
    TIPPort DELPHI component
properties methods events

This Component is for all those people wishing to make DELPHI based network
programs. Two levels of interface are provided, one for simple access when the
component is a single connection or listening port,the other for advanced projects where
multi-connections are required or for the programmer who wishes to do more complex
interactions with the sockets sub-system. All sockets use Asynchronous notifications,
via events, to allow the programmer to make non-blocking programs. This component is
dynamically linked to WINSOCK.DLL and therefore does not hold this DLL open whilst
designing projects within DELPHI.

Requires a 16-bit WINSOCK.DLL which is provided by 3rd Parties e.g. Trumpet 2.0b) or
Microsoft. This has been tested with Trumpet 2.0b.

Sample program of Finger and GetNetTime are included to to demonstrate the use of
this component.

ConnectTimeout
Word
The Connect Timeout Property is the length of time in seconds that a connecting port
will attempt to connect to its remote before generating an OnTimeOut event. Default =
60 seconds if set to zero then no    timeout event is generated.

IPPort1.ConnectTimeOut := 120; {two minute timeout on connection}

Properties
* = readonly at design time

BufferSize ConnectTimeout Description*
LocalPort LocalAddress* LocalHostName*
MaxSockets* RemotePort RemoteAddress
SystemStatus* WinsockVersion* WholeLines

Simple Advanced ByteOrdering

Events are generated for

OnDataAvailable When Data is ready to be received
OnSessionAccept When an inbound connection needs to be created
OnTimeOut When a connection exceeds the ConnectTimeout Value
OnSocketClose When a Socket is closed by the remote
OnSocketConnect When a Socket has successfully connected
OnDataReady When the remote is Ready to accept data

Simple Methods
The Simple Methods are for simple single connection or listening ports these just allow
the
simple programming of socket connections without having to keep track of the socket
that is
currently in use. Listening sockets are limited to a single incoming connection

ConnectToRemote
ListenForRemote
StopListening
AcceptRemote
SendToRemote
GetFromRemote
DisconnectFromRemote

Byte Ordering Methods
Windows Sockets may return data that is in network byte order or require data in
network byte order. This allows for multi platform support (e.g... IBM PC , Apple Mac
etc.)

These methods allow you to convert between the two formats    and are just wrappers to
the Winsock functions

NetworkLong NetworkInt
HostLong HostInt

Advanced Methods
These Methods are use for handling multiple connections with the component or for
doing specific
data transfers

OpenSocket
ConnectSocket
ListenOnSocket
AcceptConnection
ShutSocket
SendData
GetData
SendDataRaw
GetDataRaw

BufferSize
Word
This is the size of the internal data buffer use to receive data from the connected port
if WholeLines is set to true then if the return buffer is completely filled then the port will
buffer the next set of packets until a packet which is less than BufferSize is returned
then all data is return into the passed stringlist.

The default value = 1024.

IPPort1.BufferSize := 4096;

Description
string
This is the description string provided by your WINSOCK.DLL provider and is read-only
at design time

LocalPort
string
The Local Port    Property is for listening ports to listen on a specified port such as 'smtp'
or '25' . For outbound connections setting this value to 0 will use any port that is
currently available.

IPPort1.LocalPort := 'smtp';
IPPort1.ListenForRemote;

LocalAddress
string
The Local Address property is your local host address in IP format and is readonly
e.g.. '123.45.100.99'

LocalHostName
string
The Local Host Name property is a readonly property which displays the name of your
local host
e.g.. 'ipport.co.uk'

MaxSockets
word
This property is the current number of available sockets supported by your Sockets
provider
and is read-only

RemotePort
string
The Remote Port Property allows the destination socket port to be specified
and can either be the port name description or number.

e.g. 'smtp' or '25'

It must be specified with RemoteAddress property to make successful connections.

IPPort1.RemotePort := 'nntp';

RemoteAddress
string
The Remote Address is used to specify the remote socket to connect to with the
ConnectToRemote and ConnectSocket methods. This and RemotePort    must be set to
make a successful connection.

The RemoteAddress can be in either IP address or HostName format
e.g. '123.01.99.67' or 'ipport.co.uk'.

IPPort1.RemoteAddress := 'borland.com';

SystemStatus
string
The SystemStatus Property is a Read-Only property and provides the system status
from the Winsock provider.

WinsockVersion
string
The WinsockVersion is a readonly property which returns the current implementation of
Win Sockets as provided by your Sockets provider.

WholeLines
Boolean
The Whole Lines property works in conjunction with the BufferSize property in
determining what to do with receive buffers when they are returned full. If Wholelines is
true and the received data equals the current buffersize the internal buffer is expanded
and another receive issued until the data returned is less than buffersize at which point
the data is returned. This is to try to concatenate buffers so that returned data lines are
not split.

IPPort1.WholeLines := false;

ConnectToRemote
function ConnectToRemote: integer;
The ConnectToRemote method connects your application to a remote socket specified
by the RemoteAddress and RemotePort Properties

If ConnectTimeOut is none zero then the OnTimeOut Event will be called if the
connection is not
established by the connectTimeOut value

The Return Value is <0 on error

IPPort1.RemoteAddress := 'borland.com'
IPPort1.RemotePort := '80';
IPPort1.ConnectToRemote;

ListenForRemote
function ListenforRemote: Integer;
The Listen for Remote Method sets up a sockets listener port on the specified by the
LocalPort property

The return value is < 0 on error

IPPort1.LocalPort := 'smtp';
error := IPPort1.ListenForRemote;

StopListening
procedure StopListening;
This Method closes the previously created listening port with ListenforRemote method

Form1.OnClose(Sender: TComponent);
begin

IPPort1.StopListening;
end;

AcceptRemote
procedure AcceptRemote(var RemoteName: string; var RemoteAddr: string; var
RemotePort: string)
The AcceptRemote procedure allows the user to accept the incoming remote
connection
the procedure creates a new outbound connection for the incoming connection so that
SendToRemote
and GetFromRemote methods can be called

This procedure is usually called in the OnSessionAvaliable event

IPPort1.OnSessionAvailable(Socket: TSocket);
var

RemName, RemAddr; RemPort: string;
begin

IPPort1.AcceptRemote(RemName,RemAddr,RemPort);
MessageDlg(' Connection from ' + RemAddr + ' Received', mtInformation,

[mbOK],0);
end;

SendToRemote
function SendToRemote(Data: TStringList); LongInt
The Send to remote Method sends data onto the connected session. The return Value is
the number of bytes sent.

IPPort1.OnDataReady(Socket: TSocket);
var

Data: TStringList;
DataLen : LongInt;

begin
Data := TStringList.Create;
Data.Add('Hello World');
DataLen := IPPort1.SendToRemote(Data);

end;

GetFromRemote
function GetFromRemote(Var Data: TStringList): Longint;
The GetFromRemote method gets data from the socket connection and is usually called
in the OnDataAvailable event. The Passed TStringList is filled with the returned data
specified by the Buffersize and wholelines properties.

Ipport1.OnDataAvailable(Socket: TSocket);
var

Data: TStringList;
DataLen : LongInt;

begin
Data := TStringList.Create;
DataLen := IPPort1.GetFromRemote(Data);
Memo1.Lines := Data;
Data.Free;

end;

DisconnectFromRemote
Procedure DisconnectFromRemote;
The DisconnectFromRemote Method Closes the current outbound socket connection

IPPort1.OnSocketClose(Socket: TSocket);
begin

IPPort1.DisconnectFromRemote;
StatusBar.Caption := 'Disconnected';

end;

NetworkLong
function NetworkLong(LongInt); LongInt
The NetworkLong Method converts Host ordered byte LongInt data to Network ordered
byte data

NetValue := Ipport1.NetworkLong(HostValue);

NetworkInt
Function NetworkInt(Integer):Integer;
The NetworkInt Method converts a local byte order Integer to Network Byte order
integer

NetValue := IPPort1.NetworkInt(HostValue);

HostLong
function HostLong(LongInt): LongInt;
The HostLong Method converts a LongInt network ordered byte to Host ordered Bytes

HostValue := IPPort1.HostLong(NetValue);

HostInt
function HostInt(Integer): Integer;
The HostInt method converts Network byte ordered integer to a Host byte ordered
integer

HostValue := IPPort1.HostInt(NetValue);

OpenSocket
function OpenSocket: TSocket;
The Open socket create a new socket for outbound connection or listening the return
socket handle is used in subsequent method calls.

if the returned TSocket < 0 then a socket was unable to be allocated

MailserverSocket := IPPort1.Opensocket;
IPPort1.LocalPort := 'smtp';
IPPort1.ListenOnSocket(MailServerSocket);

ConnectSocket
function ConnectSocket(TSocket); Integer;
The ConnectSocket method connects the passed socket, created using OpenSocket to
the Remote address and port specified in the RemoteAddress and RemotePort
properties. The Error Status is returned.

WebSocket := IPPort1.OpenSocket;
IPPort1.RemoteAddress := 'borland.com';
IPPort1.RemotePort := '80'; {WWW};
IPPort1.ConnectSocket(WebSocket);

ListenOnSocket
function ListenOnSocket(Socket:TSocket; Queue: Integer): Integer;
The ListenonSocket method starts a listening port on the local host, using the port
specified in the LocalPort property for the passed socket, created by the OpenSocket
Method.

MailServer := IPPort1.OpenSocket;
IPPort1.LocalPort := 'smtp';
IPPort1.ListenOnSocket(MailServer, 5)

AcceptConnection Method
function AcceptConnection(Socket: TSocket, var RemoteName: string; var
RemoteAddr: string; var RemotePort string): TSocket;
The AcceptConnection method accepts a remote connection to the local host and
returns a new socket on which the data transfer mechanism should use. This is usually
called in the OnSessionAvailable Event
The Socket parameter is the socket which is doing the listening and should have been
previously called    with ListenOnSocket. The RemoteName,Address and Port variable
string parameters are filled with the connecting ports details

IPPort1.OnSessionAvailable(Socket: TSocket)
var

RNam,RAddr,RPort: string;
begin

if Socket = MailServer then
begin

MClient := AcceptConnection(Socket, RNam,RAddr,RPort);
end

end;

ShutSocket
procedure ShutSocket(Socket: TSocket);
The ShutSocket    Methods Closes all actions on the passed socket handle. The socket
handle should no longer be used.

IPPort1.OnSocketClose(socket: TSocket)
begin

IPPort1.ShutSocket(Socket);
end;

SendData Method
function SendData(Socket: TSocket; Data : TStringList): LongInt;
The SendData Method sends the passed tstringlist to the socket specified in the socket
parameter. it returns the number of bytes sent.

IPPort1.OnDataReady(Socket: TSocket)
var

Data : TStringList;
DataLen : LongInt;

begin
Data := TSringList.Create;
Data.LoadFromFile('Memo.msg');
DataLen := IPPort1.SendData(Socket, Data);
Data.Free;

end;

GetData Method
function GetData(Socket: TSocket; var Data TStringList): Longint;
The GetData Method returns data from the socket into the TStringList returning the
number of bytes it works inconjunction with the BufferSize and WholeLines Properties
and    is described in the
BufferSize Property.

IPPort1.OnDataAvailable(Socket: TSocket);
var

Data: TStringList;
DataLen : LongInt;

begin
IPPort.WholeLines := False;
IPPort1.BufferSize := 32768;
Data := TStringList.Create;
DataLen := IPPort1.GetData(Socket, Data);
Data.SavetoFile('Memo1.txt');
Data.Free;

end;

GetDataRaw Method
function GetDataRaw(Socket: TSocket; Buffer: Pointer; BuffLen Integer);
Integer;
The GetDataRaw Method allows returned data to be returned into a users buffer where
a TStringList would be unsuitable.

IPPort1.OnDataAvailable(Socket: TSocket);
var

DataLen: LongInt;
NetTime: LongInt;
HostTime:TDateTime;

begin
DataLen := IPPort1.GetDataRaw(Socket, @NetTime, sizeof(NetTime));
HostTime := ConvertNetTimeToHostTimeFormat(NetTime);
Memo1.Text := DateTimeToStr(HostNetTime);

end;

SendDataRaw Method
function SendRawData(Socket:TSocket; Buffer: Pointer; BuffLen Integer);
Integer;
The SendRawDataMethod allows the users own buffer to be sent over the connected
socket. This is where a TStringlist is unsuitable.

IPPort1.OnDataReady(Socket: TSocket)
var

DataLen : Integer;
NetTime: LongInt;

begin
NetTime := ConvertTimeToNetFormat(Now);
DataLen := IPPort1.SendDataRaw(Socket, @NetTime, 4);

end;

