
MathViews
TM

 for Windows

A MATLAB Compatible

Interactive Program with Built-in Graphics

for

Digital Signal Processing

and

Linear Algebra

by

The MathWizards
TM

MathViews
TM

 Demonstration Disk

The MathWizards

ii Function Listing MathViews Demonstration

Copyright © 1992-1994, The MathWizards all rights reserved.

All Rights Reserved

The MathWizards
PO Box 22564

San Diego, CA 92192

Tel: (619) 552-9031

Fax: (619) 552-9031

CompuServe: 70274,2564

INTERNET: 70274.2564@compuserve.com

Printed, Developed, and Assembled in the United States

Warning

MathViews software and the manual are protected by United States Copyright Law and are

licensed for use on one computer per copy only.

List of Trademarks

MATLAB is a registered trademark of The MathWorks, Inc.

MS-DOS is a trademark of Microsoft Corporation.

IBM and IBM PC are trademarks of International Business Machines Corporation.

Windows is a trademark of Microsoft Corporation.

MathViews is a trademark of The MathWizards.

MathPad is a trademark of The MathWizards.

AutoAssign is a trademark of The MathWizards.

The MathWizards

MathViews Demonstration Function Listing iii

MathViews
TM

the First MATLAB Compatible Interpreter under Windows

TABLE of CONTENTS

Introduction... 1

What Is MathViews ... 1

MATLAB Compatibility .. 2

System Requirements... 3

What's in this manual.. 4

Typefaces used in this manual .. 4

Limitations of this Demonstration Disk Application.. 4

1
Getting Started .. 5

Installation ... 5

Installing MathDemo.. 5

Starting MathDemo.. 6

2
Environment.. 7

User Interface Windows... 7

Program Window ... 7

Interactive Window .. 7

Output Window.. 8

Graphics Window... 8

Menus.. 9

File Menu... 9

Edit Menu .. 10

Program Menu ... 11

Options Menu .. 12

Help Menu ... 13

Control Menu (−) ... 13

3
Tutorial ... 15

Lets Try Some Examples ... 15

Running an Example M-file .. 17

AutoAssign Demonstration... 18

The MathWizards

iv Function Listing MathViews Demonstration

Fundamental Concepts..18

Variables...19

Complex Variables ..19

Vectors and Matrices ..20

Matrix and Array Operations ..22

Operations ..22

Matrix Manipulations ..25

Piping ...33

Dependence Assignments ..34

Graphic Visualization..36

Creating X-Y Plots..37

Creating Polar Plots ..39

Creating Contour Plots..40

Creating Three-Dimensional Plots ...41

Relational And Logical Operations..42

Relational Operators ...42

Logical Operators ...43

Loops And Conditionals ...44

Conditional Statements..44

Iteration Statements ..46

Break Statement..48

Creating Programs and Functions..49

Scripts...50

Functions ..50

Modules..51

4
Function Listing ...53

The MathWizards

MathViews Demonstration Function Listing v

Introduction

What Is MathViews

MathViews is a powerful, high-level, interactive, SCIENTIFIC COMPUTING

ENVIRONMENT. It is designed for engineers and scientists who need a powerful visual

computational and analytical tool to assist them in solving their mathematical problems.

MathViews provides simple access to some of the most difficult-to-program yet most

frequently used algorithms in engineering and scientific computing. Algorithms encompass

such topics as linear algebra and Digital Signal Processing (DSP). MathViews also has

extensive graphical visualization capabilities. In addition, MathViews is compatible with

existing MATLAB M-files.

MathViews serves as a calculator, analysis tool, modeling tool, graphics package, and

applications development system combined into one powerful application. The package

provides an extensive set of arithmetic functions customized and optimized for technical users.

The most unique and time-saving aspect of MathViews is its ability to process arrays of

numbers. It provides a comprehensive set of operators and functions for performing real and

complex vector and matrix operations, 1- and 2-dimensional FFT, convolutions and

correlation, and data manipulation. MathViews also has complex graphics such as polar,

linear, 3-D hidden line, and contour plots.

MathViews is a command driven program. This means that each function of the program is

initiated by typing a command at the keyboard. MathViews is more than just a simple

interpreter. Each command is actually compiled as the command is entered rather than

interpreted at run time. This feature allows for instant syntax checking of the input to provide

immediate feedback. The incremental compilation enables the final interpretation to occur

much faster than with any conventional interpreter, resulting in a much faster program

development and execution cycle.

Most tasks in MathViews are solved by using built-in functions and commands. MathViews

can be easily extended by creating new commands using the MathViews language.

Programming under MathViews is extremely easy because of its natural language syntax and

versatile subroutine structure.

MathViews has powerful debugging tools. You can select and execute a specified section of

code. You can also single-step your program and selectively trace into or around any M-file

functions called by the program. An animate mode lets you view each line as MathViews

steps through your program.

MathViews library management freature makes building large projects easy. Simply put all

the functions of a specific project into a MathViews module, compile the module, and

instantly, all the functions in the module are available for use. By contrast, in MatlabTM each

module can only have one function defined.

The MathWizards

vi Function Listing MathViews Demonstration

MathViews also fully supports the Windows Dynamic Data Exchange (DDE) standard for

communicating with other Windows applications. MathViews can operate as either a DDE

server or client. All of the powerful features of MathViews are now available to your other

applications. You could, for example, execute a M-file from an Excel spreadsheet and pass

the results back to Excel. MathViews supports DDE cold, warm, and hot links.

You can also extend MathViews by writing your own Windows Dynamic Link Library (DLL)

modules. DLLs provide a common means of adding custom code to applications under

Windows. The MathViews DDE layer and Graphics layer are examples of DLLs which can

be added to MathViews. You can develop DLLs in any language, i.e. Pascal, C or C++,

which supports Windows DLLs.

MathViews was crafted in C++ for easy portability to other computing environments.

Accuracy is assured by performing all calculations using double precision numbers.

MATLAB Compatibility

MathViews is compatible with MATLAB syntax and will execute MATLAB M-files.

However MathViews will execute MATLAB M-files only when all the interdependent M-files

are present. The highest level of compatibility is provided when using M-files which utilize

only built-in functions of MathViews.

The MathViews integrated environment is much more versatile than the simple environment

of the DOS version of MatlabTM. Features of MathViews include:

• Different windows for editing, text output, graphics output, and interactive input.

• Cut/Copy/Paste of commands and script files; Copy/Print for plots.

• Back scrolling of text for examining past results and statements in all MathViews

windows.

• MathPadTM utility for editing multiple M-files under Windows.

• Building and compiling of MathViews libraries. Multiple M-files can be combined into

a single module and compiled into a MathViews library. The library can be brought

into MathViews with a single command.

• Precompilation of M-files and libraries.

• Execution of a selected section of consecutive statements in an M-file.

• A mechanism for stepping through M-file statements or selected number of statements.

• AutoAssignTM for automatic variable updates; for example, y := abs(x), when x is

changed, y is automatically updated.

• C syntax for simple and compound assignment(+=,*=,...); postfix operators(++,--).

• Multiple graphics windows, with quick zoom utility.

• Subplot utility supports up to up to 81 subplots, in a 9x9 pattern.

• Easily extensible through Windows Dynamic Link Library (DLL) interface.

The MathWizards

MathViews Demonstration Function Listing vii

• Fully supports Windows Dynamic Data Exchange (DDE) for interfacing to other

Windows applications.

System Requirements

MathViews runs on the IBM PC family of computers, including the AT, 386, 486, along with

all true IBM compatibiles. MathViews is designed to operate under the Windows 3.0 or 3.1

environment.

Minimum system:

IBM PC/AT, 386, 486, or compatible

DOS 3.3 or higher

Windows 3.x

Microsoft compatible mouse

20 MB hard drive minimum

2 MB of RAM

EGA display or higher resolution monitors

Suggested system:

IBM 386 + coprocessor or 486

DOS 5.0

Windows 3.x

Microsoft compatible mouse

40 MB hard drive

4 MB of RAM

VGA display or higher resolution

What's in this manual

This manual explains how to use the features of MathViews to quickly solve complex

analytical problems. MathViews is used throughout this manual to refer to the complete

MathViews package. MathDemo is used to refer to items specific to the Demonstration

version of MathViews. The manul is divided into four main sections:

Getting Started

This section describes how to install and start MathDemo. It includes detailed installation

instructions and how to invoke the program from the Windows environment.

Environment

The MathWizards

viii Function Listing MathViews Demonstration

The Environment section describes the MathViews user-interface. It includes a description of

the primary user-interface windows and the menu structure.

Tutorial

This section provides an introduction to the features of MathViews. It covers features such as

matrix and array manipulations, language control structures, and graphics.

Function List

This section contains a list of all of the functions available in the complete MathViews

package.

Typefaces used in this manual

This manual uses the special fonts to represent things like menu commands, commands, and

functions:

Monospace type This typeface represents text as it appears on the

various text based window in MathViews. It is

also used to identify MathViews commands and

functions.

Boldface This typeface is used for MathViews reserved key

words and for items which can be selected from a

menu.

Limitations of this Demonstration Disk Application

There are a few minor limitations of MathDemo that you should be aware of:

• The maximum number of elements for a vector or a matrix is 32 elements.

• Each session of MathDemo is time limited to approximately 10 minutes.

• Only a subset of the complete MathViews functions are provided.

The MathWizards

MathViews Demonstration Function Listing ix

1

Getting Started

Installation

MathDemo and all of its related files must be installed before it can be properly used. An

installation program is provided with MathDemo to automatically do the complete installation.

Installing MathDemo

There are several things that are important to note before installing MathDemo:

• MathDemo requires that a math coprocessor has been installed. If one is not

found, the installation program will alert you, and MathDemo WILL NOT BE

INSTALLED.

• The MathDemo installation program does not modify your WIN.INI file in any

way.

• MathDemo requires 4 MB of hard disk space. Please ensure that enough room is

available on your hard disk BEFORE beginning the installation.

• You should be familiar with Windows before using MathDemo.

Procedure

1. Turn your system on if it is not already started.

2. Insert the MathDemo Installation Disk into the floppy Disk Drive. This can be A:

or B:, as appropriate.

3. Make sure your system is in Windows. If in DOS, type win and press the

[Enter] key..

4. Select the Run option from the Windows Program Manager File menu..

5. In the Run dialog box, type the appropriate floppy drive letter (A: or B:), setup

and then then [Enter] key.

6. The MathDemo installation program will prompt you for all required information.

The installation begins, and the message bar displays a continuous indication of

the percent completion of the installation. Note that the program creates a new

applications group, named MathDemo, containing MathDemo.

Starting MathDemo

The MathWizards

x Function Listing MathViews Demonstration

If your computer started at the DOS prompt, you can enter the Windows environment by

typing win, and pressing the Enter key.

MathViews is started by either double clicking on the MathViews icon or by selecting the

run option in the Windows Program Manager file menu option and then typing

mathdemo. After a moment, you will see the MathViews Copyrights window with an

OK button. This window will stay on the screen for approximately two seconds before

continuing with the initialization of the MathViews environment. Upon starting,

MathViews executes the 'startup.m' M-file. You can select the ok button to immediately

close the Copyrights window.

The MathWizards

MathViews Demonstration Function Listing xi

2

Environment

MathViews is developed to work in the Windows environment. This allows you to take full

advantage of other excellent Windows utilities, like the Clipboard, PaintBrush, Word, and

other third party applications. To take full advantage of MathViews, you should familiarize

yourself with Windows.

MathViews is a computing environment specifically designed for matrix computations. It

provides many unique and convenient features that make it particularly well suited to scientists

and engineers doing demanding circuit designs, filter designs, signal processing, numerical

analysis, and many other fields. MathViews is easy to learn and master.

User Interface Windows

You interact with MathViews through four windows: Program. Interactive, Output, and

Graphics. These windows allow you to enter commands and programs, and to view text and

graphical output of you data.

Program Window

The Program window is where you load, edit, program, and run MathViews script

files. Script files in MathViews are called M-files. The Program window is a simple

editor that is easily permits you to update changes in an M-file and to immediately

execute the new statements. It is not necessary to close the file and execute the M-file

command afterwards, as in the MatlabTM language. Text can be cut and pasted into

the Program window.

Interactive Window

The Interactive window allows you to immediately enter and execute commands.

The interactive window is you interface to the MathViews interpreter. The Interactive

window can be used as a testing ground for statements to be inserted in the M-file

contained in the Program window. This versatility permits you to test statements as

you compose application-specific M-files. Text can be cut and pasted into the

Interactive window.

Output Window

The Output window is where all the text output goes. The Output window keeps a

64 line buffer. You can scroll the output window to review previous results.

The MathWizards

xii Function Listing MathViews Demonstration

Graphics Window

The Graphics window is independent of the other MathViews windows, and can

therefore reside anywhere on the screen. Graphics windows are used to display

graphical outputs or your data using MathViews' extensive set of functions for

generating x-y plots, contour, and three-dimensional plots.

MathViews allows you to generate multiple graphics windows, one for each piece of

data you wish to plot. MathViews also has commands to let you overlay multiple data

sets on the same graphics window. This allows you to easily examine you data.

Any area of a Graphics window image can be zoomed in and out by simply selecting

the area with the mouse. To select an area, press on the left mouse button and hold it

down while you highlight the desired area. To return to the original scale of the image

just click on the right mouse button.

Each Graphics-window image can be scrolled both vertically and horizontally. The

windows can be scrolled in either original-scale or zoomed mode.

Graphics images in a Graphics window can be printed by choosing the print option in

the Control menu of the Graphics window.

Note:

In each of the windows described above, when the window is in

focus, i.e. when the caption bar is highlighted, text or graphics

can be copied to or pasted from the Windows clipboard.

However, in a Graphics window, the user is only permitted to

copy the current graphics image to the clipboard or print the

image onto a plotter or graphics printer (in the current

version).

The MathWizards

MathViews Demonstration Function Listing xiii

Menus

The main MathViews window has a top-level menu bar that provides a list of choices for

which actions to take. The top level menu options are: File, Edit, Program, Options, and

Help. In addition, MathViews supports the Windows standard Control menu. The control

menu is accessed by clicking on the button in the upper left corner of the MathViews window.

File Menu

The file menu contains the following menu items: New, Open, Save, Save as…, Open

Library, Save Library as…, and Exit.

New

Creates a new M-file editing session in the Program window. Issuing the new

command will close the current file, before beginning a new editing session.

Open

Opens an ASCII text M-file for editing.

A dialog box will prompt you to insert the filename to be opened. Selecting a file can

be accomplished in one of two ways. The first way is to simply type in the file name.

The second way is to click on its name in the list of files provided in the dialog box.

You can also open other directories for search by double-clicking on the drive letter or

the path specifier in the dialog box. When the dialog box comes up, only files with the

'.m' extension are displayed. To see other files, type in the appropriate extension.

Save

Saves the current editing session in the Program window onto disk.

MathViews saves the data into the file if the filename to be saved to already exists. If

the file has not previously been saved, a dialog box will be displayed to prompt you for

a filename.

Save As ...

Saves the current editing session in the Program window onto disk.

A dialog box will prompt you for the filename to be saved to. You can specify any

new filename or an entirely new path. The '.m' extension must be explicitly entered.

Open Library

Opens a Library file.

A dialog box will prompt you to insert the library filename to be opened. Library files

are files with the '.l' extension. Selecting a file can be accomplished by either typing in

the filename or clicking on its name in the list of files provided in the dialog box. You

can also open other directories for search. When the dialog box comes up, only files

with the '.l' extension are displayed. To see other files, type in the appropriate

extension.

The MathWizards

xiv Function Listing MathViews Demonstration

Save Library as ...

Save the current editing session in the Program window onto disk as a library file.

A dialog box will prompt the user for the filename to be saved to. The user can

specify any new filename or an entirely new path. The '.l' extension must be explicitly

entered.

Exit

Exits the current session of MathViews, and returns to Windows.

If the current editing session Program window has not been saved, a dialog box will

ask you to either save changes and exit (YES option) or abandon changes and exit

(NO option).

Edit Menu

The Edit menu contains the following menu items: Clear, Select All, Cut, Copy, Paste,

Delete, and Goto Line…

Clear

Clears the currently selected (highlighted) area.

Select All

Selects all the text in the currently active MathViews window.

Cut (Shift+Del)

Cuts the currently selected (highlighted) area onto the Windows clipboard, removing

the selected area in the currently active window.

You can cut a selected area from either the program window or the interactive

window. Those are the only two windows from which items can be cut.

To select an area, place the cursor to the desired beginning location, click the left

mouse button, drag to the desired end location, and release the mouse button. To

unselect text, click on the mouse button again.

Copy (Ctrl+Ins)

Copies the currently selected area into the Windows clipboard, without removing the

selected area in the currently active window.

The copy option can be used in all MathViews text-based windows: Program,

Interactive, Output. In the Graphics windows, the copy command is issued through

the control menu on the Graphics window.

The MathWizards

MathViews Demonstration Function Listing xv

Paste (Shift+Ins)

Pastes the content of Windows clipboard onto the currently active window.

MathViews does not allow pasting into either the Output window or the Graphics

windows. Pasting ASCII text is permitted in either the Program window or the

Interactive window.

Delete (Del)

Deletes the character to the right of the current cursor position or deletes the selected

area.

Deletions can only be made from the Program window or the Interactive window. To

delete the character to the left of the cursor, use the backspace key.

Goto line……

Lets you immediately go to a specified line in the currently active window.

Program Menu

The Program menu contains the following menu items: Run, Step, Continue, Reset,

Stop, and Compile. These items only affect the Program window.

Run (Ctrl+r)

Runs the current M-file in the Program window. If a highlighted area exists, choosing

the run option will execute the statements in the highlighted area instead.

Animate (Ctrl+a)

Automatically single step through the current program or highlighted portion thereof.

The sequence will animate, pausing between execution of statements. The animation

sequence operates as if you were stepping through the program.

Step (Ctrl+s, F8)

Executes one statement.

By continuously typing in 'Ctrl+s', you can step through the M-file in the Program

window. If a selected area exists, then only the statements in the selected area will be

executed.

Trace into (Ctrl+r,F7)

Single-step into the specified function. Note, you can only trace into functions which

are defined in M-files.

MathViews will automatically display the code from the M-file which describes the

function. You can single step through the M-file by entering 'Ctrl+s'.

The MathWizards

xvi Function Listing MathViews Demonstration

Continue (Ctrl+n,F9)

Resumes execution of a stopped run session.

The continue option lets you resume execution of the M-file, or the selected part of it,

after a stop command was issued or an error occurred.

Reset (Ctrl+x)

Resets the starting position for execution to the beginning of the M-file in the Program

window.

Stop (Ctrl+y)

Stops the session currently running in the Program window. A continue or run

command restarts the session.

Compile

Compiles the current editing session into MathViews memory.

The current editing session in the Program window must be a file with the '.M'

extension. Otherwise, Mathviews will not compile the file. After the compilation, the

old M-file function in memory will be replaced by the most recently compiled M-file.

Options Menu

The Options menu contains the following items: Cascade, Tile, Arrange, Path…, and

Format…

Cascade

Cascades the three text windows in MathViews: Program, Interactive, Output.

Tile

Tiles the three text windows in MathViews: Program, Interactive, Output.

Arrange

Manually arranges the location of windows.

Path ...

Changes the search path of MathViews. The search path is used in MathViews to

search for M-files, libraries, ′.mat′ and ′.dry files′.

A dialog box will show the current search path, and prompts you to enter a new search

path. You can either choose CANCEL to exit without making any changes to the

current search path, or you can type in a new search path and click OK.

The MathWizards

MathViews Demonstration Function Listing xvii

Format ...

Selects floating-point output format.

Instead of specifying the floating-point numbers output format through the format

command in the interactive window, this option permits you to interactively select an

output format using the mouse.

Help Menu

The Help menu contains the following menu items: Help, About ..., and Memory.

Help

Display a help window. The help window lets you view help information contained in

M-files.

About ...

This selection displays version and copyright information for MathViews.

Memory

Displays the current memory usage of MathViews.

Control Menu (−−)

The control menu is a standard Windows feature. It contains the following menu

items: Restore, Move…, Size, Minimize, Maximize, Close, Switch to… This is a brief

discussion of its use with MathViews.

Restore

Returns the window to the default size and position.

Move

Changes the position of the application window on the screen.

An easy way to accomplish the same action is to click on the title bar and drag the

window to the desired location.

Size

Resizes the window.

An easy way to accomplish the save action is to move to the lower right corner of the

window, until the mouse cursor becomes a bi-directional arrow; then click on the

mouse and drag until the desired size is reached.

The MathWizards

xviii Function Listing MathViews Demonstration

Minimize

Reduces the window into an icon.

Maximize

Enlarges the window to its maximum size.

Close

Closes the window of the current application. In order words, quit the application.

Switch to ...

Switches between the applications currently running under Windows.

Maximize/Minimize Button

Functions in exactly the same manner as the Maximize/Minimize item in the control

menu.

The MathWizards

MathViews Demonstration Function Listing xix

3

Tutorial

Lets Try Some Examples

Click on the Interactive Window, and then enter the following commands:

x = [0 0]
y = [0 3.14; -imag(log(-1)) 3.14; x]
z = cos(y)
zz := sin(y)
x(1) = -imag(log(-1)) / 2

Notice that the variable zz is updated automatically. The dependency operator, :=, assigns

the value of sin(y) to zz. Whenever the value of y is changed, either directly or indirectly,

the value of zz is updated.

Now try:

exp(x)
x->exp

The MathViews pipe operator, ->, is an alternative method for entering an expression.

Now try entering Matrices:

A = [1 2 3; 4 5 6; 7 8 9]
A'
A += A
A -= A

MathViews offers a number of method for creating matrices and performing operations on

them.

MathViews lets you visualize your data with its extensive set of graphical plotting functions.

Lets try plotting some data using a linear X-Y plot:

x = 0:.5: 10
plot(sin(x).* exp(x))
grid

title('sin(x) * exp(x)')

xlabel('x-range')
ylabel('y-range')

The MathWizards

xx Function Listing MathViews Demonstration

Now lets try plotting some data using a 3-dimensional hidden line removal plots:

x = 1:5
y = 1:5
z = x'*y
fsin = sin(z)
fxsq = z .* z
mesh(fsin), mesh(fxsq)

plot of fsin

The MathWizards

MathViews Demonstration Function Listing xxi

plot of fxsq

MathViews lets you quickly zoom into any section of your plots. With the mouse, try

zooming in and out of any of the plots you have just created by selecting (highlighting) an area

within the graphics plot to zoom on that area. Try selecting another area. Click anywhere in

the window to return to the original scale.

Running an Example M-file

Click on the FILE menu in the Application window, and choose OPEN.

Locate the MATHVIEW directory, and select MVDEMO.M.

At this point, you have four options:

• Run the complete M-file.

• Select a portion of the M-file to execute.

• Step through the M-file.

• Step through a selected statements of the M-file.

From the Application menu, choose the Program option, then choose Run. You will see the

statements highlighted as they run through the interpreter.

You can also step through the M-file statements by choosing the Step item under the Program

option.

Lastly, try selectively executing statements in MVDEMO.M.

Use the mouse to select any statements you want to run, and choose the Run item again. You

will observe that only the highlighted statements are executed.

The MathWizards

xxii Function Listing MathViews Demonstration

AutoAssign Demonstration

Load the AUTOASGN.M file into the program window.

Here is the listing of the demonstration M-file:

x=1:16

n=1

y1:=autoplt(x,x.^2,3,'x.^2');

y2:=autoplt(x,x.^3,4,'x.^3');

y3:=autoplt(x,abs(fft(x)),5,'abs(fft(x))');

y4:=autoplt(x,sin(6*n*x/max(x)),6,'sin(x)');

Choose the Run item to execute the AUTOASGN.M M-file statements.

Let the M-file run to completion. You will see four plots created on the screen.

Now, type

x = 1:32

Notice the graphs are automatically replotted to reflect the change in x.

This example demonstrates how easy it is to create a graphical spreadsheet using MathViews'

AutoAssign technology.

The remainder of this tutorial gives more detailed descriptions on how to perform operations

in the MathViews environment.

Fundamental Concepts

Operations in the MathViews environment are based on statements. Statements are of the

form:

variable = expression

or

expression

An expression is a sequence of operators, operands and punctuators that specifies a

computation. Expressions are used to assign values to variables and to carry out a specific

computation. MathViews uses the internal variable 'ans' if a variable is not given.

The principal data type in MathViews is a matrix of either real or complex values. Matrices of

a single row or column can be thought of as vectors. MathViews has a number of functions

and operators that manipulate matrices or vectors. You can also manipulate matrices and

vectors on an element by element basis.

The MathWizards

MathViews Demonstration Function Listing xxiii

Variables

Results of computations are kept in variables. As in most programming languages, a

variable occupies memory space and stores a value assigned to it. Assigning a value to

a variable also specifies its type. For example,

x = 2

 x =

 2

sq = sin(x)^2 + cos(x)^2

 sq =

 1

MathViews automatically displays the result of evaluating the expression in the

Output window. You can suppress the display in the Output window by placing a

semicolon at the end of each assignment statement. For example,

angle = cos(3*pi);

Multiple assignment statements can be placed on a line by using the semicolon

between statements. For example,

x = 2; sq = sin(x)^2 + cos(x)^2;

A MathViews variable can also be an ASCII string. An ASCII string must be enclosed

in single quotation marks. Text strings are assigned in the following manner:

str = 'MathViews is Powerful';

Complex Variables

Complex variables store complex (real and imaginary parts) rather than real numbers.

The individual parts of a complex variable can be extracted using the real(z) and

imag(z) MathViews functions. A complex variable can be assigned in one of the

following ways:

The MathWizards

xxiv Function Listing MathViews Demonstration

z = 2 + 4j

z = 2 + 4i

z = 2 + i * 4

z = 2 + 4 * sqrt(-1)

eio = cos(2) + i * sin(2)

exp(2i)

You can use either i or j to specify complex values. MathViews uses j to represent

the imaginary part when it prints complex values. The multiplication symbol "*" is not

required if the i or j is used after the real number representing the imaginary part. If

the i or j is used ahead of the real number the multiplication symbol must be entered.

z = 2 + 4j;

Valid assignment statement.

z = 2 + j4;

Invalid assignment statement, must use "*".

Values in radians and degrees are also expressed in terms of complex numbers.

Vectors and Matrices

Vectors and Matrices can be thought of as arrays of values. Vectors are matrices with

either one row or one column. From here on, the terms vector and matrix will be used

interchangeably except where the distinction is meaningful. Matrices can have

elements that are either complex or real. A matrix is considered to be complex if any

element of the matrix is complex.

A MathViews matrix can be entered in the following manner:

A = [2 3 1; 4 3 2; 5 2 1]

A =

 2 3 1

 4 3 2

 5 2 1

A = [sqrt(-1) cos(0) sin(pi/2); exp(3) 2^2 5i]

The MathWizards

MathViews Demonstration Function Listing xxv

A =

 1j 1 1

 20.0855 4 5j

Row elements can either be separated by a comma or spaces. A semicolon is used to

separate rows. Matrix assignments must be enclosed in square brackets, '[' ']'.

Elements of a matrix can be accessed using the format A(index), where index
begins at one. Elements are indexed in a columnwise fashion. For example,

A =

 2 3 1

 4 3 2

 5 2 1

A(4)

ans =

 3

A(3)

ans =

 5

A(2)

ans =

 4

You can also assign values to matrix elements that have not yet been allocated. For

example,

x = [2 3 1]

x =

 2 3 1

x(5) = 4

The MathWizards

xxvi Function Listing MathViews Demonstration

x =

 2 3 1 0 4

Assigning a value to the nonexistent fifth element in the x array causes an automatic

expansion of the matrix to five elements and assignment of zero to the fourth element.

The variable x must first exist for the assignment to be performed successfully.

Matrix and Array Operations

MathViews makes a distinction between performing matrix type operations on a matrix and

operating on a matrix on an element-by-element basis. The term array is used to refer to a

matrix on which elemental operations are performed. Operations on matrices are performed

with the matrices as a whole, whereas operations on arrays are performed on an element-by-

element basis.

Operations

Transpose.

MathViews uses the ' (apostrophe) character to denote transposition. An example

will best explain the operator's function:

Let

A =

 2 3 1

 4 3 2

 5 2 1

x =

 1 2 3 4

Then

x'

ans =

 1

 2

 3

 4

The MathWizards

MathViews Demonstration Function Listing xxvii

A'

ans =

 2 4 5

 3 3 2

 1 2 1

Addition and Subtraction.

Both addition and subtraction are performed on an element by element basis. The

dimension of both operands must be equal, except in the case where one is a scalar.

MathViews will generate an error message if incompatible operands are used. For

example,

x=(x' + 5)'

x =

 6 7 8 9

A + A

ans =

 4 6 2

 8 6 4

 10 4 2

A= [1 2 3; 1 2 3] + [3 4; 2 3]

This is an error, since the dimensions of the first

operand are not equal to the dimensions of the

second operand.

Matrix Multiplication and Division.

Matrix multiplication requires that the second dimension of the first operand be the

same as the first dimension of the second operand. For example, if the first operand is

m x 3, then the second operand must be 3 x n, and the resultant matrix will have

dimensions of m x n. The relationship among the numbers of columns and rows of

the operands and resultant matrix is as follows:

A * B = C

 mxn nxp mxp

The MathWizards

xxviii Function Listing MathViews Demonstration

For example,

A =

 3 -1 4

 2 0 1

B =

 1 0 -3 -2

 -2 4 5 -1

 3 -1 0 6

A * B

ans =

 17 -8 -14 19

 5 -1 -6 2

MathViews provides two matrix division operators, / and \. These correspond to

right-hand and left-hand division, respectively. Matrix divisions follow the general

rule:

A/B is equivalent to A*inv(B)

A\B is equivalent to inv(A)*B

Array Multiplication and Division.

MathViews performs array multiplication and division on an element by element basis.

Array multiplication and division are denoted by placing a period (.) ahead of the *,

/, and \ operators. Array multiplication and division are performed as follows:

C = A.*B is equivalent to Ci = Ai * Bi

C = A./B is equivalent to Ci = Ai / Bi

C = A.\B is equivalent to Ci = Bi / Ai

For example,

A =

 2 3 1

 4 3 2

 5 2 1

The MathWizards

MathViews Demonstration Function Listing xxix

A .* A

ans =

 4 9 1

 16 9 4

 25 4 1

A ./ A

ans =

 1 1 1

 1 1 1

 1 1 1

Matrix Manipulations

MathViews offers many methods for manipulating the data elements of a matrix. We

will explore some of the more fundamental procedures for manipulating matrix

elements in this section. The best way for learning how to manipulate matrices is to

simply experiment with the operations discussed here.

Colon Operator.

The colon operator, ':', plays a very important role in matrix manipulation. Its simplest

function is to assign a range of elements to a variable. For example,

A = [1:4; 2:5]

A =

 1 2 3 4

 2 3 4 5

The general form of the colon operator is start:increment:end, corresponding

to a starting value, an increment, and an ending value. The increment is assumed to be

1 if it is not explicitly specified. The colon operator is a simple way to generate a row

vector covering a specified range of values.

The MathWizards

xxx Function Listing MathViews Demonstration

x = 0.5:0.5:2

x =

 0.5 1 1.5 2

Notice square brackets are not necessary when creating vectors using the colon

operator.

x = 2:-0.5:0.5

x =

 2 1.5 1 0.5

Negative numbers are also allowed for the increment value.

x = sqrt(1:4)

x =

 1 1.41421 1.73205 2

The colon operator can also be used to pass a range of values to a function.

1 + 1:5

ans =

 2 3 4 5

1 + (1:5)

ans =

 2 3 4 5 6

The precedence of operators must be taken into consideration when creating

expressions. Notice here the + operator has higher precedence than the colon

operator. Care must be used when multiple operators are involved.

The MathWizards

MathViews Demonstration Function Listing xxxi

Creating Matrices.

Large matrices can be easily created using a combination of vectors and the colon

operator. For example,

x = [1 2 3]

x = [x, 4 5 6]

x =

 1 2 3 4 5 6

A = [x; 5:10]

A =

 1 2 3 4 5 6

 5 6 7 8 9 10

Matrix Subscripting:

Matrix subscripting allows you to get access to individual matrix elements. The

general form is as follows:

A(rV, cV)

The rV and cV arguments are subscripts and can be either scalars or vectors. When

using subscripting you must ensure that the A matrix exists and that the ranges of the

subscripts are subsets of the ranges of A. The elements of rV can not have values

greater than the number of row of A and the elements of cV can not have values

greater than the number of columns of A. The MathViews exist() function can be

used to test for the existence of a variable.

If the subscript variable is a vector, then only those elements of the matrix whose

indices correspond to the values in the vector are accessed. This method is best

illustrated by examples:

A =

 1 2 3 4

 1 2 3 4

 1 2 3 4

 1 2 3 4

The MathWizards

xxxii Function Listing MathViews Demonstration

A(1:2, 1:2)

ans =

 1 2

 1 2

A(2,:)

ans =

 1 2 3 4

In the previous example, the colon operator was used with no values to select the third

row of matrix A. Using the colon operator by itself corresponds to selecting all

elements of the specified row or column. The second column of A could have been

accessed by simply swapping the 2 and the :, i.e. A(:,2).

A(:,2:3) = A(:, 3:-1:2)

A =

 1 3 2 4

 1 3 2 4

 1 3 2 4

 1 3 2 4

This example switches columns 2 and 3.

A(2:3, [1 1 2 2])

ans =

 1 1 3 3

 1 1 3 3

This example selects from row 2 and 3, the first column twice and the second column

twice.

The MathWizards

MathViews Demonstration Function Listing xxxiii

Matrix Reshaping:

The colon operator can also be used on the left-hand side of an assignment statement

to change the dimensioning or size of the matrix. For example,

B =

 1 2 3

 2 3 4

B(:)

ans =

 1

 2

 2

 3

 3

 4

This example changes the dimensions of B from a 2-by-3 matrix to a column vector

whose elements are the columns of the previous B matrix.

B(:) = 21:26

B =

 21 23 25

 22 24 26

This example changes the values of the B matrix to the elements of a vector with

values from 21 to 26. Notice that B retains its previous dimensioning.

B(:) = [21 24 26 3 4 5]

B =

 21 26 4

 24 3 5

This example changes the values of the B matrix to the elements of the specified

vector.

The MathWizards

xxxiv Function Listing MathViews Demonstration

The matrix must already exist prior to using the colon operator to reshape matrices.

The matrix must exist to maintain the same size, otherwise MathViews will create a

column vector.

Matrix Shifting.

Columns and rows of a matrix can be shifted to the left and right. Shifting can be

either circular or linear. In a circular shift, as elements are shifted off the end they are

wrapped back to the beginning. In a linear shift, as elements are pushed off the end, a

zero value is added in place of the missing element.

Here are some examples of performing linear and circular shifts:

A =

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14 15 16

A >> [2 -2]

ans =

 0 0 0 0

 0 0 0 0

 3 4 0 0

 7 8 0 0

This example shows a linear shift of A by two elements down and two elements right.

Notice that MathViews zero fills the remainder of A.

A <> [2 -2]

ans =

 11 12 9 10

 15 16 13 14

 3 4 1 2

 7 8 5 6

The MathWizards

MathViews Demonstration Function Listing xxxv

In this example we perform a linear shift on the A matrix. Notice that in the circular

case the elements that were shifted off are wrapped back around. The row shifts occur

first, then the column shifts are performed.

Deleting Matrix Rows/Columns.

You can use the empty matrix notation, A = [] to easily delete matrix elements,

columns, or rows. The empty matrix A is defined as a 0-by-0 matrix. A column or

row is deleted in the following manner:

A =

 1 2 3 4 5 6 7 8

 1 2 3 4 5 6 7 8

 1 2 3 4 5 6 7 8

 1 2 3 4 5 6 7 8

A(:, [1 3 5]) = []

A =

 2 4 6 7 8

 2 4 6 7 8

 2 4 6 7 8

 2 4 6 7 8

This statement deletes column 1, 3, and 5.

A([2 4],:) = []

A =

 2 4 6 7 8

 2 4 6 7 8

This statement deletes rows 2 and 4.

The MathWizards

xxxvi Function Listing MathViews Demonstration

Logical Vectors.

Matrices and vectors can be manipulated and reshaped using logical vectors. Logical

vectors are vectors whose elements are either zero or one. A logical vector must have

the same number of elements as the rows or columns they are referencing. The

following examples illustrate the use of logical vectors:

A =

 1 2 3 4

 5 6 7 8

 9 10 11 12

x =

 1 0 1 0

y =

 0 1 0

Notice that the matrix A has three rows and four columns. The vector y has three

elements and will be used to access the rows of matrix A. The vector x has four

elements and will be used to access the columns of A.

A(y,x)

ans =

 5 7

The resultant matrix is those rows and columns of A for which the logical vectors, x
and y, have a value of one.

x =

 1 1 1 1

y =

 0 1 0

The MathWizards

MathViews Demonstration Function Listing xxxvii

A(y,x)

ans =

 5 6 7 8

In this case the entire second row of A is returned since the logical vector y is all ones

and the logical vector x has a one only in the second position.

x =

 1 1 1

A(:,x)

ans =

 1 1 1

 5 5 5

 9 9 9

In this example x is not treated as a logical vector for selecting columns from A since

the number of elements of x is not equal to the number of columns of A. In this case,

vector x is used as a subscript to select column one of A three times.

Piping

MathViews provides the pipe operator (->) to make the task of writing nested

statements easier. The pipe operator allows you to send the output from one function

into another function. This can eliminate the need for lots of parentheses and reduces

the likelihood of making errors due too improper matching of parenthesis. For

example,

x =

 1 2 3

abs(sqrt(cos(exp(x))))

This expression can be converted into a simpler form with more readability using the

pipe operator,

exp(x)->cos->sqrt->abs

The MathWizards

xxxviii Function Listing MathViews Demonstration

ans =

 0.954848 0.669594 0.573232

Dependence Assignments

MathViews provides a powerful facility for allowing you to set up automatic

recalculations by assigning dependencies between variables. With the MathViews

Auto-AssignTM technology you use the dependence assignment operator, :=, to build

relationships among variables. Relationships can be nested many levels deep.

MathViews will automatically update all dependent variables. For example,

x = 1

y = 1

z = 2

A := abs(x + y)

A =

 2

This statement sets up the relationship that A is dependent on the value of the variables

x and y.

B := sqrt(z + A)

B =

 2

This statement sets up the relationship that B is dependent on the value of variables z
and A. B is indirectly dependent on the variables x and y since A is also dependent on

the value of variables x and y.

_list(0)

The MathWizards

MathViews Demonstration Function Listing xxxix

Your relations are :

Level 1 : A := x , y

Level 2 : B := A , z

The MathViews function _list() can be used to display the relationships you have

set up.

x = 4

x =

 4

A =

 5

B =

 2.64575

Variable Changed :B =

 2.64575

Variable Changed :A =

 5

Changing the value of x to 4 results in an automatic recalculation of the variables A
and B. Recall that A is directly dependent on x and that B is indirectly dependent on

x. Notice that all the appropriate related lower levels are updated before higher levels

are updated.

Auto-AssignTM technology and the dependent operator easily allow you to set up

what-if type calculations. You can immediately see the effect changing a single value

has on a set of equations.

The MathWizards

xl Function Listing MathViews Demonstration

Graphic Visualization

Operating in the highly graphical Windows environment, MathViews offers a number of

functions for generating high-quality graphic displays of your data. MathViews graph types

include various x-y plots, polar plots, contour plots, and three-dimensional plots. The set of

plotting functions in MathViews includes:

Plotting Function Description

plot linear x-y plot

semilogx log-x, linear-y plot

semilogy linear-x, log-y plot

loglog log-x, log-y plot

polar polar plot

contour contour plot

mesh three-dimensional plot

A number of functions are available for annotating the graphs once they are created. These

include functions for titling, axis labeling, annotation text, and grids. The following functions

are available in MathViews for annotating graphs:

Annotation Function Description

text places text on graphics window

title adds title to graphics window

xlabel adds x-axis label

ylabel adds y-axis label

zlabel adds z-axis label

grid places grid lines on plot

The MathWizards

MathViews Demonstration Function Listing xli

MathViews also includes a number of additional functions for manipulating and printing

graphics. The following additional graphics functions are provided:

Graphics Function Description

print print the graphics window

meta create Windows meta-file

hold hold plot for multiple traces

subplot create subplot windows

axis allow manual axis scaling

gwclr clear the graphics window

Creating X-Y Plots

The plot() function is the primary means of creating x-y plots in MathViews. In its

simplest form, if plot is called with a vector, it automatically plots the data in a

graphics window. MathViews automatically scales the plot to match the range of

data. If plot is called with two vectors, it uses the first vector for the x-axis and the

second vector for the y-axis. The following plot shows this case:

t = 1:64

plot(t, sin(2*t/pi))

Multiple lines can be plotted on one graph by using multiple arguments to the

plot() function. You can also specify line style, symbol type and color. The

following example plots two lines on the same graph window. The first line is plotted

The MathWizards

xlii Function Listing MathViews Demonstration

in green and uses the + symbol and the second line is plotted in red and uses the *
symbol. Notice also that we use the hold function to hold the plot while we redraw

the lines using solid lines with no symbols.

t = 0:32

t2 =-400 + t^2;

t4 = 4*t.*sin(t);

plot(t,t2,'+g', t, t4, '*r')

hold on

plot(t,t2,t,t4)

hold off

Other MathViews functions can be used to generate x-y plots with different x-y axis

scaling. The loglog(), semilogx(), and semilogy() functions allow you to

generate various logarithmic scalings.

The MathWizards

MathViews Demonstration Function Listing xliii

Creating Polar Plots

The polar() function is used to create polar plots in MathViews. This function

takes two arguments, the first specifies the angle and the second specifies the length of

the vector at the corresponding angles. The following example shows how to create a

polar plot. Notice again the use of the hold function to allow multiple plots to be

place into one graphics window. The grid function places a polar grid on the

window.

pi = acos(-1);

theta=0:.1:4*pi;

r=4+4*sin(theta);

r1=3+5*sin(theta);

r2 = 6+4*sin(theta);

polar(theta,r2);

hold on

polar(theta,r1);

polar(theta,r);

grid

The MathWizards

xliv Function Listing MathViews Demonstration

Creating Contour Plots

The contour() function is used to create contour plots in MathViews. In its

simplest form, this function takes a 2-dimensional array of real values and creates a

contour with 10 levels. The following example shows this case:

n=8;

x=(0:n)/n;

y=x.*(1.2-x);

y /= max(y);

z=y'*y;

contour(z)

Additional arguments to the contour function allow you to specify the number of

levels or the specific levels at which you wish to plot contours.

The MathWizards

MathViews Demonstration Function Listing xlv

Creating Three-Dimensional Plots

The mesh() function is used to create three-dimensional plots in MathViews. In its

simplest form, this function takes a two-dimensional array of real values that indicates

the height, Z-axis value, above the X-Y plane. The following example illustrates this

case:

n=8;

x=(0:n)/n;

y=x.*(1.2-x);

y /= max(y);

z=y'*y;

mesh(z)

Additional parameters to the mesh function allow you to change the viewing angle and

distance.

The MathWizards

xlvi Function Listing MathViews Demonstration

Relational And Logical Operations

Relational and logical operators are used to test the validity of two expressions based on a

specified relationship. They operate on matrices on an element-by-element basis. The results

of both relational and logical operations are 0 or 1.

Relational Operators

The set of relational operators in MathViews includes:

Relational Operator Meaning

== equal

<= less than or equal

< less than

>= greater than or equal

> greater than

~= not equal

A MathViews relation has the form:

{ expr } (relational operator) { expr }

The relational operator is applied to the matrices resulting from the expressions on an

element-by-element basis. The resultant matrices must be of equal dimensions. The

resultant value is a 1 if the relationship holds; otherwise it is a 0. For example,

A =

 1 2 3 4

 5 6 7 8

 9 10 11 12

B =

 9 2 45 4

 4 6 8 8

 9 20 11 12

x = (A >= 5)

x =

 0 0 0 0

 1 1 1 1

 1 1 1 1

The MathWizards

MathViews Demonstration Function Listing xlvii

This relationship returns matrix x with a one for each element of matrix A that has a

value greater than or equal to 5.

x = A == B

x =

 0 1 0 1

 0 1 0 1

 1 0 1 1

This relationship returns a matrix x with a one for each element of matrix A that is also

in matrix B.

Logical Operators

The set of logical operators in MathViews includes:

~ not

& and

| or

A logical comparison has the form:

{ expr } (logical operator) { expr }

The result of logical operators is a 1 if the logical condition holds and a 0 if the logical

condition fails. The binary logical operators (& and |) must have operands whose

dimensions are equal. The not logical operator (~) is unary. Logical operators

function on elements of matrices, usually with logical matrices. The following

examples illustrate the concept:

A =

 1 0 1

 0 1 0

B =

 1 1 1

 0 1 1

The MathWizards

xlviii Function Listing MathViews Demonstration

A | B A & B

ans =

 1 1 1

 0 1 1

ans =

 1 0 1

 0 1 0

Loops And Conditionals

Like most programming languages, MathViews has statements to control the flow of

execution of statements. Looping constructs, such as while and for loops, can be used to

repeat a set of statements either until a condition is met or a set number of times. Conditional

statements can be used to execute a set of statements based on specified conditions.

Conditional Statements

The if statement is used allow conditional execution, based on the evaluation of an

expression. An if statement must terminate with the keyword end. The general form

is as follows:

if expression

 statements

end

or

if expression

 statements

else[if expression]

 statements

end

The expression evaluates to true if it has a value, or elements with value, greater or

equal to 1; otherwise it is false. The else and elseif conditionals are optional. The

condition expression resultant must be a scalar.

The MathWizards

MathViews Demonstration Function Listing xlix

The following examples illustrate the use of if statements:

A =

 1 0 1

 0 1 0

B =

 1 1 1

 0 1 1

C =

 1 1 1

 0 1 1

if (all(all(A == B)))

 disp('B equal to A')

else

 disp('B not equal to A')

end

B not equal to A

if (all(all(C == A)))

 disp('C is equal to A')

elseif all(all(C == B))

 disp('C is equal to B')

end

C is equal to B

The MathViews all() function is used to compare all elements of the matrix it is

passed to see if they are greater than or equal to 1.

The MathWizards

l Function Listing MathViews Demonstration

Iteration Statements

While Loops.

The while construction executes a series of statements in a loop as long as a given

condition is true. The general form is as follows:

while condition

 statement

end

The condition is usually a scalar result of a relational operation. As with the if

statement, you could use the all() function to obtain a scalar condition from a

condition matrix. The following example illustrates the use of a while loop:

x = 0

while(x < 5)

 disp(x++)

end

This example displays the numbers from 0 to 4. The while loop stops executing when

the value of x is no longer less than five.

For Loops.

The for loop repeats a group of instructions for a specified number of times. The

general form is as follows:

for n = expression

 statements

end

The for loop expression in MathViews is a matrix. The statements in the for loop get

executed once for each column of the expression matrix. The for loop variable, n, is

assigned the value of the current column of the expression matrix. The expression

matrix is typically a vector created with the colon operator, i.e. for n = 1:5,

would cause the statements to be executed five times, with n taking on the integer

values from 1 to 5.

The following example shows the use of nested for loops and the size() function.

The size() function is used to determine the number of elements in a matrix. The

The MathWizards

MathViews Demonstration Function Listing li

matrix dimensions are used to specify the number of times to execute the statements in

the for loop.

A =

 1 2 3 4

 1 2 3 4

 1 2 3 4

 1 2 3 4

[m, n] = size(A);

for i = 1:m

 for j = 1:n

 if (i ~= j)

 A(i,j) = A(j,i);

 end

 end

end

A

A

ans =

 1 1 1 1

 1 2 2 2

 1 2 3 3

 1 2 3 4

Break Statement

The break statement is used to terminate from within an iteration statement. Break

can be used in the body of while or for looping constructs. When used within nested

looping constructs, break transfers control to the loop that is nested one level above

the loop in which it occurs. For example,

The MathWizards

lii Function Listing MathViews Demonstration

A =

 1 1 1 1 1 1 1 1 1

 1 2 2 2 2 2 2 2 2

 1 2 3 3 3 3 3 3 3

 1 2 3 4 4 4 4 4 4

 1 2 3 4 5 5 5 5 5

 1 2 3 4 5 6 6 6 6

 1 2 3 4 5 6 7 7 7

 1 2 3 4 5 6 7 8 8

 1 2 3 4 5 6 7 8 9

for i = 1:m

 for j = 1:n

 A(i,j) = i * j;

 if ((i == 2) & (j ==2))

 break

 elseif ((i == 4) & (j == 4))

 break

 elseif((i==6) & (j==6))

 break

 end

 end

end

A

The MathWizards

MathViews Demonstration Function Listing liii

A

ans =

 1 2 3 4 5 6 7 8 9

 2 4 2 2 2 2 2 2 2

 3 6 9 12 15 18 21 24 27

 4 8 12 16 4 4 4 4 4

 5 10 15 20 25 30 35 40 45

 6 12 18 24 30 36 6 6 6

 7 14 21 28 35 42 49 56 63

 8 16 24 32 40 48 56 64 72

 9 18 27 36 45 54 63 72 81

Creating Programs and Functions

MathViews can be used in an interactive mode to provide solutions to your problems.

However, MathViews can also be programmed to control repetitive tasks or to extend the

MathViews language itself. MathViews, as was discussed in the previous section, provides

statements that control the flow of execution of your statements.

MathViews programs are written in units called M-files. M-files are stored on the disk in files

with extensions of ".M". There are two types of M-files:

Script M-files contain a set of statements that are executed when the script file is

invoked.

Function M-files are similar to script files. In addition to containing a set of

statements that are executed, they can also be passed parameters and return results.

Only one function can be specified per M-file.

MathViews also supports another type of file that is extremely useful for maintaining your

functions when developing a large project. L-files serve as modules that can contain multiple

functions. This overcomes the limitation of only having one function per file as in M-files.

The MathWizards

liv Function Listing MathViews Demonstration

Scripts

Script M-files contain sequences of statements. The script M-file is invoked by calling

the name of the M-file. For example, suppose the following script is stored in the file

maxval.m. This script file finds and prints the maximum value contained in the

matrix A. Executing the script by entering maxval causes the maximum value in

matrix A to be printed. The matrix A must exist prior to executing this M-file.

%

% Script M-file to find the maximum value

% in the matrix A.

%

[m,n] = size(A);

max = -1e300;

for x = 1:m

 for y = 1:n

 if A(x,y) > max

 max = A(x,y);

 end

 end

end

max

Script files are executed as if you had entered them in interactive mode. Any variables

created in the script file are left in the MathViews environment upon completion of the

script.

Functions

Functions defined in a function M-file can be used to extend the MathViews language.

Function files are similar to script files in that they both contain a set of statements to

be executed, however, there are a few important differences. The first line of a

function file must contain the word function. Functions can also be passed

arguments and can return values. Also, unlike script M-files, variables created in a

function M-file only exist during the execution of the function. They are not left in the

MathViews environment upon completion of the function. Only one function can be

defined per M-file.

The MathWizards

MathViews Demonstration Function Listing lv

The following example performs the same operations as the script file discussed above,

that is, finding the maximum value of a matrix. However, the function we create will

be passed the matrix for which we wish to find the maximum and it will return the

maximum value as a variable.

function max = maxval(a)

%

% Function M-file to find the maximum value

% in the matrix a.

%

[m,n] = size(a);

max = -1e300;

for x = 1:a

 for y = 1:a

 if a(x,y) > max

 max = a(x,y);

 end

 end

end

The first line of the function M-file defines the input and output parameters for the

function. There is one input variable, a, and one output variable, max. If we store

this function in an M-file named maxval.m, we can invoke it using the form:

 maximum = maxval(A)

In this case, we pass the matrix A as an argument to maxval. The maxval function M-

file operates on the matrix A and returns the maximum value.

Modules

MathViews library module files overcome the limitations of only allowing a single

function per M-file. A library module file, L-file, contains only functions in the form

discussed above for function M-files. Functions can be grouped according to the

specific application they were designed for. This simplifies management of the

functions you create by placing all related functions into one location.

MathViews lets you easily load a function library file into memory by executing the

_lcompile statement.

The MathWizards

lvi Function Listing MathViews Demonstration

4

Function Listing

This section provides a list of most of the functions that are available in MathViews.

Function Description
abs absolute value function
acos arccosine function
acosh hyperbolic arc cosine
all logical test for arrays
angle compute phase
any logical test for arrays
asin arcsine function
asinh hyperbolic arc sine
atan arctangent function
atan2 arc tangent function
atanh hyperbolic arc tangent
axis scaling axis on plots
balance balance a matrix to improve its conditioning
blackman creates a Blackman function window
casesen toggle case sensitivity
ceil he ceiling function
chdir file manipulation command to change directory
chol Cholesky matrix factorization
cla compatibility function (clears output window)
clc clear output window

Function Description
clear removes items from MathViews memory
cntrlb contour plot with level readings
compan the companion matrix
computer returns 'WIN' (a compatibility function)
cond the condition number of a square matrix

The MathWizards

MathViews Demonstration Function Listing lvii

conj complex conjugate function
contour graphics contour plot
conv convolution
cos cosine function
cosh hyperbolic cosine function
cosw sinusoidal waveform
cov covariance matrices
cumprod cumulative product of an array
cumsum cumulative sum of an array
delete file manipulation command to delete files
det matrix determinant
dft Discrete Fourier Transform
diag diagonal elements
diary record the current input session on disk file
diff compute the difference to approximate derivatives
dir list the files and subdirectories in a directory
disp display a text string or a matrix
echo print M-files statements during execution
edit invokes the MathPad editor
eig eigenvalues/eigenvectors of a real symmetric matrix
error echos a message to output window
etime computes the elapsed time
eval text macro utility
exist test existence of variable

Function Description
exit, quit quit MathViews session
exp exponential function
expm matrix exponential
expr_sel ternary conditional selection
eye get identity matrix
fac factorial
feval function evaluation
fft Fast Fourier Transform 1-D and 2-D
filter filter data
find find nonzero elements
fix rounding function
flip mirror image of an array
fliplr flip matrix left/right
flipud flip matrix up/down
floor rounding function
format number display format
fprintf file output conversion

The MathWizards

lviii Function Listing MathViews Demonstration

grid overlap plot with a grid
gwclr,clg clear MathViews graphics window
gwinit initialize MathViews graphics windows environment
gwsel select MathViews graphics window
hamming creates a Hamming function window
hanning creates a Hanning function window
help help command
hilb Hilbert matrix
hold hold plot on graphical screen
home place text cursor at top of interactive window
ifft Inverse Fast Fourier Transform
imag extract imaginary component of a complex number

Function Description
input prompt for input
int2str convert integer number to string format
inv matrix inversion
invhilb inverse Hilbert matrix
iscmplx test for complex elements
iscol test for column vector
isempty test for empty matrix
isreal test for real (scalar) number
isrow test for row vector
isscalar test for scalar
isstr test for string
isvector test for vector
keyboard pass control to the interactive window from an M-file
length test for length
load load variables from disk
log natural logarithm function
log2 base-2 logarithm function
log10 base-10 logarithm function
loglog plot using log-log scales
ltifr linear time invariant frequency response
ltitr linear time invariant time response
max find largest element of array(s)
mean compute the mean
median compute the median
mesh create 3-D hiddeln line removal graph
meshdom create mesh domain
meta create a Windows metafile
min find smallest element of array(s)
norm matrix norm

The MathWizards

MathViews Demonstration Function Listing lix

Function Description
num2str convert number to a string
ones get an all 1's vector or matrix
pack compact memory
pause pause until key pressed
pi returns the value pi as a function
pinv pseudo-inverse
play display a Windows metafile (wmf)
plot line plots
polar generate polar plot
poly characteristic polynomial
polyfit polynomial fitting
polyval polynomial evaluation
print, prtsc print the current graphics windows
prod compute the product
rand random number generator
rank rank of a matrix
rcond compute condition number of a matrix
real extract the real component of a complex number
rem compute the remainder
reshape reshape an array
roots polynomial roots
round rounding function
save save variable(s) to disk file
semilogx plot using semi-log scales in x
semilogy plot using semi-log scales in y
setstr string handling function
sign sign function
sin sine function
sinh hyperbolic sine function

Function Description
sinw sinusoidal waveform
size dimension of variable
sort sort an array
sprintf string conversion function
sqrt square root function
startup start up script file
strcmp string comparison function, extended to string arrays.
subplot Create subplot windows within the graphics window
sum sum of an array

The MathWizards

lx Function Listing MathViews Demonstration

svd singular value decomposition
tan tangent function
tanh hyperbolic tangent function
text plot text onto graphics window
title insert plot title
trace trace of a matrix
tril lower triangular matrix
triu upper triangular matrix
type display the contents of a file
wbartlet creates a triangle window
who, whos list variables
wmerit figures of merit for any window function
wrect creates a rectangle/Dirichlet window
wsina creates a family of sine windows
x01 returns an n-point vector linearly spaced from 0 to 1
x101 returns an n-point vector spaced linearly from -1 to 1
xlabel label x is
ylabel label y is
zlabel label z is
zeros 0 matrix

Function Description
_compile compile M-file
_lcompile library compilation
_list list dependence variables
_loadlib load precompiled library
_savelib saves the current compile library
_ver get version number

The MathWizards

