Appendix F: Chart of Octal Codes for Characters

GMT TECHNICAL REFERENCE & COOKBOOK

The characters and their octal codes in the reencoded standard character set are presented

in the chart below. Gray areas signify codes reserved for control characters.

octal

0

1

2

3

4

5

6

\00x

\01x

\02x

\03x

\04x

&+

%

\05x

+

\06x

(O8]

\07x

\10x

\11x

\12x

>|<|zZz|Tlv| o]

z(oal~|w]|~

\13x

\14x

AR T|I®|c]|o]|~

QJP<Ob—<D>©»—_/

\15x

=

— o

~lo [—|l»yn|IR|IO]--

\16x

e

[72]

<|= |-

s o fos |i

\17x

<

NHH'U‘N'}UHW"

— |~ | === |O|A~]

— = |8 e |[—|CZ|d

\20x

\21x

\22x

\23x

\24x

\25x

jof

«

\26x

>\

\27x

»

\30x

|-

13

o il== | = |~

\31x

\32x

\33x

(@2

o (::\ et |

(::/ i/ | ©

\34x

[~ C:> —| T

o>

\35x

s | &>

=7 | : | o\ O\

\36x

Q:

o=

\37x

c: | O

e |8 || x| O o o

o | O | =

Qo | &\ =4

GMT TECHNICAL REFERENCE & COOKBOOK 62

Appendix G: PostScript fonts used by GMT

GMT uses the standard 34 fonts that come with most PostScript laserwriters. If your
printer does not support all of these fonts, it should automatically substitute the default
font (which is usually Courier). The following is a list of the standard fonts:

Font number: Font name:

0 Helvetica

1 Helvetica-Bold

2 Helvetica-Oblique

3 Helvetica-BoldOblique

4 Times-Roman

5 Times-Bold

6 Times-Italic

7 Times-Boldltalic

8 Courier

9 Courier-Bold
10 Courier-Oblique
11 Courier—-BoldOblique

12 SYBOoA

13 AvantGarde-Book

14 AvantGarde-BookOblique
15 AvantGarde-Demi
16 AvantGarde-DemiOblique
17 Bookman-Demi
18 Bookman-Demiltalic
19 Bookman-Light
20 Bookman-LightItalic

21 Helvetica-Narrow
22 Helvetica-Narrow-Bold

23 Helvetica-Narrow-Oblique
24 Helvetica-Narrow-BoldOblique
25 NewCenturySchlbk-Roman
26 NewCenturySchlbk-Italic
27 NewCenturySchlbk-Bold
28 NewCenturySchlbk-BoldItalic
29 Palatino-Roman

30 Palatino-Italic

31 Palatino-Bold

32 Palatino-BoldItalic

33 ZapfChancery-MediumItalic

GMT TECHNICAL REFERENCE & COOKBOOK 63

Appendix H: Hints and known bugs concerning display of GMT PostScript

GMT creates valid (so far as we know) Adobe PostScript Level 1. It does not use
operators specific to Level II and should therefore produce output that will print on old as
well as new PostScript printers Sometimes unexpected things happen when GMT output
is sent to certain printers or displays. This section lists some things we have learned from
experience, and some work-arounds.

* PostScript driver bugs.

When you try to display a PostScript file on a device, such as a printer or your screen,
then a program called a PostScript device driver has to compute which device pixels
should receive which colors (black or white in the case of a simple laser printer) in order
to display the file. At this stage, certain device-dependent things may happen. These are
not limitations of GMT or PostScript, but of the particular display device. The following
bugs are known to us based on our experiences:

Early versions of the Sun SPARCprinter software caused linewidth-dependent path
displacement. We reported this bug and it has been fixed in newer versions of the
software. Try using psxy to draw y = f(x) twice, once with a thin pen (-W1) and once
with a fat pen (-W10); if they do not plot on top of each other, you have this kind of bug
and need new software. The problem may also show up when you plot a mixture of solid
and dashed (or dotted) lines of various pen thickness

The first version of the HP Laserjet 4M had bugs in the driver program. We reported
it, and they have just released (we got ours Aug. 10 1993) a new one. The old one was
PostScript SIMM, part number C2080-60001; the new one is called PostScript SIMM,
part number C2080-60002. You need to get this one plugged into your printer if you
have an HP LaserJet 4M.

Apple Laserwriters with the older versions of Apple's PostScript driver will give the
error "limitcheck" and fail to plot when they encounter a path exceeding about 1500
points. Try to get a newer driver from Apple, but if you can't do that, set the parameter
MAX_PATH to 1500 or even smaller in the file src/pslib_inc.h and recompile GMT.
The number of points in a PostScript path can be arbitrarily large, in principle; GMT will
only create paths longer than MAX_PATH if the path represents a filled polygon or
clipping path. Line-drawings (no fill) will be split so that no segment exceeds
MAX_PATH. This means psxy —G will issue a warning when you plot a polygon with
more than MAX_PATH points in it. It is then your responsibility to split the large
polygon into several smaller segments. If pscoast gives such warnings and the file fails
to plot you may have to select one of the lower resolution databases The path limitation
exemplified by these Apple printers is what makes the higher-resolution coastlines for
pscoast non-trivial: such coastlines have to be organized so that fill operations do not
generate excessively large paths. Some HP PostScript cartridges for the Laserjet III also
have trouble with paths exceeding 1500 points; they may successfully print the file, but it
can take all night!

8-bit color screen displays (and programs which use only 8-bits, even on 24-bit
monitors, such as Sun's Pageview under OW3) may not dither cleverly, and so the color
they show you may not resemble the color your PostScript file is asking for. Therefore,
if you choose colors you like on the screen, you may be surprised to find that your plot
looks different on the hardcopy printer or film writer. The only thing you can do is be
aware of this, and make some test cases on your hardcopy devices and compare them
with the screen, until you get used to this effect. (Each hardcopy device is also a little
different, and so you will eventually find that you want to tune your color choices for
each device.) The rgb color cube in example 11 may help.

Some versions of Sun's OW program Pageview have only a limited number of colors
available; the number can be increased somewhat by starting openwin with the option

GMT TECHNICAL REFERENCE & COOKBOOK 64

"openwin -cubesize large". (Our SPARC-10 doesn't seem to need this anymore, but
earlier machines did.)

Many color hardcopy devices use CMYK color systems. GMT PostScript uses RGB
(even if your .cpt files are using HSV). The three coordinates of RGB space can be
mapped into three coordinates in CMY space, and in theory K (black) is superfluous. But
it is hard to get CMY inks to mix into a good black or gray, so these printers supply a
black ink as well, hence CMYK. The PostScript driver for a CMYK printer should be
smart enough to compute what portion of CMY can be drawn in K, and use K for this and
remove it from CMY; however, some of them aren't.

In early releases of GMT we always used the PostScript command setrgbcolor(r,g,b)
to specify colors, even if the color happened to be a shade of gray (r=g=b) or black
(r=g=b=0). One of our users found that black came out muddy brown when he used
FreedomOfPress to make a Versatec plot of a GMT map. He found that if he used the
PostScript command setgray(g) (where g is a graylevel) then the problem went away.
Apparently, his installation of FreedomOfPress uses only CMY with the command
setrgbcolor, and so setrgbcolor(0,0,0) tries to make black out of CMY instead of K. To
fix this, in release 2.1 of GMT we changed some routines in pslib.c to check if (r=g and
r=b), in which case setgray(g), else setrgbcolor(r,g,b).

Recent experience with some Tektronix Phaser printers and with commercial printing
shops has shown that this substitution creates problems precisely opposite of the
problems our Versatec user has. The Tektronix and commercial (we think it was a
Scitex) machines do not use K when you say setgray(0) but they do when you say
setrgbcolor(0,0,0). We believe that these problems are likely to disappear as the various
software developers make their codes more robust. Note that this is not a fault with
GMT: r = g = b = 0 means black and should plot that way. Thus, the GMT source code
as shipped to you checks whether r=g and r=b, in which case it uses setgray, else
setrgbcolor. If your gray tones are not being drawn with K, you have two work-around
options: (1) edit the source for pslib.c or (2) edit your PostScript file and try using
setrgbcolor in all cases. The simplest way to do so is to redefine the setgray operator to
use setrgbcolor. Insert the line

/setgray {dup dup setrgbcolor} def

immediately following the first line in the file (starts with %!PS.)
Some color film writers are very sensitive to the brand of film. If black doesn't look
black on your color slides, try a different film.

* Resolution and dots per inch.

The parameter DOTS_PR_INCH can be set by the user through the .gmtdefaults file
or gmtset. By default it is equal to the value in the src/gmt_defaults.h file, which is
supplied with 300 when you get GMT from us. This seems a good size for most
applications, but should ideally reflect the resolution of your hardcopy device (most
laserwriters have 300 dpi, hence our default value). GMT computes what the plot should
look like in double precision floating point coordinates, and then converts these to integer
coordinates at DOTS_PR_INCH resolution. This helps us find out that certain points in a
path lie on top of other points, and we can remove these, making smaller paths. Small
paths are important for the laserwriter bugs above, and also to make fill operations
compute faster. Some users have set their DOTS_PR_INCH to very large numbers. This
only makes the PostScript output bigger without affecting the appearence of the plot.
However, if you want to make a plot which fits on a page at first, and then later magnify
this same PostScript file to a huge size, the higher DPI is important. Your data may not
have the higher resolution but on certain devices the edges of fonts will not look crisp if
they are not drawn with an effective resolution of 300 dpi or so. Beware of making an

GMT TECHNICAL REFERENCE & COOKBOOK 65

excessively large path. Note that if you change dpi the linewidths produced by your -W
options will change, unless you have used the p for linewidth in points.

* European Characters

Note for users of "pageview" in Sun OpenWindows: GMT now offers some octal
escape sequences to load European alphabet characters in text strings (see section 4.15).
When this feature is enabled, the header on GMT PostScript output includes a section
defining special fonts. The definition is added to the header whether or not your plot
actually uses the fonts.

Users who view their GMT PostScript output using "pageview" in OpenWindows on
Sun computers or user older laserwriters may have difficulties with the European font
definition. If your installation of OpenWindows followed a space-saving suggestion of
Sun, you may have excluded the European fonts, in which case pageview will fail to
show you anything when you try to view a plot.

Ask your system administrator about this, or run this simple test: (1) View a GMT
PostScript file with "pageview". If it comes up OK, you will be fine. If it comes up
blank, open the "Edit PostScript" button and examine the lower window for error
messages. (The European font problem generates lots of error messages in this window).
(2) Verify that the PostScript file is OK, by sending it to a laser printer and making sure
it comes out. (3) If the PostScript file is OK but it chokes "pageview", then edit the
PostScript file, cutting out everything between the lines:

%% % %% START OF EUROPEAN FONT DEFINITION % % % % %
<bunch of definitions
%% % %% END OF EUROPEAN FONT DEFINITION % % % % %

Now try "pageview" on the edited version. If it now comes up, you have a limited subset
of OpenWindows installed. If you discover that these fonts cause you trouble, then you
can edit your .gmtdefaults file to set WANT_EURO_FONT = FALSE, which will
suppress the printing of this definition in the GMT PostScript header. With this set to
FALSE, you can make output which will be viewable in pageview without any editing.
However, you would have to reset this to TRUE before attempting to use European fonts,
and then the output will become un-pageview-able again. If you try to concatenate
segments of GMT PostScript made with and without the European fonts enabled, then
you may find that you have problems, either with the definition, or because you ask for
something not defined.

* Hints.

When making images and perspective views of large amounts of data, the GMT
programs can take some time to run, the resulting PostScript files can be very large, and
the time to display the plot can be long. Fine tuning a plot script can take lots of trial and
error. We recommend using grdsample to make a low resolution version of the data files
you are plotting, and practice with that, so it is faster; when the script is perfect, use the
full-resolution data files. We often begin building a script using only psbasemap and/or
pscoast to get the various plots oriented correctly on the page; once this works we replace
the psbasemap calls with the actually desired GMT programs.

If you want to make color shaded relief images and you haven't had much experience
with it, here is a good first cut at the problem: Set your COLOR_MODEL to HSV using
gmtset. Use makecpt or grd2cpt to make a continuous color palette spanning the range of
your data. Use the -Nt option on grdgradient. Try the result, and then play with the
tuning of the .gmtdefaults, the .cpt file, and the gradient file.

GMT TECHNICAL REFERENCE & COOKBOOK 66

Appendix I: Color Space — The final frontier

Beginning with GMT version 2.1.4, "Example 11" was included in the cookbook.
The example makes an RGB color cube by a simple nawk script. We wrote a program to
compute HSV grids for each face of this cube, and present a version of the cube with
HSV contours on it as file contoured cube.ps.

In this appendix, we are going to try to explain the relationship between the RGB and
HSYV color systems so as to (hopefully) make them more intuitive. GMT allows users to
specify colors in .cpt files in either system (colors on command lines, such as pen colors
in —W option, are in RGB). GMT uses the HSV system to achieve artificial illumination
of colored images (e.g. —I option in grdimage) by changing the s and v coordinates of the
color. When the intensity is zero, the data are colored according to the .cpt file. If the
intensity is non-zero, the data are given a starting color from the .cptfile but this color
(after conversion to HSV if necessary) is then changed by moving (s, v) toward
HSV_MIN_SATURATION, HSV_MIN_VALUE if the intensity is negative, or toward
HSV_MAX_SATURATION, HSV_MAX_VALUE if positive. These are defined in the
.gmtdefaults file and are usually chosen so the corresponding points are nearly black (s =
1, v=0) and white (s =0, v =1). The reason this works is that the HSV system allows
movements in color space which correspond more closely to what we mean by "tint" and
"shade"; an instruction like "add white" is easy in HSV and not so obvious in RGB.

We are going to try to give you a geometric picture of color mixing in HSV from a
tour of the RGB cube. The geometric picture is helpful, we think, since HSV are not
orthogonal coordinates and not found from RGB by an algebraic transformation. But
before we begin traveling on the RGB cube, let us give two formulae, since an equation is
often worth a thousand words.

v=max (r, g, b)
s =(max (r, g, b) - min (r, g, b)) / max (r, g, b)

Note that when r = g = b = 0 (black), the expression for s gives 0/0; black is a singular
point for s. The expression for / is not easily given without lots of "if" tests, but has a
simple geometric explanation. So here goes: Look at the cube face with black, red,
magenta, and blue corners. This is the g = 0 face. Orient the cube so that you are looking
at this face with black in the lower left corner. Now imagine a right-handed cartesian (7,
g, b) coordinate system with origin at the black point; you are looking at the g = 0 plane
with r increasing to your right, g increasing away from you, and b increasing up. Keep
this sense of (7, g, b) as you look at the cube.

The RGB color cube has six faces. On three of these one of (r, g, b) is equal to 0.
These three faces meet at the black corner, where r = g = b = 0. On these three faces
saturation, the S in HSV, has its maximum value; s = 1 on these faces. (Accept this
definition and ignore the s singularity at black for now). Therefore 4 and v are contoured
on these faces; % in gray solid lines and v in white dashed lines (v ranges from O to 1 and
is contoured in steps of 0.1).

On the other three faces one of (r, g, b) is equal to the maximum value. These three
faces meet at the white corner, where r = g = b = 255. On these three faces value, the V
in HSV, has its maximum value; v = 1 on these faces. Therefore 4 and s are contoured on
these faces; & in gray solid lines and s in black dashed lines (s ranges from 0 to 1 with
contours every 0.1).

The three faces where v = 1 meet the three faces where s = 1 in six edges where both s
= v =1 (and at least one of (r, g, b) = 0 and at least one of (r, g, b) = 255). Trace your

GMT TECHNICAL REFERENCE & COOKBOOK 67

finger around these edges, starting at the red point and moving to the yellow point, then
on around. You will visit six of the eight corners of the cube, in this order: red (h = 0);
yellow (h = 60); green (h = 120); cyan (h = 180); blue (A = 240); magenta (h = 300).
Three of these are the RGB colors; the other three are the CMY colors which are the
complement of RGB and are used in many color hardcopy devices (color monitors
usually use RGB). The only cube corners you did not visit on this path are the black and
white corners. Imagine an axis running through the black and white corners. If you
project the RYGCBM edge path onto a plane perpendicular to the black-white axis, the
path will look like a hexagon, with RYGCBM at the vertices, every 60° apart. Now we
can make a geometric definition of hue: Take a vector from the origin (black point) to
any point in the cube; project this vector onto the plane with the RYGCBM hexagon;
then hue is the angle this projected vector makes with the R direction on the hexagon.
Thus hue is an angle describing rotation around the black-white axis. Note that by this
definition, if a point is on the black-white axis, its (7, g, b) vector will project as a point at
the center of the hexagon, so its hue is undefined. Points on the black-white axis have r=
g = b, and they are shades of gray; we will call the black-white axis the gray axis.

Let us call the points where s = v = 1 (the points on the RYGCBM path of cube
edges) the "pure" colors. If we start at a pure color and we want to whiten it, we can keep
h constant and v = 1 while decreasing s; this will move us along one of the cube faces
toward the white point. If we start at a pure color and we want to blacken it, we can keep
h constant and s = 1 while decreasing v; this will move us along one of the cube faces
toward the black point. Any pointin (r, g, b) space which can be thought of as a mixture
of pure color + white, or pure color + black, is on a face of the cube.

The points in the interior of the cube are a little harder to describe. The definition for
h above works at all points in (non-gray) (r, g, b) space, but so far we have only looked at
(s, v) on the cube faces, not inside it. At interior points, none of (r, g, b) is equal to either
0 or 255. Choose such a point, not on the gray axis. Now draw a line through your point
so that the line intersects the gray axis and also intersects the RYGCBM path of edges
somewhere. It is always possible to construct this line, and all points on this line have the
same hue. This construction shows that any point in RGB space can be thought of as a
mixture of a pure color plus a shade of gray. If we move along this line away from the
grayaxis toward the pure color, we are "purifying" the color by "removing gray"; this
move increases the color's saturation. When we get to the point where we cannot remove
any more gray, at least one of (r, g, b) will have become zero and the color is now fully
saturated; s = 1. Conversely, any point on the gray axis is completely undersaturated, so
that s = 0 there. Now we see that the black point is special, because it is the intersection
of three planes on which s = 1, but it is on a line where s = 0; it is a singular point, and we
get 0/0 in the above formula. We see also that saturation is a measure of "purity" or
"vividness" of the color.

It remains to define value, and the formula above is really the best definition. But if
you like our geometric constructions, try this: Take your point in RGB space and
construct a line through it so that this line goes through the black point; produce this line
from black past your point until it hits a face on which v = 1. All points on this line have
the same hue. Note that this line and the line we made in the previous paragraph are both
contained in the plane whose equation is hue = constant. These two lines meet at some
arbitrary angle which varies depending on which point you chose. Thus HSV is not an
orthogonal coordinate system. If the line you made in the previous paragraph happened
to touch the gray axis at the black point, then these two lines are the same line, which is
why the black point is special. Now, the line we made in this paragraph illustrates the

GMT TECHNICAL REFERENCE & COOKBOOK 68

following: If your chosen point is not already at the end of the line, where v = 1, then it is
possible to move along the line in that direction so as to increase (r, g, b) while keeping
the same hue. The effect this has on a color monitor is to make the color shine more
brightly, but "brightness" has other meanings in color geometry, so let us say that if you
can move in this way, you can make your hue "stronger"; if you are already on a plane
where at least one of (r, g, b) = 255, then you cannot get a stronger version of the same
hue. Thus, v measures strength. Note that it is not quite true to say that v measures
distance away from the black point, because v is not equal to /r2+g2+b?/2ss.

The RGB system is understandable because it is cartesian, and we all learned
cartesian coordinates in school. But it doesn't help us create a tint or shade of a color; we
cannot say, "We want orange, and a lighter shade of orange, or a less vivid orange". With
HSV we can do this, by saying, "Orange must be between red and yellow, so its hue is
about 2 = 30; a less vivid orange has a lesser s, a darker orange has a lesser v". On the
other hand, the HSV system is a peculiar geometric construction, it is not an orthogonal
coordinate system, and it is not found by a matrix transformation of RGB; these make it
difficult in some cases too. Note that a move toward black or a move toward white will
change both s and v, in the general case of an interior point in the cube. The HSV system
also doesn't behave well for very dark colors, where the gray point is near black and the
two lines we constructed above are almost parallel. If you are trying to create nice colors
for drawing chocolates, for example, you may be better off guessing in RGB coordinates.

Well, there you have it, folks. We've been doing GMT for 5 years and all we know
about color can be written in less than 3 pages. We hope we haven't told you any lies.
For more details, you should consult a book about color systems. But as example 11
shows, a lot can be learned by experimenting with GMT tools. Our thanks to John
Lillibridge for Example 11.

GMT TECHNICAL REFERENCE & COOKBOOK 69

Appendix J: Filtering of data in GMT

The GMT programs filterld and grdfilter allow low-pass filtering of data by
convolution in the spatial domain. (To filter a grid by Fourier transform use grdfft). The
filter type and width are specified by an argument -F<type><width>. The boxcar, cosine
arch, and Gaussian filters are all linear operators and their effect on the frequency content
of the data (the transfer function) can be calculated. The median and mode estimators are
not linear operators, strictly speaking, and their effect on frequency content cannot be
calculated. In filterld the width is a length of the time or space ordinate axis, while in
grdfilter it is the diameter of a circular area whose distance unit is related to the grid
mesh via the -D option. The boxcar filter is a simple running average, while the cosine
and gaussian filters are weighted running averages. The weight functions (impulse
responses) and transfer functions of the linear filters are shown below.

Impulse Responses

1.0 1 — < 5
s N
;o N

0.8 A //.._«' \\ -
Q /s \\
E 06 . // N |
=y // \\
E 04 P N I
= /.7 Solid line: Boxcar .

0.2 ,/__-" Dashed line: Cosine \ +

,/ Dotted line: Gaussian \\
0.0 = o
-0.5 0.0 0.5

Distance (units of filter width)

There are many definitions of the gaussian impulse and its transfer function (e.g., see
Bracewell). We define o equal to 1/6 of the width, and then the impulse response as
exp(-0.5 * (#/0)*). With this definition the transfer function is exp(-2(70 f)*), and the
wavelength at which the transfer function equals 0.5 is about 5.34 ©.

Transfer Functions

‘\"'\4.4_
0.8 1 Yo -
N
0.6 Yo Solid line: Boxcar -
N Dashed line: Cosine

.g 0.4 1 N Dotted line: Gaussian 3

@) N
0.2 1 AN |
OOA > ___";_:-»__—,- R <
-0.2 1 3
0 1 2 3 4 5

Frequency (cycles per filter width)

