
PostgreSQL User’s Guide

The PostgreSQL Development Team

Edited by

Thomas Lockhart

PostgreSQL User’s Guide
by The PostgreSQL Development Team

Edited by Thomas Lockhart

PostgreSQL

 is Copyright © 1996-2000 by PostgreSQL Inc.

i

Table of Contents
Table of Contents . i
List of Tables . xiii
List of Examples . xiv
Summary. i
Chapter 1. Introduction . 1

What is Postgres? . 1
A Short History of Postgres . 1

The Berkeley Postgres Project . 2
Postgres95. 2
PostgreSQL . 3

About This Release . 3
Resources . 4
Terminology . 5
Notation . 5
Problem Reporting Guidelines . 6

Identifying Bugs. 6
What to report . 7
Where to report bugs . 8

Y2K Statement . 9
Copyrights and Trademarks . 9

Chapter 2. SQL Syntax . 11
Key Words . 11

Reserved Key Words. 11
Non-reserved Keywords . 14

Comments . 15
Names. 15
Constants . 16

String Constants . 16
Integer Constants. 16
Floating Point Constants. 16
Constants of Postgres User-Defined Types . 17
Array constants . 17

Fields and Columns . 17
Fields. 17
Columns . 18

Operators. 18
Expressions . 18

Parameters . 19
Functional Expressions . 19
Aggregate Expressions . 19
Target List . 20
Qualification. 20
From List . 20

Chapter 3. Data Types . 22
Numeric Types . 24

The Serial Type . 24
Monetary Type . 25
Character Types . 25
Date/Time Types . 26

Date/Time Input . 27
Date/Time Output . 31
Time Zones. 32
Internals . 33

Boolean Type . 33

ii

Geometric Types . 34
Point . 34
Line Segment . 34
Box . 35
Path. 35
Polygon . 36
Circle . 36

IP Version 4 Networks and Host Addresses . 36
CIDR. 37
inet . 37

Chapter 4. Operators . 38
Lexical Precedence . 38
General Operators . 40
Numerical Operators . 41
Geometric Operators . 42
Time Interval Operators . 43
IP V4 CIDR Operators. 43
IP V4 INET Operators . 44

Chapter 5. Functions . 45
SQL Functions. 45
Mathematical Functions. 46
String Functions . 47
Date/Time Functions. 49
Formatting Functions . 50
Geometric Functions. 55
IP V4 Functions. 57

Chapter 6. Type Conversion . 58
Overview . 58

Guidelines. 59
Operators. 60

Conversion Procedure. 60
Examples . 60

Functions . 62
Examples . 63

Query Targets . 64
Examples . 64

UNION Queries. 64
Examples . 65

Chapter 7. Indices and Keys . 66
Keys . 67
Partial Indices . 69

Chapter 8. Arrays. 70
Chapter 9. Inheritance . 72
Chapter 10. PL/pgSQL Procedural Language. 74

Overview . 74
Description. 74

Structure of PL/pgSQL. 74
Comments. 75
Declarations . 75
Data Types . 76
Expressions. 77
Statements . 78
Trigger Procedures . 80
Exceptions . 81

Examples . 82
Some Simple PL/pgSQL Functions . 82
PL/pgSQL Function on Composite Type . 83
PL/pgSQL Trigger Procedure . 83

iii

Chapter 11. PL/Tcl Procedural Language . 85
Overview . 85
Description. 85

Postgres Functions and Tcl Procedure Names . 85
Defining Functions in PL/Tcl . 85
Global Data in PL/Tcl . 86
Trigger Procedures in PL/Tcl. 86
Database Access from PL/Tcl. 88

Chapter 12. PL/perl Procedural Language . 91
Overview . 91
Building and Installing . 91
Using PL/Perl . 91

Chapter 13. Multi-Version Concurrency Control . 93
Introduction. 93
Transaction Isolation . 93
Read Committed Isolation Level . 94
Serializable Isolation Level . 94
Locking and Tables. 95

Table-level locks . 95
Row-level locks . 96

Locking and Indices . 96
Data consistency checks at the application level . 97

Chapter 14. Setting Up Your Environment . 98
Chapter 15. Managing a Database . 99

Database Creation. 99
Alternate Database Locations . 99
Accessing a Database . 100

Database Privileges . 101
Table Privileges . 101

Destroying a Database . 102
Chapter 16. Disk Storage . 103
Chapter 17. Understanding Performance . 104

Using EXPLAIN . 104
Chapter 18. Populating a Database. 108

Disable Auto-commit . 108
Use COPY FROM. 108
Remove Indices . 108

Chapter 19. SQL Commands . 109
 ABORT . 109

Name. 109
Synopsis . 109
Description . 109
Usage. 109
Compatibility . 110

 ALTER GROUP . 110
Name. 110
Synopsis . 110
Description . 110
Usage. 111
Compatibility . 111

 ALTER TABLE . 111
Name. 111
Synopsis . 111
Description . 112
Usage. 113
Compatibility . 113

 ALTER USER . 114
Name. 114

iv

Synopsis . 114
Description . 115
Usage. 115
Compatibility . 116

 BEGIN . 116
Name. 116
Synopsis . 116
Description . 116
Usage. 117
Compatibility . 117

 CLOSE . 118
Name. 118
Synopsis . 118
Description . 118
Usage. 118
Compatibility . 119

 CLUSTER . 119
Name. 119
Synopsis . 119
Description . 119
Usage. 120
Compatibility . 120

 COMMENT . 121
Name. 121
Synopsis . 121
Description . 121
Usage. 121
Compatibility . 122

 COMMIT . 122
Name. 122
Synopsis . 122
Description . 123
Usage. 123
Compatibility . 123

 COPY . 123
Name. 123
Synopsis . 123
Description . 124
File Formats . 125
Usage. 127
Compatibility . 127

 CREATE AGGREGATE . 128
Name. 128
Synopsis . 128
Description . 129
Usage. 130
Compatibility . 130

 CREATE CONSTRAINT TRIGGER . 130
Name. 130
Synopsis . 130
Description . 131

 CREATE DATABASE . 131
Name. 131
Synopsis . 131
Description . 132
Usage. 133
Compatibility . 133

 CREATE FUNCTION . 134

v

Name. 134
Synopsis . 134
Description . 135
Usage. 136
Compatibility . 137

 CREATE GROUP . 138
Name. 138
Synopsis . 138
Description . 138
Usage. 139
Compatibility . 139

 CREATE INDEX . 139
Name. 139
Synopsis . 139
Description . 140
Usage. 142
Compatibility . 142

 CREATE LANGUAGE . 142
Name. 142
Synopsis . 142
Description . 143
Usage. 144
Compatibility . 145

 CREATE OPERATOR . 146
Name. 146
Synopsis . 146
Description . 147
Usage. 150
Compatibility . 150

 CREATE RULE . 150
Name. 150
Synopsis . 150
Description . 151
Usage. 152
Compatibility . 153

 CREATE SEQUENCE . 154
Name. 154
Synopsis . 154
Description . 155
Usage. 156
Compatibility . 157

 CREATE TABLE . 158
Name. 158
Synopsis . 158
Description . 159
DEFAULT Clause . 160
Column CONSTRAINT Clause . 162
Table CONSTRAINT Clause . 169
Usage. 176
Compatibility . 178

 CREATE TABLE AS . 184
Name. 184
Synopsis . 184
Description . 184

 CREATE TRIGGER . 184
Name. 184
Synopsis . 184
Description . 185

vi

Usage. 186
Compatibility . 186

 CREATE TYPE . 186
Name. 186
Synopsis . 186
Description . 188
Examples . 189
Compatibility . 189

 CREATE USER . 190
Name. 190
Synopsis . 190
Description . 191
Usage. 191
Compatibility . 192

 CREATE VIEW . 192
Name. 192
Synopsis . 192
Description . 193
Usage. 193
Compatibility . 193

 . 194
 DECLARE . 194

Name. 194
Synopsis . 194
Description . 195
Usage. 196
Compatibility . 196

 DELETE . 196
Name. 196
Synopsis . 196
Description . 197
Usage. 197
Compatibility . 198

 DROP AGGREGATE . 198
Name. 198
Synopsis . 198
Description . 199
Usage. 199
Compatibility . 199

 DROP DATABASE . 200
Name. 200
Synopsis . 200
Description . 201
Compatibility . 201

 DROP FUNCTION . 201
Name. 201
Synopsis . 201
Description . 202
Usage. 202
Compatibility . 202

 DROP GROUP . 202
Name. 202
Synopsis . 202
Description . 203
Usage. 203
Compatibility . 203

 DROP INDEX . 203
Name. 203

vii

Synopsis . 203
Description . 204
Usage. 204
Compatibility . 204

 DROP LANGUAGE . 205
Name. 205
Synopsis . 205
Description . 205
Usage. 205
Compatibility . 206

 DROP OPERATOR . 206
Name. 206
Synopsis . 206
Description . 207
Usage. 207
Compatibility . 207

 DROP RULE . 207
Name. 207
Synopsis . 207
Description . 208
Usage. 208
Compatibility . 208

 DROP SEQUENCE . 208
Name. 208
Synopsis . 209
Description . 209
Usage. 209
Compatibility . 209

 DROP TABLE . 210
Name. 210
Synopsis . 210
Description . 210
Usage. 210
Compatibility . 211

 DROP TRIGGER . 211
Name. 211
Synopsis . 211
Description . 212
Usage. 212
Compatibility . 212

 DROP TYPE . 212
Name. 212
Synopsis . 212
Description . 213
Usage. 213
Compatibility . 213

 DROP USER . 213
Name. 213
Synopsis . 213
Description . 214
Usage. 214
Compatibility . 214

 DROP VIEW . 214
Name. 214
Synopsis . 214
Description . 215
Usage. 215
Compatibility . 215

viii

 END . 216
Name. 216
Synopsis . 216
Description . 216
Usage. 217
Compatibility . 217

 EXPLAIN . 217
Name. 217
Synopsis . 217
Description . 217
Usage. 218
Compatibility . 219

 FETCH . 219
Name. 219
Synopsis . 219
Description . 220
Usage. 221
Compatibility . 222

 GRANT . 222
Name. 222
Synopsis . 222
Description . 224
Usage. 224
Compatibility . 225

 INSERT . 226
Name. 226
Synopsis . 226
Description . 226
Usage. 227
Compatibility . 228

 LISTEN . 228
Name. 228
Synopsis . 228
Description . 228
Usage. 229
Compatibility . 229

 LOAD . 229
Name. 229
Synopsis . 229
Description . 230
Usage. 230
Compatibility . 231

 LOCK . 231
Name. 231
Synopsis . 231
Description . 232
Usage. 234
Compatibility . 234

 MOVE . 235
Name. 235
Synopsis . 235
Description . 235
Usage. 235
Compatibility . 235

 NOTIFY . 236
Name. 236
Synopsis . 236
Description . 236

ix

Usage. 238
Compatibility . 238

 REINDEX . 238
Name. 238
Synopsis . 238
Description . 239
Usage. 239
Compatibility . 239

 RESET . 239
Name. 239
Synopsis . 239
Description . 240
Usage. 240
Compatibility . 240

 REVOKE . 241
Name. 241
Synopsis . 241
Description . 242
Usage. 243
Compatibility . 243

 ROLLBACK . 244
Name. 244
Synopsis . 244
Description . 244
Usage. 245
Compatibility . 245

 SELECT . 245
Name. 245
Synopsis . 245
Description . 246
Usage. 251
Compatibility . 253

 SELECT INTO . 254
Name. 254
Synopsis . 254
Description . 254

 SET . 255
Name. 255
Synopsis . 255
Description . 262
Usage. 262
Compatibility . 263

 SHOW . 264
Name. 264
Synopsis . 264
Description . 264
Usage. 264
Compatibility . 265

 TRUNCATE . 265
Name. 265
Synopsis . 265
Description . 265
Usage. 265
Compatibility . 266

 UNLISTEN . 266
Name. 266
Synopsis . 266
Description . 266

x

Usage. 267
Compatibility . 267

 UPDATE . 267
Name. 267
Synopsis . 267
Description . 268
Usage. 268
Compatibility . 269

 VACUUM . 269
Name. 269
Synopsis . 269
Description . 270
Usage. 270
Compatibility . 271

Chapter 20. Applications . 272
 createdb . 272

Name. 272
Synopsis . 272
Description . 273
Usage. 273

 createlang . 274
Name. 274
Synopsis . 274
Description . 275
Notes . 275
Usage. 275

 createuser . 275
Name. 275
Synopsis . 275
Description . 276
Usage. 277

 dropdb . 277
Name. 277
Synopsis . 277
Description . 278
Usage. 278

 droplang . 279
Name. 279
Synopsis . 279
Description . 280
Notes . 280
Usage. 280

 dropuser . 280
Name. 280
Synopsis . 280
Description . 281
Usage. 281

 ecpg . 281
Name. 282
Synopsis . 282
Description . 282
Usage. 283
Grammar . 283
Notes . 286

 pgaccess . 286
Name. 286
Synopsis . 286
Description . 286

xi

 pgadmin . 288
Name. 288
Synopsis . 288
Description . 288

 pg_ctl . 289
Name. 289
Synopsis . 289
Description . 290
Usage. 290

 pg_dump . 292
Name. 292
Synopsis . 292
Description . 294
Notes . 295
Usage. 295

 pg_dumpall . 295
Name. 295
Synopsis . 295
Description . 297
Usage. 297

 psql . 298
Name. 298
Synopsis . 298
Description . 298
psql Meta-Commands . 299
Command-line Options . 309
Advanced features . 312
Examples . 317
Appendix . 319

 pgtclsh . 319
Name. 319
Synopsis . 319
Description . 320

 pgtksh . 320
Name. 320
Synopsis . 320
Description . 320

 vacuumdb . 321
Name. 321
Synopsis . 321
Description . 322
Usage. 322

Chapter 21. System Applications . 323
 initdb . 323

Name. 323
Synopsis . 323
Description . 324

 initlocation . 325
Name. 325
Synopsis . 325
Description . 325
Usage. 325

 ipcclean . 326
Name. 326
Synopsis . 326
Description . 326

 pg_passwd . 327
Name. 327

xii

Synopsis . 327
Description . 327

 pg_upgrade . 328
Name. 328
Synopsis . 328
Description . 329

 postgres . 330
Name. 330
Synopsis . 330
Description . 333
Notes . 333

 postmaster . 334
Name. 334
Synopsis . 334
Description . 336
Notes . 336
Usage. 337

Appendix UG1. Date/Time Support . 338
Time Zones . 338

Australian Time Zones . 340
Date/Time Input Interpretation . 341

History . 342
Bibliography . 344

SQL Reference Books . 344
PostgreSQL-Specific Documentation . 344
Proceedings and Articles . 345

xiii

List of Tables
3-1. Postgres Data Types... 22
3-2. Postgres Function Constants .. 23
3-3. Postgres Numeric Types .. 24
3-4. Postgres Monetary Types ... 25
3-5. Postgres Character Types... 26
3-6. Postgres Specialty Character Type... 26
3-7. Postgres Date/Time Types ... 26
3-8. Postgres Date Input .. 27
3-9. Postgres Month Abbreviations ... 28
3-10. Postgres Day of Week Abbreviations .. 28
3-11. Postgres Time Input ... 29
3-12. Postgres Time With Time Zone Input.. 29
3-13. Postgres Time Zone Input .. 30
3-14. Postgres Special Date/Time Constants... 31
3-15. Postgres Date/Time Output Styles ... 31
3-16. Postgres Date Order Conventions .. 32
3-17. Postgres Boolean Type... 33
3-18. Postgres Geometric Types.. 34
3-19. PostgresIP Version 4 Types ... 36
3-20. PostgresIP Types Examples ... 37
4-1. Operator Ordering (decreasing precedence)... 39
4-2. Postgres Operators ... 40
4-3. Postgres Numerical Operators.. 41
4-4. Postgres Geometric Operators.. 42
4-5. Postgres Time Interval Operators... 43
4-6. PostgresIP V4 CIDR Operators.. 43
4-7. PostgresIP V4 INET Operators .. 44
5-1. SQL Functions ... 45
5-2. Mathematical Functions ... 46
5-3. Transcendental Mathematical Functions.. 47
5-4. SQL92 String Functions... 47
5-5. String Functions ... 48
5-6. Date/Time Functions.. 49
5-7. Formatting Functions ... 50
5-8. Templates for date/time conversions.. 50
5-9. Suffixes for templates for date/time to_char() ... 52
5-10. Templates for to_char(numeric) ... 53
5-11. to_char Examples.. 54
5-12. Geometric Functions .. 55
5-13. Geometric Type Conversion Functions.. 56
5-14. Geometric Upgrade Functions ... 56
5-15. PostgresIP V4 Functions .. 57
13-1. Postgres Isolation Levels.. 94
19-1. Contents of a binary copy file .. 126
UG1-1. Postgres Recognized Time Zones... 338
UG1-2. Postgres Australian Time Zones... 340

xiv

List of Examples
19-1. Example of a circular rewrite rule combination. .. 152

i

Summary
 Postgres, developed originally in the UC Berkeley Computer Science Department,
pioneered many of the object-relational concepts now becoming available in some
commercial databases. It provides SQL92/SQL3 language support, transaction integrity,
and type extensibility. PostgreSQL is an open-source descendant of this original Berkeley
code.

1

Chapter 1. Introduction
 This document is the user manual for the PostgreSQL (http://postgresql.org/) database
management system, originally developed at the University of California at Berkeley.
PostgreSQL is based on Postgres release 4.2
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html). The Postgres project, led
by Professor Michael Stonebraker, was sponsored by the Defense Advanced Research
Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

What is Postgres?
 Traditional relational database management systems (DBMSs) support a data model
consisting of a collection of named relations, containing attributes of a specific type. In
current commercial systems, possible types include floating point numbers, integers,
character strings, money, and dates. It is commonly recognized that this model is
inadequate for future data processing applications. The relational model successfully
replaced previous models in part because of its "Spartan simplicity". However, as
mentioned, this simplicity often makes the implementation of certain applications very
difficult. Postgres offers substantial additional power by incorporating the following four
additional basic concepts in such a way that users can easily extend the system:

classes
inheritance
types
functions

 Other features provide additional power and flexibility:

constraints
triggers
rules
transaction integrity

 These features put Postgres into the category of databases referred to as object-relational.
Note that this is distinct from those referred to as object-oriented, which in general are not
as well suited to supporting the traditional relational database languages. So, although
Postgres has some object-oriented features, it is firmly in the relational database world. In
fact, some commercial databases have recently incorporated features pioneered by
Postgres.

A Short History of Postgres
 The Object-Relational Database Management System now known as PostgreSQL (and
briefly called Postgres95) is derived from the Postgres package written at Berkeley. With
over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multi-version concurrency control, supporting
almost all SQL constructs (including subselects, transactions, and user-defined types and

Chapter 1. Introduction

2

functions), and having a wide range of language bindings available (including C, C++,
Java, perl, tcl, and python).

The Berkeley Postgres Project

 Implementation of the Postgres DBMS began in 1986. The initial concepts for the system
were presented in The Design of Postgres and the definition of the initial data model
appeared in The Postgres Data Model. The design of the rule system at that time was
described in The Design of the Postgres Rules System. The rationale and architecture of the
storage manager were detailed in The Postgres Storage System.

 Postgres has undergone several major releases since then. The first "demoware" system
became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. We
released Version 1, described in The Implementation of Postgres, to a few external users in
June 1989. In response to a critique of the first rule system (A Commentary on the Postgres
Rules System), the rule system was redesigned (On Rules, Procedures, Caching and Views
in Database Systems) and Version 2 was released in June 1990 with the new rule system.
Version 3 appeared in 1991 and added support for multiple storage managers, an improved
query executor, and a rewritten rewrite rule system. For the most part, releases until
Postgres95 (see below) focused on portability and reliability.

 Postgres has been used to implement many different research and production applications.
These include: a financial data analysis system, a jet engine performance monitoring
package, an asteroid tracking database, a medical information database, and several
geographic information systems. Postgres has also been used as an educational tool at
several universities. Finally, Illustra Information Technologies (http://www.illustra.com/)
(since merged into Informix (http://www.informix.com/)) picked up the code and
commercialized it. Postgres became the primary data manager for the Sequoia 2000
(http://www.sdsc.edu/0/Parts_Collabs/S2K/s2k_home.html) scientific computing project in
late 1992.

 The size of the external user community nearly doubled during 1993. It became
increasingly obvious that maintenance of the prototype code and support was taking up
large amounts of time that should have been devoted to database research. In an effort to
reduce this support burden, the project officially ended with Version 4.2.

Postgres95

 In 1994, Andrew Yu (mailto:ayu@informix.com) and Jolly Chen
(http://http.cs.berkeley.edu/~jolly/) added a SQL language interpreter to Postgres.
Postgres95 was subsequently released to the Web to find its own way in the world as an
open-source descendant of the original Postgres Berkeley code.

 Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal
changes improved performance and maintainability. Postgres95 v1.0.x ran about 30-50%
faster on the Wisconsin Benchmark compared to Postgres v4.2. Apart from bug fixes, these
were the major enhancements:

 The query language Postquel was replaced with SQL (implemented in the server).
Subqueries were not supported until PostgreSQL (see below), but they could be imitated
in Postgres95 with user-defined SQL functions. Aggregates were re-implemented.
Support for the GROUP BY query clause was also added. The libpq interface remained
available for C programs.

Chapter 1. Introduction

3

 In addition to the monitor program, a new program (psql) was provided for interactive
SQL queries using GNU readline.

 A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell,
pgtclsh, provided new Tcl commands to interface tcl programs with the Postgres95
backend.

 The large object interface was overhauled. The Inversion large objects were the only
mechanism for storing large objects. (The Inversion file system was removed.)

 The instance-level rule system was removed. Rules were still available as rewrite rules.

 A short tutorial introducing regular SQL features as well as those of Postgres95 was
distributed with the source code.

 GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be
compiled with an unpatched gcc (data alignment of doubles was fixed).

PostgreSQL

 By 1996, it became clear that the name �Postgres95� would not stand the test of time. We
chose a new name, PostgreSQL, to reflect the relationship between the original Postgres
and the more recent versions with SQL capability. At the same time, we set the version
numbering to start at 6.0, putting the numbers back into the sequence originally begun by
the Postgres Project.

 The emphasis during development of Postgres95 was on identifying and understanding
existing problems in the backend code. With PostgreSQL, the emphasis has shifted to
augmenting features and capabilities, although work continues in all areas.

 Major enhancements in PostgreSQL include:

 Table-level locking has been replaced with multi-version concurrency control, which
allows readers to continue reading consistent data during writer activity and enables hot
backups from pg_dump while the database stays available for queries.

 Important backend features, including subselects, defaults, constraints, and triggers,
have been implemented.

 Additional SQL92-compliant language features have been added, including primary
keys, quoted identifiers, literal string type coercion, type casting, and binary and
hexadecimal integer input.

 Built-in types have been improved, including new wide-range date/time types and
additional geometric type support.

 Overall backend code speed has been increased by approximately 20-40%, and backend
startup time has decreased 80% since v6.0 was released.

About This Release
 PostgreSQL is available without cost. This manual describes version 7.0 of PostgreSQL.

 We will use Postgres to mean the version distributed as PostgreSQL.

 Check the Administrator’s Guide for a list of currently supported machines. In general,
Postgres is portable to any Unix/Posix-compatible system with full libc library support.

Chapter 1. Introduction

4

Resources
 This manual set is organized into several parts:

Tutorial

 An introduction for new users. Does not cover advanced features.

User’s Guide

 General information for users, including available commands and data types.

Programmer’s Guide

 Advanced information for application programmers. Topics include type and function
extensibility, library interfaces, and application design issues.

Administrator’s Guide

 Installation and management information. List of supported machines.

Developer’s Guide

 Information for Postgres developers. This is intended for those who are contributing
to the Postgres project; application development information should appear in the
Programmer’s Guide. Currently included in the Programmer’s Guide.

Reference Manual

 Detailed reference information on command syntax. Currently included in the User’s
Guide.

 In addition to this manual set, there are other resources to help you with Postgres
installation and use:

man pages

 The man pages have general information on command syntax.

FAQs

 The Frequently Asked Questions (FAQ) documents address both general issues and
some platform-specific issues.

READMEs

 README files are available for some contributed packages.

Web Site

 The Postgres (postgresql.org) web site might have some information not appearing in
the distribution. There is a mhonarc catalog of mailing list traffic which is a rich
resource for many topics.

Mailing Lists

 The pgsql-general (mailto:pgsql-general@postgresql.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-general/)) mailing list is a good place
to have user questions answered. Other mailing lists are available; consult the Info
Central section of the PostgreSQL web site for details.

Chapter 1. Introduction

5

Yourself!

 Postgres is an open source product. As such, it depends on the user community for
ongoing support. As you begin to use Postgres, you will rely on others for help, either
through the documentation or through the mailing lists. Consider contributing your
knowledge back. If you learn something which is not in the documentation, write it up
and contribute it. If you add features to the code, contribute it.

 Even those without a lot of experience can provide corrections and minor changes in
the documentation, and that is a good way to start. The pgsql-docs
(mailto:pgsql-docs@postgresql.org) (archive
(http://www.PostgreSQL.ORG/mhonarc/pgsql-docs/)) mailing list is the place to get
going.

Terminology
 In the following documentation, site may be interpreted as the host machine on which
Postgres is installed. Since it is possible to install more than one set of Postgres databases
on a single host, this term more precisely denotes any particular set of installed Postgres
binaries and databases.

 The Postgres superuser is the user named postgres who owns the Postgres binaries and
database files. As the database superuser, all protection mechanisms may be bypassed and
any data accessed arbitrarily. In addition, the Postgres superuser is allowed to execute some
support programs which are generally not available to all users. Note that the Postgres
superuser is not the same as the Unix superuser (which will be referred to as root). The
superuser should have a non-zero user identifier (UID) for security reasons.

 The database administrator or DBA, is the person who is responsible for installing
Postgres with mechanisms to enforce a security policy for a site. The DBA can add new
users by the method described below and maintain a set of template databases for use by
createdb.

 The postmaster is the process that acts as a clearing-house for requests to the Postgres
system. Frontend applications connect to the postmaster, which keeps tracks of any system
errors and communication between the backend processes. The postmaster can take several
command-line arguments to tune its behavior. However, supplying arguments is necessary
only if you intend to run multiple sites or a non-default site.

 The Postgres backend (the actual executable program postgres) may be executed directly
from the user shell by the Postgres super-user (with the database name as an argument).
However, doing this bypasses the shared buffer pool and lock table associated with a
postmaster/site, therefore this is not recommended in a multiuser site.

Notation
 �...� or /usr/local/pgsql/ at the front of a file name is used to represent the path to the
Postgres superuser’s home directory.

 In a command synopsis, brackets (�[� and �]�) indicate an optional phrase or keyword.
Anything in braces (�{� and �}�) and containing vertical bars (�|�) indicates that you must choose
one.

 In examples, parentheses (�(� and �)�) are used to group boolean expressions. �|� is the boolean
operator OR.

Chapter 1. Introduction

6

 Examples will show commands executed from various accounts and programs. Commands
executed from the root account will be preceeded with �>�. Commands executed from the
Postgres superuser account will be preceeded with �%�, while commands executed from an
unprivileged user’s account will be preceeded with �$�. SQL commands will be preceeded
with �=>� or will have no leading prompt, depending on the context.

Note: At the time of writing (Postgres v7.0) the notation for flagging commands is not
universally consistant throughout the documentation set. Please report problems to
the Documentation Mailing List (mailto:docs@postgresql.org).

Problem Reporting Guidelines
 When you encounter a problem in PostgreSQL we want to hear about it. Your bug reports
are an important part in making PostgreSQL more reliable because even the utmost care
cannot guarantee that every part of PostgreSQL will work on every platform under every
circumstance.

 The following suggestions are intended to assist you in forming bug reports that can be
handled in an effective fashion. No one is required to follow them but it tends to be to
everyone’s advantage.

 We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a
lot of users, chances are good that someone will look into it. It could also happen that we
tell you to update to a newer version to see if the bug happens there. Or we might decide
that the bug cannot be fixed before some major rewrite we might be planning is done. Or
perhaps it’s simply too hard and there are more important things on the agenda. If you need
help immediately, consider obtaining a commercial support contract.

Identifying Bugs

 Before you ask �Is this a bug?�, please read and re-read the documentation to verify that you
can really do whatever it is you are trying. If it is not clear from the documentation whether
you can do something or not, please report that too; it’s a bug in the documentation. If it
turns out that the program does something different from what the documentation says,
that’s a bug. That might include, but is not limited to, the following circumstances:

 A program terminates with a fatal signal or an operating system error message that
would point to a problem in the program (a counterexample might be a �disk full�
message, since that must be fixed outside of Postgres).

 A program produces the wrong output for any given input.

 A program refuses to accept valid input.

 A program accepts invalid input without a notice or error message.

 PostgreSQL fails to compile, build, or install according to the instructions on supported
platforms.

 Here �program� refers to any executable, not only the backend server.

 Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask
on one of the mailing lists for help in tuning your applications. Failing to comply to SQL is
not a bug unless compliance for the specific feature is explicitly claimed.

Chapter 1. Introduction

7

 Before you continue, check on the TODO list and in the FAQ to see if your bug is already
known. If you can’t decode the information on the TODO list, report your problem. The
least we can do is make the TODO list clearer.

What to report

 The most important thing to remember about bug reporting is to state all the facts and only
facts. Do not speculate what you think went wrong, what �it seemed to do�, or which part of
the program has a fault. If you are not familiar with the implementation you would
probably guess wrong and not help us a bit. And even if you are, educated explanations are
a great supplement to but no substitute for facts. If we are going to fix the bug we still have
to see it happen for ourselves first. Reporting the bare facts is relatively straightforward
(you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it doesn’t matter or the report would �ring a bell�
anyway.

 The following items should be contained in every bug report:

 The exact sequence of steps from program startup necessary to reproduce the problem.
This should be self-contained; it is not enough to send in a bare select statement without
the preceeding create table and insert statements, if the output should depend on the data
in the tables. We do not have the time to decode your database schema, and if we are
supposed to make up our own data we would probably miss the problem. The best
format for a test case for query-language related problems is a file that can be run
through the psql frontend that shows the problem. (Be sure to not have anything in your
~/.psqlrc startup file.) You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproduceable, we’ll find it either way.

 If your application uses some other client interface, such as PHP, then please try to
isolate the offending queries. We probably won’t set up a web server to reproduce your
problem. In any case remember to provide the exact input files, do not guess that the
problem happens for �large files� or �mid-size databases�, etc.

 The output you got. Please do not say that it �didn’t work� or �failed�. If there is an error
message, show it, even if you don’t understand it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of
your test case is a program crash or otherwise obvious it might not happen on our
platform. The easiest thing is to copy the output from the terminal, if possible.

Note: In case of fatal errors, the error message provided by the client might not
contain all the information available. In that case, also look at the output of the
database server. If you do not keep your server output, this would be a good time to
start doing so.

 The output you expected is very important to state. If you just write �This command
gives me that output.� or �This is not what I expected.�, we might run it ourselves, scan the
output, and think it looks okay and is exactly what we expected. We shouldn’t have to
spend the time to decode the exact semantics behind your commands. Especially refrain
from merely saying that �This is not what SQL says/Oracle does.� Digging out the correct
behavior from SQL is not a fun undertaking, nor do we all know how all the other
relational databases out there behave. (If your problem is a program crash you can
obviously omit this item.)

 Any command line options and other startup options, including concerned environment
variables or configuration files that you changed from the default. Again, be exact. If

Chapter 1. Introduction

8

you are using a pre-packaged distribution that starts the database server at boot time, you
should try to find out how that is done.

 Anything you did at all differently from the installation instructions.

 The PostgreSQL version. You can run the command SELECT version(); to find out
what version you are currently running. If this function does not exist, say so, then we
know that your version is old enough. If you can’t start up the server or a client, look
into the README file in the source directory or at the name of your distribution file or
package name. If your version is older than 7.0 we will almost certainly tell you to
upgrade. There are tons of bug fixes in each new version, that’s why we write them.

 If you run a pre-packaged version, such as RPMs, say so, including any subversion the
package may have. If you are talking about a CVS snapshot, mention that, including its
date and time.

 Platform information. This includes the kernel name and version, C library, processor,
memory information. In most cases it is sufficient to report the vendor and version, but
do not assume everyone knows what exactly �Debian� contains or that everyone runs on
Pentiums. If you have installation problems information about compilers, make, etc. is
also necessary.

 Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It’s better
to report everything the first time than us having to squeeze the facts out of you. On the
other hand, if your input files are huge, it is fair to ask first whether somebody is interested
in looking into it.

 Do not spend all your time to figure out which changes in the input make the problem go
away. This will probably not help solving it. If it turns out that the bug can’t be fixed right
away, you will still have time to find and share your work around. Also, once again, do not
waste your time guessing why the bug exists. We’ll find that out soon enough.

 When writing a bug report, please choose non-confusing terminology. The software
package as such is called �PostgreSQL�, sometimes �Postgres� for short. (Sometimes the
abbreviation �Pgsql� is used but don’t do that.) When you are specifically talking about the
backend server, mention that, don’t just say �Postgres crashes�. The interactive frontend is
called �psql� and is for all intends and purposes completely separate from the backend.

Where to report bugs

 In general, send bug reports to pgsql-bugs@postgresql.org
(mailto:pgsql-bugs@postgresql.org). You are invited to find a descriptive subject for your
email message, perhaps parts of the error message.

 Do not send bug reports to any of the user mailing lists, such as pgsql-sql@postgresql.org
(mailto:pgsql-sql@postgresql.org) or pgsql-general@postgresql.org
(mailto:pgsql-general@postgresql.org). These mailing lists are for answering user
questions and their subscribers normally do not wish to receive bug reports. More
importantly, they are unlikely to fix them.

 Also, please do not send reports to pgsql-hackers@postgresql.org
(mailto:pgsql-hackers@postgresql.org). This list is for discussing the development of
PostgreSQL and it would be nice if we could keep the bug reports separate. We might
choose to take up a discussion about your bug report on it, if the bug needs more review.

 If you have a problem with the documentation, send email to pgsql-docs@postgresql.org
(mailto:pgsql-docs@postgresql.org). Mention the document, chapter, and sections in your
problem report.

Chapter 1. Introduction

9

 If your bug is a portability problem on a non-supported platform, send mail to
pgsql-ports@postgresql.org (mailto:pgsql-ports@postgresql.org), so we (and you) can
work on porting PostgreSQL to your platform.

Note: Due to the unfortunate amount of spam going around, all of the above email
addresses are closed mailing lists. That is, you need to be subscribed to them in order
to be allowed to post. If you simply want to send mail but do not want to receive list
traffic, you can subscribe to the special pgsql-loophole �list�, which allows you to post to
all PostgreSQL mailing lists without receiving any messages. Send email to
pgsql-loophole-request@postgresql.org
(mailto:pgsql-loophole-request@postgresql.org) to subscribe.

Y2K Statement
Author: Written by Thomas Lockhart (mailto:lockhart@alumni.caltech.edu) on
1998-10-22. Updated 2000-03-31.

 The PostgreSQL Global Development Team provides the Postgres software code tree as a
public service, without warranty and without liability for it’s behavior or performance.
However, at the time of writing:

 The author of this statement, a volunteer on the Postgres support team since November,
1996, is not aware of any problems in the Postgres code base related to time transitions
around Jan 1, 2000 (Y2K).

 The author of this statement is not aware of any reports of Y2K problems uncovered in
regression testing or in other field use of recent or current versions of Postgres. We
might have expected to hear about problems if they existed, given the installed base and
the active participation of users on the support mailing lists.

 To the best of the author’s knowledge, the assumptions Postgres makes about dates
specified with a two-digit year are documented in the current User’s Guide
(http://www.postgresql.org/docs/user/datatype.htm) in the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g. �70-01-01� is
interpreted as �1970-01-01�, whereas �69-01-01� is interpreted as �2069-01-01�.

 Any Y2K problems in the underlying OS related to obtaining "the current time" may
propagate into apparent Y2K problems in Postgres.

 Refer to The Gnu Project (http://www.gnu.org/software/year2000.html) and The Perl
Institute (http://language.perl.com/news/y2k.html) for further discussion of Y2K issues,
particularly as it relates to open source, no fee software.

Copyrights and Trademarks
 PostgreSQL is Copyright © 1996-2000 by PostgreSQL Inc. and is distributed under the
terms of the Berkeley license.

 Postgres95 is Copyright © 1994-5 by the Regents of the University of California.
Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the
above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

 In no event shall the University of California be liable to any party for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use

Chapter 1. Introduction

10

of this software and its documentation, even if the University of California has been
advised of the possibility of such damage.

 The University of California specifically disclaims any warranties, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.
The software provided hereunder is on an "as-is" basis, and the University of California has
no obligations to provide maintainance, support, updates, enhancements, or modifications.

 All trademarks are the property of their respective owners.

11

Chapter 2. SQL Syntax
 A description of the general syntax of SQL.

 SQL manipulates sets of data. The language is composed of various key words. Arithmetic
and procedural expressions are allowed. We will cover these topics in this chapter;
subsequent chapters will include details on data types, functions, and operators.

Key Words
 SQL92 defines key words for the language which have specific meaning. Some key words
are reserved, which indicates that they are restricted to appear in only certain contexts.
Other key words are not restricted, which indicates that in certain contexts they have a
specific meaning but are not otherwise constrained.

 Postgres implements an extended subset of the SQL92 and SQL3 languages. Some
language elements are not as restricted in this implementation as is called for in the
language standards, in part due to the extensibility features of Postgres.

 Information on SQL92 and SQL3 key words is derived from Date and Darwen, 1997.

Reserved Key Words

 SQL92 and SQL3 have reserved key words which are not allowed as identifiers and not
allowed in any usage other than as fundamental tokens in SQL statements. Postgres has
additional key words which have similar restrictions. In particular, these key words are not
allowed as column or table names, though in some cases they are allowed to be column
labels (i.e. in AS clauses).

Tip: Any string can be specified as an identifier if surrounded by double quotes (�"like
this!"�). Some care is required since such an identifier will be case sensitive and will
retain embedded whitespace and most other special characters.

 The following are Postgres reserved words which are neither SQL92 nor SQL3 reserved
words. These are allowed to be present as column labels, but not as identifiers:

ABORT ANALYZE
BINARY
CLUSTER CONSTRAINT COPY
DO
EXPLAIN EXTEND
LISTEN LOAD LOCK
MOVE
NEW NONE NOTIFY
OFFSET
RESET
SETOF SHOW
UNLISTEN UNTIL
VACUUM VERBOSE

Chapter 2. SQL Syntax

12

 The following are Postgres reserved words which are also SQL92 or SQL3 reserved
words, and which are allowed to be present as column labels, but not as identifiers:

ALL ANY ASC BETWEEN BIT BOTH
CASE CAST CHAR CHARACTER CHECK COALESCE COLLATE COLUMN
 CONSTRAINT CROSS CURRENT CURRENT_DATE CURRENT_TIME
 CURRENT_TIMESTAMP CURRENT_USER
DEC DECIMAL DEFAULT DESC DISTINCT
ELSE END EXCEPT EXISTS EXTRACT
FALSE FLOAT FOR FOREIGN FROM FULL
GLOBAL GROUP
HAVING
IN INNER INTERSECT INTO IS
JOIN
LEADING LEFT LIKE LOCAL
NATURAL NCHAR NOT NULL NULLIF NUMERIC
ON OR ORDER OUTER OVERLAPS
POSITION PRECISION PRIMARY PUBLIC
REFERENCES RIGHT
SELECT SESSION_USER SOME SUBSTRING
TABLE THEN TO TRANSACTION TRIM TRUE
UNION UNIQUE USER
VARCHAR
WHEN WHERE

 The following are Postgres reserved words which are also SQL92 or SQL3 reserved
words:

ADD ALTER AND AS
BEGIN BY
CASCADE CLOSE COMMIT CREATE CURSOR
DECLARE DEFAULT DELETE DESC DISTINCT DROP
EXECUTE EXISTS EXTRACT
FETCH FLOAT FOR FROM FULL
GRANT
HAVING
IN INNER INSERT INTERVAL INTO IS
JOIN
LEADING LEFT LIKE LOCAL
NAMES NATIONAL NATURAL NCHAR NO NOT NULL
ON OR OUTER
PARTIAL PRIMARY PRIVILEGES PROCEDURE PUBLIC
REFERENCES REVOKE RIGHT ROLLBACK
SELECT SET SUBSTRING
TO TRAILING TRIM
UNION UNIQUE UPDATE USING
VALUES VARCHAR VARYING VIEW
WHERE WITH WORK

 The following are SQL92 reserved key words which are not Postgres reserved key words,
but which if used as function names are always translated into the function CHAR_LENGTH:

CHARACTER_LENGTH

Chapter 2. SQL Syntax

13

 The following are SQL92 or SQL3 reserved key words which are not Postgres reserved
key words, but if used as type names are always translated into an alternate, native type:

BOOLEAN DOUBLE FLOAT INT INTEGER INTERVAL REAL SMALLINT

 The following are not keywords of any kind, but when used in the context of a type name
are translated into a native Postgres type, and when used in the context of a function name
are translated into a native function:

DATETIME TIMESPAN

 (translated to TIMESTAMP and INTERVAL, respectively). This feature is intended to
help with transitioning to v7.0, and will be removed in the next full release (likely v7.1).

 The following are either SQL92 or SQL3 reserved key words which are not key words in
Postgres. These have no proscribed usage in Postgres at the time of writing (v7.0) but may
become reserved key words in the future:

Note: Some of these key words represent functions in SQL92. These functions are
defined in Postgres, but the parser does not consider the names to be key words and
they are allowed in other contexts.

ALLOCATE ARE ASSERTION AT AUTHORIZATION AVG
BIT_LENGTH
CASCADED CATALOG CHAR_LENGTH CHARACTER_LENGTH COLLATION
 CONNECT CONNECTION CONTINUE CONVERT CORRESPONDING COUNT
 CURRENT_SESSION
DATE DEALLOCATE DEC DESCRIBE DESCRIPTOR
 DIAGNOSTICS DISCONNECT DOMAIN
ESCAPE EXCEPT EXCEPTION EXEC EXTERNAL
FIRST FOUND
GET GO GOTO
IDENTITY INDICATOR INPUT INTERSECT
LAST LOWER
MAX MIN MODULE
OCTET_LENGTH OPEN OUTPUT OVERLAPS
PREPARE PRESERVE
ROWS
SCHEMA SECTION SESSION SIZE SOME
 SQL SQLCODE SQLERROR SQLSTATE SUM SYSTEM_USER
TEMPORARY TRANSLATE TRANSLATION
UNKNOWN UPPER USAGE
VALUE
WHENEVER WRITE

Chapter 2. SQL Syntax

14

Non-reserved Keywords

 SQL92 and SQL3 have non-reserved keywords which have a prescribed meaning in the
language but which are also allowed as identifiers. Postgres has additional keywords which
allow similar unrestricted usage. In particular, these keywords are allowed as column or
table names.

 The following are Postgres non-reserved key words which are neither SQL92 nor SQL3
non-reserved key words:

ACCESS AFTER AGGREGATE
BACKWARD BEFORE
CACHE COMMENT CREATEDB CREATEUSER CYCLE
DATABASE DELIMITERS
EACH ENCODING EXCLUSIVE
FORCE FORWARD FUNCTION
HANDLER
INCREMENT INDEX INHERITS INSENSITIVE INSTEAD ISNULL
LANCOMPILER LOCATION
MAXVALUE MINVALUE MODE
NOCREATEDB NOCREATEUSER NOTHING NOTIFY NOTNULL
OIDS OPERATOR
PASSWORD PROCEDURAL
RECIPE REINDEX RENAME RETURNS ROW RULE
SEQUENCE SERIAL SHARE START STATEMENT STDIN STDOUT
TEMP TRUSTED
UNLISTEN UNTIL
VALID VERSION

 The following are Postgres non-reserved key words which are SQL92 or SQL3 reserved
key words:

ABSOLUTE ACTION
CONSTRAINTS
DAY DEFERRABLE DEFERRED
HOUR
IMMEDIATE INITIALLY INSENSITIVE ISOLATION
KEY
LANGUAGE LEVEL
MATCH MINUTE MONTH
NEXT
OF ONLY OPTION
PENDANT PRIOR PRIVILEGES
READ RELATIVE RESTRICT
SCROLL SECOND
TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TRIGGER
YEAR
ZONE

 The following are Postgres non-reserved key words which are also either SQL92 or SQL3
non-reserved key words:

Chapter 2. SQL Syntax

15

COMMITTED SERIALIZABLE TYPE

 The following are either SQL92 or SQL3 non-reserved key words which are not key words
of any kind in Postgres:

ADA
C CATALOG_NAME CHARACTER_SET_CATALOG CHARACTER_SET_NAME
 CHARACTER_SET_SCHEMA CLASS_ORIGIN COBOL COLLATION_CATALOG
 COLLATION_NAME COLLATION_SCHEMA COLUMN_NAME
 COMMAND_FUNCTION CONDITION_NUMBER
 CONNECTION_NAME CONSTRAINT_CATALOG CONSTRAINT_NAME
 CONSTRAINT_SCHEMA CURSOR_NAME
DATA DATE_TIME_INTERVAL_CODE DATE_TIME_INTERVAL_PRECISION
 DYNAMIC_FUNCTION
FORTRAN
LENGTH
MESSAGE_LENGTH MESSAGE_OCTET_LENGTH MORE MUMPS
NAME NULLABLE NUMBER
PAD PASCAL PLI
REPEATABLE RETURNED_LENGTH RETURNED_OCTET_LENGTH
 RETURNED_SQLSTATE ROW_COUNT
SCALE SCHEMA_NAME SERVER_NAME SPACE SUBCLASS_ORIGIN
TABLE_NAME
UNCOMMITTED UNNAMED

Comments
 A comment is an arbitrary sequence of characters beginning with double dashes and
extending to the end of the line, e.g.:

-- This is a standard SQL comment

We also support C-style block comments, e.g.:

/* multi
 line
 comment
 */

A comment beginning with "/*" extends to the first occurrence of "*/".

Names
 Names in SQL must begin with a letter (a-z) or underscore (_). Subsequent characters in a
name can be letters, digits (0-9), or underscores. The system uses no more than
NAMEDATALEN-1 characters of a name; longer names can be written in queries, but
they will be truncated. By default, NAMEDATALEN is 32 so the maximum name length

Chapter 2. SQL Syntax

16

is 31 (but at the time the system is built, NAMEDATALEN can be changed in
src/include/postgres_ext.h).

 Names containing other characters may be formed by surrounding them with double
quotes ("). For example, table or column names may contain otherwise disallowed
characters such as spaces, ampersands, etc. if quoted. Quoting a name also makes it
case-sensitive, whereas unquoted names are always folded to lower case. For example, the
names FOO, foo and "foo" are considered the same by Postgres, but "Foo" is a different
name.

 Double quotes can also be used to protect a name that would otherwise be taken to be an
SQL keyword. For example, IN is a keyword but "IN" is a name.

Constants
 There are three implicitly typed constants for use in Postgres: strings, integers, and floating
point numbers. Constants can also be specified with explicit types, which can enable more
accurate representation and more efficient handling by the backend. The implicit constants
are described below; explicit constants are discussed afterwards.

String Constants

 Strings in SQL are arbitrary sequences of ASCII characters bounded by single quotes ("’",
e.g. ’This is a string’). SQL92 allows single quotes to be embedded in strings by
typing two adjacent single quotes (e.g. ’Dianne’’s horse’). In Postgres single quotes
may alternatively be escaped with a backslash ("\", e.g. ’Dianne\’s horse’). To include
a backslash in a string constant, type two backslashes. Non-printing characters may also be
embedded within strings by prepending them with a backslash (e.g. ’\tab’).

Integer Constants

 Integer constants in SQL are collection of ASCII digits with no decimal point. Legal
values range from -2147483648 to +2147483647. This will vary depending on the
operating system and host machine.

 Note that larger integers can be specified for int8 by using SQL92 string notation or
Postgres type notation:

int8 ’4000000000’ -- string style
’4000000000’::int8 -- Postgres (historical) style

Floating Point Constants

 Floating point constants consist of an integer part, a decimal point, and a fraction part or
scientific notation of the following format:

{dig}.{dig} [e [+-] {dig}]

 where dig is one or more digits. You must include at least one dig after the period and
after the [+-] if you use those options. An exponent with a missing mantissa has a mantissa
of 1 inserted. There may be no extra characters embedded in the string.

Chapter 2. SQL Syntax

17

 Floating point constaints are of type float8. float4 can be specified explicitly by using
SQL92 string notation or Postgres type notation:

float4 ’1.23’ -- string style
’1.23’::float4 -- Postgres (historical) style

Constants of Postgres User-Defined Types

 A constant of an arbitrary type can be entered using any one of the following notations:

type ’string’
’string’::type
CAST ’string’ AS type

 The value inside the string is passed to the input conversion routine for the type called
type. The result is a constant of the indicated type. The explicit typecast may be omitted
if there is no ambiguity as to the type the constant must be, in which case it is
automatically coerced.

Array constants

 Array constants are arrays of any Postgres type, including other arrays, string constants,
etc. The general format of an array constant is the following:

{val1delimval2delim}

 where delim is the delimiter for the type stored in the pg_type class. (For built-in types,
this is the comma character (","). An example of an array constant is

{{1,2,3},{4,5,6},{7,8,9}}

 This constant is a two-dimensional, 3 by 3 array consisting of three sub-arrays of integers.

 Individual array elements can and should be placed between quotation marks whenever
possible to avoid ambiguity problems with respect to leading white space.

Fields and Columns

Fields

 A field is either an attribute of a given class or one of the following:

oid

 stands for the unique identifier of an instance which is added by Postgres to all
instances automatically. Oids are not reused and are 32 bit quantities.

xmin

 The identity of the inserting transaction.

Chapter 2. SQL Syntax

18

xmax

 The identity of the deleting transaction.

cmin

 The command identifier within the transaction.

cmax

 The identity of the deleting command.

 For further information on these fields consult Stonebraker, Hanson, Hong, 1987. Times
are represented internally as instances of the abstime data type. Transaction and
command identifiers are 32 bit quantities. Transactions are assigned sequentially starting at
512.

Columns

 A column is a construct of the form:

instance{.composite_field}.field ‘[’number‘]’

 instance identifies a particular class and can be thought of as standing for the instances
of that class. An instance variable is either a class name, a surrogate for a class defined by
means of a FROM clause, or the keyword NEW or CURRENT. NEW and CURRENT can
only appear in the action portion of a rule, while other instance variables can be used in any
SQL statement. composite_field is a field of of one of the Postgres composite types,
while successive composite fields address attributes in the class(s) to which the composite
field evaluates. Lastly, field is a normal (base type) field in the class(s) last addressed. If
field is of type array, then the optional number designator indicates a specific element
in the array. If no number is indicated, then all array elements are returned.

Operators
 Any built-in system, or user-defined operator may be used in SQL. For the list of built-in
and system operators consult Operators. For a list of user-defined operators consult your
system administrator or run a query on the pg_operator class. Parentheses may be used
for arbitrary grouping of operators in expressions.

Expressions
 SQL92 allows expressions to transform data in tables. Expressions may contain operators
(see Operators for more details) and functions (Functions has more information).

 An expression is one of the following:

(a_expr)
constant
attribute
a_expr binary_operator a_expr
a_expr right_unary_operator

Chapter 2. SQL Syntax

19

left_unary_operator a_expr
parameter
functional expression
aggregate expression

 We have already discussed constants and attributes. The three kinds of operator
expressions indicate respectively binary (infix), right-unary (suffix) and left-unary (prefix)
operators. The following sections discuss the remaining options.

Parameters

 A parameter is used to indicate a parameter in a SQL function. Typically this is used in
SQL function definition statement. The form of a parameter is:

$number

 For example, consider the definition of a function, dept, as

CREATE FUNCTION dept (name)
 RETURNS dept
 AS ’select * from
 dept where name=$1’
 LANGUAGE ’sql’;

Functional Expressions

 A functional expression is the name of a legal SQL function, followed by its argument list
enclosed in parentheses:

function (a_expr [, a_expr ...])

 For example, the following computes the square root of an employee salary:

sqrt(emp.salary)

Aggregate Expressions

 An aggregate expression represents the application of an aggregate function across the
rows selected by a query. An aggregate function reduces multiple inputs to a single output
value, such as the sum or average of the inputs. The syntax of an aggregate expression is
one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)

Chapter 2. SQL Syntax

20

aggregate_name (DISTINCT expression)
aggregate_name (*)

 where aggregate_name is a previously defined aggregate, and expression is any
expression that doesn’t itself contain an aggregate expression.

 The first form of aggregate expression invokes the aggregate across all input rows for
which the given expression yields a non-null value. The second form is the same as the
first, since ALL is the default. The third form invokes the aggregate for all distinct non-null
values of the expression found in the input rows. The last form invokes the aggregate once
for each input row regardless of null or non-null values; since no particular input value is
specified, it is generally only useful for the count() aggregate.

 For example, count(*) yields the total number of input rows; count(f1) yields the number
of input rows in which f1 is non-null; count(distinct f1) yields the number of distinct
non-null values of f1.

Target List

 A target list is a parenthesized, comma-separated list of one or more elements, each of
which must be of the form:

a_expr [AS result_attname]

 where result_attname is the name of the attribute to be created (or an already
existing attribute name in the case of update statements.) If result_attname is not
present, then a_expr must contain only one attribute name which is assumed to be the
name of the result field. In Postgres default naming is only used if a_expr is an attribute.

Qualification

 A qualification consists of any number of clauses connected by the logical operators:

NOT
AND
OR

 A clause is an a_expr that evaluates to a boolean over a set of instances.

From List

 The from list is a comma-separated list of from expressions. Each "from expression" is of
the form:

[class_reference] instance_variable
 {, [class_ref] instance_variable... }

 where class_reference is of the form

class_name [*]

 The "from expression" defines one or more instance variables to range over the class
indicated in class_reference. One can also request the instance variable to range

Chapter 2. SQL Syntax

21

over all classes that are beneath the indicated class in the inheritance hierarchy by
postpending the designator asterisk ("*").

22

Chapter 3. Data Types
 Describes the built-in data types available in Postgres.

 Postgres has a rich set of native data types available to users. Users may add new types to
Postgres using the CREATE TYPE command.

 In the context of data types, the following sections will discuss SQL standards compliance,
porting issues, and usage. Some Postgres types correspond directly to SQL92-compatible
types. In other cases, data types defined by SQL92 syntax are mapped directly into native
Postgres types. Many of the built-in types have obvious external formats. However, several
types are either unique to Postgres, such as open and closed paths, or have several
possibilities for formats, such as the date and time types.

Table 3-1. Postgres Data Types

Postgres Type SQL92 or SQL3 Type Description

bool boolean logical boolean (true/false)

box rectangular box in 2D plane

char(n) character(n) fixed-length character string

cidr IP version 4 network or host address

circle circle in 2D plane

date date calendar date without time of day

decimal decimal(p,s) exact numeric for p <= 9, s = 0

float4 float(p), p < 7 floating-point number with precision p

float8 float(p), 7 <= p < 16 floating-point number with precision p

inet IP version 4 network or host address

int2 smallint signed two-byte integer

int4 int, integer signed 4-byte integer

int8 signed 8-byte integer

interval interval general-use time span

line infinite line in 2D plane

lseg line segment in 2D plane

money decimal(9,2) US-style currency

numeric numeric(p,s) exact numeric for p == 9, s = 0

path open and closed geometric path in 2D

point geometric point in 2D plane

polygon closed geometric path in 2D plane

Chapter 3. Data Types

23

Postgres Type SQL92 or SQL3 Type Description

serial unique id for cross-reference

time time time of day

timetz time with time zone time of day, including time zone

timestamp timestamp with time zone date/time

varchar(n) character varying(n) variable-length character string

Note: The cidr and inet types are designed to handle any IP type but only ipv4 is
handled in the current implementation. Everything here that talks about ipv4 will apply
to ipv6 in a future release.

Table 3-2. Postgres Function Constants

Postgres Function SQL92 Constant Description

getpgusername() current_user user name in current session

date(’now’) current_date date of current transaction

time(’now’) current_time time of current transaction

timestamp(’now’) current_timestamp date and time of current transaction

 Postgres has features at the forefront of ORDBMS development. In addition to SQL3
conformance, substantial portions of SQL92 are also supported. Although we strive for
SQL92 compliance, there are some aspects of the standard which are ill considered and
which should not live through subsequent standards. Postgres will not make great efforts to
conform to these features; however, these tend to apply in little-used or obsure cases, and a
typical user is not likely to run into them.

 Most of the input and output functions corresponding to the base types (e.g., integers and
floating point numbers) do some error-checking. Some of the operators and functions (e.g.,
addition and multiplication) do not perform run-time error-checking in the interests of
improving execution speed. On some systems, for example, the numeric operators for some
data types may silently underflow or overflow.

 Some of the input and output functions are not invertible. That is, the result of an output
function may lose precision when compared to the original input.

Note: Floating point numbers are allowed to retain most of the intrinsic precision of the
type (typically 15 digits for doubles, 6 digits for 4-byte floats). Other types with
underlying floating point fields (e.g. geometric types) carry similar precision.

Chapter 3. Data Types

24

Numeric Types
 Numeric types consist of two- and four-byte integers, four- and eight-byte floating point
numbers and fixed-precision decimals.

Table 3-3. Postgres Numeric Types

Numeric Type Storage Description Range

decimal variable User-specified precision ~8000 digits

float4 4 bytes Variable-precision 6 decimal places

float8 8 bytes Variable-precision 15 decimal places

int2 2 bytes Fixed-precision -32768 to +32767

int4 4 bytes Usual choice for
fixed-precision

-2147483648 to
+2147483647

int8 8 bytes Very large range
fixed-precision

+/- > 18 decimal
places

numeric variable User-specified precision no limit

serial 4 bytes Identifer or
cross-reference

0 to +2147483647

 The numeric types have a full set of corresponding arithmetic operators and functions.
Refer to Numerical Operators and Mathematical Functions for more information.

 The int8 type may not be available on all platforms since it relies on compiler support for
this.

The Serial Type

 The serial type is a special-case type constructed by Postgres from other existing
components. It is typically used to create unique identifiers for table entries. In the current
implementation, specifying

CREATE TABLE tablename (colname SERIAL);

 is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename
 (colname INT4 DEFAULT nextval(’tablename_colname_seq’);
CREATE UNIQUE INDEX tablename_colname_key on tablename (colname);

Chapter 3. Data Types

25

Caution
 The implicit sequence created for the serial type will not be automatically
removed when the table is dropped.

 Implicit sequences supporting the serial are not automatically dropped when a table
containing a serial type is dropped. So, the following commands executed in order will
likely fail:

CREATE TABLE tablename (colname SERIAL);
DROP TABLE tablename;
CREATE TABLE tablename (colname SERIAL);

 The sequence will remain in the database until explicitly dropped using DROP
SEQUENCE.

Monetary Type
Obsolete Type: The money is now deprecated. Use numeric or decimal instead. The
money type may become a locale-aware layer over the numeric type in a future
release.

 The money type supports US-style currency with fixed decimal point representation. If
Postgres is compiled with USE_LOCALE then the money type should use the monetary
conventions defined for locale(7).

Table 3-4. Postgres Monetary Types

Monetary Type Storage Description Range

money 4 bytes Fixed-precision -21474836.48 to
+21474836.47

 numeric will replace the money type, and should be preferred.

Character Types
 SQL92 defines two primary character types: char and varchar. Postgres supports these
types, in addition to the more general text type, which unlike varchar does not require an
explicit declared upper limit on the size of the field.

Chapter 3. Data Types

26

Table 3-5. Postgres Character Types

Character Type Storage Recommendation Description

char 1 byte SQL92-compatible Single character

char(n) (4+n) bytes SQL92-compatible Fixed-length blank padded

text (4+x) bytes Best choice Variable-length

varchar(n) (4+n) bytes SQL92-compatible Variable-length with limit

 There is one other fixed-length character type in Postgres. The name type only has one
purpose and that is for storage of internal catalog names. It is not intended for use by the
general user. Its length is currently defined as 32 bytes (31 characters plus terminator) but
should be reference using NAMEDATALEN. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length may change in a future
release.

Table 3-6. Postgres Specialty Character Type

Character Type Storage Description

name 32 bytes Thirty-one character internal type

Date/Time Types
 Postgres supports the full set of SQL date and time types.

Table 3-7. Postgres Date/Time Types

Type Description Storage Earliest Latest Resolution

timestamp both date and
time

8 bytes 4713 BC AD 1465001 1 microsec / 14
digits

timestamp
with time
zone

date and time
including time
zone

8 bytes 1903 AD 2037 AD 1 microsec / 14
digits

interval for time intervals 12 bytes -178000000 yrs 178000000 yrs 1 mircosecond

date dates only 4 bytes 4713 BC 32767 AD 1 day

time times of the day 4 bytes 00:00:00.00 23:59:59.99 1 microsecond

time with
time zone

times of the day 4 bytes 00:00:00.00+12 23:59:59.99-12 1 microsecond

Chapter 3. Data Types

27

Note: To ensure compatibility to earlier versions of Postgres we also continue to
provide datetime (equivalent to timestamp) and timespan (equivalent to interval),
however support for these is now restricted to having an implicit translation to
timestamp and interval. The types abstime and reltime are lower precision types which
are used internally. You are discouraged from using any of these types in new
applications and are encouraged to move any old ones over when appropriate. Any or
all of these internal types might disappear in a future release.

Date/Time Input

 Date and time input is accepted in almost any reasonable format, including ISO-8601,
SQL-compatible, traditional Postgres, and others. The ordering of month and day in date
input can be ambiguous, therefore a setting exists to specify how it should be interpreted in
ambiguous cases. The command SET DateStyle TO ’US’ or SET DateStyle TO
’NonEuropean’ specifies the variant �month before day�, the command SET DateStyle
TO ’European’ sets the variant �day before month�. The ISO style is the default but this
default can be changed at compile time or at run time.

 See Date/Time Support for the exact parsing rules of date/time input and for the
recognized time zones.

 Remember that any date or time input needs to be enclosed into single quotes, like text
strings.

date

 The following are possible inputs for the date type.

Table 3-8. Postgres Date Input

Example Description

January 8, 1999 Unambiguous

1999-01-08 ISO-8601 format, preferred

1/8/1999 US; read as August 1 in European mode

8/1/1999 European; read as August 1 in US mode

1/18/1999 US; read as January 18 in any mode

19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 Year and day of year

99008 Year and day of year

January 8, 99 BC Year 99 before the Common Era

Chapter 3. Data Types

28

Table 3-9. Postgres Month Abbreviations

Month Abbreviations

April Apr

August Aug

December Dec

February Feb

January Jan

July Jul

June Jun

March Mar

November Nov

October Oct

September Sep, Sept

 Note: The month May has no explicit abbreviation, for obvious reasons.

Table 3-10. Postgres Day of Week Abbreviations

Day Abbreviation

Sunday Sun

Monday Mon

Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

Saturday Sat

Chapter 3. Data Types

29

time

 The following are valid time inputs.

Table 3-11. Postgres Time Input

Example Description

04:05:06.789 ISO-8601

04:05:06 ISO-8601

04:05 ISO-8601

040506 ISO-8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

z Same as 00:00:00

zulu Same as 00:00:00

allballs Same as 00:00:00

time with time zone

 This type is defined by SQL92, but the definition exhibits fundamental deficiencies which
renders the type nearly useless. In most cases, a combination of date, time, and timestamp
should provide a complete range of date/time functionality required by any application.

 time with time zone accepts all input also legal for the time type, appended with a legal
time zone, as follows:

Table 3-12. Postgres Time With Time Zone Input

Example Description

04:05:06.789-8 ISO-8601

04:05:06-08:00 ISO-8601

04:05-08:00 ISO-8601

040506-08 ISO-8601

 Refer to Postgres Time Zone Input for more examples of time zones.

timestamp

 Valid input for the timestamp type consists of a concatenation of a date and a time,
followed by an optional AD or BC, followed by an optional time zone. (See below.) Thus

1999-01-08 04:05:06 -8:00

Chapter 3. Data Types

30

 is a valid timestamp value, which is ISO-compliant. In addition, the wide-spread format

January 8 04:05:06 1999 PST

 is supported.

Table 3-13. Postgres Time Zone Input

Time Zone Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

interval

 intervals can be specified with the following syntax:

 Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Direction]

 where: Quantity is ..., -1, 0, 1, 2, ...; Unit is second, minute, hour, day, week,
month, year, decade, century, millennium, or abbreviations or plurals of these units;
Direction can be ago or empty.

Special values

 The following SQL-compatible functions can be used as date or time input for the
corresponding datatype: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP.

Chapter 3. Data Types

31

 Postgres also supports several special constants for convenience.

Table 3-14. Postgres Special Date/Time Constants

Constant Description

current Current transaction time, deferred

epoch 1970-01-01 00:00:00+00 (Unix system time zero)

infinity Later than other valid times

-infinity Earlier than other valid times

invalid Illegal entry

now Current transaction time

today Midnight today

tomorrow Midnight tomorrow

yesterday Midnight yesterday

 ’now’ is resolved when the value is inserted, ’current’ is resolved everytime the value
is retrieved. So you probably want to use ’now’ in most applications. (Of course you
really want to use CURRENT_TIMESTAMP, which is equivalent to ’now’.)

Date/Time Output

 Output formats can be set to one of the four styles ISO-8601, SQL (Ingres), traditional
Postgres, and German, using the SET DateStyle. The default is the ISO format.

Table 3-15. Postgres Date/Time Output Styles

Style Specification Description Example

’ISO’ ISO-8601 standard 1997-12-17 07:37:16-08

’SQL’ Traditional style 12/17/1997 07:37:16.00 PST

’Postgres’ Original style Wed Dec 17 07:37:16 1997 PST

’German’ Regional style 17.12.1997 07:37:16.00 PST

 The output of the date and time styles is of course only the date or time part in accordance
with the above examples.

 The SQL style has European and non-European (US) variants, which determines whether
month follows day or vica versa. (See also above at Date/Time Input, how this setting
affects interpretation of input values.)

Chapter 3. Data Types

32

Table 3-16. Postgres Date Order Conventions

Style Specification Description Example

European day/month/year 17/12/1997 15:37:16.00 MET

US month/day/year 12/17/1997 07:37:16.00 PST

 interval output looks like the input format, except that units like week or century are
converted to years and days. In ISO mode the output looks like

[Quantity Units [...]] [Days] Hours:Minutes [ago]

 There are several ways to affect the appearance of date/time types:
 The PGDATESTYLE environment variable used by the backend directly on postmaster
startup.
 The PGDATESTYLE environment variable used by the frontend libpq on session
startup.
 SET DATESTYLE SQL command.

Time Zones

 Postgres endeavors to be compatible with SQL92 definitions for typical usage. However,
the SQL92 standard has an odd mix of date and time types and capabilities. Two obvious
problems are:

 Although the date type does not have an associated time zone, the time type can or does.

 The default time zone is specified as a constant integer offset from GMT/UTC.

 Time zones in the real world can have no meaning unless associated with a date as well as
a time since the offset may vary through the year with daylight savings time boundaries.

 To address these difficulties, Postgres associates time zones only with date and time types
which contain both date and time, and assumes local time for any type containing only date
or time. Further, time zone support is derived from the underlying operating system time
zone capabilities, and hence can handle daylight savings time and other expected behavior.

 Postgres obtains time zone support from the underlying operating system for dates
between 1902 and 2038 (near the typical date limits for Unix-style systems). Outside of
this range, all dates are assumed to be specified and used in Universal Coordinated Time
(UTC).

 All dates and times are stored internally in Universal UTC, alternately known as
Greenwich Mean Time (GMT). Times are converted to local time on the database server
before being sent to the client frontend, hence by default are in the server time zone.

 There are several ways to affect the time zone behavior:
 The TZ environment variable used by the bkend directly on postmaster startup as the
default time zone.
 The PGTZ environment variable set at the client used by libpq to send time zone
information to the backend upon connection.
 The SQL command SET TIME ZONE sets the time zone for the session.

Chapter 3. Data Types

33

 If an invalid time zone is specified, the time zone becomes GMT (on most systems
anyway).

Note: If the compiler option USE_AUSTRALIAN_RULES is set then EST refers to
Australia Eastern Std Time, which has an offset of +10:00 hours from UTC.

Internals

 Postgres uses Julian dates for all date/time calculations. They have the nice property of
correctly predicting/calculating any date more recent than 4713BC to far into the future,
using the assumption that the length of the year is 365.2425 days.

 Date conventions before the 19th century make for interesting reading, but are not
consistant enough to warrant coding into a date/time handler.

Boolean Type
 Postgres supports bool as the SQL3 boolean type. bool can have one of only two states:
’true’ or ’false’. A third state, ’unknown’, is not implemented and is not suggested in
SQL3; NULL is an effective substitute. bool can be used in any boolean expression, and
boolean expressions always evaluate to a result compatible with this type.

 bool uses 1 byte of storage.

Table 3-17. Postgres Boolean Type

State Output Input

True ’t’ TRUE, ’t’, ’true’, ’y’, ’yes’, ’1’

False ’f’ FALSE, ’f’, ’false’, ’n’, ’no’, ’0’

Chapter 3. Data Types

34

Geometric Types
 Geometric types represent two-dimensional spatial objects. The most fundamental type,
the point, forms the basis for all of the other types.

Table 3-18. Postgres Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (x,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line

lseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 4+32n bytes ((x1,y1),...) Closed path (similar to polygon)

path 4+32n bytes [(x1,y1),...] Open path

polygon 4+32n bytes ((x1,y1),...) Polygon (similar to closed path)

circle 24 bytes <(x,y),r> Circle (center and radius)

 A rich set of functions and operators is available to perform various geometric operations
such as scaling, translation, rotation, and determining intersections.

Point

 Points are the fundamental two-dimensional building block for geometric types.

 point is specified using the following syntax:

(x , y)
 x , y
where
 x is the x-axis coordinate as a floating point number
 y is the y-axis coordinate as a floating point number

Line Segment

 Line segments (lseg) are represented by pairs of points.

 lseg is specified using the following syntax:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2
where
 (x1,y1) and (x2,y2) are the endpoints of the segment

Chapter 3. Data Types

35

Box

 Boxes are represented by pairs of points which are opposite corners of the box.

 box is specified using the following syntax:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2
where
 (x1,y1) and (x2,y2) are opposite corners

 Boxes are output using the first syntax. The corners are reordered on input to store the
lower left corner first and the upper right corner last. Other corners of the box can be
entered, but the lower left and upper right corners are determined from the input and stored.

Path

 Paths are represented by connected sets of points. Paths can be "open", where the first and
last points in the set are not connected, and "closed", where the first and last point are
connected. Functions popen(p) and pclose(p) are supplied to force a path to be open or
closed, and functions isopen(p) and isclosed(p) are supplied to select either type in a
query.

 path is specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
[(x1 , y1) , ... , (xn , yn)]
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn
where
 (x1,y1),...,(xn,yn) are points 1 through n
 a leading "[" indicates an open path
 a leading "(" indicates a closed path

 Paths are output using the first syntax. Note that Postgres versions prior to v6.1 used a
format for paths which had a single leading parenthesis, a "closed" flag, an integer count of
the number of points, then the list of points followed by a closing parenthesis. The built-in
function upgradepath is supplied to convert paths dumped and reloaded from pre-v6.1
databases.

Chapter 3. Data Types

36

Polygon

 Polygons are represented by sets of points. Polygons should probably be considered
equivalent to closed paths, but are stored differently and have their own set of support
routines.

 polygon is specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn
where
 (x1,y1),...,(xn,yn) are points 1 through n

 Polygons are output using the first syntax. Note that Postgres versions prior to v6.1 used a
format for polygons which had a single leading parenthesis, the list of x-axis coordinates,
the list of y-axis coordinates, followed by a closing parenthesis. The built-in function
upgradepoly is supplied to convert polygons dumped and reloaded from pre-v6.1
databases.

Circle

 Circles are represented by a center point and a radius.

 circle is specified using the following syntax:

< (x , y) , r >
((x , y) , r)
 (x , y) , r
 x , y , r
where
 (x,y) is the center of the circle
 r is the radius of the circle

 Circles are output using the first syntax.

IP Version 4 Networks and Host Addresses
 The cidr type stores networks specified in CIDR (Classless Inter-Domain Routing)
notation. The inet type stores hosts and networks in CIDR notation using a simple variation
in representation to represent simple host TCP/IP addresses.

Table 3-19. PostgresIP Version 4 Types

IPV4 Type Storage Description Range

cidr variable CIDR networks Valid IPV4 CIDR blocks

inet variable nets and hosts Valid IPV4 CIDR blocks

Chapter 3. Data Types

37

CIDR

 The cidr type holds a CIDR network. The format for specifying classless networks is
x.x.x.x/y where x.x.x.x is the network and /y is the number of bits in the netmask.
If /y omitted, it is calculated using assumptions from the older classfull naming system
except that it is extended to include at least all of the octets in the input.

 Here are some examples:

Table 3-20. PostgresIP Types Examples

CIDR Input CIDR Displayed

192.168.1 192.168.1/24

192.168 192.168.0/24

128.1 128.1/16

128 128.0/16

128.1.2 128.1.2/24

10.1.2 10.1.2/24

10.1 10.1/16

10 10/8

inet

 The inet type is designed to hold, in one field, all of the information about a host including
the CIDR-style subnet that it is in. Note that if you want to store proper CIDR networks,
you should use the cidr type. The inet type is similar to the cidr type except that the bits in
the host part can be non-zero. Functions exist to extract the various elements of the field.

 The input format for this function is x.x.x.x/y where x.x.x.x is an internet host and
y is the number of bits in the netmask. If the /y part is left off, it is treated as /32. On
output, the /y part is not printed if it is /32. This allows the type to be used as a straight
host type by just leaving off the bits part.

38

Chapter 4. Operators
 Describes the built-in operators available in Postgres.

 Postgres provides a large number of built-in operators on system types. These operators
are declared in the system catalog pg_operator. Every entry in pg_operator includes
the name of the procedure that implements the operator and the class OIDs of the input and
output types.

 To view all variations of the �||� string concatenation operator, try

 SELECT oprleft, oprright, oprresult, oprcode
 FROM pg_operator WHERE oprname = ’||’;

oprleft|oprright|oprresult|oprcode
-------+--------+---------+-------
 25| 25| 25|textcat
 1042| 1042| 1042|textcat
 1043| 1043| 1043|textcat
(3 rows)

 Users may invoke operators using the operator name, as in:

select * from emp where salary < 40000;

 Alternatively, users may call the functions that implement the operators directly. In this
case, the query above would be expressed as:

select * from emp where int4lt(salary, 40000);

 psql has a command (\dd) to show these operators.

Lexical Precedence
 Operators have a precedence which is currently hardcoded into the parser. Most operators
have the same precedence and are left-associative. This may lead to non-intuitive behavior;
for example the boolean operators "<" and ">" have a different precedence than the
boolean operators "<=" and ">=".

Chapter 4. Operators

39

Table 4-1. Operator Ordering (decreasing precedence)

Element Precedence Description

UNION left SQL select construct

:: Postgres typecasting

[] left array delimiters

. left table/column delimiter

- right unary minus

: right exponentiation

| left start of interval

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS test for TRUE, FALSE, NULL

ISNULL test for NULL

NOTNULL test for NOT NULL

(all other
operators)

native and user-defined

IN set membership

BETWEEN containment

OVER-
LAPS

time interval overlap

LIKE string pattern matching

< > boolean inequality

= right equality

NOT right negation

AND left logical intersection

OR left logical union

Chapter 4. Operators

40

General Operators
 The operators listed here are defined for a number of native data types, ranging from
numeric types to data/time types.

Table 4-2. Postgres Operators

Operator Description Usage

 < Less than? 1 < 2

 <= Less than or equal to? 1 <= 2

 <> Not equal? 1 <> 2

 = Equal? 1 = 1

 > Greater than? 2 > 1

 >= Greater than or equal to? 2 >= 1

 || Concatenate strings ’Postgre’ || ’SQL’

 !!= NOT IN 3 !!= i

 ~~ LIKE ’scrappy,marc,hermit’ ~~ ’%scrappy%’

 !~~ NOT LIKE ’bruce’ !~~ ’%al%’

 ~ Match (regex), case sensitive ’thomas’ ~ ’.*thomas.*’

 ~* Match (regex), case insensitive ’thomas’ ~* ’.*Thomas.*’

 !~ Does not match (regex), case
sensitive

’thomas’ !~ ’.*Thomas.*’

 !~* Does not match (regex), case
insensitive

’thomas’ !~* ’.*vadim.*’

Chapter 4. Operators

41

Numerical Operators

Table 4-3. Postgres Numerical Operators

Operator Description Usage

 ! Factorial 3 !

 !! Factorial (left operator) !! 3

 % Modulo 5 % 4

 % Truncate % 4.5

 * Multiplication 2 * 3

 + Addition 2 + 3

 - Subtraction 2 - 3

 / Division 4 / 2

 : Natural Exponentiation : 3.0

 @ Absolute value @ -5.0

 ^ Exponentiation 2.0 ^ 3.0

 |/ Square root |/ 25.0

 ||/ Cube root ||/ 27.0

Note: The operators ":" and ";" are deprecated, and will be removed in the near future.
Use the equivalent functions exp() and ln() instead.

Chapter 4. Operators

42

Geometric Operators

Table 4-4. Postgres Geometric Operators

Operator Description Usage

 + Translation ’((0,0),(1,1))’::box + ’(2.0,0)’::point

 - Translation ’((0,0),(1,1))’::box - ’(2.0,0)’::point

 * Scaling/rotation ’((0,0),(1,1))’::box * ’(2.0,0)’::point

 / Scaling/rotation ’((0,0),(2,2))’::box / ’(2.0,0)’::point

 # Intersection ’((1,-1),(-1,1))’ # ’((1,1),(-1,-1))’

 # Number of points in # ’((1,0),(0,1),(-1,0))’

 ## Point of closest proximity ’(0,0)’::point ## ’((2,0),(0,2))’::lseg

 && Overlaps? ’((0,0),(1,1))’::box && ’((0,0),(2,2))’::box

 &< Overlaps to left? ’((0,0),(1,1))’::box &< ’((0,0),(2,2))’::box

 &> Overlaps to right? ’((0,0),(3,3))’::box &> ’((0,0),(2,2))’::box

 <-> Distance between ’((0,0),1)’::circle <-> ’((5,0),1)’::circle

 << Left of? ’((0,0),1)’::circle << ’((5,0),1)’::circle

 <^ Is below? ’((0,0),1)’::circle <^ ’((0,5),1)’::circle

 >> Is right of? ’((5,0),1)’::circle >> ’((0,0),1)’::circle

 >^ Is above? ’((0,5),1)’::circle >^ ’((0,0),1)’::circle

 ?# Intersects or overlaps ’((-1,0),(1,0))’::lseg ?# ’((-2,-2),(2,2))’::box;

 ?- Is horizontal? ’(1,0)’::point ?- ’(0,0)’::point

 ?-| Is perpendicular? ’((0,0),(0,1))’::lseg ?-| ’((0,0),(1,0))’::lseg

 @-@ Length or circumference @-@ ’((0,0),(1,0))’::path

 ?| Is vertical? ’(0,1)’::point ?| ’(0,0)’::point

 ?|| Is parallel? ’((-1,0),(1,0))’::lseg ?|| ’((-1,2),(1,2))’::lseg

 @ Contained or on ’(1,1)’::point @ ’((0,0),2)’::circle

 @@ Center of @@ ’((0,0),10)’::circle

 ~= Same as ’((0,0),(1,1))’::polygon ~=
’((1,1),(0,0))’::polygon

Chapter 4. Operators

43

Time Interval Operators
 The time interval data type tinterval is a legacy from the original date/time types and is not
as well supported as the more modern types. There are several operators for this type.

Table 4-5. Postgres Time Interval Operators

Operator Description

 #< Interval less than?

 #<= Interval less than or equal to?

 #<> Interval not equal?

 #= Interval equal?

 #> Interval greater than?

 #>= Interval greater than or equal to?

 <#> Convert to time interval

 << Interval less than?

 | Start of interval

 ~= Same as

 <?> Time inside interval?

IP V4 CIDR Operators
 Table 4-6. PostgresIP V4 CIDR Operators

Operator Description Usage

 < Less than ’192.168.1.5’::cidr < ’192.168.1.6’::cidr

 <= Less than or equal ’192.168.1.5’::cidr <= ’192.168.1.5’::cidr

 = Equals ’192.168.1.5’::cidr = ’192.168.1.5’::cidr

 >= Greater or equal ’192.168.1.5’::cidr >= ’192.168.1.5’::cidr

 > Greater ’192.168.1.5’::cidr > ’192.168.1.4’::cidr

 <> Not equal ’192.168.1.5’::cidr <> ’192.168.1.4’::cidr

 << is contained within ’192.168.1.5’::cidr << ’192.168.1/24’::cidr

 <<= is contained within or equals ’192.168.1/24’::cidr <<= ’192.168.1/24’::cidr

 >> contains ’192.168.1/24’::cidr >> ’192.168.1.5’::cidr

 >>= contains or equals ’192.168.1/24’::cidr >>= ’192.168.1/24’::cidr

Chapter 4. Operators

44

IP V4 INET Operators
 Table 4-7. PostgresIP V4 INET Operators

Operator Description Usage

 < Less than ’192.168.1.5’::inet < ’192.168.1.6’::inet

 <= Less than or equal ’192.168.1.5’::inet <= ’192.168.1.5’::inet

 = Equals ’192.168.1.5’::inet = ’192.168.1.5’::inet

 >= Greater or equal ’192.168.1.5’::inet >= ’192.168.1.5’::inet

 > Greater ’192.168.1.5’::inet > ’192.168.1.4’::inet

 <> Not equal ’192.168.1.5’::inet <> ’192.168.1.4’::inet

 << is contained within ’192.168.1.5’::inet << ’192.168.1/24’::inet

 <<= is contained within or equals ’192.168.1/24’::inet <<= ’192.168.1/24’::inet

 >> contains ’192.168.1/24’::inet >> ’192.168.1.5’::inet

 >>= contains or equals ’192.168.1/24’::inet >>= ’192.168.1/24’::inet

45

Chapter 5. Functions
 Describes the built-in functions available in Postgres.

 Many data types have functions available for conversion to other related types. In addition,
there are some type-specific functions. Some functions are also available through operators
and may be documented as operators only.

SQL Functions
 �SQL functions� are constructs defined by the SQL92 standard which have function-like
syntax but which can not be implemented as simple functions.

Table 5-1. SQL Functions

Function Returns Description Example

COALESCE(list) non-NULL return first
non-NULL value in
list

COALESCE(rle, c2 + 5,
0)

NULLIF(input,value) input or
NULL

return NULL
if input = value,
else input

NULLIF(c1, ’N/A’)

CASE WHEN expr
THEN expr [...]
ELSE expr END

expr return expression for
first true WHEN
clause

CASE WHEN c1 = 1
THEN ’match’
ELSE ’no match’ END

Chapter 5. Functions

46

Mathematical Functions

Table 5-2. Mathematical Functions

Function Returns Description Example

abs(float8) float8 absolute value abs(-17.4)

degrees(float8) float8 radians to degrees degrees(0.5)

exp(float8) float8 raise e to the specified exponent exp(2.0)

ln(float8) float8 natural logarithm ln(2.0)

log(float8) float8 base 10 logarithm log(2.0)

pi() float8 fundamental constant pi()

pow(float8,float8) float8 raise a number to the specified exponent pow(2.0, 16.0)

radians(float8) float8 degrees to radians radians(45.0)

round(float8) float8 round to nearest integer round(42.4)

sqrt(float8) float8 square root sqrt(2.0)

cbrt(float8) float8 cube root cbrt(27.0)

trunc(float8) float8 truncate (towards zero) trunc(42.4)

float(int) float8 convert integer to floating point float(2)

float4(int) float4 convert integer to floating point float4(2)

integer(float) int convert floating point to integer integer(2.0)

 Most of the functions listed for FLOAT8 are also available for type NUMERIC.

Chapter 5. Functions

47

Table 5-3. Transcendental Mathematical Functions

Function Returns Description Example

acos(float8) float8 arccosine acos(10.0)

asin(float8) float8 arcsine asin(10.0)

atan(float8) float8 arctangent atan(10.0)

atan2(float8,float8) float8 arctangent atan3(10.0,20.0)

cos(float8) float8 cosine cos(0.4)

cot(float8) float8 cotangent cot(20.0)

sin(float8) float8 sine cos(0.4)

tan(float8) float8 tangent tan(0.4)

String Functions
 SQL92 defines string functions with specific syntax. Some of these are implemented using
other Postgres functions. The supported string types for SQL92 are char, varchar, and text.

Table 5-4. SQL92 String Functions

Function Returns Description Example

char_length(string) int4 length of string char_length(’jose’)

character_length(string) int4 length of string char_length(’jose’)

lower(string) string convert string to lower
case

lower(’TOM’)

octet_length(string) int4 storage length of string octet_length(’jose’)

position(string in string) int4 location of substring position(’o’ in ’Tom’)

substring(string [from int]
[for int])

string extract specified
substring

substring(’Tom’ from 2
for 2)

trim([leading | trailing |
both] [string] from string)

string trim characters from
string

trim(both ’x’ from
’xTomx’)

upper(text) text convert text to upper
case

upper(’tom’)

 Many additional string functions are available for text, varchar(), and char() types. Some
are used internally to implement the SQL92 string functions listed above.

Chapter 5. Functions

48

Table 5-5. String Functions

Function Returns Description Example

char(text) char convert text to char type char(’text string’)

char(varchar) char convert varchar to char type char(varchar ’varchar
string’)

initcap(text) text first letter of each word to
upper case

initcap(’thomas’)

lpad(text,int,text) text left pad string to specified
length

lpad(’hi’,4,’??’)

ltrim(text,text) text left trim characters from text ltrim(’xxxxtrim’,’x’)

textpos(text,text) text locate specified substring position(’high’,’ig’)

rpad(text,int,text) text right pad string to specified
length

rpad(’hi’,4,’x’)

rtrim(text,text) text right trim characters from
text

rtrim(’trimxxxx’,’x’)

substr(text,int[,int]) text extract specified substring substr(’hi there’,3,5)

text(char) text convert char to text type text(’char string’)

text(varchar) text convert varchar to text type text(varchar ’varchar
string’)

translate(text,from,to) text convert character in string translate(’12345’, ’1’,
’a’)

varchar(char) varchar convert char to varchar type varchar(’char string’)

varchar(text) varchar convert text to varchar type varchar(’text string’)

 Most functions explicitly defined for text will work for char() and varchar() arguments.

Chapter 5. Functions

49

Date/Time Functions
 The date/time functions provide a powerful set of tools for manipulating various date/time
types.

Table 5-6. Date/Time Functions

Function Returns Description Example

abstime(timestamp) abstime convert to abstime abstime(timestamp ’now’)

age(timestamp) interval preserve months
and years

age(timestamp
’1957-06-13’)

age(timestamp,timestamp) interval preserve months
and years

age(’now’, timestamp
’1957-06-13’)

timestamp(abstime) timestamp convert to
timestamp

timestamp(abstime ’now’)

timestamp(date) timestamp convert to
timestamp

timestamp(date ’today’)

timestamp(date,time) timestamp convert to
timestamp

timestamp(timestamp
’1998-02-24’, time
’23:07’);

date_part(text,timestamp) float8 portion of date date_part(’dow’,timestamp
’now’)

date_part(text,interval) float8 portion of time date_part(’hour’,
interval ’4 hrs 3 mins’)

date_trunc(text,
timestamp)

timestamp truncate date date_trunc(’month’,abstime
’now’)

to_char(timestamp) text format string to_char(timestamp,’HH’)

isfinite(abstime) bool a finite time? isfinite(abstime ’now’)

isfinite(timestamp) bool a finite time? isfinite(timestamp ’now’)

isfinite(interval) bool a finite time? isfinite(interval ’4 hrs’)

reltime(interval) reltime convert to reltime reltime(interval ’4 hrs’)

interval(reltime) interval convert to interval interval(reltime ’4 hours’)

 For the date_part and date_trunc functions, arguments can be ‘year’, ‘month’,
‘day’, ‘hour’, ‘minute’, and ‘second’, as well as the more specialized quantities
‘decade’, ‘century’, ‘millennium’, ‘millisecond’, and ‘microsecond’. date_part
allows ‘dow’ to return day of week, ’week’ to return the ISO-defined week of year, and
‘epoch’ to return seconds since 1970 (for timestamp) or ’epoch’ to return total elapsed
seconds (for interval).

Chapter 5. Functions

50

Formatting Functions
Author: Written by Karel Zak (mailto:zakkr@zf.jcu.cz) on 2000-01-24.

 The Postgres formatting functions provide a powerful set of tools for converting various
datetypes (date/time, int, float, numeric) to formatted strings and for converting from
formatted strings to specific datetypes.

Note: The second argument for all formatting functions is a template to be used for the
conversion.

Table 5-7. Formatting Functions

Function Returns Description Example

to_char(timestamp, text) text convert timestamp to
string

to_char(timestamp ’now’,
’HH12:MI:SS’)

to_char(int, text) text convert int4/int8 to string to_char(125, ’999’)

to_char(float, text) text convert float4/float8 to
string

to_char(125.8, ’999D9’)

to_char(numeric, text) text convert numeric to string to_char(numeric ’-125.8’,
’999D99S’)

to_date(text, text) date convert string to date to_date(’05 Dec 2000’,
’DD Mon YYYY’)

to_timestamp(text, text) date convert string to
timestamp

to_timestamp(’05 Dec
2000’, ’DD Mon YYYY’)

to_number(text, text) numeric convert string to numeric to_number(’12,454.8-’,
’99G999D9S’)

Table 5-8. Templates for date/time conversions

Template Description

HH hour of day (01-12)

HH12 hour of day (01-12)

MI minute (00-59)

SS second (00-59)

SSSS seconds past midnight (0-86399)

AM or A.M. or PM or P.M. meridian indicator (upper case)

Chapter 5. Functions

51

Template Description

am or a.m. or pm or p.m. meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BC or B.C. or AD or A.D. year indicator (upper case)

bc or b.c. or ad or a.d. year indicator (lower case)

MONTH full upper case month name (9 chars)

Month full mixed case month name (9 chars)

month full lower case month name (9 chars)

MON upper case abbreviated month name (3 chars)

Mon abbreviated mixed case month name (3 chars)

mon abbreviated lower case month name (3 chars)

MM month (01-12)

DAY full upper case day name (9 chars)

Day full mixed case day name (9 chars)

day full lower case day name (9 chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month

WW week number of year

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman Numerals (I-XII; I=JAN) - upper case

rm month in Roman Numerals (I-XII; I=JAN) - lower case

Chapter 5. Functions

52

 All templates allow the use of prefix and suffix modifiers. Modifiers are always valid for
use in templates. The prefix ’FX’ is a global modifier only.

Table 5-9. Suffixes for templates for date/time to_char()

Suffix Description Example

FM fill mode prefix FMMonth

TH upper ordinal number suffix DDTH

th lower ordinal number suffix DDTH

FX FiXed format global option (see below) FX Month DD Day

SP spell mode (not yet implemented) DDSP

 Usage notes:

 to_timestamp and to_date skip blank space if the FX option is not used. FX must be
specified as the first item in the template.

 Backslash (’\’) must be use as double backslash (’\\’); for example ’\\HH\\MI\\SS’.

 Double quoted strings (’"’) are skipped and not parsed. If you want to write a double
quote (’"’) to output you must use ’\\"’; for example ’\\"YYYY Month\\"’.

 to_char supports text without an introductory double quote (’"’), but any string
between quotation marks is rapidly handled and you are guaranteed that it will not be
interpreted as a template keyword; for example ’"Hello Year: "YYYY’.

Chapter 5. Functions

53

Table 5-10. Templates for to_char(numeric)

Template Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (use locales)

L currency symbol (use locales)

D decimal point (use locales)

G group separator (use locales)

MI minus sign on specified position (if number < 0)

PL plus sign on specified position (if number > 0)

SG plus/minus sign on specified position

RN roman numeral (input between 1 and 3999)

TH or th convert to ordinal number

V Shift n digits (see notes)

EEEE science numbers. Now not supported.

 Usage notes:

 A sign formatted using ’SG’, ’PL’ or ’MI’ is not an anchor in the number; for example,
to_char(-12, ’S9999’) produces ’ -12’, but to_char(-12, ’MI9999’) produces ’- 12’.
The Oracle implementation does not allow the use of MI ahead of 9, but rather requires
that 9 preceeds MI.

 PL, SG, and TH are Postgres extensions.

 9 specifies a value with the same number of digits as there are 9s. If a digit is not
available use blank space.

 TH does not convert values less than zero and does not convert decimal numbers. TH is a
Postgres extension.

 V effectively multiplies the input values by 10^n, where n is the number of digits
following V. to_char does not support the use of V combined with a decimal point (e.g.
"99.9V99" is not allowed).

Chapter 5. Functions

54

Table 5-11. to_char Examples

Input Output

to_char(now(),’Day, HH12:MI:SS’) ’Tuesday , 05:39:18’

to_char(now(),’FMDay, HH12:MI:SS’) ’Tuesday, 05:39:18’

to_char(-0.1,’99.99’) ’ -.10’

to_char(-0.1,’FM9.99’) ’-.1’

to_char(0.1,’0.9’) ’ 0.1’

to_char(12,’9990999.9’) ’ 0012.0’

to_char(12,’FM9990999.9’) ’0012’

to_char(485,’999’) ’ 485’

to_char(-485,’999’) ’-485’

to_char(485,’9 9 9’) ’ 4 8 5’

to_char(1485,’9,999’) ’ 1,485’

to_char(1485,’9G999’) ’ 1 485’

to_char(148.5,’999.999’) ’ 148.500’

to_char(148.5,’999D999’) ’ 148,500’

to_char(3148.5,’9G999D999’) ’ 3 148,500’

to_char(-485,’999S’) ’485-’

to_char(-485,’999MI’) ’485-’

to_char(485,’999MI’) ’485’

to_char(485,’PL999’) ’+485’

to_char(485,’SG999’) ’+485’

to_char(-485,’SG999’) ’-485’

to_char(-485,’9SG99’) ’4-85’

to_char(-485,’999PR’) ’<485>’

to_char(485,’L999’) ’DM 485

to_char(485,’RN’) ’ CDLXXXV’

to_char(485,’FMRN’) ’CDLXXXV’

to_char(5.2,’FMRN’) V

to_char(482,’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,’"Predecimal:"999"
Postdecimal:" .999’)

’Predecimal: 485

Postdecimal: .800’

Chapter 5. Functions

55

Input Output

to_char(12,’99V999’) ’ 12000’

to_char(12.4,’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’

Geometric Functions
 The geometric types point, box, lseg, line, path, polygon, and circle have a large set of
native support functions.

Table 5-12. Geometric Functions

Function Returns Description Example

area(object) float8 area of circle, ... area(box ’((0,0),(1,1))’)

box(box,box) box boxes to
intersection box

box(box ’((0,0),(1,1))’,
box ’((0.5,0.5),(2,2))’)

center(object) point center of circle,
...

center(box ’((0,0),(1,2))’)

diameter(circle) float8 diameter of circle diameter(circle ’((0,0),2.0)’)

height(box) float8 vertical size of
box

height(box ’((0,0),(1,1))’)

isclosed(path) bool a closed path? isclosed(path ’((0,0),(1,1),(2,0))’)

isopen(path) bool an open path? isopen(path ’[(0,0),(1,1),(2,0)]’)

length(object) float8 length of line
segment, ...

length(path ’((-1,0),(1,0))’)

length(path) float8 length of path length(path ’((0,0),(1,1),(2,0))’)

pclose(path) path convert path to
closed

popen(path ’[(0,0),(1,1),(2,0)]’)

npoint(path) int4 number of points npoints(path ’[(0,0),(1,1),(2,0)]’)

popen(path) path convert path to
open path

popen(path ’((0,0),(1,1),(2,0))’)

radius(circle) float8 radius of circle radius(circle ’((0,0),2.0)’)

width(box) float8 horizontal size width(box ’((0,0),(1,1))’)

Chapter 5. Functions

56

Table 5-13. Geometric Type Conversion Functions

Function Returns Description Example

box(circle) box circle to box box(’((0,0),2.0)’::circle)

box(point,point) box points to box box(’(0,0)’::point,’(1,1)’::point)

box(polygon) box polygon to box box(’((0,0),(1,1),(2,0))’::polygon)

circle(box) circle convert to circle circle(’((0,0),(1,1))’::box)

circle(pt,float8) circle convert to circle circle(’(0,0)’::point,2.0)

lseg(box) lseg diagonal to lseg lseg(’((-1,0),(1,0))’::box)

lseg(point,point) lseg convert to lseg lseg(’(-1,0)’::point,’(1,0)’::point)

path(polygon) point convert to path path(’((0,0),(1,1),(2,0))’::polygon)

point(circle) point center point(’((0,0),2.0)’::circle)

point(lseg,lseg) point intersection point(’((-1,0),(1,0))’::lseg,
’((-2,-2),(2,2))’::lseg)

point(polygon) point center of polygon point(’((0,0),(1,1),(2,0))’::polygon)

polygon(box) polygon 12 point polygon polygon(’((0,0),(1,1))’::box)

polygon(circle) polygon 12-point polygon polygon(’((0,0),2.0)’::circle)

polygon(n,circle) polygon npts polygon polygon(12,’((0,0),2.0)’::circle)

polygon(path) polygon convert to polygon polygon(’((0,0),(1,1),(2,0))’::path)

Table 5-14. Geometric Upgrade Functions

Function Returns Description Example

isoldpath(path) path test path for
pre-v6.1 form

isoldpath(’(1,3,0,0,1,1,2,0)’::pat-
h)

revertpoly(polygon) polygon convert pre-v6.1
polygon

revertpoly(’((0,0),(1,1),(2,0))’::-
polygon)

upgradepath(path) path convert pre-v6.1
path

upgradepath(’(1,3,0,0,1,1,2,0)’::-
path)

upgradepoly(polygon) polygon convert pre-v6.1
polygon

upgradepoly(’(0,1,2,0,1,0)’::pol-
ygon)

Chapter 5. Functions

57

IP V4 Functions

Table 5-15. PostgresIP V4 Functions

Function Returns Description Example

broadcast(cidr) text construct broadcast address
as text

broadcast(’192.168.1.5/24’)

broadcast(inet) text construct broadcast address
as text

broadcast(’192.168.1.5/24’)

host(inet) text extract host address as text host(’192.168.1.5/24’)

masklen(cidr) int4 calculate netmask length masklen(’192.168.1.5/24’)

masklen(inet) int4 calculate netmask length masklen(’192.168.1.5/24’)

netmask(inet) text construct netmask as text netmask(’192.168.1.5/24’)

58

Chapter 6. Type Conversion
SQL queries can, intentionally or not, require mixing of different data types in the same
expression. Postgres has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion
mechanism. However, the implicit conversions done by Postgres can affect the apparent
results of a query, and these results can be tailored by a user or programmer using explicit
type coercion.

This chapter introduces the Postgres type conversion mechanisms and conventions. Refer
to the relevant sections in the User’s Guide and Programmer’s Guide for more information
on specific data types and allowed functions and operators.

The Programmer’s Guide has more details on the exact algorithms used for implicit type
conversion and coercion.

Overview
SQL is a strongly typed language. That is, every data item has an associated data type
which determines its behavior and allowed usage. Postgres has an extensible type system
which is much more general and flexible than other RDBMS implementations. Hence,
most type conversion behavior in Postgres should be governed by general rules rather than
by ad-hoc heuristics to allow mixed-type expressions to be meaningful, even with
user-defined types.

The Postgres scanner/parser decodes lexical elements into only five fundamental
categories: integers, floats, strings, names, and keywords. Most extended types are first
tokenized into strings. The SQL language definition allows specifying type names with
strings, and this mechanism is used by Postgres to start the parser down the correct path.
For example, the query

tgl=> SELECT text ’Origin’ AS "Label", point ’(0,0)’ AS "Value";
 Label | Value
--------+-------
 Origin | (0,0)
(1 row)

has two strings, of type text and point. If a type is not specified, then the placeholder type
unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the
Postgres parser:

Operators

 Postgres allows expressions with left- and right-unary (one argument) operators, as
well as binary (two argument) operators.

Function calls

 Much of the Postgres type system is built around a rich set of functions. Function calls
have one or more arguments which, for any specific query, must be matched to the
functions available in the system catalog.

Chapter 6. Type Conversion

59

Query targets

 SQL INSERT statements place the results of query into a table. The expressions in the
query must be matched up with, and perhaps converted to, the target columns of the
insert.

UNION queries

 Since all select results from a UNION SELECT statement must appear in a single set
of columns, the types of each SELECT clause must be matched up and converted to a
uniform set.

Many of the general type conversion rules use simple conventions built on the Postgres
function and operator system tables. There are some heuristics included in the conversion
rules to better support conventions for the SQL92 standard native types such as smallint,
integer, and float.

The Postgres parser uses the convention that all type conversion functions take a single
argument of the source type and are named with the same name as the target type. Any
function meeting this criteria is considered to be a valid conversion function, and may be
used by the parser as such. This simple assumption gives the parser the power to explore
type conversion possibilities without hardcoding, allowing extended user-defined types to
use these same features transparently.

An additional heuristic is provided in the parser to allow better guesses at proper behavior
for SQL standard types. There are five categories of types defined: boolean, string,
numeric, geometric, and user-defined. Each category, with the exception of user-defined,
has a "preferred type" which is used to resolve ambiguities in candidates. Each
"user-defined" type is its own "preferred type", so ambiguous expressions (those with
multiple candidate parsing solutions) with only one user-defined type can resolve to a
single best choice, while those with multiple user-defined types will remain ambiguous and
throw an error.

Ambiguous expressions which have candidate solutions within only one type category are
likely to resolve, while ambiguous expressions with candidates spanning multiple
categories are likely to throw an error and ask for clarification from the user.

Guidelines

All type conversion rules are designed with several principles in mind:
Implicit conversions should never have surprising or unpredictable outcomes.
User-defined types, of which the parser has no a-priori knowledge, should be "higher" in
the type hierarchy. In mixed-type expressions, native types shall always be converted to
a user-defined type (of course, only if conversion is necessary).
User-defined types are not related. Currently, Postgres does not have information
available to it on relationships between types, other than hardcoded heuristics for built-in
types and implicit relationships based on available functions in the catalog.
There should be no extra overhead from the parser or executor if a query does not need
implicit type conversion. That is, if a query is well formulated and the types already
match up, then the query should proceed without spending extra time in the parser and
without introducing unnecessary implicit conversion functions into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then
the user defines an explicit function with the correct argument types, the parser should

Chapter 6. Type Conversion

60

use this new function and will no longer do the implicit conversion using the old
function.

Operators

Conversion Procedure

Operator Evaluation

1. Check for an exact match in the pg_operator system catalog.

a. If one argument of a binary operator is unknown, then assume it is the same
type as the other argument.

b. Reverse the arguments, and look for an exact match with an operator which
points to itself as being commutative. If found, then reverse the arguments in
the parse tree and use this operator.

2. Look for the best match.

a. Make a list of all operators of the same name.

b. If only one operator is in the list, use it if the input type can be coerced, and
throw an error if the type cannot be coerced.

c. Keep all operators with the most explicit matches for types. Keep all if there
are no explicit matches and move to the next step. If only one candidate
remains, use it if the type can be coerced.

d. If any input arguments are "unknown", categorize the input candidates as
boolean, numeric, string, geometric, or user-defined. If there is a mix of
categories, or more than one user-defined type, throw an error because the
correct choice cannot be deduced without more clues. If only one category is
present, then assign the "preferred type" to the input column which had been
previously "unknown".

e. Choose the candidate with the most exact type matches, and which matches
the "preferred type" for each column category from the previous step. If there
is still more than one candidate, or if there are none, then throw an error.

Examples

Exponentiation Operator

There is only one exponentiation operator defined in the catalog, and it takes float8
arguments. The scanner assigns an initial type of int4 to both arguments of this query
expression:

tgl=> select 2 ^ 3 AS "Exp";
 Exp

 8
(1 row)

Chapter 6. Type Conversion

61

So the parser does a type conversion on both operands and the query is equivalent to

tgl=> select float8(2) ^ float8(3) AS "Exp";
 Exp

 8
(1 row)

or

tgl=> select 2.0 ^ 3.0 AS "Exp";
 Exp

 8
(1 row)

Note: This last form has the least overhead, since no functions are called to do implicit
type conversion. This is not an issue for small queries, but may have an impact on the
performance of queries involving large tables.

String Concatenation

A string-like syntax is used for working with string types as well as for working with
complex extended types. Strings with unspecified type are matched with likely operator
candidates.

One unspecified argument:

tgl=> SELECT text ’abc’ || ’def’ AS "Text and Unknown";
 Text and Unknown

 abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments.
Since there is, it assumes that the second argument should be interpreted as of type text.

Concatenation on unspecified types:

tgl=> SELECT ’abc’ || ’def’ AS "Unspecified";
 Unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the
query. So, the parser looks for all candidate operators and finds that all arguments for all
the candidates are string types. It chooses the "preferred type" for strings, text, for this
query.

Note: If a user defines a new type and defines an operator �||� to work with it, then this
query would no longer succeed as written. The parser would now have candidate
types from two categories, and could not decide which to use.

Chapter 6. Type Conversion

62

Factorial

This example illustrates an interesting result. Traditionally, the factorial operator is defined
for integers only. The Postgres operator catalog has only one entry for factorial, taking an
integer operand. If given a non-integer numeric argument, Postgres will try to convert that
argument to an integer for evaluation of the factorial.

tgl=> select (4.3 !);
 ?column?

 24
(1 row)

Note: Of course, this leads to a mathematically suspect result, since in principle the
factorial of a non-integer is not defined. However, the role of a database is not to teach
mathematics, but to be a tool for data manipulation. If a user chooses to take the
factorial of a floating point number, Postgres will try to oblige.

Functions
Function Evaluation

1. Check for an exact match in the pg_proc system catalog.

2. Look for the best match.

a. Make a list of all functions of the same name with the same number of
arguments.

b. If only one function is in the list, use it if the input types can be coerced, and
throw an error if the types cannot be coerced.

c. Keep all functions with the most explicit matches for types. Keep all if there
are no explicit matches and move to the next step. If only one candidate
remains, use it if the type can be coerced.

d. If any input arguments are "unknown", categorize the input candidate
arguments as boolean, numeric, string, geometric, or user-defined. If there is
a mix of categories, or more than one user-defined type, throw an error
because the correct choice cannot be deduced without more clues. If only one
category is present, then assign the "preferred type" to the input column
which had been previously "unknown".

e. Choose the candidate with the most exact type matches, and which matches
the "preferred type" for each column category from the previous step. If there
is still more than one candidate, or if there are none, then throw an error.

Chapter 6. Type Conversion

63

Examples

Factorial Function

There is only one factorial function defined in the pg_proc catalog. So the following query
automatically converts the int2 argument to int4:

tgl=> select int4fac(int2 ’4’);
 int4fac

 24
(1 row)

and is actually transformed by the parser to

tgl=> select int4fac(int4(int2 ’4’));
 int4fac

 24
(1 row)

Substring Function

There are two substr functions declared in pg_proc. However, only one takes two
arguments, of types text and int4.

If called with a string constant of unspecified type, the type is matched up directly with the
only candidate function type:

tgl=> select substr(’1234’, 3);
 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table,
then the parser will try to coerce it to become text:

tgl=> select substr(varchar ’1234’, 3);
 substr

 34
(1 row)

which is transformed by the parser to become

tgl=> select substr(text(varchar ’1234’), 3);
 substr

 34
(1 row)

Note: There are some heuristics in the parser to optimize the relationship between the
char, varchar, and text types. For this case, substr is called directly with the varchar
string rather than inserting an explicit conversion call.

Chapter 6. Type Conversion

64

And, if the function is called with an int4, the parser will try to convert that to text:

tgl=> select substr(1234, 3);
 substr

 34
(1 row)

actually executes as

tgl=> select substr(text(1234), 3);
 substr

 34
(1 row)

Query Targets
Target Evaluation

1. Check for an exact match with the target.

2. Try to coerce the expression directly to the target type if necessary.

3. If the target is a fixed-length type (e.g. char or varchar declared with a length) then try
to find a sizing function of the same name as the type taking two arguments, the first
the type name and the second an integer length.

Examples

varchar Storage

For a target column declared as varchar(4) the following query ensures that the target is
sized correctly:

tgl=> CREATE TABLE vv (v varchar(4));
CREATE
tgl=> INSERT INTO vv SELECT ’abc’ || ’def’;
INSERT 392905 1
tgl=> SELECT * FROM vv;
 v

 abcd
(1 row)

UNION Queries
The UNION construct is somewhat different in that it must match up possibly dissimilar
types to become a single result set.

UNION Evaluation

1. Check for identical types for all results.

2. Coerce each result from the UNION clauses to match the type of the first SELECT
clause or the target column.

Chapter 6. Type Conversion

65

Examples

Underspecified Types

tgl=> SELECT text ’a’ AS "Text" UNION SELECT ’b’;
 Text

 a
 b
(2 rows)

Simple UNION

tgl=> SELECT 1.2 AS "Float8" UNION SELECT 1;
 Float8

 1
 1.2
(2 rows)

Transposed UNION

The types of the union are forced to match the types of the first/top clause in the union:

tgl=> SELECT 1 AS "All integers"
tgl-> UNION SELECT ’2.2’::float4
tgl-> UNION SELECT 3.3;
 All integers

 1
 2
 3
(3 rows)

An alternate parser strategy could be to choose the "best" type of the bunch, but this is
more difficult because of the nice recursion technique used in the parser. However, the
"best" type is used when selecting into a table:

tgl=> CREATE TABLE ff (f float);
CREATE
tgl=> INSERT INTO ff
tgl-> SELECT 1
tgl-> UNION SELECT ’2.2’::float4
tgl-> UNION SELECT 3.3;
INSERT 0 3
tgl=> SELECT f AS "Floating point" from ff;
 Floating point

 1
 2.20000004768372
 3.3
(3 rows)

66

Chapter 7. Indices and Keys
 Indexes are commonly used to enhance database performance. They should be defined on
table columns (or class attributes) which are used as qualifications in repetitive queries.
Inappropriate use will result in slower performance, since update and insertion times are
increased in the presence of indices.

 Indexes may also be used to enforce uniqueness of a table’s primary key. When an index is
declared UNIQUE, multiple table rows with identical index entries won’t be allowed. For
this purpose, the goal is ensuring data consistency, not improving performance, so the
above caution about inappropriate use doesn’t apply.

 Two forms of indices may be defined:

 For a value index, the key fields for the index are specified as column names; multiple
columns can be specified if the index access method supports multi-column indexes.

 For a functional index, an index is defined on the result of a function applied to one or
more attributes of a single class. This is a single-column index (namely, the function
result) even if the function uses more than one input field. Functional indices can be
used to obtain fast access to data based on operators that would normally require some
transformation to apply them to the base data.

 Postgres provides btree, rtree and hash access methods for indices. The btree access
method is an implementation of Lehman-Yao high-concurrency btrees. The rtree access
method implements standard rtrees using Guttman’s quadratic split algorithm. The hash
access method is an implementation of Litwin’s linear hashing. We mention the algorithms
used solely to indicate that all of these access methods are fully dynamic and do not have
to be optimized periodically (as is the case with, for example, static hash access methods).

 The Postgres query optimizer will consider using a btree index whenever an indexed
attribute is involved in a comparison using one of: <, <=, =, >=, >

 The Postgres query optimizer will consider using an rtree index whenever an indexed
attribute is involved in a comparison using one of: <<, &<, &>, >>, @, ~=, &&

 The Postgres query optimizer will consider using a hash index whenever an indexed
attribute is involved in a comparison using the = operator.

 Currently, only the btree access method supports multi-column indexes. Up to 16 keys
may be specified by default (this limit can be altered when building Postgres).

 An operator class can be specified for each column of an index. The operator class
identifies the operators to be used by the index for that column. For example, a btree index
on four-byte integers would use the int4_ops class; this operator class includes
comparison functions for four-byte integers. In practice the default operator class for the
field’s datatype is usually sufficient. The main point of having operator classes is that for
some datatypes, there could be more than one meaningful ordering. For example, we might
want to sort a complex-number datatype either by absolute value or by real part. We could
do this by defining two operator classes for the datatype and then selecting the proper class
when making an index. There are also some operator classes with special purposes:

 The operator classes box_ops and bigbox_ops both support rtree indices on the box
datatype. The difference between them is that bigbox_ops scales box coordinates
down, to avoid floating point exceptions from doing multiplication, addition, and

Chapter 7. Indices and Keys

67

subtraction on very large floating-point coordinates. If the field on which your rectangles
lie is about 20,000 units square or larger, you should use bigbox_ops.

 The int24_ops operator class is useful for constructing indices on int2 data, and doing
comparisons against int4 data in query qualifications. Similarly, int42_ops support
indices on int4 data that is to be compared against int2 data in queries.

 The following query shows all defined operator classes:

SELECT am.amname AS acc_name,
 opc.opcname AS ops_name,
 opr.oprname AS ops_comp
 FROM pg_am am, pg_amop amop,
 pg_opclass opc, pg_operator opr
 WHERE amop.amopid = am.oid AND
 amop.amopclaid = opc.oid AND
 amop.amopopr = opr.oid
 ORDER BY acc_name, ops_name, ops_comp

 Use DROP INDEX to remove an index.

Keys

Author: Written by Herouth Maoz (herouth@oumail.openu.ac.il) This originally
appeared on the User’s Mailing List on 1998-03-02 in response to the question: "What
is the difference between PRIMARY KEY and UNIQUE constraints?".

Subject: Re: [QUESTIONS] PRIMARY KEY | UNIQUE

 What’s the difference between:

 PRIMARY KEY(fields,...) and
 UNIQUE (fields,...)

 - Is this an alias?
 - If PRIMARY KEY is already unique, then why
 is there another kind of key named UNIQUE?

 A primary key is the field(s) used to identify a specific row. For example, Social Security
numbers identifying a person.

 A simply UNIQUE combination of fields has nothing to do with identifying the row. It’s
simply an integrity constraint. For example, I have collections of links. Each collection is
identified by a unique number, which is the primary key. This key is used in relations.

Chapter 7. Indices and Keys

68

 However, my application requires that each collection will also have a unique name. Why?
So that a human being who wants to modify a collection will be able to identify it. It’s
much harder to know, if you have two collections named "Life Science", the the one tagged
24433 is the one you need, and the one tagged 29882 is not.

 So, the user selects the collection by its name. We therefore make sure, within the
database, that names are unique. However, no other table in the database relates to the
collections table by the collection Name. That would be very inefficient.

 Moreover, despite being unique, the collection name does not actually define the
collection! For example, if somebody decided to change the name of the collection from
"Life Science" to "Biology", it will still be the same collection, only with a different name.
As long as the name is unique, that’s OK.

 So:

 Primary key:
 Is used for identifying the row and relating to it.
 Is impossible (or hard) to update.
 Should not allow NULLs.

 Unique field(s):
 Are used as an alternative access to the row.
 Are updateable, so long as they are kept unique.
 NULLs are acceptable.

 As for why no non-unique keys are defined explicitly in standard SQL syntax? Well, you
must understand that indices are implementation-dependent. SQL does not define the
implementation, merely the relations between data in the database. Postgres does allow
non-unique indices, but indices used to enforce SQL keys are always unique.

 Thus, you may query a table by any combination of its columns, despite the fact that you
don’t have an index on these columns. The indexes are merely an implementational aid
which each RDBMS offers you, in order to cause commonly used queries to be done more
efficiently. Some RDBMS may give you additional measures, such as keeping a key stored
in main memory. They will have a special command, for example

CREATE MEMSTORE ON <table> COLUMNS <cols>

 (this is not an existing command, just an example).

 In fact, when you create a primary key or a unique combination of fields, nowhere in the
SQL specification does it say that an index is created, nor that the retrieval of data by the
key is going to be more efficient than a sequential scan!

 So, if you want to use a combination of fields which is not unique as a secondary key, you
really don’t have to specify anything - just start retrieving by that combination! However, if
you want to make the retrieval efficient, you’ll have to resort to the means your RDBMS
provider gives you - be it an index, my imaginary MEMSTORE command, or an intelligent
RDBMS which creates indices without your knowledge based on the fact that you have
sent it many queries based on a specific combination of keys... (It learns from experience).

Chapter 7. Indices and Keys

69

Partial Indices
Author: This is from a reply to a question on the e-mail list by Paul M. Aoki
(aoki@CS.Berkeley.EDU) on 1998-08-11.

 A partial index is an index built over a subset of a table; the subset is defined by a
predicate. Postgres supported partial indices with arbitrary predicates. I believe IBM’s DB2
for as/400 supports partial indices using single-clause predicates.

 The main motivation for partial indices is this: if all of the queries you ask that can
profitably use an index fall into a certain range, why build an index over the whole table
and suffer the associated space/time costs? (There are other reasons too; see Stonebraker,
M, 1989b for details.)

 The machinery to build, update and query partial indices isn’t too bad. The hairy parts are
index selection (which indices do I build?) and query optimization (which indices do I
use?); i.e., the parts that involve deciding what predicate(s) match the workload/query in
some useful way. For those who are into database theory, the problems are basically
analogous to the corresponding materialized view problems, albeit with different cost
parameters and formulae. These are, in the general case, hard problems for the standard
ordinal SQL types; they’re super-hard problems with black-box extension types, because
the selectivity estimation technology is so crude.

 Check Stonebraker, M, 1989b, Olson, 1993, and Seshardri, 1995 for more information.

70

Chapter 8. Arrays
Note: This must become a chapter on array behavior. Volunteers? - thomas
1998-01-12

 Postgres allows attributes of a class to be defined as variable-length multi-dimensional
arrays. Arrays of any built-in type or user-defined type can be created. To illustrate their
use, we create this class:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter int4[],
 schedule text[][]
);

 The above query will create a class named sal_emp with a text string (name), a
one-dimensional array of int4 (pay_by_quarter), which represents the employee’s salary by
quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule. Now we do some INSERTSs; note that when appending to an array, we
enclose the values within braces and separate them by commas. If you know C, this is not
unlike the syntax for initializing structures.

INSERT INTO sal_emp
 VALUES (’Bill’,
 ’{10000, 10000, 10000, 10000}’,
 ’{{"meeting", "lunch"}, {}}’);

INSERT INTO sal_emp
 VALUES (’Carol’,
 ’{20000, 25000, 25000, 25000}’,
 ’{{"talk", "consult"}, {"meeting"}}’);

 Now, we can run some queries on sal_emp. First, we show how to access a single element
of an array at a time. This query retrieves the names of the employees whose pay changed
in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <>
pay_by_quarter[2];

 name

 Carol
(1 row)

 Postgres uses the "one-based" numbering convention for arrays --- that is, an array of n
elements starts with array[1] and ends with array[n].

 This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;
 pay_by_quarter

 10000
 25000
(2 rows)

Chapter 8. Arrays

71

 We can also access arbitrary slices of an array, or subarrays. An array slice is denoted by
writing "lower subscript : upper subscript" for one or more array dimensions. This query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

 schedule

 {{"meeting"},{""}}
(1 row)

 We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’Bill’;

 with the same result.

 An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
 WHERE name = ’Carol’;

 or updated at a single entry:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = ’Bill’;

 or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
 WHERE name = ’Carol’;

 It is not currently possible to resize an array value except by complete replacement; for
example, we couldn’t change a four- element array value to a five-element value with a
single assignment to array[5].

 The syntax for CREATE TABLE allows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
 squares int4[3][3]
);

 However, the current implementation does not enforce the array size limits --- the behavior
is the same as for arrays of unspecified length.

72

Chapter 9. Inheritance
 Let’s create two classes. The capitals class contains state capitals which are also cities.
Naturally, the capitals class should inherit from cities.

CREATE TABLE cities (
 name text,
 population float,
 altitude int -- (in ft)
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

 In this case, an instance of capitals inherits all attributes (name, population, and altitude)
from its parent, cities. The type of the attribute name is text, a native Postgres type for
variable length ASCII strings. The type of the attribute population is float, a native
Postgres type for double precision floating point numbers. State capitals have an extra
attribute, state, that shows their state. In Postgres, a class can inherit from zero or more
other classes, and a query can reference either all instances of a class or all instances of a
class plus all of its descendants.

Note: The inheritance hierarchy is a actually a directed acyclic graph.

 For example, the following query finds all the cities that are situated at an attitude of 500ft
or higher:

SELECT name, altitude
 FROM cities
 WHERE altitude > 500;

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953
(2 rows)

 On the other hand, to find the names of all cities, including state capitals, that are located
at an altitude over 500ft, the query is:

SELECT c.name, c.altitude
 FROM cities* c
 WHERE c.altitude > 500;

 which returns:

 name | altitude
-----------+----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845

Chapter 9. Inheritance

73

 Here the �*� after cities indicates that the query should be run over cities and all classes
below cities in the inheritance hierarchy. Many of the commands that we have already
discussed -- SELECT, UPDATE and DELETE -- support this �*� notation, as do others,
like ALTER TABLE.

74

Chapter 10. PL/pgSQL Procedural
Language

 PL/pgSQL is a loadable procedural language for the Postgres database system.

 This package was originally written by Jan Wieck.

Overview
 The design goals of PL/pgSQL were to create a loadable procedural language that

 can be used to create functions and trigger procedures,

 adds control structures to the SQL language,

 can perform complex computations,

 inherits all user defined types, functions and operators,

 can be defined to be trusted by the server,

 is easy to use.

 The PL/pgSQL call handler parses the functions source text and produces an internal
binary instruction tree on the first time, the function is called by a backend. The produced
bytecode is identified in the call handler by the object ID of the function. This ensures, that
changing a function by a DROP/CREATE sequence will take effect without establishing a
new database connection.

 For all expressions and SQL statements used in the function, the PL/pgSQL bytecode
interpreter creates a prepared execution plan using the SPI managers SPI_prepare() and
SPI_saveplan() functions. This is done the first time, the individual statement is processed
in the PL/pgSQL function. Thus, a function with conditional code that contains many
statements for which execution plans would be required, will only prepare and save those
plans that are really used during the entire lifetime of the database connection.

 Except for input-/output-conversion and calculation functions for user defined types,
anything that can be defined in C language functions can also be done with PL/pgSQL. It is
possible to create complex conditional computation functions and later use them to define
operators or use them in functional indices.

Description

Structure of PL/pgSQL

 The PL/pgSQL language is case insensitive. All keywords and identifiers can be used in
mixed upper- and lowercase.

Chapter 10. PL/pgSQL - SQL Procedural
Language

75

 PL/pgSQL is a block oriented language. A block is defined as

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END;

 There can be any number of subblocks in the statement section of a block. Subblocks can
be used to hide variables from outside a block of statements. The variables declared in the
declarations section preceding a block are initialized to their default values every time the
block is entered, not only once per function call.

 It is important not to misunderstand the meaning of BEGIN/END for grouping statements
in PL/pgSQL and the database commands for transaction control. Functions and trigger
procedures cannot start or commit transactions and Postgres does not have nested
transactions.

Comments

 There are two types of comments in PL/pgSQL. A double dash ’--’ starts a comment that
extends to the end of the line. A ’/*’ starts a block comment that extends to the next
occurence of ’*/’. Block comments cannot be nested, but double dash comments can be
enclosed into a block comment and a double dash can hide the block comment delimiters
’/*’ and ’*/’.

Declarations

 All variables, rows and records used in a block or it’s subblocks must be declared in the
declarations section of a block except for the loop variable of a FOR loop iterating over a
range of integer values. Parameters given to a PL/pgSQL function are automatically
declared with the usual identifiers $n. The declarations have the following syntax:

name [CONSTANT] >typ> [NOT NULL] [DEFAULT | := value];

 Declares a variable of the specified base type. If the variable is declared as
CONSTANT, the value cannot be changed. If NOT NULL is specified, an assignment
of a NULL value results in a runtime error. Since the default value of all variables is
the SQL NULL value, all variables declared as NOT NULL must also have a default
value specified.

 The default value is evaluated ever time the function is called. So assigning ’now’ to
a variable of type datetime causes the variable to have the time of the actual
function call, not when the function was precompiled into it’s bytecode.

name class%ROWTYPE;

 Declares a row with the structure of the given class. Class must be an existing table-
or viewname of the database. The fields of the row are accessed in the dot notation.
Parameters to a function can be composite types (complete table rows). In that case,

Chapter 10. PL/pgSQL - SQL Procedural
Language

76

the corresponding identifier $n will be a rowtype, but it must be aliased using the
ALIAS command described below. Only the user attributes of a table row are
accessible in the row, no Oid or other system attributes (hence the row could be from
a view and view rows don’t have useful system attributes).

 The fields of the rowtype inherit the tables fieldsizes or precision for char() etc. data
types.

name RECORD;

 Records are similar to rowtypes, but they have no predefined structure. They are used
in selections and FOR loops to hold one actual database row from a SELECT
operation. One and the same record can be used in different selections. Accessing a
record or an attempt to assign a value to a record field when there is no actual row in it
results in a runtime error.

 The NEW and OLD rows in a trigger are given to the procedure as records. This is
necessary because in Postgres one and the same trigger procedure can handle trigger
events for different tables.

name ALIAS FOR $n;

 For better readability of the code it is possible to define an alias for a positional
parameter to a function.

 This aliasing is required for composite types given as arguments to a function. The
dot notation $1.salary as in SQL functions is not allowed in PL/pgSQL.

RENAME oldname TO newname;

 Change the name of a variable, record or row. This is useful if NEW or OLD should
be referenced by another name inside a trigger procedure.

Data Types

 The type of a varible can be any of the existing basetypes of the database. type in the
declarations section above is defined as:

 Postgres-basetype

 variable%TYPE

 class.field%TYPE

 variable is the name of a variable, previously declared in the same function, that is
visible at this point.

 class is the name of an existing table or view where field is the name of an attribute.

 Using the class.field%TYPE causes PL/pgSQL to lookup the attributes definitions
at the first call to the funciton during the lifetime of a backend. Have a table with a
char(20) attribute and some PL/pgSQL functions that deal with it’s content in local
variables. Now someone decides that char(20) isn’t enough, dumps the table, drops it,
recreates it now with the attribute in question defined as char(40) and restores the data. Ha
- he forgot about the funcitons. The computations inside them will truncate the values to 20
characters. But if they are defined using the class.field%TYPE declarations, they

Chapter 10. PL/pgSQL - SQL Procedural
Language

77

will automagically handle the size change or if the new table schema defines the attribute
as text type.

Expressions

 All expressions used in PL/pgSQL statements are processed using the backends executor.
Expressions which appear to contain constants may in fact require run-time evaluation (e.g.
’now’ for the datetime type) so it is impossible for the PL/pgSQL parser to identify real
constant values other than the NULL keyword. All expressions are evaluated internally by
executing a query

 SELECT expression

 using the SPI manager. In the expression, occurences of variable identifiers are substituted
by parameters and the actual values from the variables are passed to the executor in the
parameter array. All expressions used in a PL/pgSQL function are only prepared and saved
once.

 The type checking done by the Postgres main parser has some side effects to the
interpretation of constant values. In detail there is a difference between what the two
functions

CREATE FUNCTION logfunc1 (text) RETURNS datetime AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 BEGIN
 INSERT INTO logtable VALUES (logtxt, ’’now’’);
 RETURN ’’now’’;
 END;
’ LANGUAGE ’plpgsql’;

 and

CREATE FUNCTION logfunc2 (text) RETURNS datetime AS ’
 DECLARE
 logtxt ALIAS FOR $1;
 curtime datetime;
 BEGIN
 curtime := ’’now’’;
 INSERT INTO logtable VALUES (logtxt, curtime);
 RETURN curtime;
 END;
’ LANGUAGE ’plpgsql’;

 do. In the case of logfunc1(), the Postgres main parser knows when preparing the plan for
the INSERT, that the string ’now’ should be interpreted as datetime because the target field
of logtable is of that type. Thus, it will make a constant from it at this time and this
constant value is then used in all invocations of logfunc1() during the lifetime of the
backend. Needless to say that this isn’t what the programmer wanted.

 In the case of logfunc2(), the Postgres main parser does not know what type ’now’ should
become and therefor it returns a datatype of text containing the string ’now’. During the

Chapter 10. PL/pgSQL - SQL Procedural
Language

78

assignment to the local variable curtime, the PL/pgSQL interpreter casts this string to the
datetime type by calling the text_out() and datetime_in() functions for the conversion.

 This type checking done by the Postgres main parser got implemented after PL/pgSQL
was nearly done. It is a difference between 6.3 and 6.4 and affects all functions using the
prepared plan feature of the SPI manager. Using a local variable in the above manner is
currently the only way in PL/pgSQL to get those values interpreted correctly.

 If record fields are used in expressions or statements, the data types of fields should not
change between calls of one and the same expression. Keep this in mind when writing
trigger procedures that handle events for more than one table.

Statements

 Anything not understood by the PL/pgSQL parser as specified below will be put into a
query and sent down to the database engine to execute. The resulting query should not
return any data.

Assignment

 An assignment of a value to a variable or row/record field is written as

 identifier := expression;

 If the expressions result data type doesn’t match the variables data type, or the
variable has a size/precision that is known (as for char(20)), the result value will be
implicitly casted by the PL/pgSQL bytecode interpreter using the result types output-
and the variables type input-functions. Note that this could potentially result in
runtime errors generated by the types input functions.

 An assignment of a complete selection into a record or row can be done by

SELECT expressions INTO target FROM ...;

 target can be a record, a row variable or a comma separated list of variables and
record-/row-fields.

 if a row or a variable list is used as target, the selected values must exactly match the
structure of the target(s) or a runtime error occurs. The FROM keyword can be
followed by any valid qualification, grouping, sorting etc. that can be given for a
SELECT statement.

 There is a special variable named FOUND of type bool that can be used immediately
after a SELECT INTO to check if an assignment had success.

SELECT * INTO myrec FROM EMP WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION ’’employee % not found’’, myname;
END IF;

 If the selection returns multiple rows, only the first is moved into the target fields. All
others are silently discarded.

Calling another function

 All functions defined in a Prostgres database return a value. Thus, the normal way to
call a function is to execute a SELECT query or doing an assignment (resulting in a

Chapter 10. PL/pgSQL - SQL Procedural
Language

79

PL/pgSQL internal SELECT). But there are cases where someone isn’t interested int
the functions result.

PERFORM query

 executes a ’SELECT query’ over the SPI manager and discards the result.
Identifiers like local variables are still substituted into parameters.

Returning from the function

RETURN expression

 The function terminates and the value of expression will be returned to the upper
executor. The return value of a function cannot be undefined. If control reaches the
end of the toplevel block of the function without hitting a RETURN statement, a
runtime error will occur.

 The expressions result will be automatically casted into the functions return type as
described for assignments.

Aborting and messages

 As indicated in the above examples there is a RAISE statement that can throw
messages into the Postgres elog mechanism.

RAISE level format’’ [, identifier [...]];

 Inside the format, �%� is used as a placeholder for the subsequent comma-separated
identifiers. Possible levels are DEBUG (silently suppressed in production running
databases), NOTICE (written into the database log and forwarded to the client
application) and EXCEPTION (written into the database log and aborting the
transaction).

Conditionals

IF expression THEN
 statements
[ELSE
 statements]
END IF;

 The expression must return a value that at least can be casted into a boolean type.

Loops

 There are multiple types of loops.

[<<label>>]
LOOP
 statements
END LOOP;

Chapter 10. PL/pgSQL - SQL Procedural
Language

80

 An unconditional loop that must be terminated explicitly by an EXIT statement. The
optional label can be used by EXIT statements of nested loops to specify which level
of nesting should be terminated.

[<<label>>]
WHILE expression LOOP
 statements
END LOOP;

 A conditional loop that is executed as long as the evaluation of expression is true.

[<<label>>]
FOR name IN [REVERSE] expression .. expression LOOP
 statements
END LOOP;

 A loop that iterates over a range of integer values. The variable name is
automatically created as type integer and exists only inside the loop. The two
expressions giving the lower and upper bound of the range are evaluated only when
entering the loop. The iteration step is always 1.

[<<label>>]
FOR record | row IN select_clause LOOP
 statements
END LOOP;

 The record or row is assigned all the rows resulting from the select clause and the
statements executed for each. If the loop is terminated with an EXIT statement, the
last assigned row is still accessible after the loop.

EXIT [label] [WHEN expression];

 If no label given, the innermost loop is terminated and the statement following
END LOOP is executed next. If label is given, it must be the label of the current or
an upper level of nested loop blocks. Then the named loop or block is terminated and
control continues with the statement after the loops/blocks corresponding END.

Trigger Procedures

 PL/pgSQL can be used to define trigger procedures. They are created with the usual
CREATE FUNCTION command as a function with no arguments and a return type of
OPAQUE.

 There are some Postgres specific details in functions used as trigger procedures.

 First they have some special variables created automatically in the toplevel blocks
declaration section. They are

NEW

 Datatype RECORD; variable holding the new database row on INSERT/UPDATE
operations on ROW level triggers.

Chapter 10. PL/pgSQL - SQL Procedural
Language

81

OLD

 Datatype RECORD; variable holding the old database row on UPDATE/DELETE
operations on ROW level triggers.

TG_NAME

 Datatype name; variable that contains the name of the trigger actually fired.

TG_WHEN

 Datatype text; a string of either ’BEFORE’ or ’AFTER’ depending on the triggers
definition.

TG_LEVEL

 Datatype text; a string of either ’ROW’ or ’STATEMENT’ depending on the triggers
definition.

TG_OP

 Datatype text; a string of ’INSERT’, ’UPDATE’ or ’DELETE’ telling for which
operation the trigger is actually fired.

TG_RELID

 Datatype oid; the object ID of the table that caused the trigger invocation.

TG_RELNAME

 Datatype name; the name of the table that caused the trigger invocation.

TG_NARGS

 Datatype integer; the number of arguments given to the trigger procedure in the
CREATE TRIGGER statement.

TG_ARGV[]

 Datatype array of text; the arguments from the CREATE TRIGGER statement. The
index counts from 0 and can be given as an expression. Invalid indices (< 0 or >=
tg_nargs) result in a NULL value.

 Second they must return either NULL or a record/row containing exactly the structure of
the table the trigger was fired for. Triggers fired AFTER might always return a NULL
value with no effect. Triggers fired BEFORE signal the trigger manager to skip the
operation for this actual row when returning NULL. Otherwise, the returned record/row
replaces the inserted/updated row in the operation. It is possible to replace single values
directly in NEW and return that or to build a complete new record/row to return.

Exceptions

 Postgres does not have a very smart exception handling model. Whenever the parser,
planner/optimizer or executor decide that a statement cannot be processed any longer, the
whole transaction gets aborted and the system jumps back into the mainloop to get the next
query from the client application.

Chapter 10. PL/pgSQL - SQL Procedural
Language

82

 It is possible to hook into the error mechanism to notice that this happens. But currently
it’s impossible to tell what really caused the abort (input/output conversion error, floating
point error, parse error). And it is possible that the database backend is in an inconsistent
state at this point so returning to the upper executor or issuing more commands might
corrupt the whole database. And even if, at this point the information, that the transaction is
aborted, is already sent to the client application, so resuming operation does not make any
sense.

 Thus, the only thing PL/pgSQL currently does when it encounters an abort during
execution of a function or trigger procedure is to write some additional DEBUG level log
messages telling in which function and where (line number and type of statement) this
happened.

Examples
 Here are only a few functions to demonstrate how easy PL/pgSQL functions can be
written. For more complex examples the programmer might look at the regression test for
PL/pgSQL.

 One painful detail of writing functions in PL/pgSQL is the handling of single quotes. The
functions source text on CREATE FUNCTION must be a literal string. Single quotes
inside of literal strings must be either doubled or quoted with a backslash. We are still
looking for an elegant alternative. In the meantime, doubling the single qoutes as in the
examples below should be used. Any solution for this in future versions of Postgres will be
upward compatible.

Some Simple PL/pgSQL Functions

 The following two PL/pgSQL functions are identical to their counterparts from the C
language function discussion.

CREATE FUNCTION add_one (int4) RETURNS int4 AS ’
 BEGIN
 RETURN $1 + 1;
 END;
’ LANGUAGE ’plpgsql’;

CREATE FUNCTION concat_text (text, text) RETURNS text AS ’
 BEGIN
 RETURN $1 || $2;
 END;
’ LANGUAGE ’plpgsql’;

Chapter 10. PL/pgSQL - SQL Procedural
Language

83

PL/pgSQL Function on Composite Type

 Again it is the PL/pgSQL equivalent to the example from The C functions.

CREATE FUNCTION c_overpaid (EMP, int4) RETURNS bool AS ’
 DECLARE
 emprec ALIAS FOR $1;
 sallim ALIAS FOR $2;
 BEGIN
 IF emprec.salary ISNULL THEN
 RETURN ’’f’’;
 END IF;
 RETURN emprec.salary > sallim;
 END;
’ LANGUAGE ’plpgsql’;

PL/pgSQL Trigger Procedure

 This trigger ensures, that any time a row is inserted or updated in the table, the current
username and time are stamped into the row. And it ensures that an employees name is
given and that the salary is a positive value.

CREATE TABLE emp (
 empname text,
 salary int4,
 last_date datetime,
 last_user name);

CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname ISNULL THEN
 RAISE EXCEPTION ’’empname cannot be NULL value’’;
 END IF;
 IF NEW.salary ISNULL THEN
 RAISE EXCEPTION ’’% cannot have NULL salary’’,
NEW.empname;
 END IF;

 -- Who works for us when she must pay for?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION ’’% cannot have a negative salary’’,
NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := ’’now’’;
 NEW.last_user := getpgusername();
 RETURN NEW;
 END;
’ LANGUAGE ’plpgsql’;

Chapter 10. PL/pgSQL - SQL Procedural
Language

84

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

85

Chapter 11. PL/Tcl Procedural Language
 PL/Tcl is a loadable procedural language for the Postgres database system that enables the
Tcl language to be used to create functions and trigger-procedures.

 This package was originally written by Jan Wieck.

Overview
 PL/Tcl offers most of the capabilities a function writer has in the C language, except for
some restrictions.

 The good restriction is, that everything is executed in a safe Tcl-interpreter. In addition to
the limited command set of safe Tcl, only a few commands are available to access the
database over SPI and to raise messages via elog(). There is no way to access internals of
the database backend or gaining OS-level access under the permissions of the Postgres user
ID like in C. Thus, any unprivileged database user may be permitted to use this language.

 The other, internal given, restriction is, that Tcl procedures cannot be used to create
input-/output-functions for new data types.

 The shared object for the PL/Tcl call handler is automatically built and installed in the
Postgres library directory if the Tcl/Tk support is specified in the configuration step of the
installation procedure.

Description

Postgres Functions and Tcl Procedure Names

 In Postgres, one and the same function name can be used for different functions as long as
the number of arguments or their types differ. This would collide with Tcl procedure
names. To offer the same flexibility in PL/Tcl, the internal Tcl procedure names contain
the object ID of the procedures pg_proc row as part of their name. Thus, different argtype
versions of the same Postgres function are different for Tcl too.

Defining Functions in PL/Tcl

 To create a function in the PL/Tcl language, use the known syntax

CREATE FUNCTION funcname argument-types) RETURNS return-type AS ’
 # PL/Tcl function body
’ LANGUAGE ’pltcl’;

 When calling this function in a query, the arguments are given as variables $1 ... $n to the
Tcl procedure body. So a little max function returning the higher of two int4 values would
be created as:

CREATE FUNCTION tcl_max (int4, int4) RETURNS int4 AS ’
 if {$1 > $2} {return $1}
 return $2
’ LANGUAGE ’pltcl’;

Chapter 11. PL/Tcl - TCL Procedural
Language

86

 Composite type arguments are given to the procedure as Tcl arrays. The element names in
the array are the attribute names of the composite type. If an attribute in the actual row has
the NULL value, it will not appear in the array! Here is an example that defines the
overpaid_2 function (as found in the older Postgres documentation) in PL/Tcl

CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS ’
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
’ LANGUAGE ’pltcl’;

Global Data in PL/Tcl

 Sometimes (especially when using the SPI functions described later) it is useful to have
some global status data that is held between two calls to a procedure. All PL/Tcl
procedures executed in one backend share the same safe Tcl interpreter. To help protecting
PL/Tcl procedures from side effects, an array is made available to each procedure via the
upvar command. The global name of this variable is the procedures internal name and the
local name is GD.

Trigger Procedures in PL/Tcl

 Trigger procedures are defined in Postgres as functions without arguments and a return
type of opaque. And so are they in the PL/Tcl language.

 The informations from the trigger manager are given to the procedure body in the
following variables:

$TG_name

 The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

 The object ID of the table that caused the trigger procedure to be invoked.

$TG_relatts

 A Tcl list of the tables field names prefixed with an empty list element. So looking up
an element name in the list with the lsearch Tcl command returns the same positive
number starting from 1 as the fields are numbered in the pg_attribute system catalog.

$TG_when

 The string BEFORE or AFTER depending on the event of the trigger call.

Chapter 11. PL/Tcl - TCL Procedural
Language

87

$TG_level

 The string ROW or STATEMENT depending on the event of the trigger call.

$TG_op

 The string INSERT, UPDATE or DELETE depending on the event of the trigger call.

$NEW

 An array containing the values of the new table row on INSERT/UPDATE actions, or
empty on DELETE.

$OLD

 An array containing the values of the old table row on UPDATE/DELETE actions, or
empty on INSERT.

$GD

 The global status data array as described above.

$args

 A Tcl list of the arguments to the procedure as given in the CREATE TRIGGER
statement. The arguments are also accessible as $1 ... $n in the procedure body.

 The return value from a trigger procedure is one of the strings OK or SKIP, or a list as
returned by the ’array get’ Tcl command. If the return value is OK, the normal operation
(INSERT/UPDATE/DELETE) that fired this trigger will take place. Obviously, SKIP tells
the trigger manager to silently suppress the operation. The list from ’array get’ tells PL/Tcl
to return a modified row to the trigger manager that will be inserted instead of the one
given in $NEW (INSERT/UPDATE only). Needless to say that all this is only meaningful
when the trigger is BEFORE and FOR EACH ROW.

 Here’s a little example trigger procedure that forces an integer value in a table to keep
track of the # of updates that are performed on the row. For new row’s inserted, the value is
initialized to 0 and then incremented on every update operation:

CREATE FUNCTION trigfunc_modcount() RETURNS OPAQUE AS ’
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
’ LANGUAGE ’pltcl’;

CREATE TABLE mytab (num int4, modcnt int4, desc text);

Chapter 11. PL/Tcl - TCL Procedural
Language

88

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

Database Access from PL/Tcl

 The following commands are available to access the database from the body of a PL/Tcl
procedure:

elog level msg

 Fire a log message. Possible levels are NOTICE, WARN, ERROR, FATAL, DEBUG
and NOIND like for the elog C function.

quote string

 Duplicates all occurences of single quote and backslash characters. It should be used
when variables are used in the query string given to spi_exec or spi_prepare (not
for the value list on spi_execp). Think about a query string like

"SELECT ’$val’ AS ret"

 where the Tcl variable val actually contains "doesn’t". This would result in the final
query string

"SELECT ’doesn’t’ AS ret"

 what would cause a parse error during spi_exec or spi_prepare. It should contain

"SELECT ’doesn’’t’ AS ret"

 and has to be written as

"SELECT ’[quote $val]’ AS ret"

spi_exec ?-count n? ?-array name? query ?loop-body?

 Call parser/planner/optimizer/executor for query. The optional -count value tells
spi_exec the maximum number of rows to be processed by the query.

 If the query is a SELECT statement and the optional loop-body (a body of Tcl
commands like in a foreach statement) is given, it is evaluated for each row selected
and behaves like expected on continue/break. The values of selected fields are put into
variables named as the column names. So a

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

 will set the variable $cnt to the number of rows in the pg_proc system catalog. If the
option -array is given, the column values are stored in the associative array named

Chapter 11. PL/Tcl - TCL Procedural
Language

89

’name’ indexed by the column name instead of individual variables.

spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

 will print a DEBUG log message for every row of pg_class. The return value of
spi_exec is the number of rows affected by query as found in the global variable
SPI_processed.

spi_prepare query typelist

 Prepares AND SAVES a query plan for later execution. It is a bit different from the C
level SPI_prepare in that the plan is automatically copied to the toplevel memory
context. Thus, there is currently no way of preparing a plan without saving it.

 If the query references arguments, the type names must be given as a Tcl list. The
return value from spi_prepare is a query ID to be used in subsequent calls to
spi_execp. See spi_execp for a sample.

spi_exec ?-count n? ?-arrayname? ?-nullsstring? query ?value-list?
?loop-body?

 Execute a prepared plan from spi_prepare with variable substitution. The optional
-count value tells spi_execp the maximum number of rows to be processed by the
query.

 The optional value for -nulls is a string of spaces and ’n’ characters telling spi_execp
which of the values are NULL’s. If given, it must have exactly the length of the
number of values.

 The queryid is the ID returned by the spi_prepare call.

 If there was a typelist given to spi_prepare, a Tcl list of values of exactly the same
length must be given to spi_execp after the query. If the type list on spi_prepare was
empty, this argument must be omitted.

 If the query is a SELECT statement, the same as described for spi_exec happens for
the loop-body and the variables for the fields selected.

 Here’s an example for a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(int4, int4) RETURNS int4 AS ’
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \\
 "SELECT count(*) AS cnt FROM t1 WHERE num >=
\\$1 AND num <= \\$2" \\
 int4]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
’ LANGUAGE ’pltcl’;

 Note that each backslash that Tcl should see must be doubled in the query creating
the function, since the main parser processes backslashes too on CREATE
FUNCTION. Inside the query string given to spi_prepare should really be dollar signs

Chapter 11. PL/Tcl - TCL Procedural
Language

90

to mark the parameter positions and to not let $1 be substituted by the value given in
the first function call.

 Modules and the unknown command

 PL/Tcl has a special support for things often used. It recognizes two magic tables,
pltcl_modules and pltcl_modfuncs. If these exist, the module ’unknown’ is loaded into
the interpreter right after creation. Whenever an unknown Tcl procedure is called, the
unknown proc is asked to check if the procedure is defined in one of the modules. If
this is true, the module is loaded on demand. To enable this behavior, the PL/Tcl call
handler must be compiled with -DPLTCL_UNKNOWN_SUPPORT set.

 There are support scripts to maintain these tables in the modules subdirectory of the
PL/Tcl source including the source for the unknown module that must get installed
initially.

91

Chapter 12. PL/perl Procedural Language
 This chapter describes how to compile, install and use PL/Perl.

Overview
 PL/Perl allows you to write functions in the Perl scripting language which may be used in
SQL queries as if they were built into Postgres.

 The PL/Perl intepreter is a full Perl interpreter. However, certain operations have been
disabled in order to increase the security level of the system.

 In general, the operations that are restricted are those that interact with the environment.
This includes filehandle operations, require, and use (for external modules).

 It should be noted that this security is not absolute. Indeed, several Denial-of-Service
attacks are still possible - memory exhaustion and endless loops are two.

Building and Installing
 Assuming that the Postgres source tree is rooted at $PGSRC, then the Pl/perl source code
is located in $PGSRC/src/pl/plperl.

 To build, simply do the following:

cd $PGSRC/src/pl/plperl
perl Makefile.PL
make

 This will create a shared library file. On a Linux system, it will be named plperl.so. The
extension may differ on other systems.

 The shared library should then be copied into the lib subdirectory of the postgres
installation.

 The createlang command is used to install the language into a database. If it is installed
into template1, all future databases will have the language installed automatically.

Using PL/Perl
 Assume you have the following table:

CREATE TABLE EMPLOYEE (
 name text,
 basesalary int4,
 bonus int4);

Chapter 12. PL/perl - Perl Procedural
Language

92

 In order to get the total compensation (base + bonus) we could define a function as
follows:

CREATE FUNCTION totalcomp(int4, int4) RETURNS int4
 AS ’return $_[0] + $_[1]’
 LANGUAGE ’plperl’;

 Note that the arguments are passed to the function in @_ as might be expected. Also,
because of the quoting rules for the SQL creating the function, you may find yourself using
the extended quoting functions (qq[], q[], qw[]) more often that you are used to.

 We may now use our function like so:

SELECT name, totalcomp(basesalary, bonus) from employee

 But, we can also pass entire tuples to our function:

CREATE FUNCTION empcomp(employee) returns int4
 AS ’my $emp = shift;
 return $emp->{’basesalary’} + $emp->{’bonus’};’
 LANGUAGE ’plperl’;

 A tuple is passed as a reference to hash. The keys are the names of fields in the tuples. The
values are values of the corresponding field in the tuple.

 The new function empcomp can used like:

SELECT name, empcomp(employee) from employee;

93

Chapter 13. Multi-Version Concurrency
Control

 Multi-Version Concurrency Control (MVCC) is an advanced technique for improving
database performance in a multi-user environment. Vadim Mikheev (mailto:vadim@krs.ru)
provided the implementation for Postgres.

Introduction
 Unlike most other database systems which use locks for concurrency control, Postgres
maintains data consistency by using a multiversion model. This means that while querying
a database each transaction sees a snapshot of data (a database version) as it was some
time ago, regardless of the current state of the underlying data. This protects the transaction
from viewing inconsistent data that could be caused by (other) concurrent transaction
updates on the same data rows, providing transaction isolation for each database session.

 The main difference between multiversion and lock models is that in MVCC locks
acquired for querying (reading) data don’t conflict with locks acquired for writing data and
so reading never blocks writing and writing never blocks reading.

Transaction Isolation
 The ANSI/ISO SQL standard defines four levels of transaction isolation in terms of three
phenomena that must be prevented between concurrent transactions. These undesirable
phenomena are:

 dirty reads

 A transaction reads data written by concurrent uncommitted transaction.

 non-repeatable reads

 A transaction re-reads data it has previously read and finds that data has been
modified by another committed transaction.

 phantom read

 A transaction re-executes a query returning a set of rows that satisfy a search
condition and finds that additional rows satisfying the condition has been inserted by
another committed transaction.

Chapter 13. Multi-Version Concurrency
Control

94

 The four isolation levels and the corresponding behaviors are described below.

Table 13-1. Postgres Isolation Levels

 Mode Dirty Read Non-Repeatable Read Phantom Read

 Read uncommitted Possible Possible Possible

 Read committed Not possible Possible Possible

 Repeatable read Not possible Not possible Possible

 Serializable Not possible Not possible Not possible

 Postgres offers the read committed and serializable isolation levels.

Read Committed Isolation Level
 Read Committed is the default isolation level in Postgres. When a transaction runs on this
isolation level, a query sees only data committed before the query began and never sees
either dirty data or concurrent transaction changes committed during query execution.

 If a row returned by a query while executing an UPDATE statement (or DELETE or
SELECT FOR UPDATE) is being updated by a concurrent uncommitted transaction then
the second transaction that tries to update this row will wait for the other transaction to
commit or rollback. In the case of rollback, the waiting transaction can proceed to change
the row. In the case of commit (and if the row still exists; i.e. was not deleted by the other
transaction), the query will be re-executed for this row to check that new row version
satisfies query search condition. If the new row version satisfies the query search condition
then row will be updated (or deleted or marked for update).

 Note that the results of execution of SELECT or INSERT (with a query) statements will
not be affected by concurrent transactions.

Serializable Isolation Level
 Serializable provides the highest transaction isolation. When a transaction is on the
serializable level, a query sees only data committed before the transaction began and never
see either dirty data or concurrent transaction changes committed during transaction
execution. So, this level emulates serial transaction execution, as if transactions would be
executed one after another, serially, rather than concurrently.

 If a row returned by query while executing a UPDATE (or DELETE or SELECT FOR
UPDATE) statement is being updated by a concurrent uncommitted transaction then the
second transaction that tries to update this row will wait for the other transaction to commit
or rollback. In the case of rollback, the waiting transaction can proceed to change the row.
In the case of a concurrent transaction commit, a serializable transaction will be rolled back
with the message

ERROR: Can’t serialize access due to concurrent update

 because a serializable transaction cannot modify rows changed by other transactions after
the serializable transaction began.

Chapter 13. Multi-Version Concurrency
Control

95

Note: Note that results of execution of SELECT or INSERT (with a query) will not be
affected by concurrent transactions.

Locking and Tables
 Postgres provides various lock modes to control concurrent access to data in tables. Some
of these lock modes are acquired by Postgres automatically before statement execution,
while others are provided to be used by applications. All lock modes (except for
AccessShareLock) acquired in a transaction are held for the duration of the transaction.

 In addition to locks, short-term share/exclusive latches are used to control read/write
access to table pages in shared buffer pool. Latches are released immediately after a tuple
is fetched or updated.

Table-level locks

 AccessShareLock

 An internal lock mode acquiring automatically over tables being queried. Postgres
releases these locks after statement is done.

 Conflicts with AccessExclusiveLock only.

 RowShareLock

 Acquired by SELECT FOR UPDATE and LOCK TABLE for IN ROW SHARE
MODE statements.

 Conflicts with ExclusiveLock and AccessExclusiveLock modes.

 RowExclusiveLock

 Acquired by UPDATE, DELETE, INSERT and LOCK TABLE for IN ROW
EXCLUSIVE MODE statements.

 Conflicts with ShareLock, ShareRowExclusiveLock, ExclusiveLock and
AccessExclusiveLock modes.

 ShareLock

 Acquired by CREATE INDEX and LOCK TABLE table for IN SHARE MODE
statements.

 Conflicts with RowExclusiveLock, ShareRowExclusiveLock, ExclusiveLock and
AccessExclusiveLock modes.

 ShareRowExclusiveLock

 Acquired by LOCK TABLE for IN SHARE ROW EXCLUSIVE MODE statements.

 Conflicts with RowExclusiveLock, ShareLock, ShareRowExclusiveLock,
ExclusiveLock and AccessExclusiveLock modes.

 ExclusiveLock

 Acquired by LOCK TABLE table for IN EXCLUSIVE MODE statements.

Chapter 13. Multi-Version Concurrency
Control

96

 Conflicts with RowShareLock, RowExclusiveLock, ShareLock,
ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock modes.

 AccessExclusiveLock

 Acquired by ALTER TABLE, DROP TABLE, VACUUM and LOCK TABLE
statements.

 Conflicts with RowShareLock, RowExclusiveLock, ShareLock,
ShareRowExclusiveLock, ExclusiveLock and AccessExclusiveLock modes.

Note: Only AccessExclusiveLock blocks SELECT (without FOR UPDATE)
statement.

Row-level locks

 These locks are acquired when internal fields of a row are being updated (or deleted or
marked for update). Postgres doesn’t remember any information about modified rows in
memory and so has no limit to the number of rows locked without lock escalation.

 However, take into account that SELECT FOR UPDATE will modify selected rows to
mark them and so will results in disk writes.

 Row-level locks don’t affect data querying. They are used to block writers to the same row
only.

Locking and Indices
 Though Postgres provides unblocking read/write access to table data, unblocked read/write
access is not provided for every index access methods implemented in Postgres.

 The various index types are handled as follows:

 GiST and R-Tree indices

 Share/exclusive index-level locks are used for read/write access. Locks are released
after statement is done.

 Hash indices

 Share/exclusive page-level locks are used for read/write access. Locks are released
after page is processed.

 Page-level locks produces better concurrency than index-level ones but are subject to
deadlocks.

 Btree

 Short-term share/exclusive page-level latches are used for read/write access. Latches
are released immediately after the index tuple is inserted/fetched.

 Btree indices provide the highest concurrency without deadlock conditions.

Chapter 13. Multi-Version Concurrency
Control

97

Data consistency checks at the application level
 Because readers in Postgres don’t lock data, regardless of transaction isolation level, data
read by one transaction can be overwritten by another. In the other words, if a row is
returned by SELECT it doesn’t mean that this row really exists at the time it is returned
(i.e. sometime after the statement or transaction began) nor that the row is protected from
deletion or update by concurrent transactions before the current transaction does a commit
or rollback.

 To ensure the actual existance of a row and protect it against concurrent updates one must
use SELECT FOR UPDATE or an appropriate LOCK TABLE statement. This should be
taken into account when porting applications using serializable mode to Postgres from
other environments.

Note: Before version 6.5 Postgres used read-locks and so the above consideration is
also the case when upgrading to 6.5 (or higher) from previous Postgres versions.

98

Chapter 14. Setting Up Your Environment
 This section discusses how to set up your own environment so that you can use frontend
applications. We assume Postgres has already been successfully installed and started; refer
to the Administrator’s Guide and the installation notes for how to install Postgres.

Postgres is a client/server application. As a user, you only need access to the client portions
of the installation (an example of a client application is the interactive monitor psql). For
simplicity, we will assume that Postgres has been installed in the directory
/usr/local/pgsql. Therefore, wherever you see the directory /usr/local/pgsql you
should substitute the name of the directory where Postgres is actually installed. All
Postgres commands are installed in the directory /usr/local/pgsql/bin. Therefore,
you should add this directory to your shell command path. If you use a variant of the
Berkeley C shell, such as csh or tcsh, you would add

set path = (/usr/local/pgsql/bin path)

 in the .login file in your home directory. If you use a variant of the Bourne shell, such as
sh, ksh, or bash, then you would add

$ PATH=/usr/local/pgsql/bin:$PATH
$ export PATH

 to the .profile file in your home directory. From now on, we will assume that you have
added the Postgres bin directory to your path. In addition, we will make frequent reference
to �setting a shell variable� or �setting an environment variable� throughout this document. If
you did not fully understand the last paragraph on modifying your search path, you should
consult the Unix manual pages that describe your shell before going any further.

If your site administrator has not set things up in the default way, you may have some more
work to do. For example, if the database server machine is a remote machine, you will need
to set the PGHOST environment variable to the name of the database server machine. The
environment variable PGPORT may also have to be set. The bottom line is this: if you try
to start an application program and it complains that it cannot connect to the postmaster,
you should immediately consult your site administrator to make sure that your environment
is properly set up.

99

Chapter 15. Managing a Database
Note: This section is currently a thinly disguised copy of the Tutorial. Needs to be
augmented. - thomas 1998-01-12

 Although the site administrator is responsible for overall management of the Postgres
installation, some databases within the installation may be managed by another person,
designated the database administrator. This assignment of responsibilities occurs when a
database is created. A user may be assigned explicit privileges to create databases and/or to
create new users. A user assigned both privileges can perform most administrative task
within Postgres, but will not by default have the same operating system privileges as the
site administrator.

 The Database Administrator’s Guide covers these topics in more detail.

Database Creation
 Databases are created by the create database issued from within Postgres. createdb is a
command-line utility provided to give the same functionality from outside Postgres.

 The Postgres backend must be running for either method to succeed, and the user issuing
the command must be the Postgres superuser or have been assigned database creation
privileges by the superuser.

 To create a new database named �mydb� from the command line, type

% createdb mydb

 and to do the same from within psql type

=> CREATE DATABASE mydb;

 If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: Permission denied.

 Postgres allows you to create any number of databases at a given site and you
automatically become the database administrator of the database you just created. Database
names must have an alphabetic first character and are limited to 32 characters in length.

Alternate Database Locations
 It is possible to create a database in a location other than the default location for the
installation. Remember that all database access actually occurs through the database
backend, so that any location specified must be accessible by the backend.

 Alternate database locations are created and referenced by an environment variable which
gives the absolute path to the intended storage location. This environment variable must
have been defined before the backend was started and the location it points to must be
writable by the postgres administrator account. Consult with the site administrator

Chapter 15. Managing a Database

100

regarding preconfigured alternate database locations. Any valid environment variable name
may be used to reference an alternate location, although using variable names with a prefix
of �PGDATA� is recommended to avoid confusion and conflict with other variables.

Note: In previous versions of Postgres, it was also permissable to use an absolute
path name to specify an alternate storage location. Although the environment variable
style of specification is to be preferred since it allows the site administrator more
flexibility in managing disk storage, it is also possible to use an absolute path to
specify an alternate location. The administrator’s guide discusses how to enable this
feature.

 For security and integrity reasons, any path or environment variable specified has some
additional path fields appended. Alternate database locations must be prepared by running
initlocation.

 To create a data storage area using the environment variable PGDATA2 (for this example
set to /alt/postgres), ensure that /alt/postgres already exists and is writable by the
Postgres administrator account. Then, from the command line, type

% initlocation PGDATA2
Creating Postgres database system directory /alt/postgres/data
Creating Postgres database system directory /alt/postgres/data/base

 To create a database in the alternate storage area PGDATA2 from the command line, use
the following command:

% createdb -D PGDATA2 mydb

 and to do the same from within psql type

=> CREATE DATABASE mydb WITH LOCATION = ’PGDATA2’;

 If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: permission denied

 If the specified location does not exist or the database backend does not have permission
to access it or to write to directories under it, you will see the following:

ERROR: The database path ’/no/where’ is invalid. This may be due to
a character that is not allowed or because the chosen path isn’t
permitted for databases.

Accessing a Database
 Once you have constructed a database, you can access it by:

running the PostgreSQL interactive terminal psql which allows you to interactively
enter, edit, and execute SQL commands.

Chapter 15. Managing a Database

101

 writing a C program using the LIBPQ subroutine library. This allows you to submit
SQL commands from C and get answers and status messages back to your program. This
interface is discussed further in The PostgreSQL Programmer’s Guide.

You might want to start up psql, to try out the examples in this manual. It can be activated
for the mydb database by typing the command:

% psql mydb

 You will be greeted with the following message:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

mydb=>

This prompt indicates that psql is listening to you and that you can type SQL queries into a
workspace maintained by the terminal monitor. The psql program responds to escape codes
that begin with the backslash character, �\� For example, you can get help on the syntax of
various PostgreSQL SQL commands by typing:

mydb=> \h

 Once you have finished entering your queries into the workspace, you can pass the
contents of the workspace to the Postgres server by typing:

mydb=> \g

 This tells the server to process the query. If you terminate your query with a semicolon,
the �\g� is not necessary. psql will automatically process semicolon terminated queries. To
read queries from a file, say myFile, instead of entering them interactively, type:

mydb=> \i fileName

 To get out of psql and return to Unix, type

mydb=> \q

 and psql will quit and return you to your command shell. (For more escape codes, type \?
at the psql prompt.) White space (i.e., spaces, tabs and newlines) may be used freely in
SQL queries. Single-line comments are denoted by �--�. Everything after the dashes up to the
end of the line is ignored. Multiple-line comments, and comments within a line, are
denoted by �/* ... */�

Database Privileges

Table Privileges

TBD

Chapter 15. Managing a Database

102

Destroying a Database
 If you are the owner of the database mydb, you can destroy it using the following Unix
command:

% dropdb mydb

 This action physically removes all of the Unix files associated with the database and
cannot be undone, so this should only be done with a great deal of forethought.

103

Chapter 16. Disk Storage
This section needs to be written. Some information is in the FAQ. Volunteers? - thomas
1998-01-11

104

Chapter 17. Understanding Performance
 Query performance can be affected by many things. Some of these can be manipulated by
the user, while others are fundamental to the underlying design of the system.

 Some performance issues, such as index creation and bulk data loading, are covered
elsewhere. This chapter will discuss the EXPLAIN command, and will show how the
details of a query can affect the query plan, and hence overall performance.

Using EXPLAIN
Author: Written by Tom Lane, from e-mail dated 2000-03-27.

 Plan-reading is an art that deserves a tutorial, and I haven’t had time to write one. Here is
some quick & dirty explanation.

 The numbers that are currently quoted by EXPLAIN are:

 Estimated startup cost (time expended before output scan can start, eg, time to do the
sorting in a SORT node).

 Estimated total cost (if all tuples are retrieved, which they may not be --- LIMIT will
stop short of paying the total cost, for example).

 Estimated number of rows output by this plan node.

 Estimated average width (in bytes) of rows output by this plan node.

 The costs are measured in units of disk page fetches. (CPU effort estimates are converted
into disk-page units using some fairly arbitrary fudge-factors. See the SET reference page
if you want to experiment with these.) It’s important to note that the cost of an upper-level
node includes the cost of all its child nodes. It’s also important to realize that the cost only
reflects things that the planner/optimizer cares about. In particular, the cost does not
consider the time spent transmitting result tuples to the frontend --- which could be a pretty
dominant factor in the true elapsed time, but the planner ignores it because it cannot change
it by altering the plan. (Every correct plan will output the same tuple set, we trust.)

 Rows output is a little tricky because it is not the number of rows processed/scanned by
the query --- it is usually less, reflecting the estimated selectivity of any WHERE-clause
constraints that are being applied at this node.

 Average width is pretty bogus because the thing really doesn’t have any idea of the
average length of variable-length columns. I’m thinking about improving that in the future,
but it may not be worth the trouble, because the width isn’t used for very much.

 Here are some examples (using the regress test database after a vacuum analyze, and
almost-7.0 sources):

regression=# explain select * from tenk1;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..333.00 rows=10000 width=148)

Chapter 17. Understanding Performance

105

 This is about as straightforward as it gets. If you do

select * from pg_class where relname = ’tenk1’;

 you’ll find out that tenk1 has 233 disk pages and 10000 tuples. So the cost is estimated at
233 block reads, defined as 1.0 apiece, plus 10000 * cpu_tuple_cost which is currently 0.01
(try show cpu_tuple_cost).

 Now let’s modify the query to add a qualification clause:

regression=# explain select * from tenk1 where unique1 < 1000;
NOTICE: QUERY PLAN:

Seq Scan on tenk1 (cost=0.00..358.00 rows=1000 width=148)

 The estimate of output rows has gone down because of the WHERE clause. (The
uncannily accurate estimate is just because tenk1 is a particularly simple case --- the
unique1 column has 10000 distinct values ranging from 0 to 9999, so the estimator’s linear
interpolation between min and max column values is dead-on.) However, the scan will still
have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to
reflect the extra CPU time spent checking the WHERE condition.

 Modify the query to restrict the qualification even more:

regression=# explain select * from tenk1 where unique1 < 100;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..89.35 rows=100
width=148)

 and you will see that if we make the WHERE condition selective enough, the planner will
eventually decide that an indexscan is cheaper than a sequential scan. This plan will only
have to visit 100 tuples because of the index, so it wins despite the fact that each individual
fetch is expensive.

 Add another condition to the qualification:

regression=# explain select * from tenk1 where unique1 < 100 and
regression-# stringu1 = ’xxx’;
NOTICE: QUERY PLAN:

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..89.60 rows=1
width=148)

 The added clause "stringu1 = ’xxx’" reduces the output-rows estimate, but not the cost
because we still have to visit the same set of tuples.

Chapter 17. Understanding Performance

106

 Let’s try joining two tables, using the fields we have been discussing:

regression=# explain select * from tenk1 t1, tenk2 t2 where
t1.unique1 < 100
regression-# and t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Nested Loop (cost=0.00..144.07 rows=100 width=296)
 -> Index Scan using tenk1_unique1 on tenk1 t1
 (cost=0.00..89.35 rows=100 width=148)
 -> Index Scan using tenk2_unique2 on tenk2 t2
 (cost=0.00..0.53 rows=1 width=148)

 In this nested-loop join, the outer scan is the same indexscan we had in the example before
last, and so its cost and row count are the same because we are applying the "unique1 <
100" WHERE clause at that node. The "t1.unique2 = t2.unique2" clause isn’t relevant yet,
so it doesn’t affect the outer scan’s row count. For the inner scan, the current outer-scan
tuple’s unique2 value is plugged into the inner indexscan to produce an indexqual like
"t2.unique2 = constant". So we get the same inner-scan plan and costs that we’d get
from, say, "explain select * from tenk2 where unique2 = 42". The loop node’s costs are
then set on the basis of the outer scan’s cost, plus one repetition of the inner scan for each
outer tuple (100 * 0.53, here), plus a little CPU time for join processing.

 In this example the loop’s output row count is the same as the product of the two scans’
row counts, but that’s not true in general, because in general you can have WHERE clauses
that mention both relations and so can only be applied at the join point, not to either input
scan. For example, if we added "WHERE ... AND t1.hundred < t2.hundred", that’d
decrease the output row count of the join node, but not change either input scan.

 We can look at variant plans by forcing the planner to disregard whatever strategy it
thought was the winner (a pretty crude tool, but it’s what we’ve got at the moment):

regression=# set enable_nestloop = off;
SET VARIABLE
regression=# explain select * from tenk1 t1, tenk2 t2 where
t1.unique1 < 100
regression-# and t1.unique2 = t2.unique2;
NOTICE: QUERY PLAN:

Hash Join (cost=89.60..574.10 rows=100 width=296)
 -> Seq Scan on tenk2 t2
 (cost=0.00..333.00 rows=10000 width=148)
 -> Hash (cost=89.35..89.35 rows=100 width=148)
 -> Index Scan using tenk1_unique1 on tenk1 t1
 (cost=0.00..89.35 rows=100 width=148)

 This plan proposes to extract the 100 interesting rows of tenk1 using ye same olde
indexscan, stash them into an in-memory hash table, and then do a sequential scan of
tenk2, probing into the hash table for possible matches of "t1.unique2 = t2.unique2" at each
tenk2 tuple. The cost to read tenk1 and set up the hash table is entirely startup cost for the
hash join, since we won’t get any tuples out until we can start reading tenk2. The total time
estimate for the join also includes a pretty hefty charge for CPU time to probe the hash

Chapter 17. Understanding Performance

107

table 10000 times. Note, however, that we are NOT charging 10000 times 89.35; the hash
table setup is only done once in this plan type.

108

Chapter 18. Populating a Database
Author: Written by Tom Lane, from an e-mail message dated 1999-12-05.

 One may need to do a large number of table insertions when first populating a database.
Here are some tips and techniques for making that as efficient as possible.

Disable Auto-commit
 Turn off auto-commit and just do one commit at the end. Otherwise Postgres is doing a lot
of work for each record added. In general when you are doing bulk inserts, you want to turn
off some of the database features to gain speed.

Use COPY FROM
 Use COPY FROM STDIN to load all the records in one command, instead of a series of
INSERT commands. This reduces parsing, planning, etc overhead a great deal. If you do
this then it’s not necessary to fool around with autocommit.

Remove Indices
 If you are loading a freshly created table, the fastest way is to create the table, bulk-load
with COPY, then create any indexes needed for the table. Creating an index on pre-existing
data is quicker than updating it incrementally as each record is loaded.

 If you are augmenting an existing table, you can DROP INDEX, load the table, then
recreate the index. Of course, the database performance for other users may be adversely
affected during the time that the index is missing.

109

Chapter 19. SQL Commands
 This is reference information for the SQL commands supported by Postgres.

 ABORT

Name

 ABORT � Aborts the current transaction

Synopsis

ABORT [WORK | TRANSACTION]

Inputs

 None.

Outputs

ROLLBACK

 Message returned if successful.

NOTICE: ROLLBACK: no transaction in progress

 If there is not any transaction currently in progress.

Description

 ABORT rolls back the current transaction and causes all the updates made by the
transaction to be discarded. This command is identical in behavior to the SQL92 command
ROLLBACK, and is present only for historical reasons.

Notes

 Use COMMIT to successfully terminate a transaction.

Usage

 To abort all changes:

ABORT WORK;

Chapter 19. SQL Commands

110

Compatibility

SQL92

 This command is a Postgres extension present for historical reasons. ROLLBACK is the
SQL92 equivalent command.

 ALTER GROUP

Name

 ALTER GROUP � Add users to a group, remove users from a group

Synopsis
ALTER GROUP name ADD USER username [, ...]
ALTER GROUP name DROP USER username [, ...]

Inputs

name

 The name of the group to modify.

username

 Users which are to be added or removed from the group. The user names must exist.

Outputs

ALTER GROUP

 Message returned if the alteration was successful.

Description

 ALTER GROUP is used to change add users to a group or remove them from a group.
Only database superusers can use this command. Adding a user to a group does not create
the user. Similarly, removing a user from a group does not drop the user itself.

 Use CREATE GROUP to create a new group and DROP GROUP to remove a group.

Chapter 19. SQL Commands

111

Usage

 Add users to a group:

ALTER GROUP staff ADD USER karl, john

 Remove a user from a group

ALTER GROUP workers DROP USER beth

Compatibility

SQL92

 There is no ALTER GROUP statement in SQL92. The concept of roles is similar.

 ALTER TABLE

Name

 ALTER TABLE � Modifies table properties

Synopsis
ALTER TABLE table [*]
 ADD [COLUMN] column type
ALTER TABLE table [*]
 ALTER [COLUMN] column { SET DEFAULT value | DROP DEFAULT }
ALTER TABLE table [*]
 RENAME [COLUMN] column TO newcolumn
ALTER TABLE table
 RENAME TO newtable
ALTER TABLE table
 ADD table constraint definition

Inputs

 table

 The name of an existing table to alter.

 column

 Name of a new or existing column.

 type

 Type of the new column.

 newcolumn

 New name for an existing column.

Chapter 19. SQL Commands

112

 newtable

 New name for the table.

 table constraint definition

 New table constraint for the table

Outputs

ALTER

 Message returned from column or table renaming.

ERROR

 Message returned if table or column is not available.

Description

 ALTER TABLE changes the definition of an existing table. The ADD COLUMN form adds
a new column to the table using the same syntax as CREATE TABLE. The ALTER COLUMN
form allows you to set or remove the default for the column. Note that defaults only apply
to newly inserted rows. The RENAME clause causes the name of a table or column to change
without changing any of the data contained in the affected table. Thus, the table or column
will remain of the same type and size after this command is executed. The ADD table
constraint definition clause adds a new constraint to the table using the same
syntax as CREATE TABLE.

 You must own the table in order to change its schema.

Notes

 The keyword COLUMN is noise and can be omitted.

 �*� following a name of a table indicates that the statement should be run over that table and
all tables below it in the inheritance hierarchy; by default, the attribute will not be added to
or renamed in any of the subclasses. This should always be done when adding or modifying
an attribute in a superclass. If it is not, queries on the inheritance hierarchy such as
SELECT NewColumn FROM SuperClass*

 will not work because the subclasses will be missing an attribute found in the superclass.

 In the current implementation, default and constraint clauses for the new column will be
ignored. You can use the SET DEFAULT form of ALTER TABLE to set the default later.
(You will also have to update the already existing rows to the new default value, using
UPDATE.)

 In the current implementation, only FOREIGN KEY constraints can be added to a table.
To create or remove a unique constraint, create a unique index (see CREATE INDEX). To
add check constraints you need to recreate and reload the table, using other parameters to
the CREATE TABLE command.

Chapter 19. SQL Commands

113

 You must own the class in order to change its schema. Renaming any part of the schema
of a system catalog is not permitted. The PostgreSQL User’s Guide has further information
on inheritance.

 Refer to CREATE TABLE for a further description of valid arguments.

Usage

 To add a column of type VARCHAR to a table:
ALTER TABLE distributors ADD COLUMN address VARCHAR(30);

 To rename an existing column:
ALTER TABLE distributors RENAME COLUMN address TO city;

 To rename an existing table:
ALTER TABLE distributors RENAME TO suppliers;

 To add a foreign key constraint to a table:
ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address)
REFERENCES addresses(address) MATCH FULL

Compatibility

SQL92

 The ADD COLUMN form is compliant with the exception that it does not support defaults
and constraints, as explained above. The ALTER COLUMN form is in full compliance.

 SQL92 specifies some additional capabilities for ALTER TABLE statement which are
not yet directly supported by Postgres:

ALTER TABLE table DROP CONSTRAINT constraint { RESTRICT | CASCADE }

 Removes a table constraint (such as a check constraint, unique constraint, or foreign
key constraint). To remove a unique constraint, drop a unique index, To remove other
kinds of constraints you need to recreate and reload the table, using other parameters
to the CREATE TABLE command.

 For example, to drop any constraints on a table distributors:
CREATE TABLE temp AS SELECT * FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors AS SELECT * FROM temp;
DROP TABLE temp;

Chapter 19. SQL Commands

114

ALTER TABLE table DROP [COLUMN] column { RESTRICT | CASCADE }

 Removes a column from a table. Currently, to remove an existing column the table
must be recreated and reloaded:
CREATE TABLE temp AS SELECT did, city FROM distributors;
DROP TABLE distributors;
CREATE TABLE distributors (
 did DECIMAL(3) DEFAULT 1,
 name VARCHAR(40) NOT NULL,
);
INSERT INTO distributors SELECT * FROM temp;
DROP TABLE temp;

 The clauses to rename columns and tables are Postgres extensions from SQL92.

 ALTER USER

Name

 ALTER USER � Modifies user account information

Synopsis

ALTER USER username
 [WITH PASSWORD ’password’]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [VALID UNTIL ’abstime’]

Inputs

username

 The name of the user whose details are to be altered.

password

 The new password to be used for this account.

CREATEDB
NOCREATEDB

 These clauses define a user’s ability to create databases. If CREATEDB is specified,
the user being defined will be allowed to create his own databases. Using

Chapter 19. SQL Commands

115

NOCREATEDB will deny a user the ability to create databases.

CREATEUSER
NOCREATEUSER

 These clauses determine whether a user will be permitted to create new users himself.
This option will also make the user a superuser who can override all access
restrictions.

abstime

 The date (and, optionally, the time) at which this user’s password is to expire.

Outputs

ALTER USER

 Message returned if the alteration was successful.

ERROR: ALTER USER: user "username" does not exist

 Error message returned if the specified user is not known to the database.

Description

 ALTER USER is used to change the attributes of a user’s Postgres account. Only a
database superuser can change privileges and password expiration with this command.
Ordinary users can only change their own password.

 Use CREATE USER to create a new user and DROP USER to remove a user.

Usage

 Change a user password:

ALTER USER davide WITH PASSWORD ’hu8jmn3’;

 Change a user’s valid until date

ALTER USER manuel VALID UNTIL ’Jan 31 2030’;

 Change a user’s valid until date, specifying that his authorisation should expire at midday
on 4th May 1998 using the time zone which is one hour ahead of UTC

ALTER USER chris VALID UNTIL ’May 4 12:00:00 1998 +1’;

 Give a user the ability to create other users and new databases.

ALTER USER miriam CREATEUSER CREATEDB;

Chapter 19. SQL Commands

116

Compatibility

SQL92

 There is no ALTER USER statement in SQL92. The standard leaves the definition of
users to the implementation.

 BEGIN

Name

 BEGIN � Begins a transaction in chained mode

Synopsis

BEGIN [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

Outputs

BEGIN

 This signifies that a new transaction has been started.

NOTICE: BEGIN: already a transaction in progress

 This indicates that a transaction was already in progress. The current transaction is
not affected.

Description

 By default, Postgres executes transactions in unchained mode (also known as �autocommit�
in other database systems). In other words, each user statement is executed in its own
transaction and a commit is implicitly performed at the end of the statement (if execution
was successful, otherwise a rollback is done). BEGIN initiates a user transaction in
chained mode, i.e. all user statements after BEGIN command will be executed in a single
transaction until an explicit COMMIT, ROLLBACK, or execution abort. Statements in
chained mode are executed much faster, because transaction start/commit requires

Chapter 19. SQL Commands

117

significant CPU and disk activity. Execution of multiple statements inside a transaction is
also required for consistency when changing several related tables.

 The default transaction isolation level in Postgres is READ COMMITTED, where queries
inside the transaction see only changes committed before query execution. So, you have to
use SET TRANSACTION ISOLATION LEVEL SERIALIZABLE just after BEGIN if
you need more rigorous transaction isolation. In SERIALIZABLE mode queries will see
only changes committed before the entire transaction began (actually, before execution of
the first DML statement in a serializable transaction).

 If the transaction is committed, Postgres will ensure either that all updates are done or else
that none of them are done. Transactions have the standard ACID (atomic, consistent,
isolatable, and durable) property.

Notes

 Refer to LOCK for further information about locking tables inside a transaction.

 Use COMMIT or ROLLBACK to terminate a transaction.

Usage

 To begin a user transaction:

BEGIN WORK;

Compatibility

SQL92

 BEGIN is a Postgres language extension. There is no explicit BEGIN command in
SQL92; transaction initiation is always implicit and it terminates either with a COMMIT
or ROLLBACK statement.

Note: Many relational database systems offer an autocommit feature as a
convenience.

 Incidentally, the BEGIN keyword is used for a different purpose in embedded SQL. You
are advised to be careful about the transaction semantics when porting database
applications.

 SQL92 also requires SERIALIZABLE to be the default transaction isolation level.

Chapter 19. SQL Commands

118

 CLOSE

Name

 CLOSE � Close a cursor

Synopsis

CLOSE cursor

Inputs

cursor

 The name of an open cursor to close.

Outputs

CLOSE

 Message returned if the cursor is successfully closed.

NOTICE PerformPortalClose: portal "cursor" not found

 This warning is given if cursor is not declared or has already been closed.

Description

 CLOSE frees the resources associated with an open cursor. After the cursor is closed, no
subsequent operations are allowed on it. A cursor should be closed when it is no longer
needed.

 An implicit close is executed for every open cursor when a transaction is terminated by
COMMIT or ROLLBACK.

Notes

 Postgres does not have an explicit OPEN cursor statement; a cursor is considered open
when it is declared. Use the DECLARE statement to declare a cursor.

Usage

 Close the cursor liahona:

CLOSE liahona;

Chapter 19. SQL Commands

119

Compatibility

SQL92

 CLOSE is fully compatible with SQL92.

 CLUSTER

Name

 CLUSTER � Gives storage clustering advice to the server

Synopsis
CLUSTER indexname ON table

Inputs

indexname

 The name of an index.

table

 The name of a table.

Outputs

CLUSTER

 The clustering was done successfully.

ERROR: relation <tablerelation_number> inherits "table"

* This is not documented anywhere. It seems not to be possible to cluster a table that is inherited.

ERROR: Relation table does not exist!

* The specified relation was not shown in the error message, which contained a random string instead of the

relation name.

Description

 CLUSTER instructs Postgres to cluster the class specified by table approximately

Chapter 19. SQL Commands

120

based on the index specified by indexname. The index must already have been defined
on classname.

 When a class is clustered, it is physically reordered based on the index information. The
clustering is static. In other words, as the class is updated, the changes are not clustered. No
attempt is made to keep new instances or updated tuples clustered. If one wishes, one can
recluster manually by issuing the command again.

Notes

 The table is actually copied to a temporary table in index order, then renamed back to the
original name. For this reason, all grant permissions and other indexes are lost when
clustering is performed.

 In cases where you are accessing single rows randomly within a table, the actual order of
the data in the heap table is unimportant. However, if you tend to access some data more
than others, and there is an index that groups them together, you will benefit from using
CLUSTER.

 Another place where CLUSTER is helpful is in cases where you use an index to pull out
several rows from a table. If you are requesting a range of indexed values from a table, or a
single indexed value that has multiple rows that match, CLUSTER will help because once
the index identifies the heap page for the first row that matches, all other rows that match
are probably already on the same heap page, saving disk accesses and speeding up the
query.

 There are two ways to cluster data. The first is with the CLUSTER command, which
reorders the original table with the ordering of the index you specify. This can be slow on
large tables because the rows are fetched from the heap in index order, and if the heap table
is unordered, the entries are on random pages, so there is one disk page retrieved for every
row moved. Postgres has a cache, but the majority of a big table will not fit in the cache.

 Another way to cluster data is to use

SELECT columnlist INTO TABLE newtable
 FROM table ORDER BY columnlist

 which uses the Postgres sorting code in the ORDER BY clause to match the index, and
which is much faster for unordered data. You then drop the old table, use ALTER
TABLE/RENAME to rename temp to the old name, and recreate any indexes. The only
problem is that OIDs will not be preserved. From then on, CLUSTER should be fast
because most of the heap data has already been ordered, and the existing index is used.

Usage

 Cluster the employees relation on the basis of its salary attribute

CLUSTER emp_ind ON emp;

Compatibility

SQL92

 There is no CLUSTER statement in SQL92.

Chapter 19. SQL Commands

121

 COMMENT

Name

 COMMENT � Add comment to an object

Synopsis
COMMENT ON
[
 [DATABASE | INDEX | RULE | SEQUENCE | TABLE | TYPE | VIEW]
 object_name |
 COLUMN table_name.column_name|
 AGGREGATE agg_name agg_type|
 FUNCTION func_name (arg1, arg2, ...)|
 OPERATOR op (leftoperand_type rightoperand_type) |
 TRIGGER trigger_name ON table_name
] IS ’text’

Inputs

object_name, table_name, column_name, agg_name, func_name,
op, trigger_name

 The name of the object to be be commented.

text

 The comment to add.

Outputs

COMMENT

 Message returned if the table is successfully commented.

Description

 COMMENT adds a comment to an object that can be easily retrieved with psql’s \dd
command. To remove a comment, use NULL. Comments are automatically dropped when
the object is dropped.

Usage

 Comment the table mytable:
COMMENT ON mytable IS ’This is my table.’;

Chapter 19. SQL Commands

122

 Some more examples:
COMMENT ON DATABASE my_database IS ’Development Database’;
COMMENT ON INDEX my_index IS ’Enforces uniqueness on employee id’;
COMMENT ON RULE my_rule IS ’Logs UPDATES of employee records’;
COMMENT ON SEQUENCE my_sequence IS ’Used to generate primary keys’;
COMMENT ON TABLE my_table IS ’Employee Information’;
COMMENT ON TYPE my_type IS ’Complex Number support’;
COMMENT ON VIEW my_view IS ’View of departmental costs’;
COMMENT ON COLUMN my_table.my_field IS ’Employee ID number’;
COMMENT ON AGGREGATE my_aggregate float8 IS ’Computes sample
variance’;
COMMENT ON FUNCTION my_function (datetime) IS ’Returns Roman
Numeral’;
COMMENT ON OPERATOR ^ (text, text) IS ’Performs intersection of two’
 ’ text’;
COMMENT ON TRIGGER my_trigger ON my_table IS ’Used for R.I.’;

Compatibility

SQL92

 There is no COMMENT in SQL92.

 COMMIT

Name

 COMMIT � Commits the current transaction

Synopsis
COMMIT [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

Outputs

COMMIT

 Message returned if the transaction is successfully committed.

Chapter 19. SQL Commands

123

NOTICE: COMMIT: no transaction in progress

 If there is no transaction in progress.

Description

 COMMIT commits the current transaction. All changes made by the transaction become
visible to others and are guaranteed to be durable if a crash occurs.

Notes

 The keywords WORK and TRANSACTION are noise and can be omitted.

 Use ROLLBACK to abort a transaction.

Usage

 To make all changes permanent:
COMMIT WORK;

Compatibility

SQL92

 SQL92 only specifies the two forms COMMIT and COMMIT WORK. Otherwise full
compatibility.

 COPY

Name

 COPY � Copies data between files and tables

Synopsis

COPY [BINARY] table [WITH OIDS]
 FROM { ’filename’ | stdin }
 [[USING] DELIMITERS ’delimiter’]
 [WITH NULL AS ’null string’]
COPY [BINARY] table [WITH OIDS]
 TO { ’filename’ | stdout }
 [[USING] DELIMITERS ’delimiter’]
 [WITH NULL AS ’null string’]

Chapter 19. SQL Commands

124

Inputs

BINARY

 Changes the behavior of field formatting, forcing all data to be stored or read as
binary objects rather than as text.

table

 The name of an existing table.

WITH OIDS

 Copies the internal unique object id (OID) for each row.

filename

 The absolute Unix pathname of the input or output file.

stdin

 Specifies that input comes from a pipe or terminal.

stdout

 Specifies that output goes to a pipe or terminal.

delimiter

 A character that delimits the input or output fields.

null print

 A string to represent NULL values. The default is �\N� (backslash-N), for historical
reasons. You might prefer an empty string, for example.

Note: On a copy in, any data item that matches this string will be stored as a
NULL value, so you should make sure that you use the same string as you used
on copy out.

Outputs

COPY

 The copy completed successfully.

ERROR: reason

 The copy failed for the reason stated in the error message.

Description
 COPY moves data between Postgres tables and standard file-system files. COPY instructs
the Postgres backend to directly read from or write to a file. The file must be directly

Chapter 19. SQL Commands

125

visible to the backend and the name must be specified from the viewpoint of the backend.
If stdin or stdout are specified, data flows through the client frontend to the backend.

Notes
 The BINARY keyword will force all data to be stored/read as binary objects rather than as
text. It is somewhat faster than the normal copy command, but is not generally portable,
and the files generated are somewhat larger, although this factor is highly dependent on the
data itself. By default, a text copy uses a tab ("\t") character as a delimiter. The delimiter
may also be changed to any other single character with the keyword phrase USING
DELIMITERS. Characters in data fields which happen to match the delimiter character
will be quoted.

 You must have select access on any table whose values are read by COPY, and either
insert or update access to a table into which values are being inserted by COPY. The
backend also needs appropriate Unix permissions for any file read or written by COPY.

 The keyword phrase USING DELIMITERS specifies a single character to be used for all
delimiters between columns. If multiple characters are specified in the delimiter string,
only the first character is used.

Tip: Do not confuse COPY with the psql instruction \copy.

 COPY neither invokes rules nor acts on column defaults. It does invoke triggers, however.

 COPY stops operation at the first error. This should not lead to problems in the event of a
COPY FROM, but the target relation will, of course, be partially modified in a COPY
TO. VACUUM should be used to clean up after a failed copy.
 Because the Postgres backend’s current working directory is not usually the same as the
user’s working directory, the result of copying to a file "foo" (without additional path
information) may yield unexpected results for the naive user. In this case, foo will wind up
in $PGDATA/foo. In general, the full pathname as it would appear to the backend server
machine should be used when specifying files to be copied.

 Files used as arguments to COPY must reside on or be accessible to the database server
machine by being either on local disks or on a networked file system.

 When a TCP/IP connection from one machine to another is used, and a target file is
specified, the target file will be written on the machine where the backend is running rather
than the user’s machine.

File Formats

Text Format

 When COPY TO is used without the BINARY option, the file generated will have each
row (instance) on a single line, with each column (attribute) separated by the delimiter
character. Embedded delimiter characters will be preceded by a backslash character ("\").
The attribute values themselves are strings generated by the output function associated with
each attribute type. The output function for a type should not try to generate the backslash
character; this will be handled by COPY itself.

 The actual format for each instance is

<attr1><separator><attr2><separator>...<separator><attrn><newline>

Chapter 19. SQL Commands

126

 The oid is placed on the beginning of the line if WITH OIDS is specified.

 If COPY is sending its output to standard output instead of a file, it will send a
backslash("\") and a period (".") followed immediately by a newline, on a separate line,
when it is done. Similarly, if COPY is reading from standard input, it will expect a
backslash ("\") and a period (".") followed by a newline, as the first three characters on a
line to denote end-of-file. However, COPY will terminate (followed by the backend itself)
if a true EOF is encountered before this special end-of-file pattern is found.

 The backslash character has other special meanings. A literal backslash character is
represented as two consecutive backslashes ("\\"). A literal tab character is represented as a
backslash and a tab. A literal newline character is represented as a backslash and a newline.
When loading text data not generated by Postgres, you will need to convert backslash
characters ("\") to double-backslashes ("\\") to ensure that they are loaded properly.

Binary Format

 In the case of COPY BINARY, the first four bytes in the file will be the number of
instances in the file. If this number is zero, the COPY BINARY command will read until
end of file is encountered. Otherwise, it will stop reading when this number of instances
has been read. Remaining data in the file will be ignored.

 The format for each instance in the file is as follows. Note that this format must be
followed exactly. Unsigned four-byte integer quantities are called uint32 in the table below.

Table 19-1. Contents of a binary copy file

At the start of the file

uint32 number of tuples

For each tuple

uint32 total length of tuple data

uint32 oid (if specified)

uint32 number of null attributes

[uint32,...,uint32] attribute numbers of attributes,
counting from 0

- <tuple data>

Chapter 19. SQL Commands

127

Alignment of Binary Data

 On Sun-3s, 2-byte attributes are aligned on two-byte boundaries, and all larger attributes
are aligned on four-byte boundaries. Character attributes are aligned on single-byte
boundaries. On most other machines, all attributes larger than 1 byte are aligned on
four-byte boundaries. Note that variable length attributes are preceded by the attribute’s
length; arrays are simply contiguous streams of the array element type.

Usage

The following example copies a table to standard output, using a vertical bar ("|") as the
field delimiter:
COPY country TO stdout USING DELIMITERS ’|’;

 To copy data from a Unix file into a table "country":
COPY country FROM ’/usr1/proj/bray/sql/country_data’;

 Here is a sample of data suitable for copying into a table from stdin (so it has the
termination sequence on the last line):
 AF AFGHANISTAN
 AL ALBANIA
 DZ ALGERIA
 ...
 ZM ZAMBIA
 ZW ZIMBABWE
 \.

 The same data, output in binary format on a Linux/i586 machine. The data is shown after
filtering through the Unix utility od -c. The table has three fields; the first is char(2) and
the second is text. All the rows have a null value in the third field. Notice how the
char(2) field
is padded with nulls to four bytes and the text field is preceded by its length:

 355 \0 \0 \0 027 \0 \0 \0 001 \0 \0 \0 002 \0 \0 \0
 006 \0 \0 \0 A F \0 \0 017 \0 \0 \0 A F G H
 A N I S T A N 023 \0 \0 \0 001 \0 \0 \0 002
 \0 \0 \0 006 \0 \0 \0 A L \0 \0 \v \0 \0 \0 A
 L B A N I A 023 \0 \0 \0 001 \0 \0 \0 002 \0
 \0 \0 006 \0 \0 \0 D Z \0 \0 \v \0 \0 \0 A L
 G E R I A
 ... \n \0 \0 \0 Z A M B I A 024 \0
 \0 \0 001 \0 \0 \0 002 \0 \0 \0 006 \0 \0 \0 Z W
 \0 \0 \f \0 \0 \0 Z I M B A B W E

Compatibility

SQL92

 There is no COPY statement in SQL92.

Chapter 19. SQL Commands

128

 CREATE AGGREGATE

Name

 CREATE AGGREGATE � Defines a new aggregate function

Synopsis
CREATE AGGREGATE name (BASETYPE = input_data_type
 [, SFUNC1 = sfunc1, STYPE1 = state1_type]
 [, SFUNC2 = sfunc2, STYPE2 = state2_type]
 [, FINALFUNC = ffunc]
 [, INITCOND1 = initial_condition1]
 [, INITCOND2 = initial_condition2])

Inputs

name

 The name of an aggregate function to create.

input_data_type

 The input data type on which this aggregate function operates.

sfunc1

 A state transition function to be called for every non-NULL input data value. This
must be a function of two arguments, the first being of type state1_type and the
second of type input_data_type. The function must return a value of type

state1_type.
This function takes the current state value 1 and the current input data item, and
returns the next state value 1.

state1_type

 The data type for the first state value of the aggregate.

sfunc2

 A state transition function to be called for every non-NULL input data value. This
must be a function of one argument of type state2_type, returning a value of the
same type. This function takes the current state value 2 and returns the next state value
2.

state2_type

 The data type for the second state value of the aggregate.

ffunc
 The final function called to compute the aggregate’s result after all input data has

been traversed. If both state values are used, the final function must take two
arguments of types state1_type and state2_type. If only one state value is
used, the final function must take a single argument of that state value’s type. The

Chapter 19. SQL Commands

129

output datatype of the aggregate is defined as the return type of this function.

initial_condition1

 The initial value for state value 1.

initial_condition2

 The initial value for state value 2.

Outputs

CREATE

 Message returned if the command completes successfully.

Description

 CREATE AGGREGATE allows a user or programmer to extend Postgres functionality
by defining new aggregate functions. Some aggregate functions for base types such as
min(int4) and avg(float8) are already provided in the base distribution. If one defines
new types or needs an aggregate function not already provided then CREATE
AGGREGATE can be used to provide the desired features.

 An aggregate function is identified by its name and input data type. Two aggregates can
have the same name if they operate on different input types. To avoid confusion, do not
make an ordinary function of the same name and input data type as an aggregate.

 An aggregate function is made from between one and three ordinary functions: two state
transition functions, sfunc1 and sfunc2, and a final calculation function, ffunc. These
are used as follows:

sfunc1(internal-state1, next-data-item) ---> next-internal-state1
sfunc2(internal-state2) ---> next-internal-state2
ffunc(internal-state1, internal-state2) ---> aggregate-value

 Postgres creates one or two temporary variables (of data types stype1 and/or stype2)
to hold the current internal states of the aggregate. At each input data item, the state
transition function(s) are invoked to calculate new values for the internal state values. After
all the data has been processed, the final function is invoked once to calculate the
aggregate’s output value. ffunc must be specified if both transition functions are
specified. If only one transition function is used, then ffunc is optional. The default
behavior when ffunc is not provided is to return the ending value of the internal state
value being used (and, therefore, the aggregate’s output type is the same as that state
value’s type).

 An aggregate function may also provide one or two initial conditions, that is, initial values
for the internal state values being used. These are specified and stored in the database as
fields of type text, but they must be valid external representations of constants of the state
value datatypes. If sfunc1 is specified without an initcond1 value, then the system
does not call sfunc1 at the first input item; instead, the internal state value 1 is initialized

Chapter 19. SQL Commands

130

with the first input value, and sfunc1 is called beginning at the second input item. This is
useful for aggregates like MIN and MAX. Note that an aggregate using this feature will
return NULL when called with no input values. There is no comparable provision for state
value 2; if sfunc2 is specified then an initcond2 is required.

Notes

 Use DROP AGGREGATE to drop aggregate functions.

 The parameters of CREATE AGGREGATE can be written in any order, not just the
order illustrated above.
 It is possible to specify aggregate functions that have varying combinations of state and
final functions. For example, the count aggregate requires sfunc2 (an incrementing
function) but not sfunc1 or ffunc, whereas the sum aggregate requires sfunc1 (an
addition function) but not sfunc2 or ffunc, and the avg aggregate requires both state
functions as well as a ffunc (a division function) to produce its answer. In any case, at
least one state function must be defined, and any sfunc2 must have a corresponding
initcond2.

Usage

 Refer to the chapter on aggregate functions in the PostgreSQL Programmer’s Guide for
complete examples of usage.

Compatibility

SQL92

 CREATE AGGREGATE is a Postgres language extension. There is no CREATE
AGGREGATE in SQL92.

 CREATE CONSTRAINT TRIGGER

Name

 CREATE CONSTRAINT TRIGGER � Create a trigger to support a constraint

Synopsis
CREATE CONSTRAINT TRIGGER name
 AFTER events ON
 relation constraint attributes
 FOR EACH ROW EXECUTE PROCEDURE func ’(’ args ’)’

Inputs

name

 The name of the constraint trigger.

events

 The event categories for which this trigger should be fired.

Chapter 19. SQL Commands

131

relation

 Table name of the triggering relation.

constraint

 Actual onstraint specification.

attributes

 Contraint attributes.

func(args)

 Function to call as part of the trigger processing.

Outputs

CREATE CONSTRAINT

 Message returned if successful.

Description

 CREATE CONSTRAINT TRIGGER is used from inside of CREATE/ALTER
TABLE and by pg_dump to create the special triggers for referential integrity.

 It is not intended for general use.

 CREATE DATABASE

Name

 CREATE DATABASE � Creates a new database

Synopsis
CREATE DATABASE name [WITH LOCATION = ’dbpath’]

Inputs

name

 The name of a database to create.

dbpath

 An alternate location where to store the new database in the filesystem. See below for
caveats.

Chapter 19. SQL Commands

132

Outputs

CREATE DATABASE

 Message returned if the command completes successfully.

ERROR: user ’username’ is not allowed to create/drop databases

 You must have the special CREATEDB privilege to create databases. See CREATE
USER.

ERROR: createdb: database "name" already exists

 This occurs if a database with the name specified already exists.

ERROR: Single quotes are not allowed in database names.

ERROR: Single quotes are not allowed in database paths.

 The database name and dbpath cannot contain single quotes. This is required so
that the shell commands that create the database directory can execute safely.

ERROR: The path ’xxx’ is invalid.

 The expansion of the specified dbpath (see below how) failed. Check the path you
entered or make sure that the environment variable you are referencing does exist.

ERROR: createdb: May not be called in a transaction block.

 If you have an explicit transaction block in progress you cannot call CREATE
DATABASE. You must finish the transaction first.

ERROR: Unable to create database directory ’xxx’.

ERROR: Could not initialize database directory.

 These are most likely related to insufficient permissions on the data directory, a full
disk, or other file system problems. The user under which the database server is
running, must have access to the location.

Description

 CREATE DATABASE creates a new Postgres database. The creator becomes the owner
of the new database.

 An alternate location can be specified in order to, for example, store the database on a
different disk. The path must have been prepared with the initlocation command.
 If the path contains a slash, the leading part is interpreted as an environment variable,
which must be known to the server process. This way the database administrator can
exercise control over at which locations databases can be created. (A customary choice is,
e.g., ’PGDATA2’.) If the server is compiled with ALLOW_ABSOLUTE_DBPATHS (not so by
default), absolute path names, as identified by a leading slash (e.g.
’/usr/local/pgsql/data’), are allowed as well.

Chapter 19. SQL Commands

133

Notes

 CREATE DATABASE is a Postgres language extension.

 Use DROP DATABASE to remove a database.

 The program createdb is a shell script wrapper around this command, provided for
convenience.
 There are security and data integrity issues involved with using alternate database
locations specified with absolute path names, and by default only an environment variable
known to the backend may be specified for an alternate location. See the Administrator’s
Guide for more information.

Usage

 To create a new database:
olly=> create database lusiadas;

 To create a new database in an alternate area ~/private_db:
$ mkdir private_db
$ initlocation ~/private_db

Creating Postgres database system directory /home/olly/private_db/base

$ psql olly

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help on internal slash commands

 \g or terminate with semicolon to execute query

 \q to quit

olly=> CREATE DATABASE elsewhere WITH
LOCATION=’/home/olly/private_db’;

CREATE DATABASE

Compatibility

SQL92

 There is no CREATE DATABASE statement in SQL92. Databases are equivalent to
catalogs whose creation is implementation-defined.

Chapter 19. SQL Commands

134

 CREATE FUNCTION

Name

 CREATE FUNCTION � Defines a new function

Synopsis
CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS definition
 LANGUAGE ’langname’
 [WITH (attribute [, ...])]
CREATE FUNCTION name ([ftype [, ...]])
 RETURNS rtype
 AS obj_file , link_symbol
 LANGUAGE ’C’
 [WITH (attribute [, ...])]

Inputs

name

 The name of a function to create.

ftype

 The data type of function arguments. The input types may be base or complex types,
or opaque. opaque indicates that the function accepts arguments of an invalid type
such as char *.

rtype

 The return data type. The output type may be specified as a base type, complex type,
setof type, or opaque. The setof modifier indicates that the function will return a
set of items, rather than a single item.

attribute

 An optional piece of information about the function, used for optimization. The only
attribute currently supported is iscachable. iscachable indicates that the function
always returns the same result when given the same input values (i.e., it does not do
database lookups or otherwise use information not directly present in its parameter
list). The optimizer uses iscachable to know whether it is safe to pre-evaluate a call
of the function.

definition

 A string defining the function; the meaning depends on the language. It may be an
internal function name, the path to an object file, an SQL query, or text in a procedural
language.

obj_file , link_symbol
 This form of the AS clause is used for dynamically-linked, C language functions

Chapter 19. SQL Commands

135

when the function name in the C language source code is not the same as the name of
the SQL function. The string obj_file is the name of the file containing the
dynamically loadable object, and link_symbol, is the object’s link symbol which
is the same as the name of the function in the C language source code.

langname

 may be ’C’, ’sql’, ’internal’ or ’plname’, where ’plname’ is the name of a
created procedural language. See CREATE LANGUAGE for details.

Outputs

CREATE

 This is returned if the command completes successfully.

Description

 CREATE FUNCTION allows a Postgres user to register a function with a database.
Subsequently, this user is considered the owner of the function.

Notes

 Refer to the chapter in the PostgreSQL Programmer’s Guide on the topic of extending
Postgres via functions for further information on writing external functions.

 Use DROP FUNCTION to remove user-defined functions.

 Postgres allows function "overloading"; that is, the same name can be used for several
different functions so long as they have distinct argument types. This facility must be used
with caution for internal and C-language functions, however.

 The full SQL92 type syntax is allowed for input arguments and return value. However,
some details of the type specification (e.g. the precision field for numeric types) are the
responsibility of the underlying function implementation and are silently swallowed (e.g.
not recognized or enforced) by the CREATE FUNCTION command.

 Two internal functions cannot have the same C name without causing errors at link
time. To get around that, give them different C names (for example, use the argument types
as part of the C names), then specify those names in the AS clause of CREATE
FUNCTION. If the AS clause is left empty then CREATE FUNCTION assumes the C
name of the function is the same as the SQL name.

 When overloading SQL functions with C-language functions, give each C-language
instance of the function a distinct name, and use the alternative form of the AS clause in
the CREATE FUNCTION syntax to ensure that overloaded SQL functions names are
resolved to the correct dynamically linked objects.

 A C function cannot return a set of values.

Chapter 19. SQL Commands

136

Usage

 To create a simple SQL function:

CREATE FUNCTION one() RETURNS int4
 AS ’SELECT 1 AS RESULT’
 LANGUAGE ’sql’;
SELECT one() AS answer;

 answer

 1

 This example creates a C function by calling a routine from a user-created shared library.
This particular routine calculates a check digit and returns TRUE if the check digit in the
function parameters is correct. It is intended for use in a CHECK contraint.

CREATE FUNCTION ean_checkdigit(bpchar, bpchar) RETURNS bool
 AS ’/usr1/proj/bray/sql/funcs.so’ LANGUAGE ’c’;

CREATE TABLE product (
 id char(8) PRIMARY KEY,
 eanprefix char(8) CHECK (eanprefix ~ ’[0-9]{2}-[0-9]{5}’)
 REFERENCES brandname(ean_prefix),
 eancode char(6) CHECK (eancode ~ ’[0-9]{6}’),
 CONSTRAINT ean CHECK (ean_checkdigit(eanprefix, eancode))
);

 This example creates a function that does type conversion between the user defined type
complex, and the internal type point. The function is implemented by a dynamically loaded
object that was compiled from C source. For Postgres to find a type conversion function
automatically, the sql function has to have the same name as the return type, and
overloading is unavoidable. The function name is overloaded by using the second form of
the AS clause in the SQL definition

CREATE FUNCTION point(complex) RETURNS point
 AS ’/home/bernie/pgsql/lib/complex.so’, ’complex_to_point’
 LANGUAGE ’c’;

 The C decalaration of the function is:

Point * complex_to_point (Complex *z)
{
 Point *p;

 p = (Point *) palloc(sizeof(Point));
 p->x = z->x;
 p->y = z->y;

 return p;

Chapter 19. SQL Commands

137

}

Compatibility

SQL92

 CREATE FUNCTION is a Postgres language extension.

SQL/PSM

Note: PSM stands for Persistent Stored Modules. It is a procedural language and it
was originally hoped that PSM would be ratified as an official standard by late 1996.
As of mid-1998, this has not yet happened, but it is hoped that PSM will eventually
become a standard.

 SQL/PSM CREATE FUNCTION has the following syntax:

CREATE FUNCTION name
 ([[IN | OUT | INOUT] type [, ...]])
 RETURNS rtype
 LANGUAGE ’langname’
 ESPECIFIC routine
 SQL-statement

Chapter 19. SQL Commands

138

 CREATE GROUP

Name

 CREATE GROUP � Creates a new group

Synopsis
CREATE GROUP name
 [WITH
 [SYSID gid]
 [USER username [, ...]]]

Inputs

name

 The name of the group.

gid

 The SYSID clause can be used to choose the Postgres group id of the new group. It is
not necessary to do so, however.

 If this is not specified, the highest assigned group id plus one, starting at 1, will be
used as default.

username

 A list of users to include in the group. The users must already exist.

Outputs

CREATE GROUP

 Message returned if the command completes successfully.

Description

 CREATE GROUP will create a new group in the database installation. Refer to the
adminstrator’s guide for information about using groups for authentication. You must be a
database superuser to use this command.

 Use ALTER GROUP to change a group’s membership, and DROP GROUP to remove a
group.

Chapter 19. SQL Commands

139

Usage

 Create an empty group:

CREATE GROUP staff

 Create a group with members:

CREATE GROUP marketing WITH USER jonathan, david

Compatibility

SQL92

 There is no CREATE GROUP statement in SQL92. Roles are similar in concept to

groups.

 CREATE INDEX

Name

 CREATE INDEX � Constructs a secondary index

Synopsis
CREATE [UNIQUE] INDEX index_name ON table
 [USING acc_name] (column [ops_name] [, ...])
CREATE [UNIQUE] INDEX index_name ON table
 [USING acc_name] (func_name(col [, ...]) ops_name)

Inputs

UNIQUE

 Causes the system to check for duplicate values in the table when the index is created
(if data already exist) and each time data is added. Attempts to insert or update data
which would result in duplicate entries will generate an error.

index_name

 The name of the index to be created.

table

 The name of the table to be indexed.

acc_name

Chapter 19. SQL Commands

140

 the name of the access method which is to be used for the index. The default access
method is BTREE. Postgres provides three access methods for secondary indexes:

BTREE

 an implementation of the Lehman-Yao high-concurrency btrees.

RTREE

 implements standard rtrees using Guttman’s quadratic split algorithm.

HASH

 an implementation of Litwin’s linear hashing.

column

 The name of a column of the table.

ops_name

 An associated operator class. See below for details.

func_name

 A user-defined function, which returns a value that can be indexed.

Outputs

CREATE

 The message returned if the index is successfully created.

ERROR: Cannot create index: ’index_name’ already exists.

 This error occurs if it is impossible to create the index.

Description

 CREATE INDEX constructs an index index_name on the specified table.

Tip: Indexes are primarily used to enhance database performance. But inappropriate
use will result in slower performance.

 In the first syntax shown above, the key fields for the index are specified as column
names; a column may also have an associated operator class. An operator class is used to
specify the operators to be used for a particular index. For example, a btree index on
four-byte integers would use the int4_ops class; this operator class includes comparison

Chapter 19. SQL Commands

141

functions for four-byte integers. The default operator class is the appropriate operator class
for that field type.

 In the second syntax shown above, an index is defined on the result of a user-defined
function func_name applied to one or more attributes of a single class. These functional
indices can be used to obtain fast access to data based on operators that would normally
require some transformation to apply them to the base data.

 Postgres provides btree, rtree and hash access methods for secondary indices. The btree
access method is an implementation of the Lehman-Yao high-concurrency btrees. The rtree
access method implements standard rtrees using Guttman’s quadratic split algorithm. The
hash access method is an implementation of Litwin’s linear hashing. We mention the
algorithms used solely to indicate that all of these access methods are fully dynamic and do
not have to be optimized periodically (as is the case with, for example, static hash access
methods).

Notes

 The Postgres query optimizer will consider using btree indices in a scan whenever an
indexed attribute is involved in a comparison using one of: <, <=, =, >=, >

 Both box classes support indices on the box data type in Postgres. The difference between
them is that bigbox_ops scales box coordinates down, to avoid floating point exceptions
from doing multiplication, addition, and subtraction on very large floating-point
coordinates. If the field on which your rectangles lie is about 20,000 units square or larger,
you should use bigbox_ops. The poly_ops operator class supports rtree indices on
polygon data.

 The Postgres query optimizer will consider using an rtree index whenever an indexed
attribute is involved in a comparison using one of: <<, &<, &>, >>, @, ~=, &&

 The Postgres query optimizer will consider using a hash index whenever an indexed
attribute is involved in a comparison using the = operator.

 Currently, only the BTREE access method supports multi-column indexes. Up to 7 keys
may be specified.

 Use DROP INDEX to remove an index.

 The int24_ops operator class is useful for constructing indices on int2 data, and doing
comparisons against int4 data in query qualifications. Similarly, int42_ops support
indices on int4 data that is to be compared against int2 data in queries.

 The following select list returns all ops_names:

SELECT am.amname AS acc_name,
 opc.opcname AS ops_name,
 opr.oprname AS ops_comp
 FROM pg_am am, pg_amop amop,
 pg_opclass opc, pg_operator opr
 WHERE amop.amopid = am.oid AND
 amop.amopclaid = opc.oid AND
 amop.amopopr = opr.oid
 ORDER BY acc_name, ops_name, ops_comp

Chapter 19. SQL Commands

142

Usage

To create a btree index on the field title in the table films:
CREATE UNIQUE INDEX title_idx
 ON films (title);

Compatibility

SQL92

 CREATE INDEX is a Postgres language extension.

 There is no CREATE INDEX command in SQL92.

 CREATE LANGUAGE

Name

 CREATE LANGUAGE � Defines a new language for functions

Synopsis
CREATE [TRUSTED] PROCEDURAL LANGUAGE ’langname’
 HANDLER call_handler
 LANCOMPILER ’comment’

Inputs

TRUSTED

 TRUSTED specifies that the call handler for the language is safe; that is, it offers an
unprivileged user no functionality to bypass access restrictions. If this keyword is
omitted
when registering the language, only users with the Postgres superuser privilege can
use this language to create new functions (like the ’C’ language).

langname

 The name of the new procedural language. The language name is case insensitive. A
procedural language cannot override one of the built-in languages of Postgres.

HANDLER call_handler

 call_handler is the name of a previously registered function that will be called to
execute the PL procedures.

comment

 The LANCOMPILER argument is the string that will be inserted in the LANCOMPILER

Chapter 19. SQL Commands

143

attribute of the new pg_language entry. At present, Postgres does not use this
attribute in any way.

Outputs

CREATE

 This message is returned if the language is successfully created.

ERROR: PL handler function funcname() doesn’t exist

 This error is returned if the function funcname() is not found.

Description

 Using CREATE LANGUAGE, a Postgres user can register a new language with
Postgres. Subsequently, functions and trigger procedures can be defined in this new
language. The user must have the Postgres superuser privilege to register a new language.

Writing PL handlers

 The call handler for a procedural language must be written in a compiler language such as
’C’ and registered with Postgres as a function taking no arguments and returning the
opaque type, a placeholder for unspecified or undefined types.. This prevents the call
handler from being called directly as a function from queries.

 However, arguments must be supplied on the actual call when a PL function or trigger
procedure in the language offered by the handler is to be executed.

 When called from the trigger manager, the only argument is the object ID from the
procedure’s pg_proc entry. All other information from the trigger manager is found in
the global CurrentTriggerData pointer.

 When called from the function manager, the arguments are the object ID of the
procedure’s pg_proc entry, the number of arguments given to the PL function, the
arguments in a FmgrValues structure and a pointer to a boolean where the function tells
the caller if the return value is the SQL NULL value.

 It’s up to the call handler to fetch the pg_proc entry and to analyze the argument and
return types of the called procedure. The AS clause from the CREATE FUNCTION of
the procedure will be found in the prosrc attribute of the pg_proc table entry. This may
be the source text in the procedural language itself (like for PL/Tcl), a pathname to a file or
anything else that tells the call handler what to do in detail.

Notes

 Use CREATE FUNCTION to create a function.

 Use DROP LANGUAGE to drop procedural languages.

Chapter 19. SQL Commands

144

 Refer to the table pg_language for further information:

 Table "pg_language"

 Attribute | Type | Modifier

---------------+---------+----------

 lanname | name |

 lanispl | boolean |

 lanpltrusted | boolean |

 lanplcallfoid | oid |

 lancompiler | text |

 lanname | lanispl | lanpltrusted | lanplcallfoid | lancompiler

----------+---------+--------------+---------------+-------------

 internal | f | f | 0 | n/a

 C | f | f | 0 | /bin/cc

 sql | f | f | 0 | postgres

 Since the call handler for a procedural language must be registered with Postgres in the
’C’ language, it inherits all the capabilities and restrictions of ’C’ functions.

 At present, the definitions for a procedural language cannot be changed once they have
been created.

Usage

 This is a template for a PL handler written in ’C’:

#include "executor/spi.h"
#include "commands/trigger.h"
#include "utils/elog.h"
#include "fmgr.h" /* for FmgrValues struct */
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

Datum
plsample_call_handler(
 Oid prooid,
 int pronargs,
 FmgrValues *proargs,
 bool *isNull)
{
 Datum retval;
 TriggerData *trigdata;

 if (CurrentTriggerData == NULL) {
 /*
 * Called as a function
 */

 retval = ...
 } else {
 /*
 * Called as a trigger procedure

Chapter 19. SQL Commands

145

 */
 trigdata = CurrentTriggerData;
 CurrentTriggerData = NULL;

 retval = ...
 }

 *isNull = false;
 return retval;
}

 Only a few thousand lines of code have to be added instead of the dots to complete the PL
call handler. See CREATE FUNCTION for information on how to compile it into a
loadable module.

 The following commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler () RETURNS opaque
 AS ’/usr/local/pgsql/lib/plsample.so’
 LANGUAGE ’C’;
CREATE PROCEDURAL LANGUAGE ’plsample’
 HANDLER plsample_call_handler
 LANCOMPILER ’PL/Sample’;

Compatibility

SQL92

 CREATE LANGUAGE is a Postgres extension. There is no CREATE LANGUAGE
statement in SQL92.

Chapter 19. SQL Commands

146

 CREATE OPERATOR

Name

 CREATE OPERATOR � Defines a new user operator

Synopsis
CREATE OPERATOR name (PROCEDURE = func_name
 [, LEFTARG = type1] [, RIGHTARG = type2]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, SORT1 = left_sort_op] [, SORT2 = right_sort_op
])

Inputs

name

 The operator to be defined. See below for allowable characters.

func_name

 The function used to implement this operator.

type1

 The type of the left-hand argument of the operator, if any. This option would be
omitted for a left-unary operator.

type2

 The type of the right-hand argument of the operator, if any. This option would be
omitted for a right-unary operator.

com_op

 The commutator of this operator.

neg_op

 The negator of this operator.

res_proc

 The restriction selectivity estimator function for this operator.

join_proc

 The join selectivity estimator function for this operator.

HASHES

 Indicates this operator can support a hash join.

Chapter 19. SQL Commands

147

left_sort_op

 If this operator can support a merge join, the operator that sorts the left-hand data
type of this operator.

right_sort_op

 If this operator can support a merge join, the operator that sorts the right-hand data
type of this operator.

Outputs

CREATE

 Message returned if the operator is successfully created.

Description

 CREATE OPERATOR defines a new operator, name. The user who defines an operator
becomes its owner.

 The operator name is a sequence of up to NAMEDATALEN-1 (31 by default) characters
from the following list:
+ - * / < > = ~ ! @ # % ^ & | ‘ ? $:

 There are a few restrictions on your choice of name:

 "$" and ":" cannot be defined as single-character operators, although they can be part of
a multi-character operator name.

 "--" and "/*" cannot appear anywhere in an operator name, since they will be taken as
the start of a comment.

 A multi-character operator name cannot end in "+" or "-", unless the name also contains
at least one of these characters:
~ ! @ # % ^ & | ‘ ? $:

 For example, @- is an allowed operator name, but *- is not. This restriction allows
Postgres to parse SQL-compliant queries without requiring spaces between tokens.

Note: When working with non-SQL-standard operator names, you will usually need to
separate adjacent operators with spaces to avoid ambiguity. For example, if you have
defined a left-unary operator named "@", you cannot write X*@Y; you must write X* @Y
to ensure that Postgres reads it as two operator names not one.

 The operator "!=" is mapped to "<>" on input, so these two names are always equivalent.

 At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both
should be defined. For right unary operators, only LEFTARG should be defined, while for

Chapter 19. SQL Commands

148

left unary operators only RIGHTARG should be defined.

 The func_name procedure must have been previously defined using CREATE
FUNCTION and must be defined to accept the correct number of arguments (either one or
two) of the indicated types.

 The commutator operator should be identified if one exists, so that Postgres can reverse
the order of the operands if it wishes. For example, the operator area-less-than, <<<, would
probably have a commutator operator, area-greater-than, >>>. Hence, the query optimizer
could freely convert:

box ’((0,0),(1,1))’ >>> MYBOXES.description

 to
MYBOXES.description <<< box ’((0,0),(1,1))’

 This allows the execution code to always use the latter representation and simplifies the
query optimizer somewhat.

 Similarly, if there is a negator operator then it should be identified. Suppose that an
operator, area-equal, ===, exists, as well as an area not equal, !==. The negator link allows
the query optimizer to simplify
NOT MYBOXES.description === box ’((0,0),(1,1))’

 to
MYBOXES.description !== box ’((0,0),(1,1))’

 If a commutator operator name is supplied, Postgres searches for it in the catalog. If it is
found and it does not yet have a commutator itself, then the commutator’s entry is updated
to have the newly created operator as its commutator. This applies to the negator, as well.
This is to allow

the definition of two operators that are the commutators or the negators of each other. The
first operator should be defined without a commutator or negator (as appropriate). When
the second

operator is defined, name the first as the commutator or negator. The first will be updated
as a side effect. (As of Postgres 6.5, it also works to just have both operators refer to each
other.)

 The HASHES, SORT1, and SORT2 options are present to support the query optimizer in
performing joins. Postgres can always evaluate a join (i.e., processing a clause with two
tuple variables separated by an operator that returns a boolean) by iterative substitution
[WONG76]. In addition, Postgres can use a hash-join algorithm along the lines of
[SHAP86]; however, it must know whether this strategy is applicable. The current
hash-join algorithm is only correct for operators that represent equality tests; furthermore,
equality of the datatype must mean bitwise equality of the representation of the type. (For
example, a datatype that contains unused bits that don’t matter for equality tests could not

Chapter 19. SQL Commands

149

be hashjoined.) The HASHES flag indicates to the query optimizer that a hash join may
safely be used with this operator.

 Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a
usable join strategy and which operators should be used to sort the two operand classes.
Sort operators should only be provided for an equality operator, and they should refer to
less-than operators for the left and right side data types respectively.

 If other join strategies are found to be practical, Postgres will change the optimizer and
run-time system to use them and will require additional specification when an operator is
defined. Fortunately, the research community invents new join strategies infrequently, and
the added generality of user-defined join strategies was not felt to be worth the complexity
involved.

 The RESTRICT and JOIN options assist the query optimizer in estimating result sizes. If a
clause of the form:

MYBOXES.description <<< box ’((0,0),(1,1))’

 is present in the qualification, then Postgres may have to estimate the fraction of the
instances in MYBOXES that satisfy the clause. The function res_proc must be a
registered function (meaning it is already defined using CREATE FUNCTION) which
accepts arguments of the correct data types and returns a floating point number. The query
optimizer simply calls this function, passing the parameter ((0,0),(1,1)) and multiplies
the result by the relation size to get the expected number of instances.

 Similarly, when the operands of the operator both contain instance variables, the query
optimizer must estimate the size of the resulting join. The function join_proc will return
another floating point number which will be multiplied by the cardinalities of the two
classes involved to compute the expected result size.

 The difference between the function

my_procedure_1 (MYBOXES.description, box ’((0,0),(1,1))’)

 and the operator

MYBOXES.description === box ’((0,0),(1,1))’

 is that Postgres attempts to optimize operators and can decide to use an index to restrict
the search space when operators are involved. However, there is no attempt to optimize
functions, and they are performed by brute force. Moreover, functions can have any
number of arguments while operators are restricted to one or two.

Notes

 Refer to the chapter on operators in the PostgreSQL User’s Guide for further information.
Refer to DROP OPERATOR to delete user-defined operators from a database.

Chapter 19. SQL Commands

150

Usage

The following command defines a new operator, area-equality, for the BOX data type.
CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 PROCEDURE = area_equal_procedure,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_procedure,
 JOIN = area_join_procedure,
 HASHES,
 SORT1 = <<<,
 SORT2 = <<<
);

Compatibility

SQL92

 CREATE OPERATOR is a Postgres extension. There is no CREATE OPERATOR
statement in SQL92.

 CREATE RULE

Name

 CREATE RULE � Defines a new rule

Synopsis
CREATE RULE name AS ON event
 TO object [WHERE condition]
 DO [INSTEAD] [action | NOTHING]

Inputs

name

 The name of a rule to create.

event

 Event is one of select, update, delete or insert.

object

 Object is either table or table.column.

condition

 Any SQL WHERE clause, new or old can appear instead of an instance variable

Chapter 19. SQL Commands

151

whenever an instance variable is permissible in SQL.

action

 Any SQL statement, new or old can appear instead of an instance variable whenever
an instance variable is permissible in SQL.

Outputs

CREATE

 Message returned if the rule is successfully created.

Description

 The Postgres rule system allows one to define an alternate action to be performed on
inserts, updates, or deletions from database tables or classes. Currently, rules are used to
implement table views.
 The semantics of a rule is that at the time an individual instance is accessed, inserted,
updated, or deleted, there is a old instance (for selects, updates and deletes) and a new
instance (for inserts and updates). If the event specified in the ON clause and the
condition specified in the WHERE clause are true for the old instance, the action
part of the rule is executed. First, however, values from fields in the old instance and/or the
new instance are substituted for old.attribute-name and new.attribute-name.

 The action part of the rule executes with the same command and transaction identifier
as the user command that caused activation.

Notes

 A caution about SQL rules is in order. If the same class name or instance variable appears
in the event, condition and action parts of a rule, they are all considered different
tuple variables. More accurately, new and old are the only tuple variables that are shared
between these clauses. For example, the following two rules have the same semantics:
ON UPDATE TO emp.salary WHERE emp.name = "Joe"
 DO
 UPDATE emp SET ... WHERE ...

ON UPDATE TO emp-1.salary WHERE emp-2.name = "Joe"
 DO
 UPDATE emp-3 SET ... WHERE ...

 Each rule can have the optional tag INSTEAD. Without this tag, action will be
performed in addition to the user command when the event in the condition part of
the rule occurs.

Alternately, the action part will be done instead of the user command. In this later case,
the action can be the keyword NOTHING.

Chapter 19. SQL Commands

152

 It is very important to note to avoid circular rules. For example, though each of the
following two rule definitions are accepted by Postgres, the select command will cause
Postgres to report an error because the query cycled too many times:

Example 19-1. Example of a circular rewrite rule combination.
CREATE RULE bad_rule_combination_1 AS
 ON SELECT TO emp
 DO INSTEAD
 SELECT TO toyemp;

CREATE RULE bad_rule_combination_2 AS
 ON SELECT TO toyemp
 DO INSTEAD
 SELECT TO emp;

 This attempt to select from EMP will cause Postgres to issue an error because the queries
cycled too many times.
SELECT * FROM emp;

 You must have rule definition access to a class in order to define a rule on it. Use GRANT
and REVOKE to change permissions.

 The object in a SQL rule cannot be an array reference and cannot have parameters.

 Aside from the "oid" field, system attributes cannot be referenced anywhere in a rule.
Among other things, this means that functions of instances (e.g., foo(emp) where emp is a
class) cannot be called anywhere in a rule.

 The rule system stores the rule text and query plans as text attributes. This implies that
creation of rules may fail if the rule plus its various internal representations exceed some
value that is on the order of one page (8KB).

Usage

 Make Sam get the same salary adjustment as Joe:

CREATE RULE example_1 AS
 ON UPDATE emp.salary WHERE old.name = "Joe"
 DO
 UPDATE emp
 SET salary = new.salary
 WHERE emp.name = "Sam";

 At the time Joe receives a salary adjustment, the event will become true and Joe’s old
instance and proposed new instance are available to the execution routines. Hence, his new
salary is substituted into the action part of the rule which is subsequently executed. This
propagates Joe’s salary on to Sam.

Chapter 19. SQL Commands

153

 Make Bill get Joe’s salary when it is accessed:
CREATE RULE example_2 AS
 ON SELECT TO EMP.salary
 WHERE old.name = "Bill"
 DO INSTEAD
 SELECT emp.salary
 FROM emp
 WHERE emp.name = "Joe";

 Deny Joe access to the salary of employees in the shoe department (current_user
returns the name of the current user):

CREATE RULE example_3 AS
 ON
 SELECT TO emp.salary
 WHERE old.dept = "shoe" AND current_user = "Joe"
 DO INSTEAD NOTHING;

 Create a view of the employees working in the toy department.
CREATE toyemp(name = char16, salary = int4);

CREATE RULE example_4 AS
 ON SELECT TO toyemp
 DO INSTEAD
 SELECT emp.name, emp.salary
 FROM emp
 WHERE emp.dept = "toy";

 All new employees must make 5,000 or less
CREATE RULE example_5 AS
 ON INERT TO emp WHERE new.salary > 5000
 DO
 UPDATE NEWSET SET salary = 5000;

Compatibility

SQL92

 CREATE RULE statement is a Postgres language extension. There is no CREATE
RULE statement in SQL92.

Chapter 19. SQL Commands

154

 CREATE SEQUENCE

Name

 CREATE SEQUENCE � Creates a new sequence number generator

Synopsis
CREATE SEQUENCE seqname [INCREMENT increment]
 [MINVALUE minvalue] [MAXVALUE maxvalue]
 [START start] [CACHE cache] [CYCLE]

Inputs

seqname

 The name of a sequence to be created.

increment

 The INCREMENT increment clause is optional. A positive value will make an
ascending sequence, a negative one a descending sequence. The default value is one
(1).

minvalue

 The optional clause MINVALUE minvalue determines the minimum value a
sequence can generate. The defaults are 1 and -2147483647 for ascending and
descending sequences, respectively.

maxvalue

 Use the optional clause MAXVALUE maxvalue to determine the maximum value for
the sequence. The defaults are 2147483647 and -1 for ascending and descending
sequences, respectively.

start

 The optional START start clause enables the sequence to begin anywhere. The
default starting value is minvalue for ascending sequences and maxvalue for
descending ones.

cache

 The CACHE cache option enables sequence numbers to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated
at a time, i.e. no cache) and this is also the default.

CYCLE

 The optional CYCLE keyword may be used to enable the sequence to continue when
the maxvalue or minvalue has been reached by an ascending or descending
sequence
respectively. If the limit is reached, the next number generated will be whatever the

Chapter 19. SQL Commands

155

minvalue or maxvalue is, as appropriate.

Outputs

CREATE

 Message returned if the command is successful.

ERROR: Relation ’seqname’ already exists

 If the sequence specified already exists.

ERROR: DefineSequence: MINVALUE (start) can’t be >= MAXVALUE (max)

 If the specified starting value is out of range.

ERROR: DefineSequence: START value (start) can’t be < MINVALUE (min)

 If the specified starting value is out of range.

ERROR: DefineSequence: MINVALUE (min) can’t be >= MAXVALUE (max)

 If the minimum and maximum values are inconsistant.

Description

 CREATE SEQUENCE will enter a new sequence number generator into the current data
base. This involves creating and initialising a new single-row table with the name
seqname. The generator will be "owned" by the user issuing the command.

 After a sequence is created, you may use the function nextval(seqname) to get a new
number from the sequence. The function currval(’seqname’) may be used to
determine the number returned by the last call to nextval(seqname) for the specified
sequence in the current session. The function setval(’seqname’, newvalue) may be
used to set the current value of the specified sequence. The next call to
nextval(seqname) will return the given value plus the sequence increment.

 Use a query like

SELECT * FROM sequence_name;

 to get the parameters of a sequence. Aside from fetching the original parameters, you can
use

SELECT last_value FROM sequence_name;

Chapter 19. SQL Commands

156

 to obtain the last value allocated by any backend. parameters, you can use

 Low-level locking is used to enable multiple simultaneous calls to a generator.

Caution
 Unexpected results may be obtained if a cache setting greater than one is used
for a sequence object that will be used concurrently by multiple backends. Each
backend will allocate "cache" successive sequence values during one access to
the sequence object and increase the sequence object’s last_value accordingly.
Then, the next cache-1 uses of nextval within that backend simply return the
preallocated values without touching the shared object. So, numbers allocated
but not used in the current session will be lost. Furthermore, although multiple
backends are guaranteed to allocate distinct sequence values, the values may
be generated out of sequence when all the backends are considered. (For
example, with a cache setting of 10, backend A might reserve values 1..10 and
return nextval=1, then backend B might reserve values 11..20 and return
nextval=11 before backend A has generated nextval=2.) Thus, with a cache
setting of one it is safe to assume that nextval values are generated sequentially;
with a cache setting greater than one you should only assume that the nextval
values are all distinct, not that they are generated purely sequentially. Also,
last_value will reflect the latest value reserved by any backend, whether or not it
has yet been returned by nextval.

Notes

 Refer to the DROP SEQUENCE statement to remove a sequence.

 Each backend uses its own cache to store allocated numbers. Numbers that are cached but
not used in the current session will be lost, resulting in "holes" in the sequence.

Usage

 Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

 Select the next number from this sequence

SELECT NEXTVAL (’serial’);

nextval

 114

 Use this sequence in an INSERT:

INSERT INTO distributors VALUES (NEXTVAL(’serial’),’nothing’);

Chapter 19. SQL Commands

157

 Set the sequence value after a COPY FROM:

CREATE FUNCTION distributors_id_max() RETURNS INT4
 AS ’SELECT max(id) FROM distributors’
 LANGUAGE ’sql’;
BEGIN;
 COPY distributors FROM ’input_file’;
 SELECT setval(’serial’, distributors_id_max());
END;

Compatibility

SQL92

 CREATE SEQUENCE is a Postgres language extension. There is no CREATE
SEQUENCE statement in SQL92.

Chapter 19. SQL Commands

158

 CREATE TABLE

Name

 CREATE TABLE � Creates a new table

Synopsis
CREATE [TEMPORARY | TEMP] TABLE table (
 column type
 [NULL | NOT NULL] [UNIQUE] [DEFAULT value]
 [column_constraint_clause | PRIMARY KEY } [...]]
 [, ...]
 [, PRIMARY KEY (column [, ...])]
 [, CHECK (condition)]
 [, table_constraint_clause]
) [INHERITS (inherited_table [, ...])]

Inputs

TEMPORARY

 The table is created only for this session, and is automatically dropped on session
exit. Existing permanent tables with the same name are not visible while the
temporary table exists.

table

 The name of a new class or table to be created.

column

 The name of a column.

type

 The type of the column. This may include array specifiers. Refer to the PostgreSQL
User’s Guide for further information about data types and arrays.

DEFAULT value

 A default value for a column. See the DEFAULT clause for more information.

column_constraint_clause

 The optional column constraint clauses specify a list of integrity constraints or tests
which new or updated entries must satisfy for an insert or update operation to succeed.
Each constraint must evaluate to a boolean expression. Although SQL92 requires the
column_constraint_clause to refer to that column only, Postgres allows
multiple columns to be referenced within a single column constraint. See the column
constraint clause for more information.

table_constraint_clause

 The optional table CONSTRAINT clause specifies a list of integrity constraints

Chapter 19. SQL Commands

159

which new or updated entries must satisfy for an insert or update operation to succeed.
Each constraint must evaluate to a boolean expression. Multiple columns may be
referenced within a single constraint. Only one PRIMARY KEY clause may be
specified for a table; PRIMARY KEY column (a table constraint) and PRIMARY
KEY (a column constraint) are mutually exclusive.. See the table constraint clause for
more information.

INHERITS inherited_table

 The optional INHERITS clause specifies a collection of table names from which this
table automatically inherits all fields. If any inherited field name appears more than
once, Postgres reports an error. Postgres automatically allows the created table to
inherit functions on tables above it in the inheritance hierarchy.

Outputs

CREATE

 Message returned if table is successfully created.

ERROR

 Message returned if table creation failed. This is usually accompanied by some
descriptive text, such as: ERROR: Relation ’table’ already exists which
occurs at runtime, if the table specified already exists in the database.

ERROR: DEFAULT: type mismatched

 If data type of default value doesn’t match the column definition’s data type.

Description

 CREATE TABLE will enter a new class or table into the current data base. The table will
be "owned" by the user issuing the command.

 Each type may be a simple type, a complex type (set) or an array type. Each attribute
may be specified to be non-null and each may have a default value, specified by the
DEFAULT Clause.

Note: As of Postgres version 6.0, consistent array dimensions within an attribute are
not enforced. This will likely change in a future release.

 The optional INHERITS clause specifies a collection of class names from which this class
automatically inherits all fields. If any inherited field name appears more than once,
Postgres reports an error. Postgres automatically allows the created class to inherit
functions on classes above it in the inheritance hierarchy. Inheritance of functions is done
according to the conventions of the Common Lisp Object System (CLOS).

 Each new table or class table is automatically created as a type. Therefore, one or more
instances from the class are automatically a type and can be used in ALTER TABLE or

Chapter 19. SQL Commands

160

other CREATE TABLE statements.

 The new table is created as a heap with no initial data. A table can have no more than 1600
columns (realistically, this is limited by the fact that tuple sizes must be less than 8192
bytes), but this limit may be configured lower at some sites. A table cannot have the same
name as a system catalog table.

DEFAULT Clause

DEFAULT value

Inputs

value

 The possible values for the default value expression are:

 a literal value

 a user function

 a niladic function

Outputs

 None.

Description

 The DEFAULT clause assigns a default data value to a column (via a column definition in
the CREATE TABLE statement). The data type of a default value must match the column
definition’s data type.

 An INSERT operation that includes a column without a specified default value will assign
the NULL value to the column if no explicit data value is provided for it. Default
literal means that the default is the specified constant value. Default
niladic-function or user-function means that the default is the value of the
specified function at the time of the INSERT.

 There are two types of niladic functions:

niladic USER

CURRENT_USER / USER

 See CURRENT_USER function

SESSION_USER

 See CURRENT_USER function

Chapter 19. SQL Commands

161

SYSTEM_USER

 Not implemented

niladic datetime

CURRENT_DATE

 See CURRENT_DATE function

CURRENT_TIME

 See CURRENT_TIME function

CURRENT_TIMESTAMP

 See CURRENT_TIMESTAMP function

Usage

 To assign a constant value as the default for the columns did and number, and a string
literal to the column did:
CREATE TABLE video_sales (
 did VARCHAR(40) DEFAULT ’luso films’,
 number INTEGER DEFAULT 0,
 total CASH DEFAULT ’$0.0’
);

 To assign an existing sequence as the default for the column did, and a literal to the
column

name:
CREATE TABLE distributors (
 did DECIMAL(3) DEFAULT NEXTVAL(’serial’),
 name VARCHAR(40) DEFAULT ’luso films’
);

Chapter 19. SQL Commands

162

Column CONSTRAINT Clause

[CONSTRAINT name] { [
 NULL | NOT NULL] | UNIQUE | PRIMARY KEY | CHECK constraint |
REFERENCES
 reftable
 (refcolumn)
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime] }
 [, ...]

Inputs

name

 An arbitrary name given to the integrity constraint. If name is not specified, it is
generated from the table and column names, which should ensure uniqueness for
name.

NULL

 The column is allowed to contain NULL values. This is the default.

NOT NULL

 The column is not allowed to contain NULL values. This is equivalent to the column
constraint CHECK (column NOT NULL).

UNIQUE

 The column must have unique values. In Postgres this is enforced by an implicit
creation of a unique index on the table.

PRIMARY KEY

 This column is a primary key, which implies that uniqueness is enforced by the
system and that other tables may rely on this column as a unique identifier for rows.
See PRIMARY KEY for more information.

constraint

 The definition of the constraint.

Description

 The optional constraint clauses specify constraints or tests which new or updated entries
must satisfy for an insert or update operation to succeed. Each constraint must evaluate to a
boolean expression. Multiple attributes may be referenced within a single constraint. The

Chapter 19. SQL Commands

163

use of PRIMARY KEY as a table constraint is mutually incompatible with PRIMARY
KEY as a column constraint.

 A constraint is a named rule: an SQL object which helps define valid sets of values by
putting limits on the results of INSERT, UPDATE or DELETE operations performed on a
Base Table.

 There are two ways to define integrity constraints: table constraints, covered later, and
column constraints, covered here.

 A column constraint is an integrity constraint defined as part of a column definition, and
logically becomes a table constraint as soon as it is created. The column constraints
available are:

PRIMARY KEY
REFERENCES
UNIQUE
CHECK
NOT NULL

Chapter 19. SQL Commands

164

NOT NULL Constraint
[CONSTRAINT name] NOT NULL

 The NOT NULL constraint specifies a rule that a column may contain only non-null
values. This is a column constraint only, and not allowed as a table constraint.

Outputs

status

ERROR: ExecAppend: Fail to add null value in not null attribute

"column".

 This error occurs at runtime if one tries to insert a null value into a column
which has a NOT NULL constraint.

Description

Usage

 Define two NOT NULL column constraints on the table distributors, one of which
being a named constraint:
CREATE TABLE distributors (
 did DECIMAL(3) CONSTRAINT no_null NOT NULL,
 name VARCHAR(40) NOT NULL
);

UNIQUE Constraint
[CONSTRAINT name] UNIQUE

Inputs

CONSTRAINT name

 An arbitrary label given to a constraint.

Chapter 19. SQL Commands

165

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index.

 This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

 The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a
table may contain only unique values.

 The column definitions of the specified columns do not have to include a NOT NULL
constraint to be included in a UNIQUE constraint. Having more than one null value in a
column without a NOT NULL constraint, does not violate a UNIQUE constraint. (This
deviates from the SQL92 definition, but is a more sensible convention. See the section on
compatibility for more details.).

 Each UNIQUE column constraint must name a column that is different from the set of
columns named by any other UNIQUE or PRIMARY KEY constraint defined for the table.

Note: Postgres automatically creates a unique index for each UNIQUE constraint, to
assure data integrity. See CREATE INDEX for more information.

Usage

 Defines a UNIQUE column constraint for the table distributors. UNIQUE column
constraints can only be defined on one column of the table:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40) UNIQUE
);

 which is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40),
 UNIQUE(name)
);

The CHECK Constraint

[CONSTRAINT name] CHECK
 (condition [, ...])

Chapter 19. SQL Commands

166

Inputs

name

 An arbitrary name given to a constraint.

condition

 Any valid conditional expression evaluating to a boolean result.

Outputs

status

ERROR: ExecAppend: rejected due to CHECK constraint

"table_column".

 This error occurs at runtime if one tries to insert an illegal value into a column
subject to a CHECK constraint.

Description

 The CHECK constraint specifies a restriction on allowed values within a column. The
CHECK constraint is also allowed as a table constraint.

 The SQL92 CHECK column constraints can only be defined on, and refer to, one column
of the table. Postgres does not have this restriction.

PRIMARY KEY Constraint
[CONSTRAINT name] PRIMARY KEY

Inputs

CONSTRAINT name

 An arbitrary name for the constraint.

Outputs

ERROR: Cannot insert a duplicate key into a unique index.

 This occurs at run-time if one tries to insert a duplicate value into a column subject to
a PRIMARY KEY constraint.

Chapter 19. SQL Commands

167

Description

 The PRIMARY KEY column constraint specifies that a column of a table may contain
only unique (non-duplicate), non-NULL values. The definition of the specified column
does not

have to include an explicit NOT NULL constraint to be included in a PRIMARY KEY
constraint.

 Only one PRIMARY KEY can be specified for a table.

Notes

 Postgres automatically creates a unique index to assure data integrity. (See CREATE
INDEX statement)

 The PRIMARY KEY constraint should name a set of columns that is different from other
sets of columns named by any UNIQUE constraint defined for the same table, since it will
result in
duplication of equivalent indexes and unproductive additional runtime overhead. However,
Postgres does not specifically disallow this.

REFERENCES Constraint
[CONSTRAINT name] REFERENCES
 reftable [(refcolumn)]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

 The REFERENCES constraint specifies a rule that a column value is checked against the
values of another column. REFERENCES can also be specified as part of a FOREIGN
KEY table constraint.

Inputs

CONSTRAINT name

 An arbitrary name for the constraint.

reftable

 The table that contains the data to check against.

refcolumn

 The column in reftable to check the data against. If this is not specified, the
PRIMARY KEY of the reftable is used.

MATCH matchtype

 There are three match types: MATCH FULL, MATCH PARTIAL, and a default
match type if none is specified. MATCH FULL will not allow one column of a

Chapter 19. SQL Commands

168

multi-column foreign key to be NULL unless all foreign key columns are NULL. The
default MATCH
type allows a some foreign key columns to be NULL while other parts of the foreign
key
are not NULL. MATCH PARTIAL is currently not supported.

ON DELETE action

 The action to do when a referenced row in the referenced table is being deleted. There
are the following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Same as NO ACTION.

CASCADE

 Delete any rows referencing the deleted row.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

ON UPDATE action

 The action to do when a referenced column in the referenced table is being updated to
a new value. If the row is updated, but the referenced column is not changed, no
action is done. There are the following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Same as NO ACTION.

CASCADE

 Update the value of the referencing column to the new value of the referenced
column.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

Chapter 19. SQL Commands

169

 [NOT] DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If
DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key
to be checked only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checktime

 checktime has two possible values which specify the default time to check the
constraint.

DEFERRED

 Check constraint only at the end of the transaction.

IMMEDIATE

 Check constraint after each statement. This is the default.

Outputs

status

ERROR: name referential integrity violation - key referenced

from table not found in reftable

 This error occurs at runtime if one tries to insert a value into a column which
does not have a matching column in the referenced table.

Description

 The REFERENCES column constraint specifies that a column of a table must only contain
values which match against values in a referenced column of a referenced table.

 A value added to this column are matched against the values of the referenced table and
referenced column using the given match type. In addition, when the referenced column
data is changed, actions are run upon this column’s matching data.

Notes

 Currently Postgres only supports MATCH FULL and a default match type. In addition, the
referenced columns are supposed to be the columns of a UNIQUE constraint in the
referenced table, however Postgres does not enforce this.

Table CONSTRAINT Clause

[CONSTRAINT name] { PRIMARY KEY | UNIQUE } (column [, ...])
[CONSTRAINT name] CHECK (constraint)

Chapter 19. SQL Commands

170

[CONSTRAINT name] FOREIGN KEY (column [, ...])
 REFERENCES reftable
 (refcolumn [, ...])
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

Inputs

CONSTRAINT name

 An arbitrary name given to an integrity constraint.

column [, ...]

 The column name(s) for which to define a unique index and, for PRIMARY KEY, a
NOT NULL constraint.

CHECK (constraint)

 A boolean expression to be evaluated as the constraint.

Outputs

 The possible outputs for the table constraint clause are the same as for the corresponding
portions of the column constraint clause.

Description

 A table constraint is an integrity constraint defined on one or more columns of a base
table. The four variations of "Table Constraint" are:

UNIQUE
CHECK
PRIMARY KEY
FOREIGN KEY

Chapter 19. SQL Commands

171

UNIQUE Constraint

[CONSTRAINT name] UNIQUE (column [, ...])

Inputs

CONSTRAINT name

 An arbitrary name given to a constraint.

column

 A name of a column in a table.

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index

 This error occurs at runtime if one tries to insert a duplicate value into a column.

Description

 The UNIQUE constraint specifies a rule that a group of one or more distinct columns of a
table may contain only unique values. The behavior of the UNIQUE table constraint is the
same as that for column constraints, with the additional capability to span multiple
columns.

 See the section on the UNIQUE column constraint for more details.

Usage

 Define a UNIQUE table constraint for the table distributors:

CREATE TABLE distributors (
 did DECIMAL(03),
 name VARCHAR(40),
 UNIQUE(name)
);

Chapter 19. SQL Commands

172

PRIMARY KEY Constraint

[CONSTRAINT name] PRIMARY KEY (column [, ...])

Inputs

CONSTRAINT name

 An arbitrary name for the constraint.

column [, ...]

 The names of one or more columns in the table.

Outputs

status

ERROR: Cannot insert a duplicate key into a unique index.

 This occurs at run-time if one tries to insert a duplicate value into a column
subject to a PRIMARY KEY constraint.

Description

 The PRIMARY KEY constraint specifies a rule that a group of one or more distinct
columns of a table may contain only unique, (non duplicate), non-null values. The column
definitions of the specified columns do not have to include a NOT NULL constraint to be
included in a PRIMARY KEY constraint.

 The PRIMARY KEY table constraint is similar to that for column constraints, with the
additional capability of encompassing multiple columns.

 Refer to the section on the PRIMARY KEY column constraint for more information.

Chapter 19. SQL Commands

173

REFERENCES Constraint
[CONSTRAINT name] FOREIGN KEY (column [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [MATCH matchtype]
 [ON DELETE action]
 [ON UPDATE action]
 [[NOT] DEFERRABLE]
 [INITIALLY checktime]

 The REFERENCES constraint specifies a rule that a column value is checked against the
values of another column. REFERENCES can also be specified as part of a FOREIGN
KEY table constraint.

Inputs

CONSTRAINT name

 An arbitrary name for the constraint.

column [, ...]

 The names of one or more columns in the table.

reftable

 The table that contains the data to check against.

referenced column [, ...]

 One or more column in the reftable to check the data against. If this is not
specified, the PRIMARY KEY of the reftable is used.

MATCH matchtype

 There are three match types: MATCH FULL, MATCH PARTIAL, and a default
match type if none is specified. MATCH FULL will not allow one column of a

Chapter 19. SQL Commands

174

multi-column foreign key to be NULL unless all foreign key columns are NULL. The

Chapter 19. SQL Commands

175

default MATCH
type allows a some foreign key columns to be NULL while other parts of the foreign
key are not NULL. MATCH PARTIAL is currently not supported.

ON DELETE action

 The action to do when a referenced row in the referenced table is being deleted. There
are the following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Same as NO ACTION.

CASCADE

 Delete any rows referencing the deleted row.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

ON UPDATE action

 The action to do when a referenced column in the referenced table is being updated to
a new value. If the row is updated, but the referenced column is not changed, no
action is done. There are the following actions.

NO ACTION

 Produce error if foreign key violated. This is the default.

RESTRICT

 Disallow update of row being referenced.

CASCADE

 Update the value of the referencing column to the new value of the referenced
column.

SET NULL

 Set the referencing column values to NULL.

SET DEFAULT

 Set the referencing column values to their default value.

 [NOT] DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If

Chapter 19. SQL Commands

176

DEFERRABLE, SET CONSTRAINTS ALL DEFERRED will cause the foreign key
to be checked only at the end of the transaction. NOT DEFERRABLE is the default.

INITIALLY checktime

 checktime has two possible values which specify the default time to check the
constraint.

IMMEDIATE

 Check constraint after each statement. This is the default.

DEFERRED

 Check constraint only at the end of the transaction.

Outputs

status

ERROR: name referential integrity violation - key referenced

from table not found in reftable

 This error occurs at runtime if one tries to insert a value into a column which
does not have a matching column in the referenced table.

Description

 The FOREIGN KEY constraint specifies a rule that a group of one or more distinct
columns of a table are related to a group of distinct columns in the referenced table.

 The FOREIGN KEY table constraint is similar to that for column constraints, with the
additional capability of encompassing multiple columns.

 Refer to the section on the FOREIGN KEY column constraint for more information.

Usage

 Create table films and table distributors:

CREATE TABLE films (
 code CHARACTER(5) CONSTRAINT firstkey PRIMARY KEY,
 title CHARACTER VARYING(40) NOT NULL,
 did DECIMAL(3) NOT NULL,
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE
);

Chapter 19. SQL Commands

177

CREATE TABLE distributors (
 did DECIMAL(03) PRIMARY KEY DEFAULT NEXTVAL(’serial’),
 name VARCHAR(40) NOT NULL CHECK (name <> ’’)
);

 Create a table with a 2-dimensional array:

 CREATE TABLE array (
 vector INT[][]
);

 Define a UNIQUE table constraint for the table films. UNIQUE table constraints can be
defined on one or more columns of the table:

CREATE TABLE films (
 code CHAR(5),
 title VARCHAR(40),
 did DECIMAL(03),
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE,
 CONSTRAINT production UNIQUE(date_prod)
);

 Define a CHECK column constraint:

CREATE TABLE distributors (
 did DECIMAL(3) CHECK (did > 100),
 name VARCHAR(40)
);

 Define a CHECK table constraint:

CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40)
 CONSTRAINT con1 CHECK (did > 100 AND name > ’’)
);

Chapter 19. SQL Commands

178

 Define a PRIMARY KEY table constraint for the table films. PRIMARY KEY table
constraints can be defined on one or more columns of the table:

CREATE TABLE films (
 code CHAR(05),
 title VARCHAR(40),
 did DECIMAL(03),
 date_prod DATE,
 kind CHAR(10),
 len INTERVAL HOUR TO MINUTE,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

 Defines a PRIMARY KEY column constraint for table distributors. PRIMARY KEY
column constraints can only be defined on one column of the table (the following two
examples are equivalent):

CREATE TABLE distributors (
 did DECIMAL(03),
 name CHAR VARYING(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did DECIMAL(03) PRIMARY KEY,
 name VARCHAR(40)
);

Notes

 CREATE TABLE/INHERITS is a Postgres language extension.

Compatibility

SQL92

 In addition to the locally-visible temporary table, SQL92 also defines a CREATE
GLOBAL TEMPORARY TABLE statement, and optionally an ON COMMIT clause:

CREATE GLOBAL TEMPORARY TABLE table (column type [
 DEFAULT value] [CONSTRAINT column_constraint] [, ...])
 [CONSTRAINT table_constraint] [ON COMMIT { DELETE | PRESERVE
} ROWS]

Chapter 19. SQL Commands

179

 For temporary tables, the CREATE GLOBAL TEMPORARY TABLE statement names a
new table visible to other clients and defines the table’s columns and constraints.

 The optional ON COMMIT clause of CREATE TEMPORARY TABLE specifies whether
or not the temporary table should be emptied of rows whenever COMMIT is executed. If
the ON COMMIT clause is omitted, the default option, ON COMMIT DELETE ROWS, is
assumed.

 To create a temporary table:

CREATE TEMPORARY TABLE actors (
 id DECIMAL(03),
 name VARCHAR(40),
 CONSTRAINT actor_id CHECK (id < 150)
) ON COMMIT DELETE ROWS;

UNIQUE clause

 SQL92 specifies some additional capabilities for UNIQUE:

 Table Constraint definition:

[CONSTRAINT name] UNIQUE (column [, ...])
 [{ INITIALLY DEFERRED | INITIALLY IMMEDIATE }]
 [[NOT] DEFERRABLE]

 Column Constraint definition:

[CONSTRAINT name] UNIQUE
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

NULL clause

 The NULL "constraint" (actually a non-constraint) is a Postgres extension to SQL92 is
included for symmetry with the NOT NULL clause. Since it is the default for any column,
its presence is simply noise.

[CONSTRAINT name] NULL

NOT NULL clause

 SQL92 specifies some additional capabilities for NOT NULL:

[CONSTRAINT name] NOT NULL

Chapter 19. SQL Commands

180

 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

CONSTRAINT clause

 SQL92 specifies some additional capabilities for constraints, and also defines assertions
and domain constraints.

Note: Postgres does not yet support either domains or assertions.

 An assertion is a special type of integrity constraint and share the same namespace as other
constraints. However, an assertion is not necessarily dependent on one particular base table
as constraints are, so SQL-92 provides the CREATE ASSERTION statement as an
alternate method for defining a constraint:
CREATE ASSERTION name CHECK (condition)

 Domain constraints are defined by CREATE DOMAIN or ALTER DOMAIN statements:

 Domain constraint:
[CONSTRAINT name] CHECK constraint
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Table constraint definition:
[CONSTRAINT name] { PRIMARY KEY (column, ...) | FOREIGN KEY
constraint | UNIQUE constraint | CHECK constraint }
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Column constraint definition:
[CONSTRAINT name] { NOT NULL | PRIMARY KEY | FOREIGN KEY
constraint | UNIQUE | CHECK constraint }
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 A CONSTRAINT definition may contain one deferment attribute clause and/or one initial
constraint mode clause, in any order.

NOT DEFERRABLE

 The constraint must be checked at the end of each statement. SET CONSTRAINTS
ALL DEFERRED will have no effect on this type of constraint.

Chapter 19. SQL Commands

181

DEFERRABLE

 This controls whether the constraint can be deferred to the end of the transaction. If
SET CONSTRAINTS ALL DEFERRED is used or the constraint is set to
INITIALLY DEFERRED, this will cause the foreign key to be checked only at the
end of the transaction.

 SET CONSTRAINT changes the foreign key constraint mode only for the current
transaction.

INITIALLY IMMEDIATE

 Check constraint only at the end of the transaction. This is the default

INITIALLY DEFERRED

 Check constraint after each statement.

CHECK clause

 SQL92 specifies some additional capabilities for CHECK in either table or column
constraints.

 table constraint definition:
[CONSTRAINT name] CHECK (VALUE condition)
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 column constraint definition:
[CONSTRAINT name] CHECK (VALUE condition)
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

PRIMARY KEY clause

 SQL92 specifies some additional capabilities for PRIMARY KEY:

 Table Constraint definition:
[CONSTRAINT name] PRIMARY KEY (column [, ...])
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

 Column Constraint definition:
[CONSTRAINT name] PRIMARY KEY
 [{INITIALLY DEFERRED | INITIALLY IMMEDIATE}]
 [[NOT] DEFERRABLE]

Chapter 19. SQL Commands

182

 CREATE TABLE AS

Name

 CREATE TABLE AS � Creates a new table

Synopsis
CREATE TABLE table [(column [, ...])]
 AS select_clause

Inputs

table

 The name of a new table to be created.

column

 The name of a column. Multiple column names can be specified using a
comma-delimited list of column names.

select_clause

 A valid query statement. Refer to SELECT for a description of the allowed syntax.

Outputs

 Refer to CREATE TABLE and SELECT for a summary of possible output messages.

Description

 CREATE TABLE AS enables a table to be created from the contents of an existing table.
It is functionality equivalent to SELECT INTO, but with perhaps a more direct syntax.

 CREATE TRIGGER

Name

 CREATE TRIGGER � Creates a new trigger

Synopsis
CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
 ON table FOR EACH { ROW | STATEMENT }
 EXECUTE PROCEDURE func (arguments)

Inputs

Chapter 19. SQL Commands

183

name

 The name of an existing trigger.

table

 The name of a table.

event

 One of INSERT, DELETE or UPDATE.

funcname

 A user-supplied function.

Outputs

CREATE

 This message is returned if the trigger is successfully created.

Description

 CREATE TRIGGER will enter a new trigger into the current data base. The trigger will
be associated with the relation relname and will execute the specified function
funcname.

 The trigger can be specified to fire either before BEFORE the operation is attempted on a
tuple (before constraints are checked and the INSERT, UPDATE or DELETE is
attempted) or AFTER the operation has been attempted (e.g. after constraints are checked
and the INSERT, UPDATE or DELETE has completed). If the trigger fires before the
event, the trigger may skip the operation for the current tuple, or change the tuple being
inserted (for INSERT and UPDATE operations only). If the trigger fires after the event,
all changes, including the last insertion, update, or deletion, are "visible" to the trigger.

 Refer to the chapters on SPI and Triggers in the PostgreSQL Programmer’s Guide for
more information.

Notes

 CREATE TRIGGER is a Postgres language extension.

 Only the relation owner may create a trigger on this relation.

 As of the current release (v7.0), STATEMENT triggers are not implemented.

 Refer to DROP TRIGGER for information on how to remove triggers.

Chapter 19. SQL Commands

184

Usage

 Check if the specified distributor code exists in the distributors table before appending or
updating a row in the table films:
CREATE TRIGGER if_dist_exists
 BEFORE INSERT OR UPDATE ON films FOR EACH ROW
 EXECUTE PROCEDURE check_primary_key
 (’did’, ’distributors’, ’did’);

 Before cancelling a distributor or updating its code, remove every reference to the table
films:
CREATE TRIGGER if_film_exists
 BEFORE DELETE OR UPDATE ON distributors FOR EACH ROW
 EXECUTE PROCEDURE check_foreign_key (1, ’CASCADE’, ’did’,
’films’, ’did’);

Compatibility

SQL92

 There is no CREATE TRIGGER in SQL92.

 The second example above may also be done by using a FOREIGN KEY constraint as in:
CREATE TABLE distributors (
 did DECIMAL(3),
 name VARCHAR(40),
 CONSTRAINT if_film_exists
 FOREIGN KEY(did) REFERENCES films
 ON UPDATE CASCADE ON DELETE CASCADE
);

 CREATE TYPE

Name

 CREATE TYPE � Defines a new base data type

Synopsis
CREATE TYPE typename (INPUT = input_function
 , OUTPUT = output_function
 , INTERNALLENGTH = { internallength | VARIABLE }
 [, EXTERNALLENGTH = { externallength | VARIABLE }]
 [, DEFAULT = "default"]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, SEND = send_function] [, RECEIVE = receive_function]
 [, PASSEDBYVALUE])

Chapter 19. SQL Commands

185

Inputs

typename

 The name of a type to be created.

internallength

 A literal value, which specifies the internal length of the new type.

externallength

 A literal value, which specifies the external length of the new type.

input_function

 The name of a function, created by CREATE FUNCTION, which converts data
from its external form to the type’s internal form.

output_function

 The name of a function, created by CREATE FUNCTION, which converts data from
its internal form to a form suitable for display.

element

 The type being created is an array; this specifies the type of the array elements.

delimiter

 The delimiter character for the array.

default

 The default text to be displayed to indicate "data not present"

send_function

 The name of a function, created by CREATE FUNCTION, which converts data of
this type into a form suitable for transmission to another machine.

receive_function

 The name of a function, created by CREATE FUNCTION, which converts data of
this type from a form suitable for transmission from another machine to internal form.

Outputs

CREATE

 Message returned if the type is successfully created.

Chapter 19. SQL Commands

186

Description

 CREATE TYPE allows the user to register a new user data type with Postgres for use in
the current data base. The user who defines a type becomes its owner. typename is the
name of the new type and must be unique within the types defined for this database.
 CREATE TYPE requires the registration of two functions (using create function) before
defining the type. The representation of a new base type is determined by
input_function, which converts the type’s external representation to an internal
representation usable by the operators and functions defined for the type. Naturally,
output_function performs the reverse transformation. Both the input and output
functions must be declared to take one or two arguments of type "opaque".

 New base data types can be fixed length, in which case internallength is a positive
integer, or variable length, in which case Postgres assumes that the new type has the same
format as the Postgres-supplied data type, "text". To indicate that a type is
variable-length, set internallength to VARIABLE. The external representation is
similarly specified using the externallength keyword.

 To indicate that a type is an array and to indicate that a type has array elements, indicate
the type of the array element using the element keyword. For example, to define an array of
4 byte integers ("int4"), specify

ELEMENT = int4

 To indicate the delimiter to be used on arrays of this type, delimiter can be set to a
specific character. The default delimiter is the comma (",").

 A default value is optionally available in case a user wants some specific bit pattern to
mean "data not present." Specify the default with the DEFAULT keyword.

* How does the user specify that bit pattern and associate it with the fact that the data is not present>

 The optional arguments send_function and receive_function are used when the
application program requesting Postgres services resides on a different machine. In this
case, the machine on which Postgres runs may use a format for the data type different from
that used on the remote machine. In this case it is appropriate to convert data items to a
standard form when sending from the server to the client and converting from the standard
format to the machine specific format when the server receives the data from the client. If
these functions are not specified, then it is assumed that the internal format of the type is
acceptable on all relevant machine architectures. For example, single characters do not
have to be converted if passed from a Sun-4 to a DECstation, but many other types do.

 The optional flag, PASSEDBYVALUE, indicates that operators and functions which use this
data type should be passed an argument by value rather than by reference. Note that you
may not pass by value types whose internal representation is more than four bytes.

 For new base types, a user can define operators, functions and aggregates using the
appropriate facilities described in this section.

Array Types

 Two generalized built-in functions, array_in and array_out, exist for quick creation of
variable-length array types. These functions operate on arrays of any existing Postgres
type.

Chapter 19. SQL Commands

187

Large Object Types

 A "regular" Postgres type can only be 8192 bytes in length. If you need a larger type you
must create a Large Object type. The interface for these types is discussed at length in the
PostgreSQL Programmer’s Guide. The length of all large object types is always
VARIABLE.

Examples

 This command creates the box data type and then uses the type in a class definition:
CREATE TYPE box (INTERNALLENGTH = 8,
 INPUT = my_procedure_1, OUTPUT = my_procedure_2);
CREATE TABLE myboxes (id INT4, description box);

 This command creates a variable length array type with integer elements:
CREATE TYPE int4array (INPUT = array_in, OUTPUT = array_out,
 INTERNALLENGTH = VARIABLE, ELEMENT = int4);
CREATE TABLE myarrays (id int4, numbers int4array);

 This command creates a large object type and uses it in a class definition:
CREATE TYPE bigobj (INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE);
CREATE TABLE big_objs (id int4, obj bigobj);

Notes

 Type names cannot begin with the underscore character ("_") and can only be 31
characters long. This is because Postgres silently creates an array type for each base type
with a name consisting of the base type’s name prepended with an underscore.

 Refer to DROP TYPE to remove an existing type.

 See also CREATE FUNCTION, CREATE OPERATOR and the chapter on Large
Objects in the PostgreSQL Programmer’s Guide.

Compatibility

SQL3

 CREATE TYPE is an SQL3 statement.

Chapter 19. SQL Commands

188

 CREATE USER

Name

 CREATE USER � Creates a new database user

Synopsis
CREATE USER username
 [WITH
 [SYSID uid]
 [PASSWORD ’password’]]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]
 [IN GROUP groupname [, ...]]
 [VALID UNTIL ’abstime’]

Inputs

username

 The name of the user.

uid

 The SYSID clause can be used to choose the Postgres user id of the user that is being
created. It is not at all necessary that those match the UNIX user ids, but some people
choose to keep the numbers the same.

 If this is not specified, the highest assigned user id plus one will be used as default.

password
 Sets the user’s password. If you do not plan to use password authentication you can

omit this option, otherwise the user won’t be able to connect to a
password-authenticated server. See pg_hba.conf(5) or the administrator’s guide for

details on how to set up authentication mechanisms.

CREATEDB
NOCREATEDB

 These clauses define a user’s ability to create databases. If CREATEDB is specified,
the user being defined will be allowed to create his own databases. Using
NOCREATEDB will deny a user the ability to create databases. If this clause is
omitted, NOCREATEDB is used by default.

CREATEUSER
NOCREATEUSER

 These clauses determine whether a user will be permitted to create new users himself.
This option will also make the user a superuser who can override all access
restrictions. Omitting this clause will set the user’s value of this attribute to be
NOCREATEUSER.

Chapter 19. SQL Commands

189

groupname

 A name of a group into which to insert the user as a new member.

abstime

 The VALID UNTIL clause sets an absolute time after which the user’s password is
no longer valid. If this clause is omitted the login will be valid for all time.

Outputs

CREATE USER

 Message returned if the command completes successfully.

Description

 CREATE USER will add a new user to an instance of Postgres. Refer to the
adminstrator’s guide for information about managing users and authentication. You must
be a database superuser to use this command.

 Use ALTER USER to change a user’s password and privileges, and DROP USER to
remove a user. Use ALTER GROUP to add or remove the user from other groups.
Postgres comes with a script createuser which has the same functionality as this command
(in fact, it calls this command) but can be run from the command shell.

Usage

 Create a user with no password:

CREATE USER jonathan

 Create a user with a password:

CREATE USER davide WITH PASSWORD ’jw8s0F4’

 Create a user with a password, whose account is valid until the end of 2001. Note that after
one second has ticked in 2002, the account is not valid:

CREATE USER miriam WITH PASSWORD ’jw8s0F4’ VALID UNTIL ’Jan 1 2002’

 Create an account where the user can create databases:

CREATE USER manuel WITH PASSWORD ’jw8s0F4’ CREATEDB

Chapter 19. SQL Commands

190

Compatibility

SQL92

 There is no CREATE USER statement in SQL92.

 CREATE VIEW

Name

 CREATE VIEW � Constructs a virtual table

Synopsis
CREATE VIEW view AS SELECT query

Inputs

view

 The name of a view to be created.

query

 An SQL query which will provide the columns and rows of the view.

 Refer to the SELECT statement for more information about valid arguments.

Outputs

CREATE

 The message returned if the view is successfully created.

ERROR: Relation ’view’ already exists

 This error occurs if the view specified already exists in the database.

NOTICE create: attribute named "column" has an unknown type

 The view will be created having a column with an unknown type if you do not
specify it. For example, the following command gives a warning:

CREATE VIEW vista AS SELECT ’Hello World’

 whereas this command does not:

CREATE VIEW vista AS SELECT text ’Hello World’

Chapter 19. SQL Commands

191

Description

 CREATE VIEW will define a view of a table or class. This view is not physically
materialized. Specifically, a query rewrite retrieve rule is automatically generated to
support retrieve operations on views.

Notes

 Currently, views are read only.

 Use the DROP VIEW statement to drop views.

Usage

 Create a view consisting of all Comedy films:
CREATE VIEW kinds AS
 SELECT *
 FROM films
 WHERE kind = ’Comedy’;

SELECT * FROM kinds;

 code | title | did | date_prod | kind | len

-------+---------------------------+-----+------------+--------+-------

 UA502 | Bananas | 105 | 1971-07-13 | Comedy | 01:22

 C_701 | There’s a Girl in my Soup | 107 | 1970-06-11 | Comedy | 01:36

(2 rows)

Compatibility

SQL92

 SQL92 specifies some additional capabilities for the CREATE VIEW statement:
CREATE VIEW view [column [, ...]]
 AS SELECT expression [AS colname] [, ...]
 FROM table [WHERE condition]
 [WITH [CASCADE | LOCAL] CHECK OPTION]

 The optional clauses for the full SQL92 command are:

CHECK OPTION

 This option is to do with updatable views. All INSERTs and UPDATEs on the view
will be checked to ensure data satisfy the view-defining condition. If they do not, the
update will be rejected.

Chapter 19. SQL Commands

192

LOCAL

 Check for integrity on this view.

CASCADE

 Check for integrity on this view and on any dependent view. CASCADE is assumed
if neither CASCADE nor LOCAL is specified.

 DECLARE

Name

 DECLARE � Defines a cursor for table access

Synopsis
DECLARE cursorname [BINARY] [INSENSITIVE] [SCROLL]
 CURSOR FOR query
 [FOR { READ ONLY | UPDATE [OF column [, ...]]]

Inputs

cursorname

 The name of the cursor to be used in subsequent FETCH operations..

BINARY

 Causes the cursor to fetch data in binary rather than in text format.

INSENSITIVE

 SQL92 keyword indicating that data retrieved from the cursor should be unaffected
by updates from other processes or cursors. Since cursor operations occur within
transactions in Postgres this is always the case. This keyword has no effect.

SCROLL

 SQL92 keyword indicating that data may be retrieved in multiple rows per FETCH
operation. Since this is allowed at all times by Postgres this keyword has no effect.

query

 An SQL query which will provide the rows to be governed by the cursor. Refer to the
SELECT statement for further information about valid arguments.

READ ONLY

 SQL92 keyword indicating that the cursor will be used in a readonly mode. Since this
is the only cursor access mode available in Postgres this keyword has no effect.

Chapter 19. SQL Commands

193

UPDATE

 SQL92 keyword indicating that the cursor will be used to update tables. Since cursor
updates are not currently supported in Postgres this keyword provokes an
informational error message.

column

 Column(s) to be updated. Since cursor updates are not currently supported in Postgres
the UPDATE clause provokes an informational error message.

Outputs

SELECT

 The message returned if the SELECT is run successfully.

NOTICE BlankPortalAssignName: portal "cursorname" already exists

 This error occurs if cursorname is already declared.

ERROR: Named portals may only be used in begin/end transaction

blocks

 This error occurs if the cursor is not declared within a transaction block.

Description

 DECLARE allows a user to create cursors, which can be used to retrieve a small number
of rows at a time out of a larger query. Cursors can return data either in text or in binary
format using FETCH.

 Normal cursors return data in text format, either ASCII or another encoding scheme
depending on how the Postgres backend was built. Since data is stored natively in binary
format, the system must do a conversion to produce the text format. In addition, text
formats are often larger in size than the corresponding binary format. Once the information
comes back in text form, the client application may need to convert it to a binary format to
manipulate it. BINARY cursors give you back the data in the native binary representation.

 As an example, if a query returns a value of one from an integer column, you would get a
string of ’1’ with a default cursor whereas with a binary cursor you would get a 4-byte
value equal to control-A (’^A’).

 BINARY cursors should be used carefully. User applications such as psql are not aware of
binary cursors and expect data to come back in a text format.
 String representation is architecture-neutral whereas binary representation can differ
between different machine architectures and Postgres does not resolve byte ordering or
representation issues for binary cursors. Therefore, if your client machine and server
machine use different representations (e.g. "big-endian" versus "little-endian"), you will
probably not want your data returned in binary format. However, binary cursors may be a
little more efficient since there is less conversion overhead in the server to client data
transfer.

Chapter 19. SQL Commands

194

Tip: If you intend to display the data in ASCII, getting it back in ASCII will save you

some effort on the client side.

Notes

 Cursors are only available in transactions. Use to BEGIN, COMMIT and ROLLBACK to
define a transaction block.

 In SQL92 cursors are only available in embedded SQL (ESQL) applications. The Postgres
backend does not implement an explicit OPEN cursor statement; a cursor is considered to
be open when it is declared. However, ecpg, the embedded SQL preprocessor for Postgres,
supports the SQL92 cursor conventions, including those involving DECLARE and OPEN
statements.

Usage

 To declare a cursor:
DECLARE liahona CURSOR
 FOR SELECT * FROM films;

Compatibility

SQL92

 SQL92 allows cursors only in embedded SQL and in modules. Postgres permits cursors to
be used interactively. SQL92 allows embedded or modular cursors to update database
information. All Postgres cursors are readonly. The BINARY keyword is a Postgres
extension.

 DELETE

Name

 DELETE � Removes rows from a table

Synopsis
DELETE FROM table [WHERE condition]

Inputs

table

 The name of an existing table.

Chapter 19. SQL Commands

195

condition

 This is an SQL selection query which returns the rows which are to be deleted.

 Refer to the SELECT statement for further description of the WHERE clause.

Outputs

DELETE count

 Message returned if items are successfully deleted. The count is the number of rows
deleted.

 If count is 0, no rows were deleted.

Description

 DELETE removes rows which satisfy the WHERE clause from the specified table.

 If the condition (WHERE clause) is absent, the effect is to delete all rows in the table. The
result is a valid, but empty table.

Tip: TRUNCATE is a Postgres extension which provides a faster mechanism to
remove all rows from a table.

 You must have write access to the table in order to modify it, as well as read access to any
table whose values are read in the condition.

Usage

 Remove all films but musicals:

DELETE FROM films WHERE kind <> ’Musical’;
SELECT * FROM films;

 code | title | did | date_prod | kind | len

-------+---------------------------+-----+------------+---------+-------

 UA501 | West Side Story | 105 | 1961-01-03 | Musical | 02:32

 TC901 | The King and I | 109 | 1956-08-11 | Musical | 02:13

 WD101 | Bed Knobs and Broomsticks | 111 | | Musical | 01:57

(3 rows)

Chapter 19. SQL Commands

196

 Clear the table films:
DELETE FROM films;
SELECT * FROM films;

 code | title | did | date_prod | kind | len

------+-------+-----+-----------+------+-----

(0 rows)

Compatibility

SQL92

 SQL92 allows a positioned DELETE statement:
DELETE FROM table WHERE
 CURRENT OF cursor

 where cursor identifies an open cursor. Interactive cursors in Postgres are read-only.

 DROP AGGREGATE

Name

 DROP AGGREGATE � Removes the definition of an aggregate function

Synopsis
DROP AGGREGATE name type

Inputs

name

 The name of an existing aggregate function.

type

 The type of an existing aggregate function. (Refer to the PostgreSQL User’s Guide
for further information about data types).

* This should become a cross-reference rather than a hard-coded chapter number

Outputs

DROP

 Message returned if the command is successful.

Chapter 19. SQL Commands

197

WARN RemoveAggregate: aggregate ’agg’ for ’type’ does not exist

 This message occurs if the aggregate function specified does not exist in the database.

Description

 DROP AGGREGATE will remove all references to an existing aggregate definition. To
execute this command the current user must be the owner of the aggregate.

Notes

 Use CREATE AGGREGATE to create aggregate functions.

Usage

 To remove the myavg aggregate for type int4:

DROP AGGREGATE myavg int4;

Compatibility

SQL92

 There is no DROP AGGREGATE statement in SQL92; the statement is a Postgres
language extension.

Chapter 19. SQL Commands

198

 DROP DATABASE

Name

 DROP DATABASE � Removes an existing database

Synopsis
DROP DATABASE name

Inputs

name

 The name of an existing database to remove.

Outputs

DROP DATABASE

 This message is returned if the command is successful.

ERROR: user ’username’ is not allowed to create/drop databases

 You must have the special CREATEDB privilege to drop databases. See CREATE
USER.

ERROR: dropdb: cannot be executed on the template database

 The template1 database cannot be removed. It’s not in your interest.

ERROR: dropdb: cannot be executed on an open database

 You cannot be connected to the the database your are about to remove. Instead, you
could connect to template1 or any other database and run this command again.

ERROR: dropdb: database ’name’ does not exist

 This message occurs if the specified database does not exist.

ERROR: dropdb: database ’name’ is not owned by you

 You must be the owner of the database. Being the owner usually means that you
created it as well.

ERROR: dropdb: May not be called in a transaction block.

 You must finish the transaction in progress before you can call this command.

NOTICE: The database directory ’xxx’ could not be removed.

 The database was dropped (unless other error messages came up), but the directory
where the data is stored could not be removed. You must delete it manually.

Chapter 19. SQL Commands

199

Description

 DROP DATABASE removes the catalog entries for an existing database and deletes the
directory containing the data. It can only be executed by the database owner (usually the
user that created it).

Notes

 This command cannot be executed while connected to the target database. Thus, it might
be more convenient to use the shell script dropdb, which is a wrapper around this
command, instead.

 Refer to CREATE DATABASE for information on how to create a database.

Compatibility

SQL92

 DROP DATABASE statement is a Postgres language extension; there is no such
command in SQL92.

 DROP FUNCTION

Name

 DROP FUNCTION � Removes a user-defined C function

Synopsis
DROP FUNCTION name ([type [, ...]])

Inputs

 name

 The name of an existing function.

type

 The type of function parameters.

Outputs

DROP

 Message returned if the command completes successfully.

Chapter 19. SQL Commands

200

WARN RemoveFunction: Function "name" ("types") does not exist

 This message is given if the function specified does not exist in the current database.

Description

 DROP FUNCTION will remove references to an existing C function. To execute this
command the user must be the owner of the function. The input argument types to the
function must be specified, as only the function with the given name and argument types
will be removed.

Notes

 Refer to CREATE FUNCTION for information on creating aggregate functions.

 No checks are made to ensure that types, operators or access methods that rely on the
function have been removed first.

Usage

 This command removes the square root function:

DROP FUNCTION sqrt(int4);

Compatibility

SQL92

 DROP FUNCTION is a Postgres language extension.

SQL/PSM

 SQL/PSM is a proposed standard to enable function extensibility. The SQL/PSM DROP
FUNCTION statement has the following syntax:

DROP [SPECIFIC] FUNCTION name { RESTRICT | CASCADE }

 DROP GROUP

Name

 DROP GROUP � Removes a group

Synopsis

DROP GROUP name

Chapter 19. SQL Commands

201

Inputs

name

 The name of an existing group.

Outputs

DROP GROUP

 The message returned if the group is successfully deleted.

Description

 DROP GROUP removes the specified group from the database. The users in the group
are not deleted.

 Use CREATE GROUP to add new groups, and ALTER GROUP to change a group’s
membership.

Usage

 To drop a group:

DROP GROUP staff;

Compatibility

SQL92

 There is no DROP GROUP in SQL92.

 DROP INDEX

Name

 DROP INDEX � Removes an index from a database

Synopsis

DROP INDEX index_name

Chapter 19. SQL Commands

202

Inputs

index_name

 The name of the index to remove.

Outputs

DROP

 The message returned if the index is successfully dropped.

ERROR: index "index_name" nonexistent

 This message occurs if index_name is not an index in the database.

Description

 DROP INDEX drops an existing index from the database system. To execute this
command you must be the owner of the index.

Notes

 DROP INDEX is a Postgres language extension.

 Refer to CREATE INDEX for information on how to create indexes.

Usage

 This command will remove the title_idx index:
 DROP INDEX title_idx;

Compatibility

SQL92

 SQL92 defines commands by which to access a generic relational database. Indexes are an
implementation-dependent feature and hence there are no index-specific commands or
definitions in the SQL92 language.

Chapter 19. SQL Commands

203

 DROP LANGUAGE

Name

 DROP LANGUAGE � Removes a user-defined procedural language

Synopsis
DROP PROCEDURAL LANGUAGE ’name’

Inputs

name

 The name of an existing procedural language.

Outputs

DROP

 This message is returned if the language is successfully dropped.

ERROR: Language "name" doesn’t exist

 This message occurs if a language called name is not found in the database.

Description

 DROP PROCEDURAL LANGUAGE will remove the definition of the previously
registered procedural language called name.

Notes

 The DROP PROCEDURAL LANGUAGE statement is a Postgres language extension.

 Refer to CREATE LANGUAGE for information on how to create procedural languages.
 No checks are made if functions or trigger procedures registered in this language still
exist. To re-enable them without having to drop and recreate all the functions, the
pg_proc’s prolang attribute of the functions must be adjusted to the new object ID of the
recreated pg_language entry for the PL.

Usage

 This command removes the PL/Sample language:
DROP PROCEDURAL LANGUAGE ’plsample’;

Chapter 19. SQL Commands

204

Compatibility

SQL92

 There is no DROP PROCEDURAL LANGUAGE in SQL92.

 DROP OPERATOR

Name

 DROP OPERATOR � Removes an operator from the database

Synopsis
DROP OPERATOR id (type | NONE [,...])

Inputs

id

 The identifier of an existing operator.

type

 The type of function parameters.

Outputs

DROP

 The message returned if the command is successful.

ERROR: RemoveOperator: binary operator ’oper’ taking ’type’ and

’type2’ does not exist

 This message occurs if the specified binary operator does not exist.

ERROR: RemoveOperator: left unary operator ’oper’ taking ’type’ does

not exist

 This message occurs if the specified left unary operator specified does not exist.

ERROR: RemoveOperator: right unary operator ’oper’ taking ’type’

does not exist

 This message occurs if the specified right unary operator specified does not exist.

Chapter 19. SQL Commands

205

Description

 DROP OPERATOR drops an existing operator from the database. To execute this
command you must be the owner of the operator.

 The left or right type of a left or right unary operator, respectively, may be specified as
NONE.

Notes

 The DROP OPERATOR statement is a Postgres language extension.

 Refer to CREATE OPERATOR for information on how to create operators.

 It is the user’s responsibility to remove any access methods and operator classes that rely
on the deleted operator.

Usage

 Remove power operator a^n for int4:
DROP OPERATOR ^ (int4, int4);

 Remove left unary negation operator (b !) for booleans:
DROP OPERATOR ! (none, bool);

 Remove right unary factorial operator (! i) for int4:
DROP OPERATOR ! (int4, none);

Compatibility

SQL92

 There is no DROP OPERATOR in SQL92.

 DROP RULE

Name

 DROP RULE � Removes an existing rule from the database

Synopsis

DROP RULE name

Chapter 19. SQL Commands

206

Inputs

name

 The name of an existing rule to drop.

Outputs

DROP

 Message returned if successfully.

ERROR: RewriteGetRuleEventRel: rule "name" not found

 This message occurs if the specified rule does not exist.

Description

 DROP RULE drops a rule from the specified Postgres rule system. Postgres will
immediately cease enforcing it and will purge its definition from the system catalogs.

Notes

 The DROP RULE statement is a Postgres language extension.

 Refer to CREATE RULE for information on how to create rules.

 Once a rule is dropped, access to historical information the rule has written may disappear.

Usage

 To drop the rewrite rule newrule:
DROP RULE newrule;

Compatibility

SQL92

 There is no DROP RULE in SQL92.

 DROP SEQUENCE

Name

 DROP SEQUENCE � Removes an existing sequence

Chapter 19. SQL Commands

207

Synopsis
DROP SEQUENCE name [, ...]

Inputs

name

 The name of a sequence.

Outputs

DROP

 The message returned if the sequence is successfully dropped.

WARN: Relation "name" does not exist.

 This message occurs if the specified sequence does not exist.

Description

 DROP SEQUENCE removes sequence number generators from the data base. With the
current implementation of sequences as special tables it works just like the DROP TABLE
statement.

Notes

 The DROP SEQUENCE statement is a Postgres language extension.

 Refer to the CREATE SEQUENCE statement for information on how to create a
sequence.

Usage

 To remove sequence serial from database:

DROP SEQUENCE serial;

Compatibility

SQL92

 There is no DROP SEQUENCE in SQL92.

Chapter 19. SQL Commands

208

 DROP TABLE

Name

 DROP TABLE � Removes existing tables from a database

Synopsis

DROP TABLE name [, ...]

Inputs

name

 The name of an existing table or view to drop.

Outputs

DROP

 The message returned if the command completes successfully.

ERROR Relation "name" Does Not Exist!

 If the specified table or view does not exist in the database.

Description

 DROP TABLE removes tables and views from the database. Only its owner may destroy
a table or view. A table may be emptied of rows, but not destroyed, by using DELETE.

 If a table being destroyed has secondary indexes on it, they will be removed first. The
removal of just a secondary index will not affect the contents of the underlying table.

Notes

 Refer to CREATE TABLE and ALTER TABLE for information on how to create or
modify tables.

Usage

 To destroy two tables, films and distributors:

DROP TABLE films, distributors;

Chapter 19. SQL Commands

209

Compatibility

SQL92

 SQL92 specifies some additional capabilities for DROP TABLE:
DROP TABLE table { RESTRICT | CASCADE }

RESTRICT

 Ensures that only a table with no dependent views or integrity constraints can be
destroyed.

CASCADE

 Any referencing views or integrity constraints will also be dropped.

Tip: At present, to remove a referenced view you must drop it explicitly.

 DROP TRIGGER

Name

 DROP TRIGGER � Removes the definition of a trigger

Synopsis
DROP TRIGGER name ON table

Inputs

name

 The name of an existing trigger.

table

 The name of a table.

Outputs

DROP

 The message returned if the trigger is successfully dropped.

ERROR: DropTrigger: there is no trigger name on relation "table"

 This message occurs if the trigger specified does not exist.

Chapter 19. SQL Commands

210

Description

 DROP TRIGGER will remove all references to an existing trigger definition. To execute
this command the current user must be the owner of the trigger.

Notes

 DROP TRIGGER is a Postgres language extension.

 Refer to CREATE TRIGGER for information on how to create triggers.

Usage
 Destroy the if_dist_exists trigger on table films:
DROP TRIGGER if_dist_exists ON films;

Compatibility

SQL92

 There is no DROP TRIGGER statement in SQL92.

 DROP TYPE

Name

 DROP TYPE � Removes a user-defined type from the system catalogs

Synopsis
DROP TYPE typename

Inputs

typename

 The name of an existing type.

Outputs

DROP

 The message returned if the command is successful.

Chapter 19. SQL Commands

211

ERROR: RemoveType: type ’typename’ does not exist

 This message occurs if the specified type is not found.

Description

 DROP TYPE will remove a user type from the system catalogs.

 Only the owner of a type can remove it.

Notes

 DROP TYPE statement is a Postgres language extension.

 Refer to CREATE TYPE for inforamation on how to create types.

 It is the user’s responsibility to remove any operators, functions, aggregates, access
methods, subtypes, and classes that use a deleted type.

 If a built-in type is removed, the behavior of the backend is unpredictable.

Usage

 To remove the box type:
DROP TYPE box;

Compatibility

SQL3

 DROP TYPE is a SQL3 statement.

 DROP USER

Name

 DROP USER � Removes a user

Synopsis
DROP USER name

Inputs

name

 The name of an existing user.

Chapter 19. SQL Commands

212

Outputs

DROP USER

 The message returned if the user is successfully deleted.

ERROR: DROP USER: user "name" does not exist

 This message occurs if the username is not found.

DROP USER: user "name" owns database "name", cannot be removed

 You must drop the database first or change its ownership.

Description

 DROP USER removes the specified user from the database. It does not remove tables,
views, or other objects owned by the user. If the user owns any database you get an error.

 Use CREATE USER to add new users, and ALTER USER to change a user’s properties.
Postgres comes with a script dropuser which has the same functionality as this command
(in fact, it calls this command) but can be run from the command shell.

Usage

 To drop a user account:

DROP USER jonathan;

Compatibility

SQL92

 There is no DROP USER in SQL92.

 DROP VIEW

Name

 DROP VIEW � Removes an existing view from a database

Synopsis

DROP VIEW name

Chapter 19. SQL Commands

213

Inputs

name

 The name of an existing view.

Outputs

DROP

 The message returned if the command is successful.

ERROR: RewriteGetRuleEventRel: rule "_RETname" not found

 This message occurs if the specified view does not exist in the database.

Description

 DROP VIEW drops an existing view from the database. To execute this command you
must be the owner of the view.

Notes

 The Postgres DROP TABLE statement also drops views.

 Refer to CREATE VIEW for information on how to create views.

Usage

 This command will remove the view called kinds:
DROP VIEW kinds;

Compatibility

SQL92

 SQL92 specifies some additional capabilities for DROP VIEW:
DROP VIEW view { RESTRICT | CASCADE }

Inputs

RESTRICT

 Ensures that only a view with no dependent views or integrity constraints can be

Chapter 19. SQL Commands

214

destroyed.

CASCADE

 Any referencing views and integrity constraints will be dropped as well.

Notes

 At present, to remove a referenced view from a Postgres database, you must drop it
explicitly.

 END

Name

 END � Commits the current transaction

Synopsis
END [WORK | TRANSACTION]

Inputs

WORK
TRANSACTION

 Optional keywords. They have no effect.

Outputs

COMMIT

 Message returned if the transaction is successfully committed.

NOTICE: COMMIT: no transaction in progress

 If there is no transaction in progress.

Description

 END is a Postgres extension, and is a synonym for the SQL92-compatible COMMIT.

Notes

 The keywords WORK and TRANSACTION are noise and can be omitted.

 Use ROLLBACK to abort a transaction.

Chapter 19. SQL Commands

215

Usage

 To make all changes permanent:
END WORK;

Compatibility

SQL92

 END is a PostgreSQL extension which provides functionality equivalent to COMMIT.

 EXPLAIN

Name

 EXPLAIN � Shows statement execution plan

Synopsis
EXPLAIN [VERBOSE] query

Inputs

VERBOSE

 Flag to show detailed query plan.

query

 Any query.

Outputs

NOTICE: QUERY PLAN: plan

 Explicit query plan from the Postgres backend.

EXPLAIN

 Flag sent after query plan is shown.

Description

 This command displays the execution plan that the Postgres planner generates for the

Chapter 19. SQL Commands

216

supplied query. The execution plan shows how the table(s) referenced by the query will be
scanned --- by plain sequential scan, index scan etc --- and if multiple tables are referenced,
what join algorithms will be used to bring together the required tuples from each input
table.

 The most critical part of the display is the estimated query execution cost, which is the
planner’s guess at how long it will take to run the query (measured in units of disk page
fetches). Actually two numbers are shown: the startup time before the first tuple can be
returned, and the total time to return all the tuples. For most queries the total time is what
matters, but in contexts such as an EXISTS sub-query the planner will choose the smallest
startup time instead of the smallest total time (since the executor will stop after getting one
tuple, anyway). Also, if you limit the number of tuples to return with a LIMIT clause, the
planner makes an appropriate interpolation between the endpoint costs to estimate which
plan is really the cheapest.

 The VERBOSE option emits the full internal representation of the plan tree, rather than
just a summary (and sends it to the postmaster log file, too). Usually this option is only
useful for debugging Postgres.

Notes

 There is only sparse documentation on the optimizer’s use of cost information in Postgres.
General information on cost estimation for query optimization can be found in database
textbooks. Refer to the Programmer’s Guide in the chapters on indexes and the genetic
query optimizer for more information.

Usage

 To show a query plan for a simple query on a table with a single int4 column and 128
rows:
EXPLAIN SELECT * FROM foo;

 NOTICE: QUERY PLAN:

Seq Scan on foo (cost=0.00..2.28 rows=128 width=4)

EXPLAIN

 For the same table with an index to support an equijoin condition on the query, EXPLAIN
will show a different plan:
EXPLAIN SELECT * FROM foo WHERE i = 4;

 NOTICE: QUERY PLAN:

Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

EXPLAIN

Chapter 19. SQL Commands

217

 And finally, for the same table with an index to support an equijoin condition on the query,
EXPLAIN will show the following for a query using an aggregate function:
EXPLAIN SELECT sum(i) FROM foo WHERE i = 4;

 NOTICE: QUERY PLAN:

Aggregate (cost=0.42..0.42 rows=1 width=4)

 -> Index Scan using fi on foo (cost=0.00..0.42 rows=1 width=4)

 Note that the specific numbers shown, and even the selected query strategy, may vary
between Postgres releases due to planner improvements.

Compatibility

SQL92

 There is no EXPLAIN statement defined in SQL92.

 FETCH

Name

 FETCH � Gets rows using a cursor

Synopsis
FETCH [selector] [count] { IN | FROM } cursor
FETCH [RELATIVE] [{ [# | ALL | NEXT | PRIOR] }] FROM] cursor

Inputs

selector

 selector defines the fetch direction. It can be one the following:

FORWARD

 fetch next row(s). This is the default if selector is omitted.

BACKWARD

 fetch previous row(s).

RELATIVE

 Noise word for SQL92 compatibility.

Chapter 19. SQL Commands

218

count

 count determines how many rows to fetch. It can be one of the following:

#

 A signed integer that specify how many rows to fetch. Note that a negative
integer is equivalent to changing the sense of FORWARD and BACKWARD.

 ALL

 Retrieve all remaining rows.

 NEXT

 Equivalent to specifying a count of 1.

 PRIOR

 Equivalent to specifying a count of -1.

cursor

 An open cursor’s name.

Outputs

 FETCH returns the results of the query defined by the specified cursor. The following
messages will be returned if the query fails:

NOTICE: PerformPortalFetch: portal "cursor" not found

 If cursor is not previously declared. The cursor must be declared within a
transaction block.

NOTICE: FETCH/ABSOLUTE not supported, using RELATIVE

 Postgres does not support absolute positioning of cursors.

ERROR: FETCH/RELATIVE at current position is not supported

 SQL92 allows one to repetatively retrieve the cursor at its "current position" using the
syntax
FETCH RELATIVE 0 FROM cursor

 Postgres does not currently support this notion; in fact the value zero is reserved to
indicate that all rows should be retrieved and is equivalent to specifying the ALL
keyword. If the RELATIVE keyword has been used, the Postgres assumes that the
user intended SQL92 behavior and returns this error message.

Description

 FETCH allows a user to retrieve rows using a cursor. The number of rows retrieved is

Chapter 19. SQL Commands

219

specified by #. If the number of rows remaining in the cursor is less than #, then only those
available are fetched. Substituting the keyword ALL in place of a number will cause all
remaining rows in the cursor to be retrieved. Instances may be fetched in both FORWARD
and BACKWARD directions. The default direction is FORWARD.

Tip: Negative numbers are allowed to be specified for the row count. A negative
number is equivalent to reversing the sense of the FORWARD and BACKWARD
keywords. For example, FORWARD -1 is the same as BACKWARD 1.

Notes

 Note that the FORWARD and BACKWARD keywords are Postgres extensions. The
SQL92 syntax is also supported, specified in the second form of the command. See below
for details on compatibility issues.

 Updating data in a cursor is not supported by Postgres, because mapping cursor updates
back to base tables is not generally possible, as is also the case with VIEW updates.
Consequently, users must issue explicit UPDATE commands to replace data.

 Cursors may only be used inside of transactions because the data that they store spans
multiple user queries.

 Use MOVE to change cursor position. DECLARE will define a cursor. Refer to BEGIN,
COMMIT, and ROLLBACK for further information about transactions.

Usage

 The following examples traverses a table using a cursor.
-- set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Fetch first 5 rows in the cursor liahona:
FETCH FORWARD 5 IN liahona;

 code | title | did | date_prod | kind | len

-------+-------------------------+-----+------------+----------+-------

 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44

 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43

 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch previous row:
FETCH BACKWARD 1 IN liahona;

 code | title | did | date_prod | kind | len

-------+---------+-----+------------+--------+-------

 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- close the cursor and commit work:

CLOSE liahona;
COMMIT WORK;

Chapter 19. SQL Commands

220

Compatibility

SQL92

Note: The non-embedded use of cursors is a Postgres extension. The syntax and
usage of cursors is being compared against the embedded form of cursors defined in
SQL92.

 SQL92 allows absolute positioning of the cursor for FETCH, and allows placing the
results into explicit variables.
FETCH ABSOLUTE #
 FROM cursor
 INTO :variable [, ...]

ABSOLUTE

 The cursor should be positioned to the specified absolute row number. All row
numbers in Postgres are relative numbers so this capability is not supported.

:variable

 Target host variable(s).

 GRANT

Name

 GRANT � Grants access privilege to a user, a group or all users

Synopsis
GRANT privilege [, ...] ON object [, ...]
 TO { PUBLIC | GROUP group | username }

Inputs

privilege

 The possible privileges are:

SELECT

 Access all of the columns of a specific table/view.

Chapter 19. SQL Commands

221

INSERT

 Insert data into all columns of a specific table.

UPDATE

 Update all columns of a specific table.

DELETE

 Delete rows from a specific table.

RULE

 Define rules on the table/view (See CREATE RULE statement).

ALL

 Grant all privileges.

object

 The name of an object to which to grant access. The possible objects are:
 table
 view
 sequence

PUBLIC

 A short form representing all users.

GROUP group

 A group to whom to grant privileges.

 username

 The name of a user to whom grant privileges. PUBLIC is a short form representing
all users.

Outputs

CHANGE

 Message returned if successful.

ERROR: ChangeAcl: class "object" not found

 Message returned if the specified object is not available or if it is impossible to give
privileges to the specified group or users.

Chapter 19. SQL Commands

222

Description

 GRANT allows the creator of an object to give specific permissions to all users (PUBLIC)
or to a certain user or group. Users other than the creator don’t have any access permission
unless the creator GRANTs permissions, after the object is created.

 Once a user has a privilege on an object, he is enabled to exercise that privilege. There is
no need to GRANT privileges to the creator of an object, the creator automatically holds
ALL privileges, and can also drop the object.

Notes

 Currently, to grant privileges in Postgres to only few columns, you must create a view
having desired columns and then grant privileges to that view.

 Use psql \z for further information about permissions on existing objects:

 Database = lusitania

 +------------------+---+

 | Relation | Grant/Revoke Permissions |

 +------------------+---+

 | mytable | {"=rw","miriam=arwR","group todos=rw"} |

 +------------------+---+

 Legend:

 uname=arwR -- privileges granted to a user

 group gname=arwR -- privileges granted to a GROUP

 =arwR -- privileges granted to PUBLIC

 r -- SELECT

 w -- UPDATE/DELETE

 a -- INSERT

 R -- RULE

 arwR -- ALL

 Refer to REVOKE statements to revoke access privileges.

Usage

 Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

 Grant all privileges to user manuel on view kinds:
GRANT ALL ON kinds TO manuel;

Chapter 19. SQL Commands

223

Compatibility

SQL92

 The SQL92 syntax for GRANT allows setting privileges for individual columns within a
table, and allows setting a privilege to grant the same privileges to others:
GRANT privilege [, ...]
 ON object [(column [, ...])] [, ...]
 TO { PUBLIC | username [, ...] } [WITH GRANT OPTION]

 Fields are compatible with the those in the Postgres implementation, with the following
additions:

privilege

 SQL92 permits additional privileges to be specified:

SELECT

REFERENCES

 Allowed to reference some or all of the columns of a specific table/view in
integrity constraints.

USAGE

 Allowed to use a domain, character set, collation or translation. If an object
specifies anything other than a table/view, privilege must specify only
USAGE.

object

[TABLE] table

 SQL92 allows the additional non-functional keyword TABLE.

CHARACTER SET

 Allowed to use the specified character set.

COLLATION

 Allowed to use the specified collation sequence.

TRANSLATION

 Allowed to use the specified character set translation.

DOMAIN

 Allowed to use the specified domain.

Chapter 19. SQL Commands

224

WITH GRANT OPTION

 Allowed to grant the same privilege to others.

 INSERT

Name

 INSERT � Inserts new rows into a table

Synopsis
INSERT INTO table [(column [, ...])]
 { VALUES (expression [, ...]) | SELECT query }

Inputs

table

 The name of an existing table.

column

 The name of a column in table.

expression

 A valid expression or value to assign to column.

query

 A valid query. Refer to the SELECT statement for a further description of valid
arguments.

Outputs

INSERT oid 1

 Message returned if only one row was inserted. oid is the numeric OID of the
inserted row.

INSERT 0 #

 Message returned if more than one rows were inserted. # is the number of rows
inserted.

Description

 INSERT allows one to insert new rows into a class or table. One can insert a single row at

Chapter 19. SQL Commands

225

time or several rows as a result of a query. The columns in the target list may be listed in
any order.

 Each column not present in the target list will be inserted using a default value, either a
declared DEFAULT value or NULL. Postgres will reject the new column if a NULL is
inserted into a column declared NOT NULL.

 If the expression for each column is not of the correct data type, automatic type coercion
will be attempted.

 You must have insert privilege to a table in order to append to it, as well as select privilege
on any table specified in a WHERE clause.

Usage

 Insert a single row into table films:

INSERT INTO films VALUES
 (’UA502’,’Bananas’,105,’1971-07-13’,’Comedy’,INTERVAL ’82
minute’);

 In this second example the column date_prod is omitted and therefore it will have the
default value of NULL:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES (’T_601’, ’Yojimbo’, 106, DATE ’1961-06-16’, ’Drama’);

 Insert a single row into table distributors; note that only column name is specified, so the
omitted column did will be assigned its default value:

INSERT INTO distributors (name) VALUES (’British Lion’);

 Insert several rows into table films from table tmp:

INSERT INTO films SELECT * FROM tmp;

 Insert into arrays (refer to the PostgreSQL User’s Guide for further information about
arrays):

-- Create an empty 3x3 gameboard for noughts-and-crosses
-- (all of these queries create the same board attribute)
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1,’{{"","",""},{},{"",""}}’);
INSERT INTO tictactoe (game, board[3][3])
 VALUES (2,’{}’);
INSERT INTO tictactoe (game, board)
 VALUES (3,’{{,,},{,,},{,,}}’);

Chapter 19. SQL Commands

226

Compatibility

SQL92

 INSERT is fully compatible with SQL92. Possible limitations in features of the query
clause are documented for SELECT.

 LISTEN

Name

 LISTEN � Listen for a response on a notify condition

Synopsis
LISTEN name

Inputs

name

 Name of notify condition.

Outputs

LISTEN

 Message returned upon successful completion of registration.

NOTICE Async_Listen: We are already listening on name

 If this backend is already registered for that notify condition.

Description

 LISTEN registers the current Postgres backend as a listener on the notify condition name.

 Whenever the command NOTIFY name is invoked, either by this backend or another one
connected to the same database, all the backends currently listening on that notify
condition are notified, and each will in turn notify its connected frontend application. See
the discussion of NOTIFY for more information.

 A backend can be unregistered for a given notify condition with the UNLISTEN
command. Also, a backend’s listen registrations are automatically cleared when the
backend process exits.

Chapter 19. SQL Commands

227

 The method a frontend application must use to detect notify events depends on which
Postgres application programming interface it uses. With the basic libpq library, the
application issues LISTEN as an ordinary SQL command, and then must periodically call
the routine PQnotifies to find out whether any notify events have been received. Other
interfaces such as libpgtcl provide higher-level methods for handling notify events; indeed,
with libpgtcl the application programmer should not even issue LISTEN or UNLISTEN
directly. See the documentation for the library you are using for more details.

 NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Notes

 name can be any string valid as a name; it need not correspond to the name of any actual
table. If notifyname is enclosed in double-quotes, it need not even be a syntactically
valid name, but can be any string up to 31 characters long.

 In some previous releases of Postgres, name had to be enclosed in double-quotes when it
did not correspond to any existing table name, even if syntactically valid as a name. That is
no longer required.

Usage

 Configure and execute a listen/notify sequence from psql:
LISTEN virtual;
NOTIFY virtual;

Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

Compatibility

SQL92

 There is no LISTEN in SQL92.

 LOAD

Name

 LOAD � Dynamically loads an object file

Synopsis
LOAD ’filename’

Inputs

filename

 Object file for dynamic loading.

Chapter 19. SQL Commands

228

Outputs

LOAD

 Message returned on successful completion.

ERROR: LOAD: could not open file ’filename’

 Message returned if the specified file is not found. The file must be visible to the
Postgres backend, with the appropriate full path name specified, to avoid this
message.

Description

 Loads an object (or ".o") file into the Postgres backend address space. Once a file is
loaded, all functions in that file can be accessed. This function is used in support of
user-defined types and functions.

 If a file is not loaded using LOAD, the file will be loaded automatically the first time the
function is called by Postgres. LOAD can also be used to reload an object file if it has been
edited and recompiled. Only objects created from C language files are supported at this
time.

Notes

 Functions in loaded object files should not call functions in other object files loaded
through the LOAD command. For example, all functions in file A should call each other,
functions in the standard or math libraries, or in Postgres itself. They should not call
functions defined in a different loaded file B. This is because if B is reloaded, the Postgres
loader is not able to relocate the calls from the functions in A into the new address space of
B. If B is not reloaded, however, there will not be a problem.

 Object files must be compiled to contain position independent code. For example, on
DECstations you must use /bin/cc with the -G 0 option when compiling object files to be
loaded.

 Note that if you are porting Postgres to a new platform, LOAD will have to work in order
to support ADTs.

Usage

 Load the file /usr/postgres/demo/circle.o:
LOAD ’/usr/postgres/demo/circle.o’

Chapter 19. SQL Commands

229

Compatibility

SQL92

 There is no LOAD in SQL92.

 LOCK

Name

 LOCK � Explicitly lock a table inside a transaction

Synopsis
LOCK [TABLE] name
LOCK [TABLE] name IN [ROW | ACCESS] { SHARE | EXCLUSIVE } MODE
LOCK [TABLE] name IN SHARE ROW EXCLUSIVE MODE

Inputs

name

 The name of an existing table to lock.

ACCESS SHARE MODE

Note: This lock mode is acquired automatically over tables being queried.

 This is the least restrictive lock mode. It conflicts only with ACCESS EXCLUSIVE
mode. It is used to protect a table from being modified by concurrent ALTER
TABLE, DROP TABLE and VACUUM commands.

ROW SHARE MODE

Note: Automatically acquired by SELECT...FOR UPDATE. While it is a shared lock,
may be upgrade later to a ROW EXCLUSIVE lock.

 Conflicts with EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

ROW EXCLUSIVE MODE

Note: Automatically acquired by UPDATE, DELETE, and INSERT statements.

 Conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS
EXCLUSIVE modes.

Chapter 19. SQL Commands

230

SHARE MODE

Note: Automatically acquired by CREATE INDEX. Share-locks the entire table.

 Conflicts with ROW EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE and
ACCESS EXCLUSIVE modes. This mode protects a table against concurrent updates.

SHARE ROW EXCLUSIVE MODE

Note: This is like EXCLUSIVE MODE, but allows SHARE ROW locks by others.

 Conflicts with ROW EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE and ACCESS EXCLUSIVE modes.

EXCLUSIVE MODE

Note: This mode is yet more restrictive than SHARE ROW EXCLUSIVE. It blocks all
concurrent ROW SHARE/SELECT...FOR UPDATE queries.

 Conflicts with ROW SHARE, ROW EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes.

ACCESS EXCLUSIVE MODE

Note: Automatically acquired by ALTER TABLE, DROP TABLE, VACUUM
statements. This is the most restrictive lock mode which conflicts with all other
lock modes and protects a locked table from any concurrent operations.

Note: This lock mode is also acquired by an unqualified LOCK TABLE (i.e. the
command without an explicit lock mode option).

Outputs

LOCK TABLE

 The lock was successfully applied.

ERROR name: Table does not exist.

 Message returned if name does not exist.

Description

 LOCK TABLE controls concurrent access to a table for the duration of a transaction.
Postgres always uses the least restrictive lock mode whenever possible. LOCK TABLE
provided for cases when you might need more restrictive locking.

Chapter 19. SQL Commands

231

 RDBMS locking uses the following terminology:

EXCLUSIVE

 Exclusive lock that prevents other locks from being granted.

SHARE

 Allows others to share lock. Prevents EXCLUSIVE locks.

ACCESS

 Locks table schema.

ROW

 Locks individual rows.

Note: If EXCLUSIVE or SHARE are not specified, EXCLUSIVE is assumed. Locks
exist for the duration of the transaction.

 For example, an application runs a transaction at READ COMMITTED isolation level and
needs to ensure the existance of data in a table for the duration of the transaction. To
achieve this you could use SHARE lock mode over the table before querying. This will
protect data from concurrent changes and provide any further read operations over the table
with data in their actual current state, because SHARE lock mode conflicts with any ROW
EXCLUSIVE one acquired by writers, and your LOCK TABLE name IN SHARE
MODE statement will wait until any concurrent write operations commit or rollback.

Note: To read data in their real current state when running a transaction at the
SERIALIZABLE isolation level you have to execute a LOCK TABLE statement before
execution any DML statement, when the transaction defines what concurrent changes
will be visible to itself.

 In addition to the requirements above, if a transaction is going to change data in a table
then SHARE ROW EXCLUSIVE lock mode should be acquired to prevent deadlock
conditions when two concurrent transactions attempt to lock the table in SHARE mode and
then try to change data in this table, both (implicitly) acquiring ROW EXCLUSIVE lock
mode that conflicts with concurrent SHARE lock.

 To continue with the deadlock (when two transaction wait one another) issue raised above,
you should follow two general rules to prevent deadlock conditions:

 Transactions have to acquire locks on the same objects in the same order.
 For example, if one application updates row R1 and than updates row R2 (in the same
transaction) then the second application shouldn’t update row R2 if it’s going to update
row R1 later (in a single transaction). Instead, it should update rows R1 and R2 in the
same order as the first application.

 Transactions should acquire two conflicting lock modes only if one of them is
self-conflicting (i.e. may be held by one transaction at time only). If multiple lock modes
are involved, then transactions should always acquire the most restrictive mode first.

 An example for this rule was given previously when discussing the use of SHARE

Chapter 19. SQL Commands

232

ROW EXCLUSIVE mode rather than SHARE mode.

Note: Postgres does detect deadlocks and will rollback at least one waiting
transaction to resolve the deadlock.

Notes

 LOCK is a Postgres language extension.

 Except for ACCESS SHARE/EXCLUSIVE lock modes, all other Postgres lock modes and
the LOCK TABLE syntax are compatible with those present in Oracle.

 LOCK works only inside transactions.

Usage

 Illustrate a SHARE lock on a primary key table when going to perform inserts into a
foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = ’Star Wars: Episode I - The Phantom Menace’;
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, ’GREAT! I was waiting for it for so long!’);
COMMIT WORK;

 Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a
delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility

SQL92

 There is no LOCK TABLE in SQL92, which instead uses SET TRANSACTION to
specify concurrency levels on transactions. We support that too; see SET for details.

Chapter 19. SQL Commands

233

 MOVE

Name

 MOVE � Moves cursor position

Synopsis
MOVE [selector] [count]
 { IN | FROM } cursor

Description

 MOVE allows a user to move cursor position a specified number of rows. MOVE works
like the FETCH command, but only positions the cursor and does not return rows.

 Refer to FETCH for details on syntax and usage.

Notes

 MOVE is a Postgres language extension.

 Refer to FETCH for a description of valid arguments. Refer to DECLARE to define a
cursor. Refer to BEGIN, COMMIT, and ROLLBACK for further information about
transactions.

Usage

 Set up and use a cursor:
BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;
-- Skip first 5 rows:
MOVE FORWARD 5 IN liahona;

MOVE

-- Fetch 6th row in the cursor liahona:
FETCH 1 IN liahona;

FETCH

 code | title | did | date_prod | kind | len

-------+--------+-----+-----------+--------+-------

 P_303 | 48 Hrs | 103 | 1982-10-22| Action | 01:37

(1 row)

-- close the cursor liahona and commit work:
CLOSE liahona;
COMMIT WORK;

Compatibility

SQL92

 There is no SQL92 MOVE statement. Instead, SQL92 allows one to FETCH rows from
an absolute cursor position, implicitly moving the cursor to the correct position.

Chapter 19. SQL Commands

234

 NOTIFY

Name

 NOTIFY � Signals all frontends and backends listening on a notify condition

Synopsis
NOTIFY name

Inputs

notifyname

 Notify condition to be signaled.

Outputs

NOTIFY

 Acknowledgement that notify command has executed.

Notify events

 Events are delivered to listening frontends; whether and how each frontend
application reacts depends on its programming.

Description

 The NOTIFY command sends a notify event to each frontend application that has
previously executed LISTEN notifyname for the specified notify condition in the
current database.

 The information passed to the frontend for a notify event includes the notify condition
name and the notifying backend process’s PID. It is up to the database designer to define
the condition names that will be used in a given database and what each one means.

 Commonly, the notify condition name is the same as the name of some table in the
database, and the notify event essentially means "I changed this table, take a look at it to

see what’s new". But no such association is enforced by the NOTIFY and LISTEN
commands. For

example, a database designer could use several different condition names to signal different

sorts of changes to a single table.

 NOTIFY provides a simple form of signal or IPC (interprocess communication)
mechanism for a collection of processes accessing the same Postgres database.
Higher-level mechanisms can be built by using tables in the database to pass additional

Chapter 19. SQL Commands

235

data (beyond a mere condition name) from notifier to listener(s).
 When NOTIFY is used to signal the occurrence of changes to a particular table, a useful
programming technique is to put the NOTIFY in a rule that is triggered by table updates.
In this way, notification happens automatically when the table is changed, and the
application programmer can’t accidentally forget to do it.
 NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY
is executed inside a transaction, the notify events are not delivered until and unless the
transaction is committed. This is appropriate, since if the transaction is aborted we would
like all the commands within it to have had no effect, including NOTIFY. But it can be
disconcerting if one is expecting the notify events to be delivered immediately. Secondly, if
a listening backend receives a notify signal while it is within a transaction, the notify event
will not be delivered to its connected frontend until just after the transaction is completed
(either committed or aborted). Again, the reasoning is that if a notify were delivered within
a transaction that was later aborted, one would want the notification to be undone somehow
--- but the backend cannot "take back" a notify once it has sent it to the frontend. So notify
events are only delivered between transactions. The upshot of this is that applications using
NOTIFY for real-time signaling should try to keep their transactions short.

 NOTIFY behaves like Unix signals in one important respect: if the same condition name
is signaled multiple times in quick succession, recipients may get only one notify event for
several executions of NOTIFY. So it is a bad idea to depend on the number of notifies
received. Instead, use NOTIFY to wake up applications that need to pay attention to
something, and use a database object (such as a sequence) to keep track of what happened
or how many times it happened.
 It is common for a frontend that sends NOTIFY to be listening on the same notify name
itself. In that case it will get back a notify event, just like all the other listening frontends.
Depending on the application logic, this could result in useless work --- for example,
re-reading a database table to find the same updates that that frontend just wrote out. In
Postgres 6.4 and later, it is possible to avoid such extra work by noticing whether the
notifying backend process’s PID (supplied in the notify event message) is the same as
one’s own backend’s PID (available from libpq). When they are the same, the notify event
is one’s own work bouncing back, and can be ignored. (Despite what was said in the
preceding paragraph, this is a safe technique. Postgres keeps self-notifies separate from
notifies arriving from other backends, so you cannot miss an outside notify by ignoring
your own notifies.)

Notes

 name can be any string valid as a name; it need not correspond to the name of any actual
table. If name is enclosed in double-quotes, it need not even be a syntactically valid name,
but can be any string up to 31 characters long.

 In some previous releases of Postgres, name had to be enclosed in double-quotes when it
did not correspond to any existing table name, even if syntactically valid as a name. That is
no

longer required.

 In Postgres releases prior to 6.4, the backend PID delivered in a notify message was
always the PID of the frontend’s own backend. So it was not possible to distinguish one’s
own notifies from other clients’ notifies in those earlier releases.

Chapter 19. SQL Commands

236

Usage

 Configure and execute a listen/notify sequence from psql:
=> LISTEN virtual;
=> NOTIFY virtual;
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received.

Compatibility

SQL92

 There is no NOTIFY statement in SQL92.

 REINDEX

Name

 REINDEX � Recover corrupted system indexes under standalone Postgres

Synopsis
REINDEX { TABLE | DATABASE | INDEX } name [FORCE]

Inputs

TABLE

 Recreate all indexes of a specfied table.

DATABASE

 Recreate all system indexes of a specfied database.

INDEX

 Recreate a specfied index.

name

 The name of the specific table/database/index to be be reindexed.

FORCE

 Recreate indexes forcedly. Without this keyword REINDEX does nothing unless
target indexes are invalidated.

Chapter 19. SQL Commands

237

Outputs

REINDEX

 Message returned if the table is successfully reindexed.

Description

 REINDEX is used to recover corrupted system indexes. In order to run REINDEX
command,Postmaster must be shutdown and standalone Postgres should be started instead
with options -O and -P(an option to ignore system indexes). Note that we couldn’t rely on
system indexes for the recovery of system indexes.

Usage

 Recreate the table mytable:

 REINDEX TABLE mytable;

 Some more examples:

REINDEX DATABASE my_database FORCE;
REINDEX INDEX my_index;

Compatibility

SQL92

 There is no REINDEX in SQL92.

 RESET

Name

 RESET � Restores run-time parameters for session to default values

Synopsis

RESET variable

Chapter 19. SQL Commands

238

Inputs

variable

 Refer to SET for more information on available variables.

Outputs

RESET VARIABLE

 Message returned if variable is successfully reset to its default value.

Description

 RESET restores variables to their default values. Refer to SET for details on allowed
values and defaults. RESET is an alternate form for
SET variable = DEFAULT

Notes

 See also SET and SHOW to manipulate variable values.

Usage

 Set DateStyle to its default value:
RESET DateStyle;

 Set Geqo to its default value:

RESET GEQO;

Compatibility

SQL92

 There is no RESET in SQL92.

Chapter 19. SQL Commands

239

 REVOKE

Name

 REVOKE � Revokes access privilege from a user, a group or all users.

Synopsis
REVOKE privilege [, ...]
 ON object [, ...]
 FROM { PUBLIC | GROUP groupname | username }

Inputs

privilege

 The possible privileges are:

SELECT

 Privilege to access all of the columns of a specific table/view.

INSERT

 Privilege to insert data into all columns of a specific table.

UPDATE

 Privilege to update all columns of a specific table.

DELETE

 Privilege to delete rows from a specific table.

RULE

 Privilege to define rules on table/view. (See CREATE RULE).

ALL

 Rescind all privileges.

object

 The name of an object from which to revoke access. The possible objects are:
 table
 view
 sequence

group

 The name of a group from whom to revoke privileges.

Chapter 19. SQL Commands

240

username

 The name of a user from whom revoke privileges. Use the PUBLIC keyword to
specify all users.

PUBLIC

 Rescind the specified privilege(s) for all users.

Outputs

CHANGE

 Message returned if successfully.

ERROR

 Message returned if object is not available or impossible to revoke privileges from a
group or users.

Description

 REVOKE allows creator of an object to revoke permissions granted before, from all users
(via PUBLIC) or a certain user or group.

Notes

 Refer to psql \z command for further information about permissions on existing objects:

Database = lusitania
+------------------+---+
| Relation | Grant/Revoke Permissions |
+------------------+---+
| mytable | {"=rw","miriam=arwR","group todos=rw"} |
+------------------+---+
Legend:
 uname=arwR -- privileges granted to a user
 group gname=arwR -- privileges granted to a GROUP
 =arwR -- privileges granted to PUBLIC

 r -- SELECT
 w -- UPDATE/DELETE
 a -- INSERT
 R -- RULE
 arwR -- ALL

Chapter 19. SQL Commands

241

Tip: Currently, to create a GROUP you have to insert data manually into table
pg_group as:

INSERT INTO pg_group VALUES (’todos’);

CREATE USER miriam IN GROUP todos;

Usage

 Revoke insert privilege from all users on table films:

REVOKE INSERT ON films FROM PUBLIC;

 Revoke all privileges from user manuel on view kinds:

REVOKE ALL ON kinds FROM manuel;

Compatibility

SQL92

 The SQL92 syntax for REVOKE has additional capabilities for rescinding privileges,
including those on individual columns in tables:

REVOKE { SELECT | DELETE | USAGE | ALL PRIVILEGES } [, ...]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }
REVOKE { INSERT | UPDATE | REFERENCES } [, ...] [(column [, ...])
]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }

 Refer to GRANT for details on individual fields.

REVOKE GRANT OPTION FOR privilege [, ...]
 ON object
 FROM { PUBLIC | username [, ...] } { RESTRICT | CASCADE }

 Rescinds authority for a user to grant the specified privilege to others. Refer to
GRANT for details on individual fields.

Chapter 19. SQL Commands

242

 The possible objects are:
 [TABLE] table/view
 CHARACTER SET character-set
 COLLATION collation
 TRANSLATION translation
 DOMAIN domain

 If user1 gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3
then user1 can revoke this privilege in cascade using the CASCADE keyword.

 If user1 gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3
then if user1 try revoke this privilege it fails if he/she specify the RESTRICT keyword.

 ROLLBACK

Name

 ROLLBACK � Aborts the current transaction

Synopsis
ROLLBACK [WORK | TRANSACTION]

Inputs

 None.

Outputs

ABORT

 Message returned if successful.

NOTICE: ROLLBACK: no transaction in progress

 If there is not any transaction currently in progress.

Description

 ROLLBACK rolls back the current transaction and causes all the updates made by the
transaction to be discarded.

Notes

 Use COMMIT to successfully terminate a transaction. ABORT is a synonym for
ROLLBACK.

Chapter 19. SQL Commands

243

Usage

 To abort all changes:
ROLLBACK WORK;

Compatibility

SQL92

 SQL92 only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise full
compatibility.

 SELECT

Name

 SELECT � Retrieve rows from a table or view.

Synopsis
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 expression [AS name] [, ...]
 [INTO [TEMPORARY | TEMP] [TABLE] new_table]
 [FROM table [alias] [, ...]]
 [WHERE condition]
 [GROUP BY column [, ...]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | EXCEPT } select]
 [ORDER BY column [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF class_name [, ...]]]
 LIMIT { count | ALL } [{ OFFSET | , } start]

Inputs

expression

 The name of a table’s column or an expression.

name

 Specifies another name for a column or an expression using the AS clause. This name
is primarily used to label the column for display. It can also be used to refer to the
column’s value in ORDER BY and GROUP BY clauses. But the name cannot be
used in the WHERE or HAVING clauses; write out the expression instead.

TEMPORARY
TEMP

 If TEMPORARY or TEMP is specified, the table is created unique to this session,

Chapter 19. SQL Commands

244

and is automatically dropped on session exit.

new_table

 If the INTO TABLE clause is specified, the result of the query will be stored in a new
table with the indicated name. The target table (new_table) will be created
automatically and must not exist before this command. Refer to SELECT INTO for
more information.

Note: The CREATE TABLE AS statement will also create a new table from a select
query.

table

 The name of an existing table referenced by the FROM clause.

alias

 An alternate name for the preceding table. It is used for brevity or to eliminate
ambiguity for joins within a single table.

condition

 A boolean expression giving a result of true or false. See the WHERE clause.

column

 The name of a table’s column.

select

 A select statement with all features except the ORDER BY and LIMIT clauses.

Outputs

Rows

 The complete set of rows resulting from the query specification.

 count

 The count of rows returned by the query.

Description

 SELECT will return rows from one or more tables. Candidates for selection are rows
which satisfy the WHERE condition; if WHERE is omitted, all rows are candidates. (See
WHERE Clause.)

 DISTINCT will eliminate duplicate rows from the result. ALL (the default) will return all
candidate rows, including duplicates.

 DISTINCT ON eliminates rows that match on all the specified expressions, keeping only
the first row of each set of duplicates. The DISTINCT ON expressions are interpreted

Chapter 19. SQL Commands

245

using the same rules as for ORDER BY items; see below. Note that "the first row" of each
set is unpredictable unless ORDER BY is used to ensure that the desired row appears first.
For example,

 SELECT DISTINCT ON (location) location, time, report
 FROM weatherReports
 ORDER BY location, time DESC;

 retrieves the most recent weather report for each location. But if we had not used ORDER
BY to force descending order of time values for each location, we’d have gotten a report of
unpredictable age for each location.

 The GROUP BY clause allows a user to divide a table into groups of rows that match on
one or more values. (See GROUP BY Clause.)

 The HAVING clause allows selection of only those groups of rows meeting the specified
condition. (See HAVING Clause.)

 The ORDER BY clause causes the returned rows to be sorted in a specified order. If
ORDER BY is not given, the rows are returned in whatever order the system finds cheapest
to produce. (See ORDER BY Clause.)

 The UNION operator allows the result to be the collection of rows returned by the queries
involved. (See UNION Clause.)

 The INTERSECT operator gives you the rows that are common to both queries. (See
INTERSECT Clause.)

 The EXCEPT operator gives you the rows returned by the first query but not the second
query. (See EXCEPT Clause.)

 The FOR UPDATE clause allows the SELECT statement to perform exclusive locking of
selected rows.

 The LIMIT clause allows a subset of the rows produced by the query to be returned to the
user. (See LIMIT Clause.)

 You must have SELECT privilege to a table to read its values (See the
GRANT/REVOKE statements).

WHERE Clause

 The optional WHERE condition has the general form:

WHERE boolean_expr

 boolean_expr can consist of any expression which evaluates to a boolean value. In
many cases, this expression will be

 expr cond_op expr

 or

 log_op expr

Chapter 19. SQL Commands

246

 where cond_op can be one of: =, <, <=, >, >= or <>, a conditional operator like ALL,
ANY, IN, LIKE, or a locally-defined operator, and log_op can be one of: AND, OR,
NOT. SELECT will ignore all rows for which the WHERE condition does not return
TRUE.

GROUP BY Clause

 GROUP BY specifies a grouped table derived by the application of this clause:

GROUP BY column [, ...]

 GROUP BY will condense into a single row all selected rows that share the same values
for the grouped columns. Aggregate functions, if any, are computed across all rows making
up each group, producing a separate value for each group (whereas without GROUP BY,
an aggregate produces a single value computed across all the selected rows). When
GROUP BY is present, it is not valid for the SELECT output expression(s) to refer to
ungrouped columns except within aggregate functions, since there would be more than one
possible value to return for an ungrouped column.

 An item in GROUP BY can also be the name or ordinal number of an output column
(SELECT expression), or it can be an arbitrary expression formed from input-column
values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column
name rather than an output column name.

HAVING Clause

 The optional HAVING condition has the general form:

HAVING cond_expr

 where cond_expr is the same as specified for the WHERE clause.

 HAVING specifies a grouped table derived by the elimination of group rows that do not
satisfy the cond_expr. HAVING is different from WHERE: WHERE filters individual
rows before application of GROUP BY, while HAVING filters group rows created by
GROUP BY.

 Each column referenced in cond_expr shall unambiguously reference a grouping
column, unless the reference appears within an aggregate function.

ORDER BY Clause

ORDER BY column [ASC | DESC] [, ...]

 column can be either a result column name or an ordinal number.

 The ordinal numbers refers to the ordinal (left-to-right) position of the result column. This
feature makes it possible to define an ordering on the basis of a column that does not have

Chapter 19. SQL Commands

247

a proper name. This is never absolutely necessary because it is always possible to assign a
name to a result column using the AS clause, e.g.:

SELECT title, date_prod + 1 AS newlen FROM films ORDER BY newlen;

 It is also possible to ORDER BY arbitrary expressions (an extension to SQL92), including
fields that do not appear in the SELECT result list. Thus the following statement is legal:

SELECT name FROM distributors ORDER BY code;

 Note that if an ORDER BY item is a simple name that matches both a result column name
and an input column name, ORDER BY will interpret it as the result column name. This is
the opposite of the choice that GROUP BY will make in the same situation. This
inconsistency is mandated by the SQL92 standard.

 Optionally one may add the keyword DESC (descending) or ASC (ascending) after each
column name in the ORDER BY clause. If not specified, ASC is assumed by default.
Alternatively, a specific ordering operator name may be specified. ASC is equivalent to
USING ’<’ and DESC is equivalent to USING ’>’.

UNION Clause

table_query UNION [ALL] table_query
 [ORDER BY column [ASC | DESC] [, ...]]

 where table_query specifies any select expression without an ORDER BY or LIMIT
clause.

 The UNION operator allows the result to be the collection of rows returned by the queries
involved. The two SELECTs that represent the direct operands of the UNION must
produce the same number of columns, and corresponding columns must be of compatible
data types.

 By default, the result of UNION does not contain any duplicate rows unless the ALL
clause is specified.

 Multiple UNION operators in the same SELECT statement are evaluated left to right.
Note that the ALL keyword is not global in nature, being applied only for the current pair
of table results.

INTERSECT Clause

table_query INTERSECT table_query
 [ORDER BY column [ASC | DESC] [, ...]]

Chapter 19. SQL Commands

248

 where table_query specifies any select expression without an ORDER BY or LIMIT
clause.

 The INTERSECT operator gives you the rows that are common to both queries. The two
SELECTs that represent the direct operands of the INTERSECT must produce the same
number of columns, and corresponding columns must be of compatible data types.

 Multiple INTERSECT operators in the same SELECT statement are evaluated left to
right, unless parentheses dictate otherwise.

EXCEPT Clause

table_query EXCEPT table_query
 [ORDER BY column [ASC | DESC] [, ...]]

 where table_query specifies any select expression without an ORDER BY or LIMIT
clause.

 The EXCEPT operator gives you the rows returned by the first query but not the second
query. The two SELECTs that represent the direct operands of the EXCEPT must produce
the same number of columns, and corresponding columns must be of compatible data
types.

 Multiple EXCEPT operators in the same SELECT statement are evaluated left to right,
unless parentheses dictate otherwise.

LIMIT Clause

 LIMIT { count | ALL } [{ OFFSET | , } start]
 OFFSET start

 where count specifies the maximum number of rows to return, and start specifies the
number of rows to skip before starting to return rows.

 LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the
query. If a limit count is given, no more than that many rows will be returned. If an offset
is given, that many rows will be skipped before starting to return rows.

 When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the
result rows into a unique order. Otherwise you will get an unpredictable subset of the
query’s rows --- you may be asking for the tenth through twentieth rows, but tenth through
twentieth in what ordering? You don’t know what ordering, unless you specified ORDER
BY.

 As of Postgres 7.0, the query optimizer takes LIMIT into account when generating a query
plan, so you are very likely to get different plans (yielding different row orders) depending
on what you give for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to
select different subsets of a query result will give inconsistent results unless you enforce a
predictable result ordering with ORDER BY. This is not a bug; it is an inherent

Chapter 19. SQL Commands

249

consequence of the fact that SQL does not promise to deliver the results of a query in any
particular order unless ORDER BY is used to constrain the order.

Usage

 To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d, films f
 WHERE f.did = d.did

 title | did | name | date_prod | kind

---------------------------+-----+------------------+------------+----------

 The Third Man | 101 | British Lion | 1949-12-23 | Drama

 The African Queen | 101 | British Lion | 1951-08-11 | Romantic

 Une Femme est une Femme | 102 | Jean Luc Godard | 1961-03-12 | Romantic

 Vertigo | 103 | Paramount | 1958-11-14 | Action

 Becket | 103 | Paramount | 1964-02-03 | Drama

 48 Hrs | 103 | Paramount | 1982-10-22 | Action

 War and Peace | 104 | Mosfilm | 1967-02-12 | Drama

 West Side Story | 105 | United Artists | 1961-01-03 | Musical

 Bananas | 105 | United Artists | 1971-07-13 | Comedy

 Yojimbo | 106 | Toho | 1961-06-16 | Drama

 There’s a Girl in my Soup | 107 | Columbia | 1970-06-11 | Comedy

 Taxi Driver | 107 | Columbia | 1975-05-15 | Action

 Absence of Malice | 107 | Columbia | 1981-11-15 | Action

 Storia di una donna | 108 | Westward | 1970-08-15 | Romantic

 The King and I | 109 | 20th Century Fox | 1956-08-11 | Musical

 Das Boot | 110 | Bavaria Atelier | 1981-11-11 | Drama

 Bed Knobs and Broomsticks | 111 | Walt Disney | | Musical

(17 rows)

 To sum the column len of all films and group the results by kind:

SELECT kind, SUM(len) AS total FROM films GROUP BY kind;

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38
(5 rows)

Chapter 19. SQL Commands

250

 To sum the column len of all films, group the results by kind and show those group
totals that are less than 5 hours:

SELECT kind, SUM(len) AS total
 FROM films
 GROUP BY kind
 HAVING SUM(len) < INTERVAL ’5 hour’;

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38
(2 rows)

 The following two examples are identical ways of sorting the individual results according
to the contents of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward
(13 rows)

 This example shows how to obtain the union of the tables distributors and actors,
restricting the results to those that begin with letter W in each table. Only distinct rows are
wanted, so the ALL keyword is omitted:

distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen
 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

Chapter 19. SQL Commands

251

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE ’W%’
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE ’W%’

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

Compatibility

Extensions

Postgres allows one to omit the FROM clause from a query. This feature was retained
from the original PostQuel query language:
SELECT distributors.* WHERE name = ’Westwood’;

 did | name
-----+----------
 108 | Westward

SQL92

SELECT Clause

 In the SQL92 standard, the optional keyword "AS" is just noise and can be omitted
without affecting the meaning. The Postgres parser requires this keyword when renaming
columns because the type extensibility features lead to parsing ambiguities in this context.

 The DISTINCT ON phrase is not part of SQL92. Nor are LIMIT and OFFSET.

 In SQL92, an ORDER BY clause may only use result column names or numbers, while a
GROUP BY clause may only use input column names. Postgres extends each of these
clauses to allow the other choice as well (but it uses the standard’s interpretation if there is
ambiguity).
Postgres also allows both clauses to specify arbitrary expressions. Note that names
appearing in an expression will always be taken as input-column names, not as
result-column names.

Chapter 19. SQL Commands

252

UNION Clause

 The SQL92 syntax for UNION allows an additional CORRESPONDING BY clause:

table_query UNION [ALL]
 [CORRESPONDING [BY (column [,...])]]
 table_query

 The CORRESPONDING BY clause is not supported by Postgres.

 SELECT INTO

Name

 SELECT INTO � Create a new table from an existing table or view

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 expression [AS name] [, ...]
 [INTO [TEMPORARY | TEMP] [TABLE] new_table]
 [FROM table [alias] [, ...]]
 [WHERE condition]
 [GROUP BY column [, ...]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | EXCEPT } select]
 [ORDER BY column [ASC | DESC | USING operator] [, ...]]
 [FOR UPDATE [OF class_name [, ...]]]
 LIMIT { count | ALL } [{ OFFSET | , } start]

Inputs

 All input fields are described in detail for SELECT.

Outputs

 All output fields are described in detail for SELECT.

Description

 SELECT INTO creates a new table from the results of a query. Typically, this query
draws data from an existing table, but any SQL query is allowed.

Note: CREATE TABLE AS is functionally equivalent to the SELECT INTO command.

Chapter 19. SQL Commands

253

 SET

Name

 SET � Set run-time parameters for session

Synopsis
SET variable { TO | = } { value | ’value’ | DEFAULT }
SET CONSTRAINTS {ALL | constraintlist} mode
SET TIME ZONE { ’timezone’ | LOCAL | DEFAULT }
SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }

Inputs

variable

 Settable global parameter.

value

 New value of parameter. DEFAULT can be used to specify resetting the parameter to
its default value. Lists of strings are allowed, but more complex constructs may need
to be single or double quoted.

 The possible variables and allowed values are:

CLIENT_ENCODING | NAMES

 Sets the multi-byte client encoding. Parameters are:

value

 Sets the multi-byte client encoding to value. The specified encoding must be
supported by the backend.

 This option is only available if MULTIBYTE support was enabled during the
configure step of building Postgres.

DATESTYLE

 Set the date/time representation style. Affects the output format, and in some cases it
can affect the interpretation of input.

ISO

 use ISO 8601-style dates and times

SQL

 use Oracle/Ingres-style dates and times

Postgres

Chapter 19. SQL Commands

254

 use traditional Postgres format

European

 use dd/mm/yyyy for numeric date representations.

NonEuropean

 use mm/dd/yyyy for numeric date representations.

German

 use dd.mm.yyyy for numeric date representations.

US

 same as NonEuropean

DEFAULT

 restores the default values (ISO)

 Date format initialization may be done by:

 Setting the PGDATESTYLE environment variable. If PGDATESTYLE is set in the
frontend environment of a client based on libpq, libpq will automatically set
DATESTYLE to the value of PGDATESTYLE during connection startup.
 Running postmaster using the option -o -e to set dates to the European
convention. Note that this affects only some combinations of date styles; for example
the ISO style is not affected by this parameter.
 Changing variables in src/backend/utils/init/globals.c.

 The variables in globals.c which can be changed are:

 bool EuroDates = false | true
 int DateStyle = USE_ISO_DATES | USE_POSTGRES_DATES |
USE_SQL_DATES | USE_GERMAN_DATES

SEED

 Sets the internal seed for the random number generator.

value

 The value for the seed to be used by the random catalog function. Significant
values are floating point numbers between 0 and 1, which are then multiplied by

RAND_MAX. This product will silently overflow if a number outside the range is
used.

 The seed can also be set by invoking the setseed SQL function:
SELECT setseed(value);

 This option is only available if MULTIBYTE support was enabled during the
configure step of building Postgres.

SERVER_ENCODING

Chapter 19. SQL Commands

255

 Sets the multi-byte server encoding to:

value

 The identifying value for the server encoding.

 This option is only available if MULTIBYTE support was enabled during the
configure step of building Postgres.

CONSTRAINTS

 SET CONSTRAINTS affects the behavior of constraint evaluation in the current
transaction. SET CONSTRAINTS, specified in SQL3, has these allowed parameters:

constraintlist

 Comma separated list of deferrable constraint names.

mode

 The constraint mode. Allowed values are DEFERRED and IMMEDIATE.

 In IMMEDIATE mode, foreign key constraints are checked at the end of each query.

 In DEFERRED mode, foreign key constraints marked as DEFERRABLE are checked
only at transaction commit or until its mode is explicitly set to IMMEDIATE. This is
actually only done for foreign key constraints, so it does not apply to UNIQUE or
other constraints.

TIME ZONE
TIMEZONE

 The possible values for timezone depends on your operating system. For example on
Linux /usr/lib/zoneinfo contains the database of timezones.

 Here are some valid values for timezone:

PST8PDT

 set the timezone for California

Portugal

 set time zone for Portugal.

’Europe/Rome’

 set time zone for Italy.

DEFAULT

 set time zone to your local timezone (value of the TZ environment variable).

 If an invalid time zone is specified, the time zone becomes GMT (on most systems
anyway).

 The second syntax shown above, allows one to set the timezone with a syntax similar
to SQL92 SET TIME ZONE. The LOCAL keyword is just an alternate form of

Chapter 19. SQL Commands

256

DEFAULT for SQL92 compatibility.

 If the PGTZ environment variable is set in the frontend environment of a client based
on libpq, libpq will automatically set TIMEZONE to the value of PGTZ during
connection startup.

TRANSACTION ISOLATION LEVEL

 Sets the isolation level for the current transaction.

READ COMMITTED

 The current transaction queries read only rows committed before a query began.
READ COMMITTED is the default.

Note: SQL92 standard requires SERIALIZABLE to be the default isolation level.

SERIALIZABLE

 The current transaction queries read only rows committed before first DML
statement (SELECT/INSERT/DELETE/UPDATE/FETCH/COPY_TO) was
executed in this transaction.

 There are also several internal or optimization parameters which can be specified by the
SET
command:

PG_OPTIONS

 Sets various backend parameters.

RANDOM_PAGE_COST

 Sets the optimizer’s estimate of the cost of a nonsequentially fetched disk page. This
is measured as a multiple of the cost of a sequential page fetch.

float8

 Set the cost of a random page access to the specified floating-point value.

CPU_TUPLE_COST

 Sets the optimizer’s estimate of the cost of processing each tuple during a query. This
is measured as a fraction of the cost of a sequential page fetch.

float8

 Set the cost of per-tuple CPU processing to the specified floating-point value.

CPU_INDEX_TUPLE_COST

 Sets the optimizer’s estimate of the cost of processing each index tuple during an
index scan. This is measured as a fraction of the cost of a sequential page fetch.

Chapter 19. SQL Commands

257

float8

 Set the cost of per-index-tuple CPU processing to the specified floating-point
value.

CPU_OPERATOR_COST

 Sets the optimizer’s estimate of the cost of processing each operator in a WHERE
clause. This is measured as a fraction of the cost of a sequential page fetch.

float8

 Set the cost of per-operator CPU processing to the specified floating-point value.

EFFECTIVE_CACHE_SIZE

 Sets the optimizer’s assumption about the effective size of the disk cache (that is, the
portion of the kernel’s disk cache that will be used for Postgres data files). This is
measured in disk pages, which are normally 8Kb apiece.

float8

 Set the assumed cache size to the specified floating-point value.

ENABLE_SEQSCAN

 Enables or disables the planner’s use of sequential scan plan types. (It’s not possible
to suppress sequential scans entirely, but turning this variable OFF discourages the
planner from using one if there is any other method available.)

ON

 enables use of sequential scans (default setting).

OFF

 disables use of sequential scans.

ENABLE_INDEXSCAN

 Enables or disables the planner’s use of index scan plan types.

ON

 enables use of index scans (default setting).

OFF

 disables use of index scans.

ENABLE_TIDSCAN

 Enables or disables the planner’s use of TID scan plan types.

Chapter 19. SQL Commands

258

ON

 enables use of TID scans (default setting).

OFF

 disables use of TID scans.

ENABLE_SORT
 Enables or disables the planner’s use of explicit sort steps. (It’s not possible to
suppress explicit sorts entirely, but turning this variable OFF discourages the planner
from using one if there is any other method available.)

ON

 enables use of sorts (default setting).

OFF

 disables use of sorts.

ENABLE_NESTLOOP

 Enables or disables the planner’s use of nested-loop join plans. (It’s not possible to
suppress nested-loop joins entirely, but turning this variable OFF discourages the
planner from using one if there is any other method available.)

ON

 enables use of nested-loop joins (default setting).

OFF

 disables use of nested-loop joins.

ENABLE_MERGEJOIN

 Enables or disables the planner’s use of mergejoin plans.

ON

 enables use of merge joins (default setting).

OFF

 disables use of merge joins.

ENABLE_HASHJOIN

 Enables or disables the planner’s use of hashjoin plans.

ON

 enables use of hash joins (default setting).

Chapter 19. SQL Commands

259

OFF

 disables use of hash joins.

GEQO

 Sets the threshold for using the genetic optimizer algorithm.

ON

 enables the genetic optimizer algorithm for statements with 11 or more tables.
(This is also the DEFAULT setting.)

ON=#

 Takes an integer argument to enable the genetic optimizer algorithm for
statements with # or more tables in the query.

OFF

 disables the genetic optimizer algorithm.

 See the chapter on GEQO in the Programmer’s Guide for more information about
query optimization.

 If the PGGEQO environment variable is set in the frontend environment of a client
based on libpq, libpq will automatically set GEQO to the value of PGGEQO during
connection startup.

KSQO

 Key Set Query Optimizer causes the query planner to convert queries whose WHERE
clause contains many OR’ed AND clauses (such as "WHERE (a=1 AND b=2) OR
(a=2 AND b=3) ...") into a UNION query. This method can be faster than the default
implementation, but it doesn’t necessarily give exactly the same results, since UNION
implicitly adds a SELECT DISTINCT clause to eliminate identical output rows.
KSQO is
commonly used when working with products like MicroSoft Access, which tend to
generate queries of this form.

ON

 enables this optimization.

OFF

 disables this optimization (default setting).

DEFAULT

 Equivalent to specifying SET KSQO=OFF.

 The KSQO algorithm used to be absolutely essential for queries with many OR’ed
AND clauses, but in Postgres 7.0 and later the standard planner handles these queries
fairly successfully.

Chapter 19. SQL Commands

260

MAX_EXPR_DEPTH

 Sets the maximum expression nesting depth that the parser will accept. The default
value is high enough for any normal query, but you can raise it if you need to. (But if
you raise it too high, you run the risk of backend crashes due to stack overflow.)

integer

 Maximum depth.

Outputs

SET VARIABLE

 Message returned if successful.

WARN: Bad value for variable (value)

 If the command fails to set the specified variable.

Description

 SET will modify configuration parameters for variable during a session.

 Current values can be obtained using SHOW, and values can be restored to the defaults
using RESET. Parameters and values are case-insensitive. Note that the value field is
always specified as a string, so is enclosed in single-quotes.

 SET TIME ZONE changes the session’s default time zone offset. An SQL-session
always begins with an initial default time zone offset. The SET TIME ZONE statement is
used to change the default time zone offset for the current SQL session.

Notes

 The SET variable statement is a Postgres language extension.

 Refer to SHOW and RESET to display or reset the current values.

Usage

 Set the style of date to ISO (no quotes on the argument is required):

SET DATESTYLE TO ISO;

 Enable GEQO for queries with 4 or more tables (note the use of single quotes to handle
the equal sign inside the value argument):

SET GEQO = ’ON=4’;

Chapter 19. SQL Commands

261

 Set GEQO to default:

SET GEQO = DEFAULT;

 Set the timezone for Berkeley, California, using double quotes to preserve the uppercase
attributes of the time zone specifier:

SET TIME ZONE "PST8PDT";
SELECT CURRENT_TIMESTAMP AS today;

 today

 1998-03-31 07:41:21-08

 Set the timezone for Italy (note the required single or double quotes to handle the special
characters):

SET TIME ZONE ’Europe/Rome’;
SELECT CURRENT_TIMESTAMP AS today;

 today

 1998-03-31 17:41:31+02

Compatibility

SQL92

 There is no general SET variable in SQL92 (with the exception of SET
TRANSACTION ISOLATION LEVEL). The SQL92 syntax for SET TIME ZONE is
slightly different, allowing only a single integer value for time zone specification:

SET TIME ZONE { interval_value_expression | LOCAL }

Chapter 19. SQL Commands

262

 SHOW

Name

 SHOW � Shows run-time parameters for session

Synopsis
SHOW keyword

Inputs

keyword

 Refer to SET for more information on available variables.

Outputs

NOTICE: variable is value

 Message returned if successful.

NOTICE: Unrecognized variable value

 Message returned if variable does not exist.

NOTICE: Time zone is unknown

 If the TZ or PGTZ environment variable is not set.

Description

 SHOW will display the current setting of a run-time parameter during a session.

 These variables can be set using the SET statement, and can be restored to the default
values using the RESET statement. Parameters and values are case-insensitive.

Notes

 See also SET and RESET to manipulate variable values.

Usage

 Show the current DateStyle setting:
SHOW DateStyle;
NOTICE: DateStyle is ISO with US (NonEuropean) conventions

Chapter 19. SQL Commands

263

 Show the current genetic optimizer (geqo) setting:
SHOW GEQO;
NOTICE: GEQO is ON beginning with 11 relations

Compatibility

SQL92

 There is no SHOW defined in SQL92.

 TRUNCATE

Name

 TRUNCATE � Empty a table

Synopsis
TRUNCATE [TABLE] name

Inputs

name

 The name of the table to be truncated.

Outputs

TRUNCATE

 Message returned if the table is successfully truncated.

Description

 TRUNCATE quickly removes all rows from a table. It has the same effect as an
unqualified DELETE but since it does not actually scan the table it is faster. This is most
effective on large tables.

Usage

 Truncate the table bigtable:
TRUNCATE TABLE bigtable;

Chapter 19. SQL Commands

264

Compatibility

SQL92

 There is no TRUNCATE in SQL92.

 UNLISTEN

Name

 UNLISTEN � Stop listening for notification

Synopsis
UNLISTEN { notifyname | * }

Inputs

notifyname

 Name of previously registered notify condition.

*

 All current listen registrations for this backend are cleared.

Outputs

UNLISTEN

 Acknowledgement that statement has executed.

Description

 UNLISTEN is used to remove an existing NOTIFY registration. UNLISTEN cancels any
existing registration of the current Postgres session as a listener on the notify condition
notifyname. The special condition wildcard "*" cancels all listener registrations for the
current session.

 NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Notes

 classname needs not to be a valid class name but can be any string valid as a name up
to 32 characters long.

Chapter 19. SQL Commands

265

 The backend does not complain if you UNLISTEN something you were not listening for.

Each backend will automatically execute UNLISTEN * when exiting.

 A restriction in some previous releases of Postgres that a classname which does not
correspond to an actual table must be enclosed in double-quotes is no longer present.

Usage

 To subscribe to an existing registration:
postgres=> LISTEN virtual;
LISTEN
postgres=> NOTIFY virtual;
NOTIFY
Asynchronous NOTIFY ’virtual’ from backend with pid ’8448’ received

 Once UNLISTEN has been executed, further NOTIFY commands will be ignored:
postgres=> UNLISTEN virtual;
UNLISTEN
postgres=> NOTIFY virtual;
NOTIFY
-- notice no NOTIFY event is received

Compatibility

SQL92

 There is no UNLISTEN in SQL92.

 UPDATE

Name

 UPDATE � Replaces values of columns in a table

Synopsis
UPDATE table SET col = expression [, ...]
 [FROM fromlist]
 [WHERE condition]

Inputs

table

 The name of an existing table.

Chapter 19. SQL Commands

266

column

 The name of a column in table.

expression

 A valid expression or value to assign to column.

fromlist

 A Postgres non-standard extension to allow columns from other tables to appear in
the WHERE condition.

condition

 Refer to the SELECT statement for a further description of the WHERE clause.

Outputs

UPDATE #

 Message returned if successful. The # means the number of rows updated. If # is
equal 0 no rows are updated.

Description

 UPDATE changes the values of the columns specified for all rows which satisfy
condition. Only the columns to be modified need appear as columns in the statement.

 Array references use the same syntax found in SELECT. That is, either single array
elements, a range of array elements or the entire array may be replaced with a single query.

 You must have write access to the table in order to modify it, as well as read access to any
table whose values are mentioned in the WHERE condition.

Usage

 Change word "Drama" with "Dramatic" on column kind:
UPDATE films SET kind = ’Dramatic’ WHERE kind = ’Drama’;
SELECT * FROM films WHERE kind = ’Dramatic’ OR kind = ’Drama’;

 code | title | did | date_prod | kind | len
-------+---------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Dramatic | 01:44
 P_302 | Becket | 103 | 1964-02-03 | Dramatic | 02:28
 M_401 | War and Peace | 104 | 1967-02-12 | Dramatic | 05:57
 T_601 | Yojimbo | 106 | 1961-06-16 | Dramatic | 01:50
 DA101 | Das Boot | 110 | 1981-11-11 | Dramatic | 02:29

Chapter 19. SQL Commands

267

Compatibility

SQL92

 SQL92 defines a different syntax for the positioned UPDATE statement:
UPDATE table SET column = expression [, ...]
 WHERE CURRENT OF cursor

 where cursor identifies an open cursor.

 VACUUM

Name

 VACUUM � Clean and analyze a Postgres database

Synopsis
VACUUM [VERBOSE] [ANALYZE] [table]
VACUUM [VERBOSE] ANALYZE [table [(column [, ...])]]

Inputs

VERBOSE

 Prints a detailed vacuum activity report for each table.

ANALYZE

 Updates column statistics used by the optimizer to determine the most efficient way
to execute a query.

table

 The name of a specific table to vacuum. Defaults to all tables.

column

 The name of a specific column to analyze. Defaults to all columns.

Outputs

VACUUM

 The command has been accepted and the database is being cleaned.

NOTICE: --Relation table--

 The report header for table.

Chapter 19. SQL Commands

268

NOTICE: Pages 98: Changed 25, Reapped 74, Empty 0, New 0; Tup 1000:

Vac 3000, Crash 0, UnUsed 0, MinLen 188, MaxLen 188; Re-using:

Free/Avail. Space 586952/586952; EndEmpty/Avail. Pages 0/74. Elapsed

0/0 sec.

 The analysis for table itself.

NOTICE: Index index: Pages 28; Tuples 1000: Deleted 3000. Elapsed

0/0 sec.

 The analysis for an index on the target table.

Description

 VACUUM serves two purposes in Postgres as both a means to reclaim storage and also a
means to collect information for the optimizer.

 VACUUM opens every class in the database, cleans out records from rolled back
transactions, and updates statistics in the system catalogs. The statistics maintained include
the number of tuples and number of pages stored in all classes.

 VACUUM ANALYZE collects statistics representing the disbursion of the data in each
column. This information is valuable when several query execution paths are possible.

 Running VACUUM periodically will increase the speed of the database in processing user
queries.

Notes

 The open database is the target for VACUUM.

 We recommend that active production databases be VACUUMM-ed nightly, in order to
keep remove expired rows. After copying a large class into Postgres or after deleting a
large number of records, it may be a good idea to issue a VACUUM ANALYZE query.
This will update the system catalogs with the results of all recent changes, and allow the
Postgres query optimizer to make better choices in planning user queries.

Usage

 The following is an example from running VACUUM on a table in the regression
database:

regression=> vacuum verbose analyze onek;
NOTICE: --Relation onek--
NOTICE: Pages 98: Changed 25, Reapped 74, Empty 0, New 0;
 Tup 1000: Vac 3000, Crash 0, UnUsed 0, MinLen 188, MaxLen
188;
 Re-using: Free/Avail. Space 586952/586952; EndEmpty/Avail.
Pages 0/74.
 Elapsed 0/0 sec.
NOTICE: Index onek_stringu1: Pages 28; Tuples 1000: Deleted 3000.
Elapsed 0/0 sec.
NOTICE: Index onek_hundred: Pages 12; Tuples 1000: Deleted 3000.
Elapsed 0/0 sec.
NOTICE: Index onek_unique2: Pages 19; Tuples 1000: Deleted 3000.
Elapsed 0/0 sec.

Chapter 19. SQL Commands

269

NOTICE: Index onek_unique1: Pages 17; Tuples 1000: Deleted 3000.
Elapsed 0/0 sec.
NOTICE: Rel onek: Pages: 98 --> 25; Tuple(s) moved: 1000. Elapsed
0/1 sec.
NOTICE: Index onek_stringu1: Pages 28; Tuples 1000: Deleted 1000.
Elapsed 0/0 sec.
NOTICE: Index onek_hundred: Pages 12; Tuples 1000: Deleted 1000.
Elapsed 0/0 sec.
NOTICE: Index onek_unique2: Pages 19; Tuples 1000: Deleted 1000.
Elapsed 0/0 sec.
NOTICE: Index onek_unique1: Pages 17; Tuples 1000: Deleted 1000.
Elapsed 0/0 sec.
VACUUM

Compatibility

SQL92

 There is no VACUUM statement in SQL92.

270

Chapter 20. Applications

 This is reference information for Postgres applications and support utilities.

 createdb

Name

 createdb � Create a new Postgres database

Synopsis
createdb [options] dbname [description]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-D, --location datadir

 Specifies the alternate database location for this database installation. This is the
location of the installation system tables, not the location of this specific database,
which may be different.

-E, --encoding encoding

 Specifies the character encoding scheme to be used with this database.

dbname

 Specifies the name of the database to be created. The name must be unique among all

Chapter 20. Applications

271

Postgres databases in this installation. The default is to create a database with the
same name as the current system user.

description

 This optionally specifies a comment to be associated with the newly created database.

 The options -h, -p, -U, -W, and -e are passed on literally to psql.

Outputs

CREATE DATABASE

 The database was successfully created.

createdb: Database creation failed.

 (Says it all.)

createdb: Comment creation failed. (Database was created.)

 The comment/description for the database could not be created. the database itself
will have been created already. You can use the SQL command COMMENT ON
DATABASE to create the comment later on.

 If there is an error condition, the backend error message will be displayed. See CREATE
DATABASE and psql for possibilities.

Description

 createdb creates a new Postgres database. The user who executes this command becomes
the database owner.

 createdb is a shell script wrapper around the SQL command CREATE DATABASE via the
Postgres interactive terminal psql. Thus, there is nothing special about creating databases
via this or other methods. This means that the psql must be found by the script and that a
database server is running at the targeted host. Also, any default settings and environment
variables available to psql and the libpq front-end library do apply.

Usage

 To create the database demo using the default database server:
$ createdb demo

CREATE DATABASE

 The response is the same as you would have gotten from running the CREATE
DATABASE SQL command.

 To create the database demo using the postmaster on host eden, port 5000, using the
LATIN1 encoding scheme with a look at the underlying query:
$ createdb -p 5000 -h eden -E LATIN1 -e demo

CREATE DATABASE "demo" WITH ENCODING = ’LATIN1’
CREATE DATABASE

Chapter 20. Applications

272

 createlang

Name

 createlang � Add a new programming language to a Postgres database

Synopsis
createlang [connection options] [langname [dbname]]
createlang [connection options] --list|-l

Inputs

 createlang accepts the following command line arguments:

langname

 Specifies the name of the backend programming language to be defined. createlang
will prompt for langname if it is not specified on the command line.

[-d, --dbname] dbname

 Specifies to which database the language should be added.

-l, --list

 Shows a list of already installed languages in the target database (which must be
specified).

 createlang also accepts the following command line arguments for connection parameters:

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

Outputs

 Most error messages are self-explanatory. If not, run createlang with the --echo option
and see under the respective SQL command for details. Check also under psql for more
possibilities.

Chapter 20. Applications

273

Description

 createlang is a utility for adding a new programming language to a Postgres database.
createlang currently accepts two languages, plsql and pltcl.

 Although backend programming languages can be added directly using several SQL
commands, it is recommended to use createlang because it performs a number of checks
and is much easier to use. See CREATE LANGUAGE for more.

Notes

 Use droplang to remove a language.

Usage

 To install pltcl:

$ createlang pltcl

 createuser

Name

 createuser � Create a new Postgres user

Synopsis
createuser [options] [username]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-d, --createdb

 Allows the new user to create databases.

Chapter 20. Applications

274

-D, --no-createdb

 Forbids the new user to create databases.

-a, --adduser

 Allows the new user to create other users.

-A, --no-adduser

 Forbids the new user to create other users.

-P, --pwprompt

 If given, createuser will issue a prompt for the password of the new user. This is not
necessary if you do not plan on using password authentication.

-i, --sysid uid

 Allows you to pick a non-default user id for the new user. This is not necessary, but
some people like it.

username

 Specifies the name of the Postgres user to be created. This name must be unique
among all Postgres users.

 You will be prompted for a name and other missing information if it is not specified on the
command line.

 The options -h, -p, and -e, are passed on literally to psql. The psql options -U and -W are
available as well, but their use can be confusing in this context.

Outputs

CREATE USER

 All is well.

createuser: creation of user "username" failed

 Something went wrong. The user was not created.

 If there is an error condition, the backend error message will be displayed. See CREATE
USER and psql for possibilities.

Description

 createuser creates a new Postgres user. Only users with usesuper set in the pg_shadow
class can create new Postgres users.

 createuser is a shell script wrapper around the SQL command CREATE USER via the
Postgres interactive terminal psql. Thus, there is nothing special about creating users via
this or other methods. This means that the psql must be found by the script and that a
database server is running at the targeted host. Also, any default settings and environment
variables available to psql and the libpq front-end library do apply.

Chapter 20. Applications

275

Usage

 To create a user joe on the default database server:
$ createuser joe
Is the new user allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n

CREATE USER

 To create the same user joe using the postmaster on host eden, port 5000, avoiding the
prompts and taking a look at the underlying query:
$ createuser -p 5000 -h eden -D -A -e joe

CREATE USER "joe" NOCREATEDB NOCREATEUSER
CREATE USER

 dropdb

Name

 dropdb � Remove an existing Postgres database

Synopsis
dropdb [options] dbname

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

-e, --echo

 Echo the queries that dropdb generates and sends to the backend.

Chapter 20. Applications

276

-q, --quiet

 Do not display a response.

-i, --interactive

 Issues a verification prompt before doing anything destructive.

dbname

 Specifies the name of the database to be removed. The database must be one of the
existing Postgres databases in this installation.

 The options -h, -p, -U, -W, and -e are passed on literally to psql.

Outputs

DROP DATABASE

 The database was successfully removed.

dropdb: Database removal failed.

 Something didn’t work out.

 If there is an error condition, the backend error message will be displayed. See
drop_database and psql for possibilities.

Description

 dropdb destroys an existing Postgres database. The user who executes this command must
be a database superuser or the owner of the database.

 dropdb is a shell script wrapper around the SQL command drop_database via the Postgres
interactive terminal psql. Thus, there is nothing special about dropping databases via this or
other methods. This means that the psql must be found by the script and that a database
server is running at the targeted host. Also, any default settings and environment variables
available to psql and the libpq front-end library do apply.

Usage

 To destroy the database demo on the default database server:
$ dropdb demo

DROP DATABASE

 To destroy the database demo using the postmaster on host eden, port 5000, with
verification and a peek at the underlying query:
$ dropdb -p 5000 -h eden -i -e demo

Database "demo" will be permanently deleted.
Are you sure? (y/n) y

DROP DATABASE "demo"
DROP DATABASE

Chapter 20. Applications

277

 droplang

Name

 droplang � Remove a programming language from a Postgres database

Synopsis
droplang [connection options] [langname [dbname]]
droplang [connection options] --list|-l

Inputs

 droplang accepts the following command line arguments:

langname

 Specifies the name of the backend programming language to be removed. droplang
will prompt for langname if it is not specified on the command line.

[-d, --dbname] dbname

 Specifies from which database the language should be removed.

-l, --list

 Shows a list of already installed languages in the target database (which must be
specified).

 droplang also accepts the following command line arguments for connection parameters:

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

 Force password prompt.

Outputs

 Most error messages are self-explanatory. If not, run droplang with the --echo option and
see under the respective SQL command for details. Check also under psql for more
possibilities.

Chapter 20. Applications

278

Description

 droplang is a utility for removing an existing programming language from a Postgres
database. droplang currently accepts two languages, plsql and pltcl.

 Although backend programming languages can be removed directly using several SQL
commands, it is recommended to use droplang because it performs a number of checks and
is much easier to use. See DROP LANGUAGE for more.

Notes

 Use createlang to add a language.

Usage

 To remove pltcl:

$ droplang pltcl

 dropuser

Name

 dropuser � Drops (removes) a Postgres user

Synopsis
dropuser [options] [username]

Inputs

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-e, --echo

 Echo the queries that createdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

-i, --interactive

 Prompt for confirmation before actually removing the user.

username

 Specifies the name of the Postgres user to be removed. This name must exist in the

Chapter 20. Applications

279

Postgres installation. You will be prompted for a name if none is specified on the
command line.

 The options -h, -p, and -e, are passed on literally to psql. The psql options -U and -W are
available as well, but they can be confusing in this context.

Outputs

DROP USER

 All is well.

dropuser: deletion of user "username" failed

 Something went wrong. The user was not removed.

 If there is an error condition, the backend error message will be displayed. See DROP
USER and psql for possibilities.

Description

 dropuser removes an existing Postgres user and the databases which that user owned. Only
users with usesuper set in the pg_shadow class can destroy Postgres users.

 dropuser is a shell script wrapper around the SQL command DROP USER via the Postgres
interactive terminal psql. Thus, there is nothing special about removing users via this or
other methods. This means that the psql must be found by the script and that a database
server is running at the targeted host. Also, any default settings and environment variables
available to psql and the libpq front-end library do apply.

Usage

 To remove user joe from the default database server:
$ dropuser joe

DROP USER

 To remove user joe using the postmaster on host eden, port 5000, with verification and a
peek
at the underlying query:
$ dropuser -p 5000 -h eden -i -e joe

User "joe" and any owned databases will be permanently deleted.
Are you sure? (y/n) y

DROP USER "joe"
DROP USER

Chapter 20. Applications

280

 ecpg

Name

 ecpg � Embedded SQL C preprocessor

Synopsis
ecpg [-v] [-t] [-I include-path] [-o outfile] file1 [file2
] [...]

Inputs

 ecpg accepts the following command line arguments:

-v

 Print version information.

-t

 Turn off auto-transactin mode.

-I path

 Specify an additional include path. Defaults are ., /usr/local/include, the
Postgres include path which is defined at compile time (default:
/usr/local/pgsql/lib), and /usr/include.

-o

 Specifies that ecpg should write all its output to outfile. If no such option is given the
output is written to name.c, assuming the input file was named name.pgc. If the
input
file does have the expected .pgc suffix, then the output file will have .pgc appended
to the input file name.

file

 The files to be processed.

Outputs

 ecpg will create a file or write to stdout.

return value

 ecpg returns 0 to the shell on successful completion, -1 for errors.

Description

 ecpg is an embedded SQL preprocessor for the C language and the Postgres. It enables
development of C programs with embedded SQL code.

 Linus Tolke (linus@epact.se) was the original author of ecpg (up to version 0.2). Michael

Chapter 20. Applications

281

Meskes (meskes@debian.org) is the current author and maintainer of ecpg. Thomas Good
(tomg@q8.nrnet.org) is the author of the last revision of the ecpg man page, on which this
document is based.

Usage

Preprocessing for Compilation

 An embedded SQL source file must be preprocessed before compilation:

ecpg [-d] [-o file] file.pgc

 where the optional -d flag turns on debugging. The .pgc extension is an arbitrary means
of denoting ecpg source.

 You may want to redirect the preprocessor output to a log file.

Compiling and Linking

 Assuming the Postgres binaries are in /usr/local/pgsql, you will need to compile and
link your preprocessed source file:

gcc -g -I /usr/local/pgsql/include [-o file] file.c -L
/usr/local/pgsql/lib -lecpg -lpq

Grammar

Libraries

 The preprocessor will prepend two directives to the source:
#include <ecpgtype.h>
#include <ecpglib.h>

Variable Declaration

 Variables declared within ecpg source code must be prepended with:
EXEC SQL BEGIN DECLARE SECTION;

 Similarly, variable declaration sections must terminate with:
EXEC SQL END DECLARE SECTION;

Note: Prior to version 2.1.0, each variable had to be declared on a separate line. As of
version 2.1.0 multiple variables may be declared on a single line:

char foo(16), bar(16);

Chapter 20. Applications

282

Error Handling

 The SQL communication area is defined with:

EXEC SQL INCLUDE sqlca;

Note: The sqlca is in lowercase. While SQL convention may be followed, i.e., using
uppercase to separate embedded SQL from C statements, sqlca (which includes the
sqlca.h header file) MUST be lowercase. This is because the EXEC SQL prefix
indicates that this INCLUDE will be parsed by ecpg. ecpg observes case sensitivity
(SQLCA.h will not be found.) EXEC SQL INCLUDE can be used to include other
header files as long as case sensitivity is observed.

 The sqlprint command is used with the EXEC SQL WHENEVER statement to turn on
error handling throughout the program:

EXEC SQL WHENEVER sqlerror sqlprint;

 and

EXEC SQL WHENEVER not found sqlprint;

Note: This is not an exhaustive example of usage for the EXEC SQL WHENEVER
statement. Further examples of usage may be found in SQL manuals (e.g., ‘The LAN
TIMES Guide to SQL’ by Groff and Weinberg).

Connecting to the Database Server

 One connects to a database using the following:
EXEC SQL CONNECT dbname;

 where the database name is not quoted. Prior to version 2.1.0, the database name was
required to be inside single quotes.

 Specifying a server and port name in the connect statement is also possible. The syntax is:

dbname[@server][:port]

 or

<tcp|unix>:postgresql://server[:port][/dbname][?options]

Chapter 20. Applications

283

Queries

 In general, SQL queries acceptable to other applications such as psql can be embedded
into your C code. Here are some examples of how to do that.

 Create Table:

EXEC SQL CREATE TABLE foo (number int4, ascii char(16));
EXEC SQL CREATE UNIQUE index num1 on foo(number);
EXEC SQL COMMIT;

 Insert:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

 Delete:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

 Singleton Select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = ’doodad’;

 Select using Cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

 Updates:

EXEC SQL UPDATE foo
 SET ascii = ’foobar’
 WHERE number = 9999;
EXEC SQL COMMIT;

Chapter 20. Applications

284

Notes

 There is no EXEC SQL PREPARE statement.

 The complete structure definition MUST be listed inside the declare section.

 See the TODO file in the source for some more missing features.

 pgaccess

Name

 pgaccess � Postgres graphical interactive client

Synopsis
pgaccess [dbname]

Inputs

dbname

 The name of an existing database to access.

Outputs

Description

 pgaccess provides a graphical interface for Postgres where you can manage your tables,
edit them, define queries, sequences and functions.

 Another way of accessing Postgres through tcl is to use pgtclsh or pgtksh.

 pgaccess can:
 Opens any database on a specified host at the specified port, username and password.
 Execute VACUUM.
 Saves preferences in ~/.pgaccessrc file.

 For tables, pgaccess can:
 Open multiple tables for viewing, max n records (configurable).
 Resize columns by dragging the vertical grid lines.
 Wrap text in cells.
 Dynamically adjust row height when editing.
 Save table layout for every table.

Chapter 20. Applications

285

 Import/export to external files (SDF,CSV).
 Use filter capabilities; enter filter like price>3.14.
 Specify sort order; enter manually the sort field(s).
 Edit in place; double click the text you want to change.
 Delete records; point to the record, press Del key.
 Add new records; save new row with right-button-click.
 Create tables with an assistant.
 Rename and delete (drop) tables.
 Retrieve information on tables, including owner, field information, indices.

 For queries, pgaccess can:
 Define, edit and store user defined queries.
 Save view layouts.
 Store queries as views.
 Execute with optional user input parameters; e.g.
select * from invoices where year=[parameter "Year of selection"]

 View any select query result.
 Run action queries (insert, update, delete).
 Construct queries using a visual query builder with drag & drop support, table aliasing.

 For sequences, pgaccess can:
 Define new instances.
 Inspect existing instances.
 Delete.

 For views, pgaccess can:
 Define them by saving queries as views.
 View them, with filtering and sorting capabilities.
 Design new views.
 Delete (drop) existing views.

 For functions, pgaccess can:
 Define.
 Inspect.
 Delete.

 For reports, pgaccess can:
 Generate simple reports from a table (beta stage).
 Change font, size and style of fields and labels.
 Load and save reports from the database.
 Preview tables, sample postscript print.

 For forms, pgaccess can:
 Open user defined forms.

Chapter 20. Applications

286

 Use a form design module.
 Access record sets using a query widget.

 For scripts, pgaccess can:
 Define.
 Modify.
 Call user defined scripts.

 pgadmin

Name

 pgadmin � Postgres database management and design tool for Windows 95/98/NT

Synopsis
pgadmin [datasourcename [username [password]]]

Inputs

datasourcename

 The name of an existing Postgres ODBC System or User Data Source.

username

 A valid username for the specified datasourcename.

password

 A valid password for the specified datasourcename and username.

Outputs

Description

 pgadmin is a general purpose tool for designing, maintaining, and administering Postgres
databases. It runs under Windows 95/98 and NT.

 Features include:

 Arbitrary SQL entry.

 Info Browsers and ’Creators’ for databases, tables, indexes, sequences, views, triggers,
functions and languages.

 User, Group and Privilege configuration dialogues.

 Revision tracking with upgrade script generation.

 Configuration of Microsoft MSysConf table.

Chapter 20. Applications

287

 Data Import and Export Wizards.

 Database Migration Wizard.

 Predefined reports on databases, tables, indexes, sequences, languages and views.

 pgadmin is distributed separately from Postgres and may be downloaded from
http://www.pgadmin.freeserve.co.uk

 pg_ctl

Name

 pg_ctl � Starts, stops, and restarts postmaster

Synopsis
pg_ctl [-w] [-D datadir][-p path] [-o "options"] start
pg_ctl [-w] [-D datadir] [-m [s[mart]|f[ast]|i[mmediate]]] stop
pg_ctl [-w] [-D datadir] [-m [s[mart]|f[ast]|i[mmediate]]
 [-o "options"] restart
pg_ctl [-D datadir] status

Inputs

-w

 Wait for the database server comes up, by watching for creation of the pid file
(PGDATA/postmaster.pid). Times out after 60 seconds.

-D datadir

 Specifies the database location for this database installation.

-p path

 Specifies the path to the postmaster image.

-o "options"

 Specifies options to be passed directly to postmaster.

 The parameters are usually surrounded by single- or double quotes to ensure that they
are passed through as a group.

-m mode

 Specifies the shutdown mode.

smart
s

 smart mode waits for all the clients to logout. This is the default.

f[ast]

Chapter 20. Applications

288

f

 Fast mode sends SIGTERM to the backends, that means active transactions get
rolled back.

immediate
i

 Immediate mode sends SIGUSR1 to the backends and lets them abort. In this
case, database recovery will be neccessary on the next startup.

start

 Start up postmaster.

stop

 Shut down postmaster.

restart

 Restart the postmaster, performing a stop/start sequence.

status

 Show the current state of postmaster.

Outputs

pg_ctl: postmaster is state (pid: #)

 Postmaster status.

 If there is an error condition, the backend error message will be displayed.

Description

 pg_ctl is a utility for starting, stopping or restarting postmaster.

Usage

Starting postmaster

 To start up postmaster:
> pg_ctl start

 If -w is supplied, pg_ctl waits for the database server comes up, by watching for creation
of the pid file (PGDATA/postmaster.pid), for up to 60 seconds.

 Parameters to invoke postmaster are taken from the following sources:

 Path to postmaster: found in the command search path.

 Database directory: PGDATA environment variable.

Chapter 20. Applications

289

 Other parameters: PGDATA/postmaster.opts.default.

 postmaster.opts.default contains parameters for postmaster. With a default
installation, the -S option is enabled. So pg_ctl start implies:
postmaster -S

 Note that postmaster.opts.default is installed by initdb from
lib/postmaster.opts.default.sample under the Postgres installation directory
(lib/postmaster.opts.default.sample is copied from
src/bin/pg_ctl/postmaster.opts.default.sample while installing Postgres).

 To override the default parameters you can use -D, -p and -o options.

 An example of starting the postmaster, blocking until postmaster comes up is:
> pg_ctl -w start

 To specify the postmaster binary path, try:
> pg_ctl -p /usr/local/pgsq/bin/postmaster start

 For a postmaster using port 5433, and running without fsync, use:
> pg_ctl -o "-o -F -p 5433" start

Stopping postmaster

> pg_ctl stop

 stops postmaster. Using the -m switch allows one to control how the backend shuts down.
-w waits for postmaster to shut down. -m specifies the shut down mode.

Restarting postmaster

 This is almost equivalent to stopping the postmaster then starting it again except that the
parameters used before stopping it would be used too. This is done by saving them in
$PGDATA/postmaster.opts file. -w, -D, -m, -fast, -immediate and -o can also be used
in the restarting mode and they have same meanings as described above.

 To restart postmaster in the simplest form:

> pg_ctl restart

Chapter 20. Applications

290

 To restart postmaster, waiting for it to shut down and to come up:
> pg_ctl -w restart

 To restart using port 5433 and disabling fsync after restarting:
> pg_ctl -o "-o -F -p 5433" restart

postmaster status

 To get status information from postmaster:
> pg_ctl status

 Here is a sample output from pg_ctl:
pg_ctl: postmaster is running (pid: 13718)
options are:
/usr/local/src/pgsql/current/bin/postmaster
-p 5433
-D /usr/local/src/pgsql/current/data
-B 64
-b /usr/local/src/pgsql/current/bin/postgres
-N 32
-o ’-F’

 pg_dump

Name

 pg_dump � Extract a Postgres database into a script file

Synopsis
pg_dump [dbname]
pg_dump [-h host] [-p port]
 [-t table]
 [-a] [-c] [-d] [-D] [-i] [-n] [-N]
 [-o] [-s] [-u] [-v] [-x]
 [dbname]

Inputs

 pg_dump accepts the following command line arguments:

dbname

 Specifies the name of the database to be extracted. dbname defaults to the value of

Chapter 20. Applications

291

the USER environment variable.

-a

 Dump out only the data, no schema (definitions).

-c

 Clean(drop) schema prior to create.

-d

 Dump data as proper insert strings.

-D

 Dump data as inserts with attribute names

-i

 Ignore version mismatch between pg_dump and the database server. Since pg_dump
knows a great deal about system catalogs, any given version of pg_dump is only
intended
to work with the corresponding release of the database server. Use this option if you
need
to override the version check (and if pg_dump then fails, don’t say you weren’t
warned).

-n

 Suppress double quotes around identifiers unless absolutely necessary. This may
cause trouble loading this dumped data if there are reserved words used for identifiers.
This was the default behavior for pg_dump prior to v6.4.

-N

 Include double quotes around identifiers. This is the default.

-o

 Dump object identifiers (OIDs) for every table.

-s

 Dump out only the schema (definitions), no data.

-t table

 Dump data for table only.

-u

 Use password authentication. Prompts for username and password.

-v

 Specifies verbose mode

-x

 Prevent dumping of ACLs (grant/revoke commands) and table ownership
information.

Chapter 20. Applications

292

 pg_dump also accepts the following command line arguments for connection parameters:

-h host

 Specifies the hostname of the machine on which the postmaster is running. Defaults
to using a local Unix domain socket rather than an IP connection..

-p port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections. The port number defaults to 5432,
or the value of the PGPORT environment variable (if set).

-u

 Use password authentication. Prompts for username and password.

Outputs

 pg_dump will create a file or write to stdout.

Connection to database ’template1’ failed. connectDB() failed: Is

the postmaster running and accepting connections at ’UNIX Socket’ on

port ’port’?

 pg_dump could not attach to the postmaster process on the specified host and port. If
you see this message, ensure that the postmaster is running on the proper host and that
you have specified the proper port. If your site uses an authentication system, ensure
that you have obtained the required authentication credentials.

Connection to database ’dbname’ failed. FATAL 1: SetUserId: user

’username’ is not in ’pg_shadow’

 You do not have a valid entry in the relation pg_shadow and and will not be allowed
to access Postgres. Contact your Postgres administrator.

dumpSequence(table): SELECT failed

 You do not have permission to read the database. Contact your Postgres site
administrator.

Note: pg_dump internally executes SELECT statements. If you have problems
running pg_dump, make sure you are able to select information from the database
using, for example, psql.

Description

 pg_dump is a utility for dumping out a Postgres database into a script file containing query
commands. The script files are in text format and can be used to reconstruct the database,
even
on other machines and other architectures. pg_dump will produce the queries necessary to
re-generate all user-defined types, functions, tables, indices, aggregates, and operators. In
addition, all the data is copied out in text format so that it can be readily copied in again, as

Chapter 20. Applications

293

well as imported into tools for editing.

 pg_dump is useful for dumping out the contents of a database to move from one Postgres
installation to another. After running pg_dump, one should examine the output script file
for any warnings, especially in light of the limitations listed below.

Notes

 pg_dump has a few limitations. The limitations mostly stem from difficulty in extracting
certain meta-information from the system catalogs.

 pg_dump does not understand partial indices. The reason is the same as above; partial
index predicates are stored as plans.

 pg_dump does not handle large objects. Large objects are ignored and must be dealt
with
manually.

 When doing a data only dump, pg_dump emits queries to disable triggers on user tables
before inserting the data and queries to reenable them after the data has been inserted. If
the restore is stopped in the middle, the system catalogs may be left in the wrong state.

Usage

 To dump a database of the same name as the user:
% pg_dump > db.out

 To reload this database:
% psql -e database < db.out

 pg_dumpall

Name

 pg_dumpall � Extract all Postgres databases into a script file

Synopsis
pg_dumpall
pg_dumpall [-h host] [-p port] [-a] [-d] [-D] [-O] [-s
] [
-u] [-v] [-x]

Inputs

 pg_dumpall accepts the following command line arguments:

-a

 Dump out only the data, no schema (definitions).

Chapter 20. Applications

294

-d

 Dump data as proper insert strings.

-D

 Dump data as inserts with attribute names

-n

 Suppress double quotes around identifiers unless absolutely necessary. This may
cause trouble loading this dumped data if there are reserved words used for identifiers.

-o

 Dump object identifiers (OIDs) for every table.

-s

 Dump out only the schema (definitions), no data.

-u

 Use password authentication. Prompts for username and password.

-v

 Specifies verbose mode

-x

 Prevent dumping ACLs (grant/revoke commands) and table ownership information.

 pg_dumpall also accepts the following command line arguments for connection
parameters:

-h host

 Specifies the hostname of the machine on which the postmaster is running. Defaults
to using a local Unix domain socket rather than an IP connection..

-p port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections. The port number defaults to 5432,
or the value of the PGPORT environment variable (if set).

-u

 Use password authentication. Prompts for username and password.

Outputs

 pg_dumpall will create a file or write to stdout.

Connection to database ’template1’ failed. connectDB() failed: Is

the postmaster running and accepting connections at ’UNIX Socket’ on

port ’port’?

Chapter 20. Applications

295

 pg_dumpall could not attach to the postmaster process on the specified host and port.
If you see this message, ensure that the postmaster is running on the proper host and
that you
have specified the proper port. If your site uses an authentication system, ensure that
you have obtained the required authentication credentials.

Connection to database ’dbname’ failed. FATAL 1: SetUserId: user

’username’ is not in ’pg_shadow’

 You do not have a valid entry in the relation pg_shadow and and will not be allowed
to access Postgres. Contact your Postgres administrator.

dumpSequence(table): SELECT failed

 You do not have permission to read the database. Contact your Postgres site
administrator.

Note: pg_dumpall internally executes SELECT statements. If you have problems
running pg_dumpall, make sure you are able to select information from the database
using, for example, psql.

Description

 pg_dumpall is a utility for dumping out all Postgres databases into one file. It also dumps
the pg_shadow table, which is global to all databases. pg_dumpall includes in this file the
proper commands to automatically create each dumped database before loading.

 pg_dumpall takes all pg_dump options, but -f, -t and dbname should be omitted.

 Refer to pg_dump for more information on this capability.

Usage

 To dump all databases:

% pg_dumpall > db.out

Tip: You can use most pg_dump options for pg_dumpall.

 To reload this database:

% psql -e template1 < db.out

Tip: You can use most psql options when reloading.

Chapter 20. Applications

296

 psql

Name

 psql � Postgres interactive terminal

Synopsis

psql [options] [dbname [user]]

Summary
 psql is a terminal-based front-end to Postgres. It enables you to type in queries
interactively, issue them to Postgres, and see the query results. Alternatively, input can be
from a file. In addition, it provides a number of meta-commands and various shell-like
features to facilitate writing scripts and automating a wide variety of tasks.

Description

Connecting To A Database
 psql is a regular Postgres client application. In order to connect to a database you need to
know the name of your target database, the hostname and port number of the server and
what user name you want to connect as. psql can be told about those parameters via
command line options, namely -d, -h, -p, and -U respectively. If an argument is found
that does not belong to any option it will be interpreted as the database name (or the user
name, if the database name is also given). Not all these options are required, defaults do
apply. If you omit the host name psql will connect via a UNIX domain socket to a server
on the local host. The default port number is compile-time determined. Since the database
server uses the same default, you will not have to specify the port in most cases. The
default user name is your Unix username, as is the default database name. Note that you
can’t just connect to any database under any username. Your database administrator should
have informed you about your access rights. To save you some typing you can also set the
environment variables PGDATABASE, PGHOST, PGPORT and PGUSER to appropriate
values.

 If the connection could not be made for any reason (e.g., insufficient privileges,
postmaster is not running on the server, etc.), psql will return an error and terminate.

Entering Queries

 In normal operation, psql provides a prompt with the name of the database to which psql is
currently connected, followed by the string "=>". For example,
$ psql testdb

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

testdb=>

Chapter 20. Applications

297

 At the prompt, the user may type in SQL queries. Ordinarily, input lines are sent to the
backend when a query-terminating semicolon is reached. An end of line does not terminate
a query! Thus queries can be spread over several lines for clarity. If the query was sent and
without error, the query results are displayed on the screen.

 Whenever a query is executed, psql also polls for asynchronous notification events
generated by LISTEN and NOTIFY.

psql Meta-Commands

 Anything you enter in psql that begins with an unquoted backslash is a psql
meta-command that is processed by psql itself. These commands are what makes psql
interesting for administration or scripting. Meta-commands are more commonly called
slash or backslash commands.
 The format of a psql command is the backslash, followed immediately by a command
verb, then any arguments. The arguments are separated from the command verb and each
other by any number of white space characters. To include whitespace into an argument
you must quote it with a single quote. To include a single quote into such an argument,
precede it by a backslash. Anything contained in single quotes is furthermore subject to
C-like substitutions for \n (new line), \t (tab), \digits, \0digits, and \0xdigits
(the character with the given decimal, octal, or hexadecimal code).

 If an unquoted argument begins with a colon (:), it is taken as a variable and the value of
the variable is taken as the argument instead.

 Arguments that are quoted in �backticks� (‘) are taken as a command line that is passed to
the shell. The output of the command (with a trailing newline removed) is taken as the
argument value. The above escape sequences also apply in backticks.
 Some commands take the name of an SQL identifier (such as a table name) as argument.
These arguments follow the syntax rules of SQL regarding double quotes: an identifier
without double quotes is coerced to lower-case. For all other commands double quotes are
not special and will become part of the argument.
 Parsing for arguments stops when another unquoted backslash occurs. This is taken as the
beginning of a new meta-command. The special sequence \\ (two backslashes) marks the
end of arguments and continues parsing SQL queries, if any. That way SQL and psql
commands can be freely mixed on a line. But in any case, the arguments of a
meta-command cannot continue beyond the end of the line.

 The following meta-commands are defined:

\a

 If the current table output format is unaligned, switch to aligned. If it is not unaligned,
set it to unaligned. This command is kept for backwards compatibility. See \pset for a
general solution.

\C [title]

 Set the title of any tables being printed as the result of a query or unset any such title.
This command is equivalent to \pset title title. (The name of this command
derives from �caption�, as it was previously only used to set the caption in an HTML
table.)

Chapter 20. Applications

298

\connect (or \c) [dbname [username]]

 Establishes a connection to a new database and/or under a user name. The previous
connection is closed. If dbname is - the current database name is assumed.

 If username is omitted the current user name is assumed.

 As a special rule, \connect without any arguments will connect to the default
database as the default user (as you would have gotten by starting psql without any
arguments).
 If the connection attempt failed (wrong username, access denied, etc.) the previous
connection will be kept if and only if psql is in interactive mode. When executing a
non-interactive script, processing will immediately stop with an error. This distinction
was chosen as a user convenience against typos on the one hand, and a safety
mechanism that scripts are not accidentally acting on the wrong database on the other
hand.

\copy table [with oids] { from | to } filename | stdin | stdout [with
delimiters ’characters’] [with null as ’string’]

 Performs a frontend (client) copy. This is an operation that runs an SQL COPY
command, but instead of the backend’s reading or writing the specified file, and
consequently requiring backend access and special user privilege, as well as being
bound to the file system accessible by the backend, psql reads or writes the file and
routes the data between the backend and the local file system.
 The syntax of the command is similar to that of the SQL COPY command (see its
description for the details). Note that, because of this, special parsing rules apply to
the \copy command. In particular, the variable substitution rules and backslash
escapes do not apply.

Tip: This operation is not as efficient as the SQL COPY command because all
data must pass through the client/server IP or socket connection. For large
amounts of data the other technique may be preferable.

Note: Note the difference in interpretation of stdin and stdout between frontend
and backend copies: in a frontend copy these always refer to psql’s input and
output stream. On a backend copy stdin comes from wherever the COPY itself
came from (for example, a script run with the -f option), and stdout refers to the
query output stream (see \o meta-command below).

\copyright

 Shows the copyright and distribution terms of Postgres.

\d relation
 Shows all columns of relation (which could be a table, view, index, or
sequence), their types, and any special attributes such as NOT NULL or defaults, if any.
If the relation is, in fact, a table, any defined indices are also listed. If the relation is a
view, the view definition is also shown.

 The command form \d+ is identical, but any comments associated with the table
columns are shown as well.

Note: If \d is called without any arguments, it is equivalent to \dtvs which will
show a list of all tables, views, and sequences. This is purely a convenience
measure.

Chapter 20. Applications

299

\da [pattern]

 Lists all available aggregate functions, together with the data type they operate on. If
pattern (a regular expression) is specified, only matching aggregates are shown.

\dd [object]

 Shows the descriptions of object (which can be a regular expression), or of all
objects if no argument is given. (�Object� covers aggregates, functions, operators, types,
relations (tables, views, indices, sequences, large objects), rules, and triggers.) For
example:
=> \dd version

 Object descriptions
 Name | What | Description
---------+----------+---------------------------
 version | function | PostgreSQL version string
(1 row)

 Descriptions for objects can be generated with the COMMENT ON SQL command.

Note: Postgres stores the object descriptions in the pg_description system table.

\df [pattern]

 Lists available functions, together with their argument and return types. If pattern
(a regular expression) is specified, only matching functions are shown. If the form
\df+ is used, additional information about each function, including language and
description is shown.

\distvS [pattern]

 This is not the actual command name: The letters i, s, t, v, S stand for index,
sequence, table, view, and system table, respectively. You can specify any or all of
them in any order to obtain a listing of them, together with who the owner is.
 If pattern is specified, it is a regular expression restricts the listing to those objects
whose name matches. If one appends a �+� to the command name, each object is listed
with its associated description, if any.

\dl

 This is an alias for \lo_list, which shows a list of large objects.

\do [name]

 Lists available operators with their operand and return types. If name is specified,
only operators with that name will be shown.

\dp [pattern]

 This is an alias for \z which was included for its greater mnemonic value (�display
permissions�).

\dT [pattern]

 Lists all data types or only those that match pattern. The command form \dT+
shows extra information.

Chapter 20. Applications

300

\edit (or \e) [filename]

 If filename is specified, the file is edited; after the editor exits, its content is
copied back to the query buffer. If no argument is given, the current query buffer is
copied to a temporary file which is then edited in the same fashion.
 The new query buffer is then re-parsed according to the normal rules of psql, where
the whole buffer is treated as a single line. (Thus you cannot make �scripts� this way,
use \i for that.) This means also that if the query ends with (or rather contains) a
semicolon, it is immediately executed. In other cases it will merely wait in the query
buffer.

Tip: psql searches the environment variables PSQL_EDITOR, EDITOR, and
VISUAL (in that order) for an editor to use. If all of them are unset, /bin/vi is
run.

\echo text [...]

 Prints the arguments to the standard output, separated by one space and followed by a
newline. This can be useful to intersperse information in the output of scripts. For
example:
=> \echo ‘date‘

Tue Oct 26 21:40:57 CEST 1999

 If the first argument is an unquoted -n the the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use
\qecho instead of this command.

\encoding [encoding]

 Sets the client encoding, if you are using multibyte encodings. Without an argument,
this command shows the current encoding.

\f [string]
 Sets the field separator for unaligned query output. The default is �|� (a �pipe� symbol).
See also \pset for a generic way of setting output options.

\g [{ filename | |command }]

 Sends the current query input buffer to the backend and optionally saves the output in
filename or pipes the output into a separate Unix shell to execute command. A
bare \g
is virtually equivalent to a semicolon. A \g with argument is a �one-shot� alternative to
the \o command.

\help (or \h) [command]

 Give syntax help on the specified SQL command. If command is not specified, then
psql will list all the commands for which syntax help is available. If command is an
asterisk (�*�), then syntax help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to
be quoted. Thus it is fine to type \help alter table.

Chapter 20. Applications

301

\H

 Turns on HTML query output format. If the HTML format is already on, it is
switched back to the default aligned text format. This command is for compatibility
and convenience, but see \pset about setting other output options.

\i filename

 Reads input from the file filename and executes it as though it had been typed on
the keyboard.

Note: If you want to see the lines on the screen as they are read you must set
the variable ECHO to all.

\l (or \list)
 List all the databases in the server as well as their owners. Append a �+� to the
command name to see any descriptions for the databases as well. If your Postgres
installation was compiled with multibyte encoding support, the encoding scheme of
each database is shown as well.

\lo_export loid filename

 Reads the large object with OID loid from the database and writes it to filename.
Note that this is subtly different from the server function lo_export, which acts with
the permissions of the user that the database server runs as and on the server’s file
system.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTION variable for important
information concerning all large object operations.

\lo_import filename [comment]

 Stores the file into a Postgres �large object�. Optionally, it associates the given
comment with the object. Example:
foo=> \lo_import ’/home/peter/photo.xcf’ ’a picture of me’

lo_import 152801

 The response indicates that the large object received object id 152801 which one
ought to remember if one wants to access the object ever again. For that reason it is
recommended to always associate a human-readable comment with every object.
Those can then be seen with the \lo_list command.

 Note that this command is subtly different from the server-side lo_import because
it acts as the local user on the local file system, rather than the server’s user and file
system.

Note: See the description of the LO_TRANSACTION variable for important
information concerning all large object operations.

\lo_list

 Shows a list of all Postgres �large objects� currently stored in the database along with
their owners.

\lo_unlink loid

 Deletes the large object with OID loid from the database.

Chapter 20. Applications

302

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTION variable for important
information concerning all large object operations.

\o [{filename | |command}]

 Saves future query results to the file filename or pipe future results into a separate
Unix shell to execute command. If no arguments are specified, the query output will
be reset to stdout.

 �Query results� includes all tables, command responses, and notices obtained from the
database server, as well as output of various backslash commands that query the
database (such as \d), but not error messages.

Tip: To intersperse text output in between query results, use \qecho.

\p

 Print the current query buffer to the standard output.

\pset parameter [value]

 This command sets options affecting the output of query result tables. parameter
describes which option is to be set. The semantics of value depend thereon.

 Adjustable printing options are:

format

 Sets the output format to one of unaligned, aligned, html, or latex. Unique
abbreviations are allowed. (That would mean one letter is enough.)

 �Unaligned� writes all fields of a tuple on a line, separated by the currently active
field separator. This is intended to create output that might be intended to be read
in by other programs (tab-separated, comma-separated). �Aligned� mode is the
standard, human-readable, nicely formatted text output that is default. The
�HTML� and �LaTeX� modes put out tables that are intended to be included in
documents using the respective mark-up language. They are not complete
documents! (This might not be so dramatic in HTML, but in LaTeX you must
have a complete document wrapper.)

border

 The second argument must be a number. In general, the higher the number the
more borders and lines the tables will have, but this depends on the particular

format. In HTML mode, this will translate directly into the border=... attribute, in
the others
only values 0 (no border), 1 (internal dividing lines), and 2 (table frame) make
sense.

expanded (or x)

 Toggles between regular and expanded format. When expanded format is
enabled, all output has two columns with the field name on the left and the data
on the right.

This mode is useful if the data wouldn’t fit on the screen in the normal �horizontal�

Chapter 20. Applications

303

mode.

 Expanded mode is supported by all four output modes.

null

 The second argument is a string that should be printed whenever a field is null.
The default is not to print anything, which can easily be mistaken for, say, an
empty string. Thus, one might choose to write \pset null "(null)".

fieldsep

 Specifies the field separator to be used in unaligned output mode. That way one
can create, for example, tab- or comma-separated output, which other programs

Chapter 20. Applications

304

might prefer. To set a tab as field separator, type \pset fieldsep "\t". The

Chapter 20. Applications

305

default field separator is �|� (a �pipe� symbol).

recordsep

 Specifies the record (line) separator to use in unaligned output mode. The
default is a newline character.

tuples_only (or t)

 Toggles between tuples only and full display. Full display may show extra
information such as column headers, titles, and various footers. In tuples only
mode, only actual table data is shown.

title [text]

 Sets the table title for any subsequently printed tables. This can be used to give
your output descriptive tags. If no argument is given, the title is unset.

Note: This formerly only affected HTML mode. You can now set titles in any
output format.

tableattr (or T) [text]

 Allows you to specify any attributes to be placed inside the HTML table tag.
This could for example be cellpadding or bgcolor. Note that you probably
don’t want to specify border here, as that is already taken care of by \pset
border.

pager

 Toggles the list of a pager to do table output. If the environment variable
PAGER is set, the output is piped to the specified program. Otherwise more is
used.

 In any case, psql only uses the pager if it seems appropriate. That means among
other things that the output is to a terminal and that the table would normally not
fit on the screen. Because of the modular nature of the printing routines it is not
always possible to predict the number of lines that will actually be printed. For
that reason psql might not appear very discriminating about when to use the
pager and when not to.

 Illustrations on how these different formats look can be seen in the Examples section.

Tip: There are various shortcut commands for \pset. See \a, \C, \H, \t, \T, and \x.

Note: It is an error to call \pset without arguments. In the future this call might
show the current status of all printing options.

\q

 Quit the psql program.

\qecho text [...]

 This command is identical to \echo except that all output will be written to the query
output channel, as set by \o.

\r

 Resets (clears) the query buffer.

Chapter 20. Applications

306

\s [filename]

 Print or save the command line history to filename. If filename is omitted, the
history is written to the standard output. This option is only available if psql is
configured to use the GNU history library.

Note: As of psql version 7.0 it is no longer necessary to save the command
history, since that will be done automatically on program termination. The history
is also loaded automatically every time psql starts up.

\set [name [value [...]]]

 Sets the internal variable name to value or, if more than one value is given, to the
concatenation of all of them. If no second argument is given, the variable is just set
with no value. To unset a variable, use the \unset command.

 Valid variable names can contain characters, digits, and underscores. See the section
about psql variables for details.

 Although you are welcome to set any variable to anything you want, psql treats
several variables as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET.

\t

 Toggles the display of output column name headings and row count footer. This
command is equivalent to \pset tuples_only and is provided for convenience.

\T table_options

 Allows you to specify options to be placed within the table tag in HTML tabular
output mode. This command is equivalent to \pset tableattr table_options.

\w {filename | |command}

 Outputs the current query buffer to the file filename or pipes it to the Unix
command command.

\x

 Toggles extended row format mode. As such it is equivalent to \pset expanded.

\z [pattern]

 Produces a list of all tables in the database with their appropriate access permissions
listed. If an argument is given it is taken as a regular expression which limits the
listing to those tables which match it.
test=> \z

Access permissions for database "test"
 Relation | Access permissions
----------+-------------------------------------
 my_table | {"=r","joe=arwR", "group staff=ar"}
(1 row)

 Read this as follows:

 "=r": PUBLIC has read (SELECT) permission on the table.

 "joe=arwR": User joe has read, write (UPDATE, DELETE), �append� (INSERT)
permissions, and permission to create rules on the table.

Chapter 20. Applications

307

 "group staff=ar": Group staff has SELECT and INSERT permission.

 The commands GRANT and REVOKE are used to set access permissions.

\! [command]

 Escapes to a separate Unix shell or executes the Unix command command. The
arguments are not further interpreted, the shell will see them as is.

\?

 Get help information about the slash (�\�) commands.

Command-line Options

 If so configured, psql understands both standard Unix short options, and GNU-style long
options. The latter are not available on all systems.

-a, --echo-all

 Print all the lines to the screen as they are read. This is more useful for script
processing rather than interactive mode. This is equivalent to setting the variable
ECHO to all.

-A, --no-align

 Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c, --command query

 Specifies that psql is to execute one query string, query, and then exit. This is useful
in shell scripts.

 query must be either a query string that is completely parseable by the backend (i.e.,
it contains no psql specific features), or it is a single backslash command. Thus you
cannot mix SQL and psql meta-commands. To achieve that, you could pipe the string
into psql, like this: echo "\x \\ select * from foo;" | psql.

-d, --dbname dbname

 Specifies the name of the database to connect to. This is equivalent to specifying
dbname as the first non-option argument on the command line.

-e, --echo-queries

 Show all queries that are sent to the backend. This is equivalent to setting the variable
ECHO to queries.

-E, --echo-hidden

 Echoes the actual queries generated by \d and other backslash commands. You can
use this if you wish to include similar functionality into your own programs. This is
equivalent to setting the variable ECHO_HIDDEN from within psql.

Chapter 20. Applications

308

-f, --file filename
 Use the file filename as the source of queries instead of reading queries
interactively. After the file is processed, psql terminates. This in many ways
equivalent to the internal command \i.
 Using this option is subtly different from writing psql < filename. In general,
both will do what you expect, but using -f enables some nice features such as error
messages with line numbers. There is also a slight chance that using this option will
reduce the startup overhead. On the other hand, the variant using the shell’s input
redirection is (in theory) guaranteed to yield exactly the same output that you would
have gotten had you entered everything by hand.

-F, --field-separator separator

 Use separator as the field separator. This is equivalent to \pset fieldsep or \f.

-h, --host hostname

 Specifies the host name of the machine on which the postmaster is running. Without
this option, communication is performed using local Unix domain sockets.

-H, --html

 Turns on HTML tabular output. This is equivalent to \pset format html or the \H
command.

-l, --list

 Lists all available databases, then exits. Other non-connection options are ignored.
This is similar to the internal command \list.

-o, --output filename

 Put all query output into file filename. This is equivalent to the command \o.

-p, --port port

 Specifies the TCP/IP port or, by omission, the local Unix domain socket file
extension on which the postmaster is listening for connections. Defaults to the value
of the PGPORT environment variable or, if not set, to the port specified at compile
time, usually 5432.

-P, --pset assignment

 Allows you to specify printing options in the style of \pset on the command line.
Note that here you have to separate name and value with an equal sign instead of a
space. Thus to set the output format to LaTeX, you could write -P format=latex.

-q
 Specifies that psql should do its work quietly. By default, it prints welcome
messages and various informational output. If this option is used, none of this
happens. This is useful with the -c option. Within psql you can also set the QUIET
variable to achieve the same effect.

-R, --record-separator separator

 Use separator as the record separator. This is equivalent to the \pset recordsep
command.

Chapter 20. Applications

309

-s, --single-step

 Run in single-step mode. That means the user is prompted before each query is sent
to the backend, with the option to cancel execution as well. Use this to debug scripts.

-S, --single-line

 Runs in single-line mode where a newline terminates a query, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily
encouraged to use it. In particular, if you mix SQL and meta-commands on a line
the order of execution might not always be clear to the inexperienced user.

-t, --tuples-only

 Turn off printing of column names and result row count footers, etc. It is completely
equivalent to the \t meta-command.

-T, --table-attr table_options

 Allows you to specify options to be placed within the HTML table tag. See \pset for
details.

-u

 Makes psql prompt for the user name and password before connecting to the
database.

 This option is deprecated, as it is conceptually flawed. (Prompting for a non-default
user name and prompting for a password because the backend requires it are really
two different things.) You are encouraged to look at the -U and -W options instead.

-U, --username username

 Connects to the database as the user username instead of the default. (You must
have permission to do so, of course.)

-v, --variable, --set assignment

 Performs a variable assignment, like the \set internal command. Note that you must
separate name and value, if any, by an equal sign on the command line. To unset a
variable, leave off the equal sign. These assignments are done during a very early state
of startup, so variables reserved for internal purposes might get overwritten later.

-V, --version

 Shows the psql version.

-W, --password

 Requests that psql should prompt for a password before connecting to a database.
This will remain set for the entire session, even if you change the database connection
with the meta-command \connect.

 As of version 7.0, psql automatically issues a password prompt whenever the backend
requests password authentication. Because this is currently based on a �hack�, the
automatic recognition might mysteriously fail, hence this option to force a prompt. If
no password prompt is issued and the backend requires password authentication the
connection attempt will fail.

Chapter 20. Applications

310

-x, --expanded

 Turns on extended row format mode. This is equivalent to the command \x.

-X, --no-psqlrc

 Do not read the startup file ~/.psqlrc.

-?, --help

 Shows help about psql command line arguments.

Advanced features

Variables
 psql provides variable substitution features similar to common Unix command shells. This
feature is new and not very sophisticated, yet, but there are plans to expand it in the future.
Variables are simply name/value pairs, where the value can be any string of any length. To
set variables, use the psql meta-command \set:

testdb=> \set foo bar

 sets the variable �foo� to the value �bar�. To retrieve the content of the variable, precede the
name with a colon and use it as the argument of any slash command:
testdb=> \echo :foo

bar

Note: The arguments of \set are subject to the same substitution rules as with other
commands. Thus you can construct interesting references such as \set :foo
’something’ and get �soft links� or �variable variables� of Perl or PHP fame, respectively.

Unfortunately (or fortunately?), there is not way to do anything useful with these

constructs. On the other hand, \set bar :foo is a perfectly valid way to copy a
variable.

 If you call \set without a second argument, the variable is simply set, but has no value. To
unset (or delete) a variable, use the command \unset.

 psql’s internal variable names can consist of letters, numbers, and underscores in any order
and any number of them. A number of regular variables are treated specially by psql. They
indicate certain option settings that can be changed at runtime by altering the value of the
variable or represent some state of the application. Although you can use these variables
for any other purpose, this is not recommended, as the program behavior might grow really
strange really quickly. By convention, all specially treated variables consist of all
upper-case letters (and possibly numbers and underscores). To ensure maximum
compatibility in the future, avoid such variables. A list of all specially treated variables
follows.

DBNAME

 The name of the database you are currently connected to. This is set everytime you
connect to a database (including program startup), but can be unset.

Chapter 20. Applications

311

ECHO
 If set to �all�, all lines entered or from a script are written to the standard output
before they are parsed or executed. To specify this on program startup, use the switch
-a. If set to queries�, psql merely prints all queries as they are sent to the backend.
The option for this is -e.

ECHO_HIDDEN

 When this variable is set and a backslash command queries the database, the query is
first shown. This way you can study the Postgres internals and provide similar
functionality in
your own programs. If you set the variable to the value �noexec�, the queries are just
shown but are not actually sent to the backend and executed.

ENCODING

 The current client multibyte encoding. If you are not set up to use multibyte
characters, this variable will always contain �SQL_ASCII�.

HISTCONTROL
 If this variable is set to ignorespace, lines which begin with a space are not
entered into the history list. If set to a value of ignoredups, lines matching the
previous history line are not entered. A value of ignoreboth combines the two
options. If unset, or if set to any other value than those above, all lines read in
interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from bash.

HISTSIZE

 The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from bash.

HOST

 The database server host you are currently connected to. This is set everytime you
connect to a database (including program startup), but can be unset.

IGNOREEOF
 If unset, sending an EOF character (usually Control-D) to an interactive session of
psql will terminate the application. If set to a numeric value, that many EOF
characters are ignored before the application terminates. If the variable is set but has
no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from bash.

LASTOID

 The value of the last affected oid, as returned from an INSERT or lo_insert
commmand. This variable is only guaranteed to be valid until after the result of the
next SQL command has been displayed.

LO_TRANSACTION
 If you use the Postgres large object interface to specially store data that does not fit
into one tuple, all the operations must be contained in a transaction block. (See the

Chapter 20. Applications

312

documentation of the large object interface for more information.) Since psql has no
way to tell if you already have a transaction in progress when you call one of its
internal commands \lo_export, \lo_import, \lo_unlink it must take some arbitrary
action. This action could either be to roll back any transaction that might already be in
progress, or to commit any such transaction, or to do nothing at all. In the last case
you must provide your own BEGIN TRANSACTION/COMMIT block or the
results will be unpredictable (usually resulting in the desired action’s not being
performed in any case).
 To choose what you want to do you set this variable to one of �rollback�, �commit�, or
�nothing�. The default is to roll back the transaction. If you just want to load one or a
few objects this is fine. However, if you intend to transfer many large objects, it might
be advisable to provide one explicit transaction block around all commands.

ON_ERROR_STOP

 By default, if non-interactive scripts encounter an error, such as a malformed SQL
query or internal meta-command, processing continues. This has been the traditional
behaviour of psql but it is sometimes not desirable. If this variable is set, script
processing will immediately terminate. If the script was called from another script it
will terminate in the same fashion. If the outermost script was not called from an
interactive psql session but rather using the -f option, psql will return error code 3, to
distinguish this case from fatal error conditions (error code 1).

PORT

 The database server port to which you are currently connected. This is set every time
you connect to a database (including program startup), but can be unset.

PROMPT1, PROMPT2, PROMPT3

 These specify what the prompt psql issues is supposed to look like. See �Prompting�
below.

QUIET

 This variable is equivalent to the command line option -q. It is probably not too
useful in interactive mode.

SINGLELINE

 This variable is set by the command line option -S. You can unset or reset it at run
time.

SINGLESTEP

 This variable is equivalent to the command line option -s.

USER

 The database user you are currently connected as. This is set every time you connect
to a database (including program startup), but can be unset.

SQL Interpolation

 An additional useful feature of psql variables is that you can substitute (�interpolate�) them
into regular SQL statements. The syntax for this is again to prepend the variable name with

Chapter 20. Applications

313

a colon (:).
testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :foo;

 would then query the table my_table. The value of the variable is copied literally, so it
can even contain unbalanced quotes or backslash commands. You must make sure that it
makes sense where you put it. Variable interpolation will not be performed into quoted

SQL entities.

 A popular application of this facility is to refer to the last inserted OID in subsequent
statement to build a foreign key scenario. Another possible use of this mechanism is to
copy the contents of a file into a field. First load the file into a variable and then proceed as
above.
testdb=> \set content ’\’’ ‘cat my_file.txt‘ ’\’’
testdb=> INSERT INTO my_table VALUES (:content);

 One possible problem with this approach is that my_file.txt might contain single
quotes. These need to be escaped so that they don’t cause a syntax error when the third line
is processed. This could be done with the program sed:

testdb=> \set content ‘sed -e "s/’/\\\\\\’/g" < my_file.txt‘

 Observe the correct number of backslashes (6)! You can resolve it this way: After psql has
parsed this line, it passes sed -e "s/’/\\\’/g" < my_file.txt to the shell. The
shell will do it’s own thing inside the double quotes and execute sed with the arguments
-e and s/’/\\’/g. When sed parses this it will replace the two backslashes with a single
one and then do the substitution. Perhaps at one point you thought it was great that all Unix
commands use the same escape character. And this is ignoring the fact that you might have
to escape all backslashes as well because SQL text constants are also subject to certain
interpretations. In that case you might be better off preparing the file externally.
 Since colons may legally appear in queries, the following rule applies: If the variable is
not set, the character sequence �colon+name� is not changed. In any case you can escape a
colon with a backslash to protect it from interpretation. (The colon syntax for variables is
standard SQL for embedded query languages, such as ecpg. The colon syntax for array
slices and type casts are Postgres extensions, hence the conflict.)

Prompting
 The prompts psql issues can be customized to your preference. The three variables
PROMPT1, PROMPT2, and PROMPT3 contain strings and special escape sequences that
describe the appearance of the prompt. Prompt 1 is the normal prompt that is issued when
psql requests a new query. Prompt 2 is issued when more input is expected during query
input because the query was not terminated with a semicolon or a quote was not closed.
Prompt 3 is issued when you run an SQL COPY command and you are expected to type in
the tuples on the terminal.

 The value of the respective prompt variable is printed literally, except where a percent sign
(�%�) is encountered. Depending on the next character, certain other text is substituted
instead. Defined substitutions are:

%M

 The full hostname (with domainname) of the database server (or �localhost� if hostname
information is not available).

Chapter 20. Applications

314

%m

 The hostname of the database server, truncated after the first dot.

%>

 The port number at which the database server is listening.

%n

 The username you are connected as (not your local system user name).

%/

 The name of the current database.

%~

 Like %/, but the output is �~� (tilde) if the database is your default database.

%#

 If the current user is a database superuser, then a �#�, otherwise a �>�.

%R

 In prompt 1 normally �=�, but �^� if in single-line mode, and �!� if the session is
disconnected from the database (which can happen if \connect fails). In prompt 2 the
sequence is replaced by �-�, �*�, a single quote, or a double quote, depending on whether
psql expects more input because the query wasn’t terminated yet, because you are
inside a /* ... */ comment, or because you are inside a quote. In prompt 3 the
sequence doesn’t resolve to anything.

%digits
 If digits starts with 0x the rest of the characters are interpreted at a hexadecimal
digit and the character with the corresponding code is subsituted. If the first digit is 0
the characters are interpreted as on octal number and the corresponding character is
substituted. Otherwise a decimal number is assumed.

%:name:

 The value of the psql, variable name. See the section �Variables� for details.

%‘command‘

 The output of command, similar to ordinary �back-tick� substitution.

 To insert a percent sign into your prompt, write %%. The default prompts are
equivalent to ’%/%R%# ’ for prompts 1 and 2, and ’>> ’ for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Miscellaneous

 psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of
memory, file not found) occurs, 2 if the connection to the backend went bad and the session
is not interactive, and 3 if an error occurred in a script and the variable ON_ERROR_STOP
was set.

 Before starting up, psql attempts to read and execute commands from the file
$HOME/.psqlrc. It could be used to set up the client or the server to taste (using the \set

Chapter 20. Applications

315

and SET commands).

GNU readline
 psql supports the readline and history libraries for convenient line editing and retrieval.
The command history is stored in a file named .psql_history in your home directory
and is reloaded when psql starts up. Tab-completion is also supported, although the
completion logic makes no claim to be an SQL parser. When available, psql is
automatically built to use these features. If for some reason you do not like the tab
completion, you can turn if off by putting this in a file named .inputrc in your home
directory:
$if psql
set disable-completion on
$endif

 (This is not a psql but a readline feature. Read its documentation for further details.)
 If you have the readline library installed but psql does not seem to use it, you must make
sure that Postgres’s top-level configure script finds it. configure needs to find both the
library libreadline.a (or a shared library equivalent) and the header files readline.h
and history.h (or readline/readline.h and readline/history.h) in appropriate
directories. If you have the library and header files installed in an obscure place you must
tell configure about them, for example:

$./configure --with-includes=/opt/gnu/include
--with-libs=/opt/gnu/lib ...

 Then you have to recompile psql (not necessarily the entire code tree).

 The GNU readline library can be obtained from the GNU project’s FTP server at
ftp://ftp.gnu.org.

Examples

Note: This section only shows a few examples specific to psql. If you want to learn
SQL or get familiar with Postgres, you might wish to read the Tutorial that is included
in the distribution.

 The first example shows how to spread a query over several lines of input. Notice the
changing prompt.

testdb=> CREATE TABLE my_table (
testdb-> first integer not null default 0,
testdb-> second text
testdb->);

CREATE

 Now look at the table definition again:

testdb=> \d my_table

 Table "my_table"
 Attribute | Type | Modifier
-----------+---------+--------------------
 first | integer | not null default 0
 second | text |

Chapter 20. Applications

316

 At this point you decide to change the prompt to something more interesting:

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’

peter@localhost testdb=>

 Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
 1 | one
 2 | two
 3 | three
 4 | four
(4 rows)

 Notice how the int4 colums in right aligned while the text column in left aligned. You can
make this table look differently by using the \pset command.

peter@localhost testdb=> \pset border 2

Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;

+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0

Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;

first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1

Border style is 1.
peter@localhost testdb=> \pset format unaligned

Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","

Field separator is ",".
peter@localhost testdb=> \pset tuples_only

Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;

one,1
two,2

Chapter 20. Applications

317

three,3
four,4

 Alternatively, use the short commands:
peter@localhost testdb=> \a \t \x

Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;

-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Appendix

Bugs and Issues

 In some earlier life psql allowed the first argument to start directly after the
(single-letter) command. For compatibility this is still supported to some extent but I am
not going to explain the details here as this use is discouraged. But if you get strange
messages, keep this in mind. For example

testdb=> \foo

Field separator is "oo".

 is perhaps not what one would expect.

 psql only works smootly with servers of the same version. That does not mean other
combinations will fail outright, but subtle and not-so-subtle problems might come up.

 Pressing Control-C during a �copy in� (data sent to the server) doesn’t show the most
ideal of behaviours. If you get a message such as �PQexec: you gotta get out of a COPY
state yourself�, simply reset the connection by entering \c - -.

 pgtclsh

Name

 pgtclsh � Postgres TCL shell client

Synopsis

pgtclsh [dbname]

Chapter 20. Applications

318

Inputs

dbname

 The name of an existing database to access.

Outputs

Description

 pgtclsh provides a TCL shell interface for Postgres.

 Another way of accessing Postgres through tcl is to use pgtksh or pgaccess.

 pgtksh

Name

 pgtksh � Postgres graphical TCL/TK shell

Synopsis

pgtksh [dbname]

Inputs

dbname

 The name of an existing database to access.

Outputs

Description

 pgtksh provides a graphical TCL/TK shell interface for Postgres.

 Another way of accessing Postgres through TCL is to use pgtclsh or pgaccess.

Chapter 20. Applications

319

 vacuumdb

Name

 vacuumdb � Clean and analyze a Postgres database

Synopsis
vacuumdb [connection options] [--analyze | -z]
 [--alldb | -a] [--verbose | -v]
 [--table ’table [(column [,...])]’] [[-d] dbname]

Inputs

 vacuumdb accepts the following command line arguments:

[-d, --dbname] dbname

 Specifies the name of the database to be cleaned or analyzed.

-z, --analyze

 Calculate statistics on the database for use by the optimizer.

-a, --alldb

 Vacuum all databases.

-v, --verbose

 Print detailed information during processing.

-t, --table table [(column [,...])]

 Clean or analyze table only. Column names may be specified only in conjunction
with the --analyze option.

Tip: If you specify columns to vacuum, you probably have to escape the
parentheses from the shell.

 vacuumdb also accepts the following command line arguments for connection parameters:

-h, --host host

 Specifies the hostname of the machine on which the postmaster is running.

-p, --port port

 Specifies the Internet TCP/IP port or local Unix domain socket file extension on
which the postmaster is listening for connections.

-U, --username username

 Username to connect as.

-W, --password

Chapter 20. Applications

320

 Force password prompt.

-e, --echo

 Echo the commands that vacuumdb generates and sends to the backend.

-q, --quiet

 Do not display a response.

Outputs

VACUUM

 Everything went well.

vacuumdb: Vacuum failed.

 Something went wrong. vacuumdb is only a wrapper script. See VACUUM and psql
for a detailed discussion of error messages and potential problems.

Description

 vacuumdb is a utility for cleaning a Postgres database. vacuumdb will also generate
internal statistics used by the Postgres query optimizer.

 vacuumdb is a shell script wrapper around the backend command VACUUM via the
Postgres interactive terminal psql. There is no effective difference between vacuuming
databases via this or other methods. psql must be found by the script and a database server
must be running at the targeted host. Also, any default settings and environment variables
available to psql and the libpq front-end library do apply.

Usage

 To clean the database test:

$ vacuumdb test

 To analyze a database named bigdb for the optimizer:

$ vacuumdb --analyze bigdb

 To analyze a single column bar in table foo in a database named xyzzy for the
optimizer:

$ vacuumdb --analyze --verbose --table ’foo(bar)’ xyzzy

321

Chapter 21. System Applications

 This is reference information for Postgres servers and support utilities.

 initdb

Name

 initdb � Create a new Postgres database installation

Synopsis
initdb [--pgdata|-D dbdir]
 [--sysid|-i sysid]
 [--pwprompt|-W]
 [--encoding|-E encoding]
 [--pglib|-L libdir]
 [--noclean | -n] [--debug | -d] [--template | -t]

Inputs

--pgdata=dbdir
-D dbdir
PGDATA

 This option specifies where in the file system the database should be stored. This is
the only information required by initdb, but you can avoid it by setting the PGDATA
environment variable, which can be convenient since the database server
(postmaster) can find the database directory later by the same variable.

--sysid=sysid
-i sysid

 Selects the system id of the database superuser. This defaults to the effective user id
of the user running initdb. It is really not important what the superuser’s sysid is, but
one might choose to start the numbering at some number like 0 or 1.

--pwprompt
-W

 Makes initdb prompt for a password of the database superuser. If you don’t plan on
using password authentication, this is not important. Otherwise you won’t be able to
use password authentication until you have a password set up.

--encoding=encoding
-E encoding

 Selects the multibyte encoding of the template database. This will also be the default
encoding of any database you create later, unless you override it there. To use the
multibyte encoding feature, you must specify so at build time, at which time you also

Chapter 21. System Applications

322

select the default for this option.

 Other, less commonly used, parameters are also available:

--pglib=libdir
-l libdir

 initdb needs a few input files to initialize the database. This option tells where to find
them. You normally don’t have to worry about this since initdb knows about the most
common installation layouts and will find the files itself. You will be told if you need
to specify their location explicitly. If that happens, one of the files is called
global1.bki.source and is traditionally installed along with the others in the
library directory (e.g., /usr/local/pgsql/lib).

--template
-t

 Replace the template1 database in an existing database system, and don’t touch
anything else. This is useful when you need to upgrade your template1 database
using initdb from a newer release of Postgres, or when your template1 database has
become corrupted by some system problem. Normally the contents of template1
remain constant throughout the life of the database system. You can’t destroy
anything by running initdb with the --template option.

--noclean
-n

 By default, when initdb determines that error prevent it from completely creating the
database system, it removes any files it may have created before determining that it
can’t finish the job. This option inhibits any tidying-up and is thus useful for
debugging.

--debug
-d

 Print debugging output from the bootstrap backend and a few other messages of
lesser interest for the general public. The bootstrap backend is the program initdb uses
to create the catalog tables. This option generates a tremendous amount of output.

Outputs

 initdb will create files in the specified data area which are the system tables and
framework for a complete installation.

Description

 initdb creates a new Postgres database system. A database system is a collection of
databases that are all administered by the same Unix user and managed by a single
postmaster.

 Creating a database system consists of creating the directories in which the database data
will live, generating the shared catalog tables (tables that don’t belong to any particular
database), and creating the template1 database. When you create a new database,

Chapter 21. System Applications

323

everything in the template1 database is copied. It contains catalog tables filled in for
things like the builtin types.

 You must not execute initdb as root. This is because you cannot run the database server as
root either, but the server needs to have access to the files initdb creates. Furthermore,
during the initialization phase, when there are no users and no access controls installed,
postgres will only connect with the name of the current Unix user, so you must log in under
the account that will own the server process.

 Although initdb will attempt to create the respective data directory, chances are that it
won’t have the permission to do so. Thus it is a good idea to create the data directory
before running initdb and to hand over the ownership of it to the database superuser.

 initlocation

Name

 initlocation � Create a secondary Postgres database storage area

Synopsis

initlocation directory

Inputs

directory

 Where in your Unix filesystem do you want alternate databases to go?

Outputs

 initlocation will create directories in the specified place.

Description

 initlocation creates a new Postgres secondary database storage area. See the discussion
under CREATE DATABASE about how to manage and use secondary storage areas. If the
argument does not contain a slash and is not valid as a path, it is assumed to be an
environment variable, which is referenced. See the examples at the end.

 In order to use this command you must be logged in (using ’su’, for example) the database
superuser.

Usage

 To create a database in an alternate location, using an environment variable:

$ export PGDATA2=/opt/postgres/data
$ initlocation PGDATA2

Chapter 21. System Applications

324

$ createdb ’testdb’ -D ’PGDATA2’

 Alternatively, if you allow absolute paths you could write:

$ initlocation /opt/postgres/data
$ createdb testdb -D ’/opt/postgres/data/testdb’

 ipcclean

Name

 ipcclean � Clean up shared memory and semaphores from aborted backends

Synopsis

ipcclean

Inputs

 None.

Outputs

 None.

Description

 ipcclean cleans up shared memory and semaphore space from aborted backends by
deleting all instances owned by user postgres. Only the DBA should execute this
program as it can cause bizarre behavior (i.e., crashes) if run during multi-user execution.
This program should be executed if messages such as semget: No space left on
device are encountered when starting up the postmaster or the backend server.

 If this command is executed while postmaster is running, the shared memory and
semaphores allocated by the postmaster will be deleted. This will result in a general failure
of the backends servers started by that postmaster.

 This script is a hack, but in the many years since it was written, no one has come up with
an equally effective and portable solution. Suggestions are welcome.

 The script makes assumption about the format of output of the ipcs utility which may not
be true across different operating systems. Therefore, it may not work on your particular
OS.

Chapter 21. System Applications

325

 pg_passwd

Name

 pg_passwd � Manipulate the flat password file

Synopsis

pg_passwd filename

Description

 pg_passwd is a tool to manipulate the flat password file functionality of Postgres. This
style of password authentication is not required in an installation, but is one of several
supported security mechanisms.

 Specify the password file in the same style of Ident authentication in
$PGDATA/pg_hba.conf:

host unv 133.65.96.250 255.255.255.255 password passwd

 where the above line allows access from 133.65.96.250 using the passwords listed in
$PGDATA/passwd. The format of the password file follows those of /etc/passwd and
/etc/shadow. The first field is the user name, and the second field is the encrypted
password. The rest is completely ignored. Thus the following three sample lines specify the
same user and password pair:

pg_guest:/nB7.w5Auq.BY:10031::::::
pg_guest:/nB7.w5Auq.BY:93001:930::/home/guest:/bin/tcsh
pg_guest:/nB7.w5Auq.BY:93001

 Supply the password file to the pg_passwd command. In the case described above, after
changing the working directory to PGDATA, the following command execution specify the
new password for pg_guest:

 % pg_passwd passwd
 Username: pg_guest
 Password:
 Re-enter password:

 where the Password: and Re-enter password: prompts require the same password
input which are not displayed on the terminal. The original password file is renamed to
passwd.bk.

 psql uses the -u option to invoke this style of authentication.

Chapter 21. System Applications

326

 The following lines show the sample usage of the option:

% psql -h hyalos -u unv
Username: pg_guest
Password:
Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL
 type \? for help on slash commands
 type \q to quit
 type \g or terminate with semicolon to execute query
 You are currently connected to the database: unv
unv=>

 Perl5 authentication uses the new style of the Pg.pm like this:

$conn = Pg::connectdb("host=hyalos dbname=unv
 user=pg_guest password=xxxxxxx");

 For more details, refer to src/interfaces/perl5/Pg.pm.

 Pg{tcl,tk}sh authentication uses the pg_connect command with the -conninfo option
thusly:

% set conn [pg_connect -conninfo \\
 "host=hyalos dbname=unv \\
 user=pg_guest password=xxxxxxx "]

 You can list all of the keys for the option by executing the following command:

% puts [pg_conndefaults]

 pg_upgrade

Name

 pg_upgrade � Allows upgrade from a previous release without reloading data

Synopsis

pg_upgrade [-f filename] old_data_dir

Chapter 21. System Applications

327

Description

 pg_upgrade is a utility for upgrading from a previous Postgres release without reloading
all the data. Not all Postgres release transitions can be handled this way. Check the release
notes for details on your installation.

Upgrading Postgres with pg_upgrade

1. Back up your existing data directory, preferably by making a complete dump with
pg_dumpall.

2. Then do:
% pg_dumpall -s >db.out

 to dump out your old database’s table definitions without any data.

3. Stop the old postmaster and all backends.

4. Rename (using mv) your old pgsql data/ directory to data.old/.

5. Do
% make install

 to install the new binaries.

6. Run initdb to create a new template1 database containing the system tables for the new
release.

7. Start the new postmaster. (Note: it is critical that no users connect to the database until
the upgrade is complete. You may wish to start the postmaster without -i and/or alter
pg_hba.conf temporarily.)

8. Change your working directory to the pgsql main directory, and type:
% pg_upgrade -f db.out data.old

 The program will do some checking to make sure everything is properly configured,
and will run your db.out script to recreate all the databases and tables you had, but
with no data. It will then physically move the data files containing non-system tables
and indexes from data.old/ into the proper data/ subdirectories, replacing the
empty data files created during the db.out script.

9. Restore your old pg_hba.conf if needed to allow user logins.

10. Stop and restart the postmaster.

11. Carefully examine the contents of the upgraded database. If you detect problems,
you’ll need to recover by restoring from your full pg_dump backup. You can delete the
data.old/ directory when you are satisfied.

12. The upgraded database will be in an un-vacuumed state. You will probably want to run
a VACUUM ANALYZE before beginning production work.

Chapter 21. System Applications

328

 postgres

Name

 postgres � Run a Postgres single-user backend

Synopsis
postgres [dbname]
postgres [-B nBuffers] [-C] [-D DataDir] [-E] [-F]
 [-O] [-Q] [-S SortSize] [-d [DebugLevel]] [-e]
 [-o] [OutputFile] [-s] [-v protocol] [dbname]

Inputs

 postgres accepts the following command line arguments:

dbname

 The optional argument dbname specifies the name of the database to be accessed.
dbname defaults to the value of the USER environment variable.

-B nBuffers
 If the backend is running under the postmaster, nBuffers is the number of
shared-memory buffers that the postmaster has allocated for the backend server
processes that it starts. If the backend is running standalone, this specifies the number
of buffers to allocate. This value defaults to 64 buffers, where each buffer is 8k bytes
(or whatever BLCKSZ is set to in config.h).

-C

 Do not show the server version number.

-D DataDir
 Specifies the directory to use as the root of the tree of database directories. If -D is
not given, the default data directory name is the value of the environment variable
PGDATA. If PGDATA is not set, then the directory used is $POSTGRESHOME/data.
If neither environment variable is set and this command-line option is not specified,
the default directory that was set at compile-time is used.

-E

 Echo all queries.

-F

 Disable an automatic fsync() call after each transaction. This option improves
performance, but an operating system crash while a transaction is in progress may
cause the loss of the most recently entered data. Without the fsync() call the data is
buffered by the operating system, and written to disk sometime later.

-O

 Override restrictions, so system table structures can be modified. These tables are
typically those with a leading "pg_" in the table name.

Chapter 21. System Applications

329

-Q

 Specifies "quiet" mode.

-S SortSize
 Specifies the amount of memory to be used by internal sorts and hashes before
resorting to temporary disk files. The value is specified in kilobytes, and defaults to
512 kilobytes. Note that for a complex query, several sorts and/or hashes might be
running in parallel, and each one will be allowed to use as much as SortSize
kilobytes before it starts to put data into temporary files.

-d [DebugLevel]
 The optional argument DebugLevel determines the amount of debugging output
the backend servers will produce. If DebugLevel is one, the postmaster will trace
all connection traffic, and nothing else. For levels two and higher, debugging is turned
on in the backend process and the postmaster displays more information, including the
backend environment and process traffic. Note that if no file is specified for backend
servers to send their debugging output then this output will appear on the controlling
tty of their parent postmaster.

-e
 This option controls how dates are interpreted upon input to and output from the
database. If the -e option is supplied, then dates passed to and from the frontend
processes will be assumed to be in "European" format (DD-MM-YYYY), otherwise dates
are assumed to be in "American" format (MM-DD-YYYY). Dates are accepted by the
backend in a wide variety of formats, and for input dates this switch mostly affects the
interpretation for ambiguous cases. See the PostgreSQL User’s Guide for more
information.

-o OutputFile

 Sends all debugging and error output to OutputFile. If the backend is running
under the postmaster, error messages are still sent to the frontend process as well as to
OutputFile, but debugging output is sent to the controlling tty of the postmaster
(since only one file descriptor can be sent to an actual file).

-s

 Print time information and other statistics at the end of each query. This is useful for
benchmarking or for use in tuning the number of buffers.

-v protocol

 Specifies the number of the frontend/backend protocol to be used for this particular
session.

 There are several other options that may be specified, used mainly for debugging purposes.
These are listed here only for the use by Postgres system developers. Use of any of these
options is highly discouraged. Furthermore, any of these options may disappear or change
at any time.

Chapter 21. System Applications

330

 These special-case options are:

-A n|r|b|Q\fIn\fP|X\fIn\fP

 This option generates a tremendous amount of output.

-L

 Turns off the locking system.

-N

 Disables use of newline as a query delimiter.

-f [s | i | m | n | h]

 Forbids the use of particular scan and join methods: s and i disable sequential and
index scans respectively, while n, m, and h disable nested-loop, merge and hash joins
respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the
-fs and -fn options simply discourage the optimizer from using those plan types
if it has any other alternative.

-i

 Prevents query execution, but shows the plan tree.

-p dbname

 Indicates to the backend server that it has been started by a postmaster and make
different assumptions about buffer pool management, file descriptors, etc. Switches
following -p are restricted to those considered "secure".

-t pa[rser] | pl[anner] | e[xecutor]

 Print timing statistics for each query relating to each of the major system modules.
This option cannot be used with -s.

Outputs

 Of the nigh-infinite number of error messages you may see when you execute the backend
server directly, the most common will probably be:

semget: No space left on device

 If you see this message, you should run the ipcclean command. After doing this, try
starting postmaster again. If this still doesn’t work, you probably need to configure
your kernel for shared memory and semaphores as described in the installation notes.
If you have a kernel with particularly small shared memory and/or semaphore limits,

Chapter 21. System Applications

331

you may have to reconfigure your kernel to increase its shared memory or semaphore
parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to
reduce Postgres’ shared memory consumption.

Description

 The Postgres backend server can be executed directly from the user shell. This should be
done only while debugging by the DBA, and should not be done while other Postgres
backends are being managed by a postmaster on this set of databases.

 Some of the switches explained here can be passed to the backend through the "database
options" field of a connection request, and thus can be set for a particular backend without
going to the trouble of restarting the postmaster. This is particularly handy for
debugging-related switches.

 The optional argument dbname specifies the name of the database to be accessed.
dbname defaults to the value of the USER environment variable.

Notes

 Useful utilities for dealing with shared memory problems include ipcs(1), ipcrm(1), and
ipcclean(1). See also postmaster.

Chapter 21. System Applications

332

 postmaster

Name

 postmaster � Run the Postgres multi-user backend

Synopsis
postmaster [-B nBuffers] [-D DataDir] [-N maxBackends] [-S]
 [-d DebugLevel] [-i] [-l]
 [-o BackendOptions] [-p port] [-n | -s]

Inputs

 postmaster accepts the following command line arguments:

-B nBuffers

 Sets the number of shared-memory disk buffers for the postmaster to allocate for use
by the backend server processes that it starts. This value defaults to 64 buffers, where
each buffer is 8k bytes (or whatever BLCKSZ is set to in src/include/config.h).

-D DataDir
 Specifies the directory to use as the root of the tree of database directories. If -D is
not given, the default data directory name is the value of the environment variable
PGDATA. If PGDATA is not set, then the directory used is $POSTGRESHOME/data.
If neither environment variable is set and this command-line option is not specified,
the default directory that was set at compile-time is used.

-N maxBackends
 Sets the maximum number of backend server processes that this postmaster is
allowed to start. By default, this value is 32, but it can be set as high as 1024 if your
system will support that many processes. (Note that -B is required to be at least twice
-N, so you’ll need to increase -B if you increase -N.) Both the default and upper limit
values for -N can be altered when building Postgres (see src/include/config.h).

-S

 Specifies that the postmaster process should start up in silent mode. That is, it will
disassociate from the user’s (controlling) tty, start its own process group, and redirect
its standard output and standard error to /dev/null.

 Note that using this switch makes it very difficult to troubleshoot problems, since all
tracing and logging output that would normally be generated by this postmaster and its
child backends will be discarded.

-d DebugLevel

 Determines the amount of debugging output the backend servers will produce. If
DebugLevel is one, the postmaster will trace all connection traffic. Levels two and
higher turn on increasing amounts of debug output from the backend processes, and
the postmaster displays more information including the backend environment and
process traffic. Note that unless the postmaster’s standard output and standard error
are redirected into a log file, all this output will appear on the controlling tty of the

Chapter 21. System Applications

333

postmaster.

-i

 Allows clients to connect via TCP/IP (Internet domain) connections. Without this
option, only local Unix domain socket connections are accepted.

-l

 Enables secure connections using SSL. The -i option is also required. You must
have compiled with SSL enabled to use this option.

-o BackendOptions

 The postgres option(s) specified in BackendOptions are passed to all backend
server processes started by this postmaster. If the option string contains any spaces,
the entire string must be quoted.

-p port
 Specifies the TCP/IP port or local Unix domain socket file extension on which the
postmaster is to listen for connections from frontend applications. Defaults to the
value of the PGPORT environment variable, or if PGPORT is not set, then defaults to
the value established when Postgres was compiled (normally 5432). If you specify a
port other than the default port then all frontend applications (including psql) must
specify the same port using either command-line options or PGPORT.

 Two additional command line options are available for debugging problems that cause a
backend to die abnormally. These options control the behavior of the postmaster in this
situation, and neither option is intended for use in ordinary operation.

 The ordinary strategy for this situation is to notify all other backends that they must
terminate and then reinitialize the shared memory and semaphores. This is because an
errant backend could have corrupted some shared state before terminating.

 These special-case options are:

-n

 postmaster will not reinitialize shared data structures. A knowledgeable system
programmer can then use a debugger to examine shared memory and semaphore state.

-s

 postmaster will stop all other backend processes by sending the signal SIGSTOP, but
will not cause them to terminate. This permits system programmers to collect core
dumps from all backend processes by hand.

Outputs

semget: No space left on device

 If you see this message, you should run the ipcclean command. After doing so, try
starting postmaster again. If this still doesn’t work, you probably need to configure
your kernel for shared memory and semaphores as described in the installation notes.
If you run multiple instances of postmaster on a single host, or have a kernel with

Chapter 21. System Applications

334

particularly small shared memory and/or semaphore limits, you may have to
reconfigure your kernel to increase its shared memory or semaphore parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to
reduce Postgres’ shared memory consumption, and/or by reducing -N to reduce
Postgres’ semaphore consumption.

StreamServerPort: cannot bind to port

 If you see this message, you should make certain that there is no other postmaster
process already running on the same port number. The easiest way to determine this is
by using the command
% ps -ax | grep postmaster

on BSD-based systems, or
% ps -e | grep postmast

 for System V-like or POSIX-compliant systems such as HP-UX.
 If you are sure that no other postmaster processes are running and you still get this
error, try specifying a different port using the -p option. You may also get this error if
you terminate the postmaster and immediately restart it using the same port; in this
case, you must simply wait a few seconds until the operating system closes the port
before trying again. Finally, you may get this error if you specify a port number that
your operating system considers to be reserved. For example, many versions of Unix
consider port numbers under 1024 to be trusted and only permit the Unix superuser to
access them.

IpcMemoryAttach: shmat() failed: Permission denied

 A likely explanation is that another user attempted to start a postmaster process on
the same port which acquired shared resources and then died. Since Postgres shared
memory keys are based on the port number assigned to the postmaster, such conflicts
are likely if there is more than one installation on a single host. If there are no other
postmaster processes currently running (see above), run ipcclean and try again. If
other postmaster images are running, you will have to find the owners of those
processes to coordinate the assignment of port numbers and/or removal of unused
shared memory segments.

Description

 postmaster manages the communication between frontend and backend processes, as well
as allocating the shared buffer pool and SysV semaphores (on machines without a
test-and-set instruction). postmaster does not itself interact with the user and should be
started as a background process.

 Only one postmaster should be running at a time in a given Postgres installation. Here, an
installation means a database directory and postmaster port number. You can run more than
one postmaster on a machine only if each one has a separate directory and port number.

Notes

Chapter 21. System Applications

335

 If at all possible, do not use SIGKILL when killing the postmaster. SIGHUP, SIGINT, or
SIGTERM (the default signal for kill(1))" should be used instead. Using

% kill -KILL

or its alternative form

% kill -9

 will prevent postmaster from freeing the system resources (e.g., shared memory and
semaphores) that it holds before dying. Use SIGTERM instead to avoid having to clean up
manually (as described earlier).

 Useful utilities for dealing with shared memory problems include ipcs(1), ipcrm(1), and
ipcclean(1).

Usage

 To start postmaster using default values, type:

% nohup postmaster >logfile 2>&1 &

 This command will start up postmaster on the default port (5432). This is the simplest and
most common way to start the postmaster.

 To start postmaster with a specific port:

% nohup postmaster -p 1234 &

 This command will start up postmaster communicating through the port 1234. In order to
connect to this postmaster using psql, you would need to run it as

% psql -p 1234

 or set the environment variable PGPORT:

% setenv PGPORT 1234
% psql

336

Appendix UG1. Date/Time Support

Time Zones
 Postgres must have internal tabular information for time zone decoding, since there is no
*nix standard system interface to provide access to general, cross-timezone information.
The underlying OS is used to provide time zone information for output.

Table UG1-1. Postgres Recognized Time Zones

Time Zone Offset from UTC Description

NZDT +13:00 New Zealand Daylight Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Std Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer Std Time

ACSST +10:30 Central Australia Summer Std Time

CADT +10:30 Central Australia Daylight Savings Time

SADT +10:30 South Australian Daylight Time

AEST +10:00 Australia Eastern Std Time

EAST +10:00 East Australian Std Time

GST +10:00 Guam Std Time, USSR Zone 9

LIGT +10:00 Melbourne, Australia

ACST +09:30 Central Australia Std Time

CAST +09:30 Central Australia Std Time

SAT +9:30 South Australian Std Time

AWSST +9:00 Australia Western Summer Std Time

JST +9:00 Japan Std Time,USSR Zone 8

KST +9:00 Korea Standard Time

WDT +9:00 West Australian Daylight Time

MT +8:30 Moluccas Time

AWST +8:00 Australia Western Std Time

CCT +8:00 China Coastal Time

WADT +8:00 West Australian Daylight Time

WST +8:00 West Australian Std Time

Appendix UG1. Date/Time Support

337

Time Zone Offset from UTC Description

JT +7:30 Java Time

WAST +7:00 West Australian Std Time

IT +3:30 Iran Time

BT +3:00 Baghdad Time

EETDST +3:00 Eastern Europe Daylight Savings Time

CETDST +2:00 Central European Daylight Savings Time

EET +2:00 Eastern Europe, USSR Zone 1

FWT +2:00 French Winter Time

IST +2:00 Israel Std Time

MEST +2:00 Middle Europe Summer Time

METDST +2:00 Middle Europe Daylight Time

SST +2:00 Swedish Summer Time

BST +1:00 British Summer Time

CET +1:00 Central European Time

DNT +1:00 Dansk Normal Tid

DST +1:00 Dansk Standard Time (?)

FST +1:00 French Summer Time

MET +1:00 Middle Europe Time

MEWT +1:00 Middle Europe Winter Time

MEZ +1:00 Middle Europe Zone

NOR +1:00 Norway Standard Time

SET +1:00 Seychelles Time

SWT +1:00 Swedish Winter Time

WETDST +1:00 Western Europe Daylight Savings Time

GMT 0:00 Greenwish Mean Time

WET 0:00 Western Europe

WAT -1:00 West Africa Time

NDT -2:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time

NFT -3:30 Newfoundland Standard Time

NST -3:30 Newfoundland Standard Time

AST -4:00 Atlantic Std Time (Canada)

Appendix UG1. Date/Time Support

338

Time Zone Offset from UTC Description

EDT -4:00 Eastern Daylight Time

ZP4 -4:00 GMT +4 hours

CDT -5:00 Central Daylight Time

EST -5:00 Eastern Standard Time

ZP5 -5:00 GMT +5 hours

CST -6:00 Central Std Time

MDT -6:00 Mountain Daylight Time

ZP6 -6:00 GMT +6 hours

MST -7:00 Mountain Standard Time

PDT -7:00 Pacific Daylight Time

PST -8:00 Pacific Std Time

YDT -8:00 Yukon Daylight Time

HDT -9:00 Hawaii/Alaska Daylight Time

YST -9:00 Yukon Standard Time

AHST -10:00 Alaska-Hawaii Std Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

Australian Time Zones

 Australian time zones and their naming variants account for fully one quarter of all time
zones in the Postgres time zone lookup table. There are two naming conflicts with common
time zones defined in the United States, CST and EST.

 If the compiler option USE_AUSTRALIAN_RULES is set then CST and EST will be
interpreted using Australian conventions.

Table UG1-2. Postgres Australian Time Zones

Time Zone Offset from UTC Description

CST +10:30 Australian Central Standard Time

EST +10:00 Australian Eastern Standard Time

Appendix UG1. Date/Time Support

339

Date/Time Input Interpretation

 The date/time types are all decoded using a common set of routines.

Date/Time Input Interpretation

1. Break the input string into tokens and categorize each token as a string, time, time
zone, or number.

a. If the token contains a colon (":"), this is a time string.

b. If the token contains a dash ("-"), slash ("/"), or dot ("."), this is a date string
which may have a text month.

c. If the token is numeric only, then it is either a single field or an ISO-8601
concatenated date (e.g. "19990113" for January 13, 1999) or time (e.g.
141516 for 14:15:16).

d. If the token starts with a plus ("+") or minus ("-"), then it is either a time zone
or a special field.

2. If the token is a text string, match up with possible strings.

a. Do a binary-search table lookup for the token as either a special string (e.g.
today), day (e.g. Thursday), month (e.g. January), or noise word (e.g.
on).

 Set field values and bit mask for fields. For example, set year, month, day
for today, and additionally hour, minute, second for now.

b. If not found, do a similar binary-search table lookup to match the token with
a time zone.

c. If not found, throw an error.

3. The token is a number or number field.

a. If there are more than 4 digits, and if no other date fields have been
previously read, then interpret as a "concatenated date" (e.g. 19990118). 8
and 6 digits are interpreted as year, month, and day, while 7 and 5 digits are
interpreted as year, day of year, respectively.

b. If the token is three digits and a year has already been decoded, then interpret
as day of year.

c. If four or more digits, then interpret as a year.

d. If in European date mode, and if the day field has not yet been read, and if
the value is less than or equal to 31, then interpret as a day.

e. If the month field has not yet been read, and if the value is less than or equal
to 12, then interpret as a month.

f. If the day field has not yet been read, and if the value is less than or equal to
31, then interpret as a day.

g. If two digits or four or more digits, then interpret as a year.

h. Otherwise, throw an error.

4. If BC has been specified, negate the year and offset by one for internal storage (there
is no year zero in the Gregorian calendar, so numerically 1BC becomes year zero).

Appendix UG1. Date/Time Support

340

5. If BC was not specified, and if the year field was two digits in length, then adjust the
year to 4 digits. If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years 1-99AD may be entered by using 4 digits with leading zeros (e.g.
0099 is 99AD). Previous versions of Postgres accepted years with three digits and
with single digits, but as of v7.0 the rules have been tightened up to reduce the
possibility of ambiguity.

History
Note: Contributed by José Soares (jose@sferacarta.com).

 The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609)
and probably takes its name from the Scaliger’s father, the Italian scholar Julius Caesar
Scaliger (1484-1558). Astronomers have used the Julian period to assign a unique number
to every day since 1 January 4713 BC. This is the so-called Julian Day (JD). JD 0
designates the 24 hours from noon UTC on 1 January 4713 BC to noon UTC on 2 January
4713 BC.

 �Julian Day� is different from �Julian Date�. The Julian calendar was introduced by Julius
Caesar in 45 BC. It was in common use until the 1582, when countries started changing to
the Gregorian calendar. In the Julian calendar, the tropical year is approximated as 365 1/4
days = 365.25 days. This gives an error of 1 day in approximately 128 days. The
accumulating calendar error prompted pope Gregory XIII to reform the calendar in
accordance with instructions from the Council of Trent.

 In the Gregorian calendar, the tropical year is approximated as 365 + 97 / 400 days =
365.2425 days. Thus it takes approximately 3300 years for the tropical year to shift one day
with respect to the Gregorian calendar.

 The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using
the following rules:

 Every year divisible by 4 is a leap year.
 However, every year divisible by 100 is not a leap year.
 However, every year divisible by 400 is a leap year after all.

 So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are
leap years. By contrast, in the older Julian calendar only years divisible by 4 are leap years.

 The papal bull of February 1582 decreed that 10 days should be dropped from October
1582 so that 15 October should follow immediately after 4 October. This was observed in
Italy, Poland, Portugal, and Spain. Other Catholic countries followed shortly after, but
Protestant countries were reluctant to change, and the Greek orthodox countries didn’t
change until the start of this century. The reform was observed by Great Britain and
Dominions (including what is now the USA) in 1752. Thus 2 Sep 1752 was followed by 14
Sep 1752. This is why Unix systems have cal produce the following:

% cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Appendix UG1. Date/Time Support

341

Note: SQL92 states that �Within the definition of a datetime literal, the datetime values
are constrained by the natural rules for dates and times according to the Gregorian
calendar�. Dates between 1752-09-03 and 1752-09-13, although eliminated in some
countries by Papal fiat, conform to �natural rules� and are hence valid dates.

 Different calendars have been developed in various parts of the world, many predating the
Gregorian system. For example, the beginnings of the Chinese calendar can be traced back
to the 14th century BC. Legend has it that the Emperor Huangdi invented the calendar in
2637 BC. The People’s Republic of China uses the Gregorian calendar for civil purposes.
Chinese calendar is used for determining festivals.

342

Bibliography
 Selected references and readings for SQL and Postgres.

 Some white papers and technical reports from the original Postgres development team are
available at the University of California, Berkeley, Computer Science Department web site
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books
 The Practical SQL Handbook , Using Structured Query Language , Judith Bowman,

Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley,
1996.

 A Guide to the SQL Standard , A user’s guide to the standard database language SQL , C.
J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

 An Introduction to Database Systems , C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL , A complete guide, Jim Melton and Alan R. Simon,
1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Jeffrey D. Ullman, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation
 The PostgreSQL Administrator’s Guide, Edited by Thomas Lockhart, 2000-05-01, The

PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , Edited by Thomas Lockhart, 2000-05-01, The
PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information
Systems, Vienna University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and
EXCEPT constructs into Postgres. Prepared as a Master’s Thesis with the support of
O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University
of Technology.

 The Postgres95 User Manual , A. Yu and J. Chen, The POSTGRES Group , Sept. 5, 1995,
University of California, Berkeley CA.

Bibliography

343

Proceedings and Articles
 Partial indexing in POSTGRES: research project , Nels Olson, 1993, UCB Engin

T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System
, L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33, University
of California, Berkeley CA.

 The Postgres Data Model , L. Rowe and M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

 Generalized partial indexes
(http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) , P. Seshadri
and A. Swami, March 1995, Eleventh International Conference on Data Engineering,
1995, Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , M. Stonebraker and L. Rowe, May 1986, Conference on
Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, M. Stonebraker, E. Hanson, and C. H. Hong,
Feb. 1987, Conference on Data Engineering, Los Angeles, CA, IEEE, 1987.

 The Postgres Storage System , M. Stonebraker, Sept. 1987, VLDB Conference, Brighton,
England, 1987.

 A Commentary on the Postgres Rules System , M. Stonebraker, M. Hearst, and S.
Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) ,
M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , M. Stonebraker, L. A. Rowe, and M. Hirohama, March
1990, Transactions on Knowledge and Data Engineering 2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , M. Stonebraker and et
al, June 1990, Conference on Management of Data, ACM-SIGMOD.

