FelixCAD 2.1

Customization and
Programmer's
Guide

Disclaimer and Limited Warranty

This document and the software contained herein may not be reproduced in any fashion or on any media
without the explicit written permission of FCAD Inc..

EXCEPT AS OTHERWISE PROVIDED IN THIS AGREEMENT, FCAD INC. SPECIFICALLY
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE., TO DEFECTS IN THE DISKETTE OR OTHER PHYSICAL MEDIA AND
DOCUMENTATION, OR TO OPERATION OF THE PROGRAMS AND ANY PARTICULAR
APPLICATION OR USE OF THE PROGRAMS. IN NO EVENT SHALL FCAD INC. BE LIABLE
FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE INCLUDING, BUT NOT
LIMITED TO, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR OTHER DAMAGES.
ALL LIABILITY BY FCAD INC. HEREUNDER IS EXPRESSLY LIMITED TO ANY AMOUNTS
PAID TO FCAD INC. PURSUANT TO THIS AGREEMENT.

Notwithstanding any provision of this Agreement, FCAD Inc. owns and retains all titte and ownership
of all intellectual property, including but not limited to all software and any and all derivative software;
all documentation, manuals and related materials; all master diskettes or CD ROMs on which such
software may be transferred, and all copies of any such diskettes or CD ROMs, and any and all
derivative works of FCAD Product. FCAD Inc. does not transfer any portion of such title and
ownership, or any goodwill associated therewith; and this Agreement shall not be construed to grant any
right or license, whether by implication, estoppel or otherwise, except as expressly provided herein.
FCAD INC.

7428 Redwood Blvd.
Novato CA 94945

FELIX C.A.T. GmbH
Nestorstralle 36a
10709 Berlin, Germany

© Copyright 1995-96 Felix CAT GmbH, FCAD,Inc.
and FCAD Canada Software, Inc.
All Rights Reserved.

FCAD, GDE, FelixCAD are trademarks of Felix CAT GmbH.

MS, MS-DOS, and Windows as well as WMF are either registered trademarks or
trademarks of Microsoft Corporation and are registered in the United States of
America and/or in other countries.

DXF and AutoCAD are a trademarks of Autodesk, Inc.

Adobe Acrobat and PostScript are a trademarks of Adobe System, Inc.

All other product names or trademarks mentioned herein are trademarks of
the respective owners.

Table of Contents

Table of Contents

Introduction
Manual Organization

CHAPTER 1

Directory Structure and File Type Overview File-Locking and Auto-Save
Directory Structure and Path Configuration
The Directories Configuration Dialog
Directory Structure and Paths
File Types
Overview
File Locking and Auto-Saving
File Locking
Auto-Save

CHAPTER 2

Desktop Configuration: Colors and Command Line Font
Desktop Colors
Command Line Font
Command line parameters for FELIXCAD.EXE

CHAPTER 3

Command Customization: Alias Commands, Hotkeys and Macros
Alias Commands
HotKeys: Function Key Allocations
Macros
Creating Macros
Using the clipboard
Utilizing Macros

CHAPTER 4

Template Drawings
Creating a Template Drawing

10
10

11

11
11
13
15
15
15
16

17

17
17

Table of Contents

CHAPTER 5

Defining and Using Line Types and Hatch Patterns
Linetype Definition
Line Type File Syntax

Hatch Pattern Definition
Hatch Pattern File Syntax

CHAPTER 6

The Dialog and Menu Editor
Using Menu and Palette Files

Loading Menus and Palettes
Creating and Saving Application Resource Files

CHAPTER 7

Creating and Editing Palettes
Creating or Editing Palettes
Palette Properties
Allocating a Button Label
Allocating Commands
Help / Status Bar Entries
Saving and Closing Palettes

Creating and Editing Menus
Editing Pull-down Menus
Mouse and Keyboard Allocations
Editing and Creating Menus
Editing a Menu Structure
Editing Properties
Menu Properties
Menu Entry Type
Command
Style Properties
Style
Variable / Value
Help Parameters
Saving and Closing Menu Files

CHAPTER 9

Creating and Editing Dialog Boxes
Creating New Dialog Files / Opening Dialog Files

19

19
19
19
20
20

25

25
25
26
26

28

28
28
29
29
30
33
34

35
37
38
39
39
39
39
40
41
42
42
43
43
44

a7

47
48

Table of Contents

Saving and Closing Dialog Files 48
Editing Dialog Files and Dialog Boxes 48
The Dialog Editing Window 49

Mouse and Keyboard Allocations 50
Size and Coordinates 51
Grid Alignment 51
Dialog Window Properties 51
Caption 52
Position 52
Attributes 52
The Controls 52
Properties / Attributes 54
General Attributes 55
Control Types 57
Standard Action Buttons: OK, Cancel, Help 57
Command Button (Push Button) 57
Bitmap Button 58
Radio Button 59
Check Box 60
List Box 61
Combo Box 62
Group Box 63
Static Control (Label) 63
Text Edit Control 65
Filtered Input Control 67
Image Window Control 68
Slider Control 68
Control Positioning Aids (Grid etc.) 69
Control Alignment 71
Testing a Dialog 72
CHAPTER 10 73
LISP Programming 73
Data Types in FLISP 74
Loading Lisp Files 75
Error Handling and Error Tracing 75
FLISP Function Overview: Thematically ordered 77
Function definition 77
Error Handling 77
System Functions 77
Geometric Utilities 77
User Input 78
Conversion 78
Coordinate System Transformation 78

Display Control 79

Table of Contents

Selection Sets

Entity Handling
Symbol Tables
Extended Entity Data
Arithmetical Functions
Symbol Handling

Text Strings
Conversion

Equality / Conditional
List Manipulation

File Handling
Function Handling
Memory Management
Miscellaneous

FDT Application Handling
Help

FLISP Functions: Reference

error
settrace

+ (Addition)

- (Subtraction)

* (Multiplication)
/ (Division)

= (equal)

/= (not equal)

< (less than)

<= (less than or equal)
> (greater than)
>= (greater than or equal)
1+ (Increment)
1- (Decrement)
~ (Bitwise NOT)
abs

actcmd

alert

and

angle

angtof

angtos

append

apply

ascii

assoc

atan

atof

atoi

atom

79
80
80
80
80
81
82
82
82
83
84
84
84
85
85
85
86
87
87
88
88
88
89
89
90
90
91
91
91
91
92
92
92
93
93
94
94
94
95
96
96
96
97
97
98
98
98

Table of Contents

atoms-family
boole
boundp
car

cdr
caaaar ... cddddr
chr

close
command
cond
cons

cos

defun
delcmd
distance
distof
dlg_***
entcheck
entdel
entget
entlast
entmake
entmod
entnext
entpos
entsel
entupd
€q

equal
eval

exit

exp

expt

fdt

findfile

fix

float
flxnames
foreach
gc

gcd
getactvport
getangle
getcorner
getdist
getenv
getfiled

99
99
100
100
100
101
101
101
102
102
103
103
103
104
105
105
106
106
107
107
108
108
110
111
111
111
112
112
112
113
113
114
114
114
115
115
116
116
116
116
116
117
117
118
119
119
120

Table of Contents

getint
getkword 1
getorient e
getpoint 14
getreal 124
getstring)
getvar Loe
graphscr e
grclear e
grdraw 120
grread P
grtext o5
handent 158
help 155
" 128
initget 12
inters 151
itoa a1
lambda a1
last 192
length 137
list 17
listp 137
load 155
e 133
logand 133
logior >y
log 134
mapcar 154
map 134
max 134
member -
min oo
minusp 1
nentsel oo
nentselp 130
ner 136
no! 137
null 17
numberp 156
i 138
o 138
oshap 135
° 139
polar "
prinl "
140

princ
140

Table of Contents

print
progn
prompt
quit
guote
read
read-char
read-line
redraw
regapp
rem
repeat
reverse
rtos

set
setactvport
setfunhelp
setq
setvar
sin

sqrt
ssadd
ssdbno
ssdel
ssget
sslength
ssmemb
ssname
strcase
strcat
stringsort
strlen
subst
substr
symbtos
tbldel
tbimake
tbimod
tblnext
tblpurge
tblrename
tblsearch
tblset
terpri
textbox
textscr
trans

141
141
141
141
141
142
142
142
142
143
143
143
144
144
144
145
145
145
146
146
146
146
147
147
147
149
150
150
150
150
151
151
151
151
152
152
152
153
154
154
154
155
155
156
156
156
157

Table of Contents

type 157
ver 158
wcmatch 158
while 159
write-char 159
write-line 160
xload 160
xunload 160
zerop 161
CHAPTER 11 162
Programming Dialog Boxes 162
Design of a Dialog 162
Loading and Displaying a Dialog 164
Initializing Dialog Controls 164
Basic Functions to initialize a Dialog 165
Special Functions to initialize a Dialog 165
Retrieving User Input and Reacting to it 168
The Action Function for Dialog Controls 168
Functions to Evaluate Dialog Control Elements 168
Functions to Terminate a Dialog 169
Overview 169
Loading and Unloading of Dialog Files 169
Opening and Closing Dialog Boxes 169
General Operations for Control Elements 169
List Boxes and Combo Boxes 169
Slider Control 170
Image Controls 170
Dialog Functions: Reference 171
Dlg_DialogDone 171
Dlg_DialogLoad 171
Dlg_DialogNew 172
Dlg_DialogStart 172
Dlg_DialogTerm 173
Dlg_DialogUnload 173
Dlg_ImageBmp 173
Dlg_ImageEnd 174
Dlg_ImageFill 174
Dlg_ImageStart 175
Dlg_ImageVector 176
Dlg_ImageWmf 176
Dlg_ListAdd 177
Dlg_ListEnd 178
Dlg_ListGet 178

Dlg_ListSetColumnWidth 178

Table of Contents

Dlg_ListSetTabstops 179
Dlg_ListStart 179
DIg_SliderGet 180
DIg_SliderSet 181
Dlg_TileAction 181
DIg_TileClientData 182
Dlg_TileDimX 183
Dlg_TileDimY 183
Dlg_TileGet 184
Dlg_TileMode 184
Dlg_TileSet 185
Dlg_TileSetFont 186
Overview: Alphabetically Ordered 187
CHAPTER 12 189
System and Drawing File Variables 189
Global and Local Variables 189
Retrieving and Setting the Variables 189
Scheme of the System Variables Reference 190
Global Variables: Reference 192
ACTDB 192
AREA 192
CDATE 192
CIRCLERAD 193
CIRCLERES 193
CMDACTIVE 193
CMDECHO 194
CMDNAMES 194
DATE 194
DEFANGBASE 195
DEFANGDIR 195
DEFAUNITS 195
DEFAUPREC 195
DEFDIMZIN 196
DEFLUNITS 196
DEFLUPREC 196
DIASTAT 197
DISTANCE 197
ERRNO 197
EXPERT 197
FCTEMPLATE 198
FCVERSION 198
FILEDIA 198
HIGHLIGHT 198

LANGUAGE 199

Table of Contents

LASTVAR
OFFSETDIST

PALETTEL ... PALETTH

PANSCALE
PDMENUNAME
PERIMETER
PLATFORM
POLYSIDES
RINGDIA1
RINGDIA2
SCREENMODE
SCREENSIZE
SELECTBOX
SERNUMBER
SNAPBOX
TABMENUNAME
UNDOCTL
ZINSCALE
ZOUTSCALE

Local Variables: Reference

ANGBASE
ANGDIR
ATTDIA
ATTMODE
ATTREQ
AUNITS
AUPREC
CECOLOR
CELTYPE
CHAMFERA
CHAMFERB
CLAYER
CVPORT
DBMOD
DIMxxx
DWGNAME
DWGPREFIX
DWGWRITE
ELEVATION
FILLETRAD
FILLMODE
GRIDMODE
GRIDUNIT
HPANG
HPDOUBLE
HPFILE
HPNAME

199
199
199
200
200
200
200
201
201
201
201
202
202
202
203
203
203
203
204
204
204
204
204
205
205
206
206
206
206
207
207
207
207
208
208
208
208
208
209
209
209
209
210
210
210
210
211

Table of Contents

HPSCALE 211
HPSPACE 211
HPUSRANG 212
INSBASE 212
INSNAME 212
LASTPOINT 212
LIMMAX 213
LIMMIN 213
LSPALOAD 213
LTSCALE 213
LUNITS 214
LUPREC 214
MIRRTEXT 214
ORTHOMODE 215
OSMODE 215
PDMODE 216
PDSIZE 216
PLINEWID 216
PREVCMD 217
SNAPBASE 217
SNAPMODE 217
SNAPUNIT 218
SPLFRAME 218
TEXTSIZE 218
TEXTSTYLE 218
TRIMMODE 219
UCSFOLLOW 219
UCSNAME 219
UCSORG 220
UCSXDIR 220
UCSYDIR 220
USERI1 ... USERI5 220
USERR1 ... USERR5 221
USERSL1 ... USERS5 221
VIEWCTR 221
VIEWDIR 221
VIEWSIZE 222
VIEWTWIST 222
WORLDUCS 222
Dimension Variables: Reference 223
DIMALT 223
DIMALTD 223
DIMALTF 223
DIMAPOST 223
DIMASO 223
DIMASZ 224

DIMBLK 224

Table of Contents

DIMBLK1
DIMBLK2
DIMCEN
DIMCLRD
DIMCLRE
DIMCLRT
DIMDLE
DIMDLI
DIMEXO
DIMEXE
DIMGAP
DIMLAYER
DIMLFAC
DIMLIM
DIMLINE
DIMPOST
DIMRND
DIMSAH
DIMSCALE
DIMSE1
DIMSE2
DIMSHO
DIMSOXD
DIMSTYLE
DIMTAD
DIMTFAC
DIMTIH
DIMTIX
DIMTP
DIMTM
DIMTMSTR
DIMTOFL
DIMTOH
DIMTPSTR
DIMTSTYLE
DIMTSZ
DIMTVP
DIMTXT
DIMZIN

Entity and Table Group Codes
Entity Group Codes
Common Entity Codes
3DFACE
ARC
ATTDEF
ATTRIB

224
224
224
224
224
224
225
225
225
225
225
225
225
225
226
226
226
226
226
226
227
227
227
227
227
227
227
228
228
228
228
228
228
228
228
229
229
229
229

231
231
231

232
232
232
233

Table of Contents

CIRCLE 234
DIMENSION 234
INSERT 235
LINE 235
POINT 236
POLYLINE 236
SEQUEND 236
SOLID 237
TEXT 237
VERTEX 238
Table Group Codes 239
APPID 239
BLOCK 239
DIMSTYLE 240
LAYER 241
LTYPE 242
STYLE 242
UCSs 243
VIEW 243
VPORT 243
APPENDIX B 244

Command line versions for Menus, Macros, Lisp-(command ...)'s and FDT-Functions 245

Table of Contents

Introduction

Introduction

The Programmer’s Guide contains detailed information on how to personalize
the program and create a working environment which suits the individual
requirements of the user. The techniques and procedures used to achieve
this goal assume that the user has attained a moderate level of application
knowledge and programming skills.

The configuration of the user interface, the allocation of function keys and
alias-commands , and the usage of template drawings should not present a
problem to any user, regardless of their programming experience. This also
applies to functions in the Dialog and Menu Editor . This program module is
particularly flexible and is an important instrument for customizing menus, tool
boxes and dialogs. It not only makes the creation and alteration of menus and
palettes very easy, but, as far as these functions are concerned, it alleviates
the need for specialized programming skills.

LISP programming , however, requires a basic knowledge of appropriate
programming techniques.

Manual Organization

Chapter 1
... provides a description of the program Directory structure . Understanding
the directory design and path layout is helpful for many customization and
programming items discussed in this manual. Also, there is a File type
overview . At the end of the chapter the File locking and Auto-save features
are described.

Chapter 2
... Is aimed at those users who wish to personalize the program and its user
interface in order to meet the specific requirements of their individual CAD
construction and drawing environment by setting up the Screen and desktop
colors and the Command line font .

Chapter 3
... provides hints and instructions on how to increase program efficiency by
utilizing features such as Hot keys and by defining Alias commands .
Another part of the chapter discusses the usage of Macros .

Chapter 4
... details the user configuration options available in the program when using
Template drawings . These can be used to pre-define the appropriate
drawing parameters, such as scaling, text styles, layers, line types, hatch
patterns, views, user coordinate systems and other settings.

Chapter 5

Introduction

... describes further options for a more specific drawing environment which
can be achieved by defining and using individual tailor made Line types and
Hatch patterns .

Chapter 6
... introduces the Dialog and Menu Editor .

Chapter 7
... describes the Dialog and Menu Editor to generate individual Palettes (tool
boxes) or to customize existing palettes.

Chapter 8
... explains how to modify individual Pull-down menus by using the Dialog
and Menu Editor.

Chapter 9
... Is also dedicated to working with the Dialog and Menu Editor and
describes the use of the editor when creating individual Dialog boxes . This
part is easy to understand. However, linking the results into the program does
require some minimum of programming knowledge and experience.

Chapter 10
... is aimed at the LISP programmer and describes the programming
possibilities which are offered with the aid of LISP routines. The individual
functions are not only listed according to subject and topic but are also shown
in alphabetical order.

Chapter 11
... discusses the LISP programming functions for dialog boxes control
display dialog boxes, fill or evaluate dialog control elements.

Chapter 12
... outlines the Global and local system variables contained within the
program and offers both the experienced user and LISP application
programmer further options to configure and shape the program to their own
requirements.

Appendix A
... contains a table of supported DXF Group Codes

Appendix B
... provides a list of commands designed for Menus and Macros

Directory Structure and File Type Overview

CHAPTER 1

Directory Structure and File Type Overview

File-Locking and Auto-Save

This chapter provides a description of the program directory structure.
Understanding the directory design and path layout is helpful for many
customization and programming items discussed in this manual. Also, there is
a file type overview. At the end of the chapter the file-locking and auto-save
features are described.

Directory Structure and Path Configuration

The Directories dialog tab which is part of the CONFIG command is used to
set up a number of working directories which FelixCAD can access during the
course of program operation. These various directories enable the program
to find files containing information about menus, device drivers for input/output
devices etc. which it needs to execute the program correctly.

The directories are created at the time of program installation and are
initialized according to a pre-set pattern. By selective alteration of these
directories, it is possible to customize the program and as such, mold it to
your own personal requirements. User defined pull-down menus which are
needed during program operation are for example stored in special
directories.

The Directories Configuration Dialog
The Directories tab is part of the Configuration dialog box and is called by
selecting Configuration... in the File pull-down menu or by typing the
command CONFIG at the command line.

Directory Structure and File Type Overview

Configuration E

Commonl Color Directories |.f1‘n.lias Eommandsl HDtKe_l,lsI Save I

Application Search Path
|7 CAFELISCADVAPPLIC.CAFELI<CADSWFOMTS

|Jzer Configuration Directary
IEI:\FE LI=CADMCFG

Diirectory for Temporary Files

IE:&FE LIXCADNTMP
G IE:\FELIXD&D\FD&D_BIN
Dusies IE:'\FELIXE.L\D

KeyFile |G SPELIXGAD\CFGNSAMPLE.KEY

0. I Cancel | Apply |

In order to enter or edit the directory settings, move the cursor to the
appropriate input field and either type in the directory and exact path details,
or change the existing entries to suit your own needs.

Further information regarding the individual directories and the files contained
therein can be found by referencing the appropriate subjects, for instance
menu files, device drivers, etc.

Directory Structure and Paths
The directory structure is broken down into program, configuration, and

support directories.
EI--&I Felixcad

- Fead_hin
=0 Utils
{11 Dlg_bmp
~{_] Fonts
~_1 Tmp
- Tutor

Directory Structure and File Type Overview

Application Search Path
The directory \APPLIC contains the support files required for help, pull-down
menu, palettes, linetype and hatch patterns, as well as the FLISP example
files. And, another sub-directory is located in the directory. It contains the
bitmap files for palettes \MNP_BMP).

System Directory
The directory \FCAD_BIN under the main directory are of no importance to
the user for customization as they contain program command files and files of
the graphics engine. The directory also houses the driver interface required if
a digitizer is utilized.

User's Configuration Directory
The configuration directory (usually \CFG) contains the current drawing editor
configuration details. In a network environment this directory should be
private or local for an individual user.

File Types
Overview
File Type File File Refer
Location Extension to Chapter
Auto-Saving, File Locking \CFG FLK* 1
Desktop Settings (Colors etc.) \CFG CFG* 2
Shortcuts, Alias Commands \CFG KEY 3
Macro Files \APPLIC MCR 3
Template Drawing \APPLIC FLX* 4
Text Fonts Binary (for drawing) \FONTS FSH* 4
Line Type Definitions \APPLIC LIN 5
Hatch Pattern Definitions \APPLIC PAT 5
Palettes \APPLIC MNP 6
Pull-down Menu \APPLIC MNU 7
Tablet Menu \APPLIC MNT User's
Manual
Dialog Description \APPLIC DLG 8,10
Lisp Routines \APPLIC LSP 9,10
Global system variables Drawing CFG* 11
Local system variables Drawing FLX* 11

* Note: CFG, FLX, FLK, and FSH files are binary files and cannot be
edited with an text editor. A number of LSP files might be protected.

Directory Structure and File Type Overview

File Locking and Auto-Saving

The section Save tab of the Configuration dialog box allows you to activate or
deactivate the functions governing the automatic backup of drawing files, as
well as locking drawing files so that they cannot be used simultaneously.

Configuration EE

Cummunl Calor I Dilectoliesl Aliaz commandsl Hotkeys Save |

— Cirawitng

¥ File Locking

— Safety
¥ Automatic Save

San File Prefis (up to 3 characters)

|3EI ﬂ Interval in Minutes

Cancel Apply |

File Locking
The File Locking option controls the creation of so called lock files. This
function is activated or deactivated by clicking the check box. A check mark
indicates that the function is active. Lock files are backup files which the
program creates as soon as the drawing file is opened. They have the same
file name as the original file, but are allocated with the .flk default file
extension. Lock files are automatically removed as soon as the original
drawing file is correctly closed. When the program is used in a net-work
environment, this option prevents files from being used simultaneously by two
or more users. Note: The same situation is encountered should the program
come to an unexpected or abrupt end (for instance, due to a sudden power
failure or program error), before the open drawing files could be properly
closed. If you attempt to open a locked file, the program will display the
locked file natification message.

Directory Structure and File Type Overview

Delete Locked Files
In order to retrieve your drawing you must first delete the corresponding lock
file. This may be done be either selecting the function Delete File... which is
located in the File menu, or by entering the command DELFLK. Further
information can be found in the section entitled Deleting Files in chapter 1 of
the User's Guide.

Auto-Save
When activated, the Automatic Save function will save all open drawing files
to your disk at regular intervals. This ensures that your data is not lost in case
of a system fault and also reduces the effects of follow-on defects.
The Save dialog tab enables you to activate or deactivate the automatic
backup utility, specify the backup file prefix and enter the time intervals at
which backups are to be made. Automatic Save is activated by clicking the
appropriate check box. A check mark indicates that the function is active.
The text box below the check box is used to enter a filename prefix for the
backup files. The default setting is SAV for the file prefix. The intervals at
which backup copies are to be made must be entered in the time edit field.
You may type in any number of minutes, or use the directional arrows to
select the desired time.

Desktop Configuration

CHAPTER 2

Desktop Configuration:
Colors and Command Line Font

This chapter is aimed at those users who wish to personalize the program
and its user interface in order to meet the specific requirements of their
individual CAD construction and drawing environment by setting up the screen
and desktop colors and the command line font.

Desktop Colors

By choosing the Color dialog tab in the Configuration dialog box called by the
command CONFIG, a sub-dialog will appear in which you may define the
colors to be used in the following user interface elements:

Text window background

Text displayed in th€ommand History / Lisp Interpretézxt window

Drawing window

Graphic cursor X,

Graphic cursor Y,

Graphic cursor Z

Dynamic preview elements highlighting (Drag color)

Object selection highlighting (Selection color)

Desktop Configuration

Configuration E

Commaon Colar |Directnries| Aliaz commandsl HntKe_l,JsI Save I

—Screenltem————————————— [~ Color of ltem

Backaround Histary Wwindow
| T et in History badindow

3 Curzor

% Curzar " Red " Blue

< Cursar Yellow © Magenta
Dirag Colar)
Selection Calar O Green white

 Cyan 1 Black

Default Colors Color Index I? ﬂ

QK I Cancel Apply

First select the element which you wish to alter from the list box. The current
color for the chosen element is shown in the area Color of Item.

Please bear in mind that the cursor axis color setting is identical to that
displayed in the coordinate axis symbol. The coordinate symbol color will only
change shade after refreshing or regenerating the drawing view.

The color values for the background and for the font of the text window titled
Command History / Lisp Interpreter are shown based on the primary colors
RED, GREEN and BLUE. The colors of the above mentioned windows can be
altered by adjusting the appropriate RGB values. You may also use the
Color... button in this area which is located in the control panel to allocate a
new color. This will then cause the available Windows control panel options to
be displayed. Further information regarding the selection and definition of
these colors can be obtained from your Windows system documentation.

The color selection for the remaining screen elements (Drawing window
background, Crosshair colors, Drag and Selection Color) can be made from
the list of standard drawing colors. It is also possible to define further colors
by entering a corresponding color index (1...255). In order to return to the
program default colors, select the Default Colors button shown in bottom
right-hand corner. The changes will only become effective once the OK
button has been selected. No changes will become effective if you close the
dialog window by pressing either the Cancel button or ESC key.

Desktop Configuration

Command Line Font

By choosing the Text Font... button on the main page of the Configuration
dialog box called by the command CONFIG, a dialog will appear in which you
may define the desktop font. The settings available in the Font dialog box
affect the way in which information in the command line is displayed. This
includes output in the command line, notification and warning displays and
input fields. It does not have any influence on Text objects, such as titles
which are entered using the text command and inserted into drawings.

Using the options available in the font dialog window it is possible to alter the
display parameters utilized in the text window. The options include font type,
font style and size. The desired selections can be made consecutively by
clicking the appropriate selection fields. The example text displayed in the
preview window shows what changes the selected parameters will make.
These changes will only become effective once the OK button has been
selected. No changes will become effective if you close the dialog window by
either clicking the Cancel button or pressing the ESC key.

Command line parameters for FELIXCAD.EXE

You can add some parameters to the command line when starting FelixCAD.

-C
... specifies an application INI file (NOTE: without extension), e.g. “mycad”.
This tells FelixCAD to search for an MYCAD.INI file in the Windows directory.
And, a MYCAD.CFG file is created in the configuration directory.

-m
... specifies an macro-script-filename (with or without extension; for example
MYCAD.MCR). This can contain commands (which are useful when loading
the program) or optionally can contain Lisp expressions, for example to load
a Lisp file using a command like (load "mycad.Isp”).

-d
... can specify a drawing to be opened when FCAD starts (filename with or
without extension)

Example: felixcad.exe -c mycad -m daelim.mcr
Example: felixcad.exe -d test

10

Command Customization

CHAPTER 3

Command Customization:
Alias Commands, Hotkeys and Macros

11

This chapter provides hints and instructions on how to increase program
efficiency by utilizing features such as Hotkeys and by defining Alias-
commands. Another part of the chapter discusses the usage of Macros.

Alias Commands

As is the case with function keys, alias commands also offer a very simple
and effective way of customizing the program to meet the individual needs of
the user. Alias commands can contain command entries, which are not only
made up of a command itself, but also corresponding command arguments,
such as parameters. Alias commands can be defined freely so that the

command sequence
LINEO0,09,09,120,12C

could be replaced with the alias command FRAME. Using this method it
would no longer be necessary to input the parameters to draw a rectangle to
represent an A4 sheet of paper. The same result could be achieved by simply
typing A4. This method of operation not only increases the speed and
efficiency with which the command is carried out, but also greatly reduces the
risk of input errors. Alias commands can be defined by selecting the Alias
Commands function from the Configuration dialog box. To do so, first choose
Configuration... from the File menu or type in CONFIG at the command line,
and then select the Alias Commands tab. Alias commands can then be
defined as shown in the following description.

Command Customization

Configuration E

Commonl Color I Directories Alias Commands IHDtKe_I,IsI Save I

Alias Mame Cormmand

Hew...
C CIRCLE
& ARC
PT POINT Changs... |
k4 MOYE
CP COPY Delete |
APP [load "test lsp'']

0F. I Cancel | Apply I

All previously defined alias commands are displayed in a list box.
¢ By selecting New... it is possible to define a new alias command. Enter
the name and command line, including parameter arguments if necessary.

Mew Alias Command E
—Alias Mame
1].4 |
[FRAME|
Cancel |
— Command

ILINE 0.09.0912012C

* In order to change an already defined alias-command select an item from
the list box and click the Change... button. In the dialog box Change Alias
Command enter a new alias name and the built-in command, including
parameter arguments if necessary, into the input window.

« In order to Delete an alias command select an entry in the list box and
click the delete button. Note: the alias command will be deleted
immediately, you will not be requested to re-confirm the deletion.

12

Command Customization

The entries or changes only become effective once the OK button has been
selected. No changes will be made if you close the dialog window by
pressing either the Cancel button or ESC key.

HotKeys: Function Key Allocations

The function key allocation can be used as a very simple and flexible method
of personalizing the program to suit individual requirements and work styles.
Using either the individual F1 ... F12 function keys, or combining these with
the CRTL and ALT keys, it is possible to automate up to 48 functions and
commands which then become available at the “touch of a button”. Most of
the 48 alternatives can be freely defined. Note that some function keys are
reserved corresponding to Windows conventions and can not be altered:

The F1 key is allocated to the help function and reserved.

The CrTL+F4 key combination will close the active drawing.

The ALT+F4 key combination will close the program.
By allocating regularly used commands, such as drawing or editor
instructions, object capture, or object selection functions to these keys it is
not only possible to simplify your construction work, but also to dramatically
increase speed and efficiency. From the Hot Keys dialog tab, select the
function key, or key combination to which you want to allocate a command
from the drop-down list. If this key has already been allocated, the
corresponding command will appear in the command edit box. If the display
remains empty then no command or has yet been allocated to this key
combination.

— Accelerator

Fa =]

— Command

|'F|EDFL-’-‘«W1

By moving the cursor into the Input field and typing in your desired command
or function it is possible to allocate a new command to the selected key.
Should you wish to allocate a function or command to a key which already
contains an entry, just overwrite the entry with the desired command. Please
note that the parameter changes only become effective once the OK button
of the Configuration dialog has been selected. No changes will be made if

Command Customization

you close the dialog by either using the Cancel button or pressing the ESC
key.

14

Command Customization

Macros

Macros are designed to automate the execution of a number of specific
instructions or commands one step at a time, thus eliminating the need to
enter the commands and entries each time they are required.
Creating Macros

Macros can be written using any text editor or word processing program
which is able to store pure text format (ANSI) i.e. without the any formatting.
Enter the desired commands and instructions and their corresponding input
values into this file in the same order in which the instructions are to be
executed. A description of the individual commands and their necessary
inputs can be found in the corresponding chapters of the User's Guide.
Command execution takes place line by line or instruction by instruction when
separated by a blank space. Both a carriage return or a space character are
interpreted as confirmation of the previous entry. This means that either of
the following macros could be used to draw a circle with an 0,0 mid point and
a radius of 10.

CIRCLE

0,0

10
or

CIRCLE 0,0 10

Save the file in text format (ANSI) and use .mcr as the file extension name.

Using the clipboard
A simple and effective method of creating a macro file is made available by
using the enlarged command line window titted Command History / Lisp
Interpreter and the Windows clipboard utility. This text window contains a list
of the commands and data entries which have been made at the command
line. This enables the user to reference and reconstruct procedures carried
out so far. By either using the scroll bar located on the right hand side of the
text window, or alternatively pressing the upward / downward directional
keys, the user can “scroll” through the listed entries. The Windows clipboard
utility can then be used to copy entries into an editor program where they can
be stored as a macro file. Use the following procedure:
1. Carry out the command(s) steps which you wish to store.
2. Open the text window and use the mouse cursor to mark the command

sequence.

3. Copy the highlighted section onto the clipboard using the CRTL+C key

combination.

Call up your editor program, for example Windows Notepad.

Insert the contents of the clipboard into the editor using CTRL+V.

Store the file in the support directory using any file name followed by the

.mcr file extension.

o ok

Command Customization

Utilizing Macros
The macro utility can be called by entering the MACRO command. The
program will then request the file name. It utilizes the pre-defined .mcr file if
not specified otherwise.

16

Template Drawings

CHAPTER 4

Template Drawings

17

When creating a new drawing you are given the option of using pre-defined
templates. These templates are a form of specimen drawing, which either act
as a basis for your finished work, or set up the required drawing environment.
The main advantage of using templates is that all elements and settings of an
already existing drawing can be adopted and as such do not need to be re-
entered. This is particularly useful for parameters such as drawing
boundaries, frames, guidelines, measurement settings, views etc. In order to
facilitate this, a number of local variables containing stored settings are
loaded along with the template. These settings are then used to display the
drawing, drawing elements and objects. A table of available local variables
can be found in chapter 7 of this manual.

Creating a Template Drawing

One standard template, saved under the name template.flx is included with

the program and is stored in the drawing directory. It is also possible to

define any existing drawing as a template. The method used to create a

special template in which each individual working environment can be loaded,

is no different to that used when creating a normal drawing:

« Create a new drawing, or open an existing one.

« Using the available options of the command SETTINGS, define the
drawing, editing and display parameters. The dialog Settings allows the
user to set all relevant drawing variables defaults like snap and grid
spacing, zoom and pan factor, line type scale factor, point creation mode,
etc.

* Set up the dimension parameters to tailor them to the need of the
application with the DIMTYPE command.

* Provide a default setting for a hatch pattern file used with the HATCH
command and set the parameters for pattern spacing and pattern angle.

« Create the layers for several purposes (Construction Lines, Dimensioning,
Cross-Hatching, etc.) by using the LAYER command and assign to the
individual layers the desired colors and the required line types. To load the
needed line types from file uses the LINETYPE command.

« Create the drawing objects, e.g. the drawing boarder, or set up the other
elements which you want to be available for use when starting a new
drawing.

« Store the drawing as you would normally or by using the command
SAVEAS.

This drawing can then be used as a starting point for further drawings which

are to be based on the same parameters.

Template Drawings

Loading a template drawing when creating a new drawing
In order to activate a new drawing using an existing template, mark the Load
Template check box located in the file dialog New, and then click the button
Template... . This will open a file dialog box entitled Template Drawing.
Select the required drawing from the list and confirm your selection. The
program will then return to the dialog box New where you should then enter
the new drawing name. The template will be opened using the newly
allocated filename. As a programmer you can pre-set a template drawing by
setting the global system variable FCTEMPLATE with the setvar function.

18

Line Type and Hatch Pattern Definitions

CHAPTER 5

Defining and Using Line Types
and Hatch Patterns

This chapter describes further options for a more specific drawing
environment which can be achieved by defining and using individual tailor
made Line types and Hatch patterns. Creating your line types and hatch
patterns can be done with the aid of a text editor.

Line Types
Before a line type can be incorporated into a drawing it must have been
defined in a line type file and loaded into the current drawing. The line type is
loaded using the LINETYPE command. The files inch.lin and mm.lin already
contain a number of predefined line types, which can also be used as a basis
for other line types.

Hatch Patterns
The creation of hatch patterns is a little more complicated than the definition
of a line type. Hatches are designed by repeating or duplicating of a number
of lines. These lines can be rotated at any angle, start at various points and
be spaced at different intervals.

Linetype Definition

Line type definitions are stored in ANSI format in a file using the .lin
extension.
Line Type File Syntax

The file can be documented by beginning the file with a semicolon, followed

by comment lines.

A line type format itself is made up of two lines.

* The first line, or header which starts with an asterisks, contains the name
of the line type, followed by a comma and a symbolic representation of
the line type.

« The second line, or definition line, contains a symbolic description of the
line type. This description is made up of a string of dashes, spaces and

dots.
Header: *Line type [, Line type description]
Definition line: Lsl, Ls2, ..., Lsn
Lsl,Ls2,...,Ls n: Line segment length 1, Line segment length 2, ..., Line

segment length n

The line type description must not be more than 47 characters long, while the
line segment length n must not contain more than 12 definitions with a total
line length of less than 80 characters.

19

Line Type and Hatch Pattern Definitions

The following example shows how a dash-dot line type is defined:

*Dashdot,

A, 0.5, -0.25, 0, -0.25

The name of the line type to be defined (Dashdot) follows the asterisks (*).

A comma then separates the symbolic representation of the line type ("_. _

1.

The following line contains the geometric definition of the line type.

All definitions of dashes, dots, and spaces are separated by a comma:

« Dash: The drawing elements are shown as positive figures, for instance
0.5 represents a dash (PEN DOWN) with a length of 0.5 drawing units.

¢ Space: The negative units (-0.25) represent the space part in which no
line should be drawn (PEN UP).

e Dot: Dots in the line type definition are shown as 0 values.

The length specifications represent drawing units when the line type scale

factor (system variable LTSCALE) is set to 1.00.

Hatch Pattern Definition

The creation of hatch patterns is a little more complicated than the definition
of a line type. Hatches are designed by repeating or duplicating of a number
of lines. These lines can be rotated at any angle, start at various points and
be spaced at different intervals. It is also possible to generate dash dot
sequences instead of elongated dashes. FelixCAD contains a number of
predefined hatch patterns which are stored in the fcad.pat file. In order to
generate your own pattern file you must first of all use a text editor to create
a file with a .pat extension name. Hatch patterns defined in pattern files can
then be loaded using the HATCH command, and the desired hatch can be
selected from the list box of the Hatch dialog. Once a new pattern file has
been set up it will be used as the default file until another pattern is selected.
The last selected pattern file is stored in the local system variable HPFILE
and will be stored along with the drawing.

Hatch Pattern File Syntax
Similar to line type definitions, hatch patterns are made up of a header,
followed by the name of the hatch pattern. An asterisk (*) indicates the
beginning of the hatch pattern name, this can be followed by a comma and
the pattern description. The next line contains the actual hatch pattern
definition. Every hatch pattern definition starts on a separate line and
contains the following elements.

The angle of the line

The X and Y coordinates of where the line is to begin

20

Line Type and Hatch Pattern Definitions

X and Y spacing of the offset
Line segment length

The line segment lengths are only needed for elongated and / or dotted hatch
lines and are not required for continuous lines.

As documentation it is possible to enter comments into the hatch file header.
These comment lines begin with a semicolon.

Header: *Hatch pattern name [,Description of the pattern]

1st hatch line: Angle, X starting point, Y start point, X spacing, Y spacing [,Ls1, Ls2,..., Lsn]
2nd hatch line: -ditto-

n-th hatch line: -ditto-

[Ls1,Ls2,...,Lsn] Line segment length 1, Line segment length 2, ..., Line segment length n

The hatch pattern name must be less than 15 characters long, while the
description can contain a maximum of 79 characters.

No more than 6 line segment length entries are permitted per hatch line
definition.

Example 1: Horizontal hatching

The following example shows how to define a hatch pattern with the name
HLINE using a line angle of O degrees. The start point is located at 0,0 and
the line offset Y is 1 drawing unit wide.

*HLINE, Horizontal line
0,0,0,0,1.0

10.10

0.0
Example 2: Dash Dot Hatching

The next example is designed to show a dash dot hatch pattern drawn at an
angle of 45°. The origin is located at point 0,0 whilst the hatch line offset is 1
drawing unit wide. The dash length is 0.5 drawing units. A space of 0.25
drawings elements is to be left between each dot and the following dash.

21

Line Type and Hatch Pattern Definitions

*DASHDOT, Dash dot line 45 degrees

1070 45 00.01.05.-0.250.-0.25

R A A

-/ -/

N\
NN

R

A

R R A A R

R A A A

A
\

-/ -/ -/ -/. . 4 -/ -/

A
\

R A A A

N\

N\
NN N N NN
NOOND N N NN
NOOND N N NN
NCOND N N NN

N\
N

A A A A A A

0.0

Example 3: Offset Dash Dot Hatching

The above example is now going to be changed to show a 0.5 drawing
element offset. In order to achieve this, the line offset spacing x is increased
to 0.5. All other values remain unchanged.
*DASHDOT?2, Dash dot line 45 deg. narrow
10,10 45,0,0,05,1,0.5,-0.25,0,-0.25

0.0

Example 4: Parquet Hatching

The next example defines a parquet hatch pattern which is made up of a
number of hatch lines. The pattern should contain 4 parquets with a width of
0.25 drawing units.
This pattern is then used to create a pattern containing 5, 0 degree hatch
lines and 5 hatch lines drawn at 90 degrees. The starting points are offset by
0.25 units in the Y direction at O degrees and by 90 degrees in the X
direction.
s | e 1
il
il

* PARQUET, 1 x 1 parquet pattern
0,0,0.00,1,1,1.0,-1.0
0,0,0.25,1,1,1.0,-1.0
0,0,0.50,1,1,1.0,-1.0
0,0,0.75,1,1,1.0,-1.0
0,0,1.00,1.1.1.0,-1.0

90, 0.00,0,1,1,-1.0,1.0

o
o

22

Line Type and Hatch Pattern Definitions

23

90, 0.25,0,1,1,-1.0,1.0
90, 0.50,0,1,1, -1.0,1.0
90, 0.75,0,1,1,-1.0,1.0
90, 1.00,0,1,1,-1.0,1.0

Dialog and Menu Editor

CHAPTER 6

The Dialog and Menu Editor

25

The next three chapters describe the options by which the Dialog and Menu
Editor (DME) can be used to customize the program and to set up, create or
modify palettes, pull-down menus and dialog boxes.

DME is an independent program delivered with FelixCAD. This module allows
the user to create their own pull-down menus, palettes (tool boxes) and
dialog boxes, or change existing ones.

No programming skills are assumed, apart from basic ones which are needed
to integrate dialog boxes.

This means that all users have a simple but powerful method available to
easily configure the program to meet their own particular needs. It is
therefore possible to increase speed and efficiency by grouping regularly
used, or additional functions into an individual menu or tool palette.

In addition, the Dialog and Menu Editor provides a powerful tool for rapid
prototyping of applications.

LISP Programming

The use of LISP programming for user configuration is described in later
chapters. As this method requires far more programming skills it is mainly
designed for use by experienced operators or application developers.

File Types

Palette files are saved using the .mnp file extension.
Menu files are saved using the .mnu file extension.
Dialog files are saved using the .dlg file extension.

Using Menu and Palette Files

FelixCAD is supplied with one standard menu and a number of standard
palettes. These standard elements enable the user to access every
command and function and in general are adequate for complete and
effective use of the program. Both the menu and the various palettes are
stored in individual files. The file extension .mnu is used for all menu files,
whilst the palette files use the .mnp extension name. The menus and palettes
which are created or changed by the user with the aid of the Dialog and
Menu Editor are also stored using these extension names. This process
allows the user to create and choose menus and palettes independently and
thus select those best suited to their particular work situation requirement.
The program allows up to ten different palettes to be used simultaneously.
These can be moved at random on the screen. Should you wish to open
additional palettes you must first close the corresponding number of

Dialog and Menu Editor

displayed palettes. For obvious reasons only one pull-down menu file can be
opened at any one time.

Loading Menus and Palettes
The MENU command is used to load Menu and Palette files. This function can
either be called up by typing in the MENU command or by clicking the
corresponding symbol displayed on the symbol bar. A standard File Open
dialog box is displayed when the function has been called:
» First select the file type, depending on whether you wish to load a Pull-
down menu, Palette or Tablet menu.

» Then choose the required file name from the list box and check it using
the click function. The directory and drive selection fields enable you to
move to the correct file location.

» Confirm your selection with OK, or ignore the selection of a menu or
palette using the cancel button.

Palettes may also be activated by typing the PALETTE command, or by
selecting the Palette symbol from the symbol bar. A pull-down menu may
also be activated by typing the PULLDOWN command.

Creating and Saving Application Resource Files

Creating a New File
To create a new file using the Dialog and Menu Editor, select the New...
function from the menu File and then choose one of the options from the list
box of the dialog which appears:

|=-‘ MNew

New

Dialog
Palette
Pull-down Menu

OK

Cancel

Opening Existing Files
An existing palette, pull-down menu or dialog file can be opened by selecting
the Open... function from the menu File. Using the options available in the file
type list, find the .mnu, .mnp, or .dlg file format and select the file which you
wish to open. Confirm your selection with OK. Before altering a standard file
we suggest that you always make a backup copy.

Closing Files / Saving Files

26

Dialog and Menu Editor

27

To close and / or save a menu, palette or dialog file use the Close, Save or
Save As functions which are standard in all Windows programs. The Close
function will shut the active file. Should changes have been made to the file,
you will be asked if you wish to save the file before closing. The Save
function does not close the current file, but will store it using the allocated
name and file path parameters. If no file name yet exists then the Save as
function will be carried out. The Save As... function allows the file to be
saved under any valid drive and directory path. The file extension (.mnu,
.mnp, or .dlg) is automatically added to the file name before saving takes
place.

Creating and Editing Palettes

CHAPTER 7

Creating and Editing Palettes

Palettes are tool boxes which contain a number of buttons linked to various
commands and instructions. These palette windows can be placed
anywhere on the screen and act as an alternative method of calling up
commands, in addition to those already offered by menus or direct input.
Thanks to the direct command selection process, tool palettes offer a very
effective method of dealing with frequently used commands or instructions.
The options described below show how the Dialog and Menu Editor can be
used to create new palettes, or amend existing ones and how they are
implemented as a very efficient method of customizing not only the program
itself, but also the drawing environment and working configuration.

O =1 .
O | x|l | A |5 7 ked (O]

The steps needed to create or amend a palette can be broken down as
follows:
e Setting up of a palette

+ Command allocation
» Definition of help functions and status bars

You will be guided through these steps with the aid of input and selection
windows. If the selection of a specific file, e.g. a command file or a help file is
asked for, this may be done by selecting the corresponding option button.
This will open the correct file dialog box containing the standard options
available for selecting the desired file format, drive and / or directory path.

Creating or Editing Palettes
Palette configuration consists of defining the number of buttons required, how
they are to be arranged in rows and columns as well as their size. As a
further step, the buttons are either allocated a text caption, or designated a
graphic symbol (bitmap) which corresponds to the assigned command. The
method needed to create a new palette, or amend an existing one is almost
identical and is described below.

New Palette
28

Creating and Editing Palettes

Select the New... option from the menu File or click the corresponding button.
From the selection box which appears, choose the Palette option and confirm
with OK. Type in the name to be allocated to the new palette. Please adhere
to the standard operating system file conventions. Using the selection window
allocate the drive and directory path to be used. Palettes are stored using the
.mnp file extension identifier.

Existing Palettes
To open an existing palette, select Open... from the menu File or click the
corresponding button. In the selection box set the file format to Palette
(*.mnp) and then choose the required file.

Palette Properties
A new palette must first of all be configured. To do so, define the number of
rows and columns needed. This process is called allocating the properties to
a Palette.
As soon as you attempt to create a new palette, the Palette Properties dialog
box will appear.
If you want to change the properties of a currently loaded palette please use
the Palette Properties... option listed in the menu Palette.

Palette Properties

Caption
IDlaw

Buttons Cancel
Mo. Bows I“I Width |28 | Pixel

Mo. Columns I2 Height (28 Pigel

1 |

Help

In both cases a number of different entries need to be entered into a special
dialog window. e.g. the Palette title or name, the number of rows and
columns as well as the size of the individual buttons (in pixels). The number of
rows and columns entered, will of course dictate the maximum number of
buttons available in the Palette.

Allocating a Button Label
It is important to chose a button label which clearly describes the command
or instruction which has been allocated to that particular button. This is
imperative for efficient use of the palette. There are two methods of
allocating a button label.
e Atextentry, i.e. a description of the button (Text Button)
« A graphical representation or symbol (Bitmap Button)
For the functionality of the button, it is irrelevant whether a label is allocated
before, or after the button has been assigned to a command. The allocation
of a text label or graphical representation is made by selecting the
corresponding radio button located in the Palette Button Properties dialog

Creating and Editing Palettes

box. The active choice is checked with a black dot.
Bitmap Button
The allocation of a graphical representation (symbol or icon) assumes that a
suitable bitmap file is available in the program, or that a suitable one has
been created using a Windows paint application.
1. Click the Bitmap Button radio button.
Type in the bitmap file name including the (relative) path, or use the file
selection dialog box, to help you locate and select the desired BMP file.
Important Note
It is recommended to store the bitmaps used in a palette in the same
directory or in a sub-directory relative to the directory where the palette file
(mnp) is saved to. Use a tilde as placeholder for the path to the MNP-file
when specifying the location of the BMP-file as shown in the illustration
above.

Palette Button Properties

— Help
C dI LIME
omman i I D

BITMAF File

: Kepword |L|NE
I"'\mnp_bmp\lc_line_hmp D Status Bar IDlaw line(s)

Text Button
1. Click the radio button entitled Text Button , which is shown in the Title
section of the dialog box.
2. Type the desired label of the text button into the text box.

The label should of course make clear reference to the instruction or
command which will be carried out when the button is selected. In the
following example the command DELETE has been labeled to DEL.

Please note that the font size of the text label cannot be changed. Should the
allocated label be larger than the button itself, then either shorten the label, or
increase the size of the button using the Palette Properties... menu option.

Palette Button Properties
— Hel
Cummand...l DELETE F'Ip I]
ile
BITMAF File
(@ Text Button ' Bitmap Button Keyword IDELETE
I[)EL D Status Bar IErase drawing objects

Allocating Commands
After having allocated, changed or copied the palette properties, the next
step is to link the button or switch to a command. To assist you with this task
use the Palette preview and dialog selection window. Both windows are
automatically displayed once you confirm the new palette properties, or
choose to load an existing palette file. It is possible to open the button

30

Creating and Editing Palettes

properties at any time by selecting the Button Properties option, located in
the Palette, Pull-down menu.

Button Selection
The first step is to choose the button to which the command is allocated.
Using the Palette preview window, click the button in question. The selected
button is displayed as "depressed" whilst the remaining buttons remain
unchanged.

Allocating or Selecting a Command
The allocation of a command to the selected button is made using the
Command selection and input field. This can be found in the Palette, button
Properties. The well versed and experienced user can type the command
directly into the text box. The following explanation, however, describes in
detail the method by which an individual command can be selected from the
command file. Click the Command... button, which is located to the left of
the text edit box. In the following window you will find a text box which is
reserved for the command file. Please type in the name and path of the
command file. Alternatively, click the button located to the right of the text
box. This will open a file dialog from which you can select and load the
prototype command file. The command file can easily be identified by the
.cmd file extension identifier. This file is stored in the \APPLIC directory of
FelixCAD. Once having loaded a template command file, the Command
Selection dialog (see illustration below) can be used to select a required
command from a template file.

Creating and Editing Palettes

Command 5election E
File
ID:\FELIXE.AD\APPLI[Z\fcad_cmd D
Topic

IDraw j

Command

Line -
Circle —

| OK I
H-gon

Rectangle
Trapezoid
Chain
Polyline

Filled Faces
Rings

Construction Points ;l

Command Line IAAJE\H[:

Help
File I
Keyword IAH[:
Status Bar IDlaw an arc

As commands are usually grouped according to topic, use the Topic drop

down list to choose the required topic, for example Draw or Edit. From the

command list which appears, select the instruction which is to be linked to the

chosen button. In the lower part of the dialog you find text edit boxes for the

following parameters:

¢ the command line expression for the selected instruction

< the name of the help file containing the relevant information for the
selected instruction.

« the key word used to search the help files

¢ the status line message entry.

When selecting an instruction from the command file you will notice that in

most cases the above information will already have been entered by default.

If this is the case you will be unable to amend the entries at this stage of the

program. However if you use the instruction input field to type in the name of

the instruction directly, you will not only find that you are able to branch to any

help file, but also enter a self defined status bar message. Confirm the

instruction selection process with OK, the selection window will close

automatically. The name of the chosen instruction, the help file information

and the status line message will be entered into the relevant fields of the input

and Button properties selection window.

32

Creating and Editing Palettes

33

This concludes the procedure needed to link an instruction to a Palette
button.

Help / Status Bar Entries

As a matter of default, the keyword and status line input field entries will be
displayed as soon as an instruction or function is selected. Whereas you
were not given the option to change the help file or status line entries in the
Command Selection dialog, it is possible to amend them in the button
properties selection and input window. The relevant dialog fields are located
in the help section on the right hand side of the Button properties selection
and input window. To select a different help file, or change the Help Keyword
and Status Bar entries, place the cursor in the relevant text box and type over
the existing entries.

This text box Help File is used to define which help file contains the relevant
information for the instruction or function be linked to the button. The help file
will be opened as soon as the F1 help function is activated, or the
corresponding symbol is selected from the function bar. Enter the name of
the help file including the path details into the text box, or open the relevant
file selection window and chose a file from the list. This entry Keyword
determines which help file topic, relevant to the linked instruction, will be
shown when the help function is activated.

Status Bar / Tooltip

By moving the cursor onto any palette symbol displayed on the program
desktop, you will notice that a brief description of the symbol will appear in
the status line. Using the Status Bar text box it is possible to stipulate which
message will appear for each button of a palette. In order to change the
status bar message, move the cursor to the text box and type over the
current entry.

Creating and Editing Palettes

Saving and Closing Palettes

Save

Repeat the steps as described until all of the desired buttons have been
allocated and set up. Save your new or amended palette using the standard
Windows options available in the menu File. In general it is a good idea to
make regular copies during the palette creation and modification process.

This function saves the active file under its current name and file path, but
does not close the file. Select the Save command from the File menu, or
click the corresponding symbol from the symbol bar.

Save As

This function allows you to save the menu file under a different name and / or
path. The active file remains unaffected by this action. Select the Save As...
option from the File menu. The standard file dialog will appear. Choose the
desired path and select or type in the name under which you wish to save the
file.

Save All

Close

This option allows you to save a number of different menu, dialog, or palette
files using only a single command. The files are stored using their current
name and path parameters. Each individual save process is preceded by a
confirmation request.

Select the Close command from the File menu, or click the corresponding
symbol from the tool bar. Before the menu file is closed, the system will ask
you to confirm whether you wish to save the file or not. If you have made
changes which you wish to keep, confirm this request by clicking OK. The file
will then be stored and closed.

34

Creating and Editing Menus

CHAPTER 8
Creating and Editing Menus

The Dialog and Menu Editor enables you to create or alter pull-down menus.
These can be embedded into the program using the MENU command. This
offers increased flexibility and can either allow additional commands and
functions to be incorporated into the menus, enable menu commands and
functions to be combined, or alter menus according to your own preferences.
Menu Editor
Pull-down menus can be created using the tools available in the graphic
interface of the Dialog and Menu Editor (DME). This method is easy to learn
and simple to use and combines the effectiveness and clarity of a graphic
interface, a fact which also makes this method suitable for less experienced
users. One main advantage of using this method is that the results can be
seen immediately and are easily checked and corrected. Experienced users,
especially those with programming skills, will be able to create new menus,
or redesign existing ones by enlisting the help of a text editor.

Menu Files
Menu files are saved using the .mnu file extension. The may be opened,
edited and saved using the Dialog and Menu Editor. Before altering the
standard menu file we suggest that you always make a backup copy.

35

Creating and Editing Menus

» Dalog/Menu Editor - [MENU : FCAD_MNU]

BE Fie Edit Menu View window 2 ==

File Edit Draw Modify Detail Part Options Yiew Window 2
New...
Open...
Close Ctrl+F4

Save
ave As...
Save All

File Manager...
Delete File...
Send 4

Print...
Printer Setup...

Configure...

Palette M4 Properties Pulldown Menu
Besource

Exit Eommand.._ll ““SAVE

| Caption
I&S ave

C Stle ® Help |

File | ol
Keyword SAVE

Status Bar Save the cunrent drawing

' Popup ® Menu Item

[<F1>for help

Creating New Menu Files / Opening Menu Files
To create a new menu file using the menu editor, select the New... function
from the menu File and then choose the Pull-down Menu option from the list
box which appears. An existing Menu file can be opened with the aid of the
Menu editor by selecting the Open... from the menu File. Using the options
available in the file selection window, find the .mnu file format and select the
menu file which you wish to open. Confirm your selection with OK.

Closing Menu files / Saving
To close and / or save a menu file use the Close, Save or Save as...
functions which are standard in all Windows programs. The Close function
will shut the active menu file. Should changes have been made to the file, you
will be asked if you wish to save the file before closing. The Save function
does not close the file, but will store it using the allocated name and file path
parameters. If no file name yet exists then the Save as function will be
carried out. The Save As... function allows the file to be saved under any
valid drive and directory path. The .mnu file extension is automatically added
to the file name before saving takes place.

36

Creating and Editing Menus

37

Editing Pull-down Menus

Once having created a new menu file, or opened an existing one, the

following two windows become available to the user and allow the pull-down

menus to be edited (illustrated below)

* An Editing window in which the menu structure can be configured or
changed. This option allows existing Pull-down menus, menu points and
sub menus to be added, changed or deleted as well as existing ones to be
renamed.

* A Properties window in which the properties and link references of each
menu option can be defined. The current settings of the active window
option are displayed in the editing window.

When working with either of the Menu Editor windows please observe the

following points.

Creating and Editing Menus

Mouse and Keyboard Allocations

Mouse

Click a menu option with the left mouse Select the information entries displayed

button:
CLICK + Drag

CLICK + Drag + CTRL

Keyboard
Arrow left
Arrow right
Arrow up
Arrow down
Posl

End

Scroll up
Scroll down
INS

DEL
RETURN

Function keys
F1
F2
F3
Fa

in the “Properties Pull-down Menu”

Move the menu option to a new
location in the menu

Duplicate an entry

Move the menu option to the left
Move the menu option to the right
Move the menu option upwards
Move the menu option downwards

Move the menu option to the top left
position (first pull-down menu)

Move the menu option to the top right
position (last pull-down menu)

Move the menu option to the top
position in the active pull-down menu

Move the menu option to the last
position in the active pull-down menu

Inserts and selects an empty menu
option following the selected option

Deletes a menu option from the menu

Activates the Properties window of the
selected option

Help

Activate / Deactivate the symbol bar
File: Save as ...

Activate / deactivate the status line

38

Creating and Editing Menus

Editing and Creating Menus
Editing a Menu Structure

Select the menu option to be edited. If you want to extend the menu structure
by inserting a new option, either move the cursor to one of the empty fields
which automatically appear at the bottom and at the right hand side of the
current menu level. The empty option boxes are displayed with a surrounding
dotted line. Use the INS key to insert an additional menu field between the
existing options of a pull-down menu. By actuating this key a new menu field
will be inserted before the option which is currently activated. Apart from
being able to insert additional menu options, it is also possible to define sub
menus of a certain option. Selecting one of these menus during program
operation will automatically cause the sub menus and additional menu options
to be displayed and made available for selection. By combining commands
into related groups, it is possible to structure the sub menus more clearly. To
insert a sub-menu, first select the menu option from which you wish to start a
sub menu and then choose the POPUP setting in place of MENUITEM from
the Properties window. This will attach a sub menu to the active menu option.
To show that a sub menu is available, a right directional arrow is displayed in
the menu option. Additional menu fields can be added using the method
described above. To insert a Separator between two menu items first insert
an empty field. This field can later be defined as a separator line in the
properties window.

Editing Properties
To edit the properties of each individual menu option, move the cursor to the
properties window. This is most easily done by clicking the selection field
corresponding to the required property. The individual menu items and their
user definable properties are described in detail in the following section.
Please note the following points. In most cases menu item properties can
only be edited once the menu option has been give a valid name. Empty
menu fields (pop-up menus) cannot be saved. If you wish to save a menu
structure containing empty fields, these must have been given a title or name.

Menu Properties
The following menu entry or menu option properties can be defined or edited
in the Properties window. In certain instances the Properties window could be
closed, e.g. when editing a number of pull-down menus. Should this be the
case it can be reopened by selecting the Properties option from the Menu
pull-down.

Creating and Editing Menus

Properties Pulldown Menu

Eummand.._ll“‘LlBHAH‘l’ ® Style C Help
Caption Style [#] - Gray [not selectable] jJ

[Part/Symbeol Library... Variable[ACTDB]

Yalue [:0

! Popup (@ Menu Item

Menu Entry Type
You may select one of the following menu option types.

MENUITEM
The MENUITEM option is the system default. Menu items are linked to
commands and sometimes to help files, or to a status line message. When
selected, the menu option in the user program carries out the command to
which it has been linked

POPUP
This POPUP type of menu is designed to call up sub menus. When selected
these automatically open and display further menu options for selection. For
this reason, pop up menu fields cannot be linked to, or defined as program
commands. It is, however, possible to link them to help topics and to define
status line messages to them. A control type should be defined by clicking the
corresponding button located at the bottom edge of the properties window.

Caption
The name which is to be allocated and used in the Menu option is defined
using the Caption command. Move the cursor by either using the tab key, or
clicking the mouse to the Caption option. Then type in the desired name.
Please take the following points into consideration.

Upper / Lower case
Upper and lower case characters do have an effect on the titling of the menu
option. The title may contain umlauts, spaces, and special characters.
Exceptions to this rule are the & symbol and \t .

Number of characters
The maximum number of characters which can be entered as a field name is
only limited by the width or amount of space available in the pull-down menu.
This is governed by the longest menu title and can be extended at will or
whenever practical.

Highlighted Characters
The & symbol is used to highlight a letter in the menu item so that this item
can be called up using the key combination, ALT + Highlighted key. The menu
editor is only in a position to display these key combinations; their definition
has to be programmed separately.
The & character can be located at any position in the character sequence.
The following entry Precision &Aids would produce this result:
Precision Aids

40

Creating and Editing Menus

Tab stop
The \t key combination causes any following characters to be displayed with

a right hand justification or alignment. It can be used to greatly increase the
legibility of a particular menu item. The menu editor is only in a position to
display these key combinations; their definition has to be programmed
separately. The \t character combination an also be combined with the &, so
that the character sequence &End\tAlt+F4 would display the following result :
| Exit Alt+F4

Command
The definition of a command for the chosen menu option is carried out using
the Command selection and input field located in the properties area. An
experienced user would be able to type the specific command directly into
the input field. The following section describes how to use the program driven
support option to select instructions from the command file.

Command Selection
Click the Command... button which is located to the left of the input field. In
the dialog box which appears, you will see an input field in which you can
enter the name and path of the command file. Alternatively, you can click the
button located to the right of the input field to open a file selection window.
This window will enable you to select and load the command file .cmd which
is stored in the APPLIC sub-directory. After having selected the command
file, the following window appears. This window contains a list of the
individual commands, and can be used to select the desired instruction. As
the commands are listed according to topics, first select the topic which you
need from the Theme selection field, for example File, or Editing. Click the
directional arrow located by the side of the dialog box. You may then select
the command which is to be linked to the menu option from the list. In the
lower part of the selection window you will find fields in which to define the
following parameters.
* The command used to select the chosen instruction;
e The name of the help file which contains information regarding the

selected instruction.

« The key word for searching the help file
* The message which is shown in the status line
When selecting an instruction from the command file this information has
usually already been entered by the manufacturer and cannot be changed or
edited at this point of the program. If you, however, type the instruction
directly into the instruction input field, then you will be able to refer directly to
a help file, or type in the self defined message which is to appear in the
status line. Confirm your selection with OK. This will close the selection
window. The name of the selected instruction, the entries referring to the help
file and the status line message will be stored in the corresponding input
fields of the, Pull-down properties window.

Creating and Editing Menus

Style Properties

A number of properties and attributes are grouped together under the style
heading. These define the face and availability of each menu option,
depending on particular program conditions. In accordance with definable
program variables it is possible to determine that a particular menu option
only becomes active when for instance a drawing is opened or created and
that the drawing contains at least one drawing element. This type of
configuration does assume a certain knowledge of the available program
variables. Relevant information can be found in later chapters of this manual.
The next sections are merely designed to show how, with the help of the
Dialog and Menu editor, it is possible to select the style, the program
variables and comparative values. The selection and input fields located in
the right hand part of the properties window are used to define both the style
and help properties. To switch between the two editing possibilities, use the
style and help radio buttons shown at the top of the input fields. First of all
check whether the Style button is active (default position). If not, click the
button to change the selected option.

By doing so, the selection and input fields shown below enable you to alter
the style, variable and value parameters.

Style
The style selection window allows you to change the style using the following
parameters.

Standard

This style is used for menu options which can be activated at any time and
are not intended to be especially marked. It is therefore not linked to
program variables. The standard style is the default option.

Gray (Not selectable)

Allocate this style to the current menu option, if it is to be temporarily
deactivated, according to the result of a comparison between a comparative
value and a definable program variable. Once this style has been chosen, it
becomes possible to open the previously locked, selection window variable
and value parameters (see below).

Separator

By allocating this style the current menu option is no longer displayed as a
caption, but is shown as a horizontal line. Any previous caption entry will be
overwritten and deleted by the separator line. The height of the caption will
also be reduced accordingly. Separators are seen as visible dividing
elements and as such help to improve the clarity of the pull-down menu.

Checked

If you want to temporarily mark the current menu option with a check symbol,
in accordance with the result of comparing the input value with a pre-defined
program variable, then you may allocate this style to the menu option. This

42

Creating and Editing Menus

could for example be used to indicate the active or inactive state of a
particular function. Once the checked style has been allocated you are able
to open the previously locked selection window variable and value
parameters.

Variable / Value
These selection or input fields are used to store the program variables and
comparative values which when compared are used to determine the
availability or checking of a selected menu option. In order to be able to
access these selection or input fields, they must have been allocated either of
the following style definitions.
e Gray (Not selectable)
* Checked
During the variable selection process you will be aided by a selection window,
in which all of the possible variables are clearly listed. The Variable
Evaluation Setting dialog box (see illustration below) can be opened by
clicking the button located to the right of the variable text box. Select one of
the global or local variables and enter the desired comparison expression into
the corresponding text box. Confirm the selection with OK. The variables and
their corresponding comparative values will then be automatically taken over
and stored in the properties window. Here they can then be edited or

accepted as they are.

Wariable Evaluation Settings B
Yariable
I ACTDB | OK I
Conditional Expression
fo
Global Variables [System] Local ¥ariables [Drawing)
ACTDB 4 | |ANGBASE -
AREA | |ANGDIR —
CDATE ATTDIA
CIRCLERAD ATTMODE b
CIRCLERES ATTREQ
CMDACTIVE I |AUNITS
CMDECHOD AUPREC
DATE CECOLOR
DEFAMGBASE CELTYFPE
DEFANGDIR CHAMFERA
DEFAUNITS CHAMFERB
DEFAUFPREC CLAYER
DEFDIMZIN CMDNAMES
DEFLUNITS CVPORT
DEFLUPREC DBMOD
DIASTAT DIMALT
DISTANCE =||pMALTD =]

Help Parameters

The definition and editing of help properties is carried out using the selection
and input fields located on the right hand side of the properties window. The

Creating and Editing Menus

same option is used to define the style properties. By selecting either the
style, or help radio button it is possible to switch between the two editing
modes. The style mode is the system default setting.

Properties Pulldown Menu

Eummand.._ll“‘LlBHAH‘l’ O Syle ® Help
Caption File I D
IPaltJ’Symhul Library... Kepword PARTLIE

O Popup @ Menu Item Status Bar Insert part from library

When activated, the Help file keyword and Status bar field can be edited. In
most instances the keyword and status bar field will already contain default
entries. Whereas in the Command Selection dialog box no opportunity is
given to alter the entries shown in the help file and status bar, it is possible to
make these changes in the Properties window. In order to select a different
help file, or change the entries in the key word and status bar, simply type
over the existing entries.

Help File

This input field is used to define which help file information is to be displayed.
The choice depends on the command or function which is linked to the menu
option. The selected file will be set as the standard and shown when F1, or
the help symbol from the function bar is called up. Either enter the name of
the help file (including the path) into the input field, or open the corresponding
file selection window and select the required help file.

Keyword

The command linked to this entry field, dictates which help file topic will be
displayed when the help function is selected.

Status Bar

Moving the cursor onto any symbol located in the user interface will cause a
brief description of that symbol to be displayed in the status bar.

Pull-down menu, status bar descriptions can be defined in the Status Bar
text box. Generally speaking, the default entry which is displayed at the time
of selecting the command or function will be kept as the standard. To amend
the status bar message simply type over the existing message.

Saving and Closing Menu Files

Save

Repeat the steps just described until all of the desired menu options have
been set up and defined. Then save the new or amended menu file using the
standard options available in all Windows applications.

This function saves the active file under its current name and file path, but
does not close the file. Select the Save command from the menu File, or
click the corresponding symbol from the symbol bar.

44

Creating and Editing Menus

45

Save As

This function allows you to save the menu file under a different name and / or
path. The active file remains unaffected by this action. Select the Save As...
option from the File pull-down menu. The standard file selection dialog box
will appear. Choose the desired path (drive, directory and sub-directory) and
select or type in the name under which you wish to save the file. Confirm your
selection with OK.

Save All

Close

The option Save All allows you to save a number of different menu, palette,
or dialog files using a single command. The files are stored under their
current name and path parameters. Each individual save process is preceded
by a confirmation request. In general, it is advisable to use the dialog and
menu editor to store your files regularly during each work sitting.

Select the Close command from the menu File or click the corresponding
symbol from the symbol bar. Before the menu file is closed, the system will
ask you to confirm whether you wish to save the file or not. If you have made
amendments and want them to take effect, then confirm this request by
clicking OK or pressing the Return key. The file will then be stored and
closed.

Creating and Editing Dialog Boxes

CHAPTER 9

Creating and Editing Dialog Boxes

The Menu and Dialog Editor (DME) enables the user to create and edit
dialog boxes. These can be called up at pre-defined times or during
specific actions. Dialog boxes can contain up to 256 control elements
which direct certain specific actions. Some of these actions are
described below.

* Input and Output of information

* Activation and deactivation of options

* Set or amend parameters

» Selection of elements (files, variables, etc.)

Dialog files are integrated into the application with the aid of program
interfaces. The following chapter concentrates on the creation and
editing of dialog files and windows. The methods used for working with
the various program interfaces are summarized in the relevant chapters
of this manual.

Experienced users, especially those with programming skills, can create,
open or edit dialog files using a text editor. To help the user with this, a
complete list of dialog elements and their correct syntax are shown at the
end of this chapter.

Alternatively, dialog windows can also be created using the graphic
interface tools available in the Dialog and Menu Editor. This method is
easily understood by less experienced users and offers the added
advantage of allowing the results to be viewed immediately. This in turn
reduces errors and increases overall efficiency.

Dialog File Type
Dialog files are stored using the .dlg file extension. These files can

contain numerous Dialogs, all of which can be displayed in the
application when specific criterion are called up or met.

47

Creating and Editing Dialog Boxes

Creating New Dialog Files / Opening Dialog Files
By selecting New... from the menu File, the user can use the dialog editor
to create a new dialog box. Follow this step up by selecting the option
Dialog from the selection list. To open an existing dialog file, select the
Open... command from the menu File, choose the designated file format
(.dlg), file path (drive/directory), and file name.

Saving and Closing Dialog Files

To close or store a dialog file the user may use anyone of the following

standard Windows functions.

» The Save function will store the file under the current name and file
path, but will not close it. If a file name has not yet been allocated
then the Save As function will be initiated.

* The Save As... function enables the user to store a file under any
chosen file path (drive/directory) and name. The .dlg file format will be
added automatically.

* The Close function shuts the active dialog file. If changes have been
made to the file the user will be asked to confirm these changes
before the dialog is closed.

Editing Dialog Files and Dialog Boxes
When either creating a new dialog window, or naming or re-naming the
specific dialog, this window may be used.

B9 DIALOG1.DLG A= B3

Dialog 1
[Dialog_2]
[My_Dialog]
[TEST]
[Prototype]

* |f the user is creating a new dialog file, no dialogs will yet exist. Only
the New Dialog... function (shown in the left hand side of the symbol
bar) will be active. To create a new dialog in the form of a window
click the relevant symbol.

* With existing files, a list of the available dialogs will be shown in the
selection area of the window. Check the file which is to be opened
and confirm the user selection with Open Dialog... . The user can, of
course, add a new dialog at this point of the program.

48

Creating and Editing Dialog Boxes

49

* By clicking this symbol an additional dialog window will be opened
(see following illustration). This window allows the user to allocate
individual dialog names or change existing ones. Check one of the

dialogs and click the shown symbol.
Dialog Mame [ID]

Dialog_1

Reszerved
1D's

Enter the designated name into the /D Name text edit box. Any illegal
names will be displayed in the Reserved ID's list, as these names have
already been allocated and cannot be reused.

The Dialog Editing Window

The application will automatically open a dialog editing widow each time
a dialog is selected. As with all Windows interfaces, the window can be
maximized to fill the screen or minimized down to a symbol. The dialog
editing window is used to created and design the dialog window. At this
stage the user may take advantage of the typical commands contained in
the File, (e.g. Open, Save, Close) Edit, (Cut, Copy, Paste, Delete) and
Window, Pull-down menus. Specialized commands which may be used
to edit the window or insert and format control elements can be found in
the other Pull-down menus. A large number of the commands can also be
activated using the tools or formatting Palettes. The individual
commands and functions used during the configuration of the dialog
window are described according to their use in the design process.
|

k)

I
D& z |5l
(o) | [19t | fod
Bl
] N (e
Il]| (LS
=B [

Creating and Editing Dialog Boxes

Mouse and Keyboard Allocations

Work in the dialog editing window can be made more effective by
adhering to the following mouse control and function keys instructions.

Clicking the left mouse button ...

.owill:

... on a control element ...
CLICK

DOUBLE-CLICK

SHIFT + CLICK

CLICK + DRAG

... onto the border of a control ...

Select a control element, de-select all
previous control elements.

Open the Properties window of the
corresponding control element.

De-select the control element, if it was
previously selected. The control element
will be added to those already selected.
(Multi-selection). Note: The element
orientation is based on position of the last
selected element.

The control element will be relocated
within the dialog. By keeping the STRG
key pressed at the time of releasing the
mouse key, the user can duplicate the
control element or elements.

CLICK + DRAG Changes the size of the control element.

... on any dialog or empty

window (except CAPTION) ...

CLICK + DRAG Will select all of the control elements
contained within the frame at the time of
releasing the mouse key.

Keyboard

F1 Help

F2 Show symbol bar on/off

F3 File: Save As

F4 Show status bar on/off

F7 Shows properties window of the selected control element

F8 Tool Palette on/off

F9 Alignment Palette on/off

F10 Grid on/off

DEL Deletes the control element from the dialog

50

Creating and Editing Dialog Boxes

51

TAB Selects the next control element from the list and de-selects
the current one.

TAB + SHIFT Selects the preceding control element from the list and de-
selects the current one.

Size and Coordinates
All data regarding the size and position of dialog fields is given in dialog
units. This is an internal measurement used by the Menu and Dialog
Editor.

Grid Alignment
An alignment grid can be revealed in the Dialog window to help the user
position or align a control element within that window. The grid line can
either be activated in the menu View, by pressing the F10 function key,
or with the grid button found in the Alignment Palette. Further information
about the grid and snap-to functions can be found later in this chapter
among the descriptions relating to the positioning and alignment of
control elements.

Dialog Window Properties
The size, position and use of the dialog window which is to be created or
altered is determined in the Window properties dialog.
This dialog window can be opened by:
* Double clicking the window surface, without touching any of the
elements contained within the window
* Selecting the Properties function from the Element Pull-down menu

* Pressing the F7 key

Caption rAttributes | 0K I

[Dialog [Titlebar

Paosition % System Menu
[Absolute Coordinates X Dialog Frame Help I

X Center of 5creen / Windos

'Si‘c

X |ﬂ Y |l1 Width |135 Height |92

Text and numeric values can be allocated to the following properties by
using the alpha-numeric input fields and control buttons which govern the
activation and deactivation of further options. Switching is possible by
clicking the specific control field. A check mark in the control field
indicates that the option is active, a blank signifies that it is deactivated.

Creating and Editing Dialog Boxes

Caption
Type in the desired heading or title which is to appear at the top of the
dialog window. This text will only be shown once the Title bar attribute
function has been activated (see: Attributes).

Position

Absolute Coordinates
This control button is used to enter the positioning and alignment
reference values. If the Absolute Coordinates option is activated, then all
further definitions will relate to positions within the full screen area. In
this case the (X,Y) window coordinates will originate in the top, left hand
corner of the screen. Any centered window alignments will be made
according to the size of the full screen. If the Absolute Coordinates option
is deactivated, then centering will be done with reference to the position of a
major window. In this case the window positioning coordinates-ordinates will
be ignored.

Center of Screen / Window
This option will ensure that the dialog window is placed in the center of the
display area, both horizontally and vertically. This reference point will alter
depending on whether the Absolute coordinate-ordinate option is calling for
the full screen or major window.

X/Y Coordinates
The coordinates, which are measured in dialog units, define the horizontal and
vertical origin of the top left hand corner of the dialog window. As above, this
is directly related to the absolute coordinate option setting and will either use
the top left hand corner of the display area, or the major window as a
reference point.

Size
The default values for the horizontal and vertical size of a new dialog window
are 185, 92. These can, of course, be overwritten with the user’s personal
preferences.

Attributes

Title Bar / System Menu / Dialog Frame
This will determine whether the dialog window contains a title bar or not.
This option must be active if the user wants the window caption and
system menu button to be visible.

The Controls
The following section contains instructions on how to insert a control
element and define its properties. General, commonly used control
element attributes are covered. This is followed by an outline of the
different types of control element and a detailed review of the specific
properties of each element. There is also a syntax section. This is
designed for experienced users who prefer to edit the menu files using a

52

Creating and Editing Dialog Boxes

53

text editor. The options available to position and align the control
elements within a dialog window are covered in a later section.
Insertion of a Control Element

The insertion and positioning of control elements is carried out in two
steps:
1. Selection of the control element type
2. Positioning the control element within the dialog window
Control Element Selection

Two options are available by which a control element type can be
selected.

Select the Controls option from the menu bar. This will cause a pull-
down menu containing the various element types to appear. An arrow
behind the element type indicates that a further sub menu is available
in which other type specifications can be made.

Please note that this pull-down menu will only be displayed if a dialog
window has already been opened.

Select the required element type with the mouse pointer or cursor
direction keys

The Menu and Dialog Editor contains the tool Palette as illustrated
above. This Palette is used to select the control element type and is
opened by selecting the View menu option or by pressing the F8
function key. Using the mouse, the Palette can be moved to any
position on the screen.

By moving the cursor onto the tool Palette elements, the user will
cause a brief description of each button to appear in the status line.

To select a specific control element type just click the corresponding
button.

Placing a Control

Once a control element has been selected, the cursor display will change
from an arrow to a cross and a symbolic representation of the control
element will appear. Move the cursor to the position at which the user
wishes to insert the element and click the left mouse button. The control
element will then be positioned using the cursor cross as a reference
point.

Note: The program offers a number of versatile functions which enable
the user to place the elements directly below one another, or at a
particular reference position within the window. These functions are
introduced and explained in a later section.

Creating and Editing Dialog Boxes

Properties / Attributes
The definition of control element properties and attributes is carried in
the Properties window using the same methods as described for dialog
windows.
It is essential that an element has been placed within the dialog window
before the editing window can be opened. To mark or select the element,
click it with the mouse pointer. Further notes on how to mark an element
can be found in the Editing Window section earlier on in this chapter.
Either open the properties window using the properties option in the
Elements, Pull-down menu, press the F7 function key, or double click the
required element.

Radio Button Properties E
Control ID .
rAttributes
[Radiol = ™

Caption X Visible

[Radio1 [Disabled

rPosition Size [Tabstop
X 32 Width |34 Group

28 i |1 1]
ki Height [Frame

rProperties
Type Text Alignment
(& Auto Switch ! Left Text
(! Dizable Auto Switch (® Right Text

A number of definable properties and attributes can be found in almost all
control elements They will be summarized together, and exceptions to these
properties and attributes will be covered later.

Control ID
The Control ID (also called Control Name or Control Key) is a unique identifier
given to a control element. This name is used as a reference between the
program code and the control element. Accessing the dialog element by its
name will cause the appropriate event routines to be called up, inputs to be
read, or specific entries to be output.
Note:

» A control name may consist of up to 32 characters.
» A distinction is made between upper and lower case.

Control names which have been used previously in the same dialog will
be listed in the input and selection window and cannot be reused.

54

Creating and Editing Dialog Boxes

55

Caption
The caption entry is used to allocate a heading or title. This will be displayed

in, or on the control element. Bitmap buttons (see below) contain a graphical
representation instead of a text header.

Position / Size
These entries, measured in dialog units, define the X and Y coordinates-
ordinates of the top left hand corner of the control element as well as its
height and width.

General Attributes

Visible
This determines whether a control element should be visible or hidden as a
default. Dependent on certain actions (calling up of specific commands,
definition of variables, clicking certain buttons) this attribute could change
status during program execution. The element will then change from visible to
invisible or vice versa

Unavailable
Sets a default as to whether the element can be accessed, or if it is to
remain inactive. Inactive elements cannot be selected and are displayed
accordingly.
Dependent on certain actions (calling up of specific commands, definition of
variables, clicking certain buttons), this attribute could change status during
program execution. The element will then change from available to
unavailable or vice versa.
For example, the editing functions of a dialog box could remain unavailable as
long as the corresponding drawing does not contain at least one element.

Tab
Specifies whether the control element can be accessed with the TAB key.
In most control elements this attribute is set to active. This does not,
however, apply to Radio buttons, static elements or the scroll bar. All
elements can be selected using the mouse pointer, or as part of a group with
the cursor direction keys.
The sequence in which the elements are selected, or activated using the TAB
key is usually directly related to the order in which the elements where
inserted into the dialog box. This order can be amended if required.
The element sequence option can be found in the menu Dialog, or in the
Alignment Palette. The set sequence can be altered by changing the
allocated reference number.

Group
This attribute allows the user to group together a number of separate
elements. The first element in the group must be activated with the group
attribute. The group will include all elements up until the point at which the
next group attribute is activated. The sequence can be defined by using the
method described above.

Creating and Editing Dialog Boxes

The individual elements contained within a group can be selected using the
cursor direction keys. The next group, however, can only be accessed with
the TAB key, or mouse pointer.
Only one button within a group can be activated at any one time.

Frame
The frame attribute, when selected, will draw a frame around the control
element. Some elements (e.g. the OK standard action button, HELP,
CANCEL) have a default frame which cannot be deactivated.

Text Attributes
These attributes are used in

* Control elements, displaying a variable text caption.

The text can either be aligned to the left or to the right of the control
element symbol.

* Control elements used to enter or output text.

In this case, both the text alignment and character case can be
altered.
Property: Pre-defined Button
Some control element types can be set to reflect a redefined option. This h
the effect of setting the control element to active, as soon as the dialog
window is opened.

as

In dialog windows which contain default or standard values it is usual that the

OK button is set up as a pre-defined button. In this case the user will only
need to press the Return key to confirm the selections.
This property can only be allocated once within a single dialog window.

56

Creating and Editing Dialog Boxes

Control Types

Standard Action Buttons: OK, Cancel, Help
Action buttons are control elements which instigate a specific action, in
other words, carry out a standard command or function.
These buttons action a pre-defined function and can be inserted into a dialog
window without the need for any further action.
Standard action buttons are:
* OK,

+ Cancel, and

* Help.
fPush Buton Proporios
Control 1D rAttributes
[Foox =l | = visible
Caption [Disabled
IDK [¥ Tabstop
Pasition Size [Group
X IW Width IEU— -Property
v Im— Height IH— [¥ Default Button

Command Button (Push Button)
As opposed to the standard buttons, these buttons can carry a title made
up of free flow text. This should mirror the command or function which will
be carried out when the button is actuated.
Type in the text into the Caption text box, but remember that the button
size will not automatically increase to accept the user text. The title will
automatically be centered within the button's size.

Creating and Editing Dialog Boxes

Puszh Button Properties E2
Control ID rAttributes
[Buttont =] | & visible
ILisl...l
[X Tabstop
Position Size————————————— [Group _m

W IB Width |5|] -Property
v [s Height [14 I™ Default Button

These action buttons can be allocated a control name within the program.
This name can then be used to call up any command to which the buttons
have been cross referenced or linked. The user-definable keys may be
allocated a text title, or a graphical representation (icon).

Bitmap Button
This type of button depicts either a .bmp or a .dip file icon designed to
mirror the functionality of the button.
Use the file selection window to select a suitable bitmap file. A number of
such files are contained with in the application. If required the user can

use a graphics program or Icon editor to design the user own files.

Bitmap Button Properties E3
Control ID -Attributes
[BmpButiont Il | & visible

Position Size [” Disabled

¥ ||;2 Width |2I] [X Tabstop
¥ ||;|] Height |2I] [Group

Bitmap File

I""\MNP_BMP\FE_AFIE.BMP Find File ... I

Cancel

These action buttons can be allocated a control name within the program.
This name can then be used to call up any command to which the buttons
have been cross referenced or linked. The user-definable keys may be
allocated a text title, or a graphical representation (icon).

58

Creating and Editing Dialog Boxes

Radio Button
Radio Buttons serve to switch between a number of pre-defined options,
but only allow one of the available possibilities to be selected.
When a number of button fields are used, these are usually grouped
together. Selecting an option from one group will cause the option which

is currently active to be switched off.

Control 1D .
= rAttributes
|Fladln2 j| | 0K I
Caption X Visible
Ilnvisihld [Disabled
-Pozition Size [Tabstop
X |54 Width |34 ™ Group
v |52 Height |1l] [Frame

‘Properties
Type Text Alignment
(® Auto Switch I Left Text
C Disable Auto Switch @ Right Text

In addition to the standard properties and attributes, the following settings
may also be made:

Select a button type from the following options:
Auto Switch causes the button to switch between the possible selection
modes. At the same time each switch within a specific group will
automatically change mode. Selecting one button will automatically de-
select all others in the same group.
Disable Auto-Switch has no automatic effect. Switching only takes
place in accordance with pre-defined program steps. The switching
operation is merely displayed in the dialog window.

Text Alignment
Choose between having the text displayed to the right (default setting),
or to the left of the Radio Button.

Creating and Editing Dialog Boxes

Check Box
The Check Box control allows a program option to be switched on or off.
Unlike the previous types, it is possible to select or deselect more than

one option box from a group.

Control ID Attribut
|Eheck1 jl TIDULES: | DK I
Caption [X Visible

[Visiblel [Disabled

x [s Width [34 Group

76 i |1 1]
ki Height [Frame

rProperties
Typ Text Alignment
C 3 Modes C Left side
! 3 Modes [Auto) (® Right side
) 2 Modes
(@ 2 Modes [Auto]

In addition to the standard properties and attributes, the following settings
may also be made:
Button Type
Four possible button types are available, and a distinction is made between
buttons with two or three selection modes, with or without automatic
switching.
Buttons with two selection modes can only be used to chose an active or
inactive state.
Three button switches allow a third option mode. This third option can be
designated to carry out any particular action within the application.
An automatic switching button will change mode as soon as it is selected.
Selecting non automatic switching will cancel this effect. Switching will only
take place in accordance with pre-defined program steps. The switching
operation is merely displayed in the dialog window.
The check boxes can be selected with the cursor keys or the mouse pointer.
The switching operation is activated with the space bar or mouse button.
Text Alignment
Choose between having the text displayed to the right (default setting),
or to the left of the Check Box.

60

Creating and Editing Dialog Boxes

61

List Box

List boxes can display a number of different elements and are generally
used for selection purposes. A typical example of a list box is a layer
from a list box.
T |
Control 1D .
|i_i3tBDll1 j| Attributes
o] [X Visible =
Pozition Size I Disabled
x 6| widh [B | | Tabstop
: [Group
‘Properties
Scroll List Properties
[Horizontal [Extended Selection X List Size Fit
X Vertical [Multiple Selection X Sort List
[Display allways [Multiple Columns [Evaluate TAB
In addition to the standard properties and attributes the following settings
may also be made:
Scroll Bars

By selecting the appropriate options, it is possible to add either a Horizontal
or Vertical scroll bar to the list box.
The Display Always option has the effect of displaying scroll bars, even
thought they may not necessarily be needed. For example, when enough
room is available within the list box to display all of the available options.
Extended Selection
When activated, this setting allows more than one element or entry to be
selected from the list box. This can be achieved by pressing the Shift key
during the selection process. A prerequisite is that the items are located
immediately adjacent to one another in the list.
Multiple Selection
This option is similar to the extended selection, however, it does not
require that the items are displayed below one another.
Multiple Columns
Allows the elements or entries to be displayed in more than one column.
The entries can then be viewed by using the horizontal scroll function.
Height Reliant
This option automatically selects the required height so that all of the
possible options or elements can be viewed at one time. If this
parameter is deactivated, the list will open to the dimensions which were
defined at the time of its creation.

Creating and Editing Dialog Boxes

Sort List

The elements or entries will appear in alphabetical order.

Tabulated (Evaluate TAB)

If active, this function will cause the display to be tabulator sensitive.
This allows the elements or entries to be shown in list format.

Combo Box

A combo box links the properties of the list box with those of an input
field (shown below). By doing so, it offers the user the added option of
not only being able to select an element, but also allows him or her to
add a new element or entry to the list.

The combo box consists of a combination of both a display field and an
input field. If activated, a complete list of entries will appear as soon as
the open button, which is located at the side of the combo field, is
clicked. An example of a combo box can be seen by selecting the Save

As... command in any typical Windows application.

Combo Box Properties E2
Control ID .
Attributes
|EumhuBux1 j| o

-Position Size X Visible

[Disabled C I

b4 |3 Width I-llB ancel
: [X Tabstop

Y 26 Height |39 [T Group

rProperties
Type Scroll Lizt Properties
) Simple [Horizontal
(& Dropdown [Vertical [Adjust List Height
) Drop List [No Edit) [C ¥ertical [permanent) X Sort List

In addition to the standard properties and attributes, please activate or
deactivate the following settings:

This option determines what will be displayed within the combined input and
list box.

The option Simple combo box, dictates that the input and list box is shown to
the maximum. The input field will contain the list element which is currently
selected.

Unfold will only display the list box if the open symbol located at the side of
the input field is clicked.

Creating and Editing Dialog Boxes

Unfold (non editable) enables the combo box and displays the selected item

from the list, but does not permit the user to edit or make a new entry. The

listed entries will only be displayed once the open symbol has been clicked.
Scroll

This option dictates whether horizontal and / or vertical scroll bars are to be

included in the combo box. Activate or deactivate the appropriate check box.
List Box Entries

These will enable or disable the automatic height reliance option which

adjusts the list box to suit the size and alphabetical order of the elements or

entries. When deactivated, the list box will always be displayed according to

the default size settings.

Group Box
Group frames can be inserted into the dialog window and help create a more
logical and clear structure within the dialog box.
These group boxes help the user to identify which elements are directly
related to one another.
Only the control identifier, a caption (title), the standard properties (position
and size), and the attribute settings are required to define the Group Box

properties.

Group Box Properties E
Control 1D .
'A“ IJ tes
|Emume¢1 j| niu

Caption

X Visible
[GroupBox1

Position Size [Disabled
X |EB Width |43 [Tabstop _m

Y |15 Height |35EI [Group

Static Control (Label)
A static element (LABEL) is either used to insert a text block or a raised
surface respectively a layout element in a dialog window. This enables you to
“title” other control elements or raise the surface of a button so as to give it a
more textured and predominant look.

Creating and Editing Dialog Boxes

E:::;g;'“ <] Aabutes o]
Caption [Visible
Position Size [Disabled
X IB— Width (30 [Tabstop
v |24 Height [7 % Group

‘Properties
Frame or Rectangle Text Alignment
(! Black Rectangle (@ Left
! Gray Rectangle) Left without word wrap
! White Rectangle) Centered
(! Black Frame) Right
I Gray Frame
I White Frame [Mo Underscore

In addition to the standard properties and attributes, static elements also
include options to enable different graphical representations and text types
within the control element.
Only one of the above options can be selected at any one time.

Frame or Rectangle
Selecting one of these options will insert a frame or rectangle static element.
In this case no text will be displayed. Options are available to define the
background color of the rectangle, or the color of the frame.

Text Alignment
This option sets the available parameters for the text block. Left alignment,
left alignment without wrap around, centered or right alignment

No Underscore
This option deactivates the “underline next character” option set with a
preceding &-symbol. The &-symbol will now print normally.
Note: The selection of any one option from the text group will cause the
static element color or design settings to be reset.

64

Creating and Editing Dialog Boxes

Text Edit Control
The Text Edit control allows alpha-numeric data to be typed in and
processed by the application.
The control element can be defined as a single or multi-line input field and

allocated vertical and horizontal scroll bars as necessary.

Edit Propertiez [Text Edit)
[an_llml D rAttributes
For]
[X Visible
-Position Size [" Disabled
x [* Width [40 ﬁ Tabstop
P
¥ |22 Height |12 X Frame
‘Properties
~Type
)) [C Remain Selection [Password
@ Single Line [T want Return [Read Only
) Multiple Lines
Max. no. of characters I[I
~Scroll ~Text Alignment—— [Text Entries
[X Auto Horizontal Scroll
Multiline Multiline g Normal
[T Auto Vertical Scroll O Left Wy (Bt
™ Horizontal Scroll) Centered € Lower Case
[Vertical Scroll i Right

In addition to the standard properties and attributes, please activate or
deactivate the following settings:

Single / Multi-input field
Use the available options to define either single or multi-line input.

Scroll

The horizontal scroll bar function can be assigned to single line input fields.
Multi-line fields can be allocated both a horizontal and / or vertical scroll bar.
In this case, the text will automatically scroll horizontally or vertically as soon
as the input text becomes longer than the space available within the field.
Select the appropriate options in the scroll bar group.

Text alignment
The text alignment options are only available for multi-line inputs. The possible

options are left alignment, right alignment and centered. Click the desired
alignment with the mouse pointer.

65

Creating and Editing Dialog Boxes

Text effects
This option can be used to correct the case of the entered text. For instance,
upper case characters can be altered to lower case, and vice versa, if so
desired.

Maintain highlight
Normally the text within a selected input field is only highlighted as long as the
element is active, or being focused on. The NOHIDESEL attribute maintains
the highlight effect even after the input focus has moved to another element.

Automatic Horizontal
If the user enters more text than can be displayed in the available space, then
this option will automatically scroll or move the text 10 characters horizontally.

Password
The password option will cause every character entered into the input field to
be displayed as an asterisks (*). This is useful if the user does not want
entries to be seen on the screen, such a when entering a password.

CR Key Evaluation
When activated, this will cause the enter key to act as a carriage return or
new line key, rather than as a send or confirmation key.

Read Only
Text within this type of input field can be read, but not edited. This allows the
user to restrict the situations where information can be entered.

Maximum Character restriction
It is sometimes necessary to restrict the number of characters which can be
entered, this functions has a default setting of 0 which allows up to a
maximum of 32 KB to be stored.

66

Creating and Editing Dialog Boxes

Filtered Input Control
The INPUT control allows data of a specific type to be typed in and
processed by the application. The properties and attributes of this control
element are very similar to those in the Text Edit control. The difference is
that the filtered text input can be used to select specific information, while
ignoring those entries which do not meet the filter criterion.

Filtered Input Control Properties [INPUT]
Control 1D .
rAttributes
[Eaiz -]
[X Visible
~Position Size r Dizabled
|4 i |4l]
= Width [¥ Tabstop
Pz ant [T
Y Height [Group
~Properties
“Input Filter
IINT - integer value [2 byte] jJ
~Text Attributez Mizcellaneous Mo. of characters
® As typed [Maintain Marking
(' Upper Case X Auto Horizontal I_u
] L:I:er Case [Password
[Read Only

Information regarding text displays and text properties can be read in the
previous section on Input field control elements. The following selection
options can be used when defining input filters:

INT Integer (2 byte)

WORD Positive integer (2 byte)

LONG Integer (4 byte)

DOUBLE LONG Positive integer (4 byte)

FLOAT Floating point (basic accuracy)
DOUBLE Floating point (double accuracy)
LONG DOUBLE Floating point (very accurate)
TEXT Free flow text

The filter can be selected from a list containing the standard filter options.
This list appears as soon as the open button located at the side of the
FILTER display window is clicked.

Creating and Editing Dialog Boxes

Image Window Control
An image WINDOW or output field can be inserted into the dialog. This
enables graphics (vectors, filled rectangles, BMP files, and WMF files) to
be displayed as required. The window is defined by setting the following
standard properties and attributes :
» Control name, position and size

* Visible, Not available, TAB, Group and frame

Image Window Control Propertiez [WINDDW] E
Control ID .
rAttributes
|[Winduw1 ﬂl b

X Visible

[ox_]

Position Size ; Disabled
X Tabstop

x I wih [100 [Heb |

' [Group [teb |

Y |4 Height |5ll [® Frame

Slider Control
Some of the described elements, such as list boxes, combo boxes and
input fields can contain scroll bars to enable a specific section of text to
be displayed within the window boundaries.
The Scroll control element is designed to display a range of values for
selection. Instead of typing in a (numeric) value, the user can use the
scroll slider to move up or down until the desired figure is reached.
The slider position, as viewed within the scroll bar limitations, can be
evaluated by the program and converted to a numeric value. This value
could then be made to appear within a combo box display.
To enable this function it is necessary to program the slider range and
step parameters into the application. The relevant information on how
this is done can be found in the chapter, Programming Interfaces for the
Application.
The scroll bar properties window, contains the options required to enter
the standard properties and attributes.

68

Creating and Editing Dialog Boxes

Control 1D .
|E|ide,1 j| Attributes —
[X Visible |_|

Position B [Disabled

X |41 Width |4u [" Tabstop
Y IBU Height |11 [Group

‘Properties
Type Alignment
® Horizontal ® Mone
! Yertical ! Top / Left
I Bottom 7 Right

Control Positioning Aids (Grid etc.)
A number of features are available to help the user position and align control
elements within a dialog window. These features make it easy to achieve
excellent results, with a minimum of effort and time investment.
The Grid option can be activated or deactivated at will during the dialog
creation process. The following methods can be used to display the grid:
 Select theGrid option from the mendiew

« Press the F10 function key
e Click the GRID button in the Alignment Palette

The snap and grid functions allow control elements to be inserted into a
dialog aligned at absolute positions. This ensures that all elements can
be aligned on both a horizontal and vertical plain. The grid parameters
and snap-to-capture options can be set in the option Grid... shown in the
menu Options. The following dialog window will open once this option is
selected.

Enter the grid spacing values (horizontal / vertical) into the appropriate
input fields. The unit of measurement is stated in dialog units (DLU's).
The standard DLU value is four. By clicking the button Default Setting,
the user will return both the horizontal and vertical spacing to this
standard value. The snap function can be activated or deactivated by
clicking the corresponding check button. A check mark in the control box
indicates that the snap function has been activated.

Creating and Editing Dialog Boxes

Grid Settings E

‘Diztance

Horizontal I" DLUs
Yertical I" DLUs

Default Setting D Snap W

[DLU = Dialog Unit]

Dialog design grid settings

Duplicate Controls E2

rHorizontal Duplication

Direction Diztance
bet
@ to the left elween
) to the right I‘ DLUs

Wertical Duplication

Direction Distance
between
@ downwards
|4 .
) upwards DI

[DLU = Dialog Units]

Preferences for the Duplicate option

Creating and Editing Dialog Boxes

Control Alignment

71

The Dialog and Menu Editor offers a number of different methods by
which the control elements can be positioned and aligned, both below
one another and in reference to the window itself.

The following results can be obtained by using the positioning and alignment
options:

» centered horizontally, or vertically in relation to the boarder limitations of
the dialog window,

* below one another to the right, upper or lower left alignment,

* standard sizing

* standard spacing

Alignment Palette

The Alignment palette can be activated or deactivated by using either the
View menu option, or by pressing the F9 function key.

The Alignment menu offers the added ability of allowing the palette to be
displayed in a one, two, or three column mode.

The positioning and alignment functions are self explanatory and easy to
use. By moving the cursor onto one of the palette icons, the user will notice
that a brief explanation of the button function will be shown in the status line

Control Selection

Please note that the control elements which the user may want to
position or alignment have been selected or marked prior to the
allocation on any alignment parameters.

The easiest way to select a control element is by cursor selection.

To select a number of different elements at one time, hold the (shift) key
until all elements have been highlighted, or use the cursor to draw a
selection frame around the required elements. Further instructions
regarding the marking and selection of control elements can be found in
the section entitled Editing Window, located at the beginning of this
chapter.

Positioning and Aligning a Number of Control Elements

Functions which are used to position two or more elements will only
become available when the appropriate number of elements have been
marked or selected.

Alignment functions which position items below one another will only work
when at least two buttons or windows have been selected. The equal

Creating and Editing Dialog Boxes

spacing function assumes that at least three elements are present and
that they have been marked.

Testing a Dialog
Both during and after editing a dialog, the user is given the option of
checking the design, functionality, position and alignment of the user
window.
This feature will display the window exactly as it will appear within the
application. All switch, selection and input properties can be checked for
correct operation.
To call up the test function use either of the following options:
* Select the Test option from the menu Dialog.
* Click the Test button located in the Alignment Palette.

72

LISP Programming

CHAPTER 10

LISP Programming

With FLISP your CAD system provides a flexible LISP-Interpreter. The Lisp
programming language suits the needs of technically-skilled people.

FLISP is a complex tool to enhance the power of your application in many
ways. The built-in LISP Interpreter allows you to add functions and routines
tailored to your individual needs. One of the advantages of LISP is the short
learning curve. In a short time you will be able to exploit the capabilities
provided by this programming interface when working with your CAD
application. The high value of providing the LISP interpreter with the system
is not at least summarized by the following features:

73

Easy to understand and use syntax

Short learning curve

Error handling and tracing is easy to implement
Pre-testing of lisp expressions at command line

High functionality from simple arithmetic calculations up to complex
operations on drawing entities, selected objects, and drawing database
tables

Complex functions to display, fill and evaluate dialog boxes
Create individual commands

LISP Programming

Data Types in FLISP

Symbol Symbols are named data objects. Symbols serve to
name functions and variables. You can assign values to
symbols to set variables.

The name of a symbol can be specified out of any
printable characters with the exception of:
0
Naming symbols is not case-sensitive.
Example to set a symbol x to a value:
(setq x 33)

String A string expression may be of any length and contains a
sequence of characters enclosed by " (double quotes).

Real Number Floating point numbers (with one or more decimal places)

Integer Number without decimal places in the range of
-2147483648 through 2147483647

List Assigns elements to a symbol, e.g. (1 2 3) or ("1" "2" "3")
For example, 2D points and 3D points are expressed in
lists. The list elements are real numbers representing the
drawing coordinates like (1.0 2.0) or (1.0 2.0 3.0)

File Unique identifier for a file which has been opened with a

Handle Lisp function

Entity Unique identifier for a drawing object

Name

Selection Set
Name

Unique identifier for a group of drawing objects (a set of
selected entities)

Internal Function

Built-in function or a function defined with Lisp itself

External Function

Function provided by the application or defined by the
Lisp programmer which may be executed like a built-in
command

74

LISP Programming

Loading Lisp Files
You can enter FLISP expressions or call FLISP functions at the command
line. Another choice is to load lisp expressions from a file.

A file containing LISP code must be stored in an ASCII text file. The
commonly used file extension is .LSP. However, you can use any file
extension. But note, that an extension different to LSP needs to be passed to
the load function.

To load a LISP file the function (load ...) is used. A detailed description is
found in the functions reference. Example:

(load "test")

Normally the file contains one or more function definition. To define an
individual function the LISP function (defun ...) is used. This allows you both
to create your own functions and your own commands. Detailed information
on the function (defun ...) is found in the function reference. Example:
(defun C:XYZ ()
(princ "My new command 'XYZ' !"

)

Comments in LISP files
A semicolon (;) in a program's line indicates that the following text part to the
line end is interpreted as comment. This text part is not evaluated. The string
;| starts a multi-line comment. This following text lines are ignored up to the
closing string |; which terminates a comment.

Automatically loading a LISP file when opening a drawing
The local system variable LSPALOAD may contain a string specifying a Lisp
filename. The value of this variable can be set in any drawing and is saved
with the drawing file. By this, the local variable allows to automatically load a
specified Lisp file the next time the drawing will be opened. Individual
applications may use this possibility to auto-load a Lisp file by setting the
variable LSPALOAD in a template drawing.

Error Handling and Error Tracing

FLISP reacts with printing an error message when an error occurred if an
expression is evaluated. In may cases you want make sure that certain
states and modes are restored when a function has been canceled and
printing only the system's error message is not sufficient.

The function *error* allows to define your own error handler. The function has
only one argument: a string to which the error message text of the system is
passed. Instead of printing the message FLISP executes your error handler.
Within your error handler you can evaluate the message and perform

LISP Programming

functions to restore the setting of modified system variables, set back the
state found before your routine has been performed, etc.

Using the expression (setq *error* nil) restores the error handler of the
system.

Example for a function definition for error handling:

(defun *error* (msg)
(if (= msg "User break")
(setvar "OSMODE" osmode_sav)
(progn
(princ "The following error occurred:)
(princ msg)(terpri)
)
)
(setq *error* nil)
(princ)
)
When coding lisp programs it is often a great help to trace step by step the
operations evaluated by the LISP interpreter. The function *settrace*
provides several modes to view the code interpretation and to localize errors.
For example, it is possible to display all evaluated lisp expressions until an
error is recognized by the system. Detailed information is provided in the
description of the function (*settrace* ...) .

76

LISP Programming

FLISP Function Overview:
Thematically ordered

Function definition
(defun symbol argument_list Defines a function
term...)
Error Handling
(alert string string string) Displays a message box
1 message
2 title
3 system icon
(*settrace* [<integer> [integer]]) Sets the mode for tracing of LISP

routines and functions.
1. trace mode flag
2. react time in seconds

(*error * <string>) .. is the function for Error-Handling
System Functions
(command arguments...) Executes a built-in command with the
arguments supplied
(delemd string) De-Activates a specified command
(actemd string) Re-Activates a specified command
(getvar string) Allows to retrieve system variable
settings
(setvar string value) Sets a system variable
(findfile Search for a file
string 1. file name
[value] 2. condition
)
(getfiled Provides a dialog for file selection
string 1. Dialog caption
string 2. Preset filename
string 3. preset extension
integer 4. control flags
)
(osnap point list string) "Snaps" a given point on an object
Geometric Utilities
(distance point_list point_list) Calculates the distance between two
given points
(angle point_list point_list) Calculates the angle between two point

77

LISP Programming

(polar point_list real real)

(inters point_list point_list point_list
point_list [value])
(textbox list)

Returns a 3D point

1. point

2. distance

3. angle

Returns the intersection of two lines

Returns the bounding box corners of a
text

User Input

(initget [integer] [string])
(getreal [string))

(getstring [value] [string])
(getpoint [point_list] [string])
(getcorner point_list [string])

(getdist [point_list] [string])
(getangle [point_list] [string])
(getorient [point_list] [string])

(getkword [string])
(getint [string))

Initializes the next user input function
Prompts the user to enter a real number
Prompts the user to enter a string
Prompts the user to specify a point
Prompts the user to specify a second
corner of an rectangle

Prompts the user to specify a distance
Prompts the user to specify an angle
Prompts the user to specify an angle
(takes into account ANGBASE)
Prompts the user to select an option
Prompts the user to enter an integer
value

Conversion

(rtos real [integer [integer]))

(distof string [integer])
(angtos real [integer [integer]])

(angtof string [integer])
(symbtos value)

Real number to String conversion
1. float

2. mode

3. precision

Distance to Float conversion
Angle to String conversion

1. angle

2. mode

3. precision

Angle to Float conversion
Returns any lisp expressions in a string

Coordinate System Transformation

(trans point_list value value integer)

Transforms a point from one coordinate
system to another

1. point

2. from

3.to

4. transformation

78

LISP Programming

Display Control

(prinl [object [FileDescriptor]])
(princ [object [FileDescriptor]])

(print [object [FileDescriptor]])

(prompt string)

(terpri)

(grread [integer [integer]])

(redraw [string [integer]])

(graphscr)

(textscr)

Prints a message on the command line
or writes it to an open file

Prints a message on the command line
or writes it to an open file

Prints a message on the command line
or writes it to an open file (like prini,
but with a preceding CR and a Space
following)

Displays a message on the command
line

Outputs a new-line at the command line
Reads from an input device

1. draw mode

2. cursor type

Refresh current drawing display or
redraw an entity

1. entity name

2. mode

Closes the ,Commands History / Lisp
Interpreter* window

Opens the ,Commands History / Lisp
Interpreter* window

Selection Sets

79

(ssget [string] [point [point]]
[point_list] [assoc_list])

(ssadd [Ename [SelSet]))

(ssdel Ename SelSet)

(sslength SelSet)

(ssname SelSet integer)

(ssmemb Ename SelSet)

(ssdbno SelSet)

Creates a selection set.

1. mode

2. point

3. point

4. point list

5. filter list

Adds an entity to a selection set

1. entity name

2. selection set

Deletes an entity from a selection set
1. entity name

2 selection set

Returns the length of a selection set
Returns the n-th element of a selection
set

Verifies if an entity is member of a
selection set

Returns the drawing database number
(id) the selection set belongs to

LISP Programming

Entity Handling

(entget Ename [list])
(entmod list)
(entmake [list))
(entdel Ename)
(entnext [Ename])

(entlast)
(handent string)

(entsel [string])
(entupd Ename)

(entpos integer)

Returns entity information

Modifies an entity

Creates an entity

Deletes an entity

Returns the entity name which follows
the given entity in the drawing database
Returns the last entity added to the
drawing database

Returns the entity name to the entity
that has the specified reference
Prompts the user to select an entity
Updates an complex entity after
modifications

Sets the database pointer

Symbol Tables

(tbldel string string)
(tblmod list)

(tbimake list)

(tblset string string)
(tblnext string [value])
(tblpurge string integer)

(tblsearch string string)
(tblrename string string string)

Deletes a table-entry

Modifies a table-entry

Generates a new table-entry

Sets an entry as the current

Returns the next table-entry

Deletes all not referenced entries of a
table

Searches a table-entry

Renames a table-entry

Extended Entity Data

(regapp string)

Registers an application name

Arithmetical Functions

(+ number number ...)
(- number number ...)

(* number number ...)

(/ number number ...)
(~ integer)

(1+ number)

(1- number)

(abs number)

(atan number [number])

(cos number)

Sum of all numbers
Difference

Product

Division

Bitwise NOT

Increment of number
Decrement of number
Absolute value of a number
Arc tangent of an angle supplied in
radians

Cosine of an angle

80

LISP Programming

(exp number)

(expt numberl number2)
(fix number)
(float number)

(gcd number number ...)
(log number)

(logand integer integer ...)
(logior integer integer ...)
(Ish integer integer)

(max number number...)
(min number number...)
(minusp number)

pi

(rem numberl number1)

(sin number)
(sqrt number)
(zerop number)

Returns e raised to power number,
where e is the base of the natural
logarithm

Returns numberl to number2
Converts a real number to an integer
Converts a given number into a real
number

Returns the greatest common
denominator of the given numbers
Returns the natural logarithm of a given
number

Logical bitwise AND

Logical bitwise OR

Logical bitwise shift

Returns the largest number
Returns the smallest number

Tests if the number is negative
Constant 3,141...

Divides numberl by number2 and
returns the remainder

Sine of an angle

Square root of a number

Zero or floating-point zero

Symbol Handling

81

(atom term)
(atoms-family 0/1 [string_list])

(boundp value)
(not argument)
(null object)
(numberp object)

(quote object)
'object
(set symbol value)

(setq symbol value [symbol value]...)

(type object)

Returns T if term is an atom

Returns a list of all atoms currently
defined

Tests if the specified atom has a value
Returns T if argument is nil.

Returns T if argument is nil.

Returns T if its argument is any kind of
number.

simply returns object

Identical to (quote ...)

Sets the value of an quoted symbol to
an expression

Sets the value of a symbol to an
expression

Returns the data type

LISP Programming

Text Strings

(read string)

(read-char [FileDescriptor])

(read-line [FileDescriptor])

(strcase string [value))
(strcat string string ...)

(strlen string string...)

(substr string integer [integer])
(write-char integer [FileDescriptor])
(write-line string [FileDescriptor])
(stringsort list)

(wematch string string)

Retrieves the first atom or list from the
given string and returns it according to
its data type

Reads a single character from either the
keyboard buffer or from an open file
optionally specified by FileDescriptor
Reads a string from the keyboard buffer
or from an open file optionally specified
by FileDescriptor

Converts a given string to a new upper
case or lower case string.

Returns a new string concatenating two
or more strings.

Returns the sum of the length (number
of characters) of all strings given as
argument to the function.

Returns a new - partial - string based on
a given string

Writes a single character to file or to the
command line.

Writes a string to file or to the command
line.

Sorts a list of string-items

alphabetically, ascending

Allows a wild card pattern match search
on a string

Conversion

(ascii string)
(atof string)
(atoi string)

(chr integer)

(itoa integer)

Converts the first character of string into
its ASCII-Code, which is returned as
integer

Converts a given string to a floating-
point number, which is returned
Converts a given string to an integer.
Converts an ASCII code (given as
integer) into its equivalent single-
character-string

Returns the given integer as string

Equality / Conditional

(= atom atom ...)
(/= atom atom ...)
(< atom atom...)

(<= atom atom...)

Comparison: equal
Comparison: not equal
Comparison: less than
Comparison: less than or equal

82

LISP Programming

(> atom atom...)

(>= atom atom...)

(and term term...)

(boole bit_value integer integer...)

(cond

(value value value ...)
[(value value value...)]...

)

(eq term term)

(equal value value [number])

(if

<value> <value>

[<value> value value [value]
)

(or value value...)

(repeat integer value...)
(while value value...)

Comparison: greater than
Comparison: greater than or equal
Logical AND

Performs a general bitwise Boolean
function

Is the primary conditional function

Evaluates if two terms are identical
Tests if two expressions have the same
result

Performs an conditional evaluation

1. test expression

2. then expression

3. [else expression]

Logical OR

Executes a given expression ntimes
The while construct allows iteration to
continue until the specified expression
evaluates to nil

List Manipulation

83

(append list list...)
(assoc value assoc_list)

(car list)
(cdr list)

(c????r list)

(cons value listlatom)
(foreach symboal list value...)

(last list)
(length list)
(list value...)

(listp value)

Adds any number of lists together.
Returns a new list

Searches an association list assoc_list
for key

Returns the first element of an list
Returns a new list without the first
element of a given list

Combinations of car and cdr up to four
levels

Constructs a new list

Steps through a given list assigning
each element to the specified symbol
and evaluating the specified expression
for each element of the list

Returns the last element of a list
Returns the number of elements in a list
Creates a list out of expressions
supplied as arguments to the function
Verifies if elementis a list

LISP Programming

(mapcar
func_symb
list_1...list_n

)

(member value list)

(nth integer list)
(reverse list)

(subst old_element new_element list)

Operates on successive elements of the
lists list 1 ... list_n

Searches the given list for an element
and returns the remaining portion of the
list

Returns the nth element of list.(n
counting starts with 0)

Reverses the given list and returns a
new list

Copies a list substituting old_element
by new_element

File Handling

(close FileDescriptor)

(load FileName [value])
(open FileName FileMode)

Closes the open file specified by
FileDescriptor

Loads an existing lisp file

Open a file given by FileName to read
or write. FileMode can be:

"t open file to read
"w" open file to write
"a" open file to append

Function Handling

(apply func_symbol list)

(eval value)

(exit)

(lambda argument_list value...)

(progn value value...)

(quit)

(*settrace* [integer [integen])

Executes a function, where arguments
are taken from list

Returns the result of a Lisp expression
Terminates the current application
Allows the definition of an anonymous
function

Evaluates one expression after the other
grouped in progn .

Terminates (cancels) the current
application and returns to the command
prompt.

Sets the mode for tracing of Lisp
routines and functions.

1. Trace mode

2. Time in seconds

Memory Management

(9c)
(mem)

Garbage collection
Displays the memory status of FLISP
and returns nil

84

LISP Programming

Miscellaneous

(getenv string)

(ver)

Returns a dotted pair list containing the
settings of the system paths and system
files as defined in the application INI file
Returns a string containing the
information on the current version of the
FLISP interpreter

FDT Application Handling

(fdt)

(xload string [string]))

(xunload string [string])

Returns a list of strings containing the
loaded external FDT C-language
applications

Loads an "external" FDT application's
DLL

De-activates an "external" FDT
application

Help

(help [string [string [string]]])

(setfunhelp string string string)

85

Calls WinHelp with a specified help topic
1. Topic

2. Help filename

3. Command

Set a help topic belonging to a function
1. Function

2. Topic

3. Helpfile

LISP Programming

FLISP Functions: Reference

Within this section you find detailed descriptions of all functions provided by
FLISP.
A paragraph to discuss a function contains normally the following items:

Function name

Short description of the functionality and operation

Function syntax

Parameters / Arguments to be passed to the function (detailed description
on data types and meaning)

Cross reference to other Lisp functions

Example code applying the function

The functions reference is sorted alphabetically.

86

LISP Programming

*error *
The function *error* allows handling of errors.
(*error* string)
A re-definition of this built-in functions allows you to implement application
specific error handling.
For example, you can make sure that certain system variables are reset if a
function has been canceled by the user or an error occurred in your function.
The argument to the function is a string which retrieves the error message
passed to the function by the LISP interpreter.
The internal routine for error handling is restored by executing the expression
(setq *error* nil)
Example:
(defun *error* (msg)
(princ "Error: ")
(princ msQ)
(princ)
)
settrace

87

The function *settrace* sets the mode for tracing of LISP routines and
functions.

Note: As soon as protected FLISP files are loaded, the function
(*settrace* ...) does not function (by intention, for FCAD GDE developers).

When writing your own programs or when porting you should
avoid loading protected lisp files.

(*settrace* variant [seconds])
The integer value variant may be combined (as follows):

0 No trace

1 Display allocated memory

8 Display function which caused an error

16 Display in case of an error all expressions up to function

which caused the error

32 Display any LISP expression evaluated

32+64 Display any LISP expression evaluated (each line of code)

LISP Programming

needs to be confirmed by pressing any key

32+128 Display any LISP expression evaluated. Halts at the end of a
line for a certain time specified by the argument seconds. The
default value is 5 seconds.

+ (Addition)

This function returns the sum of all numbers given as argument(s).
(+ numberl number2 [number...])

Examples:

(+52)

7

(+ 1.2 3.49)
4.60

(+51.22.8)
9.00

(setq nl (+ 1.2 5))
6.20

(+3)

3

*+)
0

- (Subtraction)

This function subtracts the second number from the first and returns the
difference.
(- numberl number2 [number...])

Examples:
(-52)

3

(-52.0)
3.0000
(-51.23.2)
0.6000

(-51.23.45.6)
-5.2000

(-5
-5

* (Multiplication)

This function returns the product of all numbers given as arguments.
(- numberl number2 [number...])

88

LISP Programming

Examples:
(*52)
10

(*523)
30

(* 5 2.0)
10.0000

(*5)
5

/ (Division)

This function divides the first number by the second and returns the quotient.
(/ numberl number2 [number...])

Examples:

(I 6 3)
2

(5 2)
2

(/ 6 3.0)
2.0000

(/5 1.5)
3.3333

(/7.13521.2)
2.9729

(/ 5.0 2)
2.5000

(/' 5 2.0)
2.5000

(/'5)
5

(/ 5.0 2.0)
2.5

(/7.022)
1.7500

(/622)
1

(1722)
1

(/9.9 33)
1.1000

(/ 9.9 6)
1.6500

= (equal)

89

This function compares the given arguments. If they are equal, it returns T,

otherwise nil.

(= atom1 atom?2 [atom...])

This function is valid for numbers and strings.

Examples:

(=12.012)
T

(=12 11.0)
nil
(=121212)

LISP Programming

T
(=121211)

nil

(= "Test" "test")
nil
(="TEST""TEST")
T

See also:

eq
equal

/= (not equal)

This function compares the given arguments. If they are not equal, it returns

T, otherwise nil.
(/= atom1 atom?2 [atom...])

Examples:
(/= 2.0 2.00) (/I=223)
nil T
(/=2.11 2.22) (I=22)
T nil
(I=F222) (/="Test" "test")
nil T
(I=223) (/="TEST""TEST")
T nil

< (less than)

This function compares the given arguments. If each atom is less than the
atom to its right, it returns T, otherwise nil.
(< atom1 atom?2 [atom...])

Examples:
(<12

T
(<123)
T
(<231)
nil
(<"A""B")

90

LISP Programming

T

<= (less than or equal)

This function compares the given arguments. If each atom is less than or
equal to the atom to its right, it returns T, otherwise nil.
(<= atom1 atom?2 [atom...])

Examples:
(<=12)

T
(<=11233)
T
(<=11213)
nil

> (greater than)

This function compares the given arguments. If each atom is greater than to
the atom to its right, it returns T, otherwise nil.
(> atom1 atom2 [atom...])

Examples:
>12

nil
(>321)
T
(>312)
nil
(>"A""B")
nil

>= (greater than or equal)

This function compares the given arguments. If each atom is greater than or
equal to the atom to its right, it returns T, otherwise nil.
(>= atom1 atom?2 [atom...])

Examples:
(>=21)

T

(>=331 2)
nil
(>=3321)
T

1+ (Increment)

91

LISP Programming

The increment function adds one to a given number and returns the result.
(1+ number)

Examples:

(1+ 1)

2

(1+1.0)
2.0000

1- (Decrement)

The decrement function subtracts one from a given number and returns the
result.
(1- number)

Examples:
(1-2)
1

(1- 2.0)
1.0000

~ (Bitwise NOT)

This is the bitwise NOT function. It returns the one’s complement of a given
integer.
(~ integer)

See also:

boole
logand
logior
Ish

Examples:
(~5)
-6
(~-3)
2

abs

This function returns the absolute value of a given number.
(abs number)

Examples:

(abs 10)
10

(abs -10)

92

LISP Programming

10

(abs -10.11)
10.1100

actcmd

The function actcmd re-activates a built-in command of the FCAD GDE
(Graphic Developer's Engine), which has been de-activated prior by the
function delcmd , for the user.

(actcmd string)

If the given argument is not a valid name of a system command, it returns nil,
otherwise T.

Example:

(delcmd "LINE") ; LINE is not available
T

line

Unknown command

(actcmd "LINE") ; LINE is available
T

See also:

delcmd

alert

The function alert allows to display a message in an alert dialog box. To
display Alert Boxes with certain icons like Exclamation, Question, Stop,
Information specify the argument mode.

(alert message [title [mode]])

Parameters:

93

message is a string to be displayed in the dialog box
title is an optional string to be displayed in the header of the box
mode is an optional string to specify the type of the box.

The following shows the various system icons that can be used:

Mode Symbol Buttons Return Value
None None nil

"STOP" @ OK nil
"INFORMATION" 0 OK nil
"EXCLAMATION" ® OK nil

LISP Programming

"QUESTION" YES T
NO nil

Examples:
(alert "This is an example" "Example” "INFORMATION")

‘=-‘ Example Example |

0 This is an example @ Thiz iz an example

Windows NT 3.5, Windows 3.1x Windows 95

and

This function returns the logical AND of multiple terms in a list. If all terms are
bound (not nil) it returns T, otherwise nil.

(and [term] ...)

As soon as one of the terms evaluated is nil the function returns nil.

Examples:

(and 1.2 3 32)

T

(and 123 xyz 22) ; Xyz is nil
nil

angle

The function angle returns the angle between the axis specified by two
points.

(angle point_list point_list)

The function ignores Z coordinates different to zero of point1 and point2.
The angle is measured counterclockwise from the x-axis of the current user
coordinate system (UCS) . The value of the angle is returned in radians.

Examples:

(angle '(10.0 5.0) '(20.0 7.0))
0.1974

(angle '(2.0 3.33) '(4.6 5.7))
0.7392

angtof

The function angtof converts a string interpreted as an angle based upon a
given string-format for a unit mode to a floating point number value. It returns
the result expressed in radians.

94

LISP Programming

(angtof string [mode])

If the argument mode is omitted, the function uses the current value of the
system variable AUNITS (Angular Units).

If angtof not succeeds, it returns nil.

Angular units values

Mode String format

-1 The current value of AUNITS is used.

0 Degrees

1 Degrees/minutes/seconds

2 Grads

3 Radians

4 Surveyor's units

Examples:

(angtof "31" 0)

0.5411

angtos

The function angtos converts a floating point value representing an angle to
a string based upon the argument mode to specify the target unit system and
the argument that specifies the desired precision.

(angtos value [mode [precision]])

Parameters:
value A floating point number representing an angle, specified in
radians.
mode This argument specifies the unit system in which the string is
formatted.

The value of format is interpreted as follows:

Mode String format

-1 The current value of AUNITS is used.

0 Degrees

1 Degrees/minutes/seconds

2 Grads

3 Radians

4 Surveyor's units

precision: This argument specifies the number of decimal places for the
resulting string.

Examples:

(angtos 0.5411 0 2)
"31.00"

(angtos 0.5411 1 2)

95

LISP Programming

"31d"
append
The function append adds any number of lists together and returns a new
list.
(append list [list...])
All specified arguments must be lists.
Examples:
(append '(1 2 3)'(4 5 6))
(123456)
(append ‘((abc) (def)) ‘((ghi) (k1))
((ABC) (DEF) (GHI) (JKL))
apply
The function apply executes a function, where arguments are taken from /ist.
(apply function list)
Examples:
(apply '+ (list 1 2.2 4.5))
7.7000
(apply 'strcat '("a" "b" "cde"))
"abcde"
ascii

The function ascii converts the first character of string into its ASCII-Code,
which is returned as integer.

(ascii string)

Examples:

(ascii "A")

65

(ascii "ABC")
65

(ascii "a")
97

(ascii ™)
0

See also:
chr

96

LISP Programming

assoc

The function assoc searches an association list assoc _list for key.
(assoc key assoc list)

It returns the list entry if successful, otherwise nil.

Examples:

(setq article (list '(NAME "telephone") '(PRICE 149,00) '(COLOR "red")))

(assoc 'name article)
(NAME "telephone")

(assoc 'price article)
(PRICE 149,00)

(assoc 'color article)
(COLOR "red")

(assoc 'number article)
nil

atan

97

The function atan returns the arc tangent of an angle supplied in radians.
(atan numberl [number2])

If the 2nd argument numberZ is given, the function returns the arc tangent of
numberl/number?2 in radians. If this argument is zero, it returns an angle of
pn1.570 radians.

The range of angles returned is -TU2 to +TU2) radians.

Examples:

(atan 0.8)
0.6747

(atan -0.8)
-0.6747

(atan 1)
0.7854

(atan 1 3)
0.3218

(atan -1 3)
-0.3218

See also:
angtos

LISP Programming

atof

The function atof (ASCII to Float) converts a given string to a floating-point
number, which is returned.
(atof string)

Examples:

(atof "32.1")
32.1000

(atof "12")
12.0000

(atof "55abcde")
55.0000

(atof "abcde™)
0.0000

atoi

The function atoi (ASCII to Integer) converts a given string to an integer,
which is returned.
(atoi string)

Examples:

(atoi "32.1")
32

(atoi "32.7")
32

(atoi "55")
55

(atoi "55abcde")
55

(atoi "abcde™)
0

atom

The function atom tests if a given term is an atom or list. It returns T if term

is an atom, otherwise nil.
(atom term)

Examples:

(atom'(1 2 3))

nil

(atom 123)

T

(atom (setq xyz "abc"))

98

LISP Programming

T

atoms-family

The function atoms-family returns a list of all atoms currently defined.
(atoms-family format [symbols])
Parameters:
format 0 =returns a list of currently defined symbols
1 =returns a list of currently defined symbols as strings

symbols optional list of strings that specify symbol names to search for.

Examples:

(atoms-family 1)

("'DO_PRINT" " "*ERROR*" "*SETTRACE*" "ZEROP" "~")
(atoms-family 0)

('DO_PRINT * *ERROR* *SETTRACE* ZEROP ~)

(atoms-family 1 '("defun” "apply" "abc"))
("DEFUN" "APPLY" "ABC")
(atoms-family 1 '("defun” "apply
("DEFUN" "APPLY" nil)

(atoms-family 0 '(defun apply abc))
Error: Invalid parameter

dummy™))

boole

The function boole performs a general bitwise Boolean function.
(boole f unction numberl number2 ...)
Parameters:
function an integer representing one of 16 possible Boolean functions

numberl integer
number2 integer

Boolean Truth Table

Function-Bit |numberl number2 Boolean function
8 0 0 NOT
4 0 1 XOR (6)
2 1 0 OR (7)
1 1 1 AND
Examples:
(boole 6 1 2)
3
(boole 11 2)
0

99

LISP Programming

(boole 7 1 2)
3

boundp

The function boundp tests if the specified atom has a value. It returns T if a
value is bound to atom (term), otherwise nil.
(boundp atom)

Examples:

(setq x 32)
32

(setq y nil)
nil

(boundp 'x)
T

(boundp 'y)
nil

(boundp 32)
nil

car

The function car returns the first element of a list.
(car list)
If list is empty, it returns nil.

Examples:

(setqg Istl '((abc)(defq)))
(WBC)(DEFQG))

(car Istl)

(ABC)
(setqlst2'(abcdefg))
(ABCDEFG)

(car Ist2)
A

cdr

The function cdr returns a new list without the first element of the list given as
argument to the function.

(cdr list)

If list is empty, it returns nil.

Examples:

(setq Istl '((abc)(d e fq)))
(WBC)(DEFQG)

100

LISP Programming

(cdr Istl)
(DEFQG))

(setqlst2'(abcdefqg))
(ABCDEFG)

(cdr Ist2)
(BCDEFGQG)

caaaar ... cddddr

Combination of car and cdr up to four levels .
(c???7?r list)

Examples:

(setq x (list (list (list (list 1 2) 3 4) 5 6) 7 8))
(((12)34)56)78)

(caaaar x)

1

(cdaaar x)

2

(cdar x)

(56)

(setq x (list (list 1 2) 3 4))

((12)34)

(cadr x)

3

chr

The function chr converts an ASCII code (given as integer) into its equivalent
single-character-string.
(chr integer)

Examples:
(chr 65)
np

(chr 33)
e

close

101

The function close closes the open file specified by file_descriptor.
(close file_descriptor)

Return value: nil

Example:

(setq d (open "abc.txt" "w"))
<File: #1e7f.4624>

LISP Programming

(close d)
nil

command

The function command allows direct execution of one or more FCAD
commands.

(command command_string [argument ...])

The built-in command to be executed must be expressed in one function call:

For example:
(command "line" "0,0" "1,0" ") .

The specified arguments are evaluated and passed to the command
interpreter as responses to the command's request.

Inside of a command function you can call LISP expressions, for example, to
retrieve user input. A null string (") is equivalent to responding with RETURN
to a command request. Example:

(command "move" (entsel "Select object:") "™ p1 "1,1")

The parameters provided to the command function must not be complete to
terminate the command invoked. If so, the system remains in the command to
accept further user input until the command is finished.

Example: The following command expression starts the command LINE and
supplies for the starting point the coordinates 0,0. The other points to draw
line segments will be specified by the user:

(command "line" "0,0")

The system variable CMDECHO allows to control prompt display when
executing the command:

¢ If the system variable CMDECHO is set to 1, the command(s) executed,
the prompts of the built-in command(s), and the responses supplied within
the function (command ...) are displayed at the command line.

¢ Otherwise, any prompt display is suppressed.
Return value:

nil

Examples:

(command "line" pointl "10,15" ")
(command "move" (entsel "Select object:") " "0,0" "1,1")

cond

The function cond is the primary conditional function.
(cond (testl [actionl...]) ...)

102

LISP Programming

The function evaluates the first item in each given list until one of these items
returns a value other than nil. It then evaluates each of the following items in
this list. The function returns the value of the last expression in the sublist.

Examples:

(cond
((<x0) (princ "X is less than 0"))
((=x0) (princ "X is equal 0"))
(T (princ "X is greater than 0"))
)

cons

The function cons constructs a list by taking first_element and list and
returns a new list.

(cons first_element list)

If the second argument is an atom, the function constructs a dotted pair list.
Functions like entmake or entmod require this kind of list.

Examples:

(cons 8 "0")
(8."0"

(cons '1'(2 3 4))
1234

(cons '(1) '(2 3 4))
(1234

COS

The function cos returns the cosine of an angle which is expressed in
radians.
(cos angle)

Examples:
(cos (* 2 pi))
1.0000

(cos (/ pi 2))
0.0000

defun

This function defines function with the name symbol.
(defun symbol arguments term1 ...)
Parameters:
symbol name of the function
Use the special prefi€: to definea new command. Commands
can be entered from the command line without parentheses.

argument list with arguments

103

LISP Programming

Local variables are separated from arguments with a single
slash character (/).
terml... one or more expressions to be evaluated

Return value:
The defun function returns the name of the function being defined. When the
function is invoked, it returns the result of the last expression evaluated.

Examples:
(defun MYFUNC (a b c) function with 3 arguments
(princ a)(terpri) Examples :
(princ b)(terpri) (myfunc 1 2 3)
(princ c)(terpri) 1
(princ) 2
) 3
(myfunc 1 2)
1
2
nil
(myfunc 1 nil 3)
1
nil
3
(defun MYFUNC2 (/ab) ...) function without arguments
2 local variables
(defun MYFUNC3 (a/bc)...) function with 1 argument
2 local variables
(defun MYFUNCA4 () ...) function without arguments
no local variables
(defun C:MYCMD () ...) defines the command MYCMD
See also:
setq, load

delcmd

The function delcmd de-activates (deletes) a built-in CAD-Engine command.
This disables the command for the user.

(delemd string)

The de-activated command may be restored for the user with the function
actcmd . If the given argument is not a valid nhame of a system command, it
returns nil, otherwise T.

Parameters:
string Name of the system command

104

LISP Programming

Example:
(delcmd "LINE™) ; The command LINE is no more available
T
>LINE
Unknown command
(actcmd "LINE") ; LINE is restored now
T
See also:
actcmd
distance
The function distance calculates the distance between pointl and point2.
These points are assumed to be 3D points.
(distance point1 point2)
Examples:
(distance '(1 2) '(1 3))
1.0000
(distance '(1 2) '(1 2 3))
0.0000
(distance '(1 2 3) '(1 2 4))
1.0000
(distance '(1 2 3) '(4 5 6))
5.1962
distof

The function distof converts a given string, interpreted as real value, to a
floating point number value depending on the argument mode.
(distof string [mode])

Parameters:
string: string interpreted as a real number.
mode: specifies the format of the given string containing the unit mode

for linear conversion.
The value given imodeis interpreted as follows:

Mode Format
-1 The current value of the local system variable LUNITS (Linear
Units) is used, which may contain one of the following settings (1
to 5).

Scientific representation

Decimal

105

LISP Programming

3 English: Engineering (feet/inches)
4 English: Architectural (feet/fractional inches)
5 (1) English: Fractional

If the argument mode is omitted, the function uses the current value of the
system variable LUNITS.

Return value:
If distof succeeds, it returns a real value, otherwise nil.

Examples:

(distof "1.234E02" 1) ; 1 = scientific representation

123.4000

(distof "123.4" 2) ; 2 = decimal

123.4000

(distof "10'-3.4\"" 3) ; 3 = engineering

123.4000

(distof "10'-3 6/16\"" 4) ; 4 = architectural

123.3750

(distof "123 6/16" 5) ;5 = fractional

123.3750
dlg *k*

The dialog functions are described in Chapter 11 of this manual.
entcheck

The function entcheck verifies, if the drawing entity specified by ename is
(still) valid in the current drawing database.

(entcheck ename)

The function returns the entity name, if ename is valid for the current drawing
database or is contained in a block definition of the current drawing;
otherwise it returns nil.

Caution:

If a drawing object has been deleted, it is definitely removed from the
drawing database. Note that an UNDO does not restore the previous entity
reference (handle) and does not restore the ename of that entity. In this case
a variable associated and containing the ename of the entity erased in the
meantime is no more valid. This can lead to undefined conditions or states in
later FDT or FLISP functions.

Examples:

(setq x (entlast))
<Ename: 432f5700>

106

LISP Programming

(entcheck x)
<Ename: 432f5700>

(entdel x)
<Ename: 432f5700>

(entcheck x)
nil

entdel

The function entdel deletes the drawing object specified by ename in the
current drawing database and erases that entity from the graphic window(s).
(entdel ename)

The function is performed drawing sensitive: the entity ename must be valid
for the current drawing.

Return value:
If the function succeeds, it returns the entity name, otherwise it returns nil.

Example:

(entdel (entlast))
<Ename: 432f0ef4>

entget

107

The function entget returns the defining data of a drawing entity specified by
its Entity Name ename.
(entget ename [applications])

Parameters:

ename: Entity Name of the drawing object, whose defining data are
requested.

applications: The optional argumeplicationsspecifies the registered
application name(s) in a list whose Application Entity Data
should be retrieved by the function. The given names may
contain wild cards. For valid wild card pattern match codes see
the functiorwcmatch below in this section of the manual. The
rules for the match codes are the same for both functions.

Return value:

If entget succeeds, it returns an association list containing the entity
information, otherwise nil.

Only in the case that the group codes for Color or Linetype are BYLAYER
this default value is not returned.

Examples:
(entget (entlast))

LISP Programming

((-1 . <Ename: 432f5c8e>) (0 . "LINE") (8 . "0") (5 . "00000005") (10 23.00
23.00 0.00) (11 12.00 12.00 0.00))

-1 = entity name

;0 = entity type

; 8 = layer

75 = handle

; 10 = start point

;11 = end point
See also:

assoc, cdr, entmod

entlast
The function entlast retrieves the entity name of the drawing object most
recently added to the current drawing database and returns the entity name.
(entlast)
Examples:
(entdel (entlast))

entmake

The function entmake allows to generate a new drawing entity (a basic entity
or a complex object like a polyline or an insertion of type block) in the current
drawing database and displays it in the current drawing.

(entmake data)

The argument data contains the defining data of the entity to be created.

The format of this list is similar to that returned by ¢iméget function.

So, the functiorntgetallows to retrieve the defining data of an existing drawing
object and manipulate these entity data to create a new entity.

Also, in certain situations a technique may be applicable, where the entity whose
defining data have been retrieved by the funatiotgyetis deléed and then restored

as drawing object equivalent in entity type but modified in its geometric or property
parameters by using the functientmake

But note, in this case the entity reference (handles) and the database address (entity
name) has changed although the visual representation of the entity in the graphic
window(s) may be the same as before.

The functiorentmaketests the validity of the values supplied for Layer name, Color,
Linetype and Text style before the entity is getesta

« If the layer name supplied is not found in the layer table of the current drawing,
entmake creates that new layer using the default values of Layer "0".

* An invalid Color value leads to return nil.

108

LISP Programming

109

* Alinetype or text style not yet defined in the corresponding table of the current
database leads to return nil.

The type of the entity must be provided in the first or second element of the list. If the
type is supplied in the second buffer, the first buffer may contain only the entity name,
which is ignored anyhow.

If an entity reference (Handle) is found in the list, it is ignored. Thsy
automatically generates a new handle for the new created drawing object.

If an entity name (group code -1) is found in the list, it is ignored. The system
generates a new Entity Name for the new object.

Creating Complex Objects

Complex objects (Polylines, Block-Definitions, Attributes of Block-Insertions) are
created by multiple calls @ntmake The first call generates the base element
(POLYLINE, BLOCK, or INSERT). The function recognizes that a complex object is
effected and stores the current data contents and the following data functions
temporary. The following calls of the functientmake will define the sub-elements
(Vertices in POLYLINEs, Attributes in BLOCK insertions, and entities defining a
BLOCK). The sub-elements are added "temporary" up to the moment the following
entmake function statement indicates the termination of the definition of a complex
drawing object: This indication is done by specifying a ENDBLK "entity" (when
defining a BLOCK) or a SEQEND "entity" (when defining a POLYLINE or an
INSERT, which generates a BLOCK insertion).

The definition of a complex drawing object may be canceled by entartntake
with no arguments. The temporary stored object is theagefu

If an error occurs during the generation of a sub-entity, the sub-entity is refused, but
the entities generated so far remain. This allows error handling by the developer.

Anonymous Part Definitions (BLOCK Definitions)

The BLOCK definition table in FCAD may contain anonymous blocks. A Cross-
hatching and a dimension is an anonymous blocks. The user can not use anonymous
blocks directly (for example in the command INSERT), because these block names
stay "secret" to him. Only FDT and FLISP allow an access to anonymous blocks.

Anonymous blocks are created by the FCAD commands for dimensioning and cross-
hatching. The application developer can generairyamous block with the function
entmake

An anonymous block created witihtmake has a block name lik&J xxxxxx, where

the first two characters mark the block as createehibymake The following

characters contain a unique number to identify the block. This block number is only
valid during the current FCAD session. If the drawing is re-opened, FCAD generates
a new number for that anonymous block.

entmakerecognizes automatically, that an anonymous block has to be created, if the
block name (group 2) IgU" . entmake adds a unique identifier to the internal block

LISP Programming

name. Furthermorentmake sets the flag "Block type" (group 70) in the block
definition.

If the function succeeds, it returns the list with entity information's, otherwise
nil.

Examples:

(entmake '((0 . "LINE")(10 0.0 0.0 0.0)(11 10.0 10.0 0.0)))

; 10 - start point
; 11 - end point

entmod

The function entmod allows the modification of a basic entity or complex

block definition existing in the current drawing database.

(entmod data)

The argument data contains the defining data of the entity to be modified.

The entity to be modified must exist in the current drawing.

Before modifying the drawing elemeerttmod tests the validity of the supplied

arguments for layer name, color, linetype and text style.

¢ If anot yet defined layer name is suppliedtmod creates that layer and
initializes its color and linetype values corresponding to the default values of
layer 0.

* Aninvalid color value leads to the cancellation of the function, which returns nil.

« Alinetype or text style not yet defined leads to the cancellation of the function,
which returns nil.

The name of the entity to be modified must be provided in the first element of the list

(group = -2). Otherwisentmod cancels and returns nil.

The reference (handle) of the entity cannot be changed. The same is true for other

internal fields like the entity name (group = -1).

Modifying a main (non-complex) entity causes automatically a redrawing of the

changed object on the screen.

If the modified entity is a sub-entity (e.g. a vertex of a POLYLINE or an

ATTRIB of an object of type INSERT), the display of the complex object

needs to be refreshed (redrawn) on the screen with the function entupd

which you find described below.

If the function succeeds, it returns the list with entity information's, otherwise
nil.

Example:

(setqg x (entget (car (entsel))))

(setq x (subst (cons 62 1) (assoc 62 X) x))

(entmod x)

See also:
entupd

110

LISP Programming

entnext

The function entnext retrieves an entity in the current drawing database,
which follows the entity specified by ename and returns its name.

(entnext [ename])

If ename contains the entity name of an object of type POLYLINE or INSERT
(Block insertion), the function returns as next entity the first sub-element of
that complex object (a Vertex or Attribute).

Entering entnext with no argument, it returns the first entity stored in the
current drawing database.

Examples:
(setq entl (entnext)) ; First entity stored in database
(setq ent2 (entnext entl))

entpos

The function entpos sets the database pointer in the entity section to an
absolute or relative position and returns the name of the entity found at that
position.

(entpos position)

The flag argument position sets the entity-name-pointer in the current
drawing database entity section. Valid flags are:

Position Description

0 First entity of the current drawing database

1 Last entity of the current drawing database

2 Succeeding (next) entity of the current drawing database

3 Preceding (previous) entity of the current drawing database

4 Current entity (entity at the current ename pointer position)

The function allows only to retrieve "main” (non-complex) entities, but not
vertices, attributes etc.

See the function description of entnext to evaluate sub-elements of complex
objects.

entsel

111

The function entsel allows the developer to let the user to select a single
entity.

(entsel [prompt])

The user is prompted with a string contained in prompt to select or identify a
single drawing object. Entering entsel with no argument the standard prompt
of the FCAD Engine (“Select object:) is displayed.

LISP Programming

The function returns a list containing the entity name of the drawing object
and the pick point coordinates (of the current UCS).
The function returns nil if the drawing is empty.

Examples:

(entsel)
Select object:
(<Ename: 44dfcféc> (5.7398 6.3448 0.0000))

(entsel "Select an arc or a circle:)
Select an arc or a circle:
(<Ename: 44dfcféc> (5.2217 7.1699 0.0000))

entupd

The function entupd allows a display-update of a drawing object specified by
ename in the graphic window(s). Points ename to the name of a sub-element
of an complex object, the entire object is redrawn.

(entupd ename)

This function is especially used to update the display of a complex object
when it has been modified.

If distof succeeds, it returns ename, otherwise nil.

See also:
entmod

€q

The function eq evaluates if two terms are identical.
(eq terml term2)

It returns T if the first expression and the second expression are bound to the
same object, otherwise it returns nil.

Examples:

(setga'(123)

(setg b '(1 2 3))

(setg c b)

(eqab)

nil

(eqbc)

T

See also:

equal, =

equal

112

LISP Programming

The function equal evaluates if two terms have the same result. The optional
third argument may specify a tolerance form comparison of numbers.
(equal terml1 term2 [tolerance])

Examples:

(setqg a (list 1 2 3)) (setq a 1.0)

(setq b (list 1 2 3)) (setq b 1.0)

(setq c a) (setq c a)

EQ EQUAL EQ EQUAL
(eqac) (equal a c) (eqac) (equal ac)
T T T T

(eqahb) (equal a b) (eqab) (equal a b)
nil T T T

(eqbc) (equal b c) (eqbc) (equal b c)
nil T T T

(setq a 0.1234)
(setq b 0.1235)
(eqab)

nil

(equal a b)

nil

(equal a b 0.001)
T

See also:

eq, =

eval

The function eval returns the result of a LISP expression.
(eval lisp_expression)

Examples:

(setga'(*45))

(setg b 'a)

(eval @)
20

(eval b)
(*45)

exit

113

The function exit terminates the current application.

LISP Programming

(exit)
The following error message is displayed:
Warning: Program terminated by EXIT

See also:
quit

exp

The function exp returns e raised to power number, where e is the base of
the natural logarithm.
(exp number)

Examples:
(exp 0)
1.0000
(exp 3)
20.0855
(exp -3)
0.0498

expt

The function expt returns base_number to the power_number .
(expt base _number power_number)

Examples:
(expt 2 3)

8

(expt 11 0)

1

(expt 13.0 1.0)
13.0000

fdt

The function fdt returns a list of strings containing the loaded external FDT C-
language based applications. The list includes drive, path(s), and filename.
(fdt)

FDT = FCAD Development Toolkit

Example:

(fdt)
("C:\FCAD\APK\SAMPLE.DLL")

(fdt)
0

114

LISP Programming

See also
xload, xunload

findfile

The function findfile searches the file filename and returns the complete
name including drive and directory path.

(findfile filename [condition])

1. If condition = nil:
Search for afile in a certain order: Returns a complete file name (including
drive and path) of the file found first in the (application) search path. It
returns nil, if no file has been found.
2. If condition =T

Returns a list of file names in the specified or in the current drive/path

- the list of file names is not sorted
- a path name is not returned

The order to browse directories to find the specified file is as follows:

1. Current directory

2. Drawing directory as specified in the FCAD application INI file (FCADDWG)
3. Application search path: directories as specified in Application INI file
(FCADSUP)

4. Path containing the FCAD OEM kernel system files as specified in Application
INI file (FCAD)

Examples:

(findfile "J:W\FCADWSAMPLEW*.fIx" T)

("1L.FLX" "APKPROTO.FLX" "NONAME_0.FLX")

(findfile "FELIX.EXE")

"JWFCADWBINWFELIX.EXE"

See also:

getfiled

fix

The function fix converts a real number to an integer.
(fix number)
The fractional portion of the floating point value is truncated.

Examples:

(fix 2)
2

(fix 2.22)
2

115

LISP Programming

(fix 2.77)
2

(fix 3000000000)
2147483647

float

The function float converts a given number into a real number.
(float number)

Examples:

(float 0.33)
0.3300

(float 1)
1.0000

fixnames

The function returns the open drawing files as dotted pair list.
(flxnames)

It returns nil if no drawing is open.

Examples:

(flxnames)

((0 . "J\N\FCADWSAMPLEWTEST.FLX")

foreach

These function steps through a given list assigning each element to the
specified symbol and evaluating the specified expression for each element of
the list.

(foreach symbol list term1 ...)

Foreach returns the result of the last expression evaluated.

Examples:

(foreach el '(1 2 3) (princ el))

1233

(setq x 0)

0

(foreach el '(1 2 3) (setq x (+ x el)) (princ x)(terpri))

1

3

6

nil

gc

The function gc releases unused allocated memory.

(90)
GC = Garbage Collection

gcd

116

LISP Programming

The function gcd returns the greatest common denominator of the given
numbers.

(gcd numberl number2)

Examples:

(gcd 20 50)

10

(gcd 33 47)
1

getactvport

The function getactvport returns in a list the database number of the current
drawing and the vport number of the current viewport.

(getactvport)

Example:

(getactvport)

(11

See also:
setactvport

getangle

The function getangle prompts the user to specify an angle. The user can
enter the angle as a numerical value at the keyboard or identify the angle in
the drawing.

(getangle [point] [prompt])
Parameters:

point specifies the base point in the current UCS to compute the
angle. If the argument is supplied, the user specifies the angle
by entering or identifying a second point.

If pointis not specified or nil, the user has to specify two points,

where the first point entered is assumed to be the base point for
the angle inquiry.

To visualize the angle specification, a rubberband is drawn from
the base point to the current cursor position.

The user can keyboard angles in a format recognized by the
functionangtof.

prompt If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

The computed angle is returned in radians.

117

LISP Programming

Zero radians (zero direction of angles) is defined by the local system variable
ANGBASE (Angle Base).

Normally, an angle increases in a counter-clockwise direction.

The angle returned is based upon the current construction plane. The function
interprets an angle entered via the keyboard under recognition of the local
system variable AUNITS (Angle Units).

Examples:

ANGBASE

New value for ANGBASE <0.0000>: 0

ANGDIR

New value for ANGDIR <1>: 0
(getangle)

0,0

Next point: 0,1

1.5708

ANGDIR

New value for ANGDIR <0>: 1
(getangle)

0,0

Next point: 0,1

-1.5708

See also:
getorient, initget

getcorner

The function getcorner prompts the user to enter the opposite corner of a

rectangle.

(getcorner point [prompt])

Parameters:

point: This argument specifies the base point of the rectangle. The
base point is specified in coordinates of the current UCS.
To visualize the corner specification, a box is drawn from the
base point to the current cursor position.

prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

The function returns a valid point specified by the user in coordinates of the current
user coordinate system (UCS).
The function attempts to interpret keyboard input as point specification.
Examples:
(getcorner '(10 10) "Second point:")

118

LISP Programming

See also:
getpoint
initget

getdist

The function getdist pauses for user input to retrieve the distance between a
given base point and a second point or between two points to be specified by
the user. The distance computed by the function is returned in the variable
distance.

(getdist [point] [prompt])

Parameters:

point: This argument specifies the base point for finding ts@adce.
The base point is specified in coordinates of the current UCS.

If pointis not specified or nil, the user has to specify two points,
where the first point entered is assumed to be the base point for
the distance inquiry.

To visualize the distance specification, a rubberband is drawn
from the base point to the current cursor position.

prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

The function attempts to interpret keyboard input as point specification.
The function returns the computed distance.

Examples:
(getdist)

(getdist "Please enter a distance:")
(getdist (0 0) "Length:")

See also:

initget

getenv

119

The function getenv allows to retrieve the system directory path or file
preferences set in the FCAD-OEM application INI file.

(getenv)

The function returns a dotted pair list containing the settings of the system
paths and system files as defined in the application INI file.

| Keyword |Description

LISP Programming

"FCADSYS" FCAD Engine system directory (containing kernel
executables and DLL's).
Specified in the INI file as FCAD=

"FCADCFG" Path to the user's configuration directory

"FCADDEV" Directory for FCAD's device driver interface files
(currently only tablet driver interface DLL; normally same
as kernel directory - see "FCADSYS")

"FCADMNU" Path for menu files (MNU, MNP, MNT)

"FCADSUP" Application search path (one or multiple directory paths
separated by semicolon)

"FCADTMP" Directory for temporary user-specific files (Undo-List files
and Display-List files)

"FCADHLP" HLP filename (Help file)

"FCADDWG" Default directory for drawings

"FCADCMD" FCAD engine system directory (containing the command
DLL's; normally same as kernel directory - see
"FCADSYS")

"FCADDLG" Path for dialog files (DLG files)

"FCADKEY" KEY filename

Examples:

(setq SYSPATH (getenv))

(("FCADSYS" . "C:\FCADW\GDE")
("FCADCFG" . "C:\\FELIX\WJFCAD")
("FCADDEV" . "C:\FCAD\GDE")
("FCADMNU" . "C:\\FCADW\APK")
("FCADSUP" . "C:\\FCADWAPPLIC;C:\\FCAD\\FONTS")
("FCADTMP" . "C:\FELIX\JFCAD")
("FCADHLP" . "C:\FCADWHELPW\FCAD.HLP")
("FCADDWG" . "C:\FCAD\SAMPLE")
("FCADCMD" . "C:\\FCADW\GDE")
("FCADDLG" . "C:\FCAD")

("FCADKEY" . "C:\FCADW\FCAD.KEY")

)

(setq fcfg (cdr (assoc "FCADCFG" SYSPATH)))

"C:\\FELIX\JFCAD"
getfiled
The function getfiled displays a standard dialog box to let the user specify a
filename, for example to open an existing or new file.
(getfiled title preset file extension flags)
Parameters:

title: Caption of the dialog box.

preset_file: This string may contain a filename recommended as default
value for filename specification.

120

LISP Programming

extension: This string may contain one or more pre-defined file
extension(s). To specify multiple file types, the file extensions
must separate by comma. If " is supplied as argument no file

type restriction ("*") is set.

flags: In the argumerfitags bit-coded control flags are set, which have
the following meaning:

Flag Meaning

Bit 0 Set: A dialog to open a new file is displayed.

Otherwise: A dialog to open an existing file is displayed.

Bit 1 Not used.

Bit 2 Set: Allows the user to specify any file extension.
Otherwise: Allows to use only the file extension set as default
Bit 3 Not used.

If a valid filename has been specified by the user, it is returned. Otherwise it

121

returns nil.

Examples:
(getfiled "Select a file" "™ " 0)
File Hame: Directories: -“
Ii c:\felixcad
DelsL1.isu ~ et < ﬂl
drawing_plb o I—
fcad aut.id %felle_ad Help |
house._flx apphc
(3 cfg b
(27 fecad_bin Find__. |
. (] fdt -
Lizt Files of Type: Drnives:
I’.’ j I = o j [~ Read Only

(getfiled "Write to file" "test.txt" "txt" 1)

Write to file HE
File name: Folders:
|@ c:felixcad

Cancel |
- ek =
4 felixcad
23 applc _ ek |
[efg =
(1 fead_bin I™ Read only
_ (2 Fde -
Save file as type: Drives:
= txt j I (=), j

LISP Programming

getint
The function getint prompts the user to enter an integer value and returns the
value specified by the user.
(getint [prompt])
The integer value must lie in the range of -32768 to 32767. If the optional
argument prompt contains a valid string, it is displayed at the command line,
otherwise no prompt is displayed.
Examples:
(getint)
(getint "Please enter the value:")
See also:
initget
getreal

getkword
The function getkword prompts the user to enter a keyword defined by
initget .
(getkword [prompt])

Parameters:
prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

Keywords established by a prior call of the function initget .
Return value:
The function returns the keyword entered or picked by the user or nil.
Examples:
(initget 257 "Yes No")
(getkword "Erase entities ? (Y/N): ")
See also:
initget

getorient
The function getorient prompts the user to enter an angle.
(getorient [point] [prompt])

Parameters:

point: point specifies a 2D base point in the current UCS to compute
the angle. If the argument is supplied, the user specifies the
angle by entering or identifying a second point.

122

LISP Programming

If pointis not specified or nil, the user has to specify two points,

where the first point entered is assumed to be the base point for
the angle inquiry.

To visualize the angle specification, a rubberband is drawn from
the base point to the current cursor position.

prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

The user can keyboard angles in a format recognized by the function angtof.

The function works similar to getangle, but the angle returned is always

measured as zero degrees being to the right (east). The function getangle,

described above, recognizes the local system variable ANGBASE (Angle

Base), getorient ignores it.

But, the function utilizes like getangle the system variables ANGDIR and

ANGBASE. The returned value represents the setting of ANGBASE added to

the result. For example:

If ANGDIR is set to 0 and ANGBASE is set to 90 degrees, the function

returns an angle of 90 degrees as 3.14159 in radians (180 degrees).

If ANGDIR is set to 1 and ANGBASE is set to 0 degrees, the function returns

an angle of 90 degrees as 4.7124 in radians.

The function interprets an angle entered via the keyboard under recognition of

the local system variable AUNITS (Angle Units).

The function returns the computed orientation. The angle is returned in

radians. The function returns the angle with respect to the current

construction plane.

Examples:

(getorient)

0,0

Next point: 0,1

1.5708

(getorient)
90
1.5708

(getorient "Angle: ")
Angle: 45
0.7854

See also:
initget, getangle

123

LISP Programming

getpoint
The function getpoint prompts the user to enter a point. The point identified
(in the current user coordinate system) is returned.
(getpoint [point] [prompt])
Parameters:
point: The argumergoint may serve as base point in the current UCS
for the point specification. To visualize point specification in
relation to a given base point, a rubberband is drawn from the
base point to the current cursor position.
prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.
The function attempts to interpret keyboard input as point specification.
Return value:
The function returns the point specified by the user.
Examples:
(getpoint)
(getpoint '(0 0) "To point™)
(getpoint "Point:")
See also:
initget
getreal
The function getreal waits for user input of a floating point value and returns
the real number.
(getreal [prompt])
prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.
Examples:
(getreal)
(getreal "Width:")
See also:
initget, getint
getstring

The function getstring prompts the user to enter a string.

124

LISP Programming

(getstring [flag] [prompt])

Parameters:

flag: Control flag. Ifflag is set to FALSE (0) the input of a space, of
RETURN, or ofTAB is interpreted as termination of the string
input. Otherwise, the input is terminated®i TURNentered
by the user. This means that the retrieved string may contain
blanks.

prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise no prompt is
displayed.

The function returns the string entered by the user.

Examples:

(getstring)

(getstring T "Please enter your name:")
(getstring "Title:")

See also:

getkword

getvar

The function getvar allows to retrieve global or local system variable settings.
(getvar variable)

Examples:

(getvar "CMDECHO")

1

(getvar "FCVERSION")

"FCAD 1.0"

See also:
setvar

graphscr

The function graphscr closes the Lisp/History text window (if opened). The
graphic desktop with the standard command line area is set on top.
(graphscr)

The function returns nil.

See also:
textscr

grclear

125

LISP Programming

The function grclear clears the current viewport of all graphics, although the
objects are not deleted in the drawing.

(grclear)

Use the redraw() function to restore the original display of the drawing
window.

The function returns nil.

See also:
grdraw

grdraw

The function grdraw draws a vector between two points in the specified color
to the current viewport.

(grdraw start end color [flag])

The vector drawn on the graphics screen is not written to the drawing
database.

Parameters:

start: Startpoint of the vector expressed in coordinates of the current UCS.

end: Endpoint of the vector expressed in coordinates of the current UCS.

color: Number in the range of 0 through 255 to specify the color the vector
is drawn.

flag: This parameter specifies if set non-zero to highlight the vector;
otherwise it is drawn in normal mode.

If grdraw succeeds, it returns T, otherwise nil.
Example:
(grdraw '(0 0) (10 10) 2)
See also:
grclear

grread

The function grread allows to read the next user input directly.
(grread [flag] [cursor])

Parameters:
flag: The parametéitag allows to control the input mode.

The way the function is applied and performed is specified by control bits,
which has the following meaning:

| Flag | Meaning |

126

LISP Programming

127

1 Dragmode:
As the cursor is moved, the coordinates are tracked
permanently.
2 Any single input is terminated immediately and returned.
4 Allows to specify a cursor type in the argument type (see
below)
8 Suppresses displaying ***Cancel*** in the command
line if Esc has been pressed by the user.
cursor: This parameter sets the cursor type used by the function:
Value Meaning
0 Standard cursor
1 No cursor
2 Select Box

Return value:

The function returns a list. The first element of the list specifies the kind of
input device used. The second element is the content of the input dependent
on the kind of input is stored as documented in the table below.

First element

Second element

2- Keyboard input

String containing the keyboard input

3- Point input

Point coordinates (picked point)

5- Drag point

Point coordinates (drag point)

101- Pull-down menu selection

String containing the MNU-file entry
of the selected pull-down menu
item

201...210 Palette button selection

String containing the MNP-file entry
of the selected palette button

301 - Shortcut (if specified in the
USER.KEY file section
[SHORTCUTS))

String containing the KEY-file entry
of the shortcut used

401 - System button selection
(from the function bar or the tool
panel)

String containing the command
string of the selected button

501 - Tablet menu selection

String containing the index of the

current MNT-file (tablet menu)

Examples:

(grread)

(3 (2687.00 2036.50 0.00)) ; picked point
(grread 2)

A(2 65) ; entered A

(grread 4 2)

; Cursor = Select Box

LISP Programming

2™ ; entered RETURN

grtext

The function grtext displays a text in the message area of the status bar of
the FCAD desktop.

(grtext string)

This message area of the status line is especially meant to display short
context sensitive help strings as certain elements of the user interface are
touched (but not yet clicked) by the cursor (a button of a palette, a system
button, a tablet menu field, or a highlighted pull-down menu entry) or to
display relative distances and angles as the cursor is moved when a point
entry is requested.

The function grtext may be utilized by the developer to display cursor
positions (absolute or polar coordinates) in the in the status bar.

As soon as the cursor is moved by the user, the string written to the status
line disappears. By this, the function will be used by the developer only in
actions combined with the function grread . It makes no sense to use it for
display prompts or messages.

The length of the string, which can be displayed depends on the video
resolution configured for the system. If the string contains more words than
the message box in the status line can display, the text is truncated at the last
word it can display.

Example:
(grtext "Status bar message")

handent

The function handent allows to retrieve the Entity Name via its unique
reference supplied by the argument handle.

(handent handle)

The function returns nil, if in the argument handle not a valid reference ID has
been supplied to the function. For example, nil is returned, if a handle of an
entity that has been deleted in the meantime is passed to the function.

Examples:

(handent "C5")
<Ename: 3ed70f6a>

help

The function help calls WinHelp with a specified help topic.
(help [topic] [helpfile] [command])

Parameters:

topic: Keyword in help file (optional)
128

LISP Programming

helpfile: Name of the HLP file (optional)
command: Help action to be performed (1" ..."14")

Return value:
The function returns nil, if help does not exist, otherwise it returns the name
of help file.

Examples:
(help "Line")
(help "Example” "myhelp.hip™)

This function performs an conditional evaluation.

(if test_expression then_expression [else_expression])
The function returns the result of the last expression evaluated.
Examples:

(if Test 1 2)
2

(if (= x 1) (setq ret "Yes")(setq ret "No"))

"No"

(if (/= x 3) (progn (princ "Not equal 3!")(terpri)(setq x 3)))
Not equal 3!

3

See also:
progn

initget

The function initializes keywords and/or input-filters (valid data ranges).
(initget [flags] [keywords])

It determines keywords for the next user input requested by an application's
function of type getxxxx or xentsel x.

The initialization is only valid for the next function requesting the user and
afterwards invalid.

Parameters:
flags Control flag for input evaluation. This argument controls the
behavior of the single input functions. The control bits have the
following meaning:
Control | Integer | Meaning
Bit Value

129

LISP Programming

0 1 A RETURN or null input is rejected

1 2 A numerical value of zero is rejected

2 4 A negative numerical value is rejected

3/4/5 | - Not used

6 64 The Z coordinate of a 3D point value is ignored

7 128 Allow arbitrary input whatever the user enters

8 256 Allows to display keyword(s) in the context bar (options
bar) of the desktop. As the user clicks one of the option
buttons the corresponding keyword is returned by the
function of type getxxxx.

keywords The optional argument keywords may contain a list of pre-
defined keywords valid for the next execution of a user input
function. The keywords are supplied as a string separated by
one (or more) spaces.

The following table shows which control bit is applicable for which function

requesting user input:

Function No null No zero | No No 3D Arbitrary | Key-
input negative | coord. input word
Control bit 0 1 2 6 7 8
Bit value 1 2 4 64 128 256
getangle X X X X
getcorner X X X
getdist X X X X X X
getint X X X X X
getkword X X X
getorient X X X X
getpoint X X X
getreal X X X X X
getstring
entsel X
nentsel X
nentselp X

130

LISP Programming

inters

The function inters computes the intersection of two lines in the current
drawing space.

(inters from1 tol from2 to2 [TestON])

The two lines are defined by four points passed to the function. The first line
is defined by the points from_ptl and to_pt1, the other line by the points
from_pt2 and to_pt2. The points are evaluated as 3D points; the intersection
is calculated in 3D space.

The function accepts an optional argument flag. If set, the function assumes
the lines to be infinite and returns the intersection even if the lines do not
cross (virtual intersection). Otherwise the intersection must lie on both lines
(real intersection).

The function returns nil if no intersection point has been found.

Examples:
(inters'(10)'(20)'(11)'©©0) T)
nil

(inters '(1 0) '(2 0) '(1 1)'(0 0) nil)
(0.00 0.00 0.00)

itoa

The function itoa returns the given integer as string.
(itoa integer)
If itoa not succeeds, it returns nil.

Examples:
(itoa 2)
|I2Il

(itoa -2)
n_on

lambda

This function allows the definition of an anonymous function.
(lambda argument_list term1 ...)

Parameters:

131

argument_list a list including the arguments of the anonymous function
terml ... terms to be evaluated

The function returns the result of the last expression evaluated.
Example:

(mapcar ‘(lambda (s) (strcase s)) '("a" "b" "c" "d" "e" "f" "g"))
("A""B""C""D""E" "F""G")

See also:
mapcar, apply

LISP Programming

last

The function last returns the last element of the given argument /ist.
(last list)

Examples:
(last'(12345))
5

(last (1 2 3 (4 5)))
(45)

length

The function length returns number of elements in the given argument list.
(length list)

Examples:

(length '(1 2 3))

3

(length '(1 2 3 (4 5)))

4

(length abc)
0

list

The function list creates a list out of expressions supplied as arguments to
the function. The function accepts a variable number of expressions.

(list expressionl ...)

Examples:

(setqg x 3)

(setq y (list 1 2 x))

(123)

(setqy '(1 2 x))
(12X

listp

The function listp verifies if the given argument element is a list.
(listp element)

It returns T if element is a list, otherwise nil.

Examples:

(listp'(1 2 3))

T

(listp 1)
nil

132

LISP Programming

(listp "abc™)
nil

load

The function load loads an existing lisp file filename from disk, thus providing
the functions defined in that file.

(load filename [error])

Expressions within the file which are outside of "defuns" are evaluated
immediately.

The optional argument error_expression is an expression that is evaluated if
loading fails. It might be an error message or a function.

If the given file cannot be loaded, the function returns nil; otherwise the
function returns the result of the last expression evaluated.

Examples:

(load "test.Isp")

(load "c:\\mylisp\\test.Isp™)

(load "test.Isp" "Cannot load TEST.LSP !")
(load "test.Isp” (errorfunc))

See also

System variable LSPALOAD

This function returns the natural logarithm of a given number
(log number)

Examples:

(log 2)
0.6931

(log 1)
0.0000

logand

133

The function logand returns the result of a logical bitwise AND on the integer
values supplied as arguments to the function.

(logand numberl number?2....)

Examples:

(logand 9 1)
1

(logand 15 4 1)
0

(logand 15 2 6)

LISP Programming

logior

The function logior returns the result of a logical bitwise OR on the integer
values supplied as arguments to the function.
(logior numberl number2....)

Examples:
(logior 1 2 4)
7

(logior 1 3)
3

Ish

The function Ish performs a logical bitwise shift on integer of n bits.
(Ish integer n_Bits)

Examples:

(Ish11)

2

(Ish1-1)

0

(Ish 15 -1)

7

mapcar

The function mapcar operates on successive elements of the lists list1 ...
list_n.

(mapcar function listel...)

First the function is applied to the car of each list, then to the cadr of each
list, and so on. mapcar returns a list containing the n results of the
successive calls to the function.

Note: The elements of the lists are not calculated. A list is returned!

Examples:

(mapcar ‘(lambda (a b) (+ab)) '(10203040)'(1234))
(11 22 33 44)

(mapcar *'(1234)'(1234))

(14916)

max

The function max returns the largest number of the numbers given as
arguments to the function.
(max numberl number2 ...)

134

LISP Programming

The function returns a real if any one of the given arguments is of type real. It
returns an integer if all arguments are integer.

Examples:
(max 2 31)
3
(max 2 3.11)
3.1000
mem
This function displays the memory status of FLISP and returns nil.
(mem)
Examples:
(mem)
WorkFLisp: iStatus: 0 iFreeNodes: 231 iParseEbene: 0
iNodes : 1028 iSegments: 0 iAllocate: 0
nil
member
The function member searches the given list for an element and returns the
remaining portion of the list.
(member element list)
The function returns nil, if element is not a member of list.
Examples:
(member'1'(1234))
1234
(member'c'(abcabc))
(CABC)
(member 'l '(a b c))
nil
min
The function min returns the smallest number of the numbers given as
arguments to the function.
(min numberl number?2 ...)
The function returns a real if any one of the given arguments is of type real. It
returns an integer if all arguments are integer.
Examples:
(min231)
1
(min23.11)
1.0000
minusp

135

LISP Programming

The function minusp tests if an real or an integer is negative.

(minusp number)

The function returns T if the argument supplied is negative or evaluates to a
negative value.

Examples:
(minusp -1.33)
T
(minusp 5)
nil
(minusp 0)
nil
nentsel
The function nentsel prompts the user to select a drawing object and returns
a list containing the entity name of the drawing object and the pick point
coordinates (of the current UCS). In difference to the function entsel, it
allows to retrieve the information of a complex object.
(nentsel [prompt])
prompt: If the optional argumeptomptcontains a valid string, it is
displayed at the command line, otherwise the standard prompt of
the FCAD Engine (“Select object:") is displayed.
If the selected entity is contained in a complex object the function returns in
addition:
* the resulting transformation matrix to allow transformation of points from the
Entity Coordinate System (EKS) to the World Coordinate System (WCS); and
* alist containing the Entity Name of the superior object
Examples:
(nentsel)
(<Ename: 4047a928> (2918.00 2351.00 0.00))
(nentsel "Please pick a part:")
Please pick a part:
(<Ename: 00030000> (4303.50 2288.00 0.00) ((1.00 0.00 0.00 0.00) (0.00
1.00 0.00 0.00) (0.00 0.00 1.00 0.00) (4471.50 2309.00 0.00 1.00))
(<Ename: 404797ec>))
See also:
nentselp, entsel
nentselp

The function nentselp allows to select a drawing object and returns the
defining data of the selected object. In difference to the function entsel , but
identical to nentsel , it allows to retrieve the information of a complex object.

136

LISP Programming

nentselp [prompt] [point])

In difference to nentsel it allows to pass a pick point to the function and
prompting the user may be suppressed.

Examples:

(nentselp '(1 1))
(<Ename: 4047a928> (2813.00 2393.00 0.00))

See also
nentsel, entsel

not

The function not returns T if argument is nil, otherwise returns nil.
(not arguments)

Examples:
(not 12)
nil

(not "abc")
nil

(not nil)

T

nth

The function nth returns the nth element of list.
(nth nlist)
Note: n counting starts with 0.

Examples:

(nth1'(0 12 3))
1

(nth 2'(abc))
C

(nth5'(abc))
nil

null

137

The function null returns T if argumentis () , otherwise returns nil.
(null argument)
Examples:

(setq x 32)
32

(setq x nil)

LISP Programming

nil
(null x)
nil
(null'y)
T
numberp
The function numberp returns T if its argument is any kind of number,
otherwise returns nil
(numberp argument)
Examples:
(numberp pi)
T
(numberp 'pi)
nil
(numberp 5)
T
(numberp "0.1")
nil
open
This function opens a file given by filename to read or write.
(open filename io_mode)
The argument io_mode specifies :
IO_mode |Meaning
"t Opens for reading. If the file does not exist or cannot be found,
it returns nil.
"w" Opens an empty file for writing. If the given file exists, its contents
are destroyed.
"a" Opens for writing at the end of the file (appending); creates the
file first if it doesn't exist.
Return value:
The function returns a file descriptor to be used by other 1/O functions.
Examples:
(setq d (open "test.txt" "w"))
(setq d (open "test.txt" "r"))
(setg d (open "test.txt" "a"))
or

The function or returns the logical OR of multiple terms in a list.

138

LISP Programming

(or valuel...)
If at least one term is bound (not nil) it returns T, otherwise nil.

As soon as one of the terms evaluated is T the function returns nil.

Examples:
(setq a nil)

(or a 45 "abc")
T

(or a nil)

nil

oshap

139

The function osnap returns a 3D point as a result of applying the object snap
mode(s) specified by the argument mode closest to the search point provided
in the argument point.

(osnap point mode)

The string argument mode may contain one or multiple keywords. If multiple
keywords are supplied these have to be separated by commayg(s).

Supported values are:

Keyword Snap mode
_cen Center

_end End point
_ins Insert

_int Intersection
_mid Mid point
_hea Nearest
_hod Node

—per Perpendicular
—qua Quadrant

LISP Programming

_tan Tangent

Note: The system variable SELECTBOX defines the size of a box in pixels for
object selection.

Examples:
(setq x (osnap '(1 1) "_endp"))
(setq x (osnap '(50 50) " cen,_int")

pi

This is the constant Tlapproximated to 3.14159265.

polar

This function computes a point via polar coordinates.

(polar pointl distance angle)

The function returns the polar point in the distance and in the angle from
pointl. The angle is returned in radians, seen counter-clockwise.

Examples:

(polar'(000) 0.7854 1.4142)
(1.0000 1.0000 0.0000)

prinl

The function prinl outputs the printed representation of expression at the
command line or writes it to the open file specified by the optional argument
file_descriptor.

(prinl [expression [file_descriptor]])

Only the specified expression is printed; no newline is included.

Return value:

The function returns expression.
Examples:

(prinl "Test")

"Test™'Test"

(prinl "\123")

ngmg

(setq fd (open "test.txt" "w"))
<File: #3407:4624>

(prinl "Text \n" fd)
"Text \n"

princ

The function princ prints expression on the command line or writes it to the
open file specified by the optional argument file_descriptor.
(princ [expression [file_descriptor]])

140

LISP Programming

Return value:
The function returns expression.

print

The function print prints expression on the command line or writes it to the
open file specified by the optional argument file_descriptor.

(print [expression [file_descriptor]])

This function is the same as prinl, but with a preceding Carriage Return and
a Space following.

progn

The function progn evaluates one expression after the other grouped in
progn .

(progn terml ...)

It returns the value of the last expression of the progn group.

Examples:

(if test
(progn (princ test) (setq ¢ (+ a b)))
)

prompt

The function displays message at the command line.
(prompt message)

The function returns nil.

Examples:

(prompt "Please enter your name: ")

quit

The function quit terminates (cancels) the current application and returns to
the command prompt.
(quit)
The following error message is displayed:
Warning: Program terminated by QUIT

See also:
exit

quote

141

The function simply returns object. (Term is not evaluated)
(quote term)

Examples:

(setq x (quote (1 2)))

(12)

(setq x '(1 2))

LISP Programming

(12
read
The function read retrieves the first atom or list from the given string and
returns it according to its data type.
(read string)
The function returns the first letters preceding a space (in capital letters) if
the argument is a text-string.
Examples:
(read "one two three")
ONE
(read "(1 2 3)")
123)
(read "123 456")
123
read-char
The function read-char reads a single character from either the keyboard
buffer or from an open file optionally specified by file_descriptor. It returns
the ASCII code as integer.
(read-char [file_descriptor])
Examples:
(read-char)
(setq fd (open "test.txt" "r"))
(read-char fd)
read-line
The function read-line reads a string from the keyboard buffer or from an
open file optionally specified by file_descriptor. The function returns a string.
(read-line [file_descriptor])
Examples:
(read-line)
(setq fd (open "test.txt" "r"))
(read-line fd)
redraw

The function redraws a specified drawing entity or refreshes the entire
current viewports.

(redraw [element [mode])

If redraw is entered without arguments, a REDRAW is performed on the
entire current viewport.

142

LISP Programming

Parameters:

element: Entity name of the drawing object to be redrawn.

element: Redraw Mode. #lementontains a valid entity name, the
drawing object is re-displayed in one of the modes specified by
themodeargument as follows:

Mode Action executed

1 Redraw entity

2 Entity set invisible

3 Entity is highlighted

4 Removes highlighting of the entity

The function returns nil.

regapp

The function regapp registers the application name supplied in applic_name.
A registered application name is required for manipulation of Application
Entity Data (EED).

(regapp applic_name)

An application name may contain up to 31 characters.

If the function succeeds, it returns applic_name, otherwise nil.

rem

The function rem divides numberl by number2 and returns the remainder.
(rem numberl number2)
Examples:

(rem 10 3)
1

(rem 9 3)
0

repeat

143

The function repeat executes a given expression ntimes. n must be a
positive number.

(repeat n expressionl ...)

The argument n must be a positive number.

Examples:

(repeat 5 (princ "Hello")(terpri))

Hello

LISP Programming

Hello
Hello
Hello
Hello
nil
reverse
The function reverse reverses the given list and returns a new list.
(reverse list)
Examples:
(reverse '(1 2 3))
(321
ros
The function rtos converts a floating point value to a string, depending on the
specifications supplied in the arguments format for the unit conversion mode
and precision for the number of decimal points.
(rtos value [format [precision]])
The value given in format is interpreted as follows:
Value |Format
-1 The current value of the local system variable LUNITS (Linear Units)
is used, which may contain one of the following settings (1 to 5).
1 Scientific representation (1.235E2)
2 Decimal (123.50)
3 English: Engineering (feet/inches) (10'-3.50")
4 English: Architectural (feet/fractional inches) (10'-3 1/4"
5 English: Fractional (123 1/4"
The function distof corresponds to the function rtos.
A string returned by the function rtos can be re-converted error-free by the
function distof (on the premise that the unit mode used for string formatting is
the same) and vice versa.
set

The function set sets the value of a quoted symbol to an expression and
returns that value. The first argument must be a symbol.
(set symbol expression)

Examples:

(set'x'y)
Y

(setx 5)
5

144

LISP Programming

ly
5

setactvport

The function setactvport allows to set another drawing as current drawing or
to set another viewport as active by determining the ID of a currently opened
drawing and the ID of the drawing’s viewport to be set.

(setactvport nDbNo nVpNo)

Parameters:
nDbNo Database ID number of a currently opened drawing.
(integer value between 0 and 3)
nVpNo ID of aopened viewport of the current drawing to be set as
active.

Return value:
If the function succeeds, it returns the given arguments in a list, otherwise nil.

Example:
(setactvport 1 1)

See also:
getactvport
setfunhelp
The function setfunhelp sets a help topic belonging to a function.
(setfunhelp function topic file)
Parameters:
function a string containing the name of a defined function ("C:NAME")
topic a string containing the help topic
file a string containing the name of the help file (optional)
If the function succeeds, it returns the argument function, otherwise nil.
Examples:
(setfunhelp "C:MYFUNC" "MYFUNC_TOPIC" "TEST.HLP")
"MYFUNC"
setq

The function setq sets the value of a symbol to an expression and returns
that value.

(setq symboll valuel [symbol2 value2] ...)

Multiple paired symbol expression arguments may be supplied. In this case
the function returns the value of the last assignment.

Examples:

145

LISP Programming

(setq a 35)
(setq b "abc")
(setqc'(123))

setvar

The function setvar sets a local or global system variable sysvar to the value
supplied as argument.

(setvar sysvar value)

The function returns the new value of sysvar.

Examples:

(setvar "CMDECHO" 1)

See also:
getvar

sin

This function returns the sine of an angle.

(sin angle)

The argument angle must be expressed in radians.
Examples:

(sin pi)

0.0000

(sin 1.57)

1.0000

sqrt

This function returns the square root of a given positive number.
(sqrt number)

Examples:

(sqrt 9)

3.0000

(sqrt 5)

2.2361

ssadd

The function ssadd adds an valid entity specified by ename to an existing
selection set specified by sname or creates a new selection set. The function
returns a new selection set.

(ssadd [ename [sname]])

The entity specified by ename and the selection set sname must belong to
the current drawing.

Entering ssadd with no argument returns a new, empty selection set.

146

LISP Programming

Entering ssadd with a valid entity name, but without the argument sname, a
new selection set is created, containing the single entity ename.

As in ename a valid entity name and in sname a valid selection set name is
provided, the entity ename is added to selection set.

If the function fails, it returns nil.
Examples:

(setq as (ssadd))

<Selset: 3d671828:00000006>

(ssadd (entlast) as)
<Selset: 3d671828:00000006>

ssdbno

The function ssdbno returns the database ID (integer between 0 3) to verify
for which drawing the specified Selection Set Name sname is valid.

(ssdbno sname)

The selection set sname must belong to the current drawing.

If the function fails, it returns nil.
Examples:

(setq as (ssadd (entlast)))
<Selset: 4237b048:00000004>
(ssdbno as)

0

ssdel

The function ssdel removes (deletes) an valid entity specified by ename from
the selection set sname.

(ssdel ename sname)

The entity specified by ename and the selection set sname must belong to
the current drawing.

If the function succeeds, it returns the name of the selection set, otherwise
nil.

Examples:
(ssdel (entlast) as)

ssget

The function ssget creates a hew selection set.
(ssget [mode] [P1 [P2]] [point list] [filter])

Parameters:

147

mode Selection mode. In the argumenodeis specified the method
to be applied for object selectiamodemay have one of the
values as follows:

| Mode | Meaning

LISP Programming

- The inter-active selection mode is started prompting the user to
select objects.
C" Crossing
" CP" Crossing Polygon
K" Fence
L Last entity
P Previous selection set
W Window
" WP Window Polygon
X" Filtered Selection
P1/P2 P1/P2 may point either to a drawing point or to a list of
drawing points.
The variablenodecontrols the appropriate interpretation.
In the case that the selection modes " C"and " _W" are
specified,P1 andP2 contain the coordinates required for the
selection window.
If" CP"," WP", or"_F" are used®1 must point to a list of
drawing points, which form the polygon to select the drawing
objects; in this case2is ignored.
filter Association list. Filter containing additional selection criteria.
For example, you can specify certain entity types, entity
properties, coordinate areas, etc. in the filter list. Geometric as
well as non-geometric criteria allow flexible selection methods.
point_list List of points defining a polygon or fence.

Relational Tests

The special group code -4 allows numerical comparison. Any relational test
must be invoked with this code. The value of the group code is a string
specifying the operator.

Logical Operators

148

LISP Programming

Logical operators are also specified via a group code -4. In this case the
group code is used to start and to terminate an expression for logical
comparison. Starting the operation is indicated by a '<' sign before the
operator keyword (e.g. "<OR") as first expression in a list containing the
contents of the logical comparison. Termination of the comparison expression
is signaled by a ">' behind the operator keyword (e.g. "OR>").
The following possibilities, which also may be used nested, are at your
disposal:

...'((-4 . "<AND") [expressionl]... (-4 ."AND>"))

..'((-4 . "<OR") [expressionl]... (-4 ."OR>"))
(-4 . "<XOR") [expressionl] ... (-4 ."XOR>"))
..'((-4 . "<NOT") [expression] (-4 ."NOT>"))

If the function fails, it returns nil.
Examples:
(ssget)
(ssget '(10 10))
(ssget" X"
(ssget" P")
(ssget" L")
(ssget" _W"'(0 0) '(100 100))
(ssget " _WP" '((0 0) (0 100) (100 0)))
(ssget"_F"'((0 0) (15 15) (15 0)))
(ssget "X" '((0 . "LINE"))) ; selects all lines
(ssget "X" '((0 . "CIRCLE") (8 "0"))
(ssget"_C"'(00) '(10 10) '((0 . "CIRCLE"))
; all circles crossing the window 0,0 10,10
(ssget "X" '((-4 . "<OR")
(-4 . "<AND")(0 . "TEXT")(40 . 10)(-4 . "AND>")
(0. "CIRCLE")
(-4 . "OR>")))
(ssget "X" '((0 . "TEXT") (-4 "=") (40 . 10)))

sslength

149

The function sslength retrieves the number of entities in a given selection set
sname.
(sslength sname)

Example:

(setq asl (ssadd (entlast)))
<Selset: 4b1f1360:00000030>

(sslength asl)
1

LISP Programming

ssmemb

The function ssmemb allows to test, if a selection set sname contains a
drawing object specified by ename.

(ssmemb ename sname))

The selection set specified by sname and the entity specified by ename must
belong to the current drawing. The function is drawing-sensitive.

The function returns ename, if ename is member of sname; otherwise nil.

Examples:

(setq asl (ssadd (entnext)))
<Selset: 4b1f18cc:00000044>

(ssmemb (entnext) asl)
<Ename: 4b1f0f28>

(ssmemb (entlast) as1)
nil

ssname

The function ssname allows to retrieve the entity name contained in a given
selection set of the current drawing via its index n in the selection set.
(ssname sname n)

The argument n may contain the range of 0O (first entity) to (sslength(sname)-
1), which is the last entity in the selection set.

The function returns the n-th element of the selection set sname in ename.
For example, the function allows to evaluate a selection set created by ssget
element-wise.

Examples:

(ssname as 0)
<Ename: 4237b028>

strcase

The function strcase converts a given string to a new upper case (mode =
nil (or not supplied) or lower case (mode /= nil) string.
(strcase string [mode])

Examples:

(strcase "Abcde")
"ABCDE"

(strcase "Abcde" T)
"abcde"

strcat

The function strcat returns a new string concatenating two or more strings.
(strcat string1 [string2] ...)

150

LISP Programming

Example:

(strcat "Jim" "Meyer")
"JimMeyer"

stringsort

This function sorts a list of string-items alphabetically, ascending.
(stringsort list)

If at least one element of the list is not a string, nil is returned.
Examples:

(stringsort '("hello” "abc" "xyz" "Hello" "123"))

("123" "Hello" "abc" "hello" "xyz")

strlen

The function strlen returns the sum of the length (number of characters) of all
strings given as argument to the function.
(strlen [string1] ...)

Examples:

(strlen "123")

3

(strlen "123" "456" "789")

9

(strlen)

0

(strlen ™)

0

subst

The function subst copies a list substituting every occurrence of old_element
by new_element.

(subst new_element old_element list)

If old_element cannot be found in the given list, subst returns the original list
unchanged.

Examples:

(subst'1'4'(423423423))

(123123123)

(subst'1'4'(123123123))
(123123123)

substr

151

The function substr returns a new - partial - string based on a given string
supplied as argument starting at start and ending at start+lenght+1.
(substr string start [length])

Starting number of the first character is 1.

LISP Programming

Examples:
(substr "1234567890" 3 6)
"345678"

(substr "1234567890" 3)
"34567890"

symbtos

The function symbtos returns any lisp expression in a string.
(symbtos symbol)

Examples:

(strcat "Last entity name: " (symbtos (entlast)))

" Last entity name: <Ename: 484f1410>"

tbidel

The function tbhldel deletes in a specified table a record specified by the
name of the item, but only if the table entry is not referenced in the drawing.
(tbldel table_name record)

Valid names of table types are:

BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, UCS and View.

If the function succeeds, it returns the name of the deleted record, otherwise
nil.

Example:

(tbldel "LAYER" "TEST")

See also:
tblpurge

tbimake

The function tbimake generates a new table-entry described in an
association list table_list.

(tblmake table list)

Before creating a new table record, the function tbimake tests the validity of
the contents of the supplied group codes for the corresponding table type.

Valid names of table types are:

BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, UCS, VIEW, and VPORT.

The function tbhimake returns nil and creates no table entry, if one or more

group codes required for a complete table entry is missing.

* The type of the table to be enhanced with a new record (Layer, Linetype, UCS,
etc.) must be specified with the group code 0 in the association list.

« The name of the table entry to be created must be supplied with the group code 2
in the association list.

152

LISP Programming

Examples:

(setqg x (list
(cons 0 "VPORT") ; hame of the table
(cons 2 "*ACTIVE")
(cons 12 (list11 1)) ; center point

(cons 40 10) ; height
)
(tbImake x)
(setq y (list
(cons 0 "LAYER") ; hame of the table
(cons 2 "ABC") ; hame of the new layer
)
(tblmake y)

Return value:
If the function succeeds, it returns the association list, otherwise nil.

tbimod
The function thimod modifies an table-entry by a new table_list.
(tblmod table list)
Parameters:

table_list Association list containing the information of the table type
and table item to be modified. The association list has the
same structure as an association list returned by the
functions tbinext and tblsearch .

Valid names of table types are:

BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, CS, VIEW, and VPORT.

Before modifying an existing table entry, the function tbhimod tests the validity
of the contents of the supplied group codes for the corresponding table type
and table item name.

The function thimod returns nil and modifies no table entry, if one or more
group codes required for a complete table record modification is missing.

* The type of the table to be enhanced with a new record (Layer, Linetype, UCS,
etc.) must be specified with the group code 0 in the result buffer.

« The name of the table entry to be created must be supplied with the group code 2
of the result buffer list.

If the modification of an table entry succeeds, the drawing is redrawn
automatically if necessary.

Example:

; change color of layer 0 (Code 62)

(tblmod (list (cons 0 "LAYER")(cons 2 "0")(cons 62 1)))

153

LISP Programming

or:

(setq x (tblnext "LAYER" T))
(setq x (subst (cons 62 1)(assoc 62 Xx) x))

(tbimod x)
tblnext
The function returns the first or the next record of a table specified by
table_name.
(tblnext table_name [first])
first: If first is O the first entry of the table is returnedinst is 1 the
next entry (following the current pointer position) is returned.
If no (or no more) table-entry is found, the function returns nil.
Example:
(tblnext "LAYER" T)
((0 . "LAYER") (2.."0") (70 . 64) (62 . 7) (6 . "CONTINUOUS"))
tblpurge

The function purges an entire table of the specified type and deletes all not
referenced entries.
(tblpurge table _name flag)

Valid names of table types are:

BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, UCS and View.

If the argument flag is not nil, a list of purged table entries is displayed in the
command line area.

Example:

(tblpurge "LAYER" T)

See also:

tbldel

tblrename

The function allows the renaming of a table entry (table item). In table the
entry old_name is replaced by the entry new_name.
(tblrename table old_name new_name)

Parameters:

table Table type
Valid names of table types are:

154

LISP Programming

BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, UCS and
VIEW.

old_name Name of the table item to be renamed (current entry).
new_name New name for the table item.

Renaming entries in the tables BLOCK, DIMSTYLE, or STYLE cause that the
entire drawing database is updated and that the drawing is redrawn.

Records of tables of type APPID and VPORT can not be renamed.

Example:

(tblrename "LAYER" "ABC" "XYZ")

tblsearch

The function tblsearch searches the entry specified item_name in the table
specified by table_type and returns the table item information.
(tblsearch table type item _name)

Parameters:

table_type Table type
Valid names of table types are:

APPID, BLOCK, DIMSTYLE, LAYER, LTYPE, STYLE, UCS,
VIEW and VPORT.

item_name Name of the table entry to be searched.

The table pointer is positioned to the table record found. This position is at
the next call of tbinext the base position of the table pointer to the next
position.

If the function succeeds, it returns the table-entry described in an association
list, otherwise it returns nil.

Example:

(tblsearch "LAYER" "0")

((0."LAYER") (2."0") (70.0) (62 . 1) (6 . "CONTINUOUS")

tblset

The function thiset sets a table entry as current entry. In the table specified
by table_type the entry item_name is set as current (default / active). A
associated system variable is updated.

(tblset table_type item_name)

Parameters:

155

table_type Table type
Valid names of table types are:
DIMSTYLE, LAYER, LTYPE, STYLE and UCS

LISP Programming

item_name Name of the table entry to be set as current.

Table entries of tables of type APPID, BLOCK, VIEW, and VPORT can not
be set current by this function.

Return value:
If the function succeeds, it returns item_name, otherwise it returns nil.

terpri

The function terpri outputs a newline at the command line and always returns
nil.
(terpri)

textbox

The function textbox allows the computation of the bounding box of a virtual
text or an existing text object in the current drawing.

(textbox association_list)

The argument to the function is an entity list describing a text.

The function returns the bounding box corners of the text.

Examples:

(textbox '((0 . "TEXT")(L . "abc")(7 . "STANDARD")(40 . 0.2)))
((0.00 0.00 0.00) (0.48 0.13 0.00))

textscr

The function textscr switches the input focus to the Lisp/History text-window.
(textscr)

The History Command / Lisp Interpreter Window (also called text window) is
meant especially for the input of multi-line LISP expressions, which - as
evaluated successfully - may be transferred via the Windows Clipboard to
text files to write Lisp routines.

Also, in this window allows to survey the commands history (History /
Commands-Review). Using standard shortcuts allow to copy commands or
LISP expressions to the Clipboard (Clipboard-Copy) and paste these strings
or expressions at the command line (Clipboard-Paste).

System commands of FelixCAD do not use this window: No built-in command
switches to the text window. We recommend for application development to
maintain this style of user interface. The dialog functions allow a much more
comfortable possibilities to present the user listed information.

See also:
graphscr

156

LISP Programming

trans

The function trans allows the transformation of a point between different

coordinate systems.

(trans point origin_cs target _cs [disp_mode])

The function transforms the coordinates supplied with the argurmaéritand
returns the resulting coordinates. The origin coordinate system and the target
coordinate system are specified by the argun@igs1_csandtarget_cs

The parameter disp_mode is used to control the contemplation of point (point
or direction).

The arguments origin _cs and target cs are evaluated as follows:

Argumentis... | Description

Specifies the coordinate system to be applied.

0 World Coordinate System (WCS)

1 Current User Coordinate System (UCS)

2 Current View Coordinate System (VCS)

Entity name Entity coordinate system (ECS) of the drawing entity
3D point Extrusion vector

Return value:
The function returns the result of the transformation.

Examples:

(trans'(000)01)
(trans '(0 0 0) 1 (entlast) 1)

type

157

The function type returns the data type of object as symbol
(type object)
The function returns one of the symbols as follows:

ENAME Entity Name

EXSUBR External GDE-Lisp Function
FILE File Descriptor

INT Integer

LIST List (or function)

PICKSET Selection Set

REAL Floating point number

STR String

SUBR Internal GDE-Lisp Function
SYM Symbol

Examples:

(type 1.234)

LISP Programming

REAL
(type a)
nil

(type 'a)
SYM

(type setq)
SUBR

ver

The function ver returns a string containing the information on the current
version of the FLISP interpreter.

(ver)

Example:
(ver)

"FLISP Version 1.00"

wcmatch

The function wematch allows a wild card pattern match search on a string
supplied to the function.
(wcmatch string pattern)

Parameters:
pattern

Wild card pattern match to be performedstrng. The pattern
may contain the wild card characters as documented in the
following table:

Placeholder

Meaning

#

Single numeric digit

@

Single alphabetical character

Single non-alphabetical character

Series of characters, including

Any single character

If ~ (tilde) is the first character in the pattern, the function
matches anything except the pattern

The function matches any one of the characters enclosed

The function matches any single character not enclosed

Used inside brackets to specify a range for a single character

158

LISP Programming

' Separator for two patterns

Escapes special characters, reads next character literally.

If a match is found, the function returns T; otherwise it returns nil.
Examples:

(wcmatch "al" "a*")

T

(wcmatch "al" "a@")

nil

(wcmatch "al" "a.")

T

(wematch "al" "a[1-12]")
T

(wematch "al" "a[~1]")

nil

(wcmatch "al" "a3,a2,al")
T

(wcmatch "al" "a?")

T

while

The while construct allows iteration to continue until the specified expression
evaluates to nil.

(while test_expression expressionl ...)

The function returns the result of the last expression evaluated.

Example:
(setq x 0)

(while (< x 5) (princ "X=")(princ x)(terpri) (setq x (+ x 1)))
X=0

A WNPFP

01X X X X

write-char

159

The function write-char writes a single character to a file specified by
file_descriptor or to the command line.

(write-char integer [file _descriptor])

The single character is specified by an ASCII code (given as integer).
The function returns an integer value.

LISP Programming

Examples:

(write-char 65)

AB5 ; 65 is the return value
(write-char (ascii "A"))

AB5

(setq fd (open "abc.txt" "w"))

<File: #4717:4624>

(write-char 65 fd)

65
write-line
The function write-line writes a string to file specified by file descriptor or to
the command line.
(write-line string [file_descriptor])
The function returns string.
Examples:
(write-line "ABC")
"ABC"
(setq fd (open "abc.txt" "w"))
<File: #4717:4624>
(write-line "ABC" fd)
"ABC"
xload
The function xload loads an "external” FDT application's DLL specified by
dll_filename.
(xload dll_filename [error])
FDT applications are a special DLL's. The functions contained in the DLL are
automatically registered and then available for the user.
The optional argument error is an expression that is evaluated if loading fails.
It might be an error message or a function.
If successful the function returns the complete DLL filename including drive
and path, otherwise nil.
Examples:
(xload "test")
(xload "c:\\mydI\test.dll")
(xload "test" "Cannot load test.dll")
(xload "test" (errorfunc))
xunload

The function xunload de-activates an "external" FDT application.
(xunload dll_filename)

The function searches for the DLL filename dll_filename and de-activates
(unloads) all functions of that application DLL if the file search has been
successful.

160

LISP Programming

Example:
(xunload "test")

zerop

The function zerop returns T if number is zero (integer zero or floating-point
Zero).

(zerop number)
Examples:

(setq x 0)

0

(zerop x)

T

(zerop 0.000)

T

(zerop 1)

nil

161

Programming Dialog Boxes

CHAPTER 11

Programming Dialog Boxes

Often the first step to creating an application based on the FelixCAD is to
create the interface: the menu, the palettes (tool boxes), and the dialog
boxes the user will see and use. Then you write the program code to make
the interface active.

The Dialog and Menu Editor (DME) and a set of FLISP functions to control
dialogs provide advanced tools to enhance your CAD application with
Windows typical communication via dialogs. The dialogs, you supply with your
application commands will have the Windows look and feel and typical dialog
control elements, the user is already familiar with.

You use dialogs to get user input and to display output. Dialog boxes are in
most cases the best way to request complex user input, provide the user
several choices, or present extensive facts.

The first part of this chapter introduces you step by step, how to load,
display, fill and evaluate your dialogs and the contained controls. Examples
are provided to demonstrate program code for dialog control.

The reference of all dialog functions of the FLISP interface, in alphabetical
order, is found in the second part of this chapter.

Design of a Dialog
Using FelixCAD's Dialog- and Menu Editor (DME) you lay out size and
properties of dialogs and arrange the control elements like buttons, list
boxes, check boxes in the dialog window and specify the properties of each
control element.
In a dialog file created with DME multiple dialogs may be stored.
An important point to remember when creating a dialog is, that you specify
for each dialog and each dialog element a unique Control Name (also called
key). Control names are identifiers allowing the application programs, either
Lisp or C, to access the to the dialog and to its control elements.
Maintaining unique keys makes sure that the dialog functions provided by the
programming interfaces are able to perform and evaluate dialog operations
properly.
Caution:
Note, that the specification of control name is case sensitive.

Additional Information on Dialog Creation and Design

Further detailed information on creating and designing dialog boxes are
provided in Chapter 9 Creating and Editing Dialog Boxes of the
Programmer's Manual.

162

Programming Dialog Boxes

Loading and Displaying a Dialog

Example:

After having created dialogs with the Dialog Editor and saved the dialog files,
the programs can be written which load and display the dialog boxes.
Principally a program’s scheme to load and display a dialog is as follows:

File Meaning

Dlg_DialoglLoad Loading a dialog file
Dlg_DialogNew Loading a dialog
Dlg_DialogStart Initializing and starting a dialog
Dlg_DialogDone Terminate dialog
Dlg_DialogUnload Unload a dialog

For the examples it is assumed that a dialog with the name "Hello" has been
saved in the file test.dlg. The following program code demonstrates how to
load and display this dialog box:

(setq dlg_id (Dlg_DialogLoad "test"))

(Dlg_DialogNew "Hello" dig_id)

(Dlg_DialogStart)

The dialog box "Hello" will be displayed if all functions could have been
executed successfully.

Please note, that the function DIg_DialogLoad returns an dialog ID, which
must be supplied to the function DIg_DialogNew together with the dialog
name. The dialog ID is also required as argument for the function
Dlg_DialogUnload to unload the dialog.

Initializing Dialog Controls

Example:

The previous example allowed to display a dialog box as it has been created
with the aid of the Dialog Editor. However, neither dialog control elements of
the dialog have been filled with values nor could the program react to user
input.

The following description shows how to initialize a dialog box and how to fill
dialog controls with values.

To fill dialog controls or to set modes of dialog controls, to react to events
caused by user input in the dialog, and to evaluate the dialog control settings
when the dialog has been terminated by the user, the developer of a program
that utilizes a dialog must pass as argument to a function DIg_DialogStart
the name of a function that contains all these settings and actions.

Our modified example (compare to the one above) now looks like this:
(setq dlg_id (Dlg_DialogLoad "test"))
(Dlg_DialogNew "Hello" dig_id)
(Dlg_DialogStart "(init_function)™))

164

Programming Dialog Boxes

(Dlg_DialogUnload dig_id)
Basic Functions to initialize a Dialog

There are two basic functions to assign a new value to dialog controls and to
set the display mode of controls:

The function: (Dlg_TileSet key value)

sets a new value for the dialog control specified by the Control Name key.
The function: (Dlg_TileMode key mode)

sets a new display mode for the dialog control specified by the Control Name
key.

A detailed description of the meaning of the display modes is found in the
functions reference (see below).
Special Functions to initialize a Dialog

A set of specific functions is provided for the following control elements used
in dialogs:
* List Boxes and Combo Boxes

* Image Boxes
» Sliders

For these control elements the function DIg_TileSet to set a new value for a
control is not sufficient. How to initialize these dialog controls is discussed
next.

List and Combo Boxes

Operations to fill a list box control must be introduced with the function
(Dlg_ListStart key operation index).

Using multiple calls of the function (DIg_ListAdd string) allows to fill the list
with strings.

The function DIg_ListEnd must be called to terminate the operations on the
list.
Example sequence:

(Dlg_ListStart "list1")
(Dlg_ListAdd "My line no. 1")
(Dlg_ListAdd "My line no. 2")
(Dlg_ListEnd)

In this example a list box is filled with two entries, each a separate line in the
list. The function DIg_ListStart accepts additional parameters to execute
further operations and manipulations on list boxes.

Please consult the description to the function DIg_ListStart in the functions
reference (see below) for detailed information on the parameters which, for
example, allow to modify or to delete a specific line in a list.

165

Programming Dialog Boxes

Other functions in conjunction with list boxes are.
e Setting Tab Stops in a list box:
(Dlg_ListSetTabstops key values)

Example:
(Dlg_ListSetTabstops "list1" "20 40 60")

e Setting the column width in a multi-column list box:
(Dlg_ListSetColumnWidth key width)

Example:
(Dlg_ListSetColumnWidth "list1" "50")

Image Boxes

To fillimage boxes with bitmap picture or vector data the following functions
are provided:
» Displaying Bitmap files:

(Dlg_ImageBmp x1 y1 x2 y2 filename)

» Displaying Vector files of type WMF (Windows Meta File Format)
(Dlg_ImageWmf x1 y1 x2 y2 filename)

» Displaying a filled colored rectangle
(Dlg_ImageFill x1 y1 x2y2 color_no)

Here in mean: x1, y1 = Coordinates in the image box for the
upper left corner of the rectangle
X2, y2 = Coordinates in the image box for the
lower right corner of the rectangle

» Drawing colored vectors in an image box:

(Dlg_ImageVector x1 y1 x2 y2 color_no)
Here in mean: x1, y1 = Start point of the vector
x2, y2 = End point of the vector

To get an useful display in the image box, the function DIg_TileDimensions()
is provided. The function allows to retrieve the height and the width of an
image control.
Likewise to the functions for operations on list box items, you find both a
function to start the operations on an image control element and one to
terminate these operations:

(Dlg_ImageStart key)

(Dlg_ImageEnd)
Example:

166

Programming Dialog Boxes

167

Slider

; X = Width of the image control element
(setg x (Dlg_TileDimX "picturel™))

; Y = Height of the image control element
(setq y (Dlg_TileDimY "picturel™))

; Start operations on "picturel”
(Dlg_ImageStart "picturel™)

; Fill the entire image field with the blue color (color no. 5) ...
(Dlg_ImageFill 0 0 x y 5)

; Display the bitmap 'sample.bmp' in the entire image field ...
(Dlg_ImageBmp 0 0 x y "sample.bmp")

; Operations on "picturel” finished
(Dlg_ImageEnd)

The function DIg_SliderSet allows to set the properties of a Slider (scroll
bar) control.

(Dlg_SliderSet key pos min max smallStep bigStep).
The arguments of the function are as follows:

Parameter Meaning

key Control Name

pos Initial position of the scroll box on the scroll bar

min Minimum value for the slider (slider on scroll bar outermost left)
max Maximum value for the slider (slider on scroll bar outermost right)
smallStep Small steps: Increment value when a scroll arrow is picked
bigStep Big steps: Increment value when the scroll bar is picked
Example:

The following example shows the operation of the function. With the aid of a
slider a value between 0 and 100 should be retrieved. A default start value of
4 is assumed. When picking to the scroll arrow the interim value should be
incremented by 2. When the scroll bar itself is clicked the value should
change by 10. The corresponding function statement is as follows:
(Dlg_SliderSet "slider1" 4 0 100 2 10)

Programming Dialog Boxes

Retrieving User Input and Reacting to it
Until now it has been described, how to initialize and display a dialog box.In
this section you find information how to retrieve an user-input-event and how
react to it.

The Action Function for Dialog Controls

Generally to any dialog control a function can be associated which is called
as soon as the control is activated by the user. The function to do so is:
(Dlg_TileAction key FLISP-String).

Example:
(Dlg_TileAction "buttonl" "(button1_func)")
The function expects as first argument the identifier of the control element

(key name), as second argument a string containing an FLISP expression.
The following local variables can be evaluated:

$key Name of the control element (key name)
$value Current value of the control

$data Current client-data

$reason Return reason code

X, By Coordinates of an image control

Functions to Evaluate Dialog Control Elements
The function (DIg_TileGet key) allows to retrieve the value a control currently
contains or is set to.
The function returns the value in a string for the control element specified by
its unique name key.
For List boxes and Sliders (scroll bars) you find the additional functions
Dlg_ListGet and DIg_SliderGet , which make it ease to read the items of a
list or to get the current position of the scroll box.

Example:

The following program code shows how to retrieve all selected items of a list
box:
(Dlg_ListStart "list1" 12)
;;; Operation 12 starts reading selected lines from a list box
(while (setq Il (Dlg_ListGet))
(setq 12 (append 12 11))

)
(Dlg_ListEnd)

The current position of the scroll box in a scroll bar can be evaluated with the
function (DIg_SliderGet key).

The function returns values in a list as follows:
Parameter Meaning

nPos: Current value (the position of the scroll box)

168

Programming Dialog Boxes

nMin: Minimum value for the slider (slider on scroll bar outermost left)

nMax: Maximum value for the slider (slider on scroll bar outermost
right)

nSmallStep: Small steps: Increment value when a scroll arrow is picked

nBigStep: Big steps: Increment value when the scroll bar is picked

Functions to Terminate a Dialog
The standard buttons OK and Cancellead to an exiting of a dialog. Beneath
that you can assign an action to terminate the dialog to other control
elements with the function (DIg_DialogDone status) .

If the dialog has been terminated successfully this function returns the value
contained in the argument status to the function DIg_DialogStart . This allows
to evaluate the exit status of the dialog.

Calling the function (Dlg_DialogTerm) allows to remove all opened dialog
boxes with one program statement.

Overview

Loading and Unloading of Dialog Files

(Dlg_DialogLoad dlg file) Loads a dialog file
(Dlg_DialogUnload dlig id) Unloads a dialog file
Opening and Closing Dialog Boxes
(Dlg_DialogNew dlg_name dlg_id Provides a new dialog (loaded to
[def_action [position]]) memory)
(Dlg_DialogStart [Control function]) | Initializes and displays a dialog
(Dlg_DialogDone [Status)) Closes a dialog
(Dlg_DialogTerm) Terminates all open dialogs
General Operations for Control Elements
(Dlg_TileAction key action) Assigns an action to a control
(Dlg_TileSet key value) Sets a control to a value
(Dlg_TileGet key) Reads the current value of a control
(Dlg_TileClientData key data) Assigns data to a control
(Dlg_TileMode key mode) Determines the display mode of a
control
(Dlg_TileDimX key) Returns the width of a control
(Dlg_TileDimY key) Returns the height of a control
(Dlg_TileSetFont key int) Sets a font for a control element

List Boxes and Combo Boxes

169

Programming

Dialog Boxes

(Dlg_ListStart key [operation
[index]))

Start function for operations in a list
box

(Dlg_ListeEnd)

Terminates operations in a list box

(Dlg_ListAdd value)

Adds or modifies a list box item

(Dlg_ListGet)

Reads a list box item

(DIg_ListSetTabstops key values)

Sets Tab-stops in a list box

(Dlg_ListSetColumnWidth key width)

Sets the width of columns in a list box

Slider Cont

rol

(Dlg_SliderGet key)

Reads the values and properties of a
slider control

(Dlg_SliderSet key pos min max
smallStep bigStep)

Sets the values and properties of a
slider control

Image Controls

(Dlg_ImageStart key)

Start function to display bitmaps or
vector graphic in an image box

(Dlg_ImageEnd)

Terminates operations on an image
box

(Dlg_lmageVector x1 y1 x2 y2 color)

Draws a vector in an image box

(Dlg_ImagekFill x1 y1 x2 y2 color)

Draws a filled rectangle in an image
box

(Dlg_ImageBmp x1 y1 x2 y2
bmp_file)

Displays a bitmap file in an image box

(Dlg_ImageWmf x1 y1 x2y2
wmf_file)

Displays an vector graphic of an WMF
file in an image box

170

Programming Dialog Boxes

Dialog Functions: Reference
Dlg_DialogDone

The function DIg_DialogDone terminates a specified dialog.
(Dlg_DialogDone [status])

Parameter:
status: (Optional) Return value fDig_DialogStart
Number > 1
Returns:

The function returns the XY screen coordinates of the upper left corner of the
dialog box when it was closed. The retrieved screen coordinates can be used
in a later call of the function DIg_DialogNew .

Examples:

(Dlg_DialogDone)
(Dlg_DialogDone 2)

Dlg_DialogLoad
The function DIg_DialogLoad loads a dialog file containing dialog box

descriptions.
(Dlg_DialogLoad dlg_file)

Parameters:
dig_file String containing the file name of the dialog file. The file type

.dlg does not need to be supplied. Drive and path name may be
specified optional.

Returns:

dlg_id If the function succeeds, it returns a positive integer required as
Handle for later execution of the functiobfy_DialogNewand
Dlg_DialogUnload
The function returns -1, if the specified dialog file could not be
loaded.

Examples:

(Dlg_DialogLoad "test")
(Dlg_DialogLoad "c:\\dIg\\test")
(Dlg_DialogLoad "c:/dlg/test")

See also:

findfile
Dlg_DialogUnload
Dlg_DialogNew

171

Programming Dialog Boxes

Dlg_DialogNew

The function DIg_DialogNew provides the specified new dialog for further
usage by the application. The function is required for later displaying the
dialog with the function DIlg_DialogStart .

(Dlg_DialogNew dlg_name dlg_id [default_action [position]])

Parameters:
dlg_name: String supplying the unique name of the dialog.
dig_id: Handle of the dialog file which contains the dialog.

def_action: Optional string containing a FLISP expression which is
evaluated, if a dialog control is clicked for which no action
function has been specified.

position: Optional 2D point which identify the screen coordinates of the
upper left corner of the dialog. Specifying -1,-1 forces the dialog
to be displayed centered on the screen.

Returns:
If the function succeeds, it returns T, otherwise nil.

Examples:

(Dlg_DialogNew "dialog_1" dlg_id)

(Dlg_DialogNew "dialog_1" dlg_id "(default_func)")
(Dlg_DialogNew "dialog_1" dlg_id "(default_func)" ‘(0 0))
(Dlg_DialogNew "dialog_1"dlg_id "™ '(-1 -1))

Dlg_DialogStart

The function DIg_DialogStart starts the dialog box.
(Dlg_DialogStart [init_func])
Parameter:
init_func: Function to initialize the controls of the dialog. Used to set
controls to specified values and by assigning actions to control
with the functionDIlg_TileAction().

Returns:
Status: Status of the dialog
1 User pressed OK
0 User pressed Cancel or equivalent
-1 All dialogs terminated with DIg_DialogTerm
>1 (Dlg_DialogDone n)
Examples:

(Dlg_DialogStart "(dlg_init)")
(Dlg_DialogStart)

172

Programming Dialog Boxes

Dlg_DialogTerm

The function DIg_DialogTerm terminates (closes) all open dialog boxes.
(Dlg_DialogTerm)

Returns:
The function always returns nil.

See also:
Dlg_DialogDone

Dlg_DialogUnload

The function DIg_DialogUnload removes a dialog from memory.
(Dlg_DialogUnload dialog ID)

Parameter:

dialog_ID: Dialog Handle. Return value Dfg_DialogNew().
Returns:
The function always returns nil.

Examples:

(setq dlg_id (Dlg_DialogLoad "test"))
(Dlg_DialogUnload dig_id)

See also:

Dlg_DialogLoad

Dlg_ImageBmp

173

The function DIg_ImageBmp fills an Image Control with a bitmap file.
(Dlg_ImageBmp x1 y1 x2 y2 BmpPath)

Parameters:

It is required to pass to the function the coordinates which determines a
rectangle in the Image Control to fill with the bitmap. Note: If all coordinates
are set to O, the entire window is filled.

x1: X coordinate of the upper left corner

yl: Y coordinate of the upper left corner

X2: X coordinate of the lower right corner

y2: Y coordinate of theolwer right corner

file: Filename of the BMP file (probably including drive and path)
Returns:

If the function succeeds, it returns T, otherwise nil.

Programming Dialog Boxes

Example:

(setq x (Dlg_TileDimX "picturel™))
(setq y (Dlg_TileDimY " picture 1))
(Dlg_ImageStart " picture 1)
(Dlg_ImageBmp 0 0 x y "testpic.bmp™)
(Dlg_ImageEnd)

See also:

Dlg_TileDimX
Dlg_TileDimY
Dlg_ImageWmf
Dlg_ImageStart
Dlg_ImageEnd
Dlg_ImageFill

Dlg_ImageEnd

The function DIg_ImageEnd ends the operation(s) on an Image Control,
which have been started with the function DIg_ImageStart .
(Dlg_ImageEnd)

Returns:

If the function succeeds, it returns T, otherwise nil.

Example:
(Dlg_ImageStart "picturel™)

(Dlg_ImageEnd)
See also:

Dlg_ImageStart
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

Dlg_ImagekFill

The function DIg_ImageFill draws a filled rectangle in an Image Control in the
color and at the coordinates specified.
(Dlg_ImageFill x1 y1 x2 y2 color)

Parameters:
x1: X coordinate of the upper left corner
yl: Y coordinate of the upper left corner
X2: X coordinate of the lower right corner

174

Programming Dialog Boxes

y2: Y coordinate of the lower right corner
color: Color number. Valid values are
Value Meaning
>0 FelixCAD color number
-2 Current background color of the graphic window
-15 Background color of the current dialog box
-16 Foreground color of the dialog (color of text items)
-18 Previously used Vector or Fill color (current color)
Returns:

If the function succeeds, it returns T, otherwise nil.

Example:

(Dlg_ImageStart "picturel”)
(Dlg_ImageFill 0 0 100 100 2)
(Dlg_ImageEnd)

See also:

Dlg_ImageStart
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

Dlg_ImageStart

175

The function DIg_ImageStart starts operations on an Image Control.
(Dlg_lmageStart key)

Parameter:

key: Name of the dialog control of type Image.

Returns:
If the function succeeds, it returns T, otherwise nil.

Example:
(Dlg_ImageStart "picturel”)

(Dlg_ImageEnd)
See also:

Dlg_ImageEnd
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

Programming Dialog Boxes

Dlg_ImageVector

The function DIg_ImageVector draws a vector in an Image Control.

(Dlg_ImageVector x1 y1 x2 y2 color)

Parameters:
x1

yl
X2

y2
color:

X coordinate of the start point
Y coordinate of the start point
X coordinate of the end point
Y coordinate of the end point
Color number

No.

Meaning

>0

FCAD color number

-2

Current background color of the graphic window

-15

Background color of the current dialog box

-16

Foreground color of the dialog (color of text items)

-18

Previously used Vector or Fill color (current color)

Returns:

If the function succeeds, it returns T, otherwise nil.

Example:

(Dlg_ImageStart "picturel™)
(Dlg_ImageVector 0 0 50 50 2)
(Dlg_ImageEnd)

See also:

Dlg_ImageStart
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

Dlg_ImageWmf

The function DIg_ImageWmf allows to display a Windows Metafile (WMF) in
an Image Control. WMF is a vector format.
(Dlg_ImageWmf x1 y1 x2 y2 WmfPath)

Parameter:

It is required to pass to the function the coordinates which determines a
rectangle in the image control to fill with the WMF image. Note: If all

coordinates are set to 0, the entire image control is filled.

x1:
yl:

X coordinate of the upper left corner
Y coordinate of the upper left corner

176

Programming Dialog Boxes

X2: X coordinate of the lower right corner

y2: Y coordinate of the lower right corner

file: Filename of the WMF file (probably including drive and path)
Returns:

If the function succeeds, it returns T, otherwise nil.

Example:

(setq x (DIg_TileDimX "picturel"))
(setqy (Dlg_TileDimY "picturel"))
(Dlg_ImageStart "picturel”)
(Dlg_ImageBmp 0 0 x y "testpic.wmf")
(dlg_imagend)

See also:

Dlg_TileDimX
Dlg_TileDimY
Dlg_ImageBmp
Dlg_ImageStart
Dlg_ImageEnd
Dlg_ImageFill

Dlg_ListAdd

177

The function DIg_ListAdd allows to add or replace an entry in a List Box.
(Dlg_ListAdd item)

Parameter:

item String to be added to the list respectively to replace an item in
the list.

Examples:

(Dlg_ListStart "liste1" 1 0) ; change the first line

(Dlg_ListAdd "Fist line of list box")
(Dlg_ListEnd)

See also:

Dlg_ListStart
Dlg_ListGet

Dlg_ListEnd
DIg_ListSetTabstops
Dlg_ListSetColumnWidth

Programming Dialog Boxes

Dlg_ListEnd

The function DIg_ListEnd terminates operations on a List Box.
(Dlg_ListEnd)
Returns: Nil

See also:

Dlg_ListStart
Dlg_ListAdd

Dlg_ListGet
Dlg_ListSetTabstops
Dlg_ListSetColumnWidth

Dlg_ListGet

The function DIg_ListGet allows to read list box entries.
(Dlg_ListGet)

Returns:
The function returns a list with the scheme (position item):
position List Box index.

item Content of the line

Example:

(Dlg_ListStart "list" 13)
(while (setq I1 (DIg_ListGet)) (setq |2 (append 12 11)))
(Dlg_ListEnd)

See also:

Dlg_ListStart
Dlg_ListSetTabstops
Dlg_ListSetColumnWidth
Dlg_ListAdd

Dlg_ListEnd

Dlg_ListSetColumnWidth

The function DIg_ListSetColumnWidth serves to set the column width in a
multiple column list box.
(Dlg_ListSetColumnWidth key width)

Parameter:
key Name of the dialog control of type LISTBOX.
width String specifying the value for the column width in Pixel.
Returns: Nil.
Example:

178

Programming Dialog Boxes

(Dlg_ListSetColumnWidth "list1" "50")

See also:
DIg_ListSetTabstops

Dlg_ListSetTabstops

The function DIg_ListSetTabStops allows to set TAB stops in a list box.
(Dlg_ListSetTabstops key tabstops)
Parameters:
key Name of the dialog control of type LIST BOX.
tabstops String containing the tab stop positions. The numbers
specifying the tab stops are separated by spaces. A space
or a zero sets a tabulator of two dialog units.
One or more ascending values define in dialog units the
tabulator positions.

Returns:

Nil

Example:

(Dlg_ListSetTabstops "list1" "10 20 30 40")

See also:
Dlg_ListSetColumnWidth

Dlg_ListStart

The function DIg_ListStart starts the operations performed on a list box.
(Dlg_ListStart key [operation [index]])

Parameter:
key Name of the dialog control of type LIST BOX.

operation Operation to be perform in the list box as documented in the
following table:

Operation Meaning Function

1 Change selected list item Dlg_ListAdd

2 Append a new list item Dlg_ListAdd

3 Delete the current content of the list and Dlg_ListAdd
create a new one

10 Insert a list item at a specified position DIg ListAdd

11 Delete the list item at a specified position

12 Returns all selected list items DIg ListGet

13 Returns all list items Dlg ListGet

14 Mark list item at specified position

179

Programming Dialog Boxes

-1 = all (only for list boxes allowing multiple
selection)
15 Un-mark list item at specified position
-1 = all (only for list boxes allowing multiple
selection)
16 Set cursor to list item
index Number specifying a list item (respectively its position) the
operation should take effect on. Note: The index of the first list
item is O.

0 s standard,
-1 DLG_L_INSERT only: insert starting at cursor position

Returns:
If the function succeeds, it returns T, otherwise nil.

Examples:

; Change the fifth item of the list
(Dlg_ListStart "list" 1 4)
(Dlg_ListAdd "new value")
(Dlg_ListEnd)

; Get all items of the list
(Dlg_ListStart "list" 12)
(while (setq I1 (DIg_ListGet))
(setq 12 (append 12 11))
(Dlg_ListEnd)

See also:

Dlg_ListAdd

Dlg_ListGet

Dlg_ListEnd
Dlg_ListSetTabstops
Dlg_ListSetColumnWidth

Dlg_SliderGet

The function DIg_SliderGet returns the current settings of the specified Slider
control element.
(Dlg_SliderGet key)
Parameter:
key Name of the dialog control of type SLIDER.

Returns:

180

Programming Dialog Boxes

If the function succeeds, it returns the following list:
nCurPos position current of the scroll box

nMinPos minimum value at the extreme left or top position of the scroll
bar

nMaxPos maximum value at the extreme right or bottom position of the
scroll bar

nSmallStepsmall increment value which is used when an arrowhead of the
slider (scroll arrow) is picked

nBigStep big increment value which is used when the scroll bar is picked

See also:
Dlg_SliderSet

Dlg_SliderSet

The function DIg_SliderSet allows to set initial or current values for a Slider
control element.
(Dlg_SliderSet key nCurPos nMinPos nMaxPos

nSmallStep nBigStep)

Parameter:

key: Name of the Dialog element

nCurPos: Value for the current the position of the scroll box

nMinPos: Minimum value for the extreme left or top position in the scroll
bar

nMaxPos: Maximum value for the extreme right or bottom position in the
scroll bar

nSmallStep: Small increment value which is used when an arrowhead of
the slider (scroll arrow) is picked

nBigStep: Big increment value which is used when the scroll bar is
picked

Returns:

Nil

Example:

(Dlg_SliderSet "slider1" 0 0 100 2 10)

See also:
Dlg_SliderGet

Dlg_TileAction

The function Dlg_TileAction binds an action expression to a dialog control
element. This Lisp expression provided by the application developer is called

Programming Dialog Boxes

when the a control element has been clicked (e.g. a button) or edited (e.g. an

input field).
(Dlg_TileAction key action)
Parameters:
key: Identifier name of the dialog control element.
action: String containing a FLISP expression which is evaluated, if a

dialog control is clicked
The following local variables can be evaluated:

$key Name of the control element (key name)

$value Current value of the control

$data Current client-data

$reason Return reason code

$x, By Coordinates of an image control
Returns:

If the function succeeds, it returns T, otherwise nil.

$reason Meaning

1 A dialog element has been selected (e.g. by picking)

2 For Edit controls: This value indicates that the user has left the
field (e.g. by using the TAB key)

3 For Slider controls: This value indicates that the user has modified
the scroll box position

4 For Listitems and Image controls: the control element has been
selected by double click

Examples:

(Dlg_TileAction "item1" "(function_el1)")
(Dlg_TileAction "picturel" "(princ $x)")

See also:
Dlg_TileClientData

Dlg_TileClientData

The function DIg_TileClientData() allows to allocate data to a dialog
element, which may later be recalled via "dlg_callback_packet. cpkt-
>client_data" in a DIg_TileAction() call.

(Dlg_TileClientData key data)

Parameters:
key Identifier name of the dialog control element.
data Data for the dialog control element
Returns:

If the function succeeds, it returns T, otherwise nil.

182

Programming Dialog Boxes

Example:
(Dlg_TileClientData "list1" "red yellow black")

Dlg_TileDimX

The function DIg_TileDimX allows to retrieve the width of a dialog control
element.
(Dlg_TileDimX key)
Parameter:
key Name of the dialog control.

Returns:

If the function succeeds, it returns the width of the dialog control element,
otherwise nil.

Examples:
(setq x (DIlg_TileDimX "picturel"))
See also:

Dlg_TileDimY
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

Dlg_TileDimY

The function DIg_TileDimY allows to retrieve the height of a dialog control
element.
(Dlg_TileDimY key)
Parameter:
key Name of the dialog control.

Returns:
If the function succeeds, it returns the width of the dialog control element,
otherwise nil.

Examples:
(setqy (Dlg_TileDimY "picturel"))

See also:

Dlg_TileDimX
Dlg_ImageVector
Dlg_ImageFill
Dlg_ImageBmp
Dlg_ImageWmf

183

Programming Dialog Boxes

Dlg_TileGet

The function DIg_TileGet allows to retrieve the current value of a dialog
control.
(Dlg_TileGet key)
Parameter:
key Name of the dialog control

Returns:
The function returns the current content of the dialog control element.

Name of the key Content of value

DIALOG_CAPTION | Dialog Title

BUTTON Text of the button
BMPBUTTON --- (No value 1)
RADIOBUTTON 0 = Radio button not marked
1 = Radio button is marked
CHECKBOX 0 = Check box not marked

1 = Check box is marked
2 = Check box is undefined (x3State-Mode)

LISTBOX " = Null string, if no item of the list box is selected
"n" = Index of the selected items
"nl n2 n3..." = Indices of the selected items
(occurs only in multiple select list boxes)

COMBOBOX Content of the Edit field of the Combo Box respectively of
the selected Combo Box item

WINDOW Current Mode of the Image (Window Control)
0 = Normal
1 = Inverted

SLIDER Position of the Scroll Box

GROUPBOX Identifier (Group box title)

LABEL Content of the Static element (Label Control)

EDIT Content of the Edit Control

INPUT Content of the Input Control

Example:

(setq valuel (Dlg_TileGet "edit1"))

Dlg_TileMode

The function DIg_TileMode sets a certain mode for a dialog control element.
(Dlg_TileMode key mode)

Parameters:
key Unigue name of the dialog control element.

184

Programming Dialog Boxes

mode Positive integer specifying the mode for the dialog control as
follows:
Mode Meaning

Make dialog control selectable

Make dialog control not available

Set focus to the dialog control

Toggle Image Control: Highlighted | Normal

0
1
2
3 Select entry of edit control
4
5

Set dialog control to visible

6 Hide dialog control

Returns:

If the function succeeds, it returns T, otherwise nil.
Examples:

(Dlg_TileMode "edit1" 0)
(Dlg_TileMode "edit1" 3)
(Dlg_TileMode "edit1" 2)

Dlg_TileSet

185

The function DIg_TileSet sets the specified control element to a specified
value.
(Dlg_TileSet key value)

Parameter:

key Name of the dialog control.
value New content for the dialog element.
Mode Meaning

Make dialog control selectable

Make dialog control not available

Set focus to the dialog control

Toggle Image Control: Highlighted | Normal

0
1
2
3 Select entry of edit control
4
5

Set dialog control to visible

6 Hide dialog control

Returns:
If the function succeeds, it returns T, otherwise nil.
Examples:

(Dlg_TileSet "text1" "new value")

(Dlg_TileSet "checkbox1" "1")

(Dlg_TileSet "DIALOG_CAPTION" "Dialog Title")
See also:

Dlg_TileGet

Programming Dialog Boxes

Dlg_TileSetFont

The function DIg_TileSetFont sets a certain type of font for a dialog control

element.
(Dlg_TileSetFont key font)
Parameters:
key Name of the dialog control.
font A short integer in the range of 0 through 3 specifies the font

used in the dialog as follows:

Value |Meaning

0 System font

1 System fixed font

2 ANSI system font

3 ANSI system fixed font
Returns:

Nil

Example:

(Dlg_TileSetFont "button1" 2)

186

Programming Dialog Boxes

187

Overview: Alphabetically Ordered

Dlg_DialogDone

Closes a dialog

Dlg_DialogDonePositioned

Closes a dialog and returns the last screen
position of that dialog

Dlg_DialogLoad

Loads a dialog file

Dlg_DialogNew

Provides a new dialog (loaded to memory)

Dlg_DialogNewPositioned

Provides a new dialog at a specified screen
position (loaded to memory)

Dlg_DialogStart

Initializes and displays a dialog

Dlg_DialogTerm

Terminates all open dialogs

Dlg_DialogUnload

Unloads a dialog file

Dlg_ImageBmp Displays a bitmap file in an image box
Dlg_ImageEnd Terminates operations on an image box
Dlg_ImagekFill Draws a filled rectangle in an image box

Dlg_ImageStart

Start function to display bitmaps or vector
graphic in an image box

Dlg_ImageVector

Draws a vector in an image box

Dlg_ImageWmf Displays an vector graphic of an WMF file in
an image box

Dlg_ListAdd Adds or modifies a list box item

Dlg_ListEnd Terminates operations in a list box

Dlg_ListGet Reads a list box item

Dlg_ListSetColumnWidth

Sets the width of columns in a list box

Dlg_ListSetTabStops

Sets Tab-stops in a list box

Dlg_ListStart

Start function for operations in a list box

DIg_SliderGet Reads the values and properties of a slider
control

DIg_SliderSet Sets the values and properties of a slider
control

Dlg_TileAction Assigns an action to a control

Dlg_TileClientData

Assigns data to a control

Dlg_TileDimensions

Returns the size (height and width) of a
control

Dlg_TileGet Reads the current value of a control
Dlg_TileMode Determines the display mode of a control
Dlg_TileSet Sets a control to a value

Dlg_TileSetFont

Sets a font for a control element

System and Drawing File Variables

System

CHAPTER 12

and Drawing File Variables

When working with FelixCAD in many cases various parameters like default
numerical values, factors, or base coordinates are set or changed as result
of using the settings dialogs or other command execution. These parameters
are stored in system variables and can be retrieved with the next call of a
corresponding function or command. Evaluating and setting system variables
also provides advanced possibilities of customization and programming. This
chapter of the manual is divided into three section describing in detail the
global system variables, the local drawing variables and the local
dimensioning variables. Each section is ordered alphabetically.

Global and Local Variables

Global variables are common variables valid for the entire program and in
any of the drawings currently open. For example, these variable allow to set
default values for a template drawing, for default linear and angular units
(when no template drawing is used). Also, the current file settings of the
items of the user interface (pull-down menu, palettes, tablet-menu) can be
retrieved.

Local variables are valid only in a certain drawing. These variables may
differ from drawing to drawing currently opened on the desktop. Most of
these variables are stored with the drawing. This means, that you will find the
same drawing environment when the drawing is reopened. The major part of
the local variables stores current settings for drawing and editing commands,
e.g. hatching and dimensioning parameters. Others allow to retrieve current
user coordinate system and view settings. A number of variables store Read-
Only values. You can return their values, but you cannot edit them. Variables
notified as Read-Write can be changed in their values.

Retrieving and Setting the Variables

189

Often, the goal of programming is to alter the default settings for the program
environment or for a specific drawing. The LISP functions (getvar ...)
respectively (setvar ...) allow you to retrieve or modify the current setting of
a system variable. You can read the current value of a variable by using the
(getvar ...) function.

You can alter the value of a variable with the (setvar ...) function with
exception of the Read-Only variables. When you supply a value to the
function whose data type or data range is invalid an error message is
returned. More information and examples on using the functions (getvar ...)

System and Drawing File Variables

and (setvar ...) to manipulate variable settings is found in the chapter Lisp
Programming in this manual.

Scheme of the System Variables Reference

This chapter describes each of the variables. In addition to the short

description of the meaning you find structured information on the properties of

the variable and a cross-reference to commands which set or modify the

variable, as follows:

Properties

» Status

With the item Status are two kinds of variables are described:
Variables notified aRead/Write can be set and allow to manipulate
settings for the program and the drawing environment. A number of global
and local variables can be retrieved but cannot be modified. These
variables are notified @&ead-Only. They contain either fixed values
(like the information on the program platform) or contain updated
information on a current status (e.g. user coordinate and view settings).
Some variables contain the result of a previously used inquiry command
(e.g. the last computed area).

* Type

This item specifies the valid data type of the variable, which may be on of the
following:

Integer contains integer values

Real contains floating point values

String contains a string

2D-Point contains coordinates of a two dimensional point
3D-Point contains coordinates of a two dimensional point
Bit-Code contains a Bit-Code

Pixel-
Coord. contains the screen coordinates in pixels

o Default/ Initial Value

A number of variables contain a certain default or initial value. This item of a
variable description documents the standard settings of the program. If a
local variable is described, you find the default value documented for the case
that no template drawing of your application is used.

190

System and Drawing File Variables

191

But note, that many of the Read/Write variables may contain different values
as they could have been set in a previous session with the program or a
previous working on a re-opened drawing.

» Storage Location

The variables can be divided into three groups corresponding to their location
of storage:

1. Global variables, whose values are stored in the initialization file
applic.INI or in the configuration filapplic. CFG. Please note, that you
should not modify an applications INI file. The CFG file is binary and
cannot be altered with a text editor.

2. Local variables, whose values are stoneithe drawing itself.

3. Global or local variables, whose values are valid during the working
session with the program or while working on a drawing. These variables
are not maintained when the drawing is closed or the program is
terminated.

Commands to set or get variables

In many cases the variable reference contains a paragraph cross-referencing
command names. This is the case, if the variable is influenced in any way by
a built-in command.

Note: The commands SETTINGS, PRECPAR, EDITPAR and VIEWPAR
serve explicitly to set system variables. All of these commands can be call
transparently, which means while another command is executed.

System and Drawing File Variables

Global Variables: Reference

ACTDB

The variable ACTDB (Active Database) returns the ID number of the currently
active drawing database which is currently active. Because up to four
drawings may be opened simultaneously, this variable may contain one of the
values as follows:

-1 = No drawing database opened

0 First drawing database active

Second drawing database active

Third drawing database active

Fourth drawing database active

1
2
3

Properties

Status Read-Only

Type Integer (-1 ... 3)

Initial value -1, because normally no drawing is opened when thgraomo
starts up.

Commands

The variable is reset if one of the commands NEW, OPEN, or CLOSE has

been executed successfully.

See also

Lisp functions (flxnames ...) and (getactvport ...) ;

Local system variable CVPORT (Current viewpoint).

AREA

This variable returns the area computed by the most recently executed
command AREA in the current session with the program. Note: The variable
is not drawing sensitive.

Properties

Status Read-Only

Type Real

Initial Value 0.0

Commands

The variable is reset by the usage of the command AREA.
See also

Global system variables PERIMETER and DISTANCE.

CDATE

The variables CDATE (Current Date) return the current date and time. The
calendar date returned is as follows:

YYYYMMDD.HHMMSSmm

== (Year Month Day . Hour Minute Second Millisecond).
Properties

192

System and Drawing File Variables

Status Read-Only
Type Real
Value Current date and time of the computer system

Example 19950907.12055239

CIRCLERAD

This variable allows to sets the default value for the radius requested by the
command CIRCLE (Circle Radius).

Properties
Status Read / Write (not stored)
Type Real

Initial Value 0.0

Command

If the variable is set to 0.0, the command CIRCLE does not display a default
value when the user is prompted for a radius or a diameter. Any other value
is displayed as default, which might be accepted by the user by pressing
RETURN. The variable is influenced by the command CIRCLE itself. As

soon as the user has specified a radius or a diameter the variable is set to
that value.

CIRCLERES

Determines the number of line segments used to display circles and arcs in

the drawings (Circle Resolution). Valid integer values lie in the range

between 8 and 1024.

Note:

< The higher the value, the more ideal the displaying of arcs and circles.

* The lower the value, the better the performance when dynamically
dragging arched objects during entity generation or selection and when
redrawing or regenerating a drawing viewport.

Properties
Status Read / Write (saved in the CFG file)
Type Integer (8 ... 1024)

Default Value 48

Command
The variable may be modified by the user via the dialog command
DRAWMODE in the option box Circle Segments.

CMDACTIVE

This variable (Command Active) allows the developer to evaluate the type of
a currently active command. A bit code is returned with a meaning as follows:

System and Drawing File Variables

Bit 1 = Standard command
Bit 2 = Standard and transparent command
Bit 4 = Macro script

Properties

Status Read-Only

Type Integer (Bit-Code)
CMDECHO

This variable (Command Echo On/Off) allows the developer to set a
preference for the mode a statement using the LISP function (command ...)
is performed as follows:

0 =OFF The command sequences are not visible for the user
1=0N The command sequences are visible for the user
Properties

Status Read / Write (not saved)

Type Integer

Default Value 1

Command
Not influenced by a built-in command.
Programming: See function (command ...) .

CMDNAMES

This variable (Command Names) allows the developer to retrieve in his
routines the name(s) of the currently active command(s).

Properties

Status Read-Only

Type String

Examples "LINE", "LINE ‘ZOOM"
Example

> LINE

From point: ZOOM
Zoom scale factor: (progn (setq x (getvar “cmdnames"))(princ x)(princ))
LINEZOOM

DATE

This variable returns the current date and the current time in the Julian Date
format.

Properties
Status Read-Only
Type Real

Return Value Current date / time of the computer system

194

System and Drawing File Variables

Example 2449968.64956018

See also
Global system variable CDATE.

DEFANGBASE

If no template drawing is used when the user creates a new drawing, this
variable (Default Angle Base) allows to set a default value for the zero
degree angle direction. As reference point for the direction serves the
positive X axis of the current user coordinate system.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Real
Default Value 0.0
DEFANGDIR

If no template drawing is used when the user creates a hew drawing, this
variable (Default Angle Direction) sets the default direction when angle are
specified by the user as follows:

0 = Counter-clockwise

1 = Clockwise

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (0] 1)
Default Value 0
DEFAUNITS

If no template drawing is used when the user creates a new drawing, this
variable (Default Angular Units) allows the programmer to determine the unit
format to enter or to measure angles as follows:

0 = Decimal Degrees

1 = Degrees/Minutes/Seconds

2 = Grads

3 = Radians

4 = Surveyor's Units

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (0 ... 4)
Default Value 0
DEFAUPREC

If no template drawing is used when the user creates a new drawing, this
variable (Default Angular Units Precision) determines the standard setting for

195

System and Drawing File Variables

the number of decimal places to be displayed when prompting the user for
angle specifications. A setting of up to eight decimal places is valid.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (O ... 8)
Default Value 0
DEFDIMZIN

If no template drawing is used when the user creates a new drawing, this

variable (Default Dimension Zero Inches) determines the display mode of

dimensions.

¢ Note: The meaning of the integer values (in the range between 0 and
16) is documented in the description of the local system variable
DIMZIN (see below).

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (O ... 16)
Default Value 0
DEFLUNITS

If no template drawing is used when the user creates a new drawing, this
variable (Default Linear Units) allows the programmer to determine the
standard setting for linear unit format used in the drawing as follows:

1 = Scientific

2 = Decimal

3 = English: Engineering

4 = English: Architecture

5 = Fraction
Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (1...5)
Default Value 2
DEFLUPREC

If no template drawing is used when the user creates a new drawing, this
variable (Default Linear Units Precision) allows the programmer to determine
the standard setting for the number of decimal places of linear units. A value
up to 8 decimal places is accepted.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer (O ... 8)

Default Value 2

196

System and Drawing File Variables

DIASTAT

This variable (Dialog Status) allows the programmer to retrieve the status,
how the most recently dialog box of a built-in GDE command called by the
user has been exited. Allows to retrieve the exit status of a dialog when
inside a LISP program a built-in dialog-command has been called.

0 = Dialog has been terminated by OK

1 = Dialog has been terminated by Cancel

Properties
Status Read-Only
Type Integer

Initial Value 0O

See also
Global system variables CMDNAMES, CMDACTIVE, LASTVAR.

DISTANCE

This variable (Distance) returns the value of a length respectively distance
measurement most recently performed by a call of the command ‘DIST.

Properties
Status Read-Only
Type Real

Initial Value 0.0

Commands

The variable is reset if the user has performed the command ‘DIST.
Note: This variable is drawing-sensitive.

ERRNO
This variable (Error Number) may contain an error number set by the system
if a built-in API function could not be executed error-free.
Properties
Status Read-Only
Type Integer
Initial Value 0
EXPERT

This variable allows the developer to set on or off a so called Expert Mode
for his file operations.

0 = Requests may display warnings or security prompts in some cases

1 = Requests do not display warnings or security prompts

Properties
Status Read / Write (not saved)

197

System and Drawing File Variables

Type Integer
Default Value 0

FCTEMPLATE

This variable allows the programmer to set the default name (including drive
and path) for the template drawing used when the user executes the

specified.

Properties

Status Read / Write (saved in the system’s CFG file)
Type String

Example "c:\applic\template.flx"

Command

Note: The user has the possibility to specify another template drawing or to
disable the usage of a template drawing with the command NEW. The user's
specification is written to the system variable FCTEMPLATE.

FCVERSION

This variable returns the name and the version number of the FelixCAD
Graphic Developer’s Engine.

Properties
Status Read-Only
Type String
Example "FCAD 2.0"
FILEDIA
This variable (File Dialog) may be set or evaluated by the developer to
determine, if for certain commands a dialog box or a command line request
sequence is used.
0 = Dialog Box version of the command is used
1 = Command prompts parameters at the command line
Properties
Status Read / Write (not saved)
Type Integer (0| 1)
Default Value 1
HIGHLIGHT

This variable is used to determine, if selected drawing objects are marked by
highlighting them. The variable may be set to:

0=OFF

1=0ON

198

System and Drawing File Variables

Properties
Status Read / Write (not saved)
Type Integer (0 | 1)

Default Value 1

LANGUAGE

This variable allow to determine the language used by the FelixCAD.
Currently two values are accepted:

1 = German

2 = English

Properties

Status Read / Write (not saved)
Type Integer

Default Value 1 (read from INI file)

LASTVAR

This variable (Last Variable) allows the developer to retrieve the most
recently called system variable.

Properties

Status Read-Only

Type String

Example "PDMENUNAME"
OFFSETDIST

This variable (Offset Distance) sets the default value for the command
OFFSET when prompting the user for the distance between the original
objects (contour) and the copy of the objects.

Properties
Status Read / Write (not saved)
Type Real

Initial Value 0.0

Command
The variable is probably re-written when the user executes the command
OFFSET.

PALETTEL ... PALETTE n

199

This variable returns the filename of a palette number n currently loaded and
displayed on the desktop. The variable returns in a string the filename
including drive and path.

If no palette has been loaded indexed as n, the variable returns a null string

(")

Properties

System and Drawing File Variables

Status Read-Only

Type String

Example "C:\APX\AP_DRAW.MNP"

Commands

PALETTE, PALMAN, MENU
PANSCALE

This variable (Pan Scale) specifies the factor for the PAN commands
‘PANRIGHT, ‘PANLEFT, ‘PANUP, and ‘PANDOWN, which move the view of
the current viewport up or down or to the left or right.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Real

Default Value 0.5

Commands
The variable may be set by the user with the DISPPAR command.

PDMENUNAME

This variable (Pull-down Menu Name) returns the filename including drive and
path of the currently used pull-down menu.

Properties

Status Read-Only

Type String

Example "c:\applic\applic.mnu"

Command
MENU

PERIMETER

This variable returns the value of the perimeter computed by the most
recently usage of the command AREA.

Properties

Status Read-Only

Type Real

Initial Value 0.0

Command

AREA

See also

Global system variable AREA.
PLATFORM

This variable returns a string to identify the operating system platform.
200

System and Drawing File Variables

Properties

Status Read-Only

Type String

Value "Win32" (32bit version)
POLYSIDES

This variable (Polygon Sides) allows to set the default value for the command
NGON when prompting the user to enter the number of sides of the regular
polygon to be drawn. The value of type integer can lie in the range between 3

and 1024.

Properties

Status Read / Write

Type Integer (3 ... 1024)

Default Value 4

Command

The setting is updated when the command NGON is used.

RINGDIA1

This variable (Ring Diameter 1) specifies for the built-in command RING the
preference value for the inner diameter .

Properties

Status Read / Write (not saved)

Type Real

Default Value 0.5

Command

The variable is probably reset if the command RING has been used.

RINGDIA2

This variable (Ring Diameter 2) specifies for the built-in command RING the
preference value for the outer diameter .

Properties

Status Read / Write (not saved)

Type Real

Default Value 1.0

Command

The variable is probably reset if the command RING has been used.
SCREENMODE

This variable returns a flag to evaluate, if the Lisp/History window is active.
0 = Lisp/History text window is active
1 = Lisp/History text window is closed

201

System and Drawing File Variables

Properties
Status Read-Only
Type Integer

Initial Value 0 (the text window is not displayed "on top" when a new
session with the program is started)

Command

The command ‘TSCREEN re-sets this variable. The variable is only of
interest for LISP programming, which allows to et Command History /
Lisp Interpretercommand line window on top with the functi@extscr) and
to remove the command line window with the functi@raphscr) to not
overlap the drawing windows.

SCREENSIZE

This variable (Screen Size) returns the size of the current viewport of the
current drawing in pixels (X, Y). The value 0,0 indicates, that no drawing is

opened.

Properties

Status Read-Only

Type Screen coordinates (in pixels)

Example 550,283

Note
The commands 'WTILE and 'WCASCADE as well as the Windows operations
Full Screen, Maximize, Minimize, etc. lead to a reset of the system variable.

SELECTBOX

This variable allows to retrieve and set the size (in pixels) of the Select Box
cursor which is used when prompting the user to select objects.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Integer

Default Value 5

Commands
The transparent command 'PRECPAR allows the user to specify an
appropriate value for his current needs.

SERNUMBER

This variable returns the serial number of the user’s program license. The
serial number is also displayed in the dialog displayed by the ‘INFO
command.

Properties

Status Read-Only

202

System and Drawing File Variables

Type String
SNAPBOX

This variable (Snap Cursor Box) sets the size of the snap area in pixels for
object snap functions.

Properties
Status Read / Write (saved in the CFG file)
Type Integer

Default Value 5

Commands

The transparent command 'PRECPAR allows the user to specify an
appropriate value for his current needs.

TABMENUNAME

This variable (Tablet Menu Name) returns the filename including drive and

menu is used.

Properties

Status Read-Only

Type String

Example "c:\felixcad\applic\tablet.mnt"
Commands

MENU, TABLET

UNDOCTL

This variable sets the status for the function to undo steps performed by a
function or command. Also, it returns the current default value. The setting is
bit-coded as follows:

Bit 1: Undo disabled

Bit 2: Undo all elements

Bit 3: Undo the last element or the last group

Bit 4: Undo Messages On/Off

Properties

Status Read / Write
Type Integer (bit coded)
Default Value 2

ZINSCALE

This variable (Zoom In Scale) specifies the zoom factor for the transparent
command ZOOMIN.
Properties

Status Read / Write (saved in the system’s CFG file)
203

System and Drawing File Variables

Type Real
Default Value 0.5

Commands
The user may set a new value by using the dialog command VIEWPAR.

ZOUTSCALE

This variable (Zoom Out Scale) specifies the zoom factor for the transparent
command ZOOMOUT.

Properties
Status Read / Write (saved in the system’s CFG file)
Type Real

Default Value 2.0

Commands
The user may set a new value by using the dialog command VIEWPAR.

Local Variables: Reference

Local variables are drawing sensitive. Local variables of type Read/Write
normally are stored in the drawing. Otherwise they are indicated as Read-
Only variables. Local variables of type Read-Only are not stored in the
drawing.

ANGBASE

Determines a default value for the zero degree angle direction (Default Angle
Base). As reference point for the direction serves the positive X axis of the
current user coordinate system.

Properties
Status Read / Write
Type Real
Default Value 0.0
ANGDIR
Determines the default direction when angles are specified by the user as
follows:
0 = Counter-clockwise
1 = Clockwise
Properties
Status Read / Write
Type Integer
Default Value 0
ATTDIA

204

System and Drawing File Variables

Controls the mode for attribute requests when inserting parts.
0 = Attribute request at command line
1 = Attribute request in a dialog box

Properties
Status Read / Write
Type Integer

Default Value 1

Command

The variable influences the command QINSERT which is used by LISP
programmers in functions to insert parts or by advanced users to integrate
part insertions into menus and palettes.

ATTMODE

Controls the visibility of attributes in the drawing (Attribute Mode). Valid
values are:

0 = Hide all attributes (set to invisible)

1 = Visibility as determined within the attribute definition (visible | invisible)
2 = Display all attributes (visible)

Properties
Status Read / Write
Type Integer (0| 1]2)

Default Value 1

Command
DRAWMODE. See also command ATTDEF for variable value 1.

ATTREQ

Determines the mode of requests of attribute values when parts (which
contain attribute definitions) are inserted. Valid values are:

0 = Attribute value requests are suppressed

1 = Attribute value requests performed normally

Properties

Status Read / Write
Type Integer
Default Value 1

Command

INSERT

205

System and Drawing File Variables

AUNITS
Determines the unit format for input or measurement of angles as follows:
0 = Decimal Degrees
1 = Degrees/Minutes/Seconds
2 = Grads
3 = Radians
4 = Surveyor's Units
Properties
Status Read / Write
Type Integer
Default Value 0
Command
AUPREC
Determines the number of decimal places for angles. The angular unit
precision is specified by an integer value between 0 (no decimal places) and
8 (eight decimal places, e.g. 0.000000001)
Properties
Status Read / Write
Type Integer (O ... 8)
Default Value 0
CECOLOR
This variable determines the current color when entities are drawn.
Properties
Status Read / Write
Type Integer
Default Value "BYLAYER" (= 256)
Command
'SETCOLOR
CELTYPE

This variable specifies the current linetype when drawing entities. The
argument of the variable contains the name of the linetype.

Properties
Status Read / Write
Type String

Default Value "BYLAYER"

206

System and Drawing File Variables

Command
'SETLINETYPE. See also command LINETYPE.

CHAMFERA

Determines the default value of the trim distance, in world units, associated
with the first entity the user clicks on when using the edit command
CHAMFER. The variable is updated when the user specifies another distance
when being prompted.

Properties

Status Read / Write

Type Real

Default Value 0.0

Command
CHAMFER

CHAMFERB

Determines the default value of the trim distance, in world units, associated
with the second entity the user clicks on when using the edit command
CHAMEFER. The variable is updated when the user specifies another distance
when being prompted.

Properties
Status Read / Write
Type Real
Default Value 0.0
Command
CHAMFER
CLAYER
Determines the Current Layer. The argument of the variable contains the
name of the layer.
Properties
Status Read / Write
Type String
Default Value "0"
Command
'SETLAYER, LAYER
CVPORT

207

System and Drawing File Variables

This variable allows the LISP programmer to retrieve the identification
number of the Current Viewport.

Properties
Status Read-Only
Type Integer
Default Value 1
See also
Lisp functions (getactvport) and (setactvport) in chapter 5.
DBMOD
This variable allows the programmer to returns a bit-coded modification
status of the drawing database. Valid bit codes values are:
1,2,4,8,16
Properties
Status Read-Only
Type Bit-Code
DIMxxx
The dimensioning variables are documented below in the separate section of
this manual.
DWGNAME
Returns the complete name of the current drawing as string.
Properties
Status Read-Only
Type String
Default Value "c:\applic\noname_0"
DWGPREFIX
Returns the drive and the path of the current drawing.
Properties
Status Read-Only
Type String
Default Value "c:\applic\"
DWGWRITE

Specifies the access mode to drawings of type DWG and allows protection
of DWG files when these should only be displayed. Valid values are:

0 = Read-Only

1 = Read/Write

208

System and Drawing File Variables

Properties

Status Read / Write

Type Integer
ELEVATION

Specifies the value for an elevation (Z axis) in the current user coordinate
system. This might be used as temporary construction plane.

Properties
Status Read / Write
Type Real
Default Value 0.0
FILLETRAD
Determines the default value for the Fillet Radius when the command FILLET
is used.
Properties
Status Read / Write
Type Real
Default Value 0.0
Command
FILLET
FILLMODE
Controls the fill mode for entities of type Polyline and 2D-Face. Valid values
are:

0 = Display entities not filled
1 = Display entities filled

Properties

Status Read / Write

Type Integer

Default Value 1

Commands

2DFACE, POLYLINE, CHAIN, NGON, RING
GRIDMODE

Turns displaying a grid on or off. The dots of the grid are displayed in the XY
distances as specified by the system variable GRIDUNIT and in the area
specified by the system variables LIMMIN and LIMMAX.

0 = Off

1=0n

209

System and Drawing File Variables

Properties
Status Read / Write
Type Integer
Default Value 0
Command
'PRECPAR

GRIDUNIT

Specifies the horizontal and vertical distances (x, y) between the grid dots
when grid display is turned on (see system variable GRIDMODE).

Properties
Status Read / Write
Type 2D-Punkt
Default Value 0.0,0.0
Command
'PRECPAR
HPANG
Determines the hatch angle of a pattern file based hatch pattern. See the
variables HPFILE, HPNAME, and HPSCALE.
Properties
Status Read / Write
Type Real
Default Value 0
Command
HATCH
HPDOUBLE
Determines if the built-in quick hatch pattern is drawn with single lines or with
crossing lines. Valid values for this flag a:
0 = Single line hatch pattern
1 = Double line hatch pattern (cross)
Properties
Status Read / Write
Type Integer
Default Value 0
Command
HATCH
HPFILE

210

System and Drawing File Variables

Determines the current complete filename for the hatch pattern file. If the
variable contains a null string (") no hatch pattern file is set to allow pattern
selection in the Hatch dialog box.

Properties
Status Read / Write
Type String
Example "c:\applic\ansi.pat"
Command
HATCH
HPNAME
Determines the default name of a hatch pattern based on a hatch pattern file.
If the variable contains a null string (") the hatching commands uses the built-
in quick pattern for hatching (see HPSPACE, HPANGLE, and HPDOUBLE).
Properties
Status Read / Write
Type String
Default Value ™
Command
HATCH
HPSCALE
Determines the scale factor for a hatch pattern based on a hatch pattern
description file.
Properties
Status Read / Write
Type Real
Default Value 1.0
Command
HATCH
HPSPACE

211

Determines the distance between the lines of the standard quick pattern. See
also HPNAME, HPDOUBLE, HPUSRANG.

Properties

Status Read / Write
Type Real

Default Value 1.0
Command

HATCH

System and Drawing File Variables

HPUSRANG

Determines the hatch angle of a built-in quick hatch pattern (single line or
cross pattern; see also the system variable HPDOUBLE).

Properties
Status Read / Write
Type Real
Default Value 0
Command
HATCH
INSBASE
Determines the base point for parts when writing selected entities to file to
define a part. Note: The command PARTEXP does not request a base point
when creating a drawing file representing a part when the entity selection
method is used.
Properties
Status Read / Write
Type 3D point
Default Value 0.00,0.00,0.00
Command
PARTEXP. See also DEFPART.
INSNAME
Determines a default part name for the INSERT command. The variable is
updated when the user specifies another part in the INSERT dialog. If the
variable contains a null string ("), no default part name is set.
Properties
Status Read / Write
Type String
Default Value "
Command
INSERT
LASTPOINT

Returns the coordinates of the point specified by the last point input within a
drawing or editing command function. May also be set.

212

System and Drawing File Variables

Properties
Status Read / Write
Type 3D Point
Default Value x, vy, z
LIMMAX
Determines the upper right XY coordinates for the display of a grid in the
drawing. May also, in some cases, be interpreted as drawing sheet corner.
Properties
Status Read / Write
Type 2D Point
Default Value 12.0, 9.0
Command
LIMMIN
Determines the lower left XY coordinates for the display of a grid in the
drawing. May also, in some cases, be interpreted as drawing sheet corner.
Properties
Status Read / Write
Type 2D Point
Default VValue 0.0, 0.0
Command
LSPALOAD
Determines the file name of a LISP file which is loaded automatically when
the drawing is opened. Recommended for use especially in template
drawings to perform certain application specific tasks (e.g. evaluation of
application specific configuration files).
Properties
Status Read / Write
Type String
Default Value ™
Command
LTSCALE

213

System and Drawing File Variables

Determines a common scale factor for linetypes. This allows to adjust the
display of dashed, dash-dotted, or dotted lines to the drawing and plotting
scale.

The dash lengths specified in the linetype definition (in drawing units) are
multiplied with the factor specified in the variable LTSCALE. The variable
accepts floating point values which must be greater than zero.

Properties
Status Read / Write
Type Real
Default Value 1.0
Command
'DRAWMODE. See also: LAYER, LINETYPE, 'SETLINETYPE.
LUNITS
Determines the mode for the linear unit format used in the drawing. Valid
values are:
1 = Scientific
2 = Decimal
3 = English: Engineering
4 = English: Architecture
5 = Fraction
Properties
Status Read / Write
Type Integer (1...5)
Default Value 2
Command
LUPREC
This variable (Linear Units Precision) determines the number of decimal
places of linear units. A value up to 8 decimal places is accepted.
Properties
Status Read / Write
Type Integer
Default Value 2
Command
MIRRTEXT

214

System and Drawing File Variables

This variable (Mirror Text) determines, if text is reflected or retains direction
when selected by the MIRROR or FLIP command.

0 = Mirror text

1 = Retain text direction when mirrored

Properties

Status Read / Write

Type Integer

Default Value 1

Command

MIRROR, FLIP
ORTHOMODE

This variable turns the orthogonal drawing mode on or off.

0 = Off

1=0n

Properties

Status Read / Write

Type Integer

Default Value 0

Commands
PRECPAR, 'TORTHO

OSMODE

215

This variable (Object Snap Mode) sets an explicit object snap mode for
drawing and editing. To set more than one object snap mode explicitly, the
sum of the following valid value must be specified. Valid values for the bit-
coded argument of the system variable are:

System and Drawing File Variables

Value Meaning

0 No explicit object snap

End point

Mid point

Center point of arcs and circles

I~ IN|F

Insertion point of text, parts, part and attribute definition and
anonymous blocks like dimensioning and hatching

16 Quadrant of arcs and circles

32 Intersection point

64 Insertion point

128 Perpendicular to

256 Tangent to

512 Next point on nearest entity

Properties

Status Read / Write
Type Integer
Default Value 0

Command
'PRECPAR

PDMODE

Determines the symbol used to display point entities in the drawing.
Properties

Status Read / Write

Type Integer (O ... 20)

Default Value 0

Command
'DRAWMODE

PDSIZE

Determines the size of point entities in the drawing.
Properties

Status Read / Write

Type Real

Default Value 0.0

Command
'DRAWMODE

PLINEWID

216

System and Drawing File Variables

Determines the default value for the width when polylines are drawn with one
of the commands POLYLINE, CHAIN, NGON, or RECTANGLE.

Properties
Status Read / Write
Type Real

Default Value 0.00

Commands
POLYLINE, CHAIN, NGON, RECTANGLE

PREVCMD

Returns the most recently called or executed command in a string even if the
command has been canceled. The variable returns both a built-in command of
the graphics engine and a command provided by a so-called "c:" function
defined within the user interface. If the most recently called command has
been a lisp expression, like (setq a 4.7) , or an unknown command, the
variable contains the string "PREVCMD". The variable is of interest only for
programming.

Properties
Status Read-Only
Type String
Example " line"
SNAPBASE
Determines the origin (x, y) for the snap grid.
Properties
Status Read / Write
Type 2D Point
Default Value 0.00,0.00
Command
'PRECPAR
SNAPMODE

217

Determines the snap mode. If snap mode is turned on, the cursor movements
and the coordinates identified are locked to the nearest point on the snap
grid. If turned on, this mechanism is disabled.

0 = Off

1=0n

Properties

Status Read / Write
Type Integer

Default Value 0

System and Drawing File Variables

Commands
'PRECPAR, 'TSNAP
SNAPUNIT
Determines the horizontal and vertical distance of the points on the snap grid.
Properties
Status Read / Write
Type 2D Point
Default Value 1.00, 1.00
Command
'PRECPAR
SPLFRAME

Determines how to display the edges of entities of type 3DFACE which have
been set to invisible are currently displayed. The value may be as follows:

0 = Edges of 3D Faces are displayed as defined (visible or invisible)

1 = All edges of 3D Faces are displayed visible

Properties

Status Read / Write

Type Integer

Default Value 0

Commands

'VIEWPAR. See also: 3DFACE.
TEXTSIZE

Determines the default value of the text size proposed by the command TEXT
or ATTDEF for entity creation.

Properties

Status Read / Write

Type Real

Default Value 0.2

Commands
TEXT, ATTDEF

TEXTSTYLE

Determines the default value for the text style proposed by the command
TEXT or ATTDEF for entity creation. The string must contain a valid text style
name already stored in the STYLE table of the drawing database. A text
style can be loaded, defined, or re-defined with the command FONT.

218

System and Drawing File Variables

Properties

Status Read / Write

Type String

Default Value "STANDARD"

Commands

TEXT, ATTDET. See also: FONT.
TRIMMODE

Determines the trim mode used when executing the command FILLET or
CHAMFER as follows

0 = OFF: The selected lines to be filleted or chamfered are not modified
1 = ON: The selected lines are trimmed when filleted or chamfered

Properties

Status Read / Write

Type Integer (0 | 1)

Default Value 1

Command

EDITPAR, FILLET, CHAMFER
UCSFOLLOW

Determines, if the alteration of the user coordinates system (UCS) causes an
automatic change to the plan view of the new UCS.

0 = Off: A new UCS does not change the view

1 = On: Plan view follows automatically to an UCS alteration

Properties

Status Read / Write
Type Integer (0] 1)
Default Value 0

Command

'VIEWPAR

UCSNAME

Returns the name of the current user coordinate system (UCS). If the
variable is a null string ("), the UCS is unnamed.

219

System and Drawing File Variables

Properties
Status Read-Only
Type String
Default Value "
Command
UCS Control

UCSORG
Returns the coordinates of the origin of the current user coordinate system
(UCS).
Properties
Status Read-Only
Type 3D Point
Default Value 0.00,0.00,0.00
Command
UCS Origin

UCSXDIR
Returns the coordinates for the direction of the X axis of the current user
coordinate system.
Properties
Status Read-Only
Type 3D Point
Default Value 1.00,0.00,0.00
Command
UCS

UCSYDIR
Returns the coordinates for the direction of the Y axis of the current user
coordinate system.
Properties
Status Read-Only
Type 3D Point
Default Value 0.00,1.00,0.00
Command
UCS

USERI1 ... USERI5

Stores a user-defined integer in the one of the variables USERI1 through
USERIS.

220

System and Drawing File Variables

Properties

Status Read / Write
Type Integer
Default Value 0

Command

USERR1

... USERRS

Stores a user-defined floating point number in the one of the variables
USERRL1 through USERRS.

Properties

Status Read / Write

Type Real

Default Value 0.00

Command

USERS1

... USERS5

Stores a user-defined string number in the one of the variables USERS1
through USERSS5.

Properties

Status Read / Write

Type String

Default Value ™

VIEWCTR

Returns the coordinates (of the current user coordinate system) of the center
point of the current viewport.

Properties

Status Read-Only

Type 2D Point

Default Value x, y

VIEWDIR

221

Returns the coordinates (of the current user coordinate system) containing
the view direction of the current viewport.

System and Drawing File Variables

Properties

Status Read-Only

Type 3D Paint

Default Value 0.00,0.00,1.00
VIEWSIZE

Returns the height in drawing units of the visible drawing portion (view) in the
current viewport.

Properties
Status Read-Only
Type Real

Default Value 9.00

VIEWTWIST
Returns the view angle to the current viewport.
Properties
Status Read-Only
Type Real
Default Value 0.0
WORLDUCS

Indicates, if the current user coordinate system (UCS) is identical with the
world coordinate system (WCS). In this case the variable contains the integer
value 1; otherwise 2.

1 = UCS is identical to the WCS

2 = UCS does not correspond to WCS

Properties
Status Read-Only
Type Integer (1| 2)

Default Value 1

222

System and Drawing File Variables

Dimension Variables: Reference

The display of dimensions are controlled by a set of dimension variables
affecting the different elements of dimensions like dimension text, dimension
line, extension lines, arrowheads, units of measurement etc.

The current settings of dimension variables can be stored in a dimension style
within the dialog box called by the command DIMTYPE. This command also
serves to restore a previously named dimension style. When programming
the functions DIMSAVE and DIMREST serve for the same purposes. Named
dimension styles are stored in the drawing database in the DIMSTYLE table.
Also, the current setting of the individual dimension variables are stored in the
drawing.

Properties

The statusof all dimension variables Read/Write.

The storage location of the dimension variables is in any case the drawing
database.

The data type of the variable and the default value (in the case no template
drawing is used) is documented with each dimension variable.

Command

The command DIMTYPE allows the user to set all of the variables described
in this section.

DIMALT

0 = OFF (default) | 1 = ON
Disables or enables alternate unit dimensioning.

DIMALTD

0 .. 8 (Default: 2)
Determines the number of decimal places for alternate unit dimensioning if
the variable DIMALT is set to 1 (see above) .

DIMALTF

Real (Default: 1.0)
Determines the scale factor for alternate unit linear dimensioning if the
variable DIMALT is set to 1 (see above).

DIMAPOST

String (Default: ™)

Determines a string appended to the measurement of an alternate unit
dimension if the variable DIMALT is set to 1 (see above). Valid for all
dimensions with exception of angular dimensions.

DIMASO

223

System and Drawing File Variables

0 = OFF | 1 = ON (default)

Disables or enables associative dimensioning.

If associative dimensioning is turned on, all dimensions are created as

anonymous block and can be modified and updated as a unique object. Also,

the dimension is associated to its defining points in the geometry.

If associative dimensioning is turned off, all entities of the dimension are
created as single lines, arrows, text, etc. An association to the geometry is
not maintained.

DIMASZ
Real (Default: ...)
Determines the size of arrows at the end of dimension lines.
DIMBLK
String (Default: ™)
Determines the name of an arrow symbol block replacing the normal arrow at
the ends of dimension lines.
DIMBLK1
String (Default: ™)
Determines the name of an arrow symbol block replacing the normal arrow at
the starting point of a dimension line, if DIMSAH is set to 1 (see below).
DIMBLK2
String (Default: ™)
Determines the name of an arrow symbol block replacing the normal arrow at
the ending point of a dimension line, if DIMSAH is set to 1 (see below).
DIMCEN
Real (Default: ...)
Determines the size (in drawing units) of center marks when circles or arcs
are dimensioned with one of the commands DIMCENT, DIMRAD, or
DIMDIA. Positive values determine that only a center mark is drawn.
Negative values determine that center lines are drawn.
DIMCLRD
0..256
Determines the color number assigned to dimension lines, arrowheads, and
dimension line leaders.
DIMCLRE
0..256
Determines the color number assigned to dimension extension lines.
DIMCLRT

0..256

224

System and Drawing File Variables

Determines the color number assigned to dimension text.

DIMDLE
Real
Determines the length of the extension of the dimension line past the
extension line(s) when ticks are replacing the normal arrowheads.
DIMDLI
Real
Determines the offset distance of dimension lines when base line
dimensioning is applied.
DIMEXO
Real
Determines an offset of extension line starting point from the measured
entity.
DIMEXE
Real
Determines a value for the length the end of extension lines exceed the
dimension line.
DIMGAP
Real
Determines and offset distances around the dimension text to be maintained
when the dimension label is located in between the dimension line.
DIMLAYER
String (Default: ™)
Determines a layer dimensions are forced to be placed on, if the variable
contains a valid string of an existing layer. A null string (") specification
determines to use the current layer for dimension objects.
DIMLFAC
Real (Default: 0.00 = not used)
Forces all linear dimensioning measurements (including diameter, radius, and
ordinate dimensioning) to be multiplied with a factor specified by this
dimension variable and generates dimension text containing the result of that
multiplication. DIMLFAC has no effect on angular dimensioning. The factor
is used as a multiplier only in the case that DIMLFAC is non-zero. The
DIMLFAC variable is especially applicable when dimensioning scaled
details.
DIMLIM

225

0 = OFF (default) | 1 =0ON

System and Drawing File Variables

Determines that the string values of the variables DIMTP and DIMTM are
used as dimension label to create limit dimensioning. When DIMLIM is set
to 1 (on), DIMTOL is set to 0 (off).

DIMLINE
0 = OFF (default) | 1 = ON
Determines whether the inner dimension line of linear and circle/arc
dimensioning is forced to be drawn as single line (on) or not (off).
The DIMLINE variable is especially applicable when dimensioning
diameters and radii.

DIMPOST
String (Default: ™)
Determines a text prefix, suffix or both, for dimension label created with
following dimension commands. These strings surround the dimension
measurement value computed. The string <> used in the variable setting
serves to separate prefix and suffix specification; otherwise the string
supplied is used as suffix.
Example: A variable value oRpprox <> m" might result in the dimension
textApprox. 12 m

DIMRND
Real (Default: 0.00)
Determines to round all dimension measurements to the setting of this
variable. For example, a DIMRND value set to 0.5 results to round all
dimensions represented in the dimension text to the next 0.5 value.

DIMSAH
0 = OFF (default) | 1 =ON
Determines whether separate arrowhead symbol blocks are allowed (on) or
not (off). The arrow blocks used are specified by the variable settings of
DIMBLK1 and DIMBLK2 (see above).

DIMSCALE
Real (Default: 1.0)
Determines a general scale factor applied on all scalar dimension variables
(e.g. text size, arrow size, tick size, extension line offset, ...).
Note: This variable doesot take effect on the measured values (lengths,
angles, or coordinates) by the linear, radial, angular, and ordinate
dimensioning commands.

DIMSE1

0 = OFF | 1 = ON (default)
226

System and Drawing File Variables

Determines whether the first extension line is displayed (1) or not (0).

DIMSE?2
0= OFF | 1 = ON (default)
Determines whether the second extension line is displayed (1) or not (0).
DIMSHO
0 = OFF | 1 = ON (default)
Determines whether the dynamic dragging mode is used when creating or
modifying dimensions. Note: This variable is not stored in a dimension style.
DIMSOXD
0 = OFF(default) | 1 = ON
Suppresses dimension lines drawn outside the extension lines.
DIMSTYLE
Contains the name of the current dimension style which can be set with the
DIMTYPE command.
DIMTAD
0 = OFF (default) | 1 = ON
Determines, if set to 1 (on), to place dimension text above the dimension
line. Then a single solid dimension line is drawn beneath the dimension text.
If activated, the variable takes effect,
< if the dimension text is drawn between the extension line (see DIMTIX)
and at the same angle as the dimension line; or
« if the dimension text is placed outside of extension lines.
If DIMTAD is set to zero (off) the vertical location of dimension text in
relation to the dimension line is controlled by the DIMTVP variable (see
below).
DIMTFAC
Real
Determines a scale factor for the text height of tolerance values relative to
the general dimension text height.
DIMTIH

227

0 = OFF | 1 = ON (default)

Forces dimension text to be drawn horizontally in linear, diameter, or radius
dimensioning, when the dimension text is placed between the extension lines.
When set to 0 (off), the angle of the dimension text takes the angle of the
dimension line.

System and Drawing File Variables

DIMTIX

0 = OFF (default) | 1 = ON
Forces dimension text to be drawn in between the extension lines.

DIMTP

String

Determines a value for the positive value of a plus/minus tolerance to be
drawn. The tolerance value is only drawn if either DIMTOL or DIMLIM is
set to 1(on).

DIMTM

String

Determines a value for the negative value of a plus/minus tolerance to be
drawn. The tolerance value is only drawn if either DIMTOL or DIMLIM is
set to 1(on).

DIMTMSTR

String
Determines an additional string for the negative value of a plus/minus
tolerance to be displayed behind the dimension text. See also: DIMTPSTR.

DIMTOFL

0=OFF|1=0N
Forces, if set to 1 (on), a dimension line to be drawn between the extension
lines even when the dimension text is placed outside the extension line.

For dimension and radius dimensioning the variable has an additional
meaning: If at the same time the variable DIMTIX is turned off (0) and
DIMTOFL is turned on (1), the dimension line and the arrowheads are drawn
inside the circle or arc, but the leader line and the dimension text are placed
outside the circle or arc.

DIMTOH

0 = OFF | 1 = ON (default)

Forces dimension text to be drawn horizontally in linear, diameter, or radius
dimensioning, when the dimension text is located outside the extension lines.
When set to 0 (off), the angle of the text outside of extension lines takes the
angle of the dimension line.

DIMTPSTR

String
Determines an additional string for the positive value of a plus/minus
tolerance to be displayed behind the dimension text. See also: DIMTMSTR.

DIMTSTYLE

228

System and Drawing File Variables

Determines the text style used when dimension text is created or modified.
The string must contain a valid text style name already stored in the STYLE
table of the drawing database. A text style can be loaded, defined, or re-
defined with the command FONT. If the variable is set to a null string ("),
the current text style specified in the local variable TEXTSTYLE (see
above) is used.

DIMTSZ

Real (Default: 0.0)
Determines the length of ticks, if tick symbols are replacing arrowheads.
If the variable setting of DIMTSZ is 0, arrows are drawn.

If the variable value is > 0 ticks are drawn with the size resulting from the
product of BEMSLG*BEMFKTR.

DIMTVP

Real

Allows to adjust the vertical offset of the dimension text in relation to the
dimension line. The dimension text can be placed above or below the
dimension line. The magnitude of the vertical offset of the dimension text is
the product of text height and the current variable setting:
DIMTXT*DIMTVP.

The DIMTVP value is only used, if DIMTAD (see above) is set to off (0).

DIMTXT

Real

Determines the height of dimension text in dimension labels by a floating
point number greater than zero, unless the current dimension text style has a
fixed height.

DIMZIN

229

0,1,23,4,8,12

Determines the display mode of dimension text to suppress leading and/or
trailing zeros in dimensions. The integer value affects dimension text as
follows:

Suppress zero feet and suppress precisely zero inches

Display zero feet and display precisely zero inches

Display zero feet, but suppress zero inches

Suppress zero feet, but display zero inches

Suppress leading zeros in all decimal dimensions

Suppress trailing zeros in all decimal dimensions

Suppress leading and trailing zeros in all decimal dimensions

NOR~WNEO
1 e | A B | B 1|

System and Drawing File Variables

Note: The values 0 trough 3 affect feet/inch dimensioning only. The values 4,
8, and 12 are applied on decimal dimensions.

230

Entity and Table Group Codes

APPENDIX A

Entity and Table Group Codes

231

In this appendix you find an overview on the DXF group codes separated into
the sections ENTITY, BLOCK and TABLE sections.

The programming of customized routines or of applications using the
FelixCAD programming interfaces requires knowledge of so called group
codes.

This knowledge is required especially, if you want to implement functions,
which access to the entities or tables of the drawing database or which
modify existing entities or table records (e.g.. entmake, entmod, tbimake,
tbimod, etc.).

Entity Group Codes

The group code 0 describes the entity type (e.g. "LINE").

This group code may not be changed by an entmod function.

Within the column Required for entmake you find remarked, if the
corresponding group code is required to create an entity, when using the
entmake function.

Common Entity Codes

The following table documents group codes valid for all entities of the
ENTITY section of the drawing database.

Note, that the values for the Entity Name (group code -1) and Handles (group
code 5) are set by the system and can not be influenced by an application
program.

Line types (group code 6) and Colors (group code 62) of an entity are only
referenced if they differentiate from the default value BYLAYER.

Code | Type Standard Meaning
Value

-1 |Entity Name - Entity Name
String - Entity Type
String - Layer name
String - Handle
String BYLAYER Line type name

62 |Integer BYLAYER Color number

210 |Real - Extrusion direction

-2

Entity and Table Group Codes

-3
-4
3DFACE
Code Type Required Meaning
for
entmake
10 3D point X First corner
11 3D point X Second Corner
12 3D point X Third Corner
13 3D point X Fourth Corner
70 Integer --- Invisible edge Flag
0 No invisible edges (default)
1 First edge invisible
2 Second edge invisible
4 Third edge invisible
8 Fourth edge invisible
ARC
Code Type Required Meaning
for
entmake
10 3D point X Center
40 Real X Radius
50 Real X Start angle
51 Real X End angle
ATTDEF
Code Type Required Meaning
for
entmake
10 3D point X Text start point
40 Real X Text height
String X Default value
3 String X Prompt
String X Tag string
70 Integer - Attribute Flag :
0 Normal (default)
1 Attribute is invisible

232

Entity and Table Group Codes

2 Constant attribute
8 Preset attribute
(no prompt during insertion)

50 Real - Rotation angle (default 0)
41 Real - X-scale factor (default 0)
51 Real - Oblique angle (default 0)
7 String - Text style name (default
"STANDARD")
71 Integer - Text-generation Flag (default 0)

2 Textis mirrored in X (backward)
4 Textis mirrored in Y(upside)

72 Integer - Horizontal Text justification (default O
0 Left
1 Center
2 Right
3 Aligned
4 Middle
5 Fit

74 Integer - Vertical alignment (default 0)
0 Baseline
1 Bottom
2 Middle
3 Top

11 3D point - Alignment point (for group 72 or 74)

ATTRIB
Code |Type Required |Meaning
for entmake

10 |3D point X Text start point

40 |Real X Text height

1 String X Value

2 String X Attribute tag

70 |Integer - Attribute Flag :

0 normal (default)

1 Attribute is invisible
2 Attribute is constant
8 Attribute is preset

(no prompt during insertion)

50 |Real - Rotation angle (default 0)
41 |Real - X-scale factor (default 0)
51 |Real - Oblique angle (default 0)

233

Entity and Table Group Codes

7 |String - Text style name (default "STANDARD")

71 |Integer - Text-generation flags (default 0)
2 Textis mirrored in X (backward)
4 Textis mirrored in Y(upside)

72 |Integer - Horizontal Text justification (default 0)
0 Left
1 Center
2 Right
3 Aligned
4 Middle
5 Fit

74 | Integer - Vertical Text alignment (default 0)
0 Baseline
1 Bottom
2 Middle
3 Top

11 | 3D point - Alignment point (for group 72 or 74)

CIRCLE
Code |Type Required for | Meaning
entmake
10 |3D point X Center point
40 |Real X Radius
DIMENSION
Code |Type Required |Meaning
for entmake
String X Name
String - Dimension style name

10 |3D point X Definition point

11 | 3D point X Middle point of dimension text

12 | 3D point X Insertion point

70 |Integer X Dimension type
0 Linear
1 Aligned
2 Angular
3 Diameter
4 Radius
5 Angular 3 point
6 Ordinate

1 |String - Dimension text

234

Entity and Table Group Codes

13 | 3D point - Definition point
(linear- or angular dimensions)
14 | 3D point - Definition point
(linear- or angular dimensions)
15 |[3D point - Definition point
(diameter, radius and angular dimensions)
16 |3D point - Definition point
(angular dimensions)
40 |Real - Leader length
50 |Real - Angle of rotated, horizontal, or vertical
linear dimensions
51 |Real - Horizontal direction
52 |Real - Extension line angle for oblique linear
dimensions
53 |Real - Rotation angle of dimension text
INSERT
Code |Type Required |Meaning
for entmake
2 String X Block name
10 |[3D point X Insertion point
66 |Integer - Attributes follow flag (default 0)
41 |Real - X scale factor (default 1)
42 |Real - Y scale factor (default 1)
43 |Real - Z scale factor (default 1)
50 |Real - Rotation angle (default 0)

The following group codes are ignored:
70 (column count)
71 (row count)
44 (column spacing)
45 (row spacing)

LINE
Code |Type Required |Meaning
for entmake
10 |[3D point X Start point
11 | 3D point X End point

235

Entity and Table Group Codes

POINT

Code |Type Required |Meaning
for entmake

10 |3D point X Coordinates of the point

The group code 50 (angle of X axis for the UCS) is ignored.

POLYLINE
Code |Type Required |Meaning
for entmake
66 |Integer X Vertices follow flag - always 1
70 |Integer (x) Polyline flag (default 0)
1 Aclosed Polyline (or a polygon mesh
closed in the M direction)
2 Curve-fit vertices have been added
4 B-spline-curve
8 3D-Polyline
16 Polygon mesh
32 The polygon mesh is closed in the M
direction
64 Polyface mesh
128 The line type pattern is generated
continuously around the vertices of
this Polyline
40 |Real - Starting width (default 0)
41 |Real - Ending width(default 0)
71 |Integer - Polygon mesh M vertex count (default =0)
72 |Integer - Polygon mesh N vertex count (default =0)
73 |Integer - Smooth surface M density (default =0)
74 | Integer - Smooth surface N density (default =0)
75 |Integer - Curves and smooth surface type:
0 (default)
5 Quadratic B-spline surface
6 Cubic B-spline surface
8 Bezier-surface

The group code 10 (base point) is ignored.
SEQUEND

236

Entity and Table Group Codes

There are no special group codes for SEQUEND.

SOLID
Code |Type Required |Meaning
for entmake
10 |3D point X First corner
11 | 3D point X Second corner
12 3D point X Third corner
13 [3D point X Fourth corner
TEXT
Code |Type Required |Meaning
for entmake
10 |3D point X Text start point
40 |Real X Text height
1 String X Text
50 |Real - Rotation angel (default 0)
41 |Real - X-scale factor (default 0)
51 |Real - Oblique angle (default 0)
7 |String - Text style name(default "STANDARD")
71 |Integer - Text generation Flag (default 0)
2 Textis mirrored in X (backward)
4 Textis mirrored in Y (upside)
72 |Integer - Horizontal text justification (default 0)
0 Left
1 Center
2 Right
3 Aligned
4 Middle
5 Fit
73 |Integer - Vertical alignment (default 0)
0 Baseline
1 Bottom
2 Middle
3 Top
11 |3D point - Alignment point (for group 72 or 73)

237

Entity and Table Group Codes

VERTEX
Code |Type Required |Meaning
for entmake
10 |3D point X Definition point
40 |Real - Starting width (default 0)
41 |Real - Ending width(default 0)
42 |Real - Bulge (default 0)
70 |Integer - Vertex flags (default 0)
1 Extra vertex created by curve-fitting
2 Curve-fit tangent defined
8 Spline vertex created by spline-fitting
16 Spline frame control point
32 3D Polyline vertex
64 3D Polyline mesh vertex
128 Polyface mesh vertex
50 |Real - Curve fit tangent direction
(default 0)

238

Entity and Table Group Codes

239

Table Group Codes

The following tables are documenting the group code definitions of symbol
tables.
A table contains symbols of the same nature like layer or line types.
The entries (or records) of a table define and describe the properties of a
table item.
The table type is identified by the group code 0.
Customized or application defined function have access to the following
tables:

APPID

BLOCK

DIMSTYLE

LAYER

LTYPE

STYLE

UCS

VIEW

VPORT
Within the column Required for tbimake you find remarked, if the
corresponding group code is required to create a table record, when using
the tbimake function.

APPID
In this table all used Application Names are registered. The registration of an
application is necessary, if it wants to append application specific extended
entity data (AED) to an entity.

Code |Type Required for | Meaning
tbimake
String X Name of the table = "APPID"
String X Application name
70 |Integer - Flag value: 0 or 64 (default = 0)
64 Application name is used

BLOCK
All definitions of parts are stored in this table.
Code |Type Required |Meaning
for tbimake
String X Name of the table = "BLOCK"
String X Part name
70 |Integer - Type flag
1 Anonymous Part

Entity and Table Group Codes

2 Part has Attributes
64 Definition is referenced in the drawing
Hint: Other flags are ignored.

10 |3D point X Base point
3 |String - Name of the drawing file (external parts)
DIMSTYLE
In this table all defined dimension styles are stored.
Code |Type Required |Meaning
for tbimake
0 String X Name of the table = "DIMSTYLE"
2 | String X Dimension style name
3 | String X DIMPOST
4 | String X DIMAPOST
5 String X DIMBLK
6 String X DIMBLK1
7 | String X DIMBLK2
40 |Real X DIMSCALE
41 |Real X DIMASZ
42 |Real X DIMEXO
43 |Real X DIMDLI
44 |Real X DIMEXE
45 |Real X DIMRND
46 |Real X DIMDLE
47 |Real X DIMTP
48 |Real X DIMTM
140 |Real X DIMTXT
141 |Real X DIMCEN
142 |Real X DIMTSZ
143 |Real X DIMALTF
144 |Real X DIMLFAC
145 |Real X DIMTVP
146 |Real X DIMTFAC
147 |Real X DIMGAP
71 |Integer X DIMTOL
72 |Integer X DIMLIM

240

Entity and Table Group Codes

241

73 |Integer X DIMTIH

74 |Integer X DIMTOH

75 |Integer X DIMSE1

76 |Integer X DIMSE2

77 |Integer X DIMTAD

78 |Integer X DIMZIN
170 |Integer X DIMALT
171 |Integer X DIMALTD
172 |Integer X DIMTOFL
173 |Integer X DIMSAH
174 |Integer X DIMTIX

175 |Integer X DIMSOXD
176 |Integer X DIMCLRD
177 |Integer X DIMCLRE
178 |Integer X DIMCLRT

Additional Codes:

903 | String X DIMTPSTR
904 | String X DIMTMSTR
907 |String X DIMTSTYLE
908 | String X DIMLAYER
972 |Integer X DIMLINE

The group code 70 is ignored (always 0).

LAYER
This table manages all layers and their characteristics.
Code |[Type Required |Meaning
for tbimake
String X Name of the table = "LAYER"
String X Layer name
70 |Integer - Flag (default = 0)

1 Layeris frozen
4 Layer is locked
64 Layer is referenced in the drawing

Note: Other flags are ignored.

Entity and Table Group Codes

62

Integer

Color (default = 7)

String

Line type
(default = "CONTINUOUS")

LTYPE

STYLE

In this table all line type patterns are stored.
Code |Type Required |Meaning
for tbhimake
0 |String X Name of the table = "LTYPE"
String X Line type name
3 |String X Description
70 |Integer - Flag:
0 (default)
64 Line type is referenced in the drawing
73 |Integer X Number of dash length items
40 |Real X Total pattern length
49 |Real - Dash length

The group code 72 is ignored (always 65).

In this table all text style definitions are stored.
Code |Type Required |Meaning
for tbimake
0 |String X Name of the table ="STYLE"
String X Text style name
3 | String X Font filename
40 |Real X Fixed text height
41 |Real X Width factor
42 |Real X Last height used
50 |Real X Oblique angle
70 |Integer - Text style properties (default = 0)
4 Vertically
64 Text style is referenced in the drawing
71 |Integer X Text-generation flags (default 0)

2 Textis mirrored in X (backward)

242

Entity and Table Group Codes

4 Textis mirrored in Y(upside)

UCS
This table stores all named User Coordinate Systems (UCS).
Code |Type Required |Meaning
for tbimake
String X Name of the table = "UCS "
String X UCS name
10 |3D point X Origin
11 |3D point X X axis direction
12 | 3D point X Y axis direction
The group code 70 is ignored.
VIEW
This table stores all named view.
Code |Type Required |Meaning
for tbimake
String X Name of the table = "VIEW "
String X View name
40 |Real X Height
41 |Real X Width
10 |[3D point X Center point
11 |3D point X View direction
12 3D point X Target point
50 |Real - Twist angle
71 |Integer - View mode
The following group codes are ignored:
42 Real Lens length
43 Real Front clipping plane
44 Real Back clipping plane
70 Integer Flag
VPORT

This table contains information about the opened windows of the current
drawing. In the difference to other table groups all active entries have the

243

Entity and Table Group Codes

name *ACTIVE (Code 2) The entries are differentiated by group code 69

(VPORT ID).
Code |Type Required |Meaning
for tbhimake
0 |String X Name of the table = "VPORT"
String X "*ACTIVE" or ™"
12 | 2D point X Center point of the window
16 |2D point X View direction
17 |2D point - Target point
40 |Real X Height
41 |Real X Aspect ratio
51 |Real Twist angle
68 |Integer Status field
69 |Integer X VPORT-ID
74 | Integer - USCICON setting

The following group codes are ignored:

10
11
13
14
15
42
43
44
50
70
71
72
73
75
76
77
78

2D point
2D point
2D point
2D point
2D point
Real
Real
Real
Real
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Lower-left corner
Upper-right corner

Snap base point

Snap spacing

Grid spacing

Lens length

Front clipping plane

Back clipping plane

Snap rotation angle

Flag

View mode

Circle zoom setting

Not evaluated at the moment
Snap

Grid

Not evaluated at the moment
Not evaluated at the moment

244

Appendix B: Programmer's Commands

APPENDIX B

Command line versions for
Menus, Macros, Lisp-(command ...)'s and
FDT-Functions

245

Command Name Description
File Commands
QOPEN Open an existing drawing
QPRINT Print or plot current view, drawing extensions or specified area
Data Exchange
QBMPOUT Write specified window or current viewport to a BMP File
QWMFOUT Write current viewport contents to WMF File
DXFOUT Write current drawing to DXF File
DXFIN Open new drawing from DXF File
Menu Management ...
'PALOPEN Open new Palette / Replace existing palette (filename is
requested at command line)
'PALCLOSE Close a Palette
PULLDOWN Set pull-down menu (MNU)
TABLET Open Tablet Menu (*.MNT)
TABSECTION Replace tablet menu section
Part and Hatch Insertion
QINSERT Part Insertion
QHATCH Crosshatching (command line)
Commands for Database Table Settings
SETVIEWDIR Set individual 3D viewpoint
DIMSAVE Save Dimension Type
(Naming the current Dimension variable settings)

Appendix B: Programmer's Commands

DIMREST Restore Dim Type

LOADLTYPE Load line type pattern(s)

Misc. Commands designed for Developers
MACRO Execute macro script (MCR)

UNDO Undo Control

Font Conversion Dialog
FCOMPILE Converts a font source file (SHP or FNT) to a binary FelixCAD
Font File (FSH). Required for DXF Exchange !

Note:

¢ All commands listed are performed sequentially (except FCOMPILE).

¢ The commands PALOPEN and PALCLOSE can be used as transparent
commands.

¢ The command sequence "QINSERT ?" displays dialog for quick part name
selection. The command is influenced by settings of the system variables
ATTDIA and ATTREQ.

« The Exchange commands are using no dialog for filename-request !

246

Appendix B: Programmer's Commands

247

	Table of Contents
	Introduction
	Manual Organization

	1. Directory Structure and File Type Overview
	Directory Structure and Path Configuration
	File Types
	File Locking and Auto-Saving

	2. Desktop Configuration:
	Desktop Colors
	Command Line Font
	Command line parameters for FELIXCAD.EXE

	3. Command Customization:
	Alias Commands
	HotKeys: Function Key Allocations
	Macros

	4. Template Drawings
	Creating a Template Drawing

	5. Defining and Using Line Types and Hatch Patterns
	Linetype Definition
	Hatch Pattern Definition

	6. The Dialog and Menu Editor
	7. Creating and Editing Palettes
	Saving and Closing Palettes

	8. Creating and Editing Menus
	Editing and Creating Menus
	Menu Properties
	Command
	Style Properties
	Help Parameters
	Saving and Closing Menu Files

	9. Creating and Editing Dialog Boxes
	Creating New Dialog Files / Opening Dialog Files
	Saving and Closing Dialog Files
	Editing Dialog Files and Dialog Boxes
	Dialog Window Properties
	The Controls
	Standard Action Buttons: OK, Cancel, Help
	Command Button (Push Button)
	Bitmap Button
	Radio Button
	Check Box
	List Box
	Combo Box
	Group Box
	Static Control (Label)
	Text Edit Control
	Filtered Input Control
	Image Window Control
	Slider Control
	Control Positioning Aids (Grid etc.)
	Control Alignment
	Testing a Dialog

	10. LISP Programming
	Data Types in FLISP
	Loading Lisp Files
	Error Handling and Error Tracing
	Function definition
	Error Handling
	System Functions
	Geometric Utilities
	User Input
	Conversion
	Coordinate System Transformation
	Display Control
	Selection Sets
	Entity Handling
	Symbol Tables
	Extended Entity Data
	Arithmetical Functions
	Symbol Handling
	Text Strings
	Conversion
	Equality / Conditional
	List Manipulation
	File Handling
	Function Handling
	Memory Management
	Miscellaneous
	FDT Application Handling
	Help
	FLISP Functions: Reference
	error
	settrace
	+ (Addition)
	- (Subtraction)
	* (Multiplication)
	/ (Division)
	= (equal)
	/= (not equal)
	< (less than)
	<= (less than or equal)
	> (greater than)
	>= (greater than or equal)
	1+ (Increment)
	1- (Decrement)
	~ (Bitwise NOT)
	abs
	actcmd
	alert
	and
	angle
	angtof
	angtos
	append
	apply
	ascii
	assoc
	atan
	atof
	atoi
	atom
	atoms-family
	boole
	boundp
	car
	cdr
	caaaar ... cddddr
	chr
	close
	command
	cond
	cons
	cos
	defun
	delcmd
	distance
	distof
	dlg_***
	entcheck
	entdel
	entget
	entlast
	entmake
	entmod
	entnext
	entpos
	entsel
	entupd
	eq
	equal
	eval
	exit
	exp
	expt
	fdt
	findfile
	fix
	float
	flxnames
	foreach
	gc
	gcd
	getactvport
	getangle
	getcorner
	getdist
	getenv
	getfiled
	getint
	getkword
	getorient
	getpoint
	getreal
	getstring
	getvar
	graphscr
	grclear
	grdraw
	grread
	grtext
	handent
	help
	if
	initget
	inters
	itoa
	lambda
	last
	length
	list
	listp
	load
	log
	logand
	logior
	lsh
	mapcar
	max
	mem
	member
	min
	minusp
	nentsel The
	nentselp
	not
	nth
	null
	numberp
	open
	or
	osnap
	pi
	polar
	prin1
	princ
	print
	progn
	prompt
	quit
	quote
	read
	read-char
	read-line
	redraw
	regapp
	rem
	repeat
	nil
	rtos
	set
	setactvport
	setfunhelp
	setq
	setvar
	sin
	sqrt
	ssadd
	ssdbno
	ssdel
	ssget
	sslength
	ssmemb
	ssname
	strcase
	strcat
	stringsort
	strlen
	subst
	substr
	symbtos
	tbldel
	tblmake
	tblmod
	tblnext The
	tblpurge
	tblrename
	tblsearch
	tblset
	terpri
	textbox
	textscr
	trans
	type
	ver
	wcmatch
	while
	write-char
	write-line
	xload
	xunload
	zerop

	11. Programming Dialog Boxes
	Design of a Dialog
	Loading and Displaying a Dialog
	Initializing Dialog Controls
	Retrieving User Input and Reacting to it
	Overview
	Loading and Unloading of Dialog Files
	Opening and Closing Dialog Boxes
	General Operations for Control Elements
	List Boxes and Combo Boxes
	Slider Control
	Image Controls

	Dialog Functions: Reference
	Overview: Alphabetically Ordered

	12. System and Drawing File Variables
	Global and Local Variables
	Retrieving and Setting the Variables
	Scheme of the System Variables Reference
	Global Variables: Reference
	ACTDB
	AREA
	CDATE
	CIRCLERAD
	CIRCLERES
	CMDACTIVE
	CMDECHO
	CMDNAMES
	DATE
	DEFANGBASE
	DEFANGDIR
	DEFAUNITS
	DEFAUPREC
	DEFDIMZIN
	DEFLUNITS
	DEFLUPREC
	DIASTAT
	DISTANCE
	ERRNO
	EXPERT
	FCTEMPLATE
	FCVERSION
	FILEDIA
	HIGHLIGHT
	LANGUAGE
	LASTVAR
	OFFSETDIST
	PALETTE1 ... PALETTE n
	PANSCALE
	PDMENUNAME
	PERIMETER
	PLATFORM
	POLYSIDES
	RINGDIA1
	RINGDIA2
	SCREENMODE
	SCREENSIZE
	SELECTBOX
	SERNUMBER
	SNAPBOX
	TABMENUNAME
	UNDOCTL
	ZINSCALE
	ZOUTSCALE

	Local Variables: Reference
	ANGBASE
	ANGDIR
	ATTDIA
	ATTMODE
	ATTREQ
	AUNITS
	AUPREC
	CECOLOR
	CELTYPE
	CHAMFERA
	CHAMFERB
	CLAYER
	CVPORT
	DBMOD
	DIMxxx
	DWGNAME
	DWGPREFIX
	DWGWRITE
	ELEVATION
	FILLETRAD
	FILLMODE
	GRIDMODE
	GRIDUNIT
	HPANG
	HPDOUBLE
	HPFILE
	HPNAME
	HPSCALE
	HPSPACE
	HPUSRANG
	INSBASE
	INSNAME
	LASTPOINT
	LIMMAX
	LIMMIN
	LSPALOAD
	LTSCALE
	LUNITS
	LUPREC
	MIRRTEXT
	ORTHOMODE
	OSMODE
	PDMODE
	PDSIZE
	PLINEWID
	PREVCMD
	SNAPBASE
	SNAPMODE
	SNAPUNIT
	SPLFRAME
	TEXTSIZE
	TEXTSTYLE
	TRIMMODE
	UCSFOLLOW
	UCSNAME
	UCSORG
	UCSXDIR
	UCSYDIR
	USERI1 ... USERI5
	USERR1 ... USERR5
	USERS1
	VIEWCTR
	VIEWDIR
	VIEWSIZE
	VIEWTWIST
	WORLDUCS

	Dimension Variables: Reference
	DIMALT
	DIMALTD
	DIMALTF
	DIMAPOST
	DIMASO
	DIMASZ
	DIMBLK
	DIMBLK1
	DIMBLK2
	DIMCEN
	DIMCLRD
	DIMCLRE
	DIMCLRT
	DIMDLE
	DIMDLI
	DIMEXO
	DIMEXE
	DIMGAP
	DIMLAYER
	DIMLFAC
	DIMLIM
	DIMLINE
	DIMPOST
	DIMRND
	DIMSAH
	DIMSCALE
	DIMSE1
	DIMSE2
	DIMSHO
	DIMSOXD
	DIMSTYLE
	DIMTAD
	DIMTFAC
	DIMTIH
	Entity Group Codes
	DIMTIX
	DIMTP
	DIMTM
	DIMTMSTR
	DIMTOFL
	DIMTOH
	DIMTPSTR
	DIMTSTYLE
	DIMTSZ
	DIMTVP
	DIMTXT
	DIMZIN

	Appendix A - Entity and Table Group Codes
	Entity Group Codes
	3DFACE
	ARC
	ATTDEF
	ATTRIB
	CIRCLE
	DIMENSION
	INSERT
	LINE
	POINT
	POLYLINE
	SEQUEND
	SOLID
	TEXT
	VERTEX

	Table Group Codes
	APPID
	BLOCK
	DIMSTYLE
	LAYER
	LTYPE
	STYLE
	UCS
	VIEW
	VPORT

	APPENDIX B

