
Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 1

        SOM Overview and the

WPS

Presented by:   Dan Kehn,  IBM  Software Solutions

  CompuServe ID 74140,3263 (GO OS2DF1)

Based in part on Creating Objects for the Workplace Shell  by Joe Coulombe



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 2

Legal Notice

This presentation does not contain any IBM
confidential material.  IBM’s plans are subject to
change without notice, therefore, nothing in this
presentation will create any warranties.  IBM warranties
are contained in applicable IBM license agreement.

IBM, CUA, and OS/2 are trademarks of IBM Corporation
and are denoted by an asterisk at their first occurance.

Copyright (C) IBM Corp. 1993.  All rights reserved.

References:

  GBOF-2254    OS/2* Version 2 Technical Compendium  (“Redbooks”)
      The complete set of five volumes.  All five volumes can be ordered separately.  The two that are 
        most useful for SOM and Workplace Shell programming are:

         GG24-3732  OS/2 Version 2.0 - Volume 3: Presentation Manager & Workplace Shell
         GG24-3774  OS/2 Version 2.0 - Volume 4: Application Development

  S10G-6265    OS/2 2.0 Presentation Manager Programming Reference, Volume II
       Contains all the WinXXX() calls, the Workplace Shell classes, and their wpXXX messages.  This is also available 
       on-line (PM Reference) in the Information folder that comes with the OS/2 Toolkit.

  S10G-6309    OS/2 2.0 System Object Model Reference
      This is also available on-line (SOM Reference) in the Information folder that comes with the OS/2 Toolkit.

  G362-0001-14 OS/2 Developer Magazine - No. 3 1992
      Article: The OS/2 Workplace Programming Interface by Mary A. Wright
       (This is the issue with the OS/2 medal on the front, and the first
       issue following the name change from Personal Systems Developer.)



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 3

Ten Easy Steps to WPS Programming

1. Design the objects

2. Design the object’s views

3. Decide the SOM/WPS class to subclass

4. Create a class definition for the new object

5. Compile the class definition

6. Add the object specific code

7. Compile and link

8. Register the object with the Workplace

9. Create an instance of the object

10. Test and iterate

References (cont’d):

  G325-0650    Client/Server Programming with OS/2 2.0, 2nd Edition
      by Robert Orfali and Dan Harkey.

  ISBN 0-442-01522-4 OS/2 2.x Notebook, the best of OS/2 Developer Magazine
      Article: Object-Oriented Programming
       by Roger Sessions and Nurcan Coskun

  G362-0001-17 OS/2 Developer Magazine - Vol. 5  No. 2  Spring 1993
      Article: Workplace Shell Programming Using Multiple Processes
        by Richard Redpath, Joe Coulombe,  and Sue Henshaw
       (This is the issue with 8 "earths" falling into a spinning vortex on the cover.)

  ISBN 0-672-30240-3 OS/2 2.1 Unleashed
      Chapter 5, “Workplace Shell Objects”



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 4

Source Code  I S  Provided

• README.TXT

• WPS-PGM.TXT

• Lots of comments in code

• SHARE93 package on OS2TOOLS
– SHR93.ZIP on CompuServe in OS2DF1, section 3

The README.TXT file included with the example has an overview of all
the files and other hints and tips.  Much of it was based on comments that
are in the source code.

Also see the WPS-PGM.TXT file which documents common WPS 
programming problems and their solutions.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 5

But First, Some Assumptions About You...

• Have used OS/2 2.x and the Workplace

• Understand basic object-oriented concepts
– Data encapsulation

– Inheritance

– Polymorphism

• Some Presentation Manager programming
experience

Several assumptions about your prior experience: (1) You have used
OS/2* 2.x and the Workplace Shell, and (2) you understand basic object-
oriented (OO) programming concepts, and (3) you have some experience 
programming to the OS/2 Presentation Manager.

Some object-oriented programming concepts:

  Data encapsulation is the hiding of the data’s internal representation 
  from programmers (clients) of the data.  This is accomplished by providing
  APIs that query and manipulate the data without exposing its underlying
  structure.  It is good programming practice since it shields the programmer 
  from changes in the underlying implementation.

  Inheritance is an OO programming mechanism for reusing and modifying 
  the behavior of existing code.

  Polymorphism is an OO programming mechanism which allows client
  code to treat common objects in a similar manner without concern for the
  underlying implementation.

Object-oriented programming use these principles to more closely model the
real world and to help ease the burden of coding changes.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 6

SOM - A Quick Explanation

• “O” is Object
– Data and behavior

• “OM” is Object Model
– Representation of an object

• So, “SOM” is System Object Model
– Common representation of an object model

An object is data and behavior.  Objects communicate using a messaging
technique that varies among language implementations.  These messages
can be used to query an object’s state or ask it to perform some behavior.

An object model is a representation of an object.  In rough terms, the object
model of C++ is a structure with an array of associated functions that act on
that structure.  In Smalltalk, the object model is either byte data, or pointers
to other objects with a collection of methods that act on the data.

So, System Object Model is a common representation of an object model. 
 
The goal is to allow for communication between objects and sharing of 
object class implementations independent of the underlying 
implementation language.

SOM provides a basic class definition compiler that generates bindings
that are acceptable to the various compilers (C Set/2 and C++).  SOM also 
provides a base class hierarchy which includes object management.

The WPS uses SOM as the basis of its object model.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 7

A Quick Analogy of OOP for PM Programmers

• WinSendMsg        somResolve

• WinSubclassWindow        parent: in CSC file

• WinCreateWindow        somNew

PM is crudely object-oriented in that it provides some data encapsulation (window structures hidden by 
APIs), messaging (WinSendMsg), and crude inheritance (WinSubclassWindow).  Some find it easier to 
understand truly OO implementations like SOM in terms of PM, but be forewarned of the shortcomings 
of this analogy.

Each case statement in a window procedure is like a method, ie, it handles a specific request for 
information or a request to take action.  PM uses WinSendMsg to send messages; WPS/SOM uses
somResolve to invoke methods.

The SOM compiler generates macros that mask out some of the less interesting parameters passed 
to somResolve, but you can see their ugly entirety in the .H file produced by SOM compiler when it
processes the class's CSC file (see \TOOLKT20\H\WPOBJECT.H for an example).

PM provides several techniques for finding a given window.  You can use WinBeginEnunWindows/
WinGetNextWindow/WinEndEnumWindows, WinQueryWindow (get parent, sibling), and root windows 
like HWND_DESKTOP and HWND_OBJECT.

WPS also provide techniques for finding a given object. WinQueryObject accepts object IDs 
(eg, "<WP_DESKTOP>").  WPObject class methods like wpclsQueryObject, wpclsQueryFolder, and
wpclsFindObjectFirst/ wpclsFindObjectNext/wpclsFindObjectEnd can be used to get a pointer to a 
specific object, similar to how WinBeginEnumWindows(HWND_DESKTOP) can be used to get a 
specific window handle.  SOM class information methods like somFindClass are similar to 
PM’s WinQueryClassInfo.

WinSendMsg can send a message across process boundaries, ie, it handles the context switch and 
serialization.  Regrettably, somResolve does not.  So wp methods (which are invoked via SOM's
somResolve function) can only be invoked by those who are already running under the same process
as the object was created, in this case the WPS process.  Note, however, that new versions of SOM 
announced in the SOMObject toolkit solve this problem; WPS still uses the single-process version of SOM.

The WPS provide a few functions that handle the process switch for you and allow limited interaction
with WPS objects from any process, eg:  WinQueryObject, WinSetObjectData, WinDestroyObject, and
WinCreateObject (notice there is no "WinQueryObjectData", which would be very helpful).

When you register a WPS class with WinRegisterObjectClass, WPS loads your class DLL.  When an 
instance of your class is created, it binds your class to the SOM runtime in the WPS process, hence 
instances of your WPS-derived class always run under the WPS process, so all the wp and wpcls 
methods are available to your class and its instances.  In a sense, it is kind of like writing a public 
window class, ie, PM loads your window class DLL on WinCreateMsgQueue; WPS loads your
class DLL on the first invocation of wpclsNew specifying your class.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 8

SOM in OS/2 2.x

• SOM provides many binding options
– offset resolution (much like C++ virtual tables)

– name lookup (much like Smalltalk)

• SOM is dynamic-link library based
– Methods of each class are in a DLL

– Class/DLL is registered with SOM, when needed it is loaded

• SOM version used by OS/2 2.x is single-process
– Later versions of SOM support distributed objects

SOM allows the developer to choose the type of message resolution.  The
default is similar to C++ virtual tables, but SOM can also use a name lookup
approach much like Smalltalk. 

SOM in OS/2 is DLL based.  The developer registers a class name and
DLL name with the SOMClassMgrObject so instances of the class can
be created.  WPS subclasses the SOMClassMgrObject to add 
dynamic loading (when the first instance is created) and unloading 
(when the last instance is freed) of a class.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 9

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Workplace Shell Overview - Two Process Model

PMSHELL.EXE

(from SET PROTSHELL= 
in CONFIG.SYS)

• Owns Window List
• Starts/restarts Workplace child process
• Launches EXEs at Workplace’s request

PM Shell Parent Process
(called WPS parent in notes)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

PMSHELL.EXE

(from SET RUNWORKPLACE = 
in CONFIG.SYS)

• Creates SOM objects based on
filesystem and OS2.INI
• Asks parent process to launch EXEs

Workplace Shell Process
(called WPS child in notes)

DosExecPgm

The Workplace Shell executable, PMSHELL.EXE, is used for two purposes.
First, to be a rudimentary PM shell that handles the Window List.  Secondly, 
to be the Workplace Shell itself.  PMSHELL.EXE checks an environment 
variable (WORKPLACE__PROCESS=YES|NO) to determine which role it
is to fulfill.

Note: OS/2 defines a parent/child relationship between processes.  When a
  process starts another process, it is made the parent of that process.  If the 
  parent process terminates, the child process is terminated.  If the child process 
  terminates, whether abnormally or normally, the parent process is notified.

Workplace shell uses this two-process parent/child model to make the shell
more reliable.  If the WPS child traps, it can be restarted by the parent.  The
WPS child also asks its parent process to start new programs (e.g., when the
user double-clicks the Enhanced Editor icon in the Productivity folder) so 
the newly-started program will not be terminated should the WPS child trap.

Why all this concern?  Well, the WPS child uses the single-process version 
of SOM, resulting in potentially hundreds of objects being created who’s methods
are implemented by many different classes.  The code for each class is in a
dynamic-link library written by IBM* or any other WPS-enabled vendor.  OS/2
APIs and the WPS use the exception handling capabilities of OS/2 2.x, however
one badly coded class can bring down the whole WPS child process (similar to
the troubles an error in a public PM window class can cause).  

By keeping the WPS parent simple, there is little risk it will trap.  It only loads
IBM-supplied DLLs, so there is less chance of corruption.  The WPS parent is
notified if the WPS child abnormally terminates and can restart it.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 10

Workplace Shell Overview - Opening a Folder

• Query file system, create instance of
corresponding class

– .CLASSINFO extended attribute for data files in file system

– OS2.INI’s PM_Abstract:Objects entry for non-file system

• Object’s record is inserted into PM container
control (FID_CLIENT)

– Most of WPS is PM dialog and window code

– Most of remainder is object/class management and object
persistent data management

The WPS provides a visual hierarchy of folders that map directly to the
file system (directories).  Each folder (directory) contains data files that
can be of different WPS/SOM registered classes.  In addition, classes
whose persistent state are not stored in a data file can be registered with
the WPS (however, the APIs for doing so are private today).  Such “base” 
classes are responsible for remembering which folder each of their 
instances belong.

For example, “abstract” objects like the Color Palette, System, and Program
are stored in the OS2.INI file.  Their instance data is in the OS2.INI application
PM_Abstracts:Objects; their folder location is stored in OS2.INI application
PM_Abstract:FldrContent.

So-called “transient” objects like those in the Minimized Window Viewer and
printer object’s queues are stored in memory.  The transient class is 
responsible for keeping track of which folder each of its instances reside in
so it can respond if later asked during folder population.

An obvious and reasonable consequence of this implementation is that a 
WPS object can only exist in one folder.  However, it may be displayed in
several views of the same folder.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 11

Step 1: Design the Object(s)

• Design each object as a class

• Define what each object will do

Since objects are simply data coupled with behavior, it makes sense to
start by answering the following questions:  (1) What data is needed?  
(2) How should it be modified?, (3) What behaviors are needed?

An object that has no visual component is often called a model.  Model
code is the “business logic” of the data.  Since the data of a business
rarely changes (e.g., there will always be bills, invoices, ledgers) and the
rules that change that data rarely change (e.g., rules for allowing a debit
and credits don’t change), model code tends to remain the same over time.

Views, however, which present the data to the end user, change 
very often.  Views change with each advancement of computer technology
(witness the changes from character based user interfaces, to GUIs, then 
multimedia) and drives user demands to see data in a different way 
(tabular, chart, voice, video).

With this in mind, spend time in the beginning verifying your models 
accurately represent your business.  You will enjoy the fruits of your
labor for a long time!

Views should be designed with flexibility in mind because they change
frequently.  Encapsulating view code in an object class can help.

Note: The provided example view  code is not encapsulated into
an object class.  This is left as an exercise for the reader.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 12

Step 1a: Design Each Object as a Class

• Person

• Address book

Two model classes are defined in this example, Person (ShrPerson)
and Address Book (ShrAddressBook).  



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 13

Step 1b: Define What Each Object Will Do

• Person (ShrPerson)
– Holds pertinent data about a person

– View should be succinct

• Address Book (ShrAddressBook)
– Contains persons

– Several possible concurrent views

– Should be quick to find a given person

ShrPerson represents the pertinent data about a person (name, address,
city, state, zip code, and phone).  Its view should be succinct since the user
will want to find information about the person quickly, e.g., their phone number.

ShrAddressBook will contain persons.  It will display them in several
possible views.  These views should allow the user to find a given person
quickly.

Both of these models are simple.  The address book model is simply a holder 
of persons.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 14

Step 1c: Focus on the User’s Conceptual Model

• Person is an easily recognized metaphor

• Address book is an easily recognized metaphor
– Others may require more thought and testing

– Consult domain experts

– Consult less experienced users

ShrAddressBook’s views should appear familiar to the user.

Models for user interface objects are not always easy to
identify.  Find representations that make sense from the
user’s point of view, and avoid computer artifacts (files, directories,
drives).  Accountants work with ledgers, attorneys work with contracts,
sales managers work with register sales, car salesmen work with
sales worksheets -- all these examples can be modeled in the user
interface to take advantage of the user’s prior experience.

Many developers have a tendency to design the user interface (view)
first without regard to the user model.  The user model (data and
domain) should be designed since it changes the least.  A well
designed user model will result in a better designed user interface.

Domain experts can offer unique insight when designing the UI
models for your business.  However,  less experienced users in the
field domain should be consulted to verify the model makes sense
for them, too, since training costs are a significant portion of a 
business’s yearly expenses.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 15

Step 1d: Define Interactions with Other Objects

• Create direct-manipulation tables
– All objects you have defined

– Include representative objects in the system

• Four interaction tables
– Default (no keyboard augmentation)

– Copy (Ctrl+mouse button 2)

– Move (Shift+mouse button 2)

– Link (Ctrl+Shift+mouse button 2)

• Sometimes a fifth interaction table
– Create (usually Create table is the same as Copy table)

Each object should be evaluated for its behavior as the source of a 
drag, and as the target of a drag.

Start by creating direct-manipulation tables which includes all of
the objects you’ve defined plus some representative objects in the 
system, eg, Folder, Printer, and Shredder.

The purpose of direct-manipulation is to transfer data.  Your tables
should specify what data is transferred for each interaction.  Create a
separate table for each of the four interactions referenced above.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 16

Step 2: Design the Object’s View

• Determine the views needed of each object

• Consider the information to be presented in each
view

• Choose appropriate controls for each piece of
information

• Design an effective and aestetically pleasing
layout

• Design the menus (and pop-up menus)

• Iterate and test

It is tempting to design the object’s view first.  But often when designing
views first, the rest of the design is modified to serve the view’s needs.
However, the view (look) of the object frequently changes, resulting in
unnecessary changes in the model.

Consider the data that the user needs first, then how objects that 
represent that data will interact.  Additionally, consider how the user
thinks of the data they use day-to-day, and what would be reasonable
interactions among the different data (e.g., dragging a person object
to a room object makes sense, but not visa-versa).

Only then design the views for the objects. This separation of view and 
model will result in model code that rarely changes.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 17

Step 2: Design the Object’s View (cont’d)

• If object’s primary property is containment
– Decide limit of its contained objects, if any

– Be certain limits in containment are reasonable to user

• Address book’s default view is Indexed View

• Person’s default view is Settings View

Many objects are a composition of other objects, not a container
of objects.  For example, an event object could be composed of two 
objects, a time and place.  But the event object is not a container since
its primary purpose is not containment.

Folders are clearly a container object, since their primary purpose is
to contain other objects.  The address book’s primary purpose is to contain
person objects.  However, the address book is not a general container,
that is, it is an example of restrictive containment.  It only allows
objects of a specific type within it.

There are other examples of restrictive containment objects in OS/2.
The Printer object only allows print jobs within it; the Minimized Window 
Viewer only allows minimized windows within it.

Restrictive containment can effectively be used to guide the user to
purpose of a container.  But be certain that such restriction is considered
reasonable to the user. 



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 18

Step 3: Decide the SOM/WPS Class to Subclass

• Three base classes provided by the WPS

• Findable objects are the basis for the hierarchy

• Model and view are not clearly separated in WPS
hierarchy

– Example code shows how to improve WPS model/view
separation

The root class for non-UI objects is SOMObject.  The WPS
defines base classes for UI objects.  These base classes are
all subclasses WPObject, which is a subclass of SOMObject.

UI objects that you define for the WPS should be a subclass of
one of the three base classes so your object can be located by
the system “Find...” and to inherit useful methods.  Do not 
subclass from WPObject directly.

Hierarchy based on table 5.1, OS/2 2.1 Unleashed, with corrections:

WPFileSystem
      WPDataFile
          WPBitmap
          WPIcon
          WPPointer
          WPProgramFile
              WPCommandFile
          WPMet
          WPPif
      WPFolder
          WPDesktop
          WPStartup
          WPDrives
          WPMinWinViewer
          WPFindFolder
          WPNetgrp
          WPServer
          WPSharedDir
          WPTemplates
          WPRootFolder

WPAbstract
      WPClock
      WPCountry
      WPDisk
      WPKeyboard
      WPMouse
      WPPalette
          WPSchemePalette
          WPColorPalette
          WPFontPalette
      WPShadow
      WPShredder
      WPSound
      WPSpecialNeeds
      WPSpool
      WPSystem
      WPProgram
      WPPrinter
          WPRPrinter

WPTransient
      WPCnrView
      WPFilter
          WPFinder
      WPMinWindow
      WPJob
      WPPort
      WPPrinterDriver
      WPQueueDriver

SOMObject
      WPObject

• The most commonly subclassed
   classes are shown in bold italics.
   Some unnotable classes are omitted.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 19

Step 3: Decide the SOM/WPS Subclass (cont’d)

• Address book’s primary purpose is containment

• WPFolder is a good choice for superclass

WPFolder provides basic containment behavior.  In addition, it provides
three standard containment views: Icon, Details, and Tree.

Implementing alternative containment views like the address book’s
Indexed View requires WPFolder methods that were omitted from the
OS/2 2.0 product.  Therefore the example adds a WPFolder subclass,
ShrFolder, which adds the shrAddedToContent and 
shrRemovedFromContent methods (the source code to these methods
are not included in the package).  Boca is aware of the problem and
plans to address them after OS/2 2.1 ships.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 20

Step 3: Decide the SOM/WPS Subclass (cont’d)

• Person’s best superclass is not as clear

• WPAbstract
– Efficiently stores object who’s data is small

– Cannot be copied to diskette

• WPDataFile
– Can be copied to diskette

– Wastes space for small data (2-4K min. allocation)

• WPTransient
– Only if objects can be created from another source

ShrPerson subclasses from WPAbstract mainly because ShrPerson’s
data requirements are quite small.  However, if ShrPerson typically used
2K+ data, it should subclass WPDataFile.

The wpSaveString, wpSaveLong, and wpSaveData methods
used in WPDataFile’s wpSaveState method store the data in the extended
attributes of the data file.  Other attributes are stored in the extended
attributes, for example “.ICON” attribute holds the icon (if one has been
explicitly set), “.LONGNAME” holds the name of data files over 8 characters
on FAT file systems (HPFS supports long file names).

Subclasses of WPDataFile are free to store data in the data file itself.  The
wpQueryRealName method retrieves the full file name which can be used
by DosOpen, DosRead, etc.  The DosRead/DosWrite APIs are much faster
than the DosQueryFileInfo call to retrieve the extended attributes.  Extended
attributes are currently limited to 64K bytes total (.ICON, .CLASSINFO), so
store large data in the file itself.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 21

Step 3: Decide the SOM/WPS Subclass (cont’d)

• Put model code in a separate process
– Greater stability, easier to develop large projects

– Start with DosExecPgm during  DLL initialization

– Use inter-process communication

• View code can be in WPS process

All WPS subclasses run in a single process.  When an instance of a
WPS subclass is created, the corresponding class dynamic link library
(DLL) is loaded by the WPS.

It is recommended that WPS developers limit the size of the class
DLLs loaded by the WPS by moving as much code as possible into
a separate executable.  This executable should contain the bulk of  the
model code.  The class DLL should start the model executable in its
DLL initialization routine and signal it to terminate in the DLL termination
routine (see IBM C Set/2 User’s Guide, page 234 for an example).  The
model object which exists in the WPS process can communicate with the
model code running in another process using standard inter-process
communication techniques (queues, semaphores, shared memory,
PM object windows).

Subclasses of WPDataFile typically pass their file name to the
model code in the other process for interpretation.  Instances of WPAbstract 
can keep a key to pass to the model code (e.g., record number, database key).



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 22

Step 4: Create Class Definition for the New Objects

• Define instance data needed

• Define methods to query/set instance data

• Define methods needed by others

A model’s design is driven by its data.  So define the data the model needs
first, then the necessary access methods for this data. 

Once the data is defined,  consider what methods are needed by other 
objects (clients) .  Lastly, consider what methods are needed to support 
the various views of the model.

You should review  the methods provided by your superclass to determine if
you can reuse any of them.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 23

Step 4: Create Class Definitions (cont’d)

• Define “helper” objects

• Helper objects are usually non-UI objects
– Ordered list object (ShrList)

– Notifier object (ShrNotifer)

“Helper” objects are a great way to get code reuse!  You will get more
reuse by combining the functions of several objects (a has-a relationship,
in OO parlance) instead of having a larger single object with many
characteristics (a is-a relationship).

ShrAddressBook and ShrPerson both have a single instance of 
ShrNotifier.  They implement one method, shrQueryNotifier, and let
the notifier handle the other messages (shrAddInterestedWindow,
shrRemoveInterestedWindow, et al).



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 24

Notifier (Step 4, cont’d)

• Used to synchronize view with changes in model
– shrAddInterestedWindow

– shrRemoveInterestedWindow

– shrNotifyInterestedWindows

• More flexible than that provided with WPS
– VIEWITEM structure of object’s use list

• Example of “has a” versus “is a”
– Client only has to implement shrQueryNotifier method

• Encourages model and view separation

One model can have several different views on it opened at a time.  For
example, the user can open an Icons, Details, and Tree on a single folder
and they expect each of the views to remain synchronized (i.e., adding
an object to the folder in one view should display it in the other views of the
same folder).

WPS provides a mechanism for tracking what views are open on an object.
Each WPS object has a use list of all the resource allocated to the object
(e.g., memory, container records).  Included in the use list are view items 
that have view type and PM frame handle to each view opened on the object.  
The view items can be used by the model to notify the views when a change
in the model data occurs (which was likely caused by one of the open
views, e.g., the user adds an object to an open view of a folder).

ShrNotifier maintains a list similar to the view items of an object’s use list.
but is different in that it can be used to notify an arbitrary window, not just 
a frame window.  This is used in the ShrPerson  to keep the Info page of 
the Settings notebook synchronized with changes in the object title
(see ShrPerson’s wpSetTitle method in PERSON.C, and 
the SHRN_PERSONNAMECHANGED case in ShrPersonInfoPageDlgProc).



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 25

Step 5: Compile the Class Definition

• SOM compiler

• Produces binding files bridging SOM and
development language

• Generates C macros and function skeletons

The class definition file defines the superclass, instance data, and
methods.  Methods are inherited from the superclass and can be
overridden by specifying the override keyword, e.g.:

  override wpModifyPopupMenu;

The above example shows how you would override the 
wpModifyPopupMenu method which is defined by WPObject.  When
overriding methods, be sure to call the superclass (parent) method
first, if you are adding behavior, not replacing behavior.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 26

Step 6: Add the Object Specific Code

• ShrPerson new methods
– set/query, e.g., shrSetAddress, shrQueryAddress

– shrQueryNotifier

• ShrPerson overridden methods
– wpUnInitData

– wpSaveState

– wpRestoreState

– wpAddSettingsPages

• ShrPersons’s view code
– handles Info page dialog created by wpAddSettingsPages

The example code is structured to separate model and view.  The
PERSON.C file has the model code and PERSONV.C has the
view code.  There are some model methods that affect the view, e.g.:

  - wpOpen: opens the view
  - wpAddSettingsPages: add pages to the Settings view notebook.
  - wpModifyPopupMenu: add items to the pop-up menu
  - wpFilterPopupMenu: add/remove standard pop-up menu items
  - wpclsQueryIconData: query default icon for class
  - wpclsQueryDefaultView: query default view for class.

Separate code files for model and view code clarifies the responsibilities
of each and decreases the tendency to mix the two.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 27

Step 6: Add the Object Specific Code (cont’d)

• ShrAddressBook new methods
– shrQueryNotifier

• ShrAddressBook overridden methods
– shrAddedToContent

– shrRemovedFromContent

• ShrAddressBook’s view code
– handles wpOpen

ShrFolder, a subclass of WPFolder, adds notification methods for when
an object is added/removed from the folder.  These methods give the 
model an opportunity to synchronize its data with its views.

ShrAddressBook overrides these methods to detect when a person
object is added or removed from the address book (via drag/drop,
or selecting a choice like Copy... from the person’s pop-up menu).



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 28

Step 7: Compile and Link

• SOM compiler
– *.C skeleton source code

– *.SC - public compiled version of *.CSC methods

– *.PSC - private compiled version of *.CSC methods

– *.IH - implementation header

– *.H - public header

– *.PH - private header

• Standard C compiler, linker

• Create DLL’s
– One per class, or combined

The SOM compiler takes a class definition file (*.CSC) and produces:

  *.IH - implementation header to be included in the *.C file which
           implements the methods.
  *.H - public methods header
  *.PH - private methods header
  *.SC - compiled SOM class definition (*.CSC)
  *.PSC - private portion of compiled SOM class definition
  *.C - skeletal source code

These files can be compiled with IBM C Set/2.  Messages can be sent to a 
SOM object using macros generated by the SOM compiler (which
call the SOM message resolution function somResolve).



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 29

Step 8 and 9: Register with WPS, Create Instance

• WinRegisterObjectClass API
– Registers with WPS, WPS then registers with SOM

• Loads the DLL

• Makes the new class available
– Appear in Templates  folder

– See example Address Book installation

An installation executable should be provided with your class DLLs.  
WinRegisterObjectClass returns only TRUE or FALSE, so the SHRINST.EXE ,
provided with the example, checks for the most common mistakes before 
calling WinRegisterObjectClass.

Once a class is registered with the WPS, it will appear in the Templates
folder unless the class style includes CLSSTYLE_NEVERTEMPLATE.
Note that the class style of WPAbstract includes this style; this can be
overridden in your subclass’s implementation of wpclsQueryStyle, if desired. 



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 30

Step 10: Test and Iterate

• Test each object for code quality and usability

• Make sure each object interacts gracefully with
others on the Workplace

• Don’t be afraid to iterate several times

• Challenge your design assumptions

Test each object in isolation, then together.  Involve beta testers early
to help find problems in code quality and usability.  

Experience has shown that two or three beta test cycles are adequate
for most designs.



Dan Kehn, IBM  Software Solutions        Copyright (C), IBM Corp. 1993SOM Overview and the WPS                   Page 31

Advantages of WPS Programming

• Common look and feel

• Simplifies initiation of drag

• Simplifies pop-up menu creation and emphasis

• Good support of “perfect save” model

• Simplifies Settings notebook creation

• Provides object storage reclamation
(awake/dormant)

• Provides persistent object handles

• WPFolder behavior quite useful

The CUA’91* look and feel of the WPS is much easier to reach if you
program directly to the WPS.  And the WPS hierarchy provides significant
help.  For example, the WPS container owner subclass winproc handles many
of the container notification messages; it sets up drags on CN_INITDRAG,
including “stacking” of the drag images; it helps create and display the pop-up
menu of one or more selected objects on CN_CONTEXTMENU.

The WPS also provides support for handling “perfect save”, that is, the
automatic saving of object data to persistent storage and it does this
on a separate thread (the so-called “lazy write” thread).

Creating settings notebook is simple - just provide a dialog procedure and
a dialog resource.  WPS handles sizing the notebook tabs and loading the
dialog when the user chooses the page.

The WPS “snoozer” thread implements object storage reclamation.  When
an object is no longer locked nor displayed in a container for a few minutes,
it is automatically made dormant (wpMakeDormant) to free the object’s storage. 

Linking objects together across reboots is simple with persistent object handles
provide by the WPS (wpclsQueryObject(_WPObject, hObject)).

The WPFolder makes displaying objects in a container fairly easy.  Details 
view is easy to modify, once you understand how (see SHARE93 package
on OS2TOOLS).


