
AVRIL Technical Reference -- Appendices
Version 2.0

March 28, 1995

Bernie Roehl

Note: These are the appendices for the technical reference manual; the manual itself is kept in

a separate file, as is the Tutorial.

Appendix A - REVISION HISTORY

This is the second major release of AVRIL. The changes made since the first pre-release

(0.9c) are listed below.

Changes made in version 2.0:

Added support for a number of new devices.

The vrl_DevicePollAll() now returns non-zero if any of the devices had new data.

Added support for stereoscopic rendering.

Added support for Gouraud shading, including the vrl_RepComputeVertexNormals() function

for computing vertex normals as the average of polygon normals.

Standardized the display (i.e. scan-converter) and video (frame buffer) interfaces.

Modified vrl_Palette type; it’s no longer an array, it’s now a struct containing additional

information about the palette (specifically, the huemap).

Provided vrl_malloc(), vrl_calloc() and vrl_free() functions as "wrappers" around the system

functions.

Defined a "raster" type for bitmaps.

The vrl_SurfaceInit() function no longer takes a hue parameter.

AVRIL Tech Ref -- Appendices 1

The vrl_Surfacemap type is no longer just an array; it’s a struct containing additional

information. New functions have been added for accessing that information.

Surfaces are now kept in a list.

Surfacemaps are now kept in a list.

Replaced vrl_ObjectGetX() and its sister functions with vrl_ObjectGetWorldX() and

vrl_ObjectGetRelativeX() and company; the first returns absolute world coordinates, the

second returns coordinates relative to the object’s parent. Did the same for

vrl_ObjectGetLocation().

Added a vrl_TransformVertexToScreen() function, to convert a vertex from object space to

screen space.

All the file-loading functions now use the loadpath.

Renamed some of the reading and loading functions; the "Read" type functions now take a

FILE *, the "Load" type functions now take a filename.

Fixed typo that caused the vrl_ShapeRescale() function to be undefined.

Modified joystick driver to not zero out buttons and nbuttons when a buttonmap is being

used.

Changes made in version 1.1:

Added support for the Polhemus Isotrak.

Added the functions vrl_ObjectLookAt(), vrl_CameraLookAt() and vrl_LightLookAt().

Simplified the code in cfg.c; as several people pointed out, it was a complicated solution to a

simple problem. Devices now have "nicknames" by which they can be referenced by the

application, eliminating the need for the cfg.c code to keep track of that information. The

configuration file is read after (not before) vrl_SystemStartup() is called, and a "display"

statement will simply re-initialize the display to use the new driver and/or mode.

Fixed a bug in the horizon routine that had caused sky to be displayed when looking straight

down, and ground to be displayed when looking straight up.

Changes made in version 0.9c:

Added support for multi-channel input devices.

AVRIL Tech Ref -- Appendices 2

Added support for serial communications.

Renamed all the types to begin with the "vrl_" prefix; the types affected are Scalar, Factor,

Angle, Vector and Matrix. Also changed UNITY to VRL_UNITY. There are #defines at the

end of avril.h to ease the transition; they’ll be removed for version 2.00.

Added vrl_Boolean and vrl_Time types.

Modified avril.h to #include <stdio.h> and #include <mem.h> (for memcpy()).

Added #defines for XROT, YROT and ZROT for indexing device channels.

Added various additional vector and matrix functions such as vrl_VectorNegate() and

vrl_VectorEqual(). Also added a new global variable, the null vector vrl_VectorNULL.

Added a "leftside" parameter to the vrl_MatrixRotX(), vrl_MatrixRotY(), vrl_MatrixRotZ(),

and vrl_MatrixRotVector() functions.

Removed the vrl_List structure and put names into the structs for vrl_Lights, vrl_Cameras,

and vrl_Objects. Added functions for accessing those names, and for finding entities based

on their name. Also added routines for traversing and iterating over the linked lists of

vrl_Lights and vrl_Cameras.

Added vrl_ObjectRotate() and vrl_ObjectTranslate() routines, and modified several older

movement and rotation functions to make calls to those two.

Made surface maps into a struct, rather than just an array of vrl_Surface pointers. This

allows for additional information about a surface map to be kept, and for the surface maps to

be kept in a linked list.

Added the notions of a world having "bounds" and a "radius", and routines for supporting

those notions.

The RVD drivers are now searched for along the PATH, as well as in the current directory.

Renamed all the vrl_New* functions to make their naming consistent with everything else.

For example, vrl_NewObject() is now vrl_ObjectCreate(). Again, #defines were added to the

end of avril.h to ease the transition; these will be removed as of the 2.00 release.

Added a vrl_WorldUpdate() macro.

Added application-specific data to vrl_Objects, vrl_Lights and vrl_Cameras.

Added functions to vrl_Objects, which get called during world updating.

AVRIL Tech Ref -- Appendices 3

Added ID numbers to facets.

Renamed vrl_SetFigurePartArray() to vrl_SetReadFIGpartArray() to be more consistent.

Switched to using standard the DOS timer (at an accelerated rate, and chaining to the old one

periodically) because the RTC timer interfered with Turbo Debugger.

Standardized on a tick rate of 1000 per second.

Eliminated the vrl_TimerAddHandler() routine, since there was too much risk that handler

routines would do things that ought not be done inside an interrupt handler; a bug in Borland

C 3.1 bug also forced all routines called from within an interrupt to be assembled without 386

instructions.

Added a call to directly query the frames per second rate.

Renamed the vrl_DrawCompass() and vrl_DropText() routines to

vrl_UserInterfaceDrawCompass() and vrl_UserInterfaceDropText() to make it clear that

they’re a part of the user interface family of functions.

Modified the vrl_PrimitiveSphere() routine to accept separate counts of the number of

longitudinal and latitudinal sides.

Add support for configuration files.

Added the additional mouse routines vrl_MouseGetUsage(), vrl_MouseSetUsage(),

vrl_MouseSetPointer(), vrl_MouseGetPointer() and vrl_MouseGetLimits().

AVRIL Tech Ref -- Appendices 4

Appendix B - CFG FILE FORMAT

A CFG file is a platform-specific ascii file used to describe the user’s preferred configuration.

It contains a series of statements, one per line; anything after a ’#’ character on any given

line is taken as a comment, and blank lines are ignored. At the moment, there are only a few

statement types defined; this is expected to change.

COMPASS state

If state is "on", then the compass should be displayed on the screen.

FRAMERATE state

If state is "on", then the frame rate should be displayed on the screen.

POSITION state

If state is "on", then the current X,Z position should be displayed on the screen.

CURSOR state

If state is "on", then the cursor should be visible; this is the default state.

DEVICE name type mode address irq buffsize

Sets up a device driver, and assigns it a symbolic name that can be referenced by the

application. The type field is the name of a device type, like "Cyberman" or

"Spaceball". The mode is passed to the device using vrl_DeviceSetMode(), and the

address, irq and buffsize fields are just passed to the call to vrl_SerialOpen(); see the

section on Serial Ports for details. All parameters except the name and type are

optional; devices that are not interfaced over a serial port do not need the address, irq

or buffsize parameters, and devices all have a default mode. The name can be

anything you like; however, it should be something that’s referenced by the

application. For example,

device headtracker Redbaron 0 0x2F8 3 2000

would set up the Logitech Red Baron ultrasonic tracking device; the device would be

hooked up to COM2 (address = 0x2F8, irq = 3) with a 2000 byte buffer. The

application would simply look up the device called "headtracker" and use the values it

returns without having to worry about what kind of device it actually is.

DEVCONFIG name channel scale deadzone

Sets the scale and deadzone parameters for a particular channel of a particular device.

The name must match the name of a device already specified with a DEVICE

statement. The channel can be either a number or one of the special values X, Y, Z,

XROT, YROT or ZROT. The scale can be either a number (in which case it’s taken

to be a scalar distance) or a number with an ’a’ or ’A’ in front of it (in which case it’s

AVRIL Tech Ref -- Appendices 5

taken to be an angle). The deadzone value is a number, specified in device

coordinates. The deadzone is optional, and defaults to zero.

For example,

devconfig headtracker 2 15

would cause channel 2 (the Z channel) to have a scale factor of 15 and a deadzone of

zero, while

devconfig headtracker YROT a45 10

would cause channel 4 (the Y rotation channel) to have an angular scale factor of 45

degrees and a deadzone of 10 device units.

DISPLAYDRIVER name

Specifies which display driver to use. Currently the only values are "ModeY" or

"default". See also the description for VIDEODRIVER, and the technical reference

manual.

INCLUDE file

Includes the contents of the specified file as if they appeared in the current file in

place of the INCLUDE.

LOADPATH path

Specifies the path from which all subsequent files should be loaded. The path is

effectively prepended to any filename that does not begin with a ’/’ or ’\’.

STEREOTYPE type

Specifies which type of stereoscopic viewing to use. The type can be any of the

following:

NONE, SEQUENTIAL, ANAGLYPH_SEQUENTIAL,

ANAGLYPH_WIRE_ALTERNATE, ENIGMA, FRESNEL,

CYBERSCOPE, CRYSTALEYES, CHROMADEPTH, SIRDS,

TWOCARDS, ANAGLYPH_SOLID_ALTERNATE

See Appendix I for descriptions of each of the types; note that not all of them are

implemented yet in version 2.0 of AVRIL.

STEREOPARAMS params

Sets parameters for the stereo viewing mode. The params will differ from one type of

stereo viewing to another. For CHROMADEPTH, the parameters are the ChromaNear

and ChromaFar distances, in world units. For all other currently supported modes, the

parameters are the eyespacing and (optionally) the convergence distance, both as

floating-point numbers. They must be in the same units (e.g. millimeters).

AVRIL Tech Ref -- Appendices 6

STEREOLEFT shift [rotation]

STEREORIGHT shift [rotation]

Specifies the shift and (optionally) the rotation for the left or right eye. See the

section on stereoscopic viewing in the technical reference manual for details.

VERSION nn

Indicates which version of this specification the configuration conforms to. This can

be omitted; if present, it should be set to 1.

VIDEODRIVER name [mode]

Specifies the name of the low-level video driver to use; currently the only values are

"Mode13", "ModeY" and "7thSense". The mode indicates the graphics sub-mode to

use; it’s passed directly to the driver function, in the initialization call. See also the

description for DISPLAYDRIVER, and the technical reference manual.

Note the difference between the VIDEODRIVER and the DISPLAYDRIVER. The

VIDEODRIVER deals with the hardware, the DISPLAYDRIVER with the scan-conversion

module; see the technical reference manual for details. You can, for example, have the

following:

videodriver mode13
displaydriver default

in which case mode 0x13 will be used throughout, or

videodriver modeY
displaydriver modeY

in which case mode Y will be used throughout. Alternatively, you can mix them:

videodriver modeY
displaydriver default

in which case rendering will be done to an offscreen buffer, and the completed screen image

copied to the current draw page in mode Y.

AVRIL Tech Ref -- Appendices 7

Appendix C - PLG FILE FORMAT

I originally designed PLG files for use with REND386; for better or worse, they seem to have

become something of a standard. REND386, AVRIL, VR386 and Jon Blossom’s Gossamer

all use them for object geometry description; there are also translators that turn other formats

into PLG, and the NorthCAD-3D program can generate PLG files as output. The PLG in the

name stands for "polygon".

There will soon be a file format for the interchange of virtual objects and virtual

worlds between VR systems; at that point, support for the PLG file format will diminish.

Conversion programs will be made available to convert PLG files to the new format.

A PLG file basically has three parts: a header line, a list of vertices and a list of

facets.

The header line has the object name, the number of vertices, and the number of facets;

for example:

kitchen_table 100 35

which would mean that the object "kitchen_table" has 100 vertices and 35 facets.

The number of facets can optinally be followed by two numbers; the first is ignored,

and should be set to zero (it’s for compatability with VR386), and the second is the sorting

type. It should be set to zero if (and only if) you know the object is convex (i.e. no part of

the object can hide any other part). Anything after those two numbers should be ignored,

since it may be used for future expansion.

Following this line are the vertices, one x,y,z triplet per line (each value is a floating-

point number, and they’re separated by spaces). For example:

18027 23025 98703

Vertex normals may optionally be specified after the vertex coordinates. Anything after the

vertex normals is ignored (for future expansion).

This is followed by the facet information, one line per facet; each of these lines is of

the form

surfacedesc n v1 v2 v3 ...

The surfacedesc is described below. The n is the number of vertices in the facet. The v1, v2,

v3 and so on are indices into the array of vertices; the vertices are listed in a counter-

AVRIL Tech Ref -- Appendices 8

clockwise order as seen from the "front" (i.e. visible side) of the facet. Note that the vertices

are counted "origin zero", i.e. the first vertex is vertex number 0, not vertex number 1.

For example:

0x8002 4 8 27 5 12

would mean a four-sided facet bounded by vertices 8, 27, 5 and 12. This facet has a surface

descriptor of 0x8002.

Anything after the list of vertex indices should be ignored.

The PLG format supports comments. Anything after a # should be ignored by any

program that parses PLG files. In addition, lines beginning with a ’*’ should be ignored.

PLG files can have multiple copies of an object at different resolutions. PLG files

containing such multiple-resolution versions of objects must have "#MULTI" as their first

line.

For each object defined in such a file, the object name includes a number specifying

the pixel size of the object on the screen. The object names for each representation must be

<name>_####

where #### is the smallest pixel width to use this representation for. For example,

TABLE_15 would be a valid name.

If the smallest rep size is zero, then that representation will be used no matter how

small the object gets. If the smallest rep size is 1 or greater, then the object will vanish if it

gets too small.

The surface descriptor can either be a decimal integer or a 0x or 0X followed by a

hexadecimal integer value. The surface descriptor is a 16-bit value which is interpreted as

follows:

H SSS CCCC BBBBBBBB

If the H bit is set, it indicates that this is a "mapped" surface descriptor; the bottom 14 bits

are taken to be an index into a surface map.

If the H bit is clear, the SSS bits are interpreted as follows:

000 -- This facet is "solid shaded"; i.e. it should be drawn in a fixed color, with no

special effects. If the CCCC bits are zero, then the BBBBBBBB bits directly

specify one of the 256 available colors; if the CCCC bits are non-zero, then

AVRIL Tech Ref -- Appendices 9

they specify one of sixteen hues and the top four bits of BBBBBBBB specify

which shade of that hue to use.

001 -- This facet is "flat shaded"; i.e. it should be drawn with a constant shading that

is determined by the angle at which light is striking it; thus, as the facet moves

around, its apparent brightness will change. The CCCC bits specify one of

sixteen hues, and the bottom 8 bits BBBBBBBB represent the "brightness" of

the color. This brightness value is multiplied by the cosine of the angle

between the facet’s normal vector and the vector from the facet to the light

source; the result is used to specify an offset into the given color’s array of

shades. Note that if the CCCC value is 0, the color will always be black.

010 -- This facet should be treated as being "metallic"; the CCCC bits (which should

be non-zero) specify one of the 16 hues, and the top 5 bits of the BBBBBBBB

value are used as an offset into a range of shades to cycle through to give the

metallic effect, i.e. a starting offset into the color cycle.

011 -- This facet should be treated as being "transparent"; it is just like surface type

10, except that alternating rows of dots are used instead of solid colors,

allowing you to "see through" the facet.

100 -- This facet should be Gouraud shaded; the meaning of the other bits is the same

as for flat shading.

Other values of SSS are reserved and should not be used.

AVRIL Tech Ref -- Appendices 10

Appendix D - FIG FILE FORMAT

FIG files are a way of representing multi-segmented, hierarchical entities.

This format will soon be considered obsolete.

There will soon be a file format for the interchange of virtual objects and virtual

worlds between VR systems; at that point, support for the FIG file format will diminish.

Conversion programs will be made available to convert FIG files to the new format.

The syntax of a figure file is simple, and very C-like. It consists of a series of

segments, each of which can possess a set of attributes, as well as child segments. Each

segment is bounded by braces. Attributes are arbitrary text strings ending in a semicolon.

The list of possible attributes is open-ended and extensible; programs that read figure

files should ignore any attributes they don’t recognize.

An example will make all this clearer.

{
comment = a human body;
name = pelvis; comment = this is the name of the root segment;

{
name = chest;

{ name = left upper arm; { name = left lower arm; } }
{ name = right upper arm; { name = right lower arm; } }
{ name = head; }

}
{ name = left upper leg; { name = right lower leg; } }
{ name = right upper leg; { name = right lower leg; } }
}

}

In general, attributes are of the form "keyword = value;", though this is not a requirement.

The attributes used above are name and comment. Note that no program ever has to

recognize a comment attribute, since by definition comments should be ignored.

The attributes currently defined are as follows:

name = somestring;
pos = x,y,z;
rot = x,y,z;
plgfile = filename scale x,y,z shift X,Y,Z sort type map filename;
segnum = someinteger;

The pos is the x,y,z displacement of the origin of this segment relative to the parent’s

coordinate system. The rot is the rotation of this segment relative to the parent. For root

objects (which have no parent) these values are the absolute location and rotation of the entire

figure in world coordinates.

AVRIL Tech Ref -- Appendices 11

The plgfile gives the name of a .plg file containing a geometric representation of the

segment. Note that the figure file format does not strictly depend on .plg files; the reason the

syntax is "plgfile = " rather than just "file =" is because a segment may have a large number

of different representations and an application can choose whichever one it likes.

The scale, shift, sort and map values are all optional, but in order to specify any of

them you must specify all the preceding ones (i.e. you cannot simply omit the scale

parameter). The scale values represent the amount by which the object should be scaled

along each of its axes when it’s loaded. The shift value is the amount by which to shift the

object’s origin at load time. The sort value is the type of depth-sorting to use for this

segment’s representation (the default is zero). The map value is the name of a file containing

a list of unsigned values that are to be used in surface remapping for this segment. If the top

bit of a color value is set in a plg file, the bottom fourteen bits are used as an index into this

map.

The difference between shift and pos is important. The shift value is used to shift an

object relative to its "native" origin, while the pos value is the amount by which the new

origin should be displaced from the parent node’s origin.

For example, suppose you want to represent the head of a human figure with a cube.

The cube may, in the .plg file, be defined with its (0,0,0) point at one corner. Clearly, this

origin is inconvenient for the head, since if the origin is centered over the neck of the figure

then the head will be displaced to one side.

Alternatively, the cube might be defined with its (0,0,0) point at its geometric center.

However, this is also impractical; your head should not rotate freely about its center. If it

does, stop reading this document immediately and seek medical attention.

What you do is shift the cube so that its origin lies below the center of the cube,

where your "neck joint" is. That’s what the shift value in the plgfile attribute specifies.

Important note: objects rotate about their [0,0,0] point as loaded.

The pos attribute specifies where this neck joint is in relation to the origin of the chest

segment. If your chest were longer vertically, then the pos attribute of the head segment

should be increased in the Y direction (for example).

The segnum attribute associates a simple integer value with a segment, which can

subsequently be used to refer to the segment when manipulating it.

Note that a figure file can in fact contain a series of segments; each of these is a root

segment, so a figure file can in effect store a complete scene description (excluding lights and

cameras).

AVRIL Tech Ref -- Appendices 12

Appendix E - WLD FILE FORMAT

WLD files were designed to store information about the layout of objects in a virtual world.

This format will soon be considered obsolete.

There will soon be a file format for the interchange of virtual objects and virtual worlds

between VR systems; at that point, support for the WLD file format will diminish.

Conversion programs will be made available to convert WLD files to the new format.

A WLD file is entirely ascii. Each statement is one line; anything after the first ’#’ is treated

as a comment and ignored. Blank lines are also ignored. The format is intended to be highly

extensible; any line which cannot be recognized should simply be ignored. Each statement

contains some information about the scene; the possible types of statements are listed below.

Everything is case-insensitive; keywords are shown below in uppercase, but are generally

entered in lowercase.

LOADPATH path

Specifies a path prefix for loading files. Any files (whether specified in the world file

itself, subsequent world files, or in referenced FIG files) will be loaded from the

specified directory. However, if a filename begins with the ’\’ or ’/’ characters, it is

used verbatim (i.e. the LOADPATH setting is ignored).

PALETTE filename

Loads a 256-entry binary palette file (3 bytes (R,G,B) for each entry). Note that

alternate palettes may not handle shading as well as the default one does. If there are

more that 768 bytes (256 times 3) in the file, the remaining values are interpreted as a

hue map; pairs of bytes are starting indices (origin 0) and number of shades.

SKYCOLOR index

Specifies which of the 256 available colors should be used for the "sky".

GROUNDCOLOR index

Specifies which of the 256 available colors should be used for the "ground". If the sky

and ground color are identical, a solid screen clear is used; this is a bit faster.

SCREENCLEAR value

If the specified value is non-zero, then the screen will be cleared before each frame; if

it’s zero, the screen clearing is not done (this is useful if you know that the entire

window will be covered by the image, and that no background will show through; in

such a situation, specifying this option will improve performance).

AVRIL Tech Ref -- Appendices 13

AMBIENT value

Specifies the level of the ambient light; 76 is the default, and a good value to use.

LIGHT x,y,z

Specifies the location of a light source in world coordinates.

CAMERA x,y,z tilt,pan,roll zoom

Specifies your starting location, viewing direction and zoom factor. The x,y,z values

are floating-point numbers giving coordinates, the tilt,pan,roll values are floating-point

angles, and the zoom is a floating-point number giving the zoom factor. Remember

that the order of rotations is pan, tilt, roll.

HITHER value

Specifies the near clipping distance in world coordinates. The value should typically

be 10 or more.

YON value

Specifies the far clipping distance in world coordinates. The value should typically be

1000000 or more.

OBJECT [objname=]filename sx,sy,sz rx,ry,rz tx,ty,tz depthtype mappings parent

Loads an object from a .plg file with the given filename. If the objname= is present,

it assigns the newly-loaded object that name for future reference. The sx,sy,sz values

are floating-point scale factors to increase or decrease the size of the object as it’s

loaded. The rx,ry,rz values are the angles to rotate the object around in each of the

three axes; ry is done first, then rx and finally rz. The tx,ty,tz values translate (move)

the object to a new location; this is done after the scaling and rotation. The depthtype

field is not currently used. The mappings feature is explained below. The parent

field is the name of the object that this object is attached to; if omitted, the child

moves independently. If parent is the word "fixed", then the object is fixed in space

and cannot be moved. All fields are optional, but you must include all the fields prior

to the last one you wish to use (i.e. you can only leave things off the end, not off the

beginning or out of the middle).

FIGURE [figname=]filename sx,sy,sz rx,ry,rz tx,ty,tz parent

Loads a segmented figure from a FIG file with the given filename. All the parameters

have the same meaning as for the OBJECT statement described above.

POLYOBJ npts surface x1,y1,z1 x2,y2,z2 [...] x8,y8,z8

Directly specifies a facet to be placed in the scene. The value npts is the number of

points (maximum 8), the surface is a surface name (see below on surfaces) and the

vertices are given in world coordinates.

AVRIL Tech Ref -- Appendices 14

POLYOBJ2 npts surface1,surface2 x1,y1,z1 x2,y2,z2 [...] x8,y8,z8

Directly specifies a double-sided facet to be placed in the scene. The value npts is the

number of points (maximum 8), surface1 and surface2 are surface names (see below

on surfaces) and the vertices are given in world coordinates.

INCLUDE filename

Includes the specified file as if its contents appeared at the current point in the current

file.

POSITION objname x,y,z

Moves (i.e. translates) the specified object to the given x,y,z location.

ROTATE objname rx,ry,rz

Rotates the specified object to the given angles about each of the axes. The angles are

specified in floating point, and are measured in degrees. The rotation order is Y then

X then Z.

VERSION number

Allows you to define a version number. Not currently used for anything; can be

omitted.

TITLE text

Allows you to define a title for your world.

About Mapping

A PLG file can contain indexed color values (such as 0x8002) which are used to index a

surface map. Entries in surface maps refer to surfaces. Surfaces are created using the

SURFACEDEF statement, surface maps are created with the SURFACEMAP statement, and

entries are placed in them with the SURFACE statement. The statement formats are as

follows:

SURFACEDEF name value

Defines a new surface; maps a surface name (such as "wood") to a numeric surface

descriptor (value) of the type described in Appendix C.

SURFACEMAP name maxentries

Marks the start of a new surface map. All subsequent SURFACE entries will be

placed in this map. The maxentries field gives the maximum number of entries this

surface map will have; if omitted, it defaults to 10.

AVRIL Tech Ref -- Appendices 15

SURFACE index name

Defines an entry in the current surface map, which takes an index value (the bottom

14 bits of the value in the .plg file) and maps it into a surface name (which is in turn

mapped to a 16-bit color value).

USEMAP mapname

Causes all subsequently loaded objects that don’t have a mapname on their OBJECT

statements to use the specified mapname.

AVRIL Tech Ref -- Appendices 16

Appendix F - WRITING DEVICE DRIVERS

Writing device drivers for AVRIL is easy. You basically create a single function with a

unique name; for example, if you want to support a (mythical) RealTronics Atomic Tracking

System, your function might be

int vrl_ATSDevice(vrl_DeviceCommand cmd, vrl_Device *device)
{
[...]
}

You should add an entry for your new function to the list in avrildrv.h, and possibly to the

cfg.c file.

Your driver routine will get called periodically by the application. The vrl_Device

struct is pre-allocated by AVRIL, so you just have to fill in the various fields. The cmd is

one of VRL_DEVICE_INIT, VRL_DEVICE_RESET, VRL_DEVICE_SET_RANGE,

VRL_DEVICE_POLL, or VRL_DEVICE_QUIT.

When a device is first opened, AVRIL will set all the fields in the vrl_Device struct to

reasonable values. The VRL_DEVICE_INIT call should fill in the following fields with

driver-specific information:

char *desc; /* user-readable device description */
int nchannels; /* number of input channels the device has */
vrl_DeviceChannel *channels; /* pointer to array of channels */

The desc is a string describing the device, the nchannels value is the number of input

channels the device has (should be at least 6) and the channels field is set to point to an array

of vrl_DeviceChannel structs, one per channel. These channels should be dynamically

allocated, rather than using a static struct; this is to allow for multiple instances of the same

type of device (for example, a Cyberman on each of COM1 and COM2, each with its own

channel-specific data). For this same reason, your driver shouldn’t use any global variables;

you should instead dynamically allocate memory for any additional per-device-instance data

and store the pointer to that data in the localdata field of the vrl_Device struct. The

VRL_DEVICE_INIT call should also fill in the appropriate values for all the channels.

The VRL_DEVICE_INIT call may also choose to fill in some or all of the following:

int nbuttons; /* number of buttons the device has */
int noutput_channels; /* number of output channels */
vrl_DeviceOutputFunction *outfunc; /* function to call to generate output */
vrl_DeviceMotionMode rotation_mode; /* rotation mode for this device */
vrl_DeviceMotionMode translation_mode; /* translation mode for this device */
vrl_Buttonmap *buttonmap; /* button mapping table for 2D devices */
int version; /* device struct version number */
int mode; /* mode of operation */
vrl_Time period; /* milliseconds between reads */

AVRIL Tech Ref -- Appendices 17

The number of buttons the device has is assumed to be zero unless you set it otherwise, as is

the number of output channels. The outfunc field is a pointer to a function (probably

declared static in the same source file as your driver function) that handles output to the

device; this is described in more detail below. If your device doesn’t do output, leave this

field at its default value of NULL.

The meaning of the two vrl_DeviceMotionMode type fields is described in the main

part of the technical reference manual, in the section on Devices. They both default to

VRL_MOTION_RELATIVE. The mode is driver-specific, and can be initialized to whatever

value you like (since the value is only interpreted by your driver). The version field should

be left at its default value of zero by drivers following this version of the driver specification;

as the driver specification evolves, this value will increase.

The period defaults to zero, meaning that a call to vrl_DevicePoll() will always result

in your driver function being called with a cmd of VRL_DEVICE_POLL. If you don’t want

to be polled every cycle, set the period to the minimum number of ticks (usually

milliseconds) that should elapse between polls. Note that this is a minimum value; the delay

between polls may be even longer if the system is busy doing other things.

The VRL_DEVICE_RESET command is very similar to VRL_DEVICE_INIT, and

may in fact be the same for some devices. The difference is that VRL_DEVICE_INIT does

one-time initializations (such as taking over interrupt vectors).

On receiving the VRL_DEVICE_RESET command, the driver should note the current

values of each channel and make them the centerpoint for that channel. On receiving a

VRL_DEVICE_SET_RANGE command, it should make the current values the range for that

channel. See the notes below about centerpoint and range.

The VRL_DEVICE_QUIT command should "shut down" the device, putting it in a

quiescent state and undoing anything that was done in VRL_DEVICE_INIT and

VRL_DEVICE_RESET (for example, restoring interrupt vectors). It’s also responsible for

releasing any memory that was dynamically allocated by VRL_DEVICE_INIT, including that

pointed to by the channels field and the localdata field if it was used.

Serial devices can assume that when VRL_DEVICE_INIT is called, the port they’ll be

using is already open, and that the port field is set; the driver also does not need to (and

should not) close the port. However, devices that actually use the port should check that it’s

not NULL, and return -4 if it is.

The VRL_DEVICE_POLL command should read the raw data from the hardware (for

example, by calling vrl_DeviceGetPacket()) and decode the values into the rawdata fields of

the appropriate channels. You should be sure to set the changed field for any channels that

you update.

AVRIL Tech Ref -- Appendices 18

There are a number of values associated with each channel; they are as follows:

struct _vrl_device_channel
{
vrl_32bit centerpoint; /* value of center point in raw device coords */
vrl_32bit deadzone; /* minimum acceptable value in device coords */
vrl_32bit range; /* maximum absolute value relative to zero */
vrl_Scalar scale; /* maximum returned value */
vrl_Boolean accumulate : 1; /* if set, accumulate values */
vrl_Boolean changed : 1; /* set if rawvalue has changed */
vrl_32bit rawvalue; /* current value in raw device coordinates */
vrl_32bit oldvalue; /* previous value in raw device coordinates */
vrl_Scalar value; /* current value (processed) */
};

The only fields you must set are centerpoint, deadzone, range, scale and accumulate. The

centerpoint is the current "zero" value of the device; for example, the value an analog joystick

on a PC-compatible reports when the stick is at rest can be considered its centerpoint.

The deadzone has two different interpretations. If the accumulate flag is set, then the

deadzone is the minimum displacement from the centerpoint that will be recognized. If the

accumulate flag is clear, then the value is the minimum change from the previous value (as

stored in oldvalue by the higher-level routines) that will be recognized.

The scale and range values are used to convert the rawvalue into units more suitable

for the application. The scale is the number of world-space units corresponding to the range

in device units. The scale and deadzone should both be positive values, and can be changed

by the application. The range value can be negative; this is useful for reversing the direction

of a device axis. The range value is only ever set by your driver.

The accumulate flag, in addition to controlling how the deadzone is interpreted, causes

the value to be scaled by the elapsed time in seconds since the last poll.

The best way to understand all this is to consider what happens when you read new

values from the device in response to a VRL_DEVICE_POLL command. First, you store the

data for each channel in the corresponding channel’s rawvalue field. You can re-map axes at

this point (device coordinate Y goes into the Z channel, for example); you may want to use

the buttonmap (see below) for this purpose. You should set the changed flag, to indicate

there’s a new value there.

Next, the higher-level code takes your rawvalue and subtracts the centerpoint. If the

channel is in accumulate mode, it checks if the absolute value of the data is less than

deadzone; if it is, it truncates it to zero. If the channel is not in accumulate mode, the data is

compared to the oldvalue field; if it’s within plus or minus deadzone of it, the data is ignored.

Once the value has been centered and deadzoned, it is multiplied by the scale and

divided by the range. If accumulate is set, the resulting value is multiplied by the elapsed

time in milliseconds and then divided by 1000 to convert to seconds.

AVRIL Tech Ref -- Appendices 19

Buttonmaps

Some 2D devices (such as mice and joysticks) can be used as 6D devices, by using

their buttons to map their input axes to the 6 possible degrees of freedom. Such devices

should set their nbuttons field to zero (or at least to the number of buttons that will not be

used for mapping). They should also set their buttonmap field to point to a default set of axis

mappings.

The buttonmap field is a pointer to a two-dimensional array. Each row of the array

corresponds to a button combination; on a two-button device, row 0 is for no buttons down,

row 1 is for the first button down, row 2 is for the second button down and row three is for

both buttons down. There are two columns in the array, the first of which contains the index

of the channel that the input device’s X value should be stored in, and the second of which

contains the index of the Y channel.

For example,

static vrl_Buttonmap default_map =
{ { YROT, Z }, { X, Y }, { ZROT, XROT }, { X, Y }};

Would mean that when no buttons are down, the device’s X axis corresponds to a Y rotation,

and its Y channel to a Z translation. When the first button is down, the device’s X axis

corresponds to an X translation, and its Y axis to a Y translation, and so on.

The application can change the buttonmap field (using vrl_DeviceSetButtonmap()) to

point to a different set of mappings.

One thing to watch out for: since only two channels at a time are active, the others

should have their rawvalue set equal to their centerpoint, and their changed flags set;

otherwise, they’ll retain whatever values they had the last time a particular button

combination was active.

Output

Some devices are capable of tactile or auditory feedback; those that are should set the

outfunc field in the vrl_Device struct to point to a function that does the actual work, and set

the noutput_channels field to the number of output channels the device has. Such a function

for our mythical ATS device might look like this:

int vrl_ATSOutput(vrl_Device *dev, int parm1, vrl_Scalar parm2)
{
[...]
}

The parm1 parameter is the output channel number, and parm2 is the value to output (in the

range 0 to 255). The routine should return 0 on success and non-zero on failure, although

those values are not currently used or reported.

AVRIL Tech Ref -- Appendices 20

Appendix G - WRITING VIDEO DRIVERS

The low-level interface to the video hardware is handled by video drivers. Each video driver

is simply a function of the form

vrl_32bit vrl_VideoDriverFunction(vrl_VideoCommand cmd, vrl_32bit lparm, void *pparm1);

The lparm is a 32 bit value, the pparm is a pointer to somewhere in system memory, and the

return value of the function is a 32-bit value.

You can implement your own video driver by writing a function of the form above (giving it

a unique name) and setting it as the driver function using

vrl_VideoSetDriver(YourDriver);

The application (and AVRIL itself) will call your function, passing it a cmd to tell it what to

do. Any commands you don’t want to deal with, you can ignore; however, be sure to return

zero as the value of the function. For example, if you only have one physical page in your

display adapter, you could ignore the VRL_VIDEO_SET_DRAW_PAGE and

VRL_VIDEO_SET_VIEW_PAGE calls.

The values for cmd, and the behaviour your function should exhibit for each, are as follows:

VRL_VIDEO_GET_VERSION

Return the version number; for this specification, return 1.

VRL_VIDEO_GET_DESCRIPTION

The pparm parameter points to a buffer in system memory; fill that buffer with

anything you like (preferably, something that describes your driver). The lparm

parameter gives the size of the buffer; don’t write past the end.

VRL_VIDEO_SETUP

Enter graphics mode; the lparm parameter indicates which submode to use. Return

zero, unless for some reason you can’t enter graphics mode (in which case, return a

non-zero value). You should, if possible, save the current mode before entering

graphics mode. You should also set the internal cursor flag to -1, and position the

cursor at the center of the screen.

VRL_VIDEO_SHUTDOWN

Exit graphics mode, and if possible, return to the mode that was in effect before the

last call to VRL_VIDEO_SETUP.

VRL_VIDEO_GET_MODE

Return the current graphics mode (zero is an acceptable value).

AVRIL Tech Ref -- Appendices 21

VRL_VIDEO_SET_DRAW_PAGE

Set the current drawing page to the value of lparm.

VRL_VIDEO_SET_VIEW_PAGE

Set the currently visible page to the value of lparm.

VRL_VIDEO_GET_NPAGES

Return the number of pages. If you only have one page, return 1.

VRL_VIDEO_HAS_PALETTE

Return non-zero if your hardware uses a palette, or zero if it doesn’t (i.e., 15, 16 or 24

bit color).

VRL_VIDEO_SET_PALETTE

The top 16 bits of lparm are the starting index, the bottom 16 bits are the ending

index, and pparm points to the entire 256-entry palette. Values from the starting index

through the ending index (inclusive) should be copied from the palette in system

memory to the physical palette. The starting and ending indexes are "origin zero", i.e.

the first entry in the palette is zero, not one.

VRL_VIDEO_CHECK_RETRACE

Return non-zero if a vertical retrace is taking place.

VRL_VIDEO_GET_RASTER

Return a pointer to a vrl_Raster describing your display hardware. It’s important that

the height, width and depth fields are correct.

VRL_VIDEO_BLIT

Copy the contents of the vrl_Raster pointed to by pparm into the current draw page.

If pparm points to our raster (i.e., the one that references the physical framebuffer)

don’t bother doing the copy.

VRL_VIDEO_CURSOR_HIDE

If the internal cursor flag is greater than or equal to zero, erase the cursor (by

restoring what was under it). In any case, decrement the internal cursor flag.

VRL_VIDEO_CURSOR_SHOW

Increment the internal cursor flag; if it’s equal to zero, draw the cursor (saving what

was under it).

VRL_VIDEO_CURSOR_RESET

Center the cursor on the screen, and set the internal cursor flag to -1.

AVRIL Tech Ref -- Appendices 22

VRL_VIDEO_CURSOR_MOVE

The top 16 bits of lparm contain the new X coordinate, and the bottom 16 bits contain

the new Y coordinate. Move the cursor to that location (restoring what was under it,

and saving what’s under the new location).

VRL_VIDEO_CURSOR_SET_APPEARANCE

Set the cursor appearance to the data pointed to by pparm.

You should add an entry for your new function to the list in avrildrv.h, and possibly to the

cfg.c file.

If you wind up writing video drivers to support additional modes, drop me some email

(broehl@sunee.uwaterloo.ca). I’ll happily include your driver in the main AVRIL release,

and give you full credit for having written your driver.

AVRIL Tech Ref -- Appendices 23

Appendix H - WRITING DISPLAY DRIVERS

The interface to the display driver (i.e. scan-converter) is a function of the form

vrl_32bit vrl_DisplayDriverFunction(vrl_DisplayCommand cmd, vrl_32bit lparm,
void *pparm1);

The lparm is a 32 bit value, the pparm is a pointer to somewhere in system memory, and the

return value of the function is a 32-bit value.

You can implement your own display driver by writing a function of the form above (giving

it a unique name) and setting it as the driver function using

vrl_DisplaySetDriver(YourDriver);

The application (and AVRIL itself) will call your function, passing it a cmd to tell it what to

do. Any commands you don’t want to deal with, you can ignore; however, be sure to return

zero as the value of the function. For example, if your driver doesn’t do Z-buffering, you

could ignore the VRL_DISPLAY_CLEAR_Z_BUFFER call. (Note that version 2.0 of

AVRIL does not yet support Z-buffering, so for now you can just ignore all those calls).

The values for cmd, and the behaviour your function should exhibit for each, are as follows:

VRL_DISPLAY_GET_VERSION

Return the version number; for this specification, return 1.

VRL_DISPLAY_GET_DESCRIPTION

The pparm parameter points to a buffer in system memory; fill that buffer with

anything you like (preferably, something that describes your driver). The lparm

parameter gives the length of the buffer; don’t write past the end.

VRL_DISPLAY_INIT

Initialize the display subsystem. The pparm parameter points to a raster you should

use.

VRL_DISPLAY_QUIT

De-initialize the display subsystem.

VRL_DISPLAY_CLEAR

Clear the display; lparm is the color to use.

VRL_DISPLAY_POINT

The pparm parameter points to a linked list of output vertices; set those points on the

current draw page.

AVRIL Tech Ref -- Appendices 24

VRL_DISPLAY_LINE

The pparm parameter points to a linked list of output vertices; they should be

connected sequentially by a series of lines. The color of each line should be set from

the starting vertex of the line.

VRL_DISPLAY_CLOSED_LINE

The pparm parameter points to a linked list of output vertices; they should be

connected sequentially by a series of lines. The last point should be connected back to

the first point. The color of each line should be set from the starting vertex of the

line.

VRL_DISPLAY_BOX

The pparm parameter points to a two-element linked list of output vertices; the first

output vertex is the top-left corner of the box, and the second is the bottom-right

corner. The box should be filled with the color of the first output vertex.

VRL_DISPLAY_TEXT

Display the text pointed to by pparm in the color specified by lparm.

VRL_DISPLAY_TEXT_POSITION

The top 16 bits of lparm give the new X position for drawing text, and the bottom 16

bits give the new Y position. The text position marks the location where the top left

corner of the first character of a string will appear.

VRL_DISPLAY_GET_TEXTWIDTH

Return the width in pixels of the string pointed to by pparm.

VRL_DISPLAY_GET_TEXTHEIGHT

Return the height in pixels of the string pointed to by pparm.

VRL_DISPLAY_CAN_GOURAUD

Return non-zero if you support Gouraud shading.

VRL_DISPLAY_CAN_XY_CLIP

Return non-zero if you are willing to do all the X-Y clipping.

VRL_DISPLAY_UPDATE_PALETTE

Do whatever you need to do when the palette changes; pparm points to the new

palette.

VRL_DISPLAY_BEGIN_FRAME

Do whatever you need to do at the beginning of a frame.

AVRIL Tech Ref -- Appendices 25

VRL_DISPLAY_END_FRAME

Do whatever you need to do at the end of a frame.

VRL_DISPLAY_SET_RASTER

The pparm parameter points to a vrl_Raster, which should be used for all subsequent

drawing.

VRL_DISPLAY_GET_RASTER

The pparm parameter is a pointer to a pointer to a vrl_Raster; in other words, you

should do the equivalent of:

*((vrl_Raster **) pparm1) = our_raster;

VRL_DISPLAY_SET_Z_BUFFER

The pparm parameter points to a vrl_Raster that you should use as the new Z-buffer.

VRL_DISPLAY_GET_Z_BUFFER

The pparm parameter is a pointer to a pointer to a vrl_Raster; in other words, you

should do the equivalent of:

*((vrl_Raster **) pparm1) = our_z_raster;

VRL_DISPLAY_USE_Z_BUFFER

If lparm is non-zero, enable use of the Z-buffer; if lparm is zero, disable the Z-buffer.

Return 0 if you can’t Z-buffer, 1 if you do it in software, or 2 if you do it in

hardware.

VRL_DISPLAY_CLEAR_Z_BUFFER

Clear the Z-buffer, if you have one. Fill it with the value of lparm (if possible).

VRL_DISPLAY_SET_SHADING

The lparm parameter is a hint from the user; the higher the number, the more time

you should spend on shading.

VRL_DISPLAY_POLY

This is where the action is. The pparm parameter points to an output facet; draw it

into the current framebuffer. Easy, right?

The two data types used by the display driver are vrl_OutputVertex and vrl_OutputFacet. A

vrl_OutputVertex looks like this:

struct _vrl_outvertex
{
vrl_ScreenCoord x,y,z; /* X, Y screen coordinates and Z-depth */
vrl_16bit red, green, blue; /* components of the color */
vrl_OutputVertex *next, *prev; /* doubly-linked circular list */
};

AVRIL Tech Ref -- Appendices 26

The vrl_ScreenCoord values are fractional; the number of bits to the right of the binary point

is specified by VRL_SCREEN_FRACT_BITS.

The colors are in 8.8 format (i.e. 8 bits of color, 8 bits of fraction). For paletted systems,

only the red value is used; it’s interpreted as a palette index.

Note that future versions of AVRIL may support additional information per vertex, such as

texture map coordinates.

A vrl_OutputFacet looks like this:

struct _vrl_outfacet
{
vrl_OutputVertex *points; /* doubly-linked list of vertices for this facet */
vrl_Surface *surface; /* surface properties */
vrl_Color color; /* color of this facet (flat shading only) */
};

The list of points is doubly linked, with the next field pointing at the next (clockwise) vertex

and the prev field pointing back to the previous (counterclockwise) vertex. The vrl_Surface

struct is the same one used throughout AVRIL; see the technical reference manual for

information about accessing the various fields, especially the type (flat, Gouraud, etc).

For 8-bit systems, the vrl_Color value is a palette index (i.e. only the bottom 8 bits of the 32-

bit color field are used). For 15-, 16- and 32-bit systems, the actual color is stored in the 32

bit word; the bottom byte is red, the next one up is green, and the next one up is blue. The

top byte may be used as an "alpha" channel; if not, it should be zero. Current versions of

AVRIL are 8-bit (paletted) only.

Note that future versions of AVRIL may provide additional information for output vertices

and output facets.

If you write display drivers, especially ones which support the new 3D graphics accelerators

coming on the market, please drop me some email (broehl@sunee.uwaterloo.ca). Since I’m

giving AVRIL away for free, I can’t afford to buy every card that comes out, so I’m counting

on other people to create drivers. I’ll be happy to include your drivers with the main AVRIL

release, with full credit.

AVRIL Tech Ref -- Appendices 27

Appendix I - STEREOSCOPIC VIEWING TYPES

A number of stereoscopic viewing types are supported in AVRIL. The current version

doesn’t implement all of them, but all of them are described here.

VRL_STEREOTYPE_NONE

Monoscopic; no stereo.

VRL_STEREOTYPE_ANAGLYPH_SEQUENTIAL

Field sequential, with alternate frames using red and blue palettes. View with

anaglyph (red-blue) glasses. Not yet implemented.

VRL_STEREOTYPE_ANAGLYPH_WIRE_ALTERNATE

Wireframe anaglyph, with left-eye image on even scanlines and right-eye image on

odd scanlines. View with anaglyph (red-blue) glasses.

VRL_STEREOTYPE_ANAGLYPH_SOLID_ALTERNATE

Similar to wireframe anaglyph, but solid instead of wireframe.

VRL_STEREOTYPE_ENIGMA

Alternate scanline encoding, for use with CyberMaxx HMD.

VRL_STEREOTYPE_FRESNEL

Left-right split screen, for use with Fresnel viewer such as the one described in Virtual

Reality Creations.

VRL_STEREOTYPE_CYBERSCOPE

Left-eye image on left half of screen, right-eye image on right half of screen, both

rotated 90 degrees; should work with Cyberscope from Simsalabim Systems Inc, but

so far untested (since I don’t have one!).

VRL_STEREOTYPE_CRYSTALEYES

Puts left-eye image on top of screen, right-eye image on bottom of screen, for eventual

support of CrystalEyes shutter glasses from StereoGraphics (can’t do any real

development on this, since I don’t have them!).

VRL_STEREOTYPE_CHROMADEPTH

Single-image system, mapping depth into red through blue shades; view with

Chromadepth glasses (which you can get at most laser light shows, or with certain

Valiant comic books).

VRL_STEREOTYPE_SIRDS

Single-Image Random Dot Stereogram. Not yet implemented.

AVRIL Tech Ref -- Appendices 28

VRL_STEREOTYPE_TWOCARDS

Assumes two video cards, separate outputs going to the two displays of an HMD.

VRL_STEREOTYPE_SEQUENTIAL

Field sequential, with shutter glasses; not yet supported in AVRIL (as of version 2.0).

If you know of some way to produce stereoscopic images that I haven’t mentioned here,

please drop me some email (broehl@sunee.uwaterloo.ca).

AVRIL Tech Ref -- Appendices 29

Appendix J - INPUT DEVICES

The following devices are supported in AVRIL, as of version 2.0:

vrl_MouseDevice

Standard mouse; buttons are used to map two axes into six. It works like this:

No buttons down: left-right causes Y rotation, forward-back moves in Z

Left button down: left-right moves in X, forward-back moves in Y

Right button down: left-right rotates around Z, forward-back rotates around X

vrl_GlobalDevice

Global Devices Controller; not currently being manufactured. Has tactile stimulation.

vrl_CybermanDevice

Logitech Cyberman. Has cheesy tactile feedback.

vrl_RedbaronDevice

Logitech ultrasonic mouse. Was originally code-named the "Red Baron".

vrl_CTMDevice

CyberMaxx Tracking Module, in the CyberMaxx HMD.

vrl_VIODevice

Head tracker in the i-glasses! HMD from Virtual i/o.

vrl_SpaceballDevice

Original Spatial Systems Spaceball.

vrl_IsotrakDevice

Original Polhemus Isotrak. I’d add support for newer versions, but I don’t have them.

The ones below are PC-specific:

vrl_KeypadDevice

Uses keypad arrows, the PgUp and PgDn keys, and shifted versions of each. It works

like this:

no shift down: left-right arrows rotate in Y, up-down arrows move in Z

left shift down: left-right arrows move in X, up-down arrows move in Y

right shift down: left-right arrows rotate in Z, up-down arrows rotate in X

PGUP and PGDN: move in Y (same as up and down arrows with left shift)

AVRIL Tech Ref -- Appendices 30

vrl_JoystickDevice

Ordinary analog joystick; buttons are used to map two axes into six. Also supports

joystick-compatable devices such as the popular PC gamepads (some of which are

available in a wireless version, which is good if you’re in an HMD and don’t want to

trip over the wire!). The buttons map like this:

no buttons down: tilt left-right rotates in Y, forward-back moves in Z

trigger button down: tilt left-right moves in X, forward-back moves in Y

thumb down button: tilt left-right rotates around Z, forward-back around X

vrl_FifthDevice

The FifthGlove, from Fifth Dimension Technologies (5DT). The finger positions are

mapped into channels 6 through 10 (channels 0 through 5 are not used, since the glove

has no built-in tracker).

vrl_CyberwandDevice

The CyberWand, from InWorld VR. The "hat" controller’s axes are mapped using the

"pinky" and "grip" buttons (the grip button being the one on the side of the stick,

halfway up).

no buttons down: hat moves forward/backward, sideways

pinky button down: hat rotates around X, Y

grip button down: hat moves up/down, rotates around Z

vrl_7thSenseDevice

Head tracker in the 7th Sense HMD from All-Pro.

vrl_PadDevice

A Nintendo-style gamepad, using the cable from the July 1990 Byte magazine. Works

well with the Grip-It free-flying joystick (which uses mercury switches for two-axis

tilt information).

Sorry, no PowerGlove driver yet. The timing stuff is hairy, and I’ve got lots of other things

to add to AVRIL. They’re also not manufacturing PowerGloves anymore. If someone else

would like to write one, go for it! I’ll help if I can.

In fact, if you write a driver for any device, drop me some email

(broehl@sunee.uwaterloo.ca); since I’m giving AVRIL away for free, I can’t afford to buy

every different input device on the market, so adding support for them is difficult.

If you write drivers for AVRIL, I’ll be happy to include them in the main release and give

you full credit for having written them.

AVRIL Tech Ref -- Appendices 31

