
HotSpot Control
See Also Example Properties Methods Events

Specifies a region for exposing events.

Remarks
Assigning actions to the HotSpot control’s MouseEnter and MouseExit events determines what
happens when a user moves the mouse pointer over the HotSpot.
You can also use HotSpot as an alternative to image maps in HTML. To do this, place multiple
HotSpot controls over an Image control and assign actions to the HotSpot controls’ events. By
default, the HotSpot is invisible at run time because the default value of the BackStyle property is
Transparent and the BorderStyle property is None.

To make your HTML Layout more accessible to keyboard-only users, assign actions to the HotSpot
control’s Enter event and make sure that the Enabled property is set to True. At run time, keyboard-
only users will then be able to tab to the HotSpot and press ENTER to trigger the event.

The default event for a HotSpot is the Click event.

HTML Layout Control
See Also Example Properties Methods Events

References an HTML Layout and renders it at run time.

Remarks
An HTML Layout is a WYSIWYG drawing board to which you can add multiple controls. You can draw
controls in the precise sizes and locations you want, group and align them, and even put one control
on top of another.

The ActiveX Control Pad saves each HTML Layout in a file format with an .alx extension. When you
insert an HTML Layout into HTML, the ActiveX Control Pad adds an HTML Layout control for each
layout that you insert. The HTML Layout control is what actually renders the HTML Layout at run
time.

Image Control
See Also Example Properties Methods Events

Displays a picture.

Remarks
The Image control lets you crop, size, or zoom a picture, but does not allow you to edit the contents
of the picture. For example, you can’t use Image to change the colors in the picture, to make the
picture transparent, or to refine the image of the picture. You must use image editing software for
these purposes.

Image supports the following formats:

· .gif (’87 and ’89)
· .jpg
· .wmf
· .bmp
Note The picture is not actually embedded into the control. The control references the picture at run
time based on the URL specified by the PicturePath property
The default event for Image is the Click event.

BeforeDragOver Event
See Also Example Applies To

Occurs when a drag-and-drop operation is in progress.

Syntax
For TabStrip

Private Sub object_BeforeDragOver(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single,
ByVal DragState As fmDragState, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDragOver(ByVal Cancel As MSForms.ReturnBoolean, ByVal Data
As DataObject, ByVal X As Single, ByVal Y As Single, ByVal DragState As fmDragState,
ByVal Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDragOver event syntax has these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control

should handle the event (default). True indicates the
application should handle the event.

ctrl Required. The control being dragged over.
Data Required. Data that is dragged in a drag-and-drop operation.

The data is packaged in a DataObject.
X, Y Required. The horizontal and vertical coordinates of the

control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control.

DragState Required. Transition state of the data being dragged.
X, Y Required. The horizontal and vertical coordinates of the

control’s position. Both coordinates are measured in points.
X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Operations supported by the drop source.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for DragState are:

Constant Value Description
fmDragStateEnter 0 Mouse pointer is within range of a target.
fmDragStateLeave 1 Mouse pointer is outside the range of a

target.
fmDragStateOver 2 Mouse pointer is at a new position, but

remains within range of the same target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the
drop target.

fmDropEffectMove 2 Moves the drop source to the drop
target.

fmDropEffectCopyOrMove 3 Copies or moves the drop source
to the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
Use this event to monitor the mouse pointer as it enters, leaves, or rests directly over a valid target.
When a drag-and-drop operation is in progress, the system initiates this event when the user moves
the mouse, or presses or releases the mouse buttons. The mouse pointer position determines the
target object that receives this event. You can determine the state of the mouse pointer by examining
the DragState argument.

When a control handles this event, you can use the Effect argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, the drop source supports a copy
(fmDropEffectCopy), move (fmDropEffectMove), or a cancel (fmDropEffectNone) operation.

When Effect is set to fmDropEffectCopy, the drop source supports a copy or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectMove, the drop source supports a move or a cancel
(fmDropEffectNone) operation.

When Effect is set to fmDropEffectNone. the drop source supports a cancel operation.

Most controls do not support drag-and-drop while Cancel is False, which is the default setting. This
means the control rejects attempts to drag or drop anything on the control, and the control does not
initiate the BeforeDropOrPaste event. The TextBox and ComboBox controls are exceptions to this;
these controls support drag-and-drop operations even when Cancel is False.

BeforeDropOrPaste Event
See Also Example Applies To

Occurs when the user is about to drop or paste data onto an object.

Syntax
For TabStrip

Private Sub object_BeforeDropOrPaste(index As Long, ByVal Cancel As
MSForms.ReturnBoolean, ByVal Action As fmAction, ByVal Data As DataObject, ByVal X As
Single, ByVal Y As Single, ByVal Effect As MSForms.ReturnEffect, ByVal Shift As
fmShiftState)

For other controls
Private Sub object_BeforeDropOrPaste(ByVal Cancel As MSForms.ReturnBoolean, ByVal
Action As fmAction, ByVal Data As DataObject, ByVal X As Single, ByVal Y As Single, ByVal
Effect As MSForms.ReturnEffect, ByVal Shift As fmShiftState)

The BeforeDropOrPaste event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the control that the drop or paste

operation will affect.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event.

ctrl Required. The target control.
Action Required. Indicates the result, based on the current keyboard

settings, of the pending drag-and-drop operation.
Data Required. Data that is dragged in a drag-and-drop operation. The

data is packaged in a DataObject.
X, Y Required. The horizontal and vertical position of the mouse

pointer when the drop occurs. Both coordinates are measured in
points. X is measured from the left edge of the control; Y is
measured from the top of the control..

Effect Required. Effect of the drag-and-drop operation on the target
control.

Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

Settings
The settings for Action are:

Constant Value Description
fmActionPaste 2 Pastes the selected object into the drop

target.
fmActionDragDrop 3 Indicates the user has dragged the object

from its source to the drop target and
dropped it on the drop target.

The settings for Effect are:

Constant Value Description
fmDropEffectNone 0 Does not copy or move the drop

source to the drop target.

fmDropEffectCopy 1 Copies the drop source to the drop
target.

fmDropEffectMove 2 Moves the drop source to the drop
target.

fmDropEffectCopyOrMove 3 Copies or moves the drop source to
the drop target.

The settings for Shift are:

Constant Value Description
fmShiftMask 1 SHIFT was pressed.
fmCtrlMask 2 CTRL was pressed.
fmAltMask 4 ALT was pressed.

Remarks
For a TabStrip, VBScript initiates this event when it transfers a data object to the control.

For other controls, the system initiates this event immediately prior to the drop or paste operation.

When a control handles this event, you can update the Action argument to identify the drag-and-drop
action to perform. When Effect is set to fmDropEffectCopyOrMove, you can assign Action to
fmDropEffectNone, fmDropEffectCopy, or fmDropEffectMove. When Effect is set to
fmDropEffectCopy or fmDropEffectMove, you can reassign Action to fmDropEffectNone. You
cannot reassign Action when Effect is set to fmDropEffectNone.

Click Event
See Also Example Applies To

Occurs in one of two cases:

· The user clicks a control with the mouse.
· The user selects a specific value for a control with more than one possible value.

Syntax
For all controls

Private Sub object_Click()
The Click event syntax has these parts:

Part Description
object Required. A valid object.

Remarks
Of the two cases where the Click event occurs, the first case applies to the CommandButton,
Image, Label, ScrollBar, and SpinButton. The second case applies to the CheckBox, ComboBox,
ListBox, TabStrip, TextBox, and ToggleButton.

The following are examples of actions that initiate the Click event:

· Clicking a blank area of an HTML Layout or a disabled control (other than a list box) on the HTML
Layout.

· Clicking a CommandButton. If the command button doesn't already have the focus, the Enter
event occurs before the Click event.

· Pressing the SPACEBAR when a CommandButton has the focus.
· Clicking a control with the left mouse button (left-clicking).
· Pressing a control's accelerator key.
When the Click event results from clicking a control, the sequence of events leading to the Click event
is:

1. MouseDown
2. MouseUp
3. Click

For some controls, the Click event occurs when the Value property changes. However, using the
Change event is the preferred technique for detecting a new value for a property. The following are
examples of actions that initiate the Click event due to assigning a new value to a control:

· Clicking a CheckBox or ToggleButton, pressing the SPACEBAR when one of these controls has the
focus, pressing the accelerator key for one of these controls, or changing the value of the control in
code.

· Changing the value of an OptionButton to True. Setting one OptionButton in a group to True
sets all other buttons in the group to False, but the Click event occurs only for the button whose
value changes to True.

· Selecting a value for a ComboBox or ListBox so that it unquestionably matches an item in the
control’s drop-down list. For example, if a list is not sorted, the first match for characters typed in
the edit region may not be the only match in the list, so choosing such a value does not initiate the
Click event. In a sorted list, you can use entry-matching to ensure that a selected value is a unique
match for text the user types.

The Click event is not initiated when Value is set to Null.
Note Left-clicking changes the value of a control, thus it initiates the Click event. Right-clicking does

not change the value of the control, so it does not initiate the Click event.

DblClick Event
See Also Example Applies To

Occurs when the user points to an object and then clicks a mouse button twice.

Syntax
For TabStrip

Private Sub object_DblClick(index As Long, Cancel As MSForms.ReturnBoolean)
For other controls

Private Sub object_DblClick(Cancel As MSForms.ReturnBoolean)
The DblClick event syntax has these parts:

Part Description
object Required. A valid object.
index Required. The position of a Tab object within a Tabs collection.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event.

Remarks
For this event to occur, the two clicks must occur within the time span specified by the system's
double-click speed setting.

For controls that support Click, the following sequence of events leads to the DblClick event:

1. MouseDown
2. MouseUp
3. Click
4. DblClick

If a control, such as TextBox, does not support Click, Click is omitted from the order of events leading
to the DblClick event.

If the return value of Cancel is True when the user clicks twice, the control ignores the second click.
This is useful if the second click reverses the effect of the first, such as double-clicking a toggle
button. The Cancel argument allows your HTML Layout to ignore the second click, so clicking or
double-clicking the button has the same effect.

Enter, Exit Events
See Also Example Applies To

Enter occurs before a control actually receives the focus from a control on the same HTML Layout.
Exit occurs immediately before a control loses the focus to another control on the same HTML Layout.

Syntax
Private Sub object_Enter()
Private Sub object_Exit(Cancel As MSForms.ReturnBoolean)
The Enter and Exit event syntaxes have these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates the application should
handle the event and the focus should remain on the current
control.

Remarks
The Enter and Exit events are similar to the GotFocus and LostFocus events in VBScript. Unlike
GotFocus and LostFocus, the Enter and Exit events don't occur when an HTML Layout receives or
loses the focus.

For example, suppose you select the check box that initiates the Enter event. If you then select
another control in the same HTML Layout, the Exit event will be initiated for the check box (because
the focus is moving to a different object in the same HTML Layout) and the Enter event will occur for
the second control on the HTML Layout.

Because the Enter event occurs before the focus moves to a particular control, you can use an Enter
event procedure to display instructions. For example, you could use an event procedure to display a
small HTML Layout or message box identifying the type of data the control typically contains.

Note To prevent the control from losing focus, assign True to the Cancel argument of the Exit event.

MouseDown, MouseUp Events
See Also Example Applies To

Occur when the user clicks a mouse button. MouseDown occurs when the user presses the mouse
button; MouseUp occurs when the user releases the mouse button.

Syntax
For TabStrip

Private Sub object_MouseDown(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseDown(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

Private Sub object_MouseUp(ByVal Button As fmButton, ByVal Shift As fmShiftState, ByVal X
As Single, ByVal Y As Single)

The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object Required. A valid object.
index Required. The index of the tab in a TabStrip with the specified

event.
Button Required. An integer value that identifies which mouse button

caused the event.
Shift Required. The state of SHIFT, CTRL, and ALT.
X, Y Required. The horizontal or vertical position, in points, from the

left or top edge of the HTML Layout.

Settings
The settings for Button are:

Constant Value Description
fmButtonLeft 1 The left button was pressed.
fmButtonRight 2 The right button was pressed.
fmButtonMiddle 4 The middle button was pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.
7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
For a TabStrip, the index argument identifies the tab that the user clicked. An index of –1 indicates
the user did not click a tab. For example, if there are no tabs in the upper-right corner of the control,
clicking in the upper-right corner sets the index to –1.

For an HTML Layout, the user can generate MouseDown and MouseUp events by pressing and
releasing a mouse button in a blank area, record selector, or scroll bar on the HTML Layout.

The sequence of mouse-related events is:

1. MouseDown
2. MouseUp
3. Click
4. DblClick
5. MouseUp

MouseDown or MouseUp event procedures specify actions that occur when a mouse button is
pressed or released. MouseDown and MouseUp events enable you to distinguish between the left,
right, and middle mouse buttons. You can also write code for mouse-keyboard combinations that use
the SHIFT, CTRL, and ALT keyboard modifiers.

If a mouse button is pressed while the pointer is over an HTML Layout or control, that object will
"capture" the mouse and receive all mouse events up to and including the last MouseUp event. This
implies that the X, Y mouse-pointer coordinates returned by a mouse event may not always be within
the boundaries of the object that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse will receive all
successive mouse events until all buttons are released.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseDown or MouseUp
event occurred. For example, if both CTRL and ALT are pressed, the value of Shift will be 6.

MouseEnter, MouseExit Events
See Also Example Applies To

MouseEnter occurs when the mouse pointer is moved over the control. MouseExit occurs when the
mouse pointer is moved off of the control.

Syntax
Private Sub object_MousEnter()
Private Sub object_MouseExit(Cancel As Boolean)
The MouseEnter and MouseExit event syntax has these parts:

Part Description
object Required. A valid object name.
Cancel Required. Event status. False indicates that the control should

handle the event (default). True indicates that the application
should handle the event and the focus should remain at the
current control.

Remarks
You can use the MouseEnter and MouseExit events to make something interesting happen, like
playing sound files, when the mouse pointer hovers over an object.

MouseMove Event
See Also Example Applies To

Occurs when the user moves the mouse.

Syntax
For TabStrip

Private Sub object_MouseMove(index As Long, ByVal Button As fmButton, ByVal Shift As
fmShiftState, ByVal X As Single, ByVal Y As Single)

For other controls
Private Sub object_MouseMove(ByVal Button As fmButton, ByVal Shift As fmShiftState,
ByVal X As Single, ByVal Y As Single)

The MouseMove event syntax has these parts:

Part Description
object Required. A valid object name.
index Required. The index of the tab in a TabStrip associated with

this event.
Button Required. An integer value that identifies the state of the mouse

buttons.
Shift Required. Specifies the state of SHIFT, CTRL, and ALT.

X, Y Required. The horizontal or vertical position, measured in
points, from the left or top edge of the control.

Settings
The index argument specifies which tab was clicked over. A –1 designates that the user did not click
any of the tabs.

The settings for Button are:

Value Description
0 No button is pressed.
1 The left button is pressed.
2 The right button is pressed.
3 The right and left buttons are pressed.
4 The middle button is pressed.
5 The middle and left buttons are pressed.
6 The middle and right buttons are pressed.
7 All three buttons are pressed.

The settings for Shift are:

Value Description
1 SHIFT was pressed.
2 CTRL was pressed.
3 SHIFT and CTRL were pressed.
4 ALT was pressed.
5 ALT and SHIFT were pressed.
6 ALT and CTRL were pressed.
7 ALT, SHIFT, and CTRL were pressed.

You can identify individual keyboard modifiers by using the following constants:

Constant Value Description
fmShiftMask 1 Mask to detect SHIFT.
fmCtrlMask 2 Mask to detect CTRL.
fmAltMask 4 Mask to detect ALT.

Remarks
The MouseMove event applies to HTML Layouts, controls on an HTML Layout, and labels.

MouseMove events are generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

Moving an HTML Layout can also generate a MouseMove event even if the mouse is stationary.
MouseMove events are generated when the HTML Layout moves underneath the pointer. If an event
procedure moves an HTML Layout in response to a MouseMove event, the event can continually
generate (cascade) MouseMove events.

If two controls are very close together, and you move the mouse pointer quickly over the space
between them, the MouseMove event might not occur for that space. In such cases, you might need
to respond to the MouseMove event in both controls.

You can use the value returned in the Button argument to identify the state of the mouse buttons.

Use the Shift argument to identify the state of SHIFT, CTRL, and ALT when the MouseMove event
occurred. For example, if both CTRL and ALT are pressed, the value of Shift will be 6.

Note You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.

onLoad Event
See Also Example Applies To

OnLoad occurs when the entire contents of the HTML Layout (.ALX file) are created and before the
Window onLoad event occurs.

Syntax
sub object.onLoad=function-name

Part Description
object Required. The filename of the HTML Layout object (.ALX file).
function-
name

An object expression which evaluates to a scripting function.

Remarks
The order of onLoad events is the HTML Layout, then the Window onLoad event. The Window
onLoad event only fires after the entire contents of the window have been rendered.

You can script the Window onLoad event from HTML but not from within the .ALX. Therefore, when
editing an .ALX file, the Script Wizard does not display the Window Load/Unload events.

There is no HTML Layout onUnLoad event.

Item Method
See Also Example Applies To

Returns a member of a collection, either by position or by name.

Syntax
Set Object = object.Item(collectionindex)
The Item method syntax has these parts:

Part Description
object Required. A valid object.
collectionindex Required. A member's position, or index, within a

collection.

Settings
The collectionindex can be either a string or an integer. If it is a string, it must be a valid member
name. If it is an integer, the minimum value is 0 and the maximum value is one less than the number
of items in the collection.

Remarks
If an invalid index or name is specified, an error occurs.

Move Method
See Also Example Applies To

Moves an HTML Layout or control, or moves all the controls in the Controls collection.

Syntax
object.Move([Left [, Top [, Width [, Height]]]])
The Move method syntax has these parts:

Part Description
object Required. A valid object name.
Left Optional. Single-precision value, in points, indicating the

horizontal coordinate for the left edge of the object.
Top Optional. Single-precision value, in points, that specifies the

vertical coordinate for the top edge of the object.
Width Optional. Single-precision value, in points, indicating the width

of the object.
Height Optional. Single-precision value, in points, indicating the height

of the object.

Settings
The maximum and minimum values for the Left, Top, Width, Height, X, and Y arguments vary from
one application to another.

Remarks
For an HTML Layout or control, you can move a selection to a specific location relative to the edges
of the HTML Layout that contains the selection.

You can use named arguments, or you can enter the arguments by position. If you use named
arguments, you can list the arguments in any order. If not, you must enter the arguments in the order
shown, using commas to indicate the relative position of arguments you do not specify. Any
unspecified arguments remain unchanged.

ZOrder Method
See Also Example Applies To

Places the object at the front or back of the z-order.

Syntax
object.ZOrder([zPosition])
The ZOrder method syntax has these parts:

Part Description
object Required. A valid object.
zPosition Optional. A control's position, front or back, in the container's

z-order.

Settings
The settings for zPosition are:

Constant Value Description
fmTop 0 Places the control at the front of the z-order.

The control appears on top of other controls
(default).

 fmBottom 1 Places the control at the back of the z-order.
The control appears underneath other
controls.

Remarks
The z-order determines how windows and controls are stacked when they are presented to the user.
Items at the back of the z-order are overlaid by closer items; items at the front of the z-order appear to
be on top of items at the back. When the zPosition argument is omitted, the object is brought to the
front.

In design time, the Bring to Front or Send to Back commands set the z-order. Bring to Front is
equivalent to using the ZOrder method and putting the object at the front of the z-order. Send to
Back is equivalent to using ZOrder and putting the object at the back of the z-order.

This method does not affect the content or sequence of the controls in the Controls collection.

Note You can’t Undo or Redo layering commands such as Send to Back or Bring to Front. For
example, if you select an object and click Move Backward on the shortcut menu, you won’t be able
to Undo or redo that action.

AutoSize Property
See Also Example Applies To

Specifies whether an object automatically resizes to display its entire contents.

Syntax
object.AutoSize [= Boolean]

The AutoSize property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the control is resized.

Settings
The settings for Boolean are:

Value Description
True Automatically resizes the control to display its entire contents.
False Keeps the size of the control constant. Contents are cropped

when they exceed the area of the control (default).

Remarks
For controls with captions, the AutoSize property specifies whether the control automatically adjusts
to display the entire caption.

For controls without captions, this property specifies whether the control automatically adjusts to
display the information stored in the control. In a ComboBox, for example, setting AutoSize to True
automatically sets the width of the display area to match the length of the current text.

For a single-line text box, setting AutoSize to True automatically sets the width of the display area to
the length of the text in the text box.

For a multiline text box that contains no text, setting AutoSize to True automatically displays the text
as a column. The width of the text column is set to accommodate the widest letter of that font size.
The height of the text column is set to display the entire text of the TextBox.

For a multiline text box that contains text, setting AutoSize to True automatically enlarges the
TextBox vertically to display the entire text. The width of the TextBox does not change.

Note If you manually change the size of a control while AutoSize is True, the manual change will
override the size previously set by AutoSize.

BackColor Property
See Also Example Applies To

Specifies the background color of the object.

Syntax
object.BackColor [= Long]

The BackColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

background color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
red, green, and blue color components 15, 200, 75.

Remarks
You can see the background color of an object only if the BackStyle property is set to
fmBackStyleOpaque.

BackStyle Property
See Also Example Applies To

Returns or sets the background style for an object.

Syntax
object.BackStyle [= fmBackStyle]

The BackStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBackStyle Optional. Specifies the control background.

Settings
The settings for fmBackStyle are:

Constant Value Description
fmBackStyleTransparent 0 The background is transparent.
fmBackStyleOpaque 1 The background is opaque

(default).

Remarks
The BackStyle property determines whether a control is transparent. If BackStyle is
fmBackStyleOpaque, the control is not transparent and you cannot see anything behind the control
on an HTML Layout. If BackStyle is fmBackStyleTransparent, you can see through the control and
look at anything on the HTML Layout located behind the control.

Note The BackStyle property does not affect the transparency of bitmaps. You must use a picture
editor to make a bitmap transparent. Not all controls support transparent bitmaps.

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
See Also Example Applies To

Specifies the visual attributes of text on a displayed or printed HTML Layout.

Syntax
object.Bold [= Boolean]
object.Italic [= Boolean]
object.Size [= Currency]
object.StrikeThrough [= Boolean]
object.Underline [= Boolean]
object.Weight [= Integer]

The Bold, Italic, Size, StrikeThrough, Underline, and Weight property syntaxes have these parts:

Part Description
object Required. A valid object name.
Boolean Optional. Specifies the font style.
Currency Optional. A number indicating the font size.
Integer Optional. Specifies the font style.

The settings for Boolean are:

Value Description
True The text has the specified attribute (that is bold, italic, size,

strikethrough or underline marks, or weight).
False The text does not have the specified attribute (default).

The Weight property accepts values from 0 to 1000. A value of zero allows the system to pick the
most appropriate weight. A value from 1 to 1000 indicates a specific weight, where 1 represents the
lightest type and 1000 represents the darkest type.

Remarks
These properties define the visual characteristics of text. The Bold property determines whether text
is normal or bold. The Italic property determines whether text is normal or italic. The Size property
determines the height, in points, of displayed text. The Underline property determines whether text is
underlined. The StrikeThrough property determines whether the text appears with strikethrough
marks. The Weight property determines the darkness of the type.

There may be a difference between how a font appears on screen and how it looks printed,
depending on your computer and printer. If you select a font that your system can't display with the
specified attribute or that isn't installed, Windows substitutes a similar font. The substitute font will be
as similar as possible to the font originally requested.

Changing the value of Bold also changes the value of Weight. Setting Bold to True sets Weight to
700; setting Bold to False sets Weight to 400. Conversely, setting Weight to anything over 550 sets
Bold to True; setting Weight to 550 or less sets Bold to False.

The default point size is determined by the operating system.

BorderColor Property
See Also Example Applies To

Specifies the color of a control’s border.

Syntax
object.BorderColor [= Long]

The BorderColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the border

color of a control.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
RGB color component values 15, 200, 75.

Remarks
To use the BorderColor property, the BorderStyle property must be set to a value other than
fmBorderStyleNone.

BorderStyle uses BorderColor to define the border colors. The SpecialEffect property uses system
colors exclusively to define its border colors. For Windows operating systems, system color settings
are part of the Control Panel and are found in the Appearance tab of the Display folder. In Windows
NT 3.51, system color settings are stored in the Color folder of the Control Panel.

BorderStyle Property
See Also Example Applies To

Specifies the type of border used by a control.

Syntax
object.BorderStyle [= fmBorderStyle]

The BorderStyle property syntax has these parts:

Part Description
object Required. A valid object.
fmBorderStyle Optional. Specifies the border style.

Settings
The settings for fmBorderStyle are:

Constant Value Description
fmBorderStyleNone 0 The control has no visible border line.
fmBorderStyleSingle 1 The control has a single-line border

(default).

The default value for a ComboBox, Label, ListBox or TextBox is 0 (None). The default value for an
Image is 1 (Single).

Remarks
You can use either BorderStyle or SpecialEffect to specify the border for a control, but not both. If
you specify a value other than zero for one of these properties, the system sets the value of the other
property to zero. For example, if you set BorderStyle to fmBorderStyleSingle, the system sets
SpecialEffect to zero (Flat). If you specify a value other than zero for SpecialEffect, the system sets
BorderStyle to zero.

BorderStyle uses BorderColor to define the colors of its borders.

CodeBase Property
See Also Example Applies To

Specifies the URL of a control’s COM object.

Remarks
The CodeBase property makes it possible to automatically download ActiveX controls from a server
to a user’s machine.

The CodeBase property supports the following file types:

File type Description
PE
(portable executable)

The PE (for example, .ocx, .dll, .exe) is
downloaded, installed, and registered
automatically if the control is not already
registered on the user’s computer. This is the
simplest way to package a single-file ActiveX
control, but it does not use file compression
and isn’t platform independent except with
HTTP.

cab
(cabinet)

The .cab file contains one or more files, all of
which are downloaded together in a single
compressed cabinet file. One file in the
cabinet is an .inf file providing further
installation information. The .inf file may refer
to files in the .cab as well as to files at other
URLs.

inf
(installation information)

The stand-alone .inf file specifies various files
that need to be downloaded and set up for
an .ocx to run. The syntax of the .inf file
supports URLs pointing to files to download
as well as platform independence (by
enumerating files for various platforms). This
mechanism provides platform independence
for non-HTTP servers.

For specifics about creating PE, .cab, and .inf files and for the latest information about Internet
Component Download, go to

http://www.microsoft.com/intdev/signcode/codedwld.htm
on the Internet.

Note The CodeBase property can be set only at design time. It can’t be set at run time.

DrawBuffer Property
See Also Example Applies To

Specifies the suggested number of pixels set aside for off-screen memory in rendering an HTML
Layout.

Syntax
object.DrawBuffer [= value]

Part Description
object Required. A valid object name.
value An integer between 16,000 to 1,048,576 equal to the maximum

number of pixels the object will render off-screen. The default
value is 32,000, which covers, for example, an area of 80x400
pixels.

Remarks
The DrawBuffer property specifies the maximum number of pixels that can be drawn at one time as
the display repaints. The actual memory used by the HTML Layout depends on the screen resolution
of the display. If you set a large value for DrawBuffer, performance will be slower. A large buffer helps
when several large images overlap.

The DrawBuffer property cannot be set from the Properties window in your .alx file. You can set
DrawBuffer in Script Wizard by selecting the HTML Layout onLoad event.

Enabled Property
See Also Example Applies To

Specifies whether a control can receive the focus and respond to user-generated events.

Syntax
object.Enabled [= Boolean]

The Enabled property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the object can respond to user-

generated events.

Settings
The settings for Boolean are:

Value Description
True The control can receive the focus and respond to user-

generated events, and is accessible through code (default).
False The user cannot interact with the control by using the

mouse, keystrokes, accelerators, or hot keys. The control is
generally still accessible through code.

Remarks
Use the Enabled property to enable and disable controls. A disabled control appears dimmed, while
an enabled control does not. Also, if a control displays a bitmap, the bitmap is dimmed whenever the
control is dimmed. If Enabled is False for an Image, the control will not initiate events but it will also
not appear dimmed.

The Enabled and Locked properties work together to achieve the following effects:

· If Enabled and Locked are both True, the control can receive focus and it will appear normally
(not dimmed) in the HTML Layout. The user can copy, but not edit, data in the control.

· If Enabled is True and Locked is False, the control can receive focus and it will appear normally in
the HTML Layout. The user can copy and edit data in the control.

· If Enabled is False and Locked is True, the control cannot receive focus and it will appear
dimmed in the HTML Layout. The user can neither copy nor edit data in the control.

· If Enabled and Locked are both False, the control cannot receive focus and it will appear dimmed
in the HTML Layout. The user can neither copy nor edit data in the control.

You can combine the settings of the Enabled and the TabStop properties to prevent the user from
selecting a command button with TAB, while still allowing the user to click the button. Setting TabStop
to False means the command button will not appear in the tab order. However, if Enabled is True,
then the user can still click the command button, as long as TakeFocusOnClick is set to True.

When the user tabs into an enabled TabStrip, the first page or tab in the control receives the focus. If
the first page or tab of a TabStrip is disabled, the first enabled page or tab of that control will receive
the focus. If all pages or tabs of a or TabStrip are disabled, the control will be disabled and will not be
able to receive the focus.

ForeColor Property
See Also Example Applies To

Specifies the foreground color of an object.

Syntax
object.ForeColor [= Long]

The ForeColor property syntax has these parts:

Part Description
object Required. A valid object.
Long Optional. A value or constant that determines the

foreground color of an object.

Settings
You can use any integer that represents a valid color. You can also specify a color by using the RGB
function with red, green, and blue color components. The value of each color component is an integer
that ranges from 0 to 255. For example, you can specify teal blue as the integer value 4966415 or as
red, green, and blue color components 15, 200, 75.

Remarks
Use the ForeColor property for controls on HTML Layouts to make them easy to read or to convey a
special meaning. For example, if a text box reports the number of units in stock, you can change the
color of the text when the value falls below the reorder level.

For a ScrollBar or SpinButton, the ForeColor property sets the color of the arrows. For a Font
object, the ForeColor property determines the color of the text.

Height, Width Properties
See Also Example Applies To

The height or width, in points, of an object.

Syntax
object.Height [= Single]
object.Width [= Single]

The Height and Width property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the dimensions of

an object.

Remarks
The Height and Width properties are automatically updated when you move or size a control. If you
change the size of a control, the Height or Width property will store the new height or width. If you
specify a setting for the Left or Top property that is less than zero, that value will be used to calculate
the height or width of the control, but a portion of the control will not be visible on the HTML Layout.

If you move a control from one part of an HTML Layout to another, the setting of Height or Width will
change only if you size the control as you move it. The settings of the control’s Left and Top
properties will change to reflect the control’s new position relative to the edges of the HTML Layout
that contains it.

The value assigned to Height or Width must be greater than or equal to zero. For most systems, the
recommended range of values is from 0 to +32,767. Higher values may also work depending on your
system configuration.

ID Property
See Also Example Applies To

Specifies the name of a control or an object, or the name of a font to associate with a Font object.

Syntax
For Font

Font.ID [= String]
For all other controls and objects

object.ID [= String]

The ID property syntax has these parts:

Part Description
object Required. A valid object.
String Optional. The name you want to assign to the font or control.

Settings
Guidelines for assigning a string to the ID property, such as the maximum length of the name, vary
from one application to another.

Remarks
For objects, the default value of ID consists of the object's class name followed by an integer. For
example, the default name for the first TextBox you place on an HTML Layout is TextBox1. The
default name for the second TextBox is TextBox2.

You can set the ID property for a control from the control's Properties window or, for controls added at
run time, by using program statements. If you add a control at design time, you cannot modify its ID
property at run time.

Each control added to an HTML Layout at design time must have a unique name.

For Font objects, the ID property identifies a particular typeface to use in the text portion of a control,
object, or HTML Layout. The font's appearance on screen and in print may differ, depending on your
computer and printer. If you select a font that your system can't display or that isn't installed, Windows
will substitute a similar font.

Left, Top Properties
See Also Example Applies To

The distance between a control and the left or top edge of the HTML Layout that contains it.

Syntax
object.Left [= Single]
object.Top [= Single]

The Left and Top property syntaxes have these parts:

Part Description
object Required. A valid object.
Single Optional. A numeric expression specifying the coordinates of an

object.

Settings
Setting the Left or Top property to zero places the control's edge at the left or top edge of its
container.

Remarks
For most systems, the recommended range of values for Left and Top is from -32,767 to +32,767.
Other values may also work depending on your system configuration. For a ComboBox, values of
Left and Top apply to the text portion of the control, not to the list portion. When you move or size a
control, its new Left setting is automatically entered in the Properties window. When you print an
HTML Layout, the control's horizontal or vertical location is determined by its Left or Top setting.

MouseIcon Property
See Also Example Applies To

Assigns a custom icon to an object.

Syntax
object.MouseIcon = LoadPicture(pathname)
The MouseIcon property syntax has these parts:

Part Description
object Required. A valid object.
pathname Required. A string expression specifying the path and

filename of the file containing the custom icon.

Remarks
The MouseIcon property is valid when the MousePointer property is set to 99. The mouse icon of an
object is the image that appears when the user moves the mouse across that object.

To assign an image for the mouse pointer, you can either assign a picture to the MouseIcon property
or load a picture from a file using the LoadPicture function.

MousePointer Property
See Also Example Applies To

Specifies the type of pointer displayed when the user positions the mouse over a particular object.

Syntax
object.MousePointer [= fmMousePointer]

The MousePointer property syntax has these parts:

Part Description
object Required. A valid object.
fmMousePointer Optional. The shape you want for the mouse pointer.

Settings
The settings for fmMousePointer are:

Constant Value Description
fmMousePointerDefault 0 Standard pointer. The image is

determined by the object (default).
fmMousePointerArrow 1 Arrow.
fmMousePointerCross 2 Cross-hair pointer.
fmMousePointerIBeam 3 I-beam.
fmMousePointerSizeNESW 6 Double arrow pointing northeast

and southwest.
fmMousePointerSizeNS 7 Double arrow pointing north and

south.
fmMousePointerSizeNWSE 8 Double arrow pointing northwest

and southeast.
fmMousePointerSizeWE 9 Double arrow pointing west and

east.
fmMousePointerUpArrow 10 Up arrow.
fmMousePointerHourglass 11 Hourglass.
fmMousePointerNoDrop 12 "Not" symbol (circle with a diagonal

line) on top of the object being
dragged. Indicates an invalid drop
target.

fmMousePointerAppStarting 13 Arrow with an hourglass.
fmMousePointerHelp 14 Arrow with a question mark.
fmMousePointerSizeAll 15 Size all cursor (arrows pointing

north, south, east, and west).
fmMousePointerCustom 99 Uses the icon specified by the

MouseIcon property.

Remarks
Use the MousePointer property when you want to indicate changes in functionality as the mouse
pointer passes over controls on an HTML Layout. For example, the hourglass setting (11) is useful to
indicate that the user must wait for a process or operation to finish.

Some icons vary depending on system settings, such as the icons associated with desktop themes.

PictureAlignment Property
See Also Example Applies To

Specifies the location of a background picture.

Syntax
object.PictureAlignment [= fmPictureAlignment]

The PictureAlignment property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureAlignment Optional. The position where the picture aligns with

the control.

Settings
The settings for fmPictureAlignment are:

Constant Value Description
fmPictureAlignmentTopLeft 0 The top-left corner.
fmPictureAlignmentTopRight 1 The top-right corner.
fmPictureAlignmentCenter 2 The center.
fmPictureAlignmentBottomLeft 3 The bottom-left corner.
fmPictureAlignmentBottomRight 4 The bottom-right corner.

Remarks
The PictureAlignment property identifies which corner of the picture is the same as the
corresponding corner of the control or container where the picture is used.

For example, setting PictureAlignment to fmPictureAlignmentTopLeft means that the top-left
corner of the picture coincides with the top-left corner of the control or container. Setting
PictureAlignment to fmPictureAlignmentCenter positions the picture in the middle, relative to the
height as well as the width of the control or container.

If you tile an image on a control or container, the setting of PIctureAlignment will affect the tiling
pattern. For example, if PictureAlignment is set to fmPictureAlignmentUpperLeft, the first copy of
the image will be placed in the upper-left corner of the control or container and additional copies will
be tiled from left to right across each row. If PictureAlignment is fmPictureAlignmentCenter, the
first copy of the image will be placed at the center of the control or container, additional copies will be
placed to the left and right to complete the row, and additional rows will be added to fill the control or
container.

Note Setting the PictureSizeMode property to fmSizeModeStretch overrides PictureAlignment.
When PictureSizeMode is set to fmSizeModeStretch, the picture fills the entire control or container.

PicturePath Property
See Also Example Applies To

Specifies the URL of the picture to display on Image control.

Syntax
object.PicturePath = URL

The PicturePath property syntax has these parts:

Part Description
object Required. A valid object.
URL Required. The URL of a picture file.

Remarks
PicturePath requires a complete URL. It does not support a UNC path.

PictureSizeMode Property
See Also Example Applies To

Specifies how to display the background picture on a control, HTML Layout, or HTML page.

Syntax
object.PictureSizeMode [= fmPictureSizeMode]

The PictureSizeMode property syntax has these parts:

Part Description
object Required. A valid object.
fmPictureSizeMode Optional. The action to take if the picture and the

HTML Layout or HTML page that contains it are not
the same size.

Settings
The settings for fmPictureSizeMode are:

Constant Value Description
fmPictureSizeModeClip 0 Crops any part of the picture that is

larger than the HTML Layout or
HTML page (default).

fmPictureSizeModeStretch 1 Stretches the picture to fill the
HTML Layout or HTML page. This
setting distorts the picture in either
the horizontal or vertical direction.

fmPictureSizeModeZoom 3 Enlarges the picture, but does not
distort the picture in either the
horizontal or vertical direction.

Remarks
The fmPictureSizeModeClip setting indicates you want to show the picture in its original size and
scale. If the HTML Layout or HTML page is smaller than the picture, this setting will show only the part
of the picture that fits within the HTML Layout or HTML page.

The fmPictureSizeModeStretch and fmPictureSizeModeZoom settings both enlarge the image, but
fmPictureSizeModeStretch causes distortion. The fmPictureSizeModeStretch setting enlarges the
image horizontally and vertically until the image reaches the corresponding edges of the container or
control. The fmPictureSizeModeZoom setting enlarges the image until it reaches either the
horizontal or vertical edges of the container or control. If the image reaches the horizontal edges first,
any remaining distance to the vertical edges will remain blank. If it reaches the vertical edges first,
any remaining distance to the horizontal edges will remain blank.

PictureTiling Property
See Also Example Applies To

Lets you tile a picture in an image control.

Syntax
object.PictureTiling [= Boolean]

The PictureTiling property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether a picture is repeated across a

background.

Settings
The settings for Boolean are:

Value Description
True The picture is tiled across the background.
False The picture is not tiled across the background (default).

Remarks
You can tile an image on an HTML Layout by drawing the Image the same size as the HTML Layout.

The tiling pattern depends on the current setting of the PictureAlignment and PictureSizeMode
properties. For example, if PictureAlignment is set to fmPictureAlignmentTopLeft, the tiling pattern
will start at the upper-left, repeating the picture across and down the height of the Image. If
PictureSizeMode is set to fmPictureSizeModeClip, the tiling pattern will crop the last tile if it doesn't
completely fit within the Image.

SpecialEffect Property
See Also Example Applies To

Specifies the visual appearance of an object.

Syntax
For CheckBox, OptionButton, ToggleButton

object.SpecialEffect [= fmButtonEffect]
For other controls

object.SpecialEffect [= fmSpecialEffect]

The SpecialEffect property syntax has these parts:

Part Description
object Required. A valid object.
fmButtonEffect Optional. The desired visual appearance for a CheckBox,

OptionButton, or ToggleButton.
fmSpecialEffect Optional. The desired visual appearance of an object

other than a CheckBox, OptionButton, or
ToggleButton.

Settings
The settings for fmSpecialEffect are:

Constant Value Description
fmSpecialEffectFlat 0 Object appears flat, distinguished from

the surrounding form by a border, a
change of color, or both. Default for
Image and Label, valid for all controls.

fmSpecialEffectRaised 1 Object has a highlight on the top and
left and a shadow on the bottom and
right. Not valid for check boxes or
option buttons.

fmSpecialEffectSunken 2 Object has a shadow on the top and left
and a highlight on the bottom and right.
The control and its border appear to be
carved into the form that contains them.
Default for CheckBox and
OptionButton, valid for all controls
(default).

fmSpecialEffectEtched 3 Border appears to be carved around
the edge of the control. Not valid for
check boxes or option buttons.

fmSpecialEffectBump 6 Object has a ridge on the bottom and
right and appears flat on the top and
left. Not valid for check boxes or option
buttons.

For a Frame, the default value is Sunken.

Note that only Flat and Sunken (0 and 2) are acceptable values for CheckBox, OptionButton, and
ToggleButton. All values listed are acceptable for other controls.

Remarks

You can use either the SpecialEffect or the BorderStyle property to specify the edging for a control,
but not both. If you specify a value other than zero for one of these properties, the system sets the
value of the other property to zero. For example, if you set SpecialEffect to fmSpecialEffectRaised,
the system sets BorderStyle to zero (fmBorderStyleNone).

For a Frame, BorderStyle is ignored if SpecialEffect is fmSpecialEffectFlat.
SpecialEffect uses the system colors to define its borders.

Note Although the SpecialEffect property exists on the ToggleButton, the property is disabled. You
cannot set or return a value for this property on the ToggleButton.

TabIndex Property
See Also Example Applies To

Specifies the position of a single object in the HTML Layout's tab order.

Syntax
object.TabIndex [= Integer]

The TabIndex property syntax has these parts:

Part Description
object Required. A valid object.
Integer Optional. An integer from 0 to one less than the number of

controls on the HTML Layout that have a TabIndex property.
Assigning a TabIndex value of less than 0 generates an error. If
you assign a TabIndex value greater than the largest index
value, the system resets the value to the maximum allowable
value.

Remarks
The index value of the first object in the tab order is zero.

TabStop Property
See Also Example Applies To

Indicates whether an object can receive focus when the user tabs to it.

Syntax
object.TabStop [= Boolean]

The TabStop property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Specifies whether the object is a tab stop.

Settings
The settings for Boolean are:

Value Description
True Designates the object as a tab stop (default).
False Bypasses the object when the user is tabbing, although the

object still holds its place in the actual tab order, as determined
by the TabIndex property.

Remarks
The TabStop property can be set only at design time.

Visible Property
See Also Example Applies To

Specifies whether a control is visible or hidden.

Syntax
object.Visible [= Boolean]

The Visible property syntax has these parts:

Part Description
object Required. A valid object.
Boolean Optional. Whether the object is visible or hidden.

Settings
The settings for Boolean are:

Value Description
True Object is visible (default).
False Object is hidden.

Remarks
To hide an object at startup, set the Visible property to False at design time. Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

All controls are visible at design time.

Adding Links via Colored Labels Example
This example uses Labels to provide links to other sites rather than underlined hypertext links. This
text describes the process for adding one Label. This example could be extended to use Image and
Hot Spot controls.

The following control and corresponding property values should be set:

· Add Label1
· Select a background color and foreground color. Set Caption (for example "Microsoft").

For the Label1 MouseDown event, add the following code:
Window.location.href = "http://www.microsoft.com"

Mouse Down Event

AutoSize Property Example
The following example demonstrates the effects of the AutoSize property with a single-line TextBox
and a multiline TextBox. The user can enter text into either TextBox and turn AutoSize on or off
independently of the contents of the TextBox. This code sample also uses the Text property.

To use this example, copy this sample code to the Declarations portion of a form. Make sure that the
form contains:

· Two TextBox controls named TextBox1 and TextBox2.
· A ToggleButton named ToggleButton1.

Private Sub UserForm_Initialize()
 TextBox1.Text = "Single-line TextBox. Type your text here."

 TextBox2.MultiLine = True
 TextBox2.Text = "Multi-line TextBox. Type your text here. Use
CTRL+ENTER to start a new line."

 ToggleButton1.Value = True
 ToggleButton1.Caption = "AutoSize On"
 TextBox1.AutoSize = True
 TextBox2.AutoSize = True
End Sub

Private Sub ToggleButton1_Click()
 If ToggleButton1.Value = True Then
 ToggleButton1.Caption = "AutoSize On"
 TextBox1.AutoSize = True
 TextBox2.AutoSize = True
 Else
 ToggleButton1.Caption = "AutoSize Off"
 TextBox1.AutoSize = False
 TextBox2.AutoSize = False
 End If
End Sub

Border, Color Enhancements Example
The following example demonstrates the BorderStyle and SpecialEffect properties, showing each
border available through these properties. The example also demonstrates how to control color
settings by using the BackColor, BackStyle, BorderColor, and ForeColor properties.

To use this example, copy this sample code to the Declarations portion of an HTML Layout. Make
sure that the HTML Layout contains:

· Six TextBox controls named TextBox1 through TextBox6.
· Two ToggleButton controls named ToggleButton1 and ToggleButton2.
Private Sub UserLayout_Initialize()
' Initialize each TextBox with a border style or special effect,
' and foreground and background colors

' TextBox1 initially uses a borderstyle
TextBox1.Text = "BorderStyle-Single"
TextBox1.BorderStyle = fmBorderStyleSingle
TextBox1.BorderColor = RGB(255, 128, 128) 'Color - Salmon
TextBox1.ForeColor = RGB(255, 255, 0) 'Color - Yellow
TextBox1.BackColor = RGB(0, 128, 64) 'Color - Green #2

' TextBoxes 2 through 6 initially use special effects
TextBox2.Text = "Flat"
TextBox2.SpecialEffect = fmSpecialEffectFlat
TextBox2.ForeColor = RGB(64, 0, 0) 'Color - Brown
TextBox2.BackColor = RGB(0, 0, 255) 'Color - Blue

' Ensure the background style for TextBox2 is initially opaque.
TextBox2.BackStyle = fmBackStyleOpaque

TextBox3.Text = "Etched"
TextBox3.SpecialEffect = fmSpecialEffectEtched
TextBox3.ForeColor = RGB(128, 0, 255) 'Color - Purple
TextBox3.BackColor = RGB(0, 255, 255) 'Color - Cyan

'Define BorderColor for later use (when borderstyle=fmBorderStyleSingle)
TextBox3.BorderColor = RGB(0, 0, 0) 'Color - Black

TextBox4.Text = "Bump"
TextBox4.SpecialEffect = fmSpecialEffectBump
TextBox4.ForeColor = RGB(255, 0, 255) 'Color - Magenta
TextBox4.BackColor = RGB(0, 0, 100) 'Color - Navy blue

TextBox5.Text = "Raised"
TextBox5.SpecialEffect = fmSpecialEffectRaised
TextBox5.ForeColor = RGB(255, 0, 0) 'Color - Red
TextBox5.BackColor = RGB(128, 128, 128) 'Color - Gray

TextBox6.Text = "Sunken"
TextBox6.SpecialEffect = fmSpecialEffectSunken
TextBox6.ForeColor = RGB(0, 64, 0) 'Color - Olive
TextBox6.BackColor = RGB(0, 255, 0) 'Color - Green #1

ToggleButton1.Caption = "Swap styles"
ToggleButton2.Caption = "Transparent/Opaque background"

End Sub

Private Sub ToggleButton1_Click()

‘Swap borders between TextBox1 and TextBox3
If ToggleButton1.Value = True Then

'Change TextBox1 from BorderStyle to Etched
TextBox1.Text = "Etched"
TextBox1.SpecialEffect = fmSpecialEffectEtched

'Change TextBox3 from Etched to BorderStyle
TextBox3.Text = "BorderStyle-Single"
TextBox3.BorderStyle = fmBorderStyleSingle

Else
'Change TextBox1 back to BorderStyle
TextBox1.Text = "BorderStyle-Single"
TextBox1.BorderStyle = fmBorderStyleSingle

'Change TextBox3 back to Etched
TextBox3.Text = "Etched"
TextBox3.SpecialEffect = fmSpecialEffectEtched

End If
End Sub

Private Sub ToggleButton2_Click()

‘Set background to Opaque or Transparent
If ToggleButton2.Value = True Then

'Change TextBox2 to a transparent background
TextBox2.BackStyle = fmBackStyleTransparent

Else
'Change TextBox2 back to opaque background
TextBox2.BackStyle = fmBackStyleOpaque

End If

End Sub

Date and Time Example
This example uses a CommandButton Click event to update the Caption of a Label by choosing the
value of two CheckBoxes.

The following controls and corresponding property values should be set:

· Add CheckBox1
· Set Caption = "Show Date"
· Set Value = 0

· Add CheckBox2
· Set Caption = "Show Time"
· Set Value = 0

· Add Label1
· Set Caption = "Date and time displayed here"
· Set TextAlign = Center
· Set BorderStyle = Single

· Add CommandButton1
· Set Caption = "Display"

For the CommandButton1 Click event, add the following code:
Dim result
If CheckBox1.Value = True Then
 If CheckBox2.Value = True Then
 result = Date() & Chr(32) & Time()
 Else
 result = Date()
 End If
Else
 If CheckBox2.Value = True Then
 result = Time()
 Else
 result = "Date and time displayed here"
 End If
End If

Label1.Caption = result

Form Information Example
This example uses OptionButtons to change the background color. of an HTML Layout and a
CommandButton to display the width and height of the HTML Layout in a dialog box.

The following controls and corresponding property values should be set:

· Add OptionButton1
· Set Caption = "Red"
· Set Value = 0

· Add OptionButton2
· Set Caption = "Green"
· Set Value = 0

· Add OptionButton3
· Set Caption = "Blue"
· Set Value = 0

· Add CommandButton1
· Set Caption = "Size"

For the following events, add the corresponding code:

· For the OptionButton1 Click event:
Form.BackColor = RGB(255,0,0)

· For the OptionButton2 Click event:
Form.BackColor = RGB(0,255,0)

· For the Optionbutton3 Click event:
Form.BackColor = RGB(0,0,255)

· For the CommandButton1 Click event:
MsgBox("HTML Layout width = " & Form.Width & chr(13) & chr(10) & _
"HTML Layoutheight = " & Form.Height)

Hello World Example
This example uses a CommandButton Click event to display the message "Hello World" in a dialog
box.

The following control and corresponding property value should be set:

· Add CommandButton1
· Set Caption = "Push"

For the CommandButton1 Click event, add the following code:
MsgBox("Hello, World!")

Hide/Show Controls Example
This example demonstrates a method of hiding and showing CommandButtons on an HTML Layout.

The following controls and corresponding property values should be set:

· Add CommandButton1
· Set Caption = "Show the other button"

· Add CommandButton2
· Set Caption = "Bring back the first button"

For the following events, add the corresponding code:

· For the CommandButton1 Click event:
CommandButton2.Visible = True
CommandButton1.Visible = False

· For the CommandButton2 Click event:
CommandButton1.Visible = True
CommandButton2.Visible = False

Mouse Tracking Example
This example uses the MouseOver event for tracking mouse movement and updates a Label based
on the mouse position.

The following controls and corresponding property values should be set:

· Add Label1
· Set Caption = "Number One"
· Set BorderStyle = "Single"

· Add Label2
· Set Caption = "Number Two"
· Set BorderStyle = "Single"

· Add CommandButton1
· Set Caption = "Button 1"

· Add Label3
· Set Caption = ""
· Set ID = "lblDisplay"
· Set BorderStyle = "Single"
· Set TextAlign = "Center"

For the following events, add the corresponding code:

· For Label1 MouseDown event:
lblDisplay.Caption = "Mouse down number one"

· For Label1 MouseMove event:
lblDisplay.Caption = "Mouse moving over number one"

· For Label2 MouseDown event:
lblDisplay.Caption = "Mouse down number two"

· For Label2 MouseMove event:
lblDisplay.Caption = "Mouse moving over number two"

· For lblDisplay_MouseMove event:
lblDisplay.Caption = "Mouse moving over display label"

· For CommandButton1 MouseMove event:
lblDisplay.Caption = "Mouse moving over command button"

Resizing an Image Example
This example demonstrates dynamically resizing an image.

The following controls and corresponding property values should be set:

· Add Image1
· Assign the PicturePath property to some file. For example: "file://c:\windows\
test.bmp".

· Set PictureSizeMode = "Stretch"
· Size the HTML Layout to approximately twice as high and twice as wide as the image.

· Add CommandButton1
· Set Caption = "Small"

· Add CommandButton2
· Set Caption = "Medium"

· Add CommandButton3
· Set Caption = "Large"

For the following events, add the corresponding code:

· For CommandButton1 Click event:
Image1.Width = form.Width / 4
Image1.Height = form.Height / 4
Image1.Left = (form.Width/2) - (Image1.Width/2)
Image1.Top = (form.Height/2) - (Image1.Height/2)

· For CommandButton2 Click event:
Image1.Width = form.Width / 2
Image1.Height = form.Height / 2
Image1.Left = (form.Width/2) - (Image1.Width/2)
Image1.Top = (form.Height/2) - (Image1.Height/2)

· For CommandButton3 Click event:
Image1.Width = form.Width
Image1.Height = form.Height
Image1.Left = 0
Image1.Top = 0

Text Selection Properties Example
The following example tracks the selection-related properties (SelLength, SelStart, and SelText) that
change as the user moves the insertion point and extends the selection using the keyboard. This
example also uses the Enabled and EnterFieldBehavior properties.

To use this example, copy this sample code to the Declarations portion of an HTML Layout. Make
sure that the HTML Layout contains:

1 One large TextBox named TextBox1.
2 Three Label objects named Label1, Label2, and Label3 in a column under TextBox1.
3 Three TextBox controls named TextBox2, TextBox3, and TextBox4 in a column to the right of

Label1, Label2, and Label3.
4 A CommandButton named CommandButton1.
Private Sub ShowSelText()

TextBox2.Text = TextBox1.SelStart
TextBox3.Text = TextBox1.SelLength
TextBox4.Text = TextBox1.SelText

End Sub

Private Sub TextBox1_Enter()
ShowSelText

End Sub

Private Sub TextBox1_KeyDown(KeyCode As Integer, ByVal Shift As Integer)
ShowSelText

End Sub

Private Sub TextBox1_KeyUp(KeyCode As Integer, ByVal Shift As Integer)
ShowSelText

End Sub

Private Sub UserLayout_Initialize()
TextBox1.MultiLine = True
TextBox1.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection

TextBox1.Text = "SelText indicates the starting point of selected text,
or the insertion point if no text is selected." _

& Chr$(10) & Chr$(13) & "The SelStart property is always valid, even
when the control does not have focus. Setting SelStart to a value less than
zero creates an error. " _

& Chr$(10) & Chr$(13) & "Changing the value of SelStart cancels any
existing selection in the control, places an insertion point in the text,
and sets the SelLength property to zero."

Label1.Caption = "Selection Start"
Label1.AutoSize = True

Label2.Caption = "Selection Length"
Label2.AutoSize = True

Label3.Caption = "Selected Text"
Label3.AutoSize = True

TextBox2.Enabled = False
TextBox3.Enabled = False
TextBox4.Enabled = False

TextBox1.SetFocus
TextBox1.CurLine = 0
TextBox1.CurX = 317 'Current position settings are

himetric units.

ShowSelText

TextBox4.AutoSize = True
TextBox4.MultiLine = True
TextBox4.WordWrap = False

End Sub

TextBox Control Example
The following example tracks the CurLine, CurTargetX, and CurX property settings in a multiline
TextBox. These settings change as the user moves the insertion point and extends the selection
using the keyboard. This code sample also uses the Enabled property.

To use this example, follow these steps:

1 Copy this sample code to the declarations portion of an HTML Layout.
2 Add one large TextBox named TextBox1 to the HTML Layout.
3 Add three Label objects named Label1, Label2, and Label3 to the HTML Layout in a column under

TextBox1.
4 Add three TextBox controls named TextBox2, TextBox3, and TextBox4 in a column to the right of

Label1, Label2, and Label3.
Private Sub ShowInsPoint()

TextBox2.Text = TextBox1.CurLine
TextBox3.Text = TextBox1.CurX
TextBox4.Text = TextBox1.CurTargetX

End Sub

Private Sub TextBox1_Enter()
ShowInsPoint

End Sub

Private Sub TextBox1_KeyDown(KeyCode As Integer, ByVal Shift As Integer)
ShowInsPoint

End Sub

Private Sub TextBox1_KeyUp(KeyCode As Integer, ByVal Shift As Integer)
ShowInsPoint

End Sub

Private Sub UserLayout_Initialize()
TextBox1.MultiLine = True

TextBox1.Text = "CurTargetX identifies where, if possible, to place the
insertion point on a line within a multiline TextBox or ComboBox. The
target position is relative to the left edge of the control. If the length
of a line is less than the value of CurTargetX, you can place the insertion
point at the end of the line." _

 & Chr$(10) & Chr$(13) & "The value of CurTargetX changes when
the user sets the insertion point or when CurX is set. TheCurTargetX
property is read-only." _

 & Chr$(10) & Chr$(13) & "The position is given in himetric
units. A himetric is 0.00001 of a meter." _

 & Chr$(10) & Chr$(13) _
 & Chr$(10) & Chr$(13) & "The return value is valid when the

object has focus."

Label1.Caption = "Current Line"
Label1.AutoSize = True

Label2.Caption = "Distance from left margin"
Label2.AutoSize = True

Label3.Caption = "Preferred distance from margin"
Label3.AutoSize = True

TextBox2.Enabled = False
TextBox3.Enabled = False
TextBox4.Enabled = False

TextBox1.SetFocus

TextBox1.CurLine = 0
TextBox1.CurX = 317 'Current position expressed in

himetric units.

ShowInsPoint
End Sub

accelerator key
A single character used as a shortcut for selecting an object. Pressing the ALT key followed by the
accelerator key gives focus to the object and initiates one or more events associated with the object.
The specific event or events initiated varies from one object to another. If code is associated with an
event, it will be processed when the event is initiated. Also called keyboard accelerator, shortcut key,
keyboard shortcut.

background color
The color of the client region of an empty window or display screen, on which all drawing and color
display takes place.

class
The formal definition of an object. The class acts as the template from which an instance of an object
is created at run time. The class defines the properties of the object and the methods used to control
the object's behavior.

collection
An object that contains a set of related objects. An object's position in the collection can change
whenever a change occurs in the collection; therefore, the position of any specific object in the
collection may vary.

COM object
An object that conforms to the Component Object Model. COM defines how ActiveX objects and their
clients interact within processes or across process boundaries.

container
An object that can contain other objects.

control
A tool you select from the ActiveX Control Pad toolbox to draw an object, such as a CommandButton
or a TextBox, in an HTML Layout.

Controls have their own set of recognized properties and events. You use controls to receive user
input, display output, and trigger event procedures. You can manipulate most controls using methods.

design time
The time during which you can build or modify an application in the development environment by
adding controls, setting control properties, and so on. For example, during design time you can edit
an .alx file in HTML Layout.

In contrast, during run time you can interact with an application as a user would.

drop source
The selected text or object that is dragged in a drag-and-drop operation.

focus
The ability to receive mouse clicks or keyboard input at any one time. In Microsoft Windows, only one
window, HTML Layout, or control can have this ability at a time. The object that "has the focus" is
usually indicated by a highlighted caption or title bar. The focus can be set by the user or by the
application.

foreground color
The color that is currently selected for drawing or displaying text on screen. In monochrome displays,
the foreground color is the color of a bitmap or other graphic.

HTML
Hypertext Markup Language. A system of marking up, or tagging, a document so it can be published
on the World Wide Web. Documents prepared in HTML include reference graphics and formatting
tags. You use a Web browser (such as Microsoft Internet Explorer) to view these documents.

named arguments
An argument that has a name that is predefined in the object library. Instead of providing a value for
each argument in a specified order expected by the syntax, you can use named arguments to assign
values in any order. For example, suppose a method accepts three arguments:

DoSomeThing namedarg1, namedarg2, namedarg3

By assigning values to named arguments, you can use the following statement:
DoSomeThing namedarg3 := 4, namedarg2 := 5, namedarg1 := 20
Note that the arguments don't need to appear in their normal positional order.

point
In typography, a point is 1/72 inch. The size of a font is usually expressed in points.

RGB
A color value system used to describe colors as a mixture of red (R), green (G), and blue (B). The
color is defined as a set of three integers (R,G,B) where each integer ranges from 0–255. A value of 0
indicates a total absence of a color component. A value of 255 indicates the highest intensity of a
color component.

run time
The time during which an application is running and you can interact with it as a user would. For
example, during run time you can view an .alx file in a browser such as Internet Explorer.

In contrast, during design time you can create an application and modify its design.

single-precision value
Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point
numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from
1.401298E-45 to 3.402823E38 for positive values. The type-declaration character for Single is !.

system colors
Colors defined by the operating system for a specific type of monitor and video adapter. Each color is
associated with a specific part of the user interface, such as a window title or a menu.

tab order
The order in which the focus moves from one field or object to the next as you press TAB or SHIFT+TAB.

target
An object onto which the user drops the object being dragged.

transparent
Describes the background of the object if the background is not visible. Instead of the background,
you see whatever is behind the object, such as an image or picture used as a backdrop in your
application. Use the BackStyle property to make the background transparent.

UNC
Uniform Naming Convention. The UNC specifies a directory on a server on a local area network.

The basic format is:

\\servername\sharename
where "servername" is the host name of a network file server, and "sharename" is the name of a
networked or shared directory.

URL
Uniform Resource Locator. Identifies the full path of a document, graphic, or other file on the Internet
or on an intranet.

A URL expresses the protocol (such as FTP or HTTP) to be accessed and the file’s location. A URL
may also specify an Internet e-mail address or a newsgroup. Some examples of URLs are:

http://www.someones.homepage/default.html

ftp://ftp.server.somewhere/ftp.file

gopher://server.name

file://Server/Share/File.doc

z-order
The visual layering of controls on an HTML Layout along the z-axis (depth). The z-order determines
which controls are in front of other controls.

Topic Not Related
There are no topics associated with this jump.

