Return Values
Returns a Variant value that reflects the defined size of a field as a number of bytes.

Remarks
Use the DefinedSize property to determine the data capacity of a Field object.

The DefinedSize and ActualSize properties are different as shown in the following example: a Field
object with a declared type of adChar and a maximum length of 50 characters returns a DefinedSize
property value of 50, but the ActualSize property value it returns is the length of the data stored in the
field for the current record up to 50.

Description Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDescriptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDescriptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDescriptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDescriptionS"}

A descriptive string associated with an error.

Return Values
Returns a String value.

Remarks
Use the Description property to obtain a short description of the error. Display this property to alert
the user to an error that you cannot or do not want to handle. The string will come from either ADO or
a provider.

Providers are responsible for passing specific error text to ADO. ADO adds an Error object to the
Errors collection for each provider error it receives. Enumerate the Errors collection to trace the
errors that the provider passes.

Direction Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDirectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDirectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDirectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDirectionS"}

Indicates whether the Parameter represents an input parameter, an output parameter, or both, or if
the parameter is the return value from a stored procedure.

Settings and Return Values
Sets or returns a Long value equal to one of the following constants:

Constant Value Description
adParamInput 1 Input parameter (Default)
adParamOutput 2 Output parameter
adParamInputOutput 3 Input and output parameter
adParamReturnValue 4 Return value

Remarks
Use the Direction property to specify how a parameter is passed to or from a procedure. The
Direction property is read/write; this allows you to work with providers that don't return this
information or to set this information when you don't want ADO to make an extra call to the provider to
retrieve parameter information.

Not all providers can determine the direction of parameters in their stored procedures. In these cases,
you must set the Direction property prior to executing the query.

EditMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproEditModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproEditModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproEditModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproEditModeS"}

Indicates the editing status of the current record.

Return Values
Returns a Long value equal to one of the following constants:

Constant Value Description
adEditNone 0 No editing operation is in progress.
adEditInProgress 1 Data in the current record has been modified

but not yet saved.
adEditAdd 2 The AddNew method has been invoked, and

the current record in the copy buffer is a new
record that hasn't been saved in the
database.

Remarks
Use the EditMode property to determine the editing status of the current record. You can test for
pending changes if an editing process has been interrupted and determine whether you need to use
the Update or CancelUpdate method.

See the AddNew method for a more detailed description of the EditMode property under different
editing conditions.

Filter Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproFilterC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproFilterX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproFilterA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproFilterS"}

Indicates a filter for data in a Recordset.

Settings and Return Values
Sets or returns a Variant value, which can contain one of the following:

· Criteria string — a string made up of one or more individual clauses concatenated with AND or OR.
· One of the following constants:

Constant Value Description
adFilterNone 0 Removes the current filter and

restores all records to view.
adFilterPendingRecords 1 Allows you to view only records that

have changed but not yet sent to
the server. Only applicable for batch
update mode.

adFilterAffectedRecords 2 Allows you to view only records
affected by the last Delete, Resync,
UpdateBatch, or
CancelUpdateBatch call.

adFilterFetchedRecords 3 Allows you to view only records that
have already been retrieved.

adFilterPredicate 4 ???

· Array of bookmarks — an array of unique bookmark values that point to records in the Recordset
object.

Remarks
Use the Filter property to selectively screen out records in a Recordset object. The filtered
Recordset becomes the current cursor. This affects other properties such as AbsolutePosition,
AbsolutePage, RecordCount, and PageCount that return values based on the current cursor.

The criteria string is made up of clauses in the form FieldName-Operator-Value (for example,
"LastName = 'Smith'"). You can create compound clauses by concatenating individual clauses
with AND or OR (for example, "LastName = 'Smith' AND FirstName = 'John'"). Use the
following guidelines for criteria strings:

· FieldName must be a valid field name from the Recordset. If the field name contains spaces, you
must enclose the name in square brackets.

· Operator must be one of the following: <, >, <=, >=, <>, =, Like, Not.
· Value is the value with which you will compare the field values (for example, 'Smith',
#8/24/95#, 12.345 or $50.00). If Operator is Like, Value can use wildcards. Use single quotes
with strings and pound signs (#) with dates. For numbers, you can use decimal points, dollar signs,
and scientific notation.

The filter constants make it easier to resolve individual record conflicts during batch update mode by
allowing you to view, for example, only those records that were affected during the last UpdateBatch
method call.

Setting the Filter property to a zero-length string ("") has the same effect as using the adFilterNone
constant.

See the Bookmark property for an explanation of bookmark values from which you can build an array
to use with the Filter property.

HelpContext, HelpFile Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproHelpContextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproHelpContextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproHelpContextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproHelpContextS"}

Indicates the help file and topic associated with an error.

Return Values
· HelpContextID — returns a context ID, as a Long value, for a topic in a Microsoft Windows Help

file.
· HelpFile — returns a String that evaluates to a fully qualified path to a Help file.

Remarks
If a Help file is specified in the HelpFile property, the HelpContext property is used to automatically
display the Help topic it identifies. If there is no relevant help topic available, the HelpContext
property returns zero and the HelpFile property returns a zero-length string ("").

IsolationLevel Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIsolationLevelC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIsolationLevelX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproIsolationLevelA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIsolationLevelS"}

Indicates the level of isolation for a Connection object.

Settings and Return Values
Sets or returns a Long equal to one of the following constants:

Constant Value Description
adXactUnspecified -1 If the provider is using a different

IsolationLevel than specified but
which one cannot be determined,
the property returns this value.

adXactChaos 16 ???
adXactBrowse 256 Indicates that from one transaction

you can view uncommitted
changes in other transactions.

adXactReadUncommitted 256 Same as adXactBrowse.
adXactCursorStability 4096 Indicates that from one transaction

you can view changes in other
transactions only after they've
been committed. (Default.)

adXactReadCommitted 4096 Same as adXactCursorStability.
adXactRepeatableRead 65536 Indicates that from one transaction

you cannot see changes made in
other transactions, but that
requerying can bring new
recordsets.

adXactIsolated 1048576 Indicates that transactions are
conducted in isolation of other
transactions.

adXactSerializable 1048576 Same as adXactIsolated.

Remarks
Use the IsolationLevel property to set the isolation level of a Connection object. The IsolationLevel
property is read/write. The setting does not take effect until the next time you call the BeginTrans
method.

LockType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproLockTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproLockTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproLockTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproLockTypeS"}

Indicates the type of locks placed on records during editing.

Settings and Return Values
Sets or returns a Long value equal to one of the following constants:

Constant Value Description
adLockDefault -1 Provider determines lock type

(typically read-only).
adLockReadOnly 1 Read-only — you cannot alter the

data.
adLockPessimistic 2 Pessimistic locking, record by

record — the provider does what is
necessary to ensure successful
editing of the records, usually by
locking records at the data source
immediately upon editing.

adLockOptimistic 3 Optimistic locking, record by record
— the provider uses optimistic
locking, locking records only when
you call the Update method.

adLockBatchOptimistic 4 Optimistic batch updates —
required for batch update mode as
opposed to immediate update
mode.

Remarks
Use the LockType property to determine what type of locking the provider should use when opening
a Recordset object or to return the type of locking in use on an open Recordset object. The
LockType property is read/write when the Recordset is closed and read-only when it is open.

Providers may not support all lock types. If a provider cannot support the requested LockType
setting, it will substitute another type of locking. To determine the actual locking functionality available
in a Recordset object, use the Supports method.

MaxRecords Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproMaxRecordsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproMaxRecordsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproMaxRecordsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproMaxRecordsS"}

Indicates the maximum number of records to return to a Recordset from a query.

Settings and Return Values
Sets or returns a Long value. Default is zero.

Remarks
Use the MaxRecords property to limit the number of records the provider returns from the data
source. The default setting of this property is zero which means that the provider returns all requested
records. The MaxRecords property is read/write when the Recordset is closed and read-only when it
is open.

Mode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproModeA"}
ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproModeS"}

*** THIS TOPIC STILL IN PROGRESS. ***
Indicates the available permissions for modifying data in a Connection.

Settings and Return Values
Sets or returns a Long value that can be one of the following constants:

Constant Value Description
adModeDefault 0 (Default)
adModeRead 1
adModeWrite 2
adModeReadWrite 3
adModeShareDenyRead 4
adModeShareDenyWrite 8
adModeShareExclusive 12
adModeShareDenyNone 16

Remarks
Use the Mode property to set or return the access permissions in use by the provider on the current
connection. The Mode property is read/write when the connection is closed and read-only when it is
open.

Name Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproNameA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNameS"}

Indicates the name for a Field, Parameter, or Property object.

Settings and Return Values
Sets or returns a String value.

Remarks
Use the Name property to refer to a Field, Parameter, or Property object within its respective
collection.

For Parameter objects not yet appended to the Parameters collection, the Name property is
read/write. For appended Parameter objects and all other objects, the Name property is read-only.
Names do not have to be unique within a collection.

You can retrieve the Name property of an object by an ordinal reference, after which you can refer to
the object directly by name. For example, if rstMain.Properties(20).Name yields
Updatability, you can subsequently refer to this property as
rstMain.Properties("Updatability").

NativeError Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNativeErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNativeErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproNativeErrorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNativeErrorS"}

Indicates the provider-specific error code for a given Error object.

Return Values
Returns a Long value.

Remarks
Use the NativeError property to retrieve the provider-specific error code for a particular Error object.

Number Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproNumberC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproNumberX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproNumberA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproNumberS"}

Indicates the number that uniquely identifies an error.

Return Values
Returns a Long value.

Remarks
Use the Number property to determine which error occurred. The value of the property is a unique
number that corresponds to the error condition.

OriginalValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproOriginalValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproOriginalValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproOriginalValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproOriginalValueS"}

Indicates the value of a Field that existed in the record before any changes were made, or in the
database when the last batch update began.

Return Values
Returns a Variant value.

Remarks
Use the OriginalValue property to return the original field value for a field from the current record.

In immediate update mode, the OriginalValue property returns the field value that existed before you
called any methods that set the field value, but since the last Update method call. This is the same
value that the CancelUpdate method uses to replace the Value property.

In batch update mode, the OriginalValue property returns the field value that existed before any
methods that set the value were called on the field, but since the last UpdateBatch. This is the same
value that the CancelUpdateBatch method uses to replace the Value property. When you use this
property with the UnderlyingValue property, you can resolve conflicts that arise from batch updates.

PageCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPageCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPageCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPageCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPageCountS"}

Indicates how many "pages" of data the Recordset object contains.

Return Values
Returns a Long value.

Remarks
Use the PageCount property to determine how many "pages" of data are in the Recordset object.
Pages are groups of records whose size equals the PageSize property setting. If the Recordset
object does not support this property, the value will be -1 to indicate that the PageCount is
indeterminable.

See the PageSize and AbsolutePage properties for more on page functionality.

PageSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPageSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPageSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPageSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPageSizeS"}

Indicates how many records constitute one "page" in the Recordset.

Settings and Return Values
Sets or returns a Long value, indicating how many records are on a page. Default is 10.

Remarks
Use the PageSize property to determine how many records make up a logical "page" of data.
Establishing a page size allows you to use the AbsolutePage property to move to the first record of a
particular page. This is useful in web-server scenarios when you want to allow the user to page
through data, viewing a certain number of records at a time.

This property can be set at any time, and its value will be used for calculating where the first record of
a particular page is.

Precision Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPrecisionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPrecisionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPrecisionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPrecisionS"}

Indicates the degree of precision for Numeric values in a Parameter object or for numeric Field
objects.

Settings and Return Values
Sets or returns a Byte value, indicating the maximum total number of digits used to represent values.

Remarks
Use the Precision property to determine the maximum number of digits used to represent values for
a numeric Parameter or Field object.

For Parameter objects, the Precision property is read/write. For Field objects, the Precision
property is read-only.

Prepared Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproPreparedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproPreparedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproPreparedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproPreparedS"}

Indicates whether or not to create a prepared statement from the command before execution.

Settings and Return Values
Sets or returns a Boolean value.

Remarks
Use the Prepared property to have the provider create a temporary stored representation of the
query specified in the CommandText property before a Command object's first execution. Setting
this property to True requests the provider to compile a command on its first execution. This may slow
a command's first execution, but once the provider compiles a command, it will use the compiled
version of the command for any subsequent executions which will result in improved performance.

If the property is False, the provider will execute the Command object directly without creating a
compiled version.

If the provider does not support command preparation, it ignores any requests to prepare the
command and sets the Prepared property to False.

Provider Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproProviderC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproProviderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproProviderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproProviderS"}

Indicates the name of the provider for a Connection object.

Settings and Return Values
Sets or returns a String value.

Remarks
Use the Provider property to set or return the name of the provider for a connection. This property
can also be set by the contents of ConnectionString property or the ConnectionString argument of
the Open method. If no provider is specified, the property will default to MSDASQL.

The Provider property is read/write when the connection is closed and read-only when it is open. The
setting does not take effect until you either open the Connection object or access the Properties
collection of the Connection object. If the setting is invalid, an error occurs.

RecordCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproRecordCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproRecordCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproRecordCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproRecordCountS"}

Indicates the current number of records in a Recordset object.

Return Values
Returns a Long value.

Remarks
Use the RecordCount property to find out how many records are in a Recordset object. The property
returns adUnknown when ADO cannot determine the number of records. Reading the RecordCount
property on a closed Recordset causes an error.

If the Recordset object supports approximate positioning or bookmarks, this value will be the exact
number of records in the Recordset regardless of whether it has been fully populated. If the
Recordset object does not support approximate positioning, this property may be a significant drain
on resources because all records will have to be retrieved and counted to return an accurate
RecordCount value.

Scale Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproScaleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproScaleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproScaleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproScaleS"}

Indicates the scale of Numeric values in a Parameter or Field object.

Settings and Return Values
Sets or returns a Byte value, indicating the number of decimal places to which numeric values will be
resolved.

Remarks
Use the Scale property to determine how many digits to the right of the decimal point will be used to
represent values for a numeric Parameter or Field object.

For Parameter objects, the Scale property is read/write. For Field objects, the Scale property is
read-only.

Size Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSizeC"} {ewc HLP95EN.DLL,DYNALINK,"Example":"daproSizeX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSizeS"}

Indicates the maximum size, in bytes, of a Parameter object.

Settings and Return Values
Sets or returns a Long value that indicates the maximum size in bytes of a value in a Parameter
object.

Remarks
Use the Size property to determine the maximum size for values written to or read from the Value
property of a Parameter object. The Size property is read/write.

Source Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSourceS"}

· Recordset — indicates the source for the data in the Recordset object (Command object, SQL
statement, table name, or stored procedure).

· Error — indicates the name of the object or application that originally generated the error.

Settings and Return Values
· Recordset — sets or returns a String value or Command object reference.
· Error — returns a String value.

Remarks
Use the Source property on a Recordset object to determine from where the Recordset object's
data comes, or on an Error object to create error-handling routines.

Recordset
Use the Source property to specify a data source for a Recordset object using one of the following: a
Command object variable, an SQL statement, a stored procedure, or a table name. The Source
property is read/write for closed Recordset objects and read-only for open Recordset objects.

If the Source property specifies a Command object, the ActiveConnection property of the
Recordset object will inherit the value of the ActiveConnection property for the specified Command
object. If the Source property is an SQL statement, a stored procedure, or a table name, you can
optimize performance by passing the appropriate Options argument with the Open method call.

Error
Use the Source property on an Error object to determine the name of the object or application that
originally generated an error. This could be the object's class name or programmatic ID. For ADO, this
property is ADO.ObjectName where ObjectName is the name of the object that triggered the error.
The Source property is read-only for Error objects.

Based on the error documentation from the Source, Number, and Description properties of Error
objects, you can write code that will handle the error appropriately.

SQLState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproSQLStateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproSQLStateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproSQLStateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproSQLStateS"}

Indicates the SQL state for a given Error object.

Return Values
Returns a five-character String that follows the ANSI SQL standard.

Remarks
Use the SQLState property to obtain the SQL state of an Error object expressed as a five-character
String that follows the ANSI SQL standard.

Status Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproStatusC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproStatusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproStatusA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproStatusS"}

*** THIS TOPIC STILL IN PROGRESS. ***
Indicates the results of the last Update or UpdateBatch call on a Recordset object.

Return Values
Returns a Long value made up of a combination of the following constants:

Constant Value Description
adRecOK 0 The record was succesfully

updated.
adRecNew 1 The record is new.
adRecModified 2 The record was modified.
adRecDeleted 4 The record was deleted.
adRecUnmodified 8 The record was not modified.
adRecInvalid 16 The record was not saved

because its bookmark is invalid.
adRecMultipleChanges 64 The record was not saved

because it would have affected
multiple records.

adRecPendingChanges 128 The record was not saved
because it refers to a pending
insert.

adRecCanceled 256 The record was not saved
because the operation was
canceled.

adRecCantRelease 1024 The new record was not saved
because of existing record
locks.

adRecConcurrencyViolation 2048 The record was not saved
because optimistic concurrency
was in use.

adRecIntegrityViolation 4096 The record was not saved
because the user violated
integrity constraints.

adRecMaxChangesExceeded 8192 The record was not saved
because there were too many
pending changes.

adRecObjectOpen 16384 The record was not saved
because of a conflict with an
open storage object.

adRecOutOfMemory 32768 The record was not saved
because the computer has run
out of memory.

adRecPermissionDenied 65536 The record was not saved
because the user has
insufficient permissions.

adRecSchemaViolation 131072 The record was not saved

because it violates the structure
of the underlying database.

adRecDBDeleted 262144 The record has already been
deleted from the data source.

Remarks
Use the Status property to view the status of records that fail during bulk operations such as when
you call the Delete, Resync, UpdateBatch or CancelUpdateBatch methods on a Recordset object
or set the Filter property on a Recordset object. With this property, you can determine how a given
record failed and resolve it accordingly.

Type Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproTypeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproTypeS"}

Indicates the operational type or data type of a Parameter, Field, or Property object.

Settings and Return Values
Sets or returns a Long value equal to one of the following constants:

Constant Value Description
adBigInt 20 An eight-byte signed integer.
adBinary 128 A binary value.
adBoolean 11 A Boolean value.
adBSTR 8 A null-terminated character string

(Unicode).
adChar 129 A String value.
adCurrency 6 A currency value (eight-byte signed integer

scaled by 10,000).
adDate 7 A Date value.
adDBDate 133 A date value (yyyymmdd).
adDBTime 134 A time value (hhmmss).
adDBTimeStamp 135 A date-time stamp (yyyymmddhhmmss

plus a fraction in billionths).
adDecimal 14 An exact numeric value with a fixed

precision and scale.
adDefault -1 ???
adDouble 5 A double-precision floating point value.
adEmpty 0 No value was specified.
adError 10 A 32-bit error code.
adGUID 72 A globally unique identifier (GUID).
adIDispatch 9 A pointer to an IDispatch interface on an

OLE object.
adInteger 3 A four-byte signed integer.
adIUnknown 13 A pointer to an IUnknown interface on an

OLE object.
adLongVarBinary 205 A long binary value. (Parameter object

only.)
adLongVarChar 201 A long String value. (Parameter object

only.)
adLongVarWChar 203 A long null-terminated string value.

(Parameter object only.)
adNumeric 131 An exact numeric value with a fixed

precision and scale.
adSingle 4 A single-precision floating point value.
adSmallInt 2 A two-byte signed integer.
adTinyInt 16 A one-byte signed integer.
adUnsignedBigInt 21 An eight-byte unsigned integer.
adUnsignedInt 19 A four-byte unsigned integer.

adUnsignedSmallInt 18 A two-byte unsigned integer.
adUnsignedTinyInt 17 A one-byte unsigned integer.
adUserDefined 132 A user-defined variable.
adVarBinary 204 A binary value. (Parameter object only.)
adVarChar 200 A String value. (Parameter object only.)
adVariant 12 An OLE Automation Variant.
adVarWChar 202 A null-terminated Unicode character string.

(Parameter object only.)
adWChar 130 A null-terminated Unicode character string.

Remarks
For Parameter objects, the Type property is read/write. For all other objects, the Type property is
read-only.

UnderlyingValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproUnderlyingValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproUnderlyingValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproUnderlyingValueA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproUnderlyingValueS"}

Indicates a Field object’s current value in the database.

Return Values
Returns a Variant value.

Remarks
Use the UnderlyingValue property to return the current field value from the database. The field value
in the UnderlyingValue property is the value that is visible to your transaction and may be the result
of a recent update by another transaction. This may differ from the OriginalValue property, which
reflects the value that was originally returned to the Recordset.
This is similar to using the Resync method, but the UnderlyingValue property only returns the value
for a specific field from the current record. This is the same value that the Resync method uses to
replace the Value property.

When you use this property with the OriginalValue property, you can resolve conflicts that arise from
batch updates.

Value Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daproValueA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproValueS"}

Indicates the value assigned to a Field, Parameter, or Property object.

Settings and Return Values
Sets or returns a Variant value. Default value depends on the Type property.

Remarks
Use the Value property to set or return data from Field objects, to set or return parameter values with
Parameter objects, or to set or return property settings with Property objects. Whether the Value
property is read/write or read-only depends upon numerous factors—see the topics for the respective
objects for more information.

ADO allows setting and returning long binary data with the Value property.

Version Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproVersionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproVersionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproVersionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproVersionS"}

Indicates the ADO version number.

Return Values
Returns a String value.

Remarks
Use the Version property to return the version number of the ADO implementation.

You can use this property to ensure that you are programming to the expected version of the provider,
or to write conditional code based upon the version of the library. For instance, if a provider contained
a bug for which you wrote special code, but the bug was fixed in a later version, you could check the
version property to determine if the special code was still necessary.

The version of the actual data source may be exposed as a dynamic property in the Properties
collection.

