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     Appendix K: The making of the GMT High-Resolution Coastline Database

GMT version 3 uses a completely new coastline database and the pscoast  utility has
been completely rewritten to handle the new file format.  Many users have asked us why
it has taken so long for GMT to use a high-resolution coastline database; after all, such
data have been available in the public domain for years.  To answer such questions we
will take you along the road that starts with these public domain data sets and ends up
with the database used by GMT.

1. Select the right data.

There are two well-known public-domain data sets that could be used for this
purpose.  Once is known as the World Data Bank II or CIA Data Bank (WDB) and
contains coastlines, lakes, political boundaries, and rivers.  The other, the World Vector
Shoreline (WVS) only contains shorelines between saltwater and land (i.e., no lakes).  It
turns out that the WVS data is far superior to the WDB data as far as data quality goes,
but as noted it lacks lakes, not to mention rivers and borders.  We decided to use the
WVS whenever possible and supplement it with WDB data.  We got these data over the
Internet; they are also available on CD-ROM from the National Geophysical Data Center
in Boulder, Colorado.

2. Format required by GMT

In order to paint continents or oceans it is necessary that the coastline data be
organized in polygons that may be filled.  Simple line segments can be used to draw the
coastline, but for painting polygons are required.  Both the WVS and WDB data consists
of unsorted line segments: there is no information included that tells you which segments
belong to the same polygon (e.g., Australia should be one large polygon).  In addition,
polygons enclosing land must be differentiated from polygons enclosing lakes since they
will need different paint.  Finally, we want pscoast  to be flexible enough that it can paint
the land     or    the oceans     or    both.  If just land (or oceans) is selected we do not want to paint
those areas that are not land (or oceans) since previous plot programs may have drawn in
those areas.  Thus, we will need to combine polygons into new polygons that lend
themselves to fill land (or oceans) only (Note that older versions of pscoast  always
painted lakes and wiped out whatever was plotted beneath).

3. The long and winding road.

The WVS and WDB together represent more than 100 Mb of binary data and
something like 20 million data points.  Hence, it becomes obvious that any manipulation
of these data must be automated.  For instance, the reasonable requirement that no
coastline should cross another coastline becomes a complicated processing step.

a) To begin, we first made sure that all data were “clean”, i.e. that there were no outliers
and bad points.  We had to write several programs to ensure data consistency and remove
“spikes” and bad points from the raw data.  Also, crossing segments were automatically
“trimmed” provided only a few points had to be deleted.  A few hundred more
complicated cases had to be examined semi-manually.
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b) Programs were written to examine all the loose segments and determine which
segments should be joined to produce polygons.  Because not all segments joined exactly
(there were non-zero gaps between some segments) we had to find all possible
combinations and choose the simplest combinations.  The WVS segments joined to
produce more than 200,000 polygons, the largest being the Africa-Eurasia polygon which
has 1.4 million points.  The WDB data resulted in a smaller data base (~25% of WVS).

c) We now needed to combine the WVS and WDB data bases.  The main problem here
is that we have duplicates of polygons: most of the features in WVS are also in WDB.
However, because the resolution of the data differ it is nontrivial to figure out which
polygons in WDB to include and which ones to ignore.  We used two techniques to
address this problem.  First, we looked for crossovers between all possible pairs of
polygons.  Because of the crossover processing in 3a we know that there are no
remaining crossovers within WVS and WDB; thus any crossovers would be between
WVS and WDB polygons.  Crossovers could mean two things: (1) A slightly misplaced
WDB polygon crosses a more accurate WVS polygon, both representing the same
geographic feature, or (2) a misplaced WDB polygon (e.g. a small coastal lake) crosses
the accurate WVS shoreline.  We distinguished between these cases by comparing the
area and centroid of the two polygons.  In almost all cases it was obvious when we had
duplicates; a few cases had to be checked manually.  Unfortunately, on many occasions
the WDB duplicate polygon did not cross its WVS counterpart but was either entirely
inside or outside the WVS polygon.  In those cases we relied on the area-centroid tests.

d) While the largest polygons were easy to identify by visual inspection, the majority
remain unidentified.  Since it is important to know whether a polygon is a continent or a
small pond inside an island inside a lake we wrote programs that would determine the
hierarchical level of each polygon.  Here, level = 1 represents ocean/land boundaries, 2 is
land/lakes borders, 3 is lakes/islands-in-lakes, and 4 is islands-in-lakes/ponds-in-islands-
in-lakes.  Level 4 was the highest level encountered in the data.  To automatically
determine the hierarchical levels we wrote programs that would compare all possible
pairs of polygons and find how many polygons a given polygon was inside.  Because of
the size and number of the polygons such programs would typically run for 3 days on a
Sparc-2 workstation.

e) Once we know what type a polygon is we can enforce a common “orientation” for all
polygons. We arranged them so that when you move along a polygon from beginning to
end, your left hand is pointing toward “land”.  At this step we also computed the area of
all polygons since we would like the option to plot only features that are bigger than a
minimum area to be specified by the user.

f) Obviously, if you need to make a map of Denmark then you do not want to read the
entire 1.4 million points making up the Africa-Eurasia polygon.  Furthermore, most
plotting devices will not let you paint and fill a polygon of that size due to memory
restrictions.  Hence, we need to partition the polygons so that smaller subsets can be
accessed rapidly.  Likewise, if you want to plot a world map on a letter-size paper there is
no need to plot 10 million data points as most of them will plot several times on the same
pixel and the operation would take a very long time to complete.  We chose to make 5
versions on the database, corresponding to different resolutions.  The decimation was
carried out using the Douglas-Peucker (DP) line-reduction algorithm [Dougles, D.H., and
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T. K. Peucker, 1973, Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature, Canadian Cartographer, 10, 112–122].  We
chose the cutoffs so that each subset was approximately 20% the size of the next higher
resolution.  The five resolutions are called full, high, intermediate, low, and crude; they
are accessed in pscoast  and grdlandmask  with the -D option† .  For each of these 5 data
sets (f, h , i, l, c) we specified an equidistant grid (1˚, 2˚, 5˚, 10˚, 20˚) and split all
polygons into line-segments that each fit inside one of the many boxes defined by these
grid lines.  Thus, to paint the entire continent of Australia we instead paint many smaller
polygons made up of these line segments and gridlines.  Some book-keeping has to be
done since we need to know which parent polygon these smaller pieces came from in
order to prescribe the correct paint or ignore if the feature is smaller than the cutoff
specified by the user.  The resulting segment coordinates were then scaled to fit in short
integer format to preserve precision and written in netCDF format for ultimate portability
across hardware platforms.

g) While we are now back to a file of line-segments we are in a much better position to
create smaller polygons for painting.  Two problems must be overcome to correctly paint
an area: (1) We must be able to join line segments and grid cell borders into meaningful
polygons; how we do this will depend on whether we want to paint the land or the
oceans, and (2) we want to nest the polygons so that no paint falls on areas that are “wet”
(or “dry”); e.g., if a grid cell completely on land contains a lake with a small island, we
do not want to paint the lake and then draw the island, but paint the annulus or “donut”
that is represented by the land and lake, and then plot the island.  GMT uses a new
polygon-assembly routine that carries out these tasks on the fly.

4. The Five Resolutions

We will demonstrate the power of the new database by starting with a regional
hemisphere map centered near Papua New Guinea and zoom in on a specified point.  The
map regions will be specified in projected km from the projection center, e.g., we may
want the map to go from -2000 km to +2000 km in the longitudinal direction and -1500
km to +1500 km in the latitudinal direction.  However, GMT programs expects degrees in
the -R option that specifies the desired region.  Given the chosen map projection we can
automate this process by using a simple cshell script that we call getbox:

#!/bin/csh
# Expects 5 arguments: -Joption xmin xmax ymin ymax (in km relative to map center), returns matching -Rstring
set range = `(echo $2 $4; echo $3 $5) | mapproject $1 -R0/360/-90/90 -I -Fk -C`
echo "-R"$range[1]"/"$range[2]/$range[3]"/"$range[4]"r"

Also, as we zoom in on the projection center we want to draw the outline of the next map
region on the plot.  To do that we need the geographical coordinates of the four corners of
the region rectangle.  Again, we automate this task by adding the simple script getrect:

#!/bin/csh
# Expects: -Joption xmin xmax ymin ymax (in km relative to map center), returns the four geographical corners
(echo $2 $4; echo $3 $4; echo $3 $5; echo $2 $5) | mapproject $1 -R0/360/-90/90 -I -Fk -C

                                                
† The full and high resolution files are in separate archives because of their size.  Not all users may need
these files as the intermediate data set is better than the data provided with version 2.1.4.
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a) The crude resolution (–Dc)

We begin with an azimuthal equidistant map of the hemisphere centered on 130˚21’E,
0˚12’S, which is slightly west of New Guinea, near the Strait of Dampier.  The edges of
the map are all 9000 km true distance from the projection center.  At this scale (and for
global maps) the crude resolution data will usually be adequate to capture the main
geographic features.  To avoid cluttering the map with insignificant detail we only plot
features (i.e., polygons) that exceed 500 km2  in area.  Smaller features would only occupy
a few pixels on the plot and make the map look “dirty”.  We also add national borders to
the plot.  The crude database is heavily decimated and simplified by the DP-routine: The
total file size of the coastlines, rivers, and borders is only 286 Kbytes.  The plot is
produced by the command (the box indicates the outline of the next map):

pscoast `getbox -JE130.35/-0.2/1 -9000 9000 -9000 9000` -JE130.35/-0.2/4 -P -Dc -A500 -G200 -W1 -N1/1ta -
B20g20 -V -K -X0.75 > tc.ps
getrect -JE130.35/-0.2/1 -2000 2000 -2000 2000 | psxy -R -JE -O -W6 -L -A -U/-0.5/-0.75/"Crude Resolution Data
Base" >> tc.ps
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Here, we have manually removed some longitudinal annotations near the poles.

b) The low resolution (–Dl)

We have now reduced the map area by zooming in on the map center.  Now, the
edges of the map are all 2000 km true distance from the projection center.  At this scale
we choose the low resolution data that faithfully reproduce the dominant geographic
features in the region.  We cut back on minor features less than 100 km2  in area.  We still
add national borders to the plot.  The low database is less decimated and simplified by the
DP-routine: The total file size of the coastlines, rivers, and borders combined grows to
876 Kbytes.  The plot is generated by the command:

pscoast `getbox -JE130.35/-0.2/1 -2000 2000 -2000 2000` -JE130.35/-0.2/4 -P -Dl -A100 -G200 -W1 -N1/1ta -
B10g5 -V -K -X0.75 > tl.ps
getrect -JE130.35/-0.2/1 -500 500 -500 500 | psxy -R -JE -O -W6 -L -A -U/-0.5/-0.75/"Low Resolution Data Base"
>> tl.ps
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c) The intermediate resolution (–Di)

We continue to zoom in on the map center.  In this map, the edges of the map are all
500 km true distance from the projection center.  We abandon the low resolution data set
as it would look too jagged at this scale and instead employ the intermediate resolution
data that faithfully reproduce the dominant geographic features in the region.  This time,
we ignore features less than 20 km2 in area.  Although the script still asks for national
borders none exist within our region.  The intermediate database is moderately decimated
and simplified by the DP-routine: The combined file size of the coastlines, rivers, and
borders now exceeds 3.28 Mbytes; it is the default resolution in GMT.  The plot is
generated by the commands:

pscoast `getbox -JE130.35/-0.2/1 -500 500 -500 500` -JE130.35/-0.2/4 -P -Di -A20 -G200 -W1 -N1/1ta -B2g1 -V -
K -X0.75 > ti.ps
getrect -JE130.35/-0.2/1 -100 100 -100 100 | psxy -R -JE -O -W6 -L -A -U/-0.5/-0.75/"Intermediate Resolution
Data Base" >> ti.ps
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d) The high resolution (–Dh)

The relentless zooming continues!  Now, the edges of the map are all 100 km true
distance from the projection center.  We step up to the high resolution data set as it is
needed to accurately portray the detailed geographic features within the region.  Because
of the small scale we only ignore features less than 1 km2  in area. The high resolution
database has undergone minor decimation and simplification by the DP-routine: The
combined file size of the coastlines, rivers, and borders  now swells to 12.2 Mbytes.  The
map and the final outline box are generated by these commands:

pscoast `getbox -JE130.35/-0.2/1 -100 100 -100 100` -JE130.35/-0.2/4 -P -Dh -A1 -G200 -W1 -N1/1ta -
B30mg10m -V -K > th.ps
getrect -JE130.35/-0.2/1 -20 20 -20 20 | psxy -R -JE -O -W6 -L -A -U"High Resolution Data Base" >> th.ps
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e) The full resolution (–Df)

We now arrive at our final plot, which shows a detailed view of the western side of
the small island of Waigeo.  The map area is approximately 40 by 40 km.  We call upon
the full resolution data set to portray the richness of geographic detail within this region;
no features are ignored.  The full resolution has undergone no decimation and it shows:
The combined file size of the coastlines, rivers, and borders totals a hefty 55.7 Mbytes!
Our final map is reproduced by the single command:

pscoast `getbox -JE130.35/-0.2/1 -20 20 -20 20` -JE130.35/-0.2/4 -P -Df -G200 -W1 -N1/1ta -B10mg2m -V -
U"Full Resolution Data Base" > tf.ps

GMT Feb 17 16:38 Full Resolution Data Base
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We hope you will study these examples to enable you to make efficent and wise use of
this vast data set.


