
Thunder Bars Introduction
Program Description

Thunder Bars is a program which generates Bar Codes, Patch Codes and Postal Codes
that can be copied to the Windows Clipboard.    Once in the clipboard, you can then insert
the codes into any program that can paste graphics from the Windows Clipboard.    The
codes can then be pre-printed on your documents, labels, and envelopes.

Bar Code Introduction
Patch Code Introduction
Postal Code Introduction

Program Operation
Program Glossary
Thunder Bars Source Code

Program Operation
Thunder Bars user interface is made up of the Menu Bar, Command Buttons, and five areas
called Code Orientation, Data & Messages, Code Options, Dimensions, and Drawing Area.

Menu Bar
Command Buttons
Code Orientation
Data & Messages
Code Options
Dimensions
Drawing Area

View or modify Settings
Ruler Options
Q&A regarding Display, Accuracy, Scaling, Speed and Hardware
Using DDE (Dynamic Data Exchange)

Dynamic Data Exchange
Dynamic Data Exchange (DDE) is a feature of Windows which makes it very easy to move
data between applications.    Thunder Bars design is such that it can optionally act as a DDE
"Server".    This means that you can establish a "link" to another application, (the "Client").   
For example if you export a code from Thunder Bars to MS Word, any modifications that are
made to a code in Thunder Bars will show up automatically in Word, but if you edit the code
in Word, nothing will happen in Thunder Bars.    This transfer of data is one-way only, from
the server to the client.

In theory you can use Thunder Bars with any application that supports a DDE Paste Link.   
Some applications establish links through macros, or as menu options such as "Paste Link"   
or "Links", to name a few, while others will provide different methods.    Though applications
will differ in the procedures required to set up a DDE link, most will require some or all of
the following items.

Link Name:    This can usually be any name which is easily recognizable to the user.
Application Name:    Thunder Bars application name is the word "Thunder".
Topic, Document, or File:    Thunder Bars Topic is the word "Bars".
Item:    Thunder Bars Item is "Thunder(0)"    (the word Thunder followed by a zero enclosed
by parentheses).

The following procedures for WordPerfect for Windows, and MS Word for Windows
demonstrate two methods of setting up an automatic DDE link using Thunder Bars.

To use DDE with WordPerfect for Windows v5.1

Start Thunder Bars and generate a code.

Use the paper clip icon, or select Copy Code from the Edit menu to copy the code to
the Clipboard.

Start WordPerfect.

Under the Edit menu, select Link, then choose Paste Link.

If the code is not the expected size:
          Highlight the code by clicking it with the mouse.
          Under the Graphics menu, select Figure, then choose Position.
          In the Box Position and Size dialog, set Size to "Auto Both".

If the link was successful, any changes now made in Thunder Bars will result in the code
immediately being updated in WordPerfect.

Optionally the following macro could be generated to establish the link:

Application (WP;WPWP;Default;"WPWPUS.WCD")
DDECreateLink
(
          LinkName:"Thunder(0)";
          Source:"THUNDER|Bars|Thunder(0)";
          UpdateMode:Automatic!;
          StoragePreference:Graphics!
)

To use DDE with MS Word for Windows v2.0

Start Thunder Bars and generate a code.

Use the paper clip icon, or select Copy Code from the Edit menu to copy the code to
the Clipboard.

Start MS Word.

Under the Edit menu, select Paste Special, then choose Paste Link.

If the code is not the expected size:
          Highlight the code by clicking it with the mouse.
          Under the Format menu, select Picture.
          In the Picture dialog, select "Reset".
Note! You may need to use scaling percentages, which measure how much larger or
smaller the graphic becomes to match the original code size generated by Thunder
Bars.    Examine the Drawing Area dialog to determine the exact size needed.

If the link was successful, any changes now made in Thunder Bars will result in the code
immediately being updated in MS Word.

Optionally the following macro could be generated to establish the link:

Sub MAIN
EditPasteSpecial .Link = 1, .DataType = "Bitmap"
End Sub

Menu Options

File Menu

Save to File
Saves the currently displayed code to disk as CODE.BMP in the startup directory.

Preferences
View current settings and/or set defaults.

Exit
Exits Thunder Bars.

Edit Menu

Redraw Code    <F5>
Redraws the code using the current settings.

Copy Code    <Ctrl-C>
Copies the currently displayed code along with DDE link information to the Clipboard.

Paste Text    <Ctrl-V>
Paste text from the Clipboard into any text box.    If the Clipboard contents are not
text, nothing is pasted.

Options Menu

Auto-Redraw
Toggles whether or not the code is automatically redrawn immediately after changing
most settings.

Save Settings on Exit
Toggles whether or not to save settings to disk upon exit.    Settings are saved to
THUNDER.INI in the startup directory.

Show More
Displays the full Thunder Bars interface.

Show Less
Displays the smaller Thunder Bars interface.

Tools Menu

Clipboard <Ctrl-B>
Calls the Windows Clipboard application.    Use this to view and manipulate Clipboard
contents, including Thunder Bars codes.

Character Map    <Ctrl-M>
Calls the Windows Character Map application.    Use this to view installed fonts, and
copy characters to the Clipboard, which can then be pasted into Thunder Bars text
boxes.

Paintbrush    <Ctrl-P>
Calls the Windows Paintbrush application.    Use this to modify, scale, flip, and
enhance Thunder Bars codes copied from the Clipboard or retrieved from disk.

Write    <Ctrl-W>
Calls the Windows Write application.    Use this to paste Thunder Bars codes from the
clipboard into a document.

Help Menu

Contents    <F1>
Loads Thunder Bars On-line Help files.

About
About Thunder Bars dialog.    Displays mode, free memory, and version information.

Command Buttons

 Redraws the code

 Copies the code to the clipboard

 Runs Thunder Bars Help

 View the current settings and/or set defaults

 Sets ruler options

 Call Windows Character Map

 Call Windows Clipboard

 Call Windows Paintbrush

 Call Windows Write

 Display the full Thunder Bars interface
 Display the smaller Thunder Bars interface

Drawing Area

The code type and exact dimensions of a displayed code can be obtained using the above
dialog.    To display this dialog, move the mouse pointer over any part of the code until the
cursor changes to a small box, then click once with the left mouse button.    Click OK to clear
the dialog.

Code Orientation

You can orient the code either vertically or horizontally.    Vertical orientation is sometimes
referred to as "Ladder", and is a 90° clockwise rotation.    Ladder codes are drawn from top
to bottom.    "Picket Fence" refers to a horizontal, 0° non-rotated code.    Picket codes are
drawn from left to right.    A single mouse click on either option button will redraw the code
in the new orientation.    Human readable is only available for horizontal codes.

Data & Messages

The Data & Messages area is where you input the data to be encoded, see what is actually
encoded, and control the printed message (Human Readable).

The Raw Data Box is where you input the data to encode.    For Zip+4 & Bar Codes, simply
type in, or paste from the clipboard the string of data.    Any invalid data will be ignored.   
For all other codes, you may manually input the "Code Type" here, or select the appropriate
type from the Code Options areas.    If an invalid type is manually input, a message will be
generated indicating which types are valid.       

The Encoded Box displays the actual data, or code type that was generated.    Only valid
data, valid code types, check digits and start/stop characters are displayed.    This box
represents the actual contents of the currently drawn code.    The contents may go outside
the boundaries, in which case you may scroll to the right to see the entire message.   
Manually changing the contents of the encoded box will have no effect on the displayed
code.

The option buttons located on the right hand side indicate which ot the text boxes will be
used for the human readable.    To customize the printed text (horizontal bar codes only),   
key the desired message in the Message Box.    You will need to redraw the code after
making any changes.   

The pull down boxes are used to set the type of font, style, and point size used for the
human readable.    All currently installed fonts are available.    Some point sizes and styles
may not be applicable for a particular font.

Code Options

Bar Code Options
Patch Code Options
Postal Code Options

Bar Code Options

Symbology
Select from Codabar, Code 39, Code 128B, Interleaved 2 of 5, or UPC-A bar codes.

Check Sum
Check this box to have the check sum automatically calculated and encoded.    The
mathematical formula used to calculate the check sum is displayed to the left of the
check box.    If this option is disabled (grayed), then the use of a check sum is
required for that particular bar code.

Ratio
Check the box next to the desired ratio.    If these options are disabled (grayed), then
that particular bar code requires a fixed ratio and may not be modified.

Human Readable
Checking this box enables or disables the automatic printing of the appropriate
message below picket (horizontal) bar codes.

Bar Code Data
Optionally enter the desired data to encode here. This data may also be re-keyed in
the raw data box in the main window.

Patch Code Options

Code Type
Select from patch types T, II, and III.

Postal Options

Code Type
Select from Postnet, FIM's A, B, & C, or BRM Bars.

Data
Optionally enter the Zip Code, FIM type or number of BRM Bars here.    This data may
also be re-keyed in the raw data box in the main window.

Preferences

Almost every Thunder Bars setting may be saved to an initialization file so that the program
will look and act in the same fashion as the last time it was used.    Use the "Save Settings on
Exit" option in the Options Menu to enable or disable this feature.    If this option is checked,
the intialization file will be updated upon exiting Thunder Bars.    Settings are stored in
THUNDER.INI in the Thundar Bars directory.    This file may be edited manually although this
is not recommended.    If THUNDER.INI can not be found in the startup directory, it will be re-
created using default values upon exit if the save feature is enabled.    These values can also
be reset in the View Settings window.     

Widths, Height & Length

This area allows you to change the dimensions of the code.    All values are in pixels.    The
width of 1 pixel is dependant on the display type being used.    A single mouse click on the
"-", or "+" buttons will decrease or increase the values by one pixel.    If the "Auto Redraw"
option is enabled, the code will be redrawn after every mouse click.   

If the "Auto Redraw" option is disabled, the code is not immediately redrawn after changing
these settings, thereby allowing you to make significant adjustments without waiting for
the code to be redrawn every pixel increase/decrease.    If any of the "+" or "-" buttons have
the focus (i.e., they have been clicked), AND the "Auto Redraw" option is disabled, the plus
or minus keys on the keyboard will increment or decrement the values.    Pressing and
holding down either the plus or minus keys will enable you to change the values very
rapidly.

Bars & Spaces

Changing the Narrow Bar setting will affect the width of a narrow bar (or dark element).   
Changing the Narrow Space setting will affect the width    of a narrow space (white element
or "gap").    Any changes made to the narrow elements will also affect the wide elements
proportionally, according to the code's ratio setting.    For example, changing the width of a
narrow bar from an initial value of 1pixel to 2 pixels, for a bar code which has a 3 to 1 ratio,
will result in the wide bars increasing to 6 pixels wide.    Any change to a bar or space
setting for a bar code will result in BOTH values being changed equally in order to maintain
readability.

Height/Length

Changing the Height/Length settings affects the overall length of the elements, or put
another way, the measurement of a bar or space from end to end.

Patch Code Introduction

A patch code is a pattern of parallel, alternating black bars and spaces that is printed on a
document to be used in an Imaging application.    Products which have a Patch Reader
Accessory installed are capable of recognizing patch documents and automatically assigning
a document Image Level and incrementing the document Image Address.    This method of
controlling document Image Level and document Image Addresses eliminates the need for
an operator to manually set these values.    Thunder Bars generates three different patch
codes;    PATCH III, PATCH II, and PATCH T (Transfer Patch).    The transfer patch assigns a
predefined Image Level to the next document.    The predefined Image Level is based upon
the Transfer Patch Definition which is defined for each application mode during installation.   
For example, if the Transfer Patch Definition defined for the current mode is Image Level 2,
then use of a Transfer Patch assigns Image Level 2 to the next document.

Requirements & Specifications
Patch Code Positioning

Patch Code Options
Printing Guidelines

Patch Positioning
Horizontal and vertical placement of the patch code's are critical for proper operation.    If
the patch code is placed improperly on the document, the patch sensors may fail to sense
the patch.

Patches should appear with the bars parallel to the leading edge of the document
(fed into the transport first).

There must be at least 0.20 inches (5 mm) of white space between the patch codes
and any other printed information.

Horizontal Placement

There are five front patch sensors and six rear patch sensors.

Horizontal placement of patch codes is affected by the side guides.    Make certain
that the side guides are positioned so that the patch code will be transported directly past
the window in which the patch reader is installed.

Use of a standard 2.5 inch (62.5 mm) patch code is recomended to ensure that the
patch code may still be read even if there is a slight variation in the positioning of the side
guide(s).

Vertical Placement

Patch codes must appear at least 0.20 inches (5 mm) from the right, left, and
leading edges of the document.

Patch codes must appear no more than 3.75 inches from the leading edge of the
document.

Patch Requirements & Specifications
The minimum overall length of the patch bars is 2 inches wide (50 mm).    The maximum
width of the patch code is 0.80 inches (20 mm) +/- 0.01 inches (0.25 mm).   

The wide bars should be 0.20 inches (5mm) wide +/- 0.01 inches (0.25 mm).

The narrow bars and spaces should be 0.08 inches (2 mm) wide +/- 0.01 inches (0.25 mm).

Print the patch code only on the top page of multiple-part forms with carbon inserts.   
Smudged carbon in the patch code area can cause false readings.

If patch-coded forms are printed in pads, make sure that the torn edges are not fed into the
machine first (not the leading edge).    A ragged leading edge preceding the patch code
may cause the distance to the first bar to be out of tolerance.

Thunder Bars generates variable length patch codes that adhere to the specifications
outlined, with the two most common applications defined below:

Standard 2.5 inch (62.5 mm) long patch codes    for preprinting patch code labels or when
printing patch codes directly on application documents.

Full-page width and full-page length patch codes to be used as "batch headers";
interleaved among application documents.    These full-page patches may be fed into the
transport without regard to orientation.

Bar Code Introduction

A bar code symbol is a pattern of parallel, adjacent bars and spaces.    The width's of the
bars and spaces represent the actual data in the symbol.    Thunder Bars generates five
kinds of bar codes.    Bar codes are used in a wide variety of applications, they're on your
groceries, library books, invoices, etc.    Almost anything can be bar coded to make
identification faster and more accurate.    When used with a check character, the substitution
rate can often be better than 1 error in 1 million characters.    Bar code is the automatic
identification technology in a wide range of industries because they offer a simple and   
accurate, cost effective approach for identifying objects.       

Bar Code Symbologies:

Codabar
Code 39
Code 128 B
Interleaved 2 of 5
UPC-A

Bar Code Options
Printing Guidelines

Postal Code    Introduction
The Postal Service has developed a series of specifications which should be of interest to
anyone who would like to reduce their company's mailing costs while benefiting from a
much faster, more accurate and more efficient method of mail processing.    Thunder Bars
generates three types of postal codes to make it easier to produce "machinable" mailings.   
The United States Postal Service has representatives and volumes of documentation to
assist you in meeting guidelines on preparing "Automation Compatible" and "Business
Reply" mail.    The dimension and positioning guidelines presented in this document are
intended as a general introduction and quick reference to the Postal Service requirements
and specifications for automation compatile mail.    For additional, and more thorough
information, contact your local account representative, automation readability specialist or
a Postal Business Center.

Postnet Bar Codes Postnet
Facing Identification Marks FIM
Reply Mail Bars BRM Bars

Automation Compatible Letter Mail

An automation readable mailpiece is one that contains an accurate, correctly formatted,
complete address or ZIP+4 code and is readable on an OCR (Optical Character Reader)
and/or BCS (Bar Code Sorter).

Reply Mail

Business reply mail (BRM) enables mailers to receive First-Class mail back from customers
by paying postage only on the mail which is returned to them from their original
distribution of BRM pieces.    The permit holder guarantees payment of the appropriate
First-Class postage, plus a handling charge per piece.    A permit is required annually.   
Courtesy Reply Mail    (CRM) is the term applied to distributor-printed automation-readable
mailpieces which are sent to clients for reply purposes.    The correspondent must affix
postage to the mailpiece prior to mailing.    Credit unions, utility companies, banks and
mortgage firms frequently utilize courtesy reply mail.    These organizations anticipate a
large response from their various mailings, and by inclding a courtesy reply card or
envelope their customers show a higher response rate.    The convenience of CRM increases
the probability of a mail-back response.

Positioning Guidelines
Postal Code Options
Printing Guidelines

Postnet Bar Code

POSTal Numeric Encoding Technique (POSTNET):    The POSTNET bar code was developed by
the Postal Service to provide a system of encoding ZIP Code information on letter mail,
which can be read reliably by relatively inexpensive bar code sorters.    The code is made up
of binary elements printed in the lower right corner of the mail piece as tall and short bars
representing the ZIP Code or ZIP+4 code.    The barcode may represent a five digit ZIP Code
(32 bars), a nine-digit ZIP + 4 code (52 bars), or an eleven-digit delivery point code (62
bars).    Thunder Bars will only generate the code if the input string contains 5, 9 or 11 valid
numeric digits.

Dimensions

Height
Tall Bar 0.125" +/- 0.010"
Short Bar 0.050 +/- 0.010"

Width
0.020 +/- 0.005"

Pitch
21 +/- 1 bars per inch

Spacing
0.045" min. - 0.050" max. between centerlines of adjacent bars.

Skew
A variation of +/- 5 dgrees from the horizontal.

Total Length
Five-Digit ZIP Code (32 Bars)  1.245" - 1.625"
Nine-Digit ZIP+4 Code (52 Bars)  2.075" - 2.625"
Eleven-Digit Delivery Point Code (62 Bars)          2.495" - 3.125"

Reading the Postnet bar code
 Reading and understanding the bar code is simple.    There are 10 combinations of 5 bars,
each consisting of 2 long (1's) and 3 short (0's) bars.    The bar code consists of the digits of
the ZIP code, plus a correction digit used to identify errors, contained between the frame
bits represented by 1 bars.    The digits 0 through 9 have been assigned to these
combinations.

0 - 11000      1 - 00011      2 - 00101      3 - 00110      4 - 01001
5 - 01010      6 - 01100      7 - 10001      8 - 10010      9 - 10100
Within the group of 5 bars, each position has a different value.    From the left to right, 7, 4,
2, 1, and 0.    Addition of the values in the two positions occupied by 1 bars gives the value
of the combination, except in the case of 11000, which totals 11 and has been assigned as
zero.    The sum of the digits in the bar code is always a multiple of 10.

Facing Identification Marks

Facing Identification Mark (FIM):    FIM is another type of postal barcode used in automated
processing.    Currently three FIM patterns (A, B, and C) are in use.    Coding certain types of
letter mail with FIM patterns provides a method for the automatic facing and cancelling of
letter mail, and a means of seperating business and courtesy reply mail from other letters
and cards.

Dimensions

Height
5/8" +/- 1/8" (may be longer to wrap around top of envelope).

Width
0.031" +/- 0.008"

Pitch
1/16" nominal

Skew
A variation of +/- 5 dgrees from the horizontal.

Uses

FIM Type          Used On 
Preprinted Postnet
            A                              Courtesy Reply Mail   
YES
            B                              Business Reply, Penalty and Franked Mail  NO
            C                              Business Reply, Penalty and Franked Mail  YES

Business Reply Mail Bars

Business Reply Mail bars (BRM bars):    BRM bars are a series of horizontal bars placed to the
right of the delivery    address line and directly below the "NO POSTAGE" endorsement box.   
BRM Bars facilitate rapid recognition of business reply mail.

Dimensions

Length
At least 1" in length (not longer than 1.5")

Thickness
1/16" to 3/16" in thickness and evenly spaced

Postal Code Positioning

Sample Business Reply Mail Piece

POSTNET Location.

Postnet bar codes are always located on the same side of the mail as the address.    This
area must be free of any printing other than the bar code.    The bar code clear area extends
up 5/8" from the bottom right edge and at least 4 3/4" leftward of the right edge of the mail
piece.    Within the barcode clear area, the leftmost bar of the barcode must be located 3
7/8" +/- 3/8" from the right edge of the mailpiece.    The bottom, or baseline, of the barcode
must be 1/4" +/- 1/16" from the bottom edge of the mailpiece.    The bar code must be
completely contained within the barcode read area.

FIM Location.

A FIM clear zone must be maintained containing no printed matter other than the
appropriate FIM pattern.    The right boundary of this clear zone must be 1 3/4" from the
right edge of the mail piece.    The left boundary of this clear zone must be 3" from the right
edge of the mailpiece.    The top of the bars must be no lower than 1/8" from the top edge
of the mailpiece, but they may touch the top of the mailpiece.    The rightmost FIM bar must
be 2" +/- 1/8" from the right edge of the mailpiece.    The clear zone is 5/8" deep, measured
from the top edge of the mailpiece.

BRM bars Location.

BRM Bars must be uniform in size, at least 1" in length (not longer than 1.5"), 1/16" to
3/16" in thickness and evenly spaced.    The bars must not extend below the top of the
delivery address line which is located directly above the city, state, ZIP Code line.    There
must be at least 1/2" clearance between the ZIP Code and the horizontal bars.

Ruler Options

Unit of Measure
Displays the ruler in either inchs or centimeter units.

Ruler Scale
Select from 1/8, 1/10, 1/12, or 1/16 increments.

Accuracy

The codes generated with this program are accurate to 1 pixel.    However due to different
display resolutions, and varying amount of "ink-spread" on different printers,    "thickness"
is adjustable.    This allows you to add or subtract 1 pixel from the narrow elements (black
or white).    The code should be redrawn when you change any of these values. Keep
experimenting until you find the values that work best for you.

Display Resolutions

The following figures illustrate how the display will affect printed output.    For example if
you have a VGA display, the narrowest element you can print (1 pixel) will be .010417"
wide.   

Output device      Resolution                    x size                    y size                    x pixel                    y pixel
CGA display                          2:1  96                                48                        .010417"     
.020833"
EGA display                          1.33:1                              96                                  72                      .010417"           
.013889"
VGA display                          1:1  96                                96                        .010417"     
.010417"
8514 display                          1:1  120                          120                      .008333"         
.008333"

Speed

Generating codes with very thick elements will cause a noticeable increase in the time it
takes to draw the code.    The method used to draw the individual lines was such that in
order to offer the most flexibility and accuracy, drawing speed was sacrificed somewhat.

Bar Code Text

Bar code text (sometimes called Human Readable), is available only for horizontal codes.   
However many Windows applications will allow you to rotate the image after you have
pasted it into your document.     

Scaling

Any type of scaling (sometimes refferred to as Shrink & Grow, Stretching, or Sizing) can
cause a code to be unreadable, or invalid.    Some types of codes, like the 3 of 9 bar code,
can be expanded or compressed in size and sometimes still be readable, while most others,
UPC-A or Postnet for example, can become unreadable if just ONE PIXEL width is added or
removed.    The methods different applications will handle graphic images with regards to
screen display and printed output will vary widely.    IT IS AN ABSOLUTE REQUIREMENT THAT
THE RECEIVING APPLICATION PROVIDES A METHOD IN WHICH THE CODE MAY BE PRINTED
IN THE EXACT SIZE THAT IT WAS GENERATED FROM WITHIN THUNDER BARS!    Some
applications like Windows Paintbrush generally produce printed output which exactly
matches screen display, while others will resize the graphic according to the printer
resolution.    In the latter types, you may need to use scaling percentages, which measure
how much larger or smaller the graphic becomes to match the original code size generated
by Thunder Bars.    Examine the Drawing Area dialog to determine the exact size needed.   
Consult the documentation for your particular application to determine the appropriate
settings, or methods to disable any automatic scaling or re-sizing.

Hardware Requirements

Thunder Bars system requirements & recommendations include:

Any IBM Compatible machine with an 80286 processor or higher.
2 megabytes of memory.
Microsoft Windows 3.1 or later.
A Microsoft compatible mouse.
A 5.25" or 3.5" high density floppy drive.
A hard disk    with at least 2 megabytes free.
A VGA, 8514 or compatible display highly recommended.

Bar code ratio is the ratio of a wide element compared to a narrow element (bar or space);
thus a 3 to 1 ratio means a wide bar is 3 times the width of a narrow bar.    Note!, some
symbologies do not allow variable ratios.

A code format which allows reading in either direction across the bars and spaces.

The error rate of a bar code can be dramatically reduced through the use of check
characters.    A check character (also referred to as Checksum or Check Digit) is an
additional character that is mathematically based on the other characters in the encoded
message.    The bar code reader confirms that the check character is consistent with the
data characters before accepting the data.      Note!, some symbologies require that a check
character be encoded, while with others the use of 1 or more check character methods are
optional.

A discrete symbology is one in which an inter-character space is encoded as part of it's
structure, which can serve as a self-checking mechanism.    A continuous symbology does
not encode any additional space between characters, thus the characters are continuous.

The narrowest element or module (bar or space) in a code.    Sometimes referred to as the
"Nominal Dimension".

Start/Stop bars are the special characters at the first and last positions in the code that
identify the beginning and ending of the symbol.    Start/Stop bars (sometimes called
alignment bars) are required and the character(s) used vary depending on the symbology.

The quiet zone (sometimes referred to as Margin) is an area of white space immediately to
the left and right of the outer bars that allows the reading device to distinguish the bars
from other printed material.

Codabar
Codabar is commonly used    in libraries, blood banks, parcel applications, inventory control
and photo finishing.    It is a discrete, variable length, self checking, bi-directional numeric
symbology.    Every character has four bars and three spaces. The characters A, B, C & D
are used exclusively as start/stop alignment    characters.    The code has an inter-character
space which is equal in width to a narrow element, that serves as a self checking
mechanism.    Optionally a modulus 16 check digit may be generated to increase data
integrity.   

Codabar characteristics:

Character Set:
10 digits
6 special characters (-$:/,+)

Input    String & Encoded Data
Thunder Bars automatically generates the start/stop characters or they can be a part of the
input string.    If no start/stop characters are input, A will be assumed.      Any alpha data not
in the first or last position of the input string will be discarded.

Symbol Length:
Variable

Check Characters:
Modulo 16 (Optional)

Symbol Breakdown

1>      Leading quiet zone
2>      Start character
3>      Data characters
4>      Optional check character
5>      Stop character
6>      Trailing quiet zone

Code 39
Code 39 was the first alphanumeric symbology developed, and is the standard for non-
retail, automotive, general industrial, and many government applications.    It is a discrete,
variable length, self checking, bi-directional alphanumeric symbology.    Every character has
five bars and four spaces; three of the elements in any given character are wide, and six
are narrow. The asterisk character (*) is used exclusively as a start/stop alignment   
character.    The code has an inter-character space which is equal in width to a narrow
element, that serves as a self checking mechanism.    Optionally a modulus 43 check digit
may be generated to increase data integrity.   

Code 39 characteristics:

Character Set:
26 uppercase letters
10 digits
7 special characters (-. $/+%)

Input    String & Encoded Data
Thunder Bars automatically generates the start/stop characters and discards any invalid
data in the input string.

Symbol Length:
Variable

Check Characters:
Modulo 43 (Optional)

Symbol Breakdown

1>      Leading quiet zone
2>      Start character
3>      Data characters
4>      Optional check character
5>      Stop character
6>      Trailing quiet zone

Code 128 B
Code 128 B is a continuous, variable length, bi-directional alphanumeric symbology.   
Applications include inventory control and general industrial.    Every character has eleven
modules containing three bars and three spaces. A start pattern of "B" is used to select the
subset (character set).      A modulus 103 check digit is generated to increase data integrity. 

Code 128 B characteristics:

Character Set:
96 unique characters including:

The letters A-Z (uppercase)
The digits 0-9
The letters a-z (lowercase)
34 additional characters including space, !, ", #, $, %, &, ', (,), *, +, comma, -, ., /, :, ;,
<, =, >, ?, @, [, \,], ^, _,null, {, |, }, ~, del

Input    String & Encoded Data
Thunder Bars automatically generates the start/stop characters and discards any invalid
data in the input string.

Symbol Length:
Variable

Check Characters:
Modulo 103

Symbol Breakdown

1>      Leading quiet zone
2>      Start character
3>      Data characters
4>      Check character
5>      Stop character
6>      Trailing quiet zone

Interleaved 2 of 5
Interleaved 2 of 5 was one of the earliest symbologies to become widely available, and is
often used in industrial, warehousing, automotive and container identification applications. 
It is a continuous, self checking, bi-directional numeric symbology.    Every character has
five bars and five spaces; two of the elements in any given character are wide, and three
are narrow.    The 2 of 5 uses special patterns as start/stop alignment    characters.    An
Interleaved 2 of 5 can only encode data containing an even number of digits.    Optionally a
modulus 10 check digit may be generated to increase data integrity.

Interleaved 2 of 5 characteristics:

Character Set:
10 digits

Input    String & Encoded Data
Thunder Bars automatically generates the start/stop characters and discards any invalid
data in the input string.    If an odd number of characters are input, a leading zero will
automatically be added.

Symbol Length:
Variable

Check Characters:
Modulo 10 (Optional)

Symbol Breakdown

1>      Leading quiet zone
2>      Start pattern
3>      Data characters
4>      Optional check character
5>      Stop pattern
6>      Trailing quiet zone

UPC-A
UPC (Universal Product Code) is the standard for the retail and supermarket industrys.    It is
a continuous, fixed length, bi-directional numeric symbology.    Each digit is encoded as two
bars and two spaces, within seven modules. The symbol is seperated into two halfs divided
by two center guard bars.    The halves are enclosed by two left guard bars and two right
guard bars.    The guard bars are similiar in function to start/stop alignment    characters.   
The data encoded is used to uniquely identify a product and its manufacturer.    A check
digit is generated to increase data integrity.   

UPC characteristics:

Character Set:
10 digits

Input    String & Encoded Data
Thunder Bars automatically generates the guard bars and check character, and discards
any invalid or extra data in the input string.
Only the first eleven digits of the input string will be encoded, if the input string is less than
eleven digits, Thunder Bars will include the required    leading zeros.

Symbol Length:
Fixed

Check Characters:
One

Symbol Breakdown

1>      Leading quiet zone
2>      Left guard bars
3>      Number system character
4>      Center guard bars
5>      Product number
6>      Center guard bars
7>      Manufacturer number
8>      Check Character
9>      Right guard bars
10>    Trailing quiet zone

Printing Guidelines
Avoid photocopying codes.

Voids (white areas within the bars) can cause the code to be misread.

Avoid printing codes on glossy paper.    Glare can cause the code to be misread.

The ink used to print the black bars should be carbon based black or equivalent.    The
printed bars should reflect less than 20% of the infrared light source.

Avoid background patterns or other printed matter within the code clear zone.

The bond paper that forms the spaces should be white or a light pastel color that
reflects at least 65% of the infrared light source.

Excessive or extraneous inking should not cause any bar to exceed the
recommended height or width limits.   

Glossary
Aspect Ratio
The horizontal to vertical ratio of the screen display's resolution.

Bar Code
A bar code symbol is a pattern of parallel, adjacent bars and spaces.    The width's of the
bars and spaces represent the actual data in the symbol.

Bi-directional
A code format which allows reading in either direction across the bars and spaces.

BRM Bars
Business Reply Mail Bars.    BRM Bars are a series of horizontal bars placed to the right of
the delivery address line and directly below the "NO POSTAGE" endorsement box on a
mailpiece.

Character Set
A group of letters, numbers, and symbols that have some relationship in common.    For
example, the ASCII character set contains characters that make up the ASCII coding
scheme.    Most bar codes have a limited character set.

Check Sum
 A check character (also referred to as Checksum or Check Digit) is an additional character
that is mathematically based on the other characters in the encoded message.

Client
An application whose documents can accept linked or embedded objects.

Continuous
A symbology which does not encode any additional space between characters, thus the
characters are continuous.

DDE
Dynamic Data Exchange - an established protocol for exchanging data through active links
between applications that run under Microsoft Windows.

Discrete
A    symbology in which an inter-character space is encoded as part of it's structure, which
can serve as a self-checking mechanism.

Element
The narrowest element or module (bar or space) in a code.    Sometimes referred to as the
"Nominal Dimension".

FIM
Facing Identification Marks.    FIM is another type of postal barcode used in automated
processing.

Human Readable
Printed message, usually representing the encoded data, which appears directly beneath
the bar code.

Imaging
The capture, storage, retrieval, and manipulation of electronic images of documents.

Input String
The actual data input, irregardless of what is actually encoded.

Interface
The menu bar, command buttons, data areas and dialogs, which form the common
boundary between the user the and internal operation of the program.

Ladder
Vertical orientation is sometimes referred to as "Ladder", and is a 90° clockwise rotation.

Link
To create a reference in a client application to an object in a server application.    When you
link a object, you are inserting a visual presentation of the object into the client application.
The linked object can be edited directly from within the client application.    When the object
changes in the server application, the changes appear in the client application.

Macro
A series of recorded actions, which can be later played back to carry out all the recorded
actions.

Module
The narrowest element or module (bar or space) in a code.    Sometimes referred to as the
"Nominal Dimension".

OCR
Optical Character Recognition.   

Patch Code
A patch code is a pattern of parallel, alternating black bars and spaces that is printed on a
document to be used in an Imaging application.

Picket
"Picket Fence" refers to a horizontal, 0° non-rotated code.

Pixel
The smallest graphic unit that can be displayed on the screen, usually a single colored dot. 
Also known as Pel, the abbreviation for picture element.   

Postnet
POSTal Numeric Encoding Technique.    The POSTNET bar code was developed by the Postal
Service to provide a system of encoding ZIP Code information on letter mail.

Quiet Zone
The quiet zone (sometimes referred to as Margin) is an area of white space immediately to
the left and right of the outer bars that allows the reading device to distinguish the bars
from other printed material.

Ratio
The ratio of a wide element compared to a narrow element (bar or space); thus a 3 to 1
ratio means a wide bar is 3 times the width of a narrow bar.

Server
A Windows application that creates objects that can be linked or embedded into other
documents.

Start/Stop
Start/Stop bars are the special characters at the first and last positions in a code that
identify the beginning and ending of the symbol.

Void
Light areas in the bars of a symbol which are usually caused by printing errors.

Thunder Bars Source Code
Visual Basic source code is available for all of the routines used to generate the various
codes in the Thunder Bars main program.    Thunder Bars Source Code is available bundled
with Thunder Bars, or can be purchased at a special price to registered Thunder Bars
owners at a later time.    If you did not purchase the bundled package and wish to order
Thunder Bars Source Code, contact Thunder Island, or your local sales office.

Contents

Thunder Bars Source Files
How to include THUNDER BARS routines in your project
Demo Applications
Bar Code Programming
BRM Programming
FIM Programming
Patch Code Programming
Postnet Programming
Ruler Programming
About Visual Basic picture boxes

Thunder Bars Source Files
TBARDEMO.BAS, TUTOR.BAS
Demo VB Basic module files, add one of these files to your VB project.

TBARDEMO.EXE, TUTORBAR.EXE
Demo executable programs, use these to experiment and test.

TBARDEMO.FRM, FORM1.FRM
Demo VB form files.

TBARDEMO.MAK, TUTORBAR.MAK
Demo VB project files.

Note, all demo files were saved with version 3.0, in an ASCII format, provided for reference,
and as an aid for importing routines into other languages, such as Microsoft Access Basic,
Visual Basic for DOS, etc.

How to include THUNDER BARS routines in your project
To add the Thunder Bars code routines to your program, first make a copy of
TBARDEMO.BAS called THUNDER.BAS (or a filename you prefer).    For example, to make a
copy using the DOS COPY program, at the DOS prompt type; COPY TBARDEMO.BAS
THUNDER.BAS.    Using a copy is strongly recommended as TBARDEMO.BAS should remain
intact so that you can refer to it if you need the original unmodified code.    Next, start
Visual Basic and load your project file, or choose New Project from the File menu.    Select
the Add File command from the File menu.    Then choose THUNDER.BAS in the Add File
Dialog.    All of the routines in THUNDER.BAS are now available from any form or module in
your project.

Demo Applications
Thunder Bars Source includes source code for two fully functional applications.    These
demo applications demonstrate basic Thunder Bars programming methods, and introduce
you to more advanced techniques for integrating code support into your own applications.

The TUTORBAR Application

The TUTORBAR application draws a horizontal ruler on startup, and encodes the contents of
the text box as a horizontal 3 of 9 bar code when the command button is clicked.    This
application provides a good starting point for adding Thunder Bars routines to your own
program.

It takes just a few minutes to re-create the TUTORBAR application.    First you add the
TUTOR.BAS file to your project.    You then create the user interface by drawing the
necessary controls, such as the picture boxes, text box and command button on the form.   
Next you set properties for the form and controls to specify such values as scale modes,
control names and indexes.    Finally, you write code to generate the ruler and the bar code.

The TBARDEMO Application

The TBARDEMO application draws horizontal & vertical rulers, encodes all of the code types

available in Thunder Bars, and demonstrates a sample user interface to provide for control
over orientation, checksum, fonts and code dimensions.    This demo application picks up
where the TUTORBAR demo leaves off.    TBARDEMO introduces the remaining Thunder Bars
subroutines, variables and other Visual Basic functions.     

Bar Code Programming

Variables

BCWideBarSize
Width of the bar code wide bars

BCNarrowBarSize
Width of the bar code narrow bars

BCNarrowSpaceSize
Width of the bar code narrow spaces

BCWideSpaceSize
Width of the bar code wide spaces

BCRatio
Wide to narrow ratio

BCCheckSum
Whether or not to calculate the bar code check sum

BCVerData
Actual encoded data

BCHeight
Bar code height

BCDoText
Whether or not to print the human readable

Primary Routines
These are the main bar code drawing routines you should call and pass the data for what
you want to encode.

Action   Draws a Bar Code in a picture box.

Syntax1  DrawHorz128 (index, BCData$)
DrawHorz25 (index, BCData$)
DrawHorz39 (index, BCData$)
DrawHorzCodabar (index, BCData$)
DrawHorzUPCA (index, BCData$)

Syntax2   DrawVert128 (index, BCData$)
DrawVert25 (index, BCData$)
DrawVert39 (index, BCData$)
DrawVertCodabar (index, BCData$)
DrawVertUPCA (index, BCData$)

Remarks Both arguments are REQUIRED

Argument Description

index The Index property of the picture box to contain the code.

BCData$   The input string to encode.

example:)      DrawHorz39 0, "Data"    will draw a horizontal 3 of 9 bar code on the control
named Thunder(0) encoding the string "Data".

Secondary Routines
These routines are called by the bar code primary routines.

BCHNB ()
Draws a Bar Code Horizontal Narrow Bar

BCHNS ()
Draws a Bar Code Horizontal Narrow Space

BCHWB ()
Draws a Bar Code Horizontal Wide Bar

BCHWS ()
Draws a Bar Code Horizontal Wide Space

BCVNB ()
Draws a Bar Code Vertical Narrow Bar

BCVNS ()
Draws a Bar Code Vertical Narrow Space

BCVWB ()
Draws a Bar Code Vertical Wide Bar

BCVWS ()
Draws a Bar Code Vertical Wide Space

HumanReadable ()
Prints the bar code message

Mod128B (ModData$)
Checksum routine for Code 128-B

ModCodabar (ModData$)
Checksum routine for Codabar

ModCode39 (ModData$)
Checksum routine for Code 39

ModInt25 (ModData$)
Checksum routine for Interleaved 2 of 5

ModUPCA (ModData$)
Checksum routine for UPC-A

Other Considerations

PictureBox CtlName MUST be "Thunder" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

ScaleMode property is automatically set to Pixels and reset after the primary routine.   
Other ScaleModes can result in an "Overflow" error.

If the form which contains the bar code(s) is NOT named Form1, you will need to modify
thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the bar code routines.   
Optionally you can add DrawHorz(bar type) & DrawVert(bar type) as subroutines in the
general declarations section of your form.

BRM Programming
Variables

BRMBarSize
Width of a BRM bar

BRMSpaceSize
Width of a BRM space

BRMLength
BRM Length

Primary Routines
These are the main BRM drawing routines you should call and pass the type for what you
want to encode.

Action Draws a BRM Code in a picture box.

Syntax1 DrawHorzBRM (index, BRMVal)
Syntax2 DrawVertBRM (index, BRMVal)

Remarks Both arguments are REQUIRED

Argument Description

index The Index property of the picture box to contain the code.

BRMVal The BRM Type to encode.

example:)      DrawVertBRM 0, 6 will draw 6 vertical BRM bars on the control named
Thunder(0).

Secondary Routines
These routines are called by the BRM primary routines.

BRMHBar ()
Draws a BRM Horizontal Bar

BRMHSpace ()
Draws a BRM Horizontal Space

BRMVBar ()
Draws a BRM Vertical Bar

BRMVSpace ()
Draws a BRM Vertical Space

Other Considerations

PictureBox CtlName MUST be "Thunder" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

ScaleMode property is automatically set to Pixels and reset after the primary routine.   

Other ScaleModes can result in an "Overflow" error.

If the form which contains the BRM code(s) is NOT named Form1, you will need to modify
thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the BRM routines.   
Optionally you can add DrawHorzBRM & DrawVertBRM as subroutines in the general
declarations section of your form.

FIM Programming
Variables

FIMBarSize
Width of a FIM bar

FIMSpaceSize
Width of a FIM space

FIMHeight
FIM height

Primary Routines
These are the FIM drawing routines you should call and pass the type for what you want to
encode.

Action Draws a FIM Code in a picture box.

Syntax1 DrawHorzFim (index, FimType$)
Syntax2 DrawVertFim (index, FimType$)

Remarks Both arguments are REQUIRED

Argument Description

index The Index property of the picture box to contain the code.

FimType$ The FIM Type to encode.

example:)      DrawHorzFim 0, C will draw a horizontal Fim type "C" code on the control
named Thunder(0).

Secondary Routines
These routines are called by the FIM primary routines.

FHBar ()
Draws a FIM Horizontal Bar

FHSpace()
Draws a FIM Horizontal Space

FVBar ()
Draws a Fim Vertical Bar

FVSpace ()
Draws a FIM Vertical Space

Other Considerations

PictureBox CtlName MUST be "Thunder" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

ScaleMode property is automatically set to Pixels and reset after the primary routine.   

Other ScaleModes can result in an "Overflow" error.

If the form which contains the FIM code(s) is NOT named Form1, you will need to modify
thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the FIM code routines.   
Optionally you can add DrawHorzFIM & DrawVertFIM as subroutines in the general
declarations section of your form.

Patch Code Programming
Variables

PatchWideBarSize
Width of the patch code wide bars

PatchNarrowBarSize
Width of the patch code narrow bars

PatchSpaceSize
Width of the patch code spaces

PatchRatio
Wide to narrow ratio

PatchWidth
Overall patch code width(length)

Primary Routines
These are the patch code drawing routines you should call and pass the type for what you
want to encode.

Action Draws a Patch Code in a picture box.

Syntax1 DrawHorzPatch (index, PType$)
Syntax2 DrawVertPatch (index, PType$)

Remarks Both arguments are REQUIRED

Argument Description

index The Index property of the picture box to contain the code.

PType The Patch Type to encode.

example:)      DrawVertPatch 0, T will draw a vertical patch code type "T" on the control
named Thunder(0).

Secondary Routines
These routines are called by the patch code primary routines.

PHNarrowBar ()
Draws a Patch Horizontal Narrow Bar

PHWideBar ()
Draws a Patch Horizontal Wide Bar

PVNarrowBar ()
Draws a Patch Vertical Narrow Bar

PVWideBar ()
Draws a Patch Vertical Wide Bar

Other Considerations

PictureBox CtlName MUST be "Thunder" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

ScaleMode property is automatically set to Pixels and reset after the primary routine.   
Other ScaleModes can result in an "Overflow" error.

If the form which contains the patch code(s) is NOT named Form1, you will need to modify
thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the patch code routines.   
Optionally you can add DrawHorzPatch & DrawVertPatch as subroutines in the general
declarations section of your form.

Postnet Programming
Variables

ZipBarSize
Width of a Zip+4 bar

ZipSpaceSize
Width of a Zip+4 space

ZipHeight
Height of the ZIP+4 code

Primary Routines
These are the postnet drawing routines you should call and pass the data for what you
want to encode.

Action Draws a Postnet Code in a picture box.

Syntax1 DrawHorzZip (index, ZipData$)
Syntax2 DrawVertZip (index, ZipData$)

Remarks Both arguments are REQUIRED

Argument Description

index The Index property of the picture box to contain the code.

ZipData The ZIP Code input string to encode.

example:)      DrawHorzZip 1, 54321 will draw a horizontal postnet code on the control
named Thunder(1) encoding the string "54321".

Secondary Routines
These routines are called by the postnet primary routines.

ZHShortBar ()
Draws a ZIP+4 Horizontal Short Bar

ZHTallBar ()
Draws a ZIP+4 Horizontal Tall Bar

ZVShortBar ()
Draws a ZIP+4 Vertical Short Bar

ZVTallBar ()
Draws a ZIP+4 Vertical Tall Bar

Other Considerations

PictureBox CtlName MUST be "Thunder" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

ScaleMode property is automatically set to Pixels and reset after the primary routine.   

Other ScaleModes can result in an "Overflow" error.

If the form which contains the postnet code(s) is NOT named Form1, you will need to
modify thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the postnet code routines.
Optionally you can add DrawHorzZip & DrawVertZip as subroutines in the general
declarations section of your form.

Ruler Programming
Primary Routines
These are the ruler drawing routines you should call to generate a ruler.

Action Draws a Ruler in a picture box.               

Syntax1 DrawHorizontalRuler (mRuleScale, index, mZoomVal)

Syntax2 DrawVerticalRuler (mRuleScale, index, mZoomVal)

Remarks All three arguments are REQUIRED

Argument   Description

mRuleScale Value for the Scale of the ruler.    ex.) 16 = 16'ths, 8 = 8'ths, etc.

index The Index property of the picture box to contain the ruler.

mZoomVal Value for the amount of Zoom to use.    ex.) 1 = real size, .5 = 50%, 2 =
200%, etc. 

example:)      DrawHorizontalRuler 12, 0, 1    will draw a horizontal ruler, with 1/12
increments on the control named ruler(0) with a Zoom value of 1(real size).

Other Considerations

PictureBox CtlName MUST be "ruler" unless you modify thunder.bas.

PictureBox MUST have an Index value unless you modify thunder.bas.

Your form should have a ScaleMode property of 5 (inches), or 7 (centimeters).    Other
ScaleModes will work, but the ruler marks may be unreadable and will take a long time to
draw.    Note!    The ScaleMode of the form AND the ruler will affect the drawing of the ruler,
a mode of twips for example, will result in an "Overflow" error.

If the form which contains the ruler(s) is NOT named Form1, you will need to modify
thunder.bas.

You can add thunder.bas to your project and Visual Basic will find the ruler routines.   
Optionally you can add DrawHorizontalRuler & DrawVerticalRuler as subroutines in the
general declarations section of your form.

There are no minimum or maximum ranges for mRuleScale or mZoomVal, however very
large or very small values will produce a sloppy looking ruler.    This also applies to
unusually large or small Font Size,    Draw Width, and ScaleModes, etc.

About Visual Basic picture boxes
A picture box can display a graphic from a bitmap, icon, or metafile.    It displays only as
much of the graphic as fits into the rectangle you've drawn with the picture box tool.

To make the picture box automatically resize to display the whole graphic, set the AutoSize
property to True.    To create animation or simulation, you can manipulate the graphics
properties and methods in your code.    (Graphics properties and methods are indicated in
the list below by an asterisk (*) to the right of the name.) These properties and events are
also useful for run-time print operations, such as modifying the format of a screen form for
printing.   

Properties that have an effect on the appearance & functionality of the various codes and
rulers.

*AutoRedraw BackColor
BorderStyle CtlName
*DrawMode *DrawStyle
*DrawWidth *FontBold
*FontItalic *FontName
*FontSize *FontStrikethru
*FontTransparent *FontUnderline
*ForeColor Height
Index Picture
*ScaleMode Width

