
Animation Demonstration 

This Help file demonstrates animation in an embedded pane and sounds.    

It was created using EditHelp available from Analogue Ltd., 1 Warrender Park Crescent, Edinburgh 
EH9 1DX, (031 228 6008). Shareware registration is £25+VAT.    

The animation is executed via the DLL:    

AnimHelp.DLL    

The source bitmaps and the playing instructions are kept in the HLP file as "Baggage". They are not 
compressed - which is why the HLP file is so big and takes so long to load. A compressed version should 
be available soon.    

The implementation uses "dirty rectangle" animation: only the parts of the screen which have changed are
updated.    

This Help file contains three demonstrations:    

Dinosaur 
Disk Encoding 
Playing Sounds 

At present, there is no animation authoring tool. You have to calculate the "dirty rectangles" by hand. An 
authoring tool is planned.    



FM Encoding 

When data is stored on a low-density disk, FM Encoding is used.    

Click the mouse on the picture or press the Enter key. Press Pg-Dn for more information:    

{ewc HelpAnim.dll,AnimWnd,1/picpos.txt} 

Notice that the width of the magnetisation domains is either 1 unit or 2 units.    

MFM encoding can be used to store the data at twice this density.    
 



MFM Encoding 

When data is stored on a high-density disk, MFM Encoding is used.    

Click the mouse on the picture or press the Enter key. Press Pg-Dn for more information:    

{ewc HelpAnim.dll,AnimWnd,1/picpos2.txt} 

The width of the magnetisation domains is either 1 unit or 2 units or 1.5 units. The magnetic medium must
be sufficiently good quality to record these fine differences in domain width.    

Note that, to decode the data, the disk controller must be synchronised with the bit frame. Otherwise, a 
sequence of 1 bits cannot be distinguished from a sequence of 0's:    

    

And the sequence 111000 cannot be distinguished from 0000111:    

    

The only sequence which can be distinguished uniquely is a 0 between two 1's. It translates to a domain 
of width 2 units:    

    

So the header of each disk sector must contain this synchronisation pattern.    

FM encoding can be used to store the data at half this density on poorer quality medium.    
 



Dinosaur 

{ewc HelpAnim.dll,AnimWnd,1/dino.txt} 

 

See also: 
FM Encoding 
MFM Encoding    

 



Playing Sounds 

The PLAYSND DLL allows you to play a WAV file from within a help file.    

There are two functions in PLAYSND.DLL:    

Function description 
PLAYSND plays a WAV file that has been stored in the HLP file as "baggage"    

PLAYFILE plays a WAV file that is held on disk    

PLAYSND    

The DLL call    

{dll=PLAYSND.dll,PLAYSND(S:qchPath,S:"sine.wav",u:0),play sound}    

plays the file SINE.WAV where SINE.WAV has been stored in this HLP file. Try it:    

play sound    

PLAYSND takes two string and one unsigned integer parameter:    

Parameter description 
HelpFile the first parameter is the name of the help file which contains the sound. You can use 

the Predefined Variable 
qchPath 

which specifies the help file containing the current topic    

SoundFile the second parameter is the name of the sound file contained in the help file    

Flags sum of: 
1: play asynchronously    
8: loop the sound until next PLAYSND 
16: don't stop any currently playing sound    

If "play asynchronously" is specified then the player will start the sound and immediately continue on with 
the next command. Otherwise, the player will wait until the sound has finished before continuing.    

EditHelp will include a file inside a help file (HLP) if the directory containing the source of your help file 
(EDH) also contains the file    

BAGGAGE.EPJ    

BAGGAGE.EPJ is a text file. Each line is the name of a file to be copied into the HLP file as "Baggage". 
When this help file was compiled, the BAGGAGE.EPJ file contained the text:    

sine.wav    

PLAYFILE    

The DLL call    

{dll=PLAYSND.dll,PLAYFILE(S:"sine.wav",u:0),play file}    

makes the same sound but it reads it from the file SINE.WAV:    

play file    

PLAYFILE takes one string and one unsigned integer parameter:    



Parameter description 
SoundFile the name of the sound file    

Flags sum of: 
1: play asynchronously    
8: loop the sound until next PLAYSND 
16: don't stop any currently playing sound    

 






