
The NetRexx Language

13th April 1997

Mike Cowlishaw

mfc@vnet.ibm.com
IBM UK Laboratories

Specification (1.00)

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Contents

Part 1: NetRexx Language Definition 1
Section 1: Notations 2
Section 2: Characters and Encodings 3
Section 3: Structure and General Syntax 4
Section 4: Types and Classes 11
Section 5: Terms 13
Section 6: Methods and Constructors 19
Section 7: Type conversions 25
Section 8: Expressions and Operators 28
Section 9: Clauses and Instructions 36
Section 10: Assignments and Variables 37
Section 11: Indexed strings and Arrays 42
Section 12: Keyword Instructions 45
Section 13: Class instruction 46
Section 14: Do instruction 49
Section 15: Exit instruction 51
Section 16: If instruction 52
Section 17: Import instruction 53
Section 18: Iterate instruction 55
Section 19: Leave instruction 56
Section 20: Loop instruction 57
Section 21: Method instruction 65
Section 22: Nop instruction 70
Section 23: Numeric instruction 70
Section 24: Options instruction 72
Section 25: Package instruction 75

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved. iii

 iv Contents

Section 26: Parse instruction 76
Section 27: Properties instruction 77
Section 28: Return instruction 79
Section 29: Say instruction 79
Section 30: Select instruction 80
Section 31: Signal instruction 82
Section 32: Trace instruction 83
Section 33: Program structure 87
Section 34: Special names and methods 90
Section 35: Parsing templates 94
Section 36: Numbers and Arithmetic 102
Section 37: Binary values and operations 114
Section 38: Exceptions 117
Section 39: Methods for NetRexx strings 120

Appendix A: NetRexx Syntax Diagrams 143

Index 151

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

The NetRexx Language

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Part 1

NetRexx Language
Definition

This part of the book describes the NetRexx language, version 1.00.

The language is described first in terms of the characters from which it is
composed and its low-level syntax, and then progressively through more
complex constructions. Finally, special sections describe the semantics of the
more complicated areas.

Some features of the language, such as options keywords and binary arith-
metic, are implementation-dependent. Rather than leaving these important
aspects entirely abstract, this description includes summaries of the treat-
ment of such items in the reference implementation of NetRexx. The reference
implementation is based on the Java environment and class libraries.

Paragraphs that refer to the reference implementation, and are therefore not
strictly part of the language definition, are shown in italics, like this one.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved. 1

2 NetRexx Language Definition Part 1

SECTION 1: NOTATIONS

In this part of the book, various notations such as changes of font are used
for clarity. Within the text, a sans-serif bold font is used to indicate
keywords, and the same font is used in italic to indicate technical terms. An
italic font is used to indicate a reference to a technical term defined elsewhere
or a word in a syntax diagram that names a segment of syntax.

Similarly, in the syntax diagrams in this book, words (symbols) in a bold font
also denote keywords or sub-keywords, and words (such as expression) in
italics denote a token or collection of tokens defined elsewhere. The
brackets [and] delimit optional (and possibly alternative) parts of the
instructions, whereas the braces { and } indicate that one of a number of
alternatives must be selected. An ellipsis (...) following a bracket indicates
that the bracketed part of the clause may optionally be repeated.

Occasionally in syntax diagrams (for indexed references) brackets are “real”
(that is, a bracket is required in the syntax; it is not marking an optional
part). These brackets are enclosed in single quotes, thus: '[' or ']'.

Note that the keywords and sub-keywords in the syntax diagrams are not
case-sensitive: the symbols “IF” “If” and “iF” would all match the keyword
shown in a syntax diagram as if.

Note also that most of the clause delimiters (“;”) shown may usually be
omitted as they will be implied by the end of a line.

Appendix A (see page 143) collects together the syntax diagrams for ease of
reference.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 2 Characters and Encodings 3

SECTION 2: CHARACTERS AND ENCODINGS

In the definition of a programming language it is important to emphasise the
distinction between a character and the coded representation1 (encoding) of a
character. The character “A”, for example, is the first letter of the English
(Latin) alphabet, and this meaning is independent of any specific coded rep-
resentation of that character. Different coded character sets (such as, for
example, the ASCII2 and EBCDIC3 codes) use quite different encodings for
this character (decimal values 65 and 193, respectively).

Except where stated otherwise, this book uses characters to convey meaning
and not to imply a specific character code (the exceptions are certain oper-
ations that specifically convert between characters and their representa-
tions). At no time is NetRexx concerned with the glyph (actual appearance)
of a character.

Character Sets

Programming in the NetRexx language can be considered to involve the use
of two character sets. The first is used for expressing the NetRexx program
itself, and is the relatively small set of characters described in the next sec-
tion. The second character set is the set of characters that can be used as
character data by a particular implementation of a NetRexx language pro-
cessor. This character set may be limited in size (sometimes to a limit of 256
different characters, which have a convenient 8-bit representation), or it may
be much larger. The Unicode4 character set, for example, allows for 65536
characters, each encoded in 16 bits.

Usually, most or all of the characters in the second (data) character set are
also allowed within a NetRexx program, but only within commentary or
immediate (literal) data.

The NetRexx language explicitly defines the first character set, in order that
programs will be portable and understandable; at the same time it avoids
restrictions due to the language itself on the character set used for data.
However, where the language itself manipulates or inspects the data (as
when carrying out arithmetic operations), there may be requirements on the
data character set (for example, numbers can only be expressed if there are
digit characters in the set).

1 These terms have the meanings as defined by the International Organization for
Standardization, in ISO 2382 Data processing – Vocabulary.

2 American Standard Code for Information Interchange.
3 Extended Binary Coded Decimal Interchange Code.
4 The Unicode Standard: Worldwide Character Encoding, Version 1.0. Volume 1,

ISBN 0-201-56788-1, 1991, and Volume 2, ISBN 0-201-60845-6 1992, Addison-
Wesley, Reading, MA.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

4 NetRexx Language Definition Part 1

SECTION 3: STRUCTURE AND GENERAL SYNTAX

A NetRexx program is built up out of a series of clauses that are composed of:
zero or more blanks (which are ignored); a sequence of tokens (described in
this section); zero or more blanks (again ignored); and the delimiter “;”
(semicolon) which may be implied by line-ends or certain keywords. Con-
ceptually, each clause is scanned from left to right before execution and the
tokens composing it are resolved.

Identifiers (known as symbols) and numbers are recognized at this stage,
comments (described below) are removed, and multiple blanks (except within
literal strings) are reduced to single blanks. Blanks adjacent to operator
characters (see page 8) and special characters (see page 9) are also removed.

Blanks and White Space

Blanks (spaces) may be freely used in a program to improve appearance and
layout, and most are ignored. Blanks, however, are usually significant

• within literal strings (see below)

• between two tokens that are not special characters (for example,
between two symbols or keywords)

• between the two characters forming a comment delimiter

• immediately outside parentheses (“(” and “)”) or brackets (“[” and “]”).

For implementations that support tabulation (tab) and form feed characters,
these characters outside of literal strings are treated as if they were a single
blank; similarly, if the last character in a NetRexx program is the End-of-file
character (EOF, encoded in ASCII as decimal 26), that character is ignored.

Comments

Commentary is included in a NetRexx program by means of comments. Two
forms of comment notation are provided; line comments are ended by the end
of the line on which they start, and block comments are typically used for more
extensive commentary.

Line comments

A line comment is started by a sequence of two adjacent hyphens
(“––”); all characters following that sequence up to the end of the line
are then ignored by the NetRexx language processor.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 3 Structure and General Syntax 5

Example:

i=j+7 –– this line comment follows an assignment

Block comments

A block comment is started by the sequence of characters “/*”, and is
ended by the same sequence reversed, “*/”. Within these delimiters any
characters are allowed (including quotes, which need not be paired).
Block comments may be nested, which is to say that “/*” and “*/” must
pair correctly. Block comments may be anywhere, and may be of any
length. When a block comment is found, it is treated as though it were
a blank (which may then be removed, if adjacent to a special character).

Example:

/* This is a valid block comment */

The two characters forming a comment delimiter (“/*” or “*/”) must be
adjacent (that is, they may not be separated by blanks or a line-end).

Note: It is recommended that NetRexx programs start with a block comment
that describes the program. Not only is this good programming practice, but
some implementations may use this to distinguish NetRexx programs from
other languages.

Implementation minimum: Implementations should support nested block
comments to a depth of at least 10. The length of a comment should not be
restricted, in that it should be possible to “comment out” an entire program.

Tokens

The essential components of clauses are called tokens. These may be of any
length, unless limited by implementation restrictions,5 and are separated by
blanks, comments, ends of lines, or by the nature of the tokens themselves.

The tokens are:

Literal strings

A sequence including any characters that can safely be represented in
an implementation6 and delimited by the single quote character (') or
the double-quote ("). Use "" to include a " in a literal string delimited

5 Wherever arbitrary implementation restrictions are applied, the size of the
restriction should be a number that is readily memorable in the decimal system;
that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512, the
number 250 is more “natural” than 256, and so on. Limits expressed in digits
should be a multiple of three.

6 Some implementations may not allow certain “control characters” in literal strings.
These characters may be included in literal strings by using one of the escape
sequences provided.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

6 NetRexx Language Definition Part 1

by ", and similarly use two single quotes to include a single quote in a
literal string delimited by single quotes. A literal string is a constant
and its contents will never be modified by NetRexx. Literal strings must
be complete on a single line (this means that unmatched quotes may be
detected on the line that they occur).

Any string with no characters (i.e., a string of length 0) is called a null

string.

Examples:

'Fred'
'Aÿ'
"Don't Panic!"
":x"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* A null string */

Within literal strings, characters that cannot safely or easily be repres-
ented (for example “control characters”) may be introduced using an
escape sequence. An escape sequence starts with a backslash (“\”), which
must then be followed immediately by one of the following (letters may
be in either uppercase or lowercase):

t the escape sequence represents a tabulation (tab) character

n the escape sequence represents a new-line (line feed) character

r the escape sequence represents a return (carriage return)
character

f the escape sequence represents a form-feed character

" the escape sequence represents a double-quote character

’ the escape sequence represents a single-quote character

\ the escape sequence represents a backslash character

- the escape sequence represents a “null” character (the character
whose encoding equals zero), used to indicate continuation in a
say instruction

0 (zero) the escape sequence represents a “null” character (the
character whose encoding equals zero); an alternative to \–

xhh the escape sequence represents a character whose encoding is
given by the two hexadecimal digits (“hh”) following the “x”. If
the character encoding for the implementation requires more
than two hexadecimal digits, they are padded with zero digits
on the left.

uhhhh the escape sequence represents a character whose encoding is
given by the four hexadecimal digits (“hhhh”) following the “u”.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 3 Structure and General Syntax 7

It is an error to use this escape if the character encoding for the
implementation requires fewer than four hexadecimal digits.

Hexadecimal digits for use in the escape sequences above may be any
decimal digit (0-9) or any of the first six alphabetic characters (a-f), in
either lowercase or uppercase.

Examples:

'You shouldn\'t' /* Same as "You shouldn't" */
'\x6d\u0066\x63' /* In Unicode: 'mfc' */
'\\\u005C' /* In Unicode, two backslashes */

Implementation minimum: Implementations should support literal
strings of at least 100 characters. (But note that the length of string
expression results, etc., should have a much larger minimum, normally
only limited by the amount of storage available.)

Symbols

Symbols are groups of characters selected from the Roman alphabet in
uppercase or lowercase (A-Z, a-z), the arabic numerals (0-9), and
underscore. Implementations may also allow other alphabetic and
numeric characters in symbols to improve the readability of programs
in languages other than English. These additional characters are
known as extra letters and extra digits.7

Examples:

DanYrOgof
minx
Élan
Virtual3D

A symbol may include other characters only when the first character of
the symbol is a digit (0-9 or an extra digit). In this case, it is a numeric

symbol – it may include a period (“.”) and it must have the syntax of a
number. This may be simple number, which is a sequence of digits with
at most one period (which may not be the final character of the
sequence), or it may be a number expressed in exponential notation.

A number in exponential notation is a simple number followed imme-
diately by the sequence “E” (or “e”), followed immediately by a sign (“+”
or “–”),8 followed immediately by one or more digits (which may not be
followed by any other symbol characters).

7 It is expected that implementations of NetRexx will be based on Unicode or a
similarly rich character set. However, portability to implementations with smaller
character sets may be compromised when extra letters or extra digits are used in
a program.

8 The sign in this context is part of the symbol; it is not an operator.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

8 NetRexx Language Definition Part 1

Examples:

1
1.3
12.007
17.3E–12
3e+12
0.03E+9

When extra digits are used in numeric symbols, they must represent
values in the range zero through nine. When numeric symbols are used
as numbers, any extra digits are first converted to the corresponding
character in the range 0-9, and then the symbol follows the usual rules
for numbers in NetRexx (that is, the most significant digit is on the left,
etc.).

In the reference implementation, the extra letters are those characters
(excluding A-Z, a-z, and underscore) that result in 1 when tested with
java.lang.Character.isLetter. Similarly, the extra digits are
those characters (excluding 0-9) that result in 1 when tested with
java.lang.Character.isDigit.

The meaning of a symbol depends on the context in which it is used.
For example, a symbol may be a constant (if a number), a keyword, the
name of a variable, or identify some algorithm.

Implementation minimum: Implementations should support symbols
of at least 50 characters. (But note that the length of its value, if it is
a string variable, should have a much larger limit.)

Operator characters

The characters + – * / % | & = \ > < are used (sometimes in
combination) to indicate operations (see page 28) in expressions. A few
of these are also used in parsing templates, and the equals sign is also
used to indicate assignment. Blanks adjacent to operator characters are
removed, so, for example, the sequences:

345>=123
345 >=123
345 >= 123
345 > = 123

are identical in meaning.

Some of these characters may not be available in all character sets, and
if this is the case appropriate translations may be used.

Note: The sequences “––”, “/*”, and “*/” are comment delimiters, as
described earlier. The sequences “++” and “\\” are not valid in NetRexx
programs.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 3 Structure and General Syntax 9

Special characters

The characters . , ;) (] [together with the operator
characters have special significance when found outside of literal
strings, and constitute the set of special characters. They all act as token
delimiters, and blanks adjacent to any of these (except the period) are
removed, except that a blank adjacent to the outside of a parenthesis
or bracket is only deleted if it is also adjacent to another special char-
acter (unless this is a parenthesis or bracket and the blank is outside it,
too).

Some of these characters may not be available in all character sets, and
if this is the case appropriate translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:

'REPEAT' B + 3;

This is composed of six tokens: a literal string, a blank operator (described
later), a symbol (which is probably the name of a variable), an operator, a
second symbol (a number), and a semicolon. The blanks between the “B” and
the “+” and between the “+” and the “3” are removed. However one of the
blanks between the 'REPEAT' and the “B” remains as an operator. Thus the
clause is treated as though written:

'REPEAT' B+3;

Implied semicolons and continuations

A semicolon (clause end) is implied at the end of each line, except if:

1. The line ends in the middle of a block comment, in which case the clause
continues at the end of the block comment.

2. The last token was a hyphen. In this case the hyphen is functionally
replaced by a blank, and hence acts as a continuation character.

This means that semicolons need only be included to separate multiple
clauses on a single line.

Notes:

1. A comment is not a token, so therefore a comment may follow the con-
tinuation character on a line.

2. Semicolons are added automatically by NetRexx after certain instruc-
tion keywords when in the correct context. The keywords that may have
this effect are else, finally, otherwise, then; they become complete clauses
in their own right when this occurs. These special cases reduce program
entry errors significantly.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

10 NetRexx Language Definition Part 1

The case of names and symbols

In general, NetRexx is a case–insensitive language. That is, the names of
keywords, variables, and so on, will be recognized independently of the case
used for each letter in a name; the name “Swildon” would match the name
“swilDon”.

NetRexx, however, uses names that may be visible outside the NetRexx pro-
gram, and these may well be referenced by case-sensitive languages. There-
fore, any name that has an external use (such as the name of a property,
method, constructor, or class) has a defined spelling, in which each letter of
the name has the case used for that letter when the name was first defined
or used.

Similarly, the lookup of external names is both case-preserving and case-in-
sensitive. If a class, method, or property is referenced by the name “Foo”, for
example, an exact-case match will first be tried at each point that a search
is made. If this succeeds, the search for a matching name is complete. If it
is does not succeed, a case-insensitive search in the same context is carried
out, and if one item is found, then the search is complete. If more than one
item matches then the reference is ambiguous, and an error is reported.

Implementations are encouraged to offer an option that requires that all
name matches are exact (case-sensitive), for programmers or house-styles
that prefer that approach to name matching.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 4 Types and Classes 11

SECTION 4: TYPES AND CLASSES

Programs written in the NetRexx language manipulate values, such as
names, numbers, and other representations of data. All such values have an
associated type (also known as a signature).

The type of a value is a descriptor which identifies the nature of the value
and the operations that may be carried out on that value.

A type is normally defined by a class, which is a named collection of values
(called properties) and procedures (called methods) for carrying out operations
on the properties.

For example, a character string in NetRexx is usually of type Rexx, which
will be implemented by the class called Rexx. The class Rexx defines the
properties of the string (a sequence of characters) and the methods that work
on strings. This type of string may be the subject of arithmetic operations
as well as more conventional string operations such as concatenation, and so
the methods implement string arithmetic as well as other string operations.

The names of types can further be qualified by the name of a package where
the class is held. See the package instruction for details of packages; in
summary, a package name is a sequence of one or more non-numeric symbols,
separated by periods. Thus, if the Rexx class was part of the netrexx.lang
package,9 then its qualified type would be netrexx.lang.Rexx.

In general, only the class name need be specified to refer to a type. However,
if a class of the same name exists in more than one known (imported) pack-
age, then the name should be qualified by the package name. That is, if the
use of just the class name does not uniquely identify the class then the ref-
erence is ambiguous and an error is reported.

Primitive types

Implementations may optionally provide primitive types for efficiency. Primi-
tive types are “built-in” types that are not necessarily implemented as classes.
They typically represent concepts native to the underlying environment (such
as 32-bit binary integer numbers) and may exhibit semantics that are differ-
ent from other types. NetRexx, however, makes no syntax distinction in the
names of primitive types, and assumes binary constructors (see page 116) exist
for primitive values.

Primitive types are necessary when performance is an overriding consider-
ation, and so this definition will assume that primitive types corresponding
to the common binary number formats are available and will describe how
they differ from other types, where appropriate.

9 This is in fact where it may be found in the reference implementation.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

12 NetRexx Language Definition Part 1

In the reference implementation, the names of the primitive types are:

boolean char byte short int long float double

where the first two describe a single-bit value and Unicode character respec-
tively, and the remainder describe signed numbers of various formats. The
main difference between these and other types is that the primitive types are
not a subclass of Object, so they cannot be assigned to a variable of type
Object or passed to methods “by reference”. To use them in this way, an
object must be created to “wrap” them; Java provides classes for this (for
example, the class Long).

Dimensioned types

Another feature that is provided for efficiency is the concept of dimensioned

types, which are types (normal or primitive) that have an associated dimen-
sion (in the sense of the dimensions of an array). Dimensioned values are
described in detail in the section on Arrays (see page 43).

The dimension of a dimensioned type is represented in NetRexx programs by
square brackets enclosing zero or more commas, where the dimension is given
by the number of commas, plus one. A dimensioned type is distinct from the
type of the same name but with no dimensions.

Examples:

Rexx
int
Rexx[]
int[,,]

The examples show a normal type, a primitive type, and a dimensioned ver-
sion of each (of dimension 1 and 3 respectively). The latter type would result
from constructing an array thus:

myarray=int[10,10,10]

That is, the dimension of the type matches the count of indexes defined for
the array.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 5 Terms 13

SECTION 5: TERMS

A term in NetRexx is a syntactic unit which describes some value (such as a
literal string, a variable, or the result of some computation) that can be
manipulated in a NetRexx program.

Terms may be either simple (consisting of a single element) or compound (con-
sisting of more than one element, with a period and no other characters
between each element).

Simple terms

A simple term may be:

• A literal string (see page 5) – a character string delimited by quotes, which
is a constant.

• A symbol (see page 7). A symbol that does not begin with a digit identi-
fies a variable, a value, or a type. One that does begin with a digit is a
numeric symbol, which is a constant.

• A method call (see page 19), which is of the form

symbol (

expression

, expression ...)

• An indexed reference (see page 42), which is of the form10

symbol '['

expression

, expression ... ']'

• A sub–expression (see page 34), which consists of any expression enclosed
within a left and a right parenthesis.

Blanks are not permitted between the symbol in a method call and the “(”,
or between the symbol in an indexed reference and the “[”.

Within simple terms, method calls with no arguments (that is, with no
expressions between the parentheses) may be expressed without the paren-
theses provided that they refer to a method in the current class (or to a static
method in a class used by the current class) and do not refer to a constructor
(see page 23). An implementation may optionally provide a mechanism that
disallows this parenthesis omission.

10 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

14 NetRexx Language Definition Part 1

Compound terms

Compound terms may start with any simple term, and, in addition, may start
with a qualified class name (see page 75) or a qualified constructor (see page
19). These last two both start with a package name (a sequence of non-
numeric symbols separated by periods and ending in a period).

This first part of a compound term is known as the stub of the term.

Example stubs:

"A string"
Arca
12.10
paint(g)
indexedVar[i+1]
("A" "string")
java.lang.Math –– qualified class name
netrexx.lang.Rexx(1) –– qualified constructor

All stubs are syntactically valid terms (either simple or compound) and may
optionally be followed by a continuation, which is one or more additional non-
numeric symbols, method calls, or indexed references, separated from each
other and from the stub by connectors which are periods.

Example compound terms:

"A rabbit".word(2).pos('b')
Fluffy.left(3)
12.10.max(j)
paint(g).picture
indexedVar[i+1].length
("A" "string").word(1)
java.lang.Math.PI
java.lang.Math.log(10)

Within compound terms, method calls with no arguments (that is, with no
expressions between the parentheses) may be expressed without the paren-
theses provided that they do not refer to a constructor (see page 23). For
example, the term:

Thread.currentThread().suspend()

could be written:

Thread.currentThread.suspend

An implementation may optionally provide a mechanism that disallows this
parenthesis omission.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 5 Terms 15

Evaluation of terms

Simple terms are evaluated as a whole, as described below. Compound terms
are evaluated from left to right. First the stub is evaluated according to the
rules detailed below. The type of the value of the stub then qualifies the next
element of the term (if any) which is then evaluated (again, the exact rules
are detailed below). This process is then repeated for each element in the
term.

For instance, for the example above:

"A rabbit".word(2).pos('b')

the evaluation proceeds as follows:

1. The stub ("A rabbit") is evaluated, resulting in a string of type
Rexx.

2. Because that string is of type Rexx, the Rexx class is then searched for
the word method. This is then invoked on the string, with argument
2. In other words, the word method is invoked with the string
“A rabbit” as its current context (the properties of the Rexx class when
the method is invoked reflect that value).

This returns a new string of type Rexx, “rabbit” (the second word in
the original string).

3. In the same way as before, the pos method of the Rexx class is then
invoked on the new string, with argument 'b'.

This returns a new string of type Rexx, “3” (the position of the first “b”
in the previous result).

This value, “3”, is the final value of the term.

The remainder of this section gives the details of term evaluation; it is best
skipped on first reading.

Simple term evaluation

All simple terms may also be used as stubs, and are evaluated in precisely
the same way as stubs, as described below. For example, numeric symbols
are evaluated as though they were enclosed in quotes; their value is a string
of type Rexx.

In binary classes (see page 48), however, simple terms that are strings or
numeric symbols are given an implementation-defined string or primitive
type respectively, as described in the section on Binary values and operations
(see page 114)

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

16 NetRexx Language Definition Part 1

Stub evaluation

A term’s stub is evaluated according to the following rules:

• If the stub is a literal string, its value is the string, of type Rexx, con-
structed from that literal.

• If the stub is a numeric symbol, its value is the string, of type Rexx,
constructed from that literal (as though the literal were enclosed in
quotes).

• If the stub is an unqualified method or constructor call, or a qualified
constructor call, then its value and type is the result of invoking the
method identified by the stub, as described in Methods and Constructors
(see page 19).

• If the stub is a (non-numeric) symbol, then its value and type will be
determined by whichever of the following is first found:

1. A local variable or method argument within the current method,
or a property in the current class.

2. A method whose name matches the symbol, and takes no argu-
ments, and that is not a constructor, in the current class.11 If the
stub is part of a compound symbol, then it may also be in a super-
class, searching upwards from the current class.

3. A static or constant property, or a static method,12 whose name
matches the symbol (and that takes no arguments, if a method) in
a class listed in the uses phrase of the class instruction. Each class
from the list is searched for a matching property or method, and
then its superclasses are searched upwards from the class in the
same way; this process is repeated for each of the classes, in the
order specified in the list.

4. One of the allowed special words described in Special words and
methods (see page 90), such as this or version.

5. The short name of a known class or primitive type (in which case
the stub has no value, just a type).

• If the stub is an indexed reference, then its value and type will be
determined by whichever of the following is first found:

1. The symbol naming the reference is an undimensioned local vari-
able or method argument within the current method, or a property
in the current class, which has type Rexx. In this case, the refer-
ence is to an indexed string (see page 42); the expressions within

11 Unless parenthesis omission is disallowed by an implementation option, such as
options strictargs.

12 Unless parenthesis omission is disallowed by an implementation option, such as
options strictargs.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 5 Terms 17

the brackets must be convertible to type Rexx, and the type of the
result will be Rexx.

2. The symbol naming the reference is a dimensioned local variable
or method argument within the current method, or a property in
the current class. In this case, the reference is to an array (see
page 43), and the expressions within the brackets must be con-
vertible to whole numbers allowed for array indexes. The type of
the result will have the type of the array, with dimensions reduced
by the number of dimensions specified in the stub.

For example, if the array foo was of type Baa[,,,] and the stub
referred to foo[1,2], then the result would be of type Baa[,].
It would have been an error for the stub to have specified more
than four dimensions.

3. The symbol naming the reference is the name of a static or con-
stant property in a class listed in the uses phrase of the class

instruction. Each class from the list is searched in the same way
as for symbols, above. The reference may be to an indexed string
or an array, as for properties in the current class.

4. The symbol naming the reference is the name of a primitive type
or the short name of a known class, and there are no expressions
within the brackets (just optional commas). In this case, the stub
describes a dimensioned type (see page 12).

5. The symbol naming the reference is the name of a primitive type
or is the short name of a known class, and there are one or more
expressions within the brackets. In this case, the reference is to
an array constructor (see page 43); the expressions within the
brackets must be convertible to non-negative whole numbers
allowed for array indexes, and the value is an array of the specified
type, dimensions, and size.

• If the stub is a sub-expression, then its value and type will be deter-
mined by evaluating the expression (see page 28) within the parentheses.

• If the stub starts with the name of a package, then it will either describe
a qualified type (see page 11) or a qualified constructor (see page 23).
Its type will be same in either case, and if a constructor then its value
will be the value returned by the constructor.

If the stub is not followed by further segments, the final value and type of the
term is the value and type of the stub.

Continuation evaluation

Each segment of a term’s continuation is evaluated from left to right,
according to the type of the evaluation of the term so far (the continuation

type) and the syntax of the new segment:

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

18 NetRexx Language Definition Part 1

• If the segment is a method call, then its value and type is the result of
invoking the matching method in the class defining the continuation
type (or a superclass or subclass of that class), as described in Methods
and Constructors (see page 19). Note that method calls in term contin-
uations cannot be constructors.

• If the stub is an indexed reference, then it will refer to a property in the
class defining the continuation type (or a superclass of that class). That
property will either be an undimensioned NetRexx string (type Rexx)
or a dimensioned array. In either case, it is evaluated in the same way
as an indexed reference found in the stub, except that it is not neces-
sarily in the current class, cannot be an array constructor, and cannot
result in a dimensioned type.

• If the segment is a symbol, then it refers to either a property or a
method in the class defining the continuation type (or a superclass of
that class).13

The search for the property or method starts with the class defining the
continuation type. If a property name matches, it is used; if not, a
method of the same name and having no arguments (or only optional
arguments) will match. If neither property nor method is found, then
the same search is applied to each of the continuation class’s super-
classes in turn, starting with the class that it extends.

As a convenient special case, if the property or method is not found, then
if the segment is the final segment of the term and is the simple symbol
length and the continuation type is a single-dimensioned array, then
the segment evaluates to the size of the array. This will be a non-ne-
gative whole number of an appropriate primitive type (or of type Rexx
if there is no appropriate type).

The final value and type of the term is the value and type determined by the
evaluation of the last segment of the continuation.

13 Unless parenthesis omission is disallowed by an implementation option, such as
options strictargs, in which case it can only be a property.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 6 Methods and Constructors 19

SECTION 6: METHODS AND CONSTRUCTORS

Instructions in NetRexx are grouped into methods, which are named routines
that always belong to (are part of) a class.

Methods are invoked by being referenced in a term (see page 13), which may
be part of an expression or be a clause in its own right (a method call
instruction). In either case, the syntax used for a method invocation is:

symbol (

expression

, expression ...)

The symbol, which must be non-numeric, is called the name of the method.
It is important to note that the name of the method must be followed imme-
diately by the “(”, with no blank in between, or the construct will not be
recognized as a method call (a blank operator would be assumed at that point
instead).

The expressions (separated by commas) between the parentheses are called
the arguments to the method. Each argument expression may include further
method calls.

The argument expressions are evaluated in turn from left to right and the
resulting values are then passed to the method (the procedure for locating the
method is described below). The method then executes some algorithm
(usually dependent on any arguments passed, though arguments are not
mandatory) and will eventually return a value. This value is then included
in the original expression just as though the entire method reference had
been replaced by the name of a variable whose value is that returned data.

For example, the substr method is provided for strings of type Rexx and
could be used as:

c='abcdefghijk'
a=c.substr(3,7)
/* would set A to "cdefghi" */

Here, the value of the variable c is a string (of type Rexx). The substr
(substring) method of the Rexx class is then invoked, with arguments 3 and
7, on the value referred to by c. That is, the the properties available to (the
context of) the substr method are the properties constructed from the literal
string 'abcdefghijk'. The method returns the substring of the value,
starting at the third character and of length seven characters.

A method may have a variable number of arguments: only those required
need be specified. For example, 'ABCDEF'.substr(4) would return the
string 'DEF', as the substr method will assume that the remainder of the
string is to be returned if no length is provided.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

20 NetRexx Language Definition Part 1

Method invocations that take no arguments may omit the (empty) parenthe-
ses in circumstances where this would not be ambiguous. See the section on
Terms (see page 13) for details.

Implementation minimum: At least 10 argument expressions should be
allowed in a method call.

Method call instructions

When a clause in a method consists of just a term, and the final part of the
term is a method invocation, the clause is a method call instruction:

symbol (

expression

, expression ...) ;

The method is being called as a subroutine of the current method, and any
returned value is discarded. In this case (and in this case only), the method
invoked need not return a value (that is, the return instruction that ends it
need not specify an expression).14

A method call instruction that is the first instruction in a constructor (see
below) can only invoke the special constructors this and super.

Method resolution (search order)

Method resolution in NetRexx proceeds as follows:

• If the method invocation is the first part (stub) of a term, then:

1. The current class is searched for the method (see below for details
of searching).

2. If not found in the current class, then the superclasses of the cur-
rent class are searched, starting with the class that the current
class extends.

3. If still not found, then the classes listed in the uses phrase of the
class instruction are searched for the method, which in this case
must be a static method (see page 67). Each class from the list is
searched for the method, and then its superclasses are searched
upwards from the class; this process is repeated for each of the
classes, in the order specified in the list.

4. If still not found, the method invocation must be a constructor (see
below) and so the method name, which may be qualified by a
package name, should match the name of a primitive type or a

14 A method call instruction is equivalent to the call instruction of other languages,
except that no keyword is required.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 6 Methods and Constructors 21

known class (type). The specified class is then searched for a con-
structor that matches the method invocation.

• If the method invocation is not the first part of the term, then the eval-
uation of the parts of the term to the left of the method invocation will
have resulted in a value (or just a type), which will have a known type
(the continuation type). Then:

1. The class that defines the continuation type is searched for the
method (see below for details of searching).

2. If not found in that class, then the superclasses of that class are
searched, starting with the class that that class extends.

If the search did not find a method, an error is reported.

If the search did find a method, that is the method which is invoked,
except in one case:

• If the evaluation so far has resulted in a value (an object), then that
value may have a type which is a subclass of the continuation type.
If, within that subclass, there is a method that exactly overrides
(see page 22) the method that was found in the search, then the
method in the subclass is invoked.

This case occurs when an object is earlier assigned to a variable of a type
which is a superclass of the type of the object. This type simplification
hides the real type of the object from the language processor, though it
can be determined when the program is executed.

Searching for a method in a class proceeds as follows:

1. Candidate methods in the class are selected. To be a candidate method:

• the method must have the same name as the method invocation
(independent of the case (see page 10) of the letters of the name)

• the method must have the same number of arguments as the
method invocation (or more arguments, provided that the remain-
der are shown as optional in the method definition)

• it must be possible to assign the result of each argument expression
to the type of the corresponding argument in the method definition
(if strict type checking is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the
method was not found.

3. If there is just one candidate method, that method is used; the search
is complete.

4. If there is more than one candidate method, the sum of the costs of the
conversions (see page 27) from the type of each argument expression to
the type of the corresponding argument defined for the method is com-
puted for each candidate method.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

22 NetRexx Language Definition Part 1

5. The costs of those candidates (if any) whose names match the method
invocation exactly, including in case, are compared; if one has a lower
cost than all others, that method is used and the search is complete.

6. The costs of all the candidates are compared; if one has a lower cost than
all others, that method is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost,
the method invocation is ambiguous, and an error is reported.

Note: When a method is found in a class, superclasses of that class are not
searched for methods, even though a lower-cost method may exist in a
superclass.

Method overriding

A method is said to exactly override a method in another class if

1. the method in the other class has the same name as the current method

2. the method in the other class is not private

3. the other class is a superclass of the current class, or is a class that the
current class implements (or is a superclass of one of those classes).

4. the number and type of the arguments of the method in the other class
exactly match the number and type of the arguments of the current
method (where subsets are also checked, if either method has optional
arguments).

For example, the Rexx class includes a substr (see page 136) method, which
takes from one to three strings of type Rexx. In the class:

class mystring extends Rexx
method substr(n=Rexx, length=Rexx)
return this.reverse.substr(n, length)

method substr(n=int, length=int)
return this.reverse.substr(Rexx n, Rexx length)

the first method exactly overrides the substr method in the Rexx class, but
the second does not, because the types of the arguments do not match.

A method that exactly overrides a method is assumed to be an extension of
the overridden method, to be used in the same way. For such a method, the
following rules apply:

• It must return a value of the same type as the overridden method (or
none, if the overridden method returns none).

• If the overridden method is public then it must also be public, otherwise
it must be either public or inheritable.

• If the overridden method is static then it must also be static.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 6 Methods and Constructors 23

• If the overridden method is not static then it must not be static.

• If the underlying implementation checks exceptions (see page 117), only
those checked exceptions that are signalled by the overridden method
may be left uncaught in the current method.

Constructor methods

As described above, methods are usually invoked in the context of an existing
value or type. A special kind of method, called a constructor method, is used
to actually create a value of a given type (an object).

Constructor methods always have the same short name as the class in which
they are found, and construct and return a value of the type defined by that
class (sometimes known as an instance of that class). If the class is part of a
package, then the constructor call may be qualified by the package name.

Example constructors:

File('Dan.yr.Ogof')
java.io.File('Speleogroup.letter')
Rexx('some words')
netrexx.lang.Rexx(1)

There will always be at least one constructor if values can be created for a
class. NetRexx will add a default public constructor that takes no arguments
if no constructors are provided, unless the components of the class are all
static or constant, or the class is an interface class.

All constructors follow the same rules as other methods, and in addition:

1. Constructor calls always include parentheses in the syntax, even if no
arguments are supplied. This distinguishes them from a reference to
the type of the same name.

2. Constructors must call a constructor of their superclass (the class they
extend) before they carry out any initialization of their own This is so
any initialization carried out by the superclass takes place, and at the
appropriate moment. Only after this call is complete can they make any
reference to the special words this or super (see page 90).

Therefore, the first instruction in a constructor must be either a call to
the superclass, using the special constructor super() (with optional
arguments), or a call to to another constructor in the same class, using
the special constructor this() (with optional arguments). In the latter
case, eventually a constructor that explicitly calls super() will be
invoked and the chain of local constructor calls ends.

As a convenience, NetRexx will add a default call to super(), with no
arguments, if the first instruction in a constructor is not a call to
this() or super().

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

24 NetRexx Language Definition Part 1

3. The properties of a constructed value are initialized, in the order given
in the program, after the call to super() (whether implicit or explicit).

4. By definition, constructors create a value (object) whose type is defined
by the current class, and then return that value for use. Therefore, the
returns keyword on the method instruction (see page 65) that introduces
the constructor is optional (if given, the type specified must be that of
the class). Similarly, the only possible forms of the return instruction
used in a constructor are either “return this;”, which returns the
value that has just been constructed, or just “return;”, in which case,
the “this” is assumed (this form will be assumed at the end of a
method, as usual, if necessary).

Here is an example of a class with two constructors, showing the use of
this() and super(), and taking advantage of some of the assumptions:

class MyChars extends SomeClass

 properties private
/* the data 'in' the object */

 value=char[]

/* construct the object from a char array */
 method MyChars(array=char[])

/* initialize superclass */
 super()

value=array –– save the value

/* construct the object from a String */
 method MyChars(s=String)

/* convert to char[] and use the above */
 this(s.toCharArray())

Objects of type MyChars could then be created thus:

myvar=MyChars("From a string")

or by using an argument that has type char[].

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 7 Type conversions 25

SECTION 7: TYPE CONVERSIONS

As described in the section on Types and classes (see page 11), all values that
are manipulated in NetRexx have an associated type. On occasion, a value
involved in some operation may have a different type than is needed, and in
this case conversion of a value from one type to another is necessary.

NetRexx considerably simplifies the task of programming, without losing
robustness, by making many such conversions automatic. It will automat-
ically convert values providing that there is no loss of information caused by
the automatic conversion (or if there is, an exception would be raised).

Conversions can also be made explicit by concatenating a type (see page 32)
to a value and in this case less robust conversions (sometimes known as
casts) may be effected. See below for details of the permitted automatic and
explicit conversions.

Almost all conversions carry some risk of failure, or have a performance cost,
and so it is expected that implementations will provide options to either
report costly conversions or require that programmers make all conversions
explicit.15 Such options might be recommended for certain critical program-
ming tasks, but are not necessary for general programming.

Permitted automatic conversions

In general, the semantics of a type is unknown, and so conversion (from a
source type to a target type) is only possible in the following cases:

• The target type and the source type are identical (the trivial case).

• The target type is a superclass of the source type, or is an interface class
implemented by the source type. This is called type simplification, and in
this case the value is not altered, no information is lost, and an explicit
conversion may be used later to revert the value to its original type.

• The source type has a dimension, and the target type is Object.

• The source type is null and the target type is not primitive.

• The target and source types have known semantics (that is, they are
“well-known” to the implementation) and the conversion can be effected
without loss of information (other than knowledge of the original type).
These are called well–known conversions.

Necessarily, the well-known conversions are implementation-dependent, in
that they depend on the standard classes for the implementation and on the
primitive types supported (if any). Equally, it is this automatic conversion

15 In the reference implementation, options strictassign may be used to disallow auto-
matic conversions.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

26 NetRexx Language Definition Part 1

between strings and the primitive types of an implementation that offer the
greatest simplifications of NetRexx programming.

For example, if the implementation supported an int binary type (perhaps
a 32-bit integer) then this can safely be converted to a NetRexx string (of type
Rexx). Hence a value of type int can be added to a number which is a
NetRexx string (resulting in a NetRexx string) without concern over the dif-
ference in the types of the two terms used in the operation.

Conversely, converting a long integer to a shorter one without checking for
truncation of significant digits could cause a loss of information and would
not be permitted.

In the reference implementation, the semantics of each of the following types
is known to the language processor (the first four are all string types, and the
remainder are known as binary numbers):

• netrexx.lang.Rexx – the NetRexx string class

• java.lang.String – the Java string class

• char – the Java primitive which represents a single character

• char[] – an array of chars

• boolean – a single-bit primitive

• byte, short, int, long, – signed integer primitives (8, 16, 32, or 64 bits)

• float, double – floating-point primitives (32 or 64 bits)

Under the rules described above, the following well-known conversions are
permitted:

• Rexx to binary number, char[], String, or char

• String to binary number, char[], Rexx, or char

• char to binary number, char[], String, or Rexx

• char[] to binary number, Rexx, String, or char

• binary number to Rexx, String, char[], or char

• binary number to binary number (if no loss of information can take
place – no sign, high order digits, decimal part, or exponent information
would be lost)

Notes:

1. Some of the conversions can cause a run-time error (exception), as when
a string represents a number that is too large for an int and a conver-
sion to int is attempted, or when a string that does not contain exactly
one character is converted to a char.

2. The boolean primitive is treated as a binary number that may only take
the values 0 or 1. A boolean may therefore be converted to any binary

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 7 Type conversions 27

number type, as well as any of the string (or char) types, as the character
“0” or “1”. Similarly, any binary number or string can be converted to
boolean (and must have a value of 0 or 1 for the conversion to succeed).

3. The char type is a single-character string (it is not a number that
represents the encoding of the character).

Permitted explicit conversions

Explicit conversions are permitted for all permitted automatic conversions
and, in addition, when:

• The target type is a subclass of the source type, or implements the
source type. This conversion will fail if the value being converted was
not originally of the target type (or a subclass of the target type).

• Both the source and target types are primitive and (depending on the
implementation), the conversion may fail or truncate information.

• The target type is Rexx or a well-known string type (all values have an
explicit string representation).

Costs of conversions

All conversions are considered to have a cost, and, for permitted automatic
conversions, these costs are used to select a method for execution when
several possibilities arise, using the algorithm described in Methods and
Constructors (see page 20).

For permitted automatic conversions, the cost of a conversion from a source

type to a target type will range from zero through some arbitrary positive value,
constrained by the following rules:

• The cost is zero only if the source and target types are the same, or if
the source type is null and the target type is not primitive.

• Conversions from a given primitive source type to different primitive
target types should have different costs. For example, conversion of an
8-bit number to a 64-bit number might cost more than conversion of a
8-bit number to a 32-bit number.

• Conversions that may require the creation of a new object cost more
than those that can never require the creation of a new object.

• Conversions that may fail (raise an exception) cost more than those that
may require the creation of an object but can never fail.

Within these constraints, exact costs are arbitrary, and (because they mostly
involve implementation-dependent primitive types) are necessarily imple-
mentation-dependent. The intent is that the “best performance” method be
selected when there is a possibility of more than one.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

28 NetRexx Language Definition Part 1

SECTION 8: EXPRESSIONS AND OPERATORS

Many clauses can include expressions. Expressions in NetRexx are a general
mechanism for combining one or more data items in various ways to produce
a result, usually different from the original data.

Expressions consist of one or more terms (see page 13), such as literal strings,
symbols, method calls, or sub-expressions, and zero or more operators that
denote operations to be carried out on terms. Most operators act on two
terms, and there will be at least one of these dyadic operators between every
pair of terms.16 There are also prefix (monadic) operators, that act on the term
that is immediately to the right of the operator. There may be one or more
prefix operators to the left of any term, provided that adjacent prefix opera-
tors are different.

Evaluation of an expression is left to right, modified by parentheses and by
operator precedence (see page 34) in the usual “algebraic” manner.
Expressions are wholly evaluated, except when an error occurs during eval-
uation.

As each term is used in an expression, it is evaluated as appropriate and its
value (and the type of that value) are determined.

The result of any operation is also a value, which may be a character string,
a data object of some other type, or (in special circumstances) a binary rep-
resentation of a character or number. The type of the result is well-defined,
and depends on the types of any terms involved in an operation and the
operation carried out. Consequently, the result of evaluating any expression
is a value which has a known type.

Note that the NetRexx language imposes no restriction on the maximum size
of results, but there will usually be some practical limitation dependent upon
the amount of storage and other resources available during execution.

Operators

The operators in NetRexx are constructed from one or more operator charac-
ters (see page 8). Blanks (and comments) adjacent to operator characters
have no effect on the operator, and so the operators constructed from more
than one character may have embedded blanks and comments. In addition,
blank characters, where they occur between tokens within expressions but
are not adjacent to another operator, also act as an operator.

The operators may be subdivided into five groups: concatenation, arithmetic,
comparative, logical, and type operators. The first four groups work with
terms whose type is “well-known” (that is, strings, or known types that can

16 One operator, direct concatenation, is implied if two terms abut (see page 29).

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 8 Expressions and Operators 29

be be converted to strings without information loss). The operations in these
groups are defined in terms of their operations on strings.

Concatenation

The concatenation operators are used to combine two strings to form one
string by appending the second string to the right-hand end of the first
string. The concatenation may occur with or without an intervening
blank:

(blank) Concatenate terms with one blank in between.

|| Concatenate without an intervening blank.

(abuttal) Concatenate without an intervening blank.

Concatenation without a blank may be forced by using the || operator,
but it is useful to remember that when two terms are adjacent and are
not separated by an operator,17 they will be concatenated in the same
way. This is the abuttal operation. For example, if the variable Total
had the value '37.4', then Total'%' would evaluate to '37.4%'.

Values that are not strings are first converted to strings before concat-
enation.

Arithmetic

Character strings that are numbers (see page 33) may be combined
using the arithmetic operators:

+ Add.

- Subtract.

* Multiply.

/ Divide.

% Integer divide.
Divide and return the integer part of the result.

// Remainder.
Divide and return the remainder (this is not modulo, as the
result may be negative).

** Power.
Raise a number to a whole number power.

Prefix - Same as the subtraction: “0–number”.

Prefix + Same as the addition: “0+number”.

17 This can occur when the terms are syntactically distinct (such as a literal string
and a symbol).

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

30 NetRexx Language Definition Part 1

The section on Numbers and Arithmetic (see page 102) describes
numeric precision, the format of valid numbers, and the operation rules
for arithmetic. Note that if an arithmetic result is shown in exponential
notation, then it is likely that rounding has occurred.

In binary classes (see page 48), the arithmetic operators will use binary
arithmetic if both terms involved have values which are binary num-
bers. The section on Binary values and operations (see page 114)
describes binary arithmetic.

Comparative

The comparative operators compare two terms and return the value '1'
if the result of the comparison is true, or '0' otherwise. Two sets of
operators are defined: the strict comparisons and the normal comparisons.

The strict comparative operators all have one of the characters defining
the operator doubled. The “==”, and “\==” operators test for strict
equality or inequality between two strings. Two strings must be iden-
tical to be considered strictly equal. Similarly, the other strict compar-
ative operators (such as “>>” or “<<”) carry out a simple left-to-right
character-by-character comparison, with no padding of either of the
strings being compared. If one string is shorter than, and is a leading
sub-string of, another then it is smaller (less than) the other. Strict
comparison operations are case sensitive, and the exact collating order
may depend on the character set used for the implementation.18

For all the other comparative operators, if both the terms involved are
numeric,19 a numeric comparison (in which leading zeros are ignored,
etc.) is effected; otherwise, both terms are treated as character strings.
For this character string comparison, leading and trailing blanks are
ignored, and then the shorter string is padded with blanks on the right.
The character comparison operation takes place from left to right, and
is not case sensitive (that is, “Yes” compares equal to “yes”). As for
strict comparisons, the exact collating order may depend on the charac-
ter set used for the implementation.

The comparative operators return true ('1') if the terms are:

Normal comparative operators:

= Equal (numerically or when padded, etc.).

\= Not equal (inverse of =).

> Greater than.

18 For example, in an ASCII or Unicode environment, the digits 0-9 are lower than
the alphabetics, and lowercase alphabetics are higher than uppercase alphabetics.
In an EBCDIC environment, lowercase alphabetics precede uppercase, but the
digits are higher than all the alphabetics.

19 That is, if they can be compared numerically without error.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 8 Expressions and Operators 31

< Less than.

><, <> Greater than or less than (same as “Not equal”).

>=, \< Greater than or equal to, not less than.

<=, \> Less than or equal to, not greater than.

Strict comparative operators:

== Strictly equal (identical).

\== Strictly not equal (inverse of ==).

>> Strictly greater than.

<< Strictly less than.

>>=, \<< Strictly greater than or equal to, strictly not less than.

<<=, \>> Strictly less than or equal to, strictly not greater than.

The equal and not equal operators (“=”, “==”, “\=”, and “\==”) may be
used to compare two objects which are not strings for equality, if the
implementation allows them to be compared (usually they will need to
be of the same type). The strict operators test whether the two objects
are in fact the same object,20 and the normal operators may provide a
more relaxed comparison, if available to the implementation.21

In binary classes (see page 48), all the comparative operators will use
binary arithmetic to effect the comparison if both terms involved have
values which are binary numbers. In this case, there is no distinction
between the strict and the normal comparative operators. The section
on Binary values and operations (see page 114) describes the binary
arithmetic used for comparisons.

Logical (Boolean)

A character string is taken to have the value “false” if it is '0', and
“true” if it is '1'. The logical operators take one or two such values
(values other than '0' or '1' are not allowed) and return '0' or '1'
as appropriate:

& And.
Returns 1 if both terms are true.

| Inclusive or.
Returns 1 if either term is true.

20 Note that two distinct objects compared in this way may contain values (properties)
that are identical, yet they will not compare equal as they are not the same object.

21 In the reference implementation, the equals method is used for normal compar-
isons. Where not provided by a type, this is implemented by the Object class as a
strict comparison.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

32 NetRexx Language Definition Part 1

&& Exclusive or.
Returns 1 if either (but not both) is true.

Prefix \ Logical not.
Negates; 1 becomes 0 and vice versa.

In binary classes (see page 48), the logical operators will act on all bits
in the values if both terms involved have values which are boolean or
integers. The section on Binary values and operations (see page 114)
describes this in more detail.

Type

Several of the operators already described can be used to carry out
operations related to types. Specifically:

• Any of the concatenation operators may be used for type concat-

enation, which concatenates a type to a value. All three operators
(blank, “||”, and abuttal) have the same effect, which is to convert
(see page 25) the value to the type specified (if the conversion is
not possible, an error is reported or an exception is signalled). The
type must be on the left-hand side of the operator.

Examples:

String "abc"
int (a+1)
long 1
Exception e
InputStream myfile

• The “less than or equal” and the “greater than or equal” operators
(“<=” and “>=”) may be used with a type on either side of the
operator, or on both sides. In this case, they test whether a value
or type is a subclass of, or is the same as, a type, or vice versa.

Examples:

if i<=Object then say 'I is an Object'
if String>=i then say 'I is a String'
if String<=Object then say 'String is an Object'

The precedence of these operators is not affected by their being used
with types as operands.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 8 Expressions and Operators 33

Numbers

The arithmetic operators above require that both terms involved be numbers;
similarly some of the comparative operators carry out a numeric comparison
if both terms are numbers.

Numbers are introduced and defined in detail in the section on Numbers and
arithmetic (see page 102). In summary, numbers are character strings con-
sisting of one or more decimal digits optionally prefixed by a plus or minus
sign, and optionally including a single period (“.”) which then represents a
decimal point. A number may also have a power of ten suffixed in conven-
tional exponential notation: an “E” (uppercase or lowercase) followed by a plus
or minus sign then followed by one or more decimal digits defining the power
of ten.

Numbers may have leading blanks (before and/or after the sign, if any) and
may have trailing blanks. Blanks may not be embedded among the digits of
a number or in the exponential part.

Examples:

'12'
'–17.9'
'127.0650'
'73e+128'
' + 7.9E5 '
'0E000'

Note that the sequence –17.9 (without quotes) in an expression is not simply
a number. It is a minus operator (which may be prefix minus if there is no
term to the left of it) followed by a positive number. The result of the oper-
ation will be a number.

A whole number (see page 111) in NetRexx is a number that has a zero (or no)
decimal part.

Implementation minimum: All implementations must support 9-digit
arithmetic. In unavoidable cases this may be limited to integers only, and in
this case the divide operator (“/”) must not be supported. If exponents are
supported in an implementation, then they must be supported for exponents
whose absolute value is at least as large as the largest number that can be
expressed as an exact integer in default precision, i.e., 999999999.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

34 NetRexx Language Definition Part 1

Parentheses and operator precedence

Expression evaluation is from left to right; this is modified by parentheses
and by operator precedence:

• When parentheses are encountered, other than those that identify
method calls (see page 19), the entire sub–expression delimited by the
parentheses is evaluated immediately when the term is required.

• When the sequence

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than
operator1, then the operation (term2 operator2 term3) is evaluated
first. The same rule is applied repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in
the expression (that is, as soon as they are encountered). It is only the
order of operations that is affected by the precedence rules.

For example, “*” (multiply) has a higher precedence than “+” (add), so
3+2*5 will evaluate to 13 (rather than the 25 that would result if strict left
to right evaluation occurred). To force the addition to be performed before the
multiplication the expression would be written (3+2)*5, where the first
three tokens have been formed into a sub-expression by the addition of
parentheses.

The order of precedence of the operators is (highest at the top):

Prefix operators

+ – \

Power operator

**

Multiplication and division

* / % //

Addition and subtraction

+ –

Concatenation

(blank) || (abuttal)

Comparative operators

= == > < <= >= << \>> etc.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 8 Expressions and Operators 35

And

&

Or, exclusive or

| &&

If, for example, the symbol a is a variable whose value is '3', and day is a
variable with the value 'Monday', then:

a+5 == '8'
a–4*2 == '–5'
a/2 == '1.5'
a%2 == '1'
0.5**2 == '0.25'
(a+1)>7 == '0' /* that is, False */
' '='' == '1' /* that is, True */
' '=='' == '0' /* that is, False */
' '\=='' == '1' /* that is, True */
(a+1)*3=12 == '1' /* that is, True */
'077'>'11' == '1' /* that is, True */
'077'>>'11' == '0' /* that is, False */
'abc'>>'ab' == '1' /* that is, True */
'If it is' day == 'If it is Monday'
day.substr(2,3) == 'ond'
'!'day'!' == '!Monday!'

Note: The NetRexx order of precedence usually causes no difficulty, as it is
the same as in conventional algebra and other computer languages. There
are two differences from some common notations; the prefix minus operator
always has a higher priority than the power operator, and power operators
(like other operators) are evaluated left-to-right. Thus

–3**2 == 9 /* not –9 */
–(2+1)**2 == 9 /* not –9 */
2**2**3 == 64 /* not 256 */

These rules were found to match the expectations of the majority of users
when the Rexx language was first designed, and NetRexx follows the same
rules.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

36 NetRexx Language Definition Part 1

SECTION 9: CLAUSES AND INSTRUCTIONS

Clauses (see page 4) are recognized, and can usefully be classified, in the
following order:

Null clauses

A clause that is empty or comprises only blanks, comments, and con-
tinuations is a null clause and is completely ignored by NetRexx (except
that if it includes a comment it will be traced, if reached during exe-
cution).

Note: A null clause is not an instruction, so (for example) putting an
extra semicolon after the then or else in an if instruction is not equiv-
alent to putting a dummy instruction (as it would be in C or PL/I). The
nop instruction is provided for this purpose.

Assignments

Single clauses within a class and of the form term=expression; are
instructions known as assignments (see page 37). An assignment gives
a variable, identified by the term, a type or a new value.

In just one context, where property assignments are expected (before the
first method in a class), the “=” and the expression may be omitted; in
this case, the term (and hence the entire clause) will always be a simple
non-numeric symbol which names the property

Method call instructions

A method call instruction (see page 20) is a clause within a method that
comprises a single term that is, or ends in, a method invocation.

Keyword instructions

A keyword instruction consists of one or more clauses, the first of which
starts with a non-numeric symbol which is not the name of a variable
or property in the current class (if any) and is immediately followed by
a blank, a semicolon (which may be implied by the end of a line), a literal
string, or a operator (other than “=”, which would imply an assignment).
This symbol, the keyword, identifies the instruction.

Keyword instructions control the external interfaces, the flow of control,
and so on. Some keyword instructions (see page 45) (do, if, loop, or
select) can include nested instructions.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 10 Assignments and Variables 37

SECTION 10: ASSIGNMENTS AND VARIABLES

A variable is a named item whose value may be changed during the course of
execution of a NetRexx program. The process of changing the value of a
variable is called assigning a new value to it.

Each variable has an associated type, which cannot change during the exe-
cution of a program; therefore, the values assigned to a given variable must
always have a type that can safely be assigned to that variable.

Variables may be assigned a new value by the method or parse instructions,
but the most common way of changing the value of a variable is by using an
assignment instruction. Any clause within a class and of the form:

assignment ;

where assignment is:

term = expression

is taken to be an assignment instruction. The result of the expression
becomes the new value of the variable named by the term to the left of the
equals sign. When the term is simply a symbol, this is called the name of the
variable.

Example:

/* Next line gives FRED the value 'Frederic' */
fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9).22

Within a NetRexx program, variable names are not case-sensitive (for exam-
ple, the names fred, Fred, and FRED refer to the same variable). Where
public names are exposed (for example, the names of properties, classes, and
methods, and in cross-reference listings) the case used for the name will be
that used when the name was first introduced (“first” is determined statically
by position in a program rather than dynamically).

Similarly, the type of a NetRexx variable is determined by the type of the
value of the expression that is first assigned to it.23 For subsequent assign-
ments, it is an error to assign a value to a variable with a type mismatch

22 Without this restriction on the first character of a variable name, it would be pos-
sible to redefine a number, in that for example the assignment “3=4;” would give
a variable called “3” the value '4'.

23 Since NetRexx infers the type of a variable from usage, substantial programs can
be written without introducing explicit type declarations, although these are
allowed.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

38 NetRexx Language Definition Part 1

unless the language processor can determine that the value can be assigned
safely to the type of the variable.

In practice, this means that the types must match exactly, be a simplification,
or both be “well-known” types such as Rexx, String, int, etc., for which safe
conversions are defined. The possibilities are described in the section on
Conversions (see page 25).24

For example, if there are types (classes) called ibm.util.hex, RunKnown,
and Window, then:

hexy=ibm.util.hex(3) –– 'hexy' has type 'ibm.util.hex'
rk=RunKnown() –– 'rk' has type 'RunKnown'
fred=Window(10, 20) –– 'fred' has type 'Window'
s="Los Lagos" –– 's' has type 'Rexx'
j=5 –– 'j' has type 'Rexx'

The first three examples invoke the constructor method for the type to con-
struct a value (an object). A constructor method always has the same name
as the class to which it belongs, and returns a new value of that type. Con-
structor methods are described in detail in Methods and Constructors (see
page 19).

The last two examples above illustrate that, by default, the types of literal
strings and numbers are NetRexx strings (type Rexx) and so variables tend
to be of type Rexx. This simplifies the language and makes it easy to learn,
as many useful programs can be written solely using the powerful Rexx type.
Potentially more efficient (though less human-oriented) primitive or built-in
types for literals will be used in binary classes (see page 48).

If the examples above were in a binary class, then, in the reference implemen-
tation, the types of s and j would have been java.lang.String and int
respectively.

A variable may be introduced (“declared”) without giving it an initial value
by simply assigning a type to it:

i=int
r=Rexx
f=java.io.File

Here, the expression to the right of the “=” simply evaluates to a type with
no value.

24 Implementations may provide for a stricter rule for assignment (where the types
must be identical), controlled by the options instruction.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 10 Assignments and Variables 39

The use and scope of variables

NetRexx variables all follow the same rules of assignment, but are used in
different contexts. These are:

Properties

Variables which name the values (the data) owned by an object of the
type defined by the class are called properties. When an object is con-
structed by the class, its properties are created and are initialized to
either a default value (null or, for variables of primitive type, an
implementation-defined value, typically 0) or to a value provided by the
programmer.

The attributes of properties can be changed by the properties instruction
(see page 77). For example, properties may also be constant, which
means that they are initialized when the class is first loaded and do not
change thereafter.

Method arguments

When a method is invoked, arguments may be passed to it. These
method arguments are assigned to the variables named on the method

instruction (see page 65) that introduces the method.

Local variables

Variables that are known only within a method are called local variables;
each time a method is invoked a distinct set of local variables is avail-
able. Local variables are normally given an initial value by the pro-
grammer. If they are not, they are initialized to a default value (null
or, for variables of primitive type, an implementation-defined value,
typically 0).

In order for types to be determined and type-checking to be possible at
“compile-time”, and easily determined by inspection, the use and type of every
variable is determined by its position in the program, not by the order in
which assignments are executed. That is, variable typing is static.

The visibility of a variable depends on its use. Properties are visible to all
methods in a class; method arguments and local variables are only visible
within the method in which they appear. In particular:

• Within a class, properties have unique names (they cannot be overrid-
den by method arguments or by local variables within methods); this
avoids error-prone ambiguity.

• Within a method, a method argument acts like a local variable (that is,
it is in the same name-space as local variables, and can be assigned new
values); it can be considered to be a local variable that is assigned a
value just before the body of the method is executed. There cannot be
both a method argument and a local variable in a method with the same
name.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

40 NetRexx Language Definition Part 1

• Within methods, variables can take only one type, the type assigned to
them when first encountered in the method (in a strict “physical” sense,
that is, as parsed from top to bottom of the program and from left to
right on each line). Since methods tend to be small, there is no local
scoping of variables inside the constructs within a method.25

Thus, in this example:

method iszero(x)
if x=0 then qualifier='is zero'

else qualifier='is not zero'
say 'The argument' qualifier'.'

the variable qualifier is known throughout the method and hence has
a known type and value when the say instruction is executed.

To summarize: a symbol that names a variable in the current class either
refers to a property (and in any use of it within the class refers to that prop-
erty), or it refers to a variable that is unique within a method (and any use
of the name within that method refers to the same variable).

Note: A variable is just a name, or “handle” for a value. It is possible for
more than one variable to refer to the same value, as in the program:

first='A string'
second=first

Here, both variables refer to the same value. If that value is changeable then
a change to the value referred to by one of the variable names would also be
seen if the value is referred to by the other. For example, sub-values of a
NetRexx string can be changed, using Indexed references (see page 42), so a
change to a sub-value of first would also be seen in an identical indexed
reference to second.

Terms on the left of assignments

In an assignment instruction, the term to the left of the equals sign is most
commonly a simple non-numeric symbol, which always names a variable in
the current class. The other possibilities, as seen in the example below, are:

1. The term is an indexed reference (see page 42), to an existing variable
that refers to a string of type Rexx or an array (see page 43). The var-
iable may be in the current class, or be a property in a class named in
the uses phrase of the class instruction for the current class.

2. The term is a compound term (see page 14) that ultimately refers to a
property (see above) in some class (which may be the current class).
This property cannot be a constant.

25 Unlike the block scoping of PL/I, C, or Java.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 10 Assignments and Variables 41

Examples:

r=Rexx ''
r['foo']='?' –– indexed string assignment
s=String[3]
s[0]='test' –– array assignment
Sample.value=1 –– property assignment
this.value=1 –– property assignment
super.value=1 –– property assignment

The last two examples show assignments to a property in the current class
or in a superclass of the current class, respectively. Note that references to
properties in other classes must alway be qualified in some way (for example,
by the prefix super.). The use of the prefix this. for properties in the
current class is optional.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

42 NetRexx Language Definition Part 1

SECTION 11: INDEXED STRINGS AND ARRAYS

Any NetRexx string (that is, a value of type Rexx), has the ability to have
sub–values, values (also of type Rexx) which are associated with the original
string and are indexed by an index string which identifies the sub-value. Any
string with such sub-values is known as an indexed string.

The sub-values of a NetRexx string are accessed using indexed references,
where the name of a variable of type Rexx is followed immediately by square
brackets enclosing one or more expressions separated by commas:26

symbol '['

expression

, expression ... ']'

It is important to note that the symbol that names the variable must be fol-
lowed immediately by the “[”, with no blank in between, or the construct will
not be recognized as an indexed reference.

The expressions (separated by commas) between the brackets are called the
indexes to the string. These index expressions are evaluated in turn from left
to right, and each must evaluate to a value is of type Rexx or that can be
converted to type Rexx.

The resulting index strings are taken “as-is” – that is, they must match
exactly in content, case, and length for a reference to find a previously-set
item. They may have any length (including the null string) and value (they
are not constrained to be just those strings which are numbers, for example).

If a reference does not find a sub-value, then the non-indexed value of the
variable is used.

Example:

surname='Unknown' –– default value
surname['Fred']='Bloggs'
surname['Davy']='Jones'
try='Fred'
say surname[try] surname['Bert']

would say “Bloggs Unknown”.

When multiple indexes are used, they indicate accessing a hierarchy of
strings. A single NetRexx string has a single set of indexes and subvalues
associated with it. The sub-values, however, are also NetRexx strings, and
so may in turn have indexes and sub-values. When more than one index is
specified in an indexed reference, the indexes are applied in turn from left to
right to each retrieved sub-value.

26 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 11 Indexed strings and Arrays 43

For example, in the sequence:

x='?'
x['foo', 'bar']='OK'
say x['foo', 'bar']
y=x['foo']
say y['bar']

both say instructions would display the string “OK”.

Indexed strings may be used to set up “associative arrays”, or dictionaries, in
which the subscript is not necessarily numeric, and thus offer great scope for
the creative programmer. A useful application is to set up a variable in which
the subscripts are taken from the value of one or more variables, so effecting
a form of associative (content addressable) memory. The justone program (see
page &refjust1.) is an example of this technique.

Notes:

1. A variable of type Rexx must have been assigned a value before indexing
is used on it. This is the value that is used as the default value when-
ever an indexed reference finds no sub-value.

2. The indexes, and hence the sub-values, of a Rexx object can be retrieved
in turn using the over (see page 61) keyword of the loop instruction.

3. The exists method (see page 128) of the Rexx class may be used to test
whether an indexed reference has an explicitly-set value.

4. Assigning null to an indexed reference (for example, the assignment
switch[7]=null;) drops the sub-value; until set to a new value, any
reference to the sub-value (including use of the exists method) will
return the same result as when it had never been set.

Arrays

In addition to indexed strings, NetRexx also includes the concept of fixed-size
arrays, which may be used for indexing values of any type (including strings).

Arrays are used with the same syntax and in the same manner as indexed
strings, but with important differences that allow for compact implementa-
tions and access to equivalent data structures constructed using other pro-
gramming languages:

1. The indexes for arrays must be whole numbers that are zero or positive.
There will usually be an implementation restriction on the maximum
value of the index (typically 999999999 or higher).

2. The elements of an array are considered to be ordered; the first element
has index 0, the second 1, and so on.

3. An array is of fixed size; it must be constructed before use.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

44 NetRexx Language Definition Part 1

4. Variables that are assigned arrays can only be assigned arrays (of the
same dimension, see below) in the future. That is, being an array
changes the type of a value; it becomes a dimensioned type (see page 12).

Array references use the NetRexx indexed reference syntax defined above. The
same syntax is used for constructing arrays, except that the symbol before the
left bracket describes a type (and hence may be qualified by a package name).
The expression or expressions between the brackets indicate the size of the
array in each dimension, and must be a positive whole number or zero:

arg=String[4] –– makes an array for four Strings
arg=java.io.File[4] –– makes an array for four Files
i=int[3] –– makes an array for three 'int's

(Another way of describing this is that array constructors look just like other
object constructors, except that brackets are used instead of parentheses.)

Once an array has been constructed, its elements can be referred to using
brackets and expressions, as before:

i[2]=3 –– sets the '2'–indexed value of 'i'
j=i[2] –– sets 'j' to the '2'–indexed value of 'i'

Regular multiple-dimensioned arrays may be constructed and referenced by
using multiple expressions within the brackets:

i=int[2,3] –– makes a 2x3 array of 'int' type objects
i[2,2]=3 –– sets the '2,2'–indexed value of 'i'
j=i[2,2] –– sets 'j' to the '2,2'–indexed value of 'i'

As with indexed strings, when multiple indexes are used, they indicate
accessing a hierarchy of arrays (the underlying model is therefore of a hier-
archy of single-dimensioned arrays). When more than one index is specified
in an indexed reference to an array, the indexes are applied in turn from left
to right to each array.

As described in the section on Types (see page 11), the type of a variable that
refers to an array can be set (declared) by assignment of the type with array
notation that indicates the dimension of an array without any sizes:

k=int[] –– one–dimensional array of 'int' objects
m=float[,,] –– 3–dimensional array of 'float' objects

The same syntax is also used when describing an array type in the arguments
of a method instruction or when converting types. For example, after:

gg=char[] "Horse"

the variable gg has as its value an array of type char[] containing the five
characters H, o, r, s, and e.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 12 Keyword Instructions 45

SECTION 12: KEYWORD INSTRUCTIONS

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions affect the
flow of control; the remainder just provide services to the programmer. Some
keyword instructions (do, if, loop, or select) can include nested instructions.

As can be deduced from the syntax rules described earlier, a keyword
instruction is recognized only if its keyword is the first token in a clause, and
if the second token is not an “=” character (implying an assignment). It would
also not be recognized if the second token started with “(”, “[”, or “.”
(implying that the first token starts a term).

Further, if a current local variable, method argument, or property has the
same name as a keyword then the keyword will not be recognized. This
important rule allows NetRexx to be extended with new keywords in the
future without invalidating existing programs.

Thus, for example, this sequence in a program with no say variable:

say 'Hello'
say('1')
say=3
say 'Hello'

would be a say instruction, a call to some say method, an assignment to a
say variable, and an error.

In NetRexx, therefore, keywords are not reserved; they may be used as the
names of variables (though this is not recommended, where known in
advance).

Certain other keywords, known as sub–keywords, may be known within the
clauses of individual instructions – for example, the symbols to and while in
the loop instruction. Again, these are not reserved; if they had been used as
names of variables, they would not be recognized as sub-keywords.

Blanks adjacent to keywords have no effect other than that of separating the
keyword from the subsequent token. For example, this applies to the blanks
next to the sub-keyword while in

loop while a=3

Here at least one blank was required to separate the symbols forming the
keywords and the variable name, a. However the blank following the while

is not necessary in

loop while 'Me'=a

though it does aid readability.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

46 NetRexx Language Definition Part 1

SECTION 13: CLASS INSTRUCTION

class name

visibility

modifier

binary

extends classname

uses useslist

implements interfacelist ;

where visibility is one of:

private

public

and modifier is one of:

abstract
final
interface

and useslist and interfacelist are lists of one or more classnames, sepa-
rated by commas.

The class instruction is used to introduce a class, as described in the sections
Types and Classes (see page 11) and Program structure (see page 87), and
define its attributes. The class must be given a name, which must be differ-
ent from the name of any other classes in the program. The name, which
must be a non-numeric symbol, is known as the short name of the class.

A classname can be either the short name of a class (if that is unambiguous
in the context in which it is used), or the qualified name of the class – the
name of the class prefixed by a package name and a period, as described
under the package instruction (see page 75).

The body of the class consists of all clauses following the class instruction (if
any) until the next class instruction or the end of the program.

The visibility, modifier, and binary keywords, and the extends, uses, and
implements phrases, may appear in any order.

Visibility

Classes may be public or private:

• A public class is visible to (that is, may be used by) all other classes.

• A private class is visible only within same program and to classes in the
same package (see page 75).

A program may have only one public class, and if no class is marked public
then the first is assumed to be public (unless it is explicitly marked private).

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 13 Class instruction 47

Modifier

Most classes are collections of data (properties) and the procedures that can
act on that data (methods); they completely implement a datatype (type), and
are permitted to be subclassed. These are called standard classes. The modifier

keywords indicate that the class is not a standard class – it is special in some
way. Only one of the following modifier keywords is allowed:

abstract

An abstract class does not completely implement a datatype; one or more
of the methods that it defines (or which it inherits from classes it
extends or implements) is abstract – that is, the name of the method
and the types of its arguments are defined, but no instructions to
implement the method are provided.

Since some methods are not provided, an object cannot be constructed
from an abstract class. Instead, the class must be extended and any
missing methods provided. Such a subclass can then be used to con-
struct an object.

Abstract classes are useful where many subclasses can share common
data or methods, but each will have some unique attribute or attributes
(data and/or methods). For example, some set of geometric objects
might share dimensions in X and Y, yet need unique methods for cal-
culating the area of the object.

final

A final class is considered to be complete; it cannot be subclassed
(extended), and all its methods are considered complete.27

interface

An interface class is an abstract class that contains only abstract method
definitions and/or constants. That is, it defines neither instructions
that implement methods nor modifiable properties, and hence cannot
be used to construct an object.

Interface classes are used by classes that claim to implement them (see
the implements keyword, described below). The primary difference
between abstract and interface classes is that the former may have
methods which are not abstract, and hence can only be subclassed
(extended), whereas the latter are wholly abstract and may only be
implemented.

Interface classes may not be private; any properties in an interface class
are both public and constant.

27 This modifier is provided for consistency with other languages, and may allow
compilers to improve the performance of classes that refer to the final class. In
many cases it will reduce the reusability of the class, and hence should be avoided.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

48 NetRexx Language Definition Part 1

Binary

The keyword binary indicates that the class is a binary class. In binary classes,
literal strings and numeric symbols are assigned native string or binary
(primitive) types, rather than NetRexx types, and native binary operations
are used to implement operators where possible. When binary is not in effect
(the default), terms in expressions are converted to NetRexx types before use
by operators. The section Binary values and operations (see page 114)
describes the implications of binary classes in detail.

Extends

Classes form a hierarchy, with all classes (except the top of the tree, the
Object28 class) being a subclass of some other class. The extends keyword
identifies the classname of the immediate superclass of the new class – that
is, the class immediately above it in the hierarchy. If no extends phrase is
given, the superclass is assumed to be Object (or null, in the case where
the current class is Object).

Uses

The uses keyword introduces a list of the names of one or more classes that
will be used as a source of constant (or static) properties and/or methods.

When a term (see page 13) starts with a symbol, method call, or indexed ref-
erence that is not known in the current context, each class in the useslist and
its superclasses are searched (in the order specified in the useslist) for a
constant or static method or property that matches the item. If found, the
method or property is used just as though explicitly qualified by the name of
the class in which it was found.

The uses mechanism affects only the syntax of terms in the current class; it
is not inherited by subclasses of the current class.

Implements

The implements keyword introduces a list of the names of one or more inter-
face classes (see above). These interface classes are then known to (inherited
by) the current class, in the order specified in the interfacelist. Their methods
(which are all abstract) and constant properties act as though part of the
current class, unless they are overridden (hidden) by a method or constant
of the same name in the current class.

If the current class is not an interface class then it must implement (provide
non-abstract methods for) all the methods inherited from the interface classes
in the implements list.

Interface classes, therefore, can be used to:

28 In the reference implementation, java.lang.Object.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 14 Do instruction 49

1. Define a common set of methods (possibly with associated constants)
that will be implemented by other classes.

2. Conveniently package collections of constants for use by other classes.

The implements list may not include the superclass of the current class.

SECTION 14: DO INSTRUCTION

do

label name

protect term ;

instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where name is a non-numeric symbol

and instructionlist is zero or more instructions.

The do instruction is used to group instructions together for execution; these
are executed once. The group may optionally be given a label, and may pro-
tect an object while the instructions in the group are executed; exceptional
conditions can be handled with catch and finally.

The most common use of do is simply for treating a number of instructions
as group.

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
if a=3 then do
 a=a+2
 say 'Smile!'
 end

Here, only the first instructionlist is used. This forms the body of the group.

The instructions in the instructionlists may be any assignment, method call, or
keyword instruction, including any of the more complex constructions such
as loop, if, select, and the do instruction itself.

Label phrase

If label is used to specify a name for the group, then a leave which specifies
that name may be used to leave the group, and the end that ends the group
may optionally specify the name of the group for additional checking.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

50 NetRexx Language Definition Part 1

Example:

do label sticky
 x=ask
if x='quit' then leave sticky
say 'x was' x

 end sticky

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that
is not just a type and is not of a primitive type; while the do construct is being
executed, the value (object) is protected – that is, all the instructions in the
do construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Exceptions in do groups

Exceptions that are raised by the instructions within a do group may be
caught using one or more catch clauses that name the exception that they will
catch. When an exception is caught, the exception object that holds the
details of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will
always be executed at the end of the group, even if an exception is raised
(whether caught or not).

The Exceptions section (see page 117) has details and examples of catch and
finally.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 15 Exit instruction 51

SECTION 15: EXIT INSTRUCTION

exit

expression ;

exit is used to unconditionally leave a program, and optionally return a result
to the caller. The entire program is terminated immediately.

If an expression is given, it is evaluated and the result of the evaluation is
then passed back to the caller in an implementation-dependent manner when
the program terminates. Typically this value is expected to be a small whole
number; most implementations will accept values in the range 0 through 250.
If no expression is given, a default result (which depends on the implemen-
tation, and is typically zero) is passed back to the caller.

Example:

j=3
exit j*4
/* Would exit with the value '12' */

“Running off the end” of a program is equivalent to the instruction
return;. In the case where the program is simply a stand-alone application
with no class or method instructions, this has the same effect as exit;, in
that it terminates the whole program and returns a default result.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

52 NetRexx Language Definition Part 1

SECTION 16: IF INSTRUCTION

if expression

;

then

; instruction

else

; instruction

The if construct is used to conditionally execute an instruction or group of
instructions. It can also be used to select between two alternatives.

The expression is evaluated and must result in either 0 or 1. If the result
was 1 (true) then the instruction after the then is executed. If the result was
0 (false) and an else was given then the instruction after the else is executed.

Example:

if answer='Yes' then say 'OK!'
else say 'Why not?'

Remember that if the else clause is on the same line as the last clause of the
then part, then you need a semicolon to terminate that clause.

Example:

if answer='Yes' then say 'OK!'; else say 'Why not?'

The else binds to the nearest then at the same level. This means that any if
that is used as the instruction following the then in an if construct that has
an else clause, must itself have an else clause (which may be followed by the
dummy instruction, nop).

Example:

if answer='Yes' then if name='Fred' then say 'OK, Fred.'
else say 'OK.'

else say 'Why not?'

To include more than one instruction following then or else, use a grouping
instruction (do, loop, or select).

Example:

if answer='Yes' then do
say 'Line one of two'
say 'Line two of two'

 end

In this instance, both say instructions are executed when the result of the if
expression is 1.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 17 Import instruction 53

Notes:

1. An instruction may be any assignment, method call, or keyword instruc-
tion, including any of the more complex constructions such as do, loop,
select, and the if instruction itself. A null clause is not an instruction,
however, so putting an extra semicolon after the then or else is not
equivalent to putting a dummy instruction (as it would be in C or PL/I).
The nop instruction is provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause.
This allows the expression on the if clause to be terminated by the
then, without a “;” being required – were this not so, people used to
other computer languages would be inconvenienced. Hence the symbol
then cannot be used as a variable name within the expression.29

SECTION 17: IMPORT INSTRUCTION

import name ;

where name is one or more non-numeric symbols separated by periods,
with an optional trailing period.

The import instruction is used to simplify the use of classes from other pack-
ages. If a class is identified by an import instruction, it can then be referred
to by its short name, as given on the class instruction (see page 46), as well
as by its fully qualified name.

There may be zero or more import instructions in a program. They must
precede any class instruction (or any instruction that would start the default
class).

In the following description, a package name names a package as described
under the package instruction (see page 75).

The import name must be one of:

• A qualified class name, which is a package name immediately followed
by a period which is immediately followed by a short class name – in this
case, the individual class identified is imported.

• A package name – in this case, all the classes in the specified package
are imported.

• A partial package name (a package name with one or more parts omitted
from the right, indicated by a trailing period after the parts that are

29 Strictly speaking, then should only be recognized if not the name of a variable. In
this special case, however, NetRexx language processors are permitted to treat then

as reserved in the context of an if clause, to provide better performance and more
useful error reporting.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

54 NetRexx Language Definition Part 1

present) – in this case, all classes in the package hierarchy below the
specified point are imported.

Examples:

import java.lang.String
import java.lang
import java.

The first example above imports a single class (which could then be referred
to simply as “String”). The second example imports all classes in the
“java.lang” package. The third example imports all classes in all the
packages whose name starts with “java.”.

If two (or more) classes with the same short name are imported, then an
attempt to use that short name as a class name or type is an error, as the
reference would be ambiguous.

In the reference implementation, all classes in the “central” hierarchies are
imported by default, as though the instructions:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.

had been executed before the program begins. In addition, classes in the cur-
rent (working) directory are imported if no package instruction is specified.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 18 Iterate instruction 55

SECTION 18: ITERATE INSTRUCTION

iterate

name ;

where name is a non-numeric symbol.

iterate alters the flow of control within a loop construct. It may only be used
in the body (the first instructionlist) of the construct.

Execution of the instruction list stops, and control is passed directly back up
to the loop clause just as though the last clause in the body of the construct
had just been executed. The control variable (if any) is then stepped (iter-
ated) and termination conditions tested as normal and the instruction list is
executed again, unless the loop is terminated by the loop clause.

If no name is specified, then iterate will step the innermost active loop.

If a name is specified, then it must be the name of the label, or control vari-
able if there is no label, of a currently active loop (which may be the inner-
most), and this is the loop that is iterated. Any active do, loop, or select

constructs inside the loop selected for iteration are terminated (as though by
a leave instruction).

Example:

loop i=1 to 4
if i=2 then iterate i

 say i
 end
/* Would display the numbers: 1, 3, 4 */

Notes:

1. A loop is active if it is currently being executed. If a method (even in
the same class) is called during execution of a loop, then the loop
becomes inactive until the method has returned. iterate cannot be used
to step an inactive loop.

2. The name symbol, if specified, must exactly match the label (or the name
of the control variable, if there is no label) in the loop clause in all
respects except case.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

56 NetRexx Language Definition Part 1

SECTION 19: LEAVE INSTRUCTION

leave

name ;

where name is a non-numeric symbol.

leave causes immediate exit from one or more do, loop, or select constructs.
It may only be used in the body (the first instructionlist) of the construct.

Execution of the instruction list is terminated, and control is passed to the
end clause of the construct, just as though the last clause in the body of the
construct had just been executed or (if a loop) the termination condition had
been met normally, except that on exit the control variable (if any) will con-
tain the value it had when the leave instruction was executed.

If no name is specified, then leave must be within an active loop and will
terminate the innermost active loop.

If a name is specified, then it must be the name of the label (or control vari-
able for a loop with no label), of a currently active do, loop, or select construct
(which may be the innermost). That construct (and any active constructs
inside it) is then terminated. Control then passes to the clause following the
end clause that matches the do, loop, or select clause identified by the name.

Example:

loop i=1 to 5
 say i
if i=3 then leave

 end i
/* Would display the numbers: 1, 2, 3 */

Notes:

1. If any construct being left includes a finally clause, the instructionlist
following the finally will be executed before the construct is left.

2. A do, loop, or select construct is active if it is currently being executed.
If a method (even in the same class) is called during execution of an
active construct, then the construct becomes inactive until the method
has returned. leave cannot be used to leave an inactive construct.

3. The name symbol, if specified, must exactly match the label (or the name
of the control variable, for a loop with no label) in the do, loop, or select

clause in all respects except case.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 20 Loop instruction 57

SECTION 20: LOOP INSTRUCTION

loop

label name

protect termp

repetitor

conditional ;

instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where repetitor is one of:

varc = expri to exprt by exprb for exprf
varo over termo
for exprr

forever

and conditional is either of:

while exprw

until expru

and name is a non-numeric symbol

and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

The loop instruction is used to group instructions together and execute them
repetitively. The loop may optionally be given a label, and may protect an
object while the instructions in the loop are executed; exceptional conditions
can be handled with catch and finally.

loop is the most complicated of the NetRexx keyword instructions. It can be
used as a simple indefinite loop, a predetermined repetitive loop, as a loop
with a bounding condition that is recalculated on each iteration, or as a loop
that steps over the contents of a collection of values.

Syntax notes:

• The label and protect phrases may be in any order. They must precede
any repetitor or conditional.

• The first instructionlist is known as the body of the loop.

• The to, by, and for phrases in the first form of repetitor may be in any
order, if used, and will be evaluated in the order they are written.

• Any instruction allowed in a method is allowed in an instructionlist,
including assignments, method call instructions, and keyword

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

58 NetRexx Language Definition Part 1

instructions (including any of the more complex constructions such as
if, do, select, or the loop instruction itself).

• If for or forever start the repetitor and are followed by an “=” character,
they are taken as control variable names, not keywords (as for assign-
ment instructions).

• The expressions expri, exprt, exprb, or exprf will be ended by any of the
keywords to, by, for, while, or until (unless the word is the name of a
variable).

• The expressions exprw or expru will be ended by either of the keywords
while or until (unless the word is the name of a variable).

Indefinite loops

If neither repetitor nor conditional are present, or the repetitor is the keyword
forever, then the loop is an indefinite loop. It will be ended only when some
instruction in the first instructionlist causes control to leave the loop.

Example:

/* This displays "Go caving!" at least once */
loop forever
say 'Go caving!'
if ask='' then leave

 end

Bounded loops

If a repetitor (other than forever) or conditional is given, the first instructi-
onlist forms a bounded loop, and the instruction list is executed according to
any repetitor phrase, optionally modified by a conditional phrase.

Simple bounded loops

When the repetitor starts with the keyword for, the expression exprr is
evaluated immediately (with 0 added, to effect any rounding) to give a
repetition count, which must be a whole number that is zero or positive.
The loop is then executed that many times, unless it is terminated by
some other condition.

Example:

/* This displays "Hello" five times */
loop for 5
 say 'Hello'
 end

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 20 Loop instruction 59

Controlled bounded loops

A controlled loop begins with an assignment, which can be identified by
the “=” that follows the name of a control variable, varc. The control
variable is assigned an initial value (the result of expri, formatted as
though 0 had been added) before the first execution of the instruction
list. The control variable is then stepped (by adding the result of
exprb) before the second and subsequent times that the instruction list
is executed.

The name of the control variable, varc, must be a non-numeric symbol
that names an existing a new variable in the current method or a pro-
perty in the current class (that is, it cannot be element of an array, the
property of a superclass, or a more complex term). It is further
restricted in that it must not already be used as the name of a control
variable or label in a loop (or do or select construct) that encloses the
new loop.

The instruction list in the body of the loop is executed repeatedly while
the end condition (determined by the result of exprt) is not met. If
exprb is positive or zero, then the loop will be terminated when varc is
greater than the result of exprt. If negative, then the loop will be ter-
minated when varc is less than the result of exprt.

The expressions exprt and exprb must result in numbers. They are
evaluated once only (with 0 added, to effect any rounding), in the order
they appear in the instruction, and before the loop begins and before
expri (which must also result in a number) is evaluated and the control
variable is set to its initial value.

The default value for exprb is 1. If no exprt is given then the loop will
execute indefinitely unless it is terminated by some other condition.

Example:

loop i=3 to –2 by –1
 say i
 end
/* Would display: 3, 2, 1, 0, –1, –2 */

Note that the numbers do not have to be whole numbers:

Example:

x=0.3
loop y=x to x+4 by 0.7
 say y
 end
/* Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 */

The control variable may be altered within the loop, and this may affect
the iteration of the loop. Altering the value of the control variable in

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

60 NetRexx Language Definition Part 1

this way is normally considered to be suspect programming practice,
though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and
after the control variable is stepped, on the second and subsequent
iterations). It is therefore possible for the body of the loop to be skipped
entirely if the end condition is met immediately.

The execution of a controlled loop may further be bounded by a for

phrase. In this case, exprf must be given and must evaluate to a non-
negative whole number. This acts just like the repetition count in a
simple bounded loop, and sets a limit to the number of iterations
around the loop if it is not terminated by some other condition.

exprf is evaluated along with the expressions exprt and exprb. That is,
it is evaluated once only (with 0 added), when the loop instruction is
first executed and before the control variable is given its initial value;
the three expressions are evaluated in the order in which they appear.
Like the to condition, the for count is checked at the start of each iter-
ation, as shown in the programmer’s model (see page 64).

Example:

loop y=0.3 to 4.3 by 0.7 for 3
 say y
 end
/* Would display: 0.3, 1.0, 1.7 */

In a controlled loop, the symbol that describes the control variable may
be specified on the end clause (unless a label is specified, see below).
NetRexx will then check that this symbol exactly matches the varc of
the control variable in the loop clause (in all respects except case). If
the symbol does not match, then the program is in error – this enables
the nesting of loops to be checked automatically.

Example:

loop k=1 to 10
 ...
 ...
end k /* Checks this is the END for K loop */

Note: The values taken by the control variable may be affected by the
numeric settings, since normal NetRexx arithmetic rules apply to the
computation of stepping the control variable.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 20 Loop instruction 61

Over loops

When the second token of the repetitor is the keyword over, the control
variable, varo is used to work through the sub-values in the collection
of indexed strings identified by termo. In this case, the loop instruction
takes a “snapshot” of the indexes that exist in the collection at the start
of the loop, and then for each iteration of the loop the control variable
is set to the next available index from the snapshot.

The number of iterations of the loop will be the number of indexes in
the collection, unless the loop is terminated by some other condition.

Example:

mycoll=''
mycoll['Tom']=1
mycoll['Dick']=2
mycoll['Harry']=3
loop name over mycoll
 say mycoll[name]
 end
/* might display: 3, 1, 2 */

Notes:

1. The order in which the values are returned are undefined; all that
is known is that all indexes available when the loop started will
be recorded and assigned to varo in turn as the loop iterates.

2. The same restrictions apply to varo as apply to varc, the control
variable for controlled loops (see above).

3. Similarly, the symbol varo may be used as a name for the loop and
be specified on the end clause (unless a label is specified, see
below).

In the reference implementation, the over form of repetitor may also be
used to step though the contents of any object that is of a type that is a
subclass of java.util.Dictionary, such as an object of type
java.util.Hashtable. In this case, termo specifies the dictionary,
and a snapshot (enumeration) of the keys to the Dictionary is taken at
the start of the loop. Each iteration of the loop then assigns a new key
to the control variable varo which must be (or will be given, if it is new)
the type java.lang.Object.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

62 NetRexx Language Definition Part 1

Conditional phrases

Any of the forms of loop syntax can be followed by a conditional phrase
which may cause termination of the loop.

If while is specified, exprw is evaluated, using the latest values of all
variables in the expression, before the instruction list is executed on
every iteration, and after the control variable (if any) is stepped. The
expression must evaluate to either 0 or 1, and the instruction list will
be repeatedly executed while the result is 1 (that is, the loop ends if the
expression evaluates to 0).

Example:

loop i=1 to 10 by 2 while i<6
 say i
 end
/* Would display: 1, 3, 5 */

If until is specified, expru is evaluated, using the latest values of all
variables in the expression, on the second and subsequent iterations,
and before the control variable (if any) is stepped.30 The expression
must evaluate to either 0 or 1, and the instruction list will be repeat-
edly executed until the result is 1 (that is, the loop ends if the
expression evaluates to 1).

Example:

loop i=1 to 10 by 2 until i>6
 say i
 end
/* Would display: 1, 3, 5, 7 */

Note that the execution of loops may also be modified by using the iterate or
leave instructions.

Label phrase

The label phrase may used to specify a name for the loop. The name can then
optionally be used on

• a leave instruction, to specify the name of the loop to leave

• an iterate instruction, to specify the name of the loop to be iterated

• the end clause of the loop, to confirm the identity of the loop that is being
ended, for additional checking.

30 Thus, it appears that the until condition is tested after the instruction list is exe-
cuted on each iteration. However, it is the loop clause that carries out the evalu-
ation.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 20 Loop instruction 63

Example:

loop label pooks i=1 to 10
loop label hill while j<3

 ...
if a=b then leave pooks

 ...
 end hill

 end pooks

In this example, the leave instruction leaves both loops.

If a label is specified using the label keyword, it overrides any name derived
from the control variable name (if any). That is, the variable name cannot
be used to refer to the loop if a label is specified.

Protect phrase

The protect phrase may used to specify a term, termp, that evaluates to a
value that is not just a type and is not of a primitive type; while the loop

construct is being executed, the value (object) is protected – that is, all the
instructions in the loop construct have exclusive access to the object.

Example:

loop protect myobject while a<b
 ...
 end

Both label and protect may be specified, in any order, if required.

Exceptions in loops

Exceptions that are raised by the instructions within a loop construct may
be caught using one or more catch clauses that name the exception that they
will catch. When an exception is caught, the exception object that holds the
details of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will
always be executed when the loop ends, even if an exception is raised
(whether caught or not).

The Exceptions section (see page 117) has details and examples of catch and
finally.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

64 NetRexx Language Definition Part 1

Programmer’s model – how a typical loop is executed

This model forms part of the definition of the loop instruction.

For the following loop:

loop varc = expri to exprt by exprb while exprw
 ...
 instruction list
 ...
 end

NetRexx will execute the following:

 $tempt=exprt+0 /* ($variables are internal and */
 $tempb=exprb+0 /* are not accessible.) */
 varc=expri+0

Transfer control to the point identified as $start:

$loop:
/* An UNTIL expression would be tested here, with: */
/* if expru then leave */
varc=varc + $tempb

$start:
if varc > $tempt then leave /* leave quits a loop */
/* A FOR count would be checked here */
if \exprw then leave

 ...
 instruction list
 ...

Transfer control to the point identified as $loop:

Notes:

1. This example is for exprb >= 0. For a negative exprb, the test at the
start point of the loop would use “<” rather than “>”.

2. The upwards transfer of control takes place at the end of the body of the
loop, immediately before the end clause (or any catch or finally clause).
The end clause is only reached when the loop is finally completed.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 21 Method instruction 65

SECTION 21: METHOD INSTRUCTION

method name

(

arglist)

visibility

modifier

protect

returns termr

signals signallist ;

where arglist is a list of one or more assignments, separated by commas

and visibility is one of:

inheritable
private

public

and modifier is one of:

abstract
constant
final
native
static

and signallist is a list of one or more terms, separated by commas.

The method instruction is used to introduce a method within a class, as
described in Program structure (see page 87), and define its attributes. The
method must be given a name, which must be a non-numeric symbol. This
is its short name.

If the short name of a method matches the short name of the class in which
it appears, it is a constructor method. Constructor methods are used for con-
structing values (objects), and are described in detail in Methods and Con-
structors (see page 19).

The body of the method consists of all clauses following the method instruc-
tion (if any) until the next method or class instruction, or the end of the pro-
gram.

The visibility, modifier, and protect keywords, and the returns and signals

phrases, may appear in any order.

Arguments

The arglist on a method instruction, immediately following the method name,
is optional and defines a list of the arguments for the method. An argument

is a value that was provided by the caller when the method was invoked.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

66 NetRexx Language Definition Part 1

If there are no arguments, this may be optionally be indicated by an
“empty” pair of parentheses.

In the arglist, each argument has the syntax of an assignment (see page 37),
where the “=” and the following expression may be omitted. The name in the
assignment provides the name for the argument (which must not be the same
as the name of any property in the class). Each argument is also optionally
assigned a type, or type and default value, following the usual rules of
assignment. If there is no assignment, the argument is assigned the NetRexx
string type, Rexx.

If there is no assignment (that is, there is no “=”) or the expression to the
right of the “=” returns just a type, the argument is required (that is, it must
always be specified by the caller when the method is invoked).

If an explicit value is given by the expression then the argument is optional;
when the caller does not provide an argument in that position, then the
expression is evaluated when the method is invoked and the result is pro-
vided to the method as the argument.

Optional arguments may be omitted “from the right” only. That is, argu-
ments may not be omitted to the left of arguments that are not omitted.

Examples:

method fred
method fred()
method fred(width, height)
method fred(width=int, height=int 10)

In these examples, the first two method instructions are equivalent, and take
no arguments. The third example takes two arguments, which are both
strings of type Rexx. The final example takes two arguments, both of type
int; the second argument is optional, and if not supplied will default to the
value 10 (note that any valid expression could be used for the default value).

Visibility

Methods may be public, inheritable, or private:

• A public method is visible to (that is, may be used by) all other classes to
which the current class is visible.

• An inheritable method is visible to (that is, may be used by) all classes in
the same package and also those classes that extend (that is, are sub-
classes of) the current class.

• A private method is visible only within the current class.

By default (i.e., if no visibility keyword is specified), methods are public.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 21 Method instruction 67

Modifier

Most methods consist of instructions that follow the method instruction and
implement the method; the method is associated with an object constructed
by the class. These are called standard methods. The modifier keywords define
that the method is not a standard method – it is special in some way. Only
one of the following modifier keywords is allowed:

abstract

An abstract method has the name of the method and the types (but not
values) of its arguments defined, but no instructions to implement the
method are provided (or permitted).

If a class contains any abstract methods, an object cannot be con-
structed from it, and so the class itself must be abstract; the abstract

keyword must be present on the class instruction (see page 46).

Within an interface class, the abstract keyword is optional on the
methods of the class, as all methods must be abstract. No other modi-
fier is allowed on the methods of an interface class.

constant

A constant method is a static method that cannot be overridden by a
method in a subclass of the current class. That is, it is both final and
static (see below).

final

A final method is considered to be complete; it cannot be overridden by
a subclass of the current class. private methods are implicitly final.31

native

A native method is a method that is implemented by the environment,
not by instructions in the current class. Such methods have no
NetRexx instructions to implement the method (and none are permit-
ted), and they cannot be overridden by a method in a subclass of the
current class.

Native methods are used for accessing primitive operations provided
by the underlying operating system or by implementation-dependent
packages.

static

A static method is a method that is not a constructor and is associated
with the class, rather than with an object constructed by the class. It
cannot use properties directly, except those that are also static (or
constant).

31 This modifier may allow compilers to improve the performance of methods that are
final, but may also reduce the reusability of the class.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

68 NetRexx Language Definition Part 1

Static methods may be invoked in the following ways:

1. Within the initialization expression of a static or constant prop-
erty (such methods are invoked when the class is first loaded).

2. By qualifying the name of the method with the name of its class
(qualified by the package name if necessary), for example, using
“Math.Sin(1.3)” or “java.lang.Math.Sin(1.3)”. Methods
called in this way are in effect functions.

3. By implicitly qualifying the name by including the name of its
class in the uses phrase in the class instruction for the current
class. Static methods in classes listed in this way can be used
directly, without qualification, for example, as “Sin(1.3)”. They
may be still be qualified, if preferred.

In the reference implementation, stand-alone applications are started
by the java command invoking a static method called main which takes
a single argument (of type java.lang.String[]) and returns no
result.

Protect

The keyword protect indicates that the method protects the current object (or
class, for a static method) while the instructions in the method are executed.
That is, the instructions in the method have exclusive access to the object; if
some other method (or construct) is executing in parallel with the invocation
of the method and is protecting the same object then the method will not start
execution until the object is no longer protected.

Note that if a method or construct protecting an object invokes a method (or
starts a new construct) that protects the same object then execution continues
normally. The inner method or construct is not prevented from executing,
because it is not executing in parallel.

Returns

The returns keyword is followed by a term, termr, that must evaluate to a
type. This type is used to define the type of values returned by return

instructions within the method.

The returns phrase is only required if the method is to return values of a type
that is not NetRexx strings (class Rexx). If returns is specified, all return

instructions (see page 79) within the method must specify an expression.

Example:

method filer(path, name) returns File
 return File(path||name)

This method always returns a value which is a File object.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 21 Method instruction 69

Signals

The signals keyword introduces a list of terms that evaluate to types that are
Exceptions (see page 117). This list enumerates and documents the
exceptions that are signalled within the method (or by a method which is
called from the current method) but are not caught by a catch clause in a
control construct.

Example:

method soup(cat) signals IOException, DivideByZero

It is considered good programming practice to use this list to document
“unusual” exceptions signalled by a method. Implementations that support
the concept of checked exceptions (see page 119) must report as an error any
checked exception that is incorrectly included in the list (that is, if the
exception is never signalled or would always be caught). Such implementa-
tions may also offer an option that enforces the listing of all or some checked
exceptions.

Duplicate methods

Methods may not duplicate properties or other methods in the same class.
Specifically:

• The short name of a method must not be the same as the name of any
property in the same class.

• The number (zero or more) and types of the arguments of a method (or
any subset permitted by omitting optional arguments) must not be the
same as those of any other method of the same name in the class (also
checking any subset permitted by omitting optional arguments).

Note that the second rule does allow multiple methods with the same name
in a class, provided that the number of arguments differ or at least one
argument differs in type.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

70 NetRexx Language Definition Part 1

SECTION 22: NOP INSTRUCTION

nop ;

nop is a dummy instruction that has no effect. It can be useful as an explicit
“do nothing” instruction following a then or else clause.

Example:

select
when a=b then nop –– Do nothing
when a>b then say 'A > B'
otherwise say 'A < B'

 end

Note: Putting an extra semicolon instead of the nop would merely insert a
null clause, which would just be ignored by NetRexx. The second when clause
would then immediately follow the then, and hence would be reported as an
error. nop is a true instruction, however, and is therefore a valid target for
the then clause.

SECTION 23: NUMERIC INSTRUCTION

numeric















digits exprd

form
scientific
engineering















;

where exprd is an expression.

The numeric instruction is used to change the way in which arithmetic oper-
ations are carried out by a program. The effects of this instruction are
described in detail in the section on Numbers and Arithmetic (see page 102).

numeric digits

controls the precision under which arithmetic operations will be evalu-
ated (see page 104). If no expression exprd is given then the default
value of 9 is used. Otherwise the result of the expression is rounded, if
necessary, according to the current setting of numeric digits before it is
used. The value used must be a positive whole number.

There is normally no limit to the value for numeric digits (except the
constraints imposed by the amount of storage and other resources
available) but note that high precisions are likely to be expensive in

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 23 Numeric instruction 71

processing time. It is recommended that the default value be used
wherever possible.

Note that small values of numeric digits (for example, values less than
6) are generally only useful for very specialized applications. The setting
of numeric digits affects all computations, so even the operation of loops
may be affected by rounding if small values are used.

If an implementation does not support a requested value for numeric

digits then the instruction will fail with an exception (which may, as
usual, be caught with the catch clause of a control construct).

The current setting of numeric digits may be retrieved with the digits
special word (see page 90).

numeric form

controls which form of exponential notation (see page 111) is to be used
for the results of operations. This may be either scientific (in which case
only one, non-zero, digit will appear before the decimal point), or engi-

neering (in which case the power of ten will always be a multiple of three,
and the part before the decimal point will be in the range 1 through 999).
The default notation is scientific.

The form is set directly by the sub-keywords scientific or engineering; if
neither sub-keyword is given, scientific is assumed. The current setting
of numeric form may be retrieved with the form special word (see page
90).

If an implementation does not support a requested value for numeric form

then the instruction will fail with an exception (which may, as usual, be
caught with the catch clause of a control construct).

The numeric instruction may be used where needed as a dynamically executed
instruction in a method.

It may also appear, more than once if necessary, before the first method in a
class, in which case it forms the default setting for the initialization of sub-
sequent properties in the class and for all methods in the class. In this case,
any exception due to the numeric instruction is raised when the class is first
loaded.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

72 NetRexx Language Definition Part 1

SECTION 24: OPTIONS INSTRUCTION

options wordlist ;

where wordlist is one or more symbols separated by blanks.

The options instruction is used to pass special requests to the language pro-
cessor (for example, an interpreter or compiler).

Individual words, known as option words, in the wordlist which are meaningful
to the language processor will be obeyed (these might control optimizations,
enforce standards, enable implementation-dependent features, etc.); those
which are not recognized will be ignored (they are assumed to be instructions
to a different language processor). Option words in the list that are known
will be recognized independently of case.

There may be zero or more options instructions in a program. They apply to
the whole program, and must come before the first class instruction (or any
instruction that starts a class).

In the reference implementation, the known option words are:

binary

All classes in this program will be binary classes (see page 48). In binary
classes, literals are assigned binary (primitive) or native string types,
rather than NetRexx types, and native binary operations are used to
implement operators where appropriate, as described in “Binary values
and operations” (see page 114) . In classes that are not binary, terms in
expressions are converted to the NetRexx string type, Rexx, before use by
operators.

crossref

Requests that cross-reference listings of variables be prepared, by class.

diag

Requests that diagnostic information (for experimental use only) be dis-
played. The diag option word may also have side-effects.

format

Requests that the translator output file (Java source code) be formatted
for improved readability. Note that if this option is in effect, line num-
bers from the input file will not be preserved (so run-time errors and
exception trace-backs may show incorrect line numbers).

logo

Requests that the language processor display an introductory logotype
sequence (name and version of the compiler or interpreter, etc.).

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 24 Options instruction 73

replace

Requests that replacement of the translator output (.java) file be
allowed. The default, noreplace, prevents an existing .java file being
accidentally overwritten.

strictargs

Requires that method invocations always specify parentheses, even when
no arguments are supplied.

strictassign

Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of
arguments in method calls.

strictcase

Requires that local and external name comparisons for variables, prop-
erties, methods, classes, and special words match in case (that is, names
must be identical to match).

strictsignal

Requires that all checked exceptions (see page 119) signalled within a
method but not caught by a catch clause be listed in the signals phrase
of the method instruction.

trace

If given, trace instructions are accepted. If notrace is given, then trace
instructions are ignored. The latter can be useful to prevent tracing
overheads while leaving trace instructions in a program.

utf8

If given, clauses following the options instruction are expected to be
encoded using UTF-8, so all Unicode characters may be used in the
source of the program.

In UTF-8 encoding, Unicode characters less than '\u0080' are repres-
ented using one byte (whose most-significant bit is 0), characters in the
range '\u0080' through '\u07FF' are encoded as two bytes, in the
sequence of bits:

110xxxxx 10xxxxxx

where the eleven digits shown as x are the least significant eleven bits of
the character, and characters in the range '\u0800' through '\uFFFF'
are encoded as three bytes, in the sequence of bits:

1110xxxx 10xxxxxx 10xxxxxx

where the sixteen digits shown as x are the sixteen bits of the character.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

74 NetRexx Language Definition Part 1

If noutf8 is given, following clauses are assumed to comprise only Unicode
characters in the range '\x00' through '\xFF', with the more signif-
icant byte of the encoding of each character being 0.

verbose, verboseX

Sets the “noisiness” of the language processor. The digit X may be any
of the digits 0 through 5; if omitted, a value of 3 is used. The options
noverbose and verbose0 both suppress all messages except errors and
warnings.

Prefixing any of the above with “no” turns the selected option off.

Example:

options binary nocrossref nostrictassign strictargs

The default settings of the various options are:

nobinary crossref nodiag noformat logo noreplace
nostrictargs nostrictassign nostrictcase nostrictsignal
trace noutf8 verbose3

When an option word is repeated (in the same options instruction or not), or
conflicting option words are specified, then the last use determines the state
of the option.

All option words may also be set as command line options when invoking the
processor, by prefixing them with “–”:

Example:

java COM.ibm.netrexx.process.NetRexxC –format foo.nrx

In this case, any options may come before or after file specifications.

Options set with the options instruction override command-line settings, fol-
lowing the “last use” rule.

For more information, see the installation and user documentation for your
implementation.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 25 Package instruction 75

SECTION 25: PACKAGE INSTRUCTION

package name ;

where name is one or more non-numeric symbols separated by periods.

The package instruction is used to define the package to which the class or
classes in the current program belong.

Classes that belong to the same package have privileged access to other
classes in the same package, in that each class is visible to all other classes
in the same package, even if not declared public. Packages also conveniently
group classes for use by the import instruction (see page 53).

The name must specify a package name, which is one or more non-numeric
symbols, separated by periods, with no blanks.

There must be at most one package instruction in a program. It must precede
any class instruction (or any instruction that would start the default class).

If a program contains no package instruction then its package is implemen-
tation-defined. Typically it is grouped with other programs in some imple-
mentation-defined logical collection, such as a directory in a file system.

Examples:

package testpackage
package COM.ibm.netrexx.process

When a class is identified as belonging to a package, it has a qualified class

name, which is its short name, as given on the class instruction (see page
46), prefixed with the package name and a period. For example, if the short
name of a class is “RxLanguage” and the package name is
“COM.ibm.netrexx.process” then the qualified name of the class would
be “COM.ibm.netrexx.process.RxLanguage”.

In the reference implementation, packages are kept in a hierarchy derived from
the Java classpath, where the segments of a package name correspond to a
path in the hierarchy. The hierarchy is typically the directories in a file sys-
tem, or some equivalent (such as a “Zip” archive file), and so package names
should be considered case-sensitive (as some Java implementations use case-
sensitive file systems).

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

76 NetRexx Language Definition Part 1

SECTION 26: PARSE INSTRUCTION

parse term template ;

where template is one or more non-numeric symbols separated by blanks
or patterns

and a pattern is one of:

literalstring

indicator number

indicator (symbol)

and indicator is one of +, –, or =.

The parse instruction is used to assign characters (from a string) to one or
more variables according to the rules and templates described in the section
Parsing templates (see page 94).

The value of the term is expected to be a string; if it is not a string, it will be
converted to a string.

Any variables used in the template are named by non-numeric symbols (that
is, they cannot be an array reference or other term); they refer to a variable
or property in the current class. Any values that are used in patterns during
the parse are converted to strings before use.

Any variables set by the parse instruction must have a known string type, or
are given the NetRexx string type, Rexx, if they are new.

The term itself is not changed unless it is a variable which also appears in
the template and whose value is changed by being in the template.

Example:

parse wordlist word1 wordlist

In this idiomatic example, the first word is removed from wordlist and is
assigned to the variable word1, and the remainder is assigned back to
wordlist.

Notes:

1. The special words ask, source, and version, as described in the section
Special names and methods (see page 90), allow:

parse ask x –– parses a line from input stream
parse source x –– parses 'Java method filename'
parse version x –– parses 'NetRexx version date'

These special words may also be used within expressions.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 27 Properties instruction 77

2. Similarly, it is recommended that the initial (main) method in a stand-
alone application place the command string passed to it in a variable
called arg.32

If this is done, the instruction:

parse arg template

will work, in a stand-alone application, in the same way as in Rexx (even
though arg is not a keyword in this case).33

SECTION 27: PROPERTIES INSTRUCTION

properties

visibility

modifier ;

where visibility is one of:

inheritable
private

public

and modifier is one of:

constant
static
volatile

and there must be at least one visibility or modifier keyword.

The properties instruction is used to define the attributes of following property

variables, and therefore must precede the first method instruction in a class.
A properties instruction replaces any previous properties instruction (that is,
the attributes specified on properties instructions are not cumulative).

The visibility and modifier keywords may be in any order.

An example of the use of properties instructions may be found in the Program
Structure section (see page 87).

Visibility

Properties may be public, inheritable, or private:

• A public property is visible to (that is, may be used by) all other classes to
which the current class is visible.

32 In the reference implementation, this is automatic if the main method is generated
by the NetRexx language processor.

33 Note, though, that the command string may have been edited by the environment;
certain characters may not be allowed, multiple blanks may have been reduced to
single blanks, etc.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

78 NetRexx Language Definition Part 1

• An inheritable property is visible to (that is, may be used by) all classes in
the same package and also those classes that extend (that is, are sub-
classes of) the current class, and which qualify the property using an
object of the subclass, or either this or super.

• A private property is visible only within the current class.

By default, if no properties instruction is used, or visibility is not specified,
properties are inheritable (but not public).34

Modifier

Properties may also be constant, static, or volatile:

• A constant property is associated with the class, rather than with an
instance of the class (an object). It is initialized when the class is loaded
and may not be changed thereafter.

• A static property is associated with the class, rather than with an instance
of the class (an object). It is initialized when the class is loaded, and
may be changed thereafter.

• A volatile property may change asynchronously, outside the control of the
class, even when no method in the class is being executed. If an imple-
mentation does not allow asynchronous modification of properties, it
should ignore this keyword.

Constant and static properties exist from when the class is first loaded (used),
even if no object is constructed by the class, and there will only be one copy
of each property. Other properties are constructed and initialized only when
an object is constructed by the class; each object then has its own copy of such
properties.

By default, if no properties instruction is used, or modifier is not specified,
properties are associated with an object constructed by the class, and are
neither constant nor volatile.

Properties in interface classes

In interface classes (see page 47), properties must be both public and
constant. In such classes, these attributes for properties are the default and
the properties instruction must not be used.

34 The default, here, was chosen to encourage the “encapsulation” of data within
classes.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 29 Say instruction 79

SECTION 28: RETURN INSTRUCTION

return

expression ;

return is used to return control (and possibly a result) from a NetRexx pro-
gram or method to the point of its invocation.

The expression (if any) is evaluated, active control constructs are terminated
(as though by a leave instruction), and the value of the expression is passed
back to the caller.

The result passed back to the caller is a string of type Rexx, unless a different
type was specified using the returns keyword on the method instruction (see
page 65) for the current method. In this case, the type of the value of the
expression must match (or be convertible to, as by the rules for assignment)
the type specified by the returns phrase.

Within a method, the use of expressions on return must be consistent. That
is, either all return instructions must specify a expression, or none may. If a
returns phrase is given on the method instruction for the current method then
all return instructions must specify an expression.

SECTION 29: SAY INSTRUCTION

say

expression ;

say writes a string to the default output character stream. This typically
causes it to be displayed (or spoken, or typed, etc.) to the user.

Example:

data=100
say data 'divided by 4 =>' data/4
/* would display: "100 divided by 4 => 25" */

The result of evaluating the expression is expected to be a string; if it is not
a string, it will be converted to a string. This result string is written from
the program via an implementation-defined output stream.

By default, the result string is treated as a “line” (an implementation-depen-
dent mechanism for indicating line termination is effected after the string is
written). If, however, the string ends in the NUL character ('\–' or '\0')
then that character is removed and line termination is not indicated.

The result string may be of any length. If no expression is specified, or the
expression result is null, then an empty line is written (that is, as though
the expression resulted in a null string).

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

80 NetRexx Language Definition Part 1

SECTION 30: SELECT INSTRUCTION

select

label name

protect termp ;

whenlist

otherwise

; instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where name is a non-numeric symbol

and whenlist is one or more whenconstructs

and whenconstruct is:

when expression

; then

; instruction

and instructionlist is zero or more instructions.

select is used to conditionally execute one of several alternatives. The con-
struct may optionally be given a label, and may protect an object while the
instructions in the construct are executed; exceptional conditions can be
handled with catch and finally, which follow the body of the construct.

Each expression following a when is evaluated in turn and must result in
either 0 or 1. If the result is 1, then the instruction following the associated
then (which may be a complex instruction such as if, do, loop, or select) is
executed and control will then pass directly to the end. If the result is 0,
control will pass to the next when clause.

If none of the when expressions result in 1, then control will pass to the
instruction list (if any) following otherwise. In this situation, the absence of
an otherwise is a run-time error.35

Notes:

1. An instruction may be any assignment, method call, or keyword instruc-
tion, including any of the more complex constructions such as do, loop,
if, and the select instruction itself. A null clause is not an instruction,
however, so putting an extra semicolon after the then is not equivalent
to putting a dummy instruction (as it would be in C or PL/I). The nop

instruction is provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause.
This allows the expression on the when clause to be terminated by the
then, without a “;” being required – were this not so, people used to

35 In the reference implementation, a NoOtherwiseException is raised.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 30 Select instruction 81

other computer languages would be inconvenienced. Hence the symbol
then cannot be used as a variable name within the expression.36

Label phrase

If label is used to specify a name for the select group, then a leave instruction
(see page 56) which specifies that name may be used to leave the group, and
the end that ends the group may optionally specify the name of the group for
additional checking.

Example:

select label roman
when a=b then say 'same'
when a<b then say 'lo'

 otherwise
 say 'hi'

if a=0 then leave roman
say 'a non–0'

 end roman

In this example, if the variable a has the value 0 and b is negative then just
“hi” is displayed.

Protect phrase

If protect is given it must be followed by a term that evaluates to a value that
is not just a type and is not of a primitive type; while the select construct is
being executed, the value (object) is protected – that is, all the instructions
in the select construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

Exceptions in select constructs

Exceptions that are raised by the instructions within the body of the group
may be caught using one or more catch clauses that name the exception that
they will catch. When an exception is caught, the exception object that holds
the details of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will
always be executed at the end of the select group, even if an exception is
raised (whether caught or not).

The Exceptions section (see page 117) has details and examples of catch and
finally.

36 Strictly speaking, then should only be recognized if not the name of a variable. In
this special case, however, NetRexx language processors are permitted to treat then

as reserved in the context of a when clause, to provide better performance and more
useful error reporting.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

82 NetRexx Language Definition Part 1

SECTION 31: SIGNAL INSTRUCTION

signal term ;

The signal instruction causes an “abnormal” change in the flow of control, by
raising an exception.

The exception term may be a term that constructs or evaluates to an excep-
tion object, or it may be expressed as the name of an exception type (in which
case the default constructor, with no arguments, for that type is used to con-
struct an exception object). The exception object then represents the excep-
tion and is available, if required, when the exception is handled.

The handling of exceptions is detailed in the Exceptions section (see page
117). In summary, when an exception is signalled, all active pending do

groups, loop loops, if constructs, and select constructs may be ended. For each
one in turn, from the innermost:

1. No further clauses within the body of the construct will be executed (in
this respect, signal acts like a leave for the construct).

2. The instructionlist following the first catch clause that matches the
exception, if any, is executed.

3. The instructionlist following the finally clause for the construct, if any,
is executed.

If a catch matched the exception the exception is deemed handled, and exe-
cution resumes as though the construct ended normally (unless a new
exception was signalled in the catch or finally instruction lists, in which case
it is processed). Otherwise, any enclosing construct is ended in the same
manner. If there is no enclosing construct, then the current method is ended
and the exception is signalled in the caller.

Examples:

signal RxErrorTrace
signal DivideException('Divide by zero')

In the reference implementation, the term must either

• evaluate to an object that is assignable to the type Throwable (for
example, a subclass of Exception or RuntimeException).

• be a type that is a subclass of Throwable, in which case the default
constructor (with no arguments) for the given type is used to construct the
exception object.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 32 Trace instruction 83

SECTION 32: TRACE INSTRUCTION

trace

all
methods
off
results

;

The trace instruction is used to control the tracing of the execution of NetRexx
methods, and is primarily used for debugging.

One trace instruction may appear before the first method in a class, in which
case it sets the initial trace setting for all methods in the class (the default
is off). Within methods, the trace instruction changes the trace setting when
it is executed, and affects the tracing of all clauses in the method which are
then executed (until changed by a later trace instruction).

trace all

All clauses (except null clauses without commentary) which are in
methods and which are executed after the trace instruction will be
traced. If trace all is placed before the first method in the current class,
the method instructions in the class, together with the values of the
arguments passed to each method, will be traced when the method is
invoked (that is, trace all implies trace methods).

trace methods

All method clauses in the class will be traced when the method they
introduce is invoked, together with the values of the arguments passed
to each method; no other clauses, or results, will be traced. The trace

methods instruction must be placed before the first method in the cur-
rent class (as otherwise it would have no effect).

trace off

Turns tracing off; no following clauses, or results, will be traced.

trace results

All clauses (except null clauses without commentary) which are in
methods and which are executed after the trace instruction will be
traced, as though trace all had been requested. In addition, the results
of all expression evaluations and any results assigned to a variable by
an assignment, loop, or parse instruction are also traced.

If trace results is placed before the first method in the current class, the
method instructions in the class will be traced when the method is
invoked, together with the values of the arguments passed to each
method.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

84 NetRexx Language Definition Part 1

Notes:

1. Tracing of clauses shows the data from the source of the program,
starting at the first character of the first token of the clause and
including any commentary from that point until the end of the clause.

2. When a loop is being traced, the loop clause itself will be traced on every
iteration of the loop, as indicated by the programmer’s model (see page
64); the end clause is only traced once, when the loop completes nor-
mally.

3. With trace results, an expression is not traced if it is immediately used
for an assignment (in an assignment instruction, or when the control
variable is initialized in a loop instruction). The assignment will trace
the result of the expression.

4. Trace output is written to an implementation-defined output stream
(typically the “standard error” output stream, which lets it be redirected
to a destination separate from the default destination for output which
is used by the say instruction).

5. In some implementations, the use of trace instructions may substantially
increase the size of classes and the execution time of methods affected
by tracing.37

6. With some implementations it may be possible to switch tracing on
externally, without requiring modification to the program.

The format of trace output

Trace output is either clauses from the program being traced, or results (such
as the results from expressions).

The first clause or result traced on any line will be preceded by its line
number in the program; this is right-justified in a space which allows for the
largest line number in the program, plus one blank. Following clauses or
results from the same line are preceded by white space of the same width;
however, any change of line number causes the line number to be included.

Clauses that are traced will be displayed with the formatting (indention) and
layout used in the original source stream for the program, starting with the
first character of the first token of the clause.

Results (if requested) are converted to a string for tracing if necessary, are
not indented, and have a double quote prefixed and suffixed so that leading
and trailing blanks are apparent; if, however, the result being traced is null
(see page 91) then the string “[null]” is shown (without quotes). For results
with an associated name (the values assigned to local variables, method

37 In the reference implementation, options notrace may be used to disable all trace

instructions and hence ensure that tracing overhead is not accidentally incurred.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 32 Trace instruction 85

arguments, or properties in the current class), the name of the result precedes
the data, separated by a single blank.

For clarity, implementations may replace “control codes” in the encoding of
results (for example, EBCDIC values less than '\x40', or Unicode values
less than '\x20') by a question mark (“?”).

All lines displayed during tracing have a three character tag to identify the
type of data being traced. This tag follows the line number (or the space for
a line number), and is separated from the line number by a single blank. The
traced clause or result follows the tag, after another blank. The identifier
tags may be:

= identifies the first line of the source of a single clause, i.e., the data
actually in the program.

- identifies a continuation line from the source of a single clause. Con-
tinuations may be due to the use of a continuation character (see page
9) or to the use of a block comment (see page 5) which spans more than
one line.

>a> Identifies a value assigned to a method argument of the current
method. The name of the argument is included in the trace.

>p> Identifies a value assigned to a property. The name of the property is
included in the trace if the property is in the current class.

>v> Identifies a value assigned to a local variable in the current method.
The name of the variable is included in the trace.

>>> Identifies the result of an expression evaluation that is not used for an
assignment (for example, an argument expression in a method call).

+++ Reserved for error messages that are not supplied by the environment
underlying the implementation.

Examples:

If the following instructions, starting on line 53 of a 120-line program, were
executed:

trace all
if i=1 then say 'Hello'

else say 'i<>1'
say –
 'A continued line'

the trace output (if i were 1) would be:

54 *=* if i=1
 = then
 = say 'Hello'
56 *=* say –
57 *–* 'A continued line'

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

86 NetRexx Language Definition Part 1

Similarly, for the 3-line program:

trace results
number=1/7
parse number before '.' after

the trace output would be:

 2 *=* number=1/7
>v> number "0.142857143"

 3 *=* parse number before '.' after
>v> before "0"
>v> after "142857143"

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 33 Program structure 87

SECTION 33: PROGRAM STRUCTURE

A NetRexx program is a collection of clauses (see page 4) derived from a single
implementation-defined source stream (such as a file). When a program is
processed by a language processor38 it defines one or more classes. Classes
are usually introduced by the class instruction (see page 46), but if the first
is a standard class, intended to be run as a stand-alone application, then the
class instruction can be omitted. In this case, NetRexx defines an implied
class and initialization method that will be used.

The implied class and method permits the writing of “low boilerplate” pro-
grams, with a minimum of syntax. The simplest, documented, NetRexx pro-
gram that has an effect might therefore be:

Example:

/* This is a very simple NetRexx program */
say 'Hello World!'

In more detail, a NetRexx program consists of:

1. An optional prolog (package, import, and options instructions). Only one
package instruction is permitted per program.

2. One or more class definitions, each introduced by a class instruction.

A class definition comprises:

1. The class instruction which introduces the class (which may be inferred,
see below).

2. Zero or more property variable assignments, along with optional prop-

erties instructions that can alter their attributes, and optional numeric

and trace instructions. Property variable assignments take the form of
an assignment (see page 37), with an optional “=” and expression, which
may:

• just name a property (by omitting the “=” and expression of the
assignment), in which case it refers to a string of type Rexx

• assign a type to the property (when the expression evaluates to just
a type)

• assign a type and initial value to the property (when the expression
returns a value).

3. Zero or more method definitions, each introduced by a method instruc-
tion (which may be inferred if the class instruction is inferred, see
below).

38 Such as a compiler or interpreter.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

88 NetRexx Language Definition Part 1

A method definition comprises:

• Any NetRexx instructions, except the class, method, and properties

instructions and those allowed in the prolog (the package, import, and
options instructions).

Example:

/* A program with two classes */
import java.applet. –– for example

class testclass extends Applet
 properties public

state –– property of type 'Rexx'
i=int –– property of type 'int'

 properties constant
j=int 3 –– property initialized to '3'

 method start
say 'I started'

 state='start'

 method stop
say 'I stopped'

 state='stop'

class anotherclass
 method testing

loop i=1 to 10
say '1, 2, 3, 4...'
if i=7 then return

 end
 return

 method anothertest
say '1, 2, 3, 4'

This example shows a prolog (with just an import instruction) followed by two
classes. The first class includes two public properties, one constant property,
and two methods. The second class includes no properties, but also has two
methods.

Note that a return instruction implies no static scoping; the content of a
method is ended by a method (or class) instruction, or by the end of the source
stream. The return instruction at the end of the testing method is, there-
fore, unnecessary.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 33 Program structure 89

Program defaults

The following defaults are provided for NetRexx programs:

1. If, while parsing prolog instructions, some instruction that is not valid
for the prolog and is not a class instruction is encountered, then a
default class instruction (with an implementation-provided short name,
typically derived from the name of the source stream) is inserted. If the
instruction was not a method instruction, then a default method

instruction (with a name and attributes appropriate for the environ-
ment, such as main) is also inserted.

In this latter case, it is assumed that execution of the program will begin
by invocation of the default method. In other words, a “stand-alone”
application can be written without explicitly providing the class and
method instructions for the first method to be executed. An example of
such a program is given in Appendix B (see page &refappxb.).

In the reference implementation, the main method in a stand-alone
application is passed the words forming the command string as an array
of strings of type java.lang.String (one word to each element of the
array). When the NetRexx reference implementation provides the main
method instruction by default, it also constructs a NetRexx string of type
Rexx from this array of words, with a blank added between words, and
assigns the string to the variable arg.

The command string may also have been edited by the underlying oper-
ating system environment; certain characters may not be allowed, mul-
tiple blanks or whitespace may have been reduced to single blanks, etc.

2. If a method ends and the last instruction at the outer level of the method
scope is not return then a return instruction is added if it could be
reached. In this case, if a value is expected to be returned by the method
(due to other return instructions returning values, or there being a
returns keyword on the method instruction), an error is reported.

Language processors may provide options to prevent, or warn of, these
defaults being applied, as desired.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

90 NetRexx Language Definition Part 1

SECTION 34: SPECIAL NAMES AND METHODS

For convenience, NetRexx provides some special names for naming common-
ly-used concepts within terms. These are only recognized if there is no vari-
able of the same name previously seen in the current scope, as described in
the section on Terms (see page 13). This allows the set of special words to
be expanded in the future, if necessary, without invalidating existing vari-
ables. Therefore, these names are not reserved; they may be used as variable
names instead, if desired.

There are also two “special methods” that are used when constructing objects.

Special names

The following special names are allowed in NetRexx programs, and are
recognized independently of case.39 With the exception of length, these may
only be used alone as a term or at the start of a compound term.

ask

Returns a string of type Rexx, read as a line from the implementa-
tion-defined default input stream (often the user’s “console”).

Example:

if ask='yes' then say 'OK'

ask can only appear alone, or at the start of a compound term.40

digits

The current setting of numeric digits (see page 70), returned as a
NetRexx string. This will be one or more arabic numerals, with no
leading blanks or sign, and no trailing blanks or exponent.

digits can only appear alone, or at the start of a compound term.

form

The current setting of numeric form (see page 71), returned as a
string of type Rexx. This will have either the value “scientific”
or the value “engineering”.

form can only appear alone, or at the start of a compound term.

39 Unless options strictcase is in effect.

40 In the reference implementation, ask is simply a shorthand for RexxIO.Ask().

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 34 Special names and methods 91

length

The length of an array (see page 43), returned as an implementa-
tion-dependent binary type or string. This word is only recognized
as the last part of a compound term, where the evaluation of the rest
of the term resulted in an array of dimension 1.

Example:

foo=char[7]
say foo.length /* would say '7' */

Note that you can get the length of a NetRexx string with the same
syntax.41 In that case, however, a length() method is being
invoked.

null

The empty reference. This is a special value that represents “no
value” and may be assigned to variables (or returned from methods)
except those whose type is both primitive and undimensioned. It
may also be be used in a comparison for equality (or inequality) with
values of suitable type, and may be given a type.

Examples:

blob=int[3] –– 'blob' refers to array of 3 ints
blob=null –– 'blob' is still of type int[],

–– but refers to no real object
mob=Mark null –– 'mob' is type 'Mark'

The null value may be considered to represent the state of being
uninitialized. It can only appear as simple symbol, not as a part of
a compound term.

source

Returns a string of type Rexx identifying the source of the current
class. The string consists of the following words, with a single blank
between the words and no trailing or leading blanks:

1. the name of the underlying environment (e.g., Java)

2. either method (if the term is being used within a method) or
class (if the term is being used within a property assignment,
before the first method in a class)

3. an implementation-dependent representation of the name of
the source stream for the class (e.g., Fred.nrx).

source can only appear alone, or at the start of a compound term.

41 Unless options strictargs is in effect.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

92 NetRexx Language Definition Part 1

super

Returns a reference to the current object, with a type that is the type
of the class that the current object’s class extends. This means that
a search for methods or properties which super qualifies will start
from the superclass rather than in the current class. This is used
for invoking a method or property (in the superclass or one of its
superclasses) that has been overridden in the current class.

Example:

method printit(x)
 say 'it' –– modification
 super.printit(x) –– now the usual processing

If a property being referenced is in fact defined by a superclass of
the current class, then the prefix “super.” is perhaps the clearest
way to indicate that name refers to a property of a superclass rather
than to a local variable. (You could also qualify it by the name of
the superclass.)

super can only appear alone, or at the start of a compound term.

this

Returns a reference to the current object. When a method is
invoked, for example in:

word=Rexx "hello" –– 'word' refers to "hello"
say word.substr(3) –– invokes substr on "hello"

then the method substr in the class Rexx is invoked, with argu-
ment '3', and with the properties of the value (object) "hello"
available to it. These properties may be accessed simply by name,
or (more explicitly) by prefixing the name with “this.”. Using
“this.” can make a method more readable, especially when several
objects of the same type are being manipulated in the method.

this can only appear alone, or at the start of a compound term.

trace

The current trace (see page 83) setting, returned as a NetRexx
string. This will be one of the words:

off methods all results

trace can only appear alone, or at the start of a compound term.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 34 Special names and methods 93

version

Returns a string of type Rexx identifying the version of the NetRexx
language in effect when the current class was processed. The string
consists of the following words, with a single blank between the
words and no trailing or leading blanks:

1. A word describing the language. The first seven letters will
be the characters NetRexx, and the remainder may be used to
identify a particular implementation or language processor.
This word may not include any periods.

2. The language level description, which must be a number with
no sign or exponential part. For example, “1.00” is the lan-
guage level of this definition.

3. Three words describing the language processor release date in
the same format as the default for the Rexx “date()”
function.42 For example, “13 Apr 1997”.

version can only appear alone, or at the start of a compound term.

Special methods

Constructors (methods used for constructing objects) in NetRexx must invoke
a constructor of their superclass before making any modifications to the cur-
rent object (or invoke another constructor in the current class).

This is simplified and made explicit by the provision of the special method
names super and this, which refer to constructors of the superclass and
current class respectively. These special methods are only recognized when
used as the first, method call, instruction in a constructor, as described in
Methods and constructors (see page 19). Their names will be recognized
independently of case.43

In addition, NetRexx provides special constructor methods for the primitive
types that allow binary construction of primitives. These are described in
Binary values and arithmetic (see page 116).

42 As defined in American National Standard for Information Technology – Pro-
gramming Language REXX, X3.274-1996, American National Standards Institute,
New York, 1996.

43 Unless options strictcase is in effect.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

94 NetRexx Language Definition Part 1

SECTION 35: PARSING TEMPLATES

The parse instruction allows a selected string to be parsed (split up) and
assigned to variables, under the control of a template.

The various mechanisms in the template allow a string to be split up by
explicit matching of strings (called patterns), or by specifying numeric positions
(positional patterns – for example, to extract data from particular columns of a
line read from a character stream). Once split into parts, each segment of the
string can then be assigned to variables as a whole or by words (delimited
by blanks).

This section first gives some informal examples of how the parsing template
can be used, and then defines the algorithms in detail.

Introduction to parsing

The simplest form of parsing template consists of a list of variable names.
The string being parsed is split up into words (characters delimited by
blanks), and each word from the string is assigned to a variable in sequence
from left to right. The final variable is treated specially in that it will be
assigned whatever is left of the original string and may therefore contain
several words. For example, in the parse instruction:

parse 'This is a sentence.' v1 v2 v3

the term (in this case a literal string) following the instruction keyword is
parsed, and then: the variable v1 would be assigned the value “This”, v2
would be assigned the value “is”, and v3 would be assigned the value
“a sentence.”.

Leading blanks are removed from each word in the string before it is assigned
to a variable, as is the blank that delimits the end of the word. Thus, vari-
ables set in this manner (v1 and v2 in the example) will never have leading
or trailing blanks, though v3 could have both leading and trailing blanks.

Note that the variables assigned values in a template are always given a new
value and so if there are fewer words in the string than variables in the
template then the unused variables will be set to the null string.

The second parsing mechanism uses a literal string in a template as a pat-
tern, to split up the string. For example:

parse 'To be, or not to be?' w1 ',' w2

would cause the string to be scanned for the comma, and then split at that
point; the variable w1 would be set to “To be”, and w2 is set to
“ or not to be?”. Note that the pattern itself (and only the pattern) is
removed from the string. Each section of the string is treated in just the

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 35 Parsing templates 95

same way as the whole string was in the previous example, and so either
section could be split up into words.

Thus, in:

parse 'To be, or not to be?' w1 ',' w2 w3 w4

w2 and w3 would be assigned the values “or” and “not”, and w4 would be
assigned the remainder: “to be?”.

If the string in the last example did not contain a comma, then the pattern
would effectively “match” the end of the string, so the variable to the left of
the pattern would get the entire input string, and the variables to the right
would be set to a null string.

The pattern may be specified as a variable, by putting the variable name in
parentheses. The following instructions therefore have the same effect as the
last example:

c=','
parse 'To be, or not to be?' w1 (c) w2 w3 w4

The third parsing mechanism is the numeric positional pattern. This works
in the same way as the string pattern except that it specifies a column num-
ber. So:

parse 'Flying pigs have wings' x1 5 x2

would split the string at the fifth column, so x1 would be “Flyi” and x2 would
start at column 5 and so be “ng pigs have wings”.

More than one pattern is allowed, so for example:

parse 'Flying pigs have wings' x1 5 x2 10 x3

would split the string at columns 5 and 10, so x2 would be “ng pi” and x3
would be “gs have wings”.

The numbers can be relative to the last number used, so:

parse 'Flying pigs have wings' x1 5 x2 +5 x3

would have exactly the same effect as the last example; here the +5 may be
thought of as specifying the length of the string to be assigned to x2.

As with literal string patterns, the positional patterns can be specified as a
variable by putting the name of a variable, in parentheses, in place of the
number. An absolute column number should then be indicated by using an
equals sign (“=”) instead of a plus or minus sign. The last example could
therefore be written:

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

96 NetRexx Language Definition Part 1

start=5
length=5
data='Flying pigs have wings'
parse data x1 =(start) x2 +(length) x3

String patterns and positional patterns can be mixed (in effect the beginning
of a string pattern just specifies a variable column number) and some very
powerful things can be done with templates. The next section describes in
more detail how the various mechanisms interact.

Parsing definition

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifi-
cations and variable names. Blanks may be added between patterns and
variable names to separate the tokens and to improve readability. The pat-
terns and variable names are used strictly in sequence from left to right, and
are used once only. In practice, various simpler forms are used in which
either variable names or patterns may be omitted; we can therefore have
variable names without patterns in between, and patterns without interven-
ing variable names.

In general, the value assigned to a variable is that sequence of characters in
the input string between the point that is matched by the pattern on its left
and the point that is matched by the pattern on its right.

If the first item in a template is a variable, then there is an implicit pattern
on the left that matches the start of the string, and similarly if the last item
in a template is a variable then there is an implicit pattern on the right that
matches the end of the string. Hence the simplest template consists of a
single variable name which in this case is assigned the entire input string.

Setting a variable during parsing is identical in effect to setting a variable in
an assignment.

The constructs that may appear as patterns fall into two categories; patterns
that act by searching for a matching string (literal patterns), and numeric
patterns that specify an absolute or relative position in the string (positional
patterns). Either of these can be specified explicitly in the template, or
alternatively by a reference to a variable whose value is to be used as the
pattern.

For the following examples, assume that the following sample string is being
parsed; note that all blanks are significant – there are two blanks after the
first word “is” and also after the second comma:

'This is the text which, I think, is scanned.'

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 35 Parsing templates 97

Parsing with literal patterns

Literal patterns cause scanning of the data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.
The null string matches the end of the data.

The template:

w1 ',' w2 ',' w3

when parsing the sample string, results in:

w1 has the value "This is the text which"
w2 has the value " I think"
w3 has the value " is scanned."

Here the string is parsed using a template that asks that each of the vari-
ables receive a value corresponding to a portion of the original string between
commas; the commas are given as quoted strings. Note that the patterns
themselves are removed from the data being parsed.

A different parse would result with the template:

w1 ',' w2 ',' w3 ',' w4

which would result in:

w1 has the value "This is the text which"
w2 has the value " I think"
w3 has the value " is scanned."
w4 has the value "" (null string)

This illustrates an important rule. When a match for a pattern cannot be
found in the input string, it instead “matches” the end of the string. Thus,
no match was found for the third ',' in the template, and so w3 was
assigned the rest of the string. w4 was assigned a null string because the
pattern on its left had already reached the end of the string.

Note that all variables that appear in a template in this way are assigned a
new value.

Parsing strings into words

If a variable is directly followed by one or more other variables, then the
string selected by the patterns is assigned to the variables in the following
manner. Each blank-delimited word in the string is assigned to each variable
in turn, except for the last variable in the group (which is assigned the
remainder of the string). The values of the variables which are assigned
words will have neither leading nor trailing blanks.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

98 NetRexx Language Definition Part 1

Thus the template:

w1 w2 w3 w4 ','

would result in:

w1 has the value "This'
w2 has the value "is"
w3 has the value "the"
w4 has the value "text which"

Note that the final variable (w4 in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous
word is removed from the data.

Also observe that this example is not the same as specifying explicit blanks
as patterns, as the template:

w1 ' ' w2 ' ' w3 ' ' w4 ','

would in fact result in:

w1 has the value "This'
w2 has the value "is"
w3 has the value "" (null string)
w4 has the value "the text which"

since the third pattern would match the third blank in the data.

In general, when a variable is followed by another variable then parsing of
the input into individual words is implied. The parsing process may be
thought of as first splitting the original string up into other strings using the
various kinds of patterns, and then assigning each of these new strings to
(zero or more) variables.

Use of the period as a placeholder

A period (separated from any symbols by at least one blank) acts as a place-
holder in a template. It has exactly the same effect as a variable name,
except that no variable is set. It is especially useful as a “dummy variable”
in a list of variables, or to collect (ignore) unwanted information at the end
of a string. Thus the template:

 . . . word4 .

would extract the fourth word (“text”) from the sample string and place it
in the variable word4. Blanks between successive periods in templates may
be omitted, so the template:

 ... word4 .

would have the same result as the last template.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 35 Parsing templates 99

Parsing with positional patterns

Positional patterns may be used to cause the parsing to occur on the basis
of position within the string, rather than on its contents. They take the form
of whole numbers, optionally preceded by a plus, minus, or equals sign which
indicate relative or absolute positioning. These may cause the matching
operation to “back up” to an earlier position in the data string, which can only
occur when positional patterns are used.

Absolute positional patterns: A number in a template that is not pre-
ceded by a sign refers to a particular (absolute) character column in the input,
with 1 referring to the first column. For example, the template:

s1 10 s2 20 s3

results in:

s1 has the value "This is "
s2 has the value "the text w"
s3 has the value "hich, I think, is scanned."

Here s1 is assigned characters from the first through the ninth character, and
s2 receives input characters 10 through 19. As usual the final variable, s3,
is assigned the remainder of the input.

An equals sign (“=”) may be placed before the number to indicate explicitly
that it is to be used as an absolute column position; the last template could
have been written:

s1 =10 s2 =20 s3

A positional pattern that has no sign or is preceded by the equals sign is
known as an absolute positional pattern.

Relative positional patterns: A number in a template that is preceded by
a plus or minus sign indicates movement relative to the character position
at which the previous pattern match occurred. This is a relative positional pat-

tern.

If a plus or minus is specified, then the position used for the next match is
calculated by adding (or subtracting) the number given to the last matched
position. The last matched position is the position of the first character of the
last match, whether specified numerically or by a string.

For example, the instructions:

parse '123456789' 3 w1 +3 w2 3 w3

result in

w1 has the value "345"
w2 has the value "6789"
w3 has the value "3456789"

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

100 NetRexx Language Definition Part 1

The +3 in this case is equivalent to the absolute number 6 in the same posi-
tion, and may also be considered to be specifying the length of the data string
to be assigned to the variable w1.

This example also illustrates the effects of a positional pattern that implies
movement to a character position to the left of (or to) the point at which the
last match occurred. The variable on the left is assigned characters through
the end of the input, and the variable on the right is, as usual, assigned
characters starting at the position dictated by the pattern.

A useful effect of this is that multiple assignments can be made:

parse x 1 w1 1 w2 1 w3

This results in assigning the (entire) value of x to w1, w2, and w3. (The first
“1” here could be omitted as it is effectively the same as the implicit starting
pattern described at the beginning of this section.)

If a positional pattern specifies a column that is greater than the length of
the data, it is equivalent to specifying the end of the data (i.e., no padding
takes place). Similarly, if a pattern specifies a column to the left of the first
column of the data, this is not an error but instead is taken to specify the first
column of the data.

Any pattern match sets the “last position” in a string to which a relative
positional pattern can refer. The “last position” set by a literal pattern is the
position at which the match occurred, that is, the position in the data of the
first character in the pattern. The literal pattern in this case is not removed
from the parsed data. Thus the template:

',' –1 x +1

will:

1. Find the first comma in the input (or the end of the string if there is no
comma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma
or end of string) to the variable x.

One possible application of this is looking for abbreviations in a string. Thus
the instruction:

/* Ensure options have a leading blank and are
in uppercase before parsing. */

parse (' 'opts).upper ' PR' +1 prword ' '

will set the variable prword to the first word in opts that starts with “PR” (in
any case), or will set it to the null string if no such word exists.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 35 Parsing templates 101

Notes:

1. The positional patterns +0 and –0 are valid, have the same effect, and
may be used to include the whole of a previous literal (or variable) pat-
tern within the data string to be parsed into any following variables.

2. As illustrated in the last example, patterns may follow each other in the
template without intervening variable names. In this case each pattern
is obeyed in turn from left to right, as usual.

3. There may be blanks between the sign in a positional pattern and the
number, because NetRexx defines that blanks adjacent to special char-
acters are removed.

Parsing with variable patterns

It is sometimes desirable to be able to specify a pattern by using the value
of a variable instead of a fixed string or number. This may be achieved by
placing the name of the variable to be used as the pattern in parentheses
(blanks are not necessary either inside or outside the parentheses, but may
be added if desired). This is called a variable reference; the value of the variable
is converted to string before use, if necessary.

If the parenthesis to the left of the variable name is not preceded by an
equals, plus, or minus sign (“=”, “+”, or “–”) the value of the variable is then
used as though it were a literal (string) pattern. The variable may be one
that has been set earlier in the parsing process, so for example:

input="L/look for/1 10"
parse input verb 2 delim +1 string (delim) rest

will set:

verb to 'L'
delim to '/'
string to 'look for'
rest to '1 10'

If the left parenthesis is preceded by an equals, plus, or minus sign then the
value of the variable is used as an absolute or relative positional pattern
(instead of as a literal string pattern). In this case the value of the variable
must be a non-negative whole number, and (as before) it may have been set
earlier in the parsing process.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

102 NetRexx Language Definition Part 1

SECTION 36: NUMBERS AND ARITHMETIC

NetRexx arithmetic attempts to carry out the usual operations (including
addition, subtraction, multiplication, and division) in as “natural” a way as
possible. What this really means is that the rules followed are those that are
conventionally taught in schools and colleges. However, it was found that
unfortunately the rules used vary considerably (indeed much more than
generally appreciated) from person to person and from application to appli-
cation and in ways that are not always predictable. The NetRexx arithmetic
described here is therefore a compromise which (although not the simplest)
should provide acceptable results in most applications.

Introduction

Numbers can be expressed in NetRexx very flexibly (leading and trailing
blanks are permitted, exponential notation may be used) and follow conven-
tional syntax. Some valid numbers are:

12 /* A whole number */
'–76' /* A signed whole number */
12.76 /* Some decimal places */

 ' + 0.003 ' /* Blanks around the sign, etc. */
17. /* Equal to 17 */
'.5' /* Equal to 0.5 */
4E+9 /* Exponential notation */
0.73e–7 /* Exponential notation */

(Exponential notation means that the number includes a sign and a power
of ten following an “E” that indicates how the decimal point will be shifted.
Thus 4E+9 above is just a short way of writing 4000000000, and 0.73e–7
is short for 0.000000073.)

The arithmetic operators include addition (indicated by a “+”), subtraction
(“–”), multiplication (“*”), power (“**”), and division (“/”). There are also two
further division operators: integer divide (“%”) which divides and returns the
integer part, and remainder (“//”) which divides and returns the remainder.
Prefix plus (“+”) and prefix minus (“–”) operators are also provided.

When two numbers are combined by an operation, NetRexx uses a set of rules
to define what the result will be (and how the result is to be represented as
a character string). These rules are defined in the next section, but in sum-
mary:

• Results will be calculated with up to some maximum number of signif-
icant digits. That is, if a result required more than 9 digits it would
normally be rounded to 9 digits. For instance, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of
digits for perfect accuracy).

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 103

You can change the default of 9 significant digits by using the numeric

digits instruction. This lets you calculate using however many digits
that you need – thousands, if necessary.

• Except for the power and division operators, trailing zeros are preserved
(this is in contrast to most electronic calculators, which remove all
trailing zeros in the decimal part of results). So, for example:

2.40 + 2 => 4.40
2.40 – 2 => 0.40
2.40 * 2 => 4.80
2.40 / 2 => 1.2

This preservation of trailing zeros is desirable for most calculations (and
especially financial calculations).

If necessary, trailing zeros may be easily removed with the strip
method (see page 136), or by division by 1.

• A zero result is always expressed as the single digit '0'.

• Exponential form is used for a result depending on its value and the
setting of numeric digits (the default is 9 digits). If the number of places
needed before the decimal point exceeds this setting, or the absolute
value of the number is less than 0.000001, then the number will be
expressed in exponential notation; thus

1e+6 * 1e+6

results in “1E+12” instead of “1000000000000”, and

1 / 3E10
== 3.33333333E–11

results in “3.33333333E–11” instead of “0.0000000000333333333”.

• Any mixture of arabic numerals (0-9) and Extra digits (see page 7) can
be used for the digits in numbers used in calculations. The results are
expressed using arabic numerals.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

104 NetRexx Language Definition Part 1

Definition

This definition describes arithmetic for NetRexx strings (type Rexx). The
arithmetic operations are identical to those defined in the ANSI standard for
Rexx.44

Numbers

A number in NetRexx is a character string that includes one or more decimal
digits, with an optional decimal point. The decimal point may be embedded
in the digits, or may be prefixed or suffixed to them. The group of digits (and
optional point) thus constructed may have leading or trailing blanks, and an
optional sign (“+” or “–”) which must come before any digits or decimal point.
The sign may also have leading or trailing blanks. Thus:

sign ::= + | –
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ::= digit [digit]...
numeric ::= digits . [digits]

| [.] digits
number ::= [blank]... [sign [blank]...]
 numeric [blank]...

where if the implementation supports extra digits (see page 7) these are also
accepted as digits, providing that they represent values in the range zero
through nine. In this case each extra digit is treated as though it were the
corresponding character in the range 0-9.

Note that a single period alone is not a valid number.

Precision

The maximum number of significant digits that can result from an arithmetic
operation is controlled by the digits keyword on the numeric instruction (see
page 70):

numeric digits [expression];

The expression is evaluated and must result in a positive whole number.
This defines the precision (number of significant digits) to which arithmetic
calculations will be carried out; results will be rounded to that precision, if
necessary.

If no expression is specified, then the default precision is used. The default
precision is 9, that is, all implementations must support at least nine digits
of precision. An implementation-dependent maximum (equal to or larger
than 9) may apply: an attempt to exceed this will cause execution of the

44 American National Standard for Information Technology – Programming Lan-
guage REXX, X3.274-1996, American National Standards Institute, New York,
1996.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 105

instruction to terminate with an exception. Thus if an algorithm is defined
to use more than 9 digits then if the numeric digits instruction succeeds then
the computation will proceed and produce identical results to any other
implementation.

Note that numeric digits may set values below the default of nine. Small
values, however, should be used with care – the loss of precision and rounding
thus requested will affect all NetRexx computations, including (for example)
the computation of new values for the control variable in loops.

In the remainder of this section, the notation digits refers to the current
setting of numeric digits. This setting may also be referred to in expressions
in programs by using the digits special word (see page 90).

Arithmetic operators

NetRexx arithmetic is effected by the operators “+”, “–”, “*”, “/”, “%”, “//”, and
“**” (add, subtract, multiply, divide, integer divide, remainder, and power)
which all act upon two terms, together with the prefix operators “+” and “–”
(plus and minus) which both act on a single term. The result of all these
operations is a NetRexx string, of type Rexx. This section describes the way
in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon
have any extra digits converted to the corresponding arabic numeral (the
digits 0-9). They then have leading zeros removed (noting the position of any
decimal point, and leaving just one zero if all the digits in the number are
zeros) and are then truncated to digits+1 significant digits45 (if necessary)
before being used in the computation. The operation is then carried out
under up to double that precision, as described under the individual oper-
ations below. When the operation is completed, the result is rounded if nec-
essary to the precision specified by the numeric digits instruction.

Rounding is done in the “traditional” manner, in that the extra (guard) digit
is inspected and values of 5 through 9 are rounded up, and values of 0
through 4 are rounded down.46

A conventional zero is supplied preceding a decimal point if otherwise there
would be no digit before it. Trailing zeros are retained for addition, sub-
traction, and multiplication, according to the rules given below, except that
a result of zero is always expressed as the single character '0'. For division,
insignificant trailing zeros are removed after rounding.

The format method (see page 128) is defined to allow a number to be
represented in a particular format if the standard result provided by NetRexx
does not meet requirements.

45 That is, to the precision set by numeric digits, plus one extra “guard” digit.
46 Even/odd rounding would require the ability to calculate to arbitrary precision

(that is, to a precision not governed by the setting of numeric digits) at any time and
is therefore not the mechanism defined for NetRexx.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

106 NetRexx Language Definition Part 1

Arithmetic operation rules – basic operators

The basic operators (addition, subtraction, multiplication, and division)
operate on numbers as follows:

Addition and subtraction

If either number is zero then the other number, rounded to digits
digits if necessary, is used as the result (with sign adjustment as
appropriate). Otherwise, the two numbers are extended on the right
and left as necessary up to a total maximum of digits+1 digits.

The number with smaller absolute value may therefore lose some or all
of its digits on the right.47 The numbers are then added or subtracted
as appropriate. For example:

xxxx.xxx + yy.yyyyy

becomes:

xxxx.xxx00
+ 00yy.yyyyy

zzzz.zzzzz

The result is then rounded to digits digits if necessary, taking into
account any extra (carry) digit on the left after an addition, but other-
wise counting from the position corresponding to the most significant
digit of the terms being added or subtracted. Finally, any insignificant
leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations
“+number” and “–number” are calculated as “0+number” and
“0–number”, respectively.

Multiplication

The numbers are multiplied together (“long multiplication”) resulting in
a number which may be as long as the sum of the lengths of the two
operands. For example:

xxx.xxx * yy.yyyyy

becomes:

zzzzz.zzzzzzzz

and the result is then rounded to digits digits if necessary, counting
from the first significant digit of the result.

47 In the example, the number yy.yyyyy would have three digits truncated if
digits were 5.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 107

Division

For the division:

yyy / xxxxx

the following steps are taken: first, the number “yyy” is extended with
zeros on the right until it is larger than the number “xxxxx” (with note
being taken of the change in the power of ten that this implies). Thus
in this example, “yyy” might become “yyy00”. Traditional long division
then takes place, which can be written:

xxxxx)
zzzz
yyy00

The length of the result (“zzzz”) is such that the rightmost “z” will be
at least as far right as the rightmost digit of the (extended) “y” number
in the example. During the division, the “y” number will be extended
further as necessary, and the “z” number (which will not include any
leading zeros) may increase up to digits+1 digits, at which point the
division stops and the result is rounded. Following completion of the
division (and rounding if necessary), insignificant trailing zeros are
removed.

Examples:

/* With 'numeric digits 5' */
12+7.00 == 19.00

 1.3–1.07 == 0.23
 1.3–2.07 == –0.77

1.20*3 == 3.60
7*3 == 21
0.9*0.8 == 0.72
1/3 == 0.33333
2/3 == 0.66667
5/2 == 2.5
1/10 == 0.1
12/12 == 1
8.0/2 == 4

Note: With all the basic operators, the position of the decimal point in the
terms being operated upon is arbitrary. The operations may be carried out
as integer operations with the exponent being calculated and applied after-
wards. Therefore the significant digits of a result are not in any way
dependent on the position of the decimal point in either of the terms involved
in the operation.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

108 NetRexx Language Definition Part 1

Arithmetic operation rules – additional operators

The operation rules for the power (“**”), integer divide (“%”), and remainder
(“//”) operators are as follows:

Power

The “**” (power) operator raises a number (on the left of the operator)
to a power (on the right of the operator). The term on the right is
rounded to digits digits (if necessary), and must, after any rounding,
be a whole number, which may be positive, negative, or zero. If nega-
tive, the absolute value of the power is used, and then the result is
inverted (divided into 1).

For calculating the power, the number is effectively multiplied by itself
for the number of times expressed by the power, and finally trailing
zeros are removed (as though the result were divided by one).

In practice (see note below for the reasons), the power is calculated by
the process of left-to-right binary reduction. For “x**n”: “n” is converted
to binary, and a temporary accumulator is set to 1. If “n” has the value
0 then the initial calculation is complete. Otherwise each bit (starting
at the first non-zero bit) is inspected from left to right. If the current
bit is 1 then the accumulator is multiplied by “x”. If all bits have now
been inspected then the initial calculation is complete, otherwise the
accumulator is squared and the next bit is inspected for multiplication.
When the initial calculation is complete, the temporary result is divided
into 1 if the power was negative.

The multiplications and division are done under the normal arithmetic
operation rules, detailed earlier in this section, using a precision of
digits+elength+1 digits. Here, elength is the length in digits of the
integer part of the whole number “n” (i.e., excluding any decimal part,
decimal point, or insignificant leading zeros, as though the operation
n%1 had been carried out). Finally, the result is rounded to digits
digits, if necessary, and insignificant trailing zeros are removed.

Integer division

The “%” (integer divide) operator divides two numbers and returns the
integer part of the result. The result returned is defined to be that
which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this
subtraction, the absolute values of both the dividend and the divisor are
used: the sign of the final result is the same as that which would result
if normal division were used.

The result returned will have no fractional part (that is, no decimal
point or zeros following it). If the result cannot be expressed exactly
within digits digits, the operation is in error and will fail – that is, the
result cannot have more digits than the current setting of numeric

digits. For example, 10000000000%3 requires 10 digits to express the

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 109

result exactly (3333333333) and would therefore fail if digits were 9
or less.

Remainder

The “//” (remainder) operator will return the remainder from integer
division, and is defined as being the residue of the dividend after the
operation of calculating integer division as just described. The sign of
the remainder, if non-zero, is the same as that of the original dividend.

This operation will fail under the same conditions as integer division
(that is, if integer division on the same two terms would fail, the
remainder cannot be calculated).

Examples:

/* Again with 'numeric digits 5' */
2**3 == 8
2**–3 == 0.125
1.7**8 == 69.758
2%3 == 0
2.1//3 == 2.1
10%3 == 3
10//3 == 1
–10//3 == –1
10.2//1 == 0.2
10//0.3 == 0.1

 3.6//1.3 == 1.0

Notes:

1. A particular algorithm for calculating powers is described, since it is
efficient (though not optimal) and considerably reduces the number of
actual multiplications performed. It therefore gives better performance
than the simpler definition of repeated multiplication. Since results
could possibly differ from those of repeated multiplication, the algorithm
must be defined here so that different implementations will give identi-
cal results for the same operation on the same values. Other algorithms
for this (and other) operations may always be used, so long as they give
identical results to those described here.

2. The integer divide and remainder operators are defined so that they
may be calculated as a by-product of the standard division operation
(described above). The division process is ended as soon as the integer
result is available; the residue of the dividend is the remainder.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

110 NetRexx Language Definition Part 1

Numeric comparisons

Any of the comparative operators (see page 30) may be used for comparing
numeric strings. However, the strict comparisons (for example, “==” and
“>>”) are not numeric comparative operators and should not normally be used
for comparing numbers, since they compare from left to right and leading and
trailing blanks (and leading zeros) are significant for these operators.

Numeric comparison, using the normal comparative operators, is effected by
subtracting the two numbers (calculating the difference) and then comparing
the result with '0' – that is, the operation:

A ? B

where “?” is any normal comparative operator, is identical to:

(A – B) ? '0'

It is therefore the difference between two numbers, when subtracted under
NetRexx subtraction rules, that determines their equality.

Exponential notation

The definition of numbers above (see page 104) describes “pure” numbers, in
the sense that the character strings that describe numbers can be very long.

Examples:

say 10000000000 * 10000000000
/* would display: 100000000000000000000 */

say 0.00000000001 * 0.00000000001
/* would display: 0.0000000000000000000001 */

For both large and small numbers some form of exponential notation is use-
ful, both to make such long numbers more readable and to make execution
possible in extreme cases. In addition, exponential notation is used whenever
the “pure” form would give misleading information. For example:

numeric digits 5
say 54321*54321

would display “2950800000” if long form were to be used. This is misleading,
and so NetRexx would express the result in exponential notation, in this case
“2.9508E+9”.

The definition of numbers (see above) is therefore extended by replacing the
description of numeric by the following:

mantissa ::= digits . [digits]
| [.] digits

numeric ::= mantissa [E sign digits]

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 111

In other words, the numeric part of a number may be followed by an “E”
(indicating an exponential part), a sign, and an integer following the sign that
represents a power of ten that is to be applied. The “E” may be in uppercase
or lowercase. Note that no blanks are permitted within this part of a number.

Examples:

12E+11 = 1200000000000
12E–5 = 0.00012
12e+4 = 120000

All valid numbers may be used as data for arithmetic. The results of calcu-
lations will be returned in exponential form depending on the setting of
numeric digits. If the number of places needed before the decimal point
exceeds digits, or if the absolute value of the result is less than
0.000001, then exponential form will be used. The exponential form gener-
ated by NetRexx always has a sign following the “E”. If the exponent is 0 then
the exponential part is omitted – that is, an exponential part of “E+0” will
never be generated.

If the default format for a number is not satisfactory for a particular appli-
cation, then the format method may be used to control its format. Using
this, numbers may be explicitly converted to exponential form or even forced
to be returned in “pure” form.

Different exponential notations may be selected with the numeric form

instruction (see page 71). This instruction allows the selection of either sci-
entific or engineering notation. Scientific notation adjusts the power of ten
so there is a single non-zero digit to the left of the decimal point. Engineering
notation causes powers of ten to be expressed as a multiple of three – the
integer part may therefore range from 1 through 999.

Examples:

numeric form scientific
say 123.45 * 1e11
/* would display: 1.2345E+13 */

numeric form engineering
say 123.45 * 1e11
/* would display: 12.345E+12 */

The default exponential notation is scientific.

Whole numbers

Within the set of numbers understood by NetRexx it is useful to distinguish
the subset defined as whole numbers.

A whole number in NetRexx is a number that has a decimal part which is all
zeros (or that has no decimal part).

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

112 NetRexx Language Definition Part 1

Numbers used directly by NetRexx

As discussed above, the result of any arithmetic operation is rounded (if nec-
essary) according to the setting of numeric digits. Similarly, when a number
(which has not necessarily been involved in an arithmetic operation) is used
directly by NetRexx then the same rounding is also applied, just as though
the operation of adding the number to 0 had been carried out.

In the following cases, the number used must be a whole number and an
implementation restriction on the largest number that can be used may
apply:

• positional patterns, including variable positional patterns, in parsing
templates (see page 94)

• the power value (right hand operand) of the power operator (see page
108)

• the values of exprr and exprf (following the for keyword) in the loop

instruction (see page 57)

• the value of exprd (following the digits keyword) in the numeric instruc-
tion (see page 70).

Implementation minimum: A minimum length of 9 digits must be sup-
ported for these uses of whole numbers by a NetRexx language processor.

Implementation independence

The NetRexx arithmetic rules are defined in detail, so that when a given
program is run the results of all computations are sufficiently defined that
the same answer will result for all correct implementations. Differences due
to the underlying machine architecture will not affect computations.

This contrasts with most other programming languages, and with binary
arithmetic (see page 114) in NetRexx, where the result obtained may depend
on the implementation because the precision and algorithms used by the
language processor are defined by the implementation rather than by the
language.

Exceptions and errors

The following exceptions and errors may be signalled during arithmetic:

• Divide exception

This exception will be signalled if division by zero was attempted, or if
the integer result of an integer divide or remainder operation had too
many digits.

• Overflow/Underflow exception

This exception will be signalled if the exponential part of a result (from
an operation that is not an attempt to divide by zero) would exceed the

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 36 Numbers and Arithmetic 113

range that can be handled by the language processor, when the result
is formatted according to the current settings of numeric digits and
numeric form. The language defines a minimum capability for the expo-
nential part, namely exponents whose absolute value is at least as large
as the largest number that can be expressed as an exact integer in
default precision. Thus, since the default precision is nine, implemen-
tations must support exponents in the range –999999999 through
999999999.

• Insufficient storage

Storage is needed for calculations and intermediate results, and on
occasion an arithmetic operation may fail due to lack of storage. This
is considered an operating environment error as usual, rather than an
arithmetical exception.

In the reference implementation, the exceptions and error types used for these
three cases are DivideException, ExponentOverflowException, and
OutOfMemoryError, respectively.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

114 NetRexx Language Definition Part 1

SECTION 37: BINARY VALUES AND OPERATIONS

By default, arithmetic and string operations in NetRexx are carried out using
the NetRexx string class, Rexx, which offers the robust set of operators
described in Expressions and operators (see page 28).

NetRexx implementations, however, may also provide primitive datatypes, as
described in Types and Classes (see page 11). These primitive types are used
for compact storage of numbers and for fast binary arithmetic, features which
are built-in to the hardware of most computers.

To make use of binary arithmetic, a class is declared to be a binary class (see
page 48) by using the binary keyword on the class instruction. In such a class,
literal strings and numeric symbols are assigned native string or primitive
types, rather than NetRexx types, where appropriate, and native binary
operations are used to implement operators where possible, as detailed below.
Implementations may also provide a keyword on the options (see page 72)
instruction that indicates that all classes in a program are binary classes.48

Binary classes should be used with care. Although binary arithmetic can
have a considerable performance advantage over arithmetic that is not
implemented in hardware, it can give incorrect or unexpected results. In
particular, whole numbers (integers) are often held in fixed-sized data areas
(of 8, 16, 32, or 64 bits), and overflowing the data area during a calculation
can result in a positive number becoming negative and vice versa. Similarly,
binary numbers that are not whole numbers (floating-point numbers) cannot
exactly represent common numbers in the decimal system (0.1, 0.2, etc.),
and hence can give unexpected results.

Operations in binary classes

In a binary class, the following (and only the following) rules differ from the
rules for other classes:

Dyadic operations in expressions

If the operands of a dyadic operator both have primitive numeric
types49 then binary operations are carried out. The type of the result is
implementation defined, and is typically the type of the more precise of
the two operands, or of some minimum precision.50 Arithmetic oper-

48 In the reference implementation, options binary is used.
49 In the reference implementation, boolean is considered to be a numeric type

(having the values 0 or 1) but char is not. Characters, and strings or arrays of
characters, always use the rules defined for NetRexx strings.

50 In the reference implementation, the minimum precision is 32 bits, so an int is

returned for results that would otherwise be byte or short. If both operands are

boolean, however, and the operation is a logical operation, then the type of the

result is boolean.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 37 Binary values and operations 115

ations follow the usual rules of binary arithmetic, as defined for the
underlying environment of the implementation.

Note that NetRexx provides both divide and integer divide operators; in
a binary class, the divide operator (“/”) converts its operands to float-
ing-point types and returns a floating-point result, whereas the integer
divide operator (“%”) converts its operands to integer types and returns
an integer result. The remainder operator must accept both integer and
floating-point types.

Logical operations (and, or, and exclusive or) apply to all the bits of the
operands, and are not permitted on floating-point types.

Prefix operations in expressions

If the operand of a prefix operator has a primitive numeric type, then
the type of the result is the type of the operand, subject to the same
minimum as dyadic operations. Prefix plus and minus follow the rules
of dyadic operators (because they are defined as being zero plus or minus
the operand) with the additional rule that if acting on a literal number
(a constant in the program) then the result is also considered to be a
literal constant. Logical not (prefix “\”) does not apply to all the bits of
its operand; instead, it changes a 0 to 1 and vice versa.

Assignments

In assignments where the value being assigned is the result of an
expression which comprises a string or number literal constant, the type
of the result is defined as follows:

1. Strings are given the native string type, even for a single-character
literal.51

2. Numbers are given the smallest possible primitive numeric type
that will contain the literal without loss of information (or minimal
loss of information for numbers with decimal or exponential parts).
If this is smaller than the implementation-defined minimum pre-
cision used for the result of adding the literal to 0, then the type
of that minimum precision is used.

If the constant is an integer, and no primitive integer binary type
has sufficient precision to hold the number without loss of infor-
mation, then the number is treated as a literal string (that is, as
though it were enclosed in quotes). NetRexx arithmetic would then
be used if it were involved in an arithmetic operation.

These rules can apply in assignment instructions, the initial assignment
to the control variable in the loop instruction, or the assignment of a
default value to the argument of a method; the result type may define
the type of the variable (if new, or a method argument).

51 In the reference implementation, this is java.lang.String.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

116 NetRexx Language Definition Part 1

Control variables in loops

In the loop instruction, if the control variable has a primitive integer
type, and the increment (by value) has a primitive integer type, then
binary arithmetic will be used for stepping the control variable, follow-
ing the rules for binary arithmetic in expressions described above.

Similarly, if the control variable has a primitive integer type, and the
end (to) value has a primitive integer type, then binary arithmetic will
be used for the comparison that tests for loop termination.

Numeric instruction

The numeric instruction does not affect binary operations. It has the
usual effects on operations carried out using NetRexx arithmetic.

Note: At all times (whether in binary classes or not) implementations may
use primitive types and operations, and techniques such as late binding of
types, as an optimization providing that the results obtained are identical to
those defined in this language definition.

Binary constructors

NetRexx provides special constructors for implementation-defined primitive
types that allow bit-wise construction of primitives. These binary constructors

are especially useful for manipulating the binary encodings of individual
characters.

The binary constructors follow the same syntax as other constructors, with
the name being that of a primitive type. All binary constructors take one
argument, which must have a primitive type.

The bits of the value of the argument are extended or truncated on the left
to the same length as the bits required for the type of the constructor (fol-
lowing the usual binary rules of sign extension if the argument type is a
signed numeric type), and a value with the type of the constructor is then
constructed directly from those bits and returned.

Example:

This example illustrates types from the reference implementation, with 32-bit
signed integers of type int and 16-bit Unicode characters of type char.

i=int 77 –– i is now the integer 77
c=char(i) –– c is now the character 'M'
j=int(c) –– j is now the integer 77

Note that the conversion

j=int c

would have failed, as “M” is not a number.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 38 Exceptions 117

SECTION 38: EXCEPTIONS

Exceptional conditions, including errors, in NetRexx are handled by a mech-
anism called Exceptions. When an exceptional condition occurs, a signal takes
place which may optionally be caught by an enclosing control construct, as
detailed below.

An exception can be signalled by:

1. the program’s environment, when some processing error occurs (such as
running out of memory, or a problem discovered when reading or writing
a file)

2. a method called by a NetRexx program (if, for example, it is passed
incorrect arguments)

3. the signal instruction (see page 82).

In all cases, the signal is handled in exactly the same way. First, execution
of the current clause ceases; no further operations within the clause will be
carried out.52 Next, an object that represents the exception is constructed.
The type of the exception object is implementation-dependent, as described
for the signal instruction (see page 82), and defines the type of the exception.
The object constructed usually contains information about the Exception
(such as a descriptive string).

Once the object has been constructed, all active do groups, loop loops, if con-
structs, and select constructs in the active method are “unwound”, starting
with the innermost, until the exception is caught by a control construct that
specifies a suitable catch clause (see below) for handling the exception.

This unwinding takes place as follows:

1. No further clauses within the body of the construct will be executed (in
this respect, the signal acts like a leave for the construct).

2. If a catch clause specifies a type to which the exception object can be
assigned (that is, it matches or is a superclass of the type of exception
object), then the instructionlist following that clause is executed, and the
exception is considered to be handled (no further control constructs will
be unwound). If more than one catch clause specifies a suitable type, the
first is used.

3. The instructionlist following the finally clause for the construct, if any,
is executed.

4. The end clause is executed, hence completing execution of the construct.
(The only effect of this is that it is seen when tracing.)

52 This is the only case in which an expression will not be wholly evaluated, for
example.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

118 NetRexx Language Definition Part 1

5. If the exception was handled, then execution resumes as though the
construct completed normally. If it was not handled, then the process
is repeated for any enclosing constructs.

If the exception is not caught by any of the control constructs enclosing the
original point of the exception signal, then the current active method is ter-
minated, without returning any data, and the exception is then signalled at
the point where the method was invoked (that is, in the caller).

The process of unwinding control constructs and terminating the method is
then repeated in each calling method until the exception is caught or the
initial program invocation method (the main method) is terminated, in which
case the program ends and the environment receives the signal (it would
usually then display diagnostic information).

Syntax and example

The constructs that may be used to handle (catch) an exception are do groups,
loop loops, and select constructs. Specifically, as shown in the syntax dia-
grams (q.v.), where the end clause can appear in these constructs, zero or
more catch clauses can be used to define exception handlers, followed by zero
or one finally clauses that describe “clean-up” code for the construct. The
whole construct continues to be ended by an end clause.

The syntax of a catch clause is shown in the syntax diagrams. It always
specifies an exception type, which may be qualified. It may optionally specify
a symbol, vare, which is followed by an equals sign. This indicates that when
the exception is caught then the object representing the exception will be
assigned to the variable vare. If new, the type of the variable will be
exception.

Here is an example of a program that handles some of the exceptions sig-
nalled by methods in the Rexx class; the trace results instruction is included
to show the flow of execution:

trace results
do –– could be LOOP i=1 to 10, etc.
 say 1/arg
catch DivideException
say 'Divide exception'

catch ex=NumberFormatException
/* 'ex' is assigned the exception object */
say 'Bad number for division:' ex.getMessage

finally
 say 'Done!'
end

In this example, if the argument passed to the program (and hence placed in
arg) is a valid number, then its inverse is displayed. If the argument is 0,
then “Divide exception” would be displayed. If the argument were an
invalid number, the message describing the bad number would be displayed.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Section 38 Exceptions 119

For any other exception (such as an ExponentOverflowException), the
program would end and the environment would normally report the excep-
tion.

In all cases, the message “Done!” would be displayed; this would be true even
if the body of the do construct executed a return, leave, or iterate instruction.
Only an exit instruction (see page 51) would cause immediate termination of
the construct (and the program).

Note: The finally keyword, like otherwise in the select construct, implies a
semicolon after it, so the last say instruction in the example could have
appeared on the same line as the finally without an intervening semicolon.

Exceptions after catch and finally clauses

If an exception is signalled in the instructionlist following a catch or finally

clause, then the current exception is considered handled, the instructionlist
is terminated, and the new exception is signalled. It will not be caught by
catch clauses in the current construct. If it occurs in the instructionlist fol-
lowing a catch clause, then any finally instructions will be executed, as usual.

Similarly, executing a return or exit instruction within either of the instructi-
onlists completes the handling of any pending signal.

Checked exceptions

NetRexx implementations may define certain exceptions as checked

exceptions. These are exceptions that the implementation considers it useful
to check; the checked exceptions that each method may signal are recorded.
Within do groups, loop loops, and select constructs, for example, it is then
possible to report if a catch clause tries to catch a checked exception that is
not signalled within the body of the construct.

Checked exceptions that are signalled within a method (by a signal instruc-
tion or a method invocation) but not caught by a catch clause in the method
are automatically added to the signals list for a method. Implementations
that support checked exceptions are encouraged to provide options that list
the uncaught checked exceptions for methods or enforce the explicit inclusion
of some or all checked exceptions in the signals list on the method instruction.

In the reference implementation, all exceptions are checked except those that
are subclasses of java.lang.RuntimeException or java.lang.Error.
These latter are considered so ubiquitous that almost all methods would signal
them.

Expressions assigned as the initial values of properties must not invoke
methods that may signal checked exceptions.

The strictsignal option on the options instruction may be used to enforce the
inclusion of all uncaught checked exceptions in methods’ signals lists; this may
be used to assure that any uncaught checked exceptions are intentional.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

120 NetRexx Language Definition Part 1

SECTION 39: METHODS FOR NETREXX STRINGS

This section describes the set of methods defined for the NetRexx string class,
Rexx. These are called built–in methods, and include character manipulation,
word manipulation, conversion, and arithmetic methods.

Implementations will also provide other methods for the Rexx class (for
example, to implement the NetRexx operators or to provide constructors with
primitive arguments), but these are not part of the NetRexx language.

General notes on the built-in methods:

1. All methods work on a NetRexx string of type Rexx; this is referred to
by the name string in the descriptions of the methods. For example, if
the word method were invoked using the term:

"Three word phrase".word(2)

then in the description of word the name string refers to the string
“Three word phrase”, and the name n refers to the string “2”.

2. All method arguments are of type Rexx and all methods return a string
of type Rexx; if a number is returned, it will be formatted as though 0
had been added with no rounding.

3. The first parenthesis in a method call must immediately follow the name
of the method, with no space in between.

4. The parentheses in a method call can be omitted if no arguments are
required and the method call is part of a compound term (see page 14).53

5. A position in a string is the number of a character in the string, where
the first character is at position 1, etc.

6. Where arguments are optional, commas may only be included between
arguments that are present (that is, trailing commas in argument lists
are not permitted).

7. A pad argument, if specified, must be exactly one character long.

8. If a method has a sub-option selected by the first character of a string,
that character may be in upper or lowercase.

9. Conversion between character encodings and decimal or hexadecimal is
dependent on the machine representation (encoding) of characters and
hence will return appropriately different results for Unicode, ASCII,
EBCDIC, and other implementations.

53 Unless an implementation-provided option to disallow parenthesis omission is in
force.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 121

The built-in methods

abbrev(info[,length])

returns 1 if info is equal to the leading characters of string and info is
not less than the minimum length, length; 0 is returned if either of these
conditions is not met. length must be a non-negative whole number; the
default is the length of info.

Examples:

'Print'.abbrev('Pri') == 1
'PRINT'.abbrev('Pri') == 0
'PRINT'.abbrev('PRI',4) == 0
'PRINT'.abbrev('PRY') == 0
'PRINT'.abbrev('') == 1
'PRINT'.abbrev('',1) == 0

Note: A null string will always match if a length of 0 (or the default)
is used. This allows a default keyword to be selected automatically if
desired.

Example:

say 'Enter option:'; option=ask
select /* keyword1 is to be the default */
when 'keyword1'.abbrev(option) then ...
when 'keyword2'.abbrev(option) then ...

 ...
 otherwise ...
 end

abs()

returns the absolute value of string, which must be a number.

Any sign is removed from the number, and it is then formatted by add-
ing zero with a digits setting that is either nine or, if greater, the num-
ber of digits in the mantissa of the number (excluding leading
insignificant zeros). Scientific notation is used, if necessary.

Examples:

'12.3'.abs == 12.3
' –0.307'.abs == 0.307

 '123.45E+16'.abs == 1.2345E+18
'– 1234567.7654321'.abs == 1234567.7654321

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

122 NetRexx Language Definition Part 1

b2x()

Binary to hexadecimal. Converts string, a string of at least one binary
(0 and/or 1) digits, to an equivalent string of hexadecimal characters.
The returned string will use uppercase Roman letters for the values A-F,
and will not include any blanks.

If the number of binary digits in the string is not a multiple of four, then
up to three '0' digits will be added on the left before conversion to make
a total that is a multiple of four.

Examples:

'11000011'.b2x == 'C3'
'10111'.b2x == '17'
'0101'.b2x == '5'
'101'.b2x == '5'
'111110000'.b2x == '1F0'

center(length[,pad])

or

centre(length[,pad])

returns a string of length length with string centered in it, with pad
characters added as necessary to make up the required length. length
must be a non-negative whole number. The default pad character is
blank. If the string is longer than length, it will be truncated at both
ends to fit. If an odd number of characters are truncated or added, the
right hand end loses or gains one more character than the left hand end.

Examples:

'ABC'.centre(7) == ' ABC '
'ABC'.center(8,'–') == '––ABC–––'
'The blue sky'.centre(8) == 'e blue s'
'The blue sky'.center(7) == 'e blue '

Note: This method may be called either centre or center, which
avoids difficulties due to the difference between the British and Ameri-
can spellings.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 123

changestr(needle, new)

returns a copy of string in which each occurrence of the needle string is
replaced by the new string. Each unique (non-overlapping) occurrence
of the needle string is changed, searching from left to right and starting
from the first (leftmost) position in string. Only the original string is
searched for the needle, and each character in string can only be
included in one match of the needle.

If the needle is the null string, the result is a copy of string, unchanged.

Examples:

'elephant'.changestr('e','X') == 'XlXphant'
'elephant'.changestr('ph','X') == 'eleXant'
'elephant'.changestr('ph','hph') == 'elehphant'
'elephant'.changestr('e','') == 'lphant'
'elephant'.changestr('','!!') == 'elephant'

The countstr method (see page 124) can be used to count the number
of changes that could be made to a string in this fashion.

compare(target[,pad])

returns 0 if string and target are the same. If they are not, the returned
number is positive and is the position of the first character that is not
the same in both strings. If one string is shorter than the other, one or
more pad characters are added on the right to make it the same length
for the comparison. The default pad character is a blank.

Examples:

'abc'.compare('abc') == 0
'abc'.compare('ak') == 2
'ab '.compare('ab') == 0
'ab '.compare('ab',' ') == 0
'ab '.compare('ab','x') == 3
'ab–– '.compare('ab','–') == 5

copies(n)

returns n directly concatenated copies of string. n must be positive or
0; if 0, the null string is returned.

Examples:

'abc'.copies(3) == 'abcabcabc'
'abc'.copies(0) == ''
''.copies(2) == ''

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

124 NetRexx Language Definition Part 1

countstr(needle)

returns the count of non-overlapping occurrences of the needle string in
string, searching from left to right and starting from the first (leftmost)
position in string.

If the needle is the null string, 0 is returned.

Examples:

'elephant'.countstr('e') == '2'
'elephant'.countstr('ph') == '1'
'elephant'.countstr('') == '0'

The changestr method (see page 123) can be used to change occur-
rences of needle to some other string.

c2d()

Coded character to decimal. Converts the encoding of the character in
string (which must be exactly one character) to its decimal represen-
tation. The returned string will be a non-negative number that repres-
ents the encoding of the character and will not include any sign, blanks,
insignificant leading zeros, or decimal part.

Examples:

'M'.c2d == '77' –– ASCII or Unicode
'7'.c2d == '247' –– EBCDIC
'\r'.c2d == '13' –– ASCII or Unicode
'\0'.c2d == '0'

The c2x method (see page 124) can be used to convert the encoding of
a character to a hexadecimal representation.

c2x()

Coded character to hexadecimal. Converts the encoding of the character
in string (which must be exactly one character) to its hexadecimal rep-
resentation (unpacks). The returned string will use uppercase Roman
letters for the values A-F, and will not include any blanks. Insignificant
leading zeros are removed.

Examples:

'M'.c2x == '4D' –– ASCII or Unicode
'7'.c2x == 'F7' –– EBCDIC
'\r'.c2x == 'D' –– ASCII or Unicode
'\0'.c2x == '0'

The c2d method (see page 124) can be used to convert the encoding of
a character to a decimal number.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 125

datatype(option)

returns 1 if string matches the description requested with the option,
or 0 otherwise. If string is the null string, 0 is always returned.

Only the first character of option is significant, and it may be in either
uppercase or lowercase. The following option characters are recognized:

A (Alphanumeric); returns 1 if string only contains characters from
the ranges “a-z”, “A-Z”, and “0-9”.

B (Binary); returns 1 if string only contains the characters “0” and/or
“1”.

D (Digits); returns 1 if string only contains characters from the range
“0-9”.

L (Lowercase); returns 1 if string only contains characters from the
range “a-z”.

M (Mixed case); returns 1 if string only contains characters from the
ranges “a-z” and “A-Z”.

N (Number); returns 1 if string is a syntactically valid NetRexx
number that could be added to '0' without error,

S (Symbol); returns 1 if string only contains characters that are valid
in non-numeric symbols (the alphanumeric characters and under-
score), and does not start with a digit. Note that both uppercase
and lowercase letters are permitted.

U (Uppercase); returns 1 if string only contains characters from the
range “A-Z”.

W (Whole Number); returns 1 if string is a syntactically valid NetRexx
number that can be added to '0' without error, and whose decimal
part after that addition, with no rounding, is zero.

X (heXadecimal); returns 1 if string only contains characters from the
ranges “a-f”, “A-F”, and “0-9”.

Examples:

'101'.datatype('B') == 1
'12.3'.datatype('D') == 0
'12.3'.datatype('N') == 1
'12.3'.datatype('W') == 0
'LaArca'.datatype('M') == 1
''.datatype('M') == 0
'Llanes'.datatype('L') == 0
'3 d'.datatype('s') == 1
'BCd3'.datatype('X') == 1
'BCgd3'.datatype('X') == 0

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

126 NetRexx Language Definition Part 1

Note: The datatype method tests the meaning of the characters in a
string, independent of the encoding of those characters. Extra letters
and Extra digits cause datatype to return 0 except for the number tests
(“N” and “W”), which treat extra digits whose value is in the range 0-9
as though they were the corresponding arabic numeral.

delstr(n[,length])

returns a copy of string with the sub-string of string that begins at the
nth character, and is of length length characters, deleted. If length is not
specified, or is greater than the number of characters from n to the end
of the string, the rest of the string is deleted (including the nth charac-
ter). length must be a non-negative whole number, and n must be a
positive whole number. If n is greater than the length of string, the
string is returned unchanged.

Examples:

'abcd'.delstr(3) == 'ab'
'abcde'.delstr(3,2) == 'abe'
'abcde'.delstr(6) == 'abcde'

delword(n[,length])

returns a copy of string with the sub-string of string that starts at the
nth word, and is of length length blank-delimited words, deleted. If
length is not specified, or is greater than number of remaining words in
the string, it defaults to be the remaining words in the string (including
the nth word). length must be a non-negative whole number, and n must
be a positive whole number. If n is greater than the number of words
in string, the string is returned unchanged. The string deleted includes
any blanks following the final word involved, but none of the blanks
preceding the first word involved.

Examples:

'Now is the time'.delword(2,2) == 'Now time'
'Now is the time '.delword(3) == 'Now is '
'Now time'.delword(5) == 'Now time'

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 127

d2c()

Decimal to coded character. Converts the string (a NetRexx number) to
a single character, where the number is used as the encoding of the
character.

string must be a non-negative whole number. An error results if the
encoding described does not produce a valid character for the imple-
mentation (for example, if it has more significant bits than the
implementation’s encoding for characters).

Examples:

'77'.d2c == 'M' –– ASCII or Unicode
'+77'.d2c == 'M' –– ASCII or Unicode
'247'.d2c == '7' –– EBCDIC
'0'.d2c == '\0'

d2x([n])

Decimal to hexadecimal. Returns a string of hexadecimal characters of
length as needed or of length n, which is the hexadecimal (unpacked)
representation of the decimal number. The returned string will use
uppercase Roman letters for the values A-F, and will not include any
blanks.

string must be a whole number, and must be non-negative unless n is
specified, or an error will result. If n is not specified, the length of the
result returned is such that there are no leading 0 characters, unless
string was equal to 0 (in which case '0' is returned).

If n is specified it is the length of the final result in characters; that is,
after conversion the input string will be sign-extended to the required
length (negative numbers are converted assuming twos-complement
form). If the number is too big to fit into n characters, it will be trun-
cated on the left. n must be a non-negative whole number.

Examples:

'9'.d2x == '9'
'129'.d2x == '81'
'129'.d2x(1) == '1'
'129'.d2x(2) == '81'
'127'.d2x(3) == '07F'
'129'.d2x(4) == '0081'
'257'.d2x(2) == '01'
'–127'.d2x(2) == '81'
'–127'.d2x(4) == 'FF81'
'12'.d2x(0) == ''

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

128 NetRexx Language Definition Part 1

exists(index)

returns 1 if index names a sub-value (see page 42) of string that has
explicitly been assigned a value, or 0 otherwise.

Example:

Following the instructions:

vowel=0
vowel['a']=1
vowel['b']=1
vowel['b']=null –– drops previous assignment

then:

vowel.exists('a') == '1'
vowel.exists('b') == '0'
vowel.exists('c') == '0'

format([before[,after]])

formats (lays out) string, which must be a number.

The number, string, is first formatted by adding zero with a digits set-
ting that is either nine or, if greater, the number of digits in the man-
tissa of the number (excluding leading insignificant zeros). If no
arguments are given, the result is precisely that of this operation.

The arguments before and after may be specified to control the number
of characters to be used for the integer part and decimal part of the
result respectively. If either of these is omitted, or is null, the number
of characters used will be as many as are needed for that part.

before must be a positive number; if it is larger than is needed to contain
the integer part, that part is padded on the left with blanks to the
requested length. If before is not large enough to contain the integer
part of the number (including the sign, for negative numbers), an error
results.

after must be a non-negative number; if it is not the same size as the
decimal part of the number, the number will be rounded (or extended
with zeros) to fit. Specifying 0 for after will cause the number to be
rounded to an integer (that is, it will have no decimal part or decimal
point).

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 129

Examples:

' – 12.73'.format == '–12.73'
'0.000'.format == '0'
'3'.format(4) == ' 3'

 '1.73'.format(4,0) == ' 2'
 '1.73'.format(4,3) == ' 1.730'
 '–.76'.format(4,1) == ' –0.8'

'3.03'.format(4) == ' 3.03'
' – 12.73'.format(null,4) == '–12.7300'

Further arguments may be passed to the format method to control the
use of exponential notation. The full syntax of the method is then:

format([before[,after[,explaces[,exdigits[,exform]]]]])

The first two arguments are as already described. The other three
(explaces, exdigits, and exform) control the exponent part of the result.
The default for any of the arguments may be selected by omitting them
(if there are no arguments to be specified to their right) or by using the
value null.

explaces must be a positive number; it sets the number of places (digits
after the sign of the exponent) to be used for any exponent part, the
default being to use as many as are needed. If explaces is specified and
is not large enough to contain the exponent, an error results. If explaces
is specified and the exponent will be 0, then explaces+2 blanks are sup-
plied for the exponent part of the result.

exdigits sets the trigger point for use of exponential notation. If, after
the first formatting, the number of places needed before the decimal
point exceeds exdigits, or if the absolute value of the result is less than
0.000001, then exponential form will be used, provided that exdigits
was specified. When exdigits is not specified, exponential notation will
never be used. The current setting of numeric digits may be used for
exdigits by specifying the special word digits (see page 90). If 0 is
specified for exdigits, exponential notation is always used unless the
exponent would be 0.

exform sets the form for exponential notation (if needed). exform may
be either 'Scientific' (the default) or 'Engineering'. Only the
first character of exform is significant and it may be in uppercase or in
lowercase. The current setting of numeric form may be used by specify-
ing the special word form (see page 90). If engineering form is in effect,
up to three digits (plus sign) may be needed for the integer part of the
result (before).

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

130 NetRexx Language Definition Part 1

Examples:

'12345.73'.format(null,null,2,2) == '1.234573E+04'
'12345.73'.format(null,3,null,0) == '1.235E+4'
'1.234573'.format(null,3,null,0) == '1.235'
'123.45'.format(null,3,2,0) == '1.235E+02'
'1234.5'.format(null,3,2,0,'e') == '1.235E+03'
'1.2345'.format(null,3,2,0) == '1.235 '
'12345.73'.format(null,null,3,6) == '12345.73 '

 '12345e+5'.format(null,3) == '1234500000.000'

Implementation minimum: If exponents are supported in an imple-
mentation, then they must be supported for exponents whose absolute
value is at least as large as the largest number that can be expressed
as an exact integer in default precision, i.e., 999999999. Therefore,
values for explaces of up to 9 should also be supported.

insert(new[,n[,length[,pad]]])

inserts the string new, padded or truncated to length length, into a copy
of the target string after the nth character; the string with any inserts
is returned. length and n must be a non-negative whole numbers. If n
is greater than the length of the target string, padding is added before
the new string also. The default value for n is 0, which means insert
before the beginning of the string. The default value for length is the
length of new. The default pad character is a blank.

Examples:

'abc'.insert('123') == '123abc'
'abcdef'.insert(' ',3) == 'abc def'
'abc'.insert('123',5,6) == 'abc 123 '
'abc'.insert('123',5,6,'+') == 'abc++123+++'
'abc'.insert('123',0,5,'–') == '123––abc'

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 131

lastpos(needle[,start])

returns the position of the last occurrence of the string needle in string
(the “haystack”), searching from right to left. If the string needle is not
found, or is the null string, 0 is returned. By default the search starts
at the last character of string and scans backwards. This may be over-
ridden by specifying start, the point at which to start the backwards
scan. start must be a positive whole number, and defaults to the value
string.length if larger than that value or if not specified (with a mini-
mum default value of one).

Examples:

'abc def ghi'.lastpos(' ') == 8
'abc def ghi'.lastpos(' ',7) == 4
'abcdefghi'.lastpos(' ') == 0
'abcdefghi'.lastpos('cd') == 3
''.lastpos('?') == 0

left(length[,pad])

returns a string of length length containing the left-most length charac-
ters of string. The string is padded with pad characters (or truncated)
on the right as needed. The default pad character is a blank. length
must be a non-negative whole number. This method is exactly equiv-
alent to string.substr(1, length [, pad]).

Examples:

'abc d'.left(8) == 'abc d '
'abc d'.left(8,'.') == 'abc d...'
'abc defg'.left(6) == 'abc de'

length()

returns the number of characters in string.

Examples:

'abcdefgh'.length == 8
''.length == 0

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

132 NetRexx Language Definition Part 1

lower([n[,length]])

returns a copy of string with any uppercase characters in the sub-string
of string that begins at the nth character, and is of length length char-
acters, replaced by their lowercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character
in string). If n is greater than the length of string, the string is returned
unchanged.

length must be a non-negative whole number. If length is not specified,
or is greater than the number of characters from n to the end of the
string, the rest of the string (including the nth character) is assumed.

Examples:

'SumA'.lower == 'suma'
'SumA'.lower(2) == 'Suma'
'SuMB'.lower(1,1) == 'suMB'
'SUMB'.lower(2,2) == 'SumB'
''.lower == ''

max(number)

returns the larger of string and number, which must both be numbers.
If they compare equal (that is, when subtracted, the result is 0), then
string is selected for the result.

The comparison is effected using a numerical comparison with a digits
setting that is either nine or, if greater, the larger of the number of
digits in the mantissas of the two numbers (excluding leading insignif-
icant zeros).

The selected result is formatted by adding zero to the selected number
with a digits setting that is either nine or, if greater, the number of
digits in the mantissa of the number (excluding leading insignificant
zeros). Scientific notation is used, if necessary.

Examples:

0.max(1) ==1
'–1'.max(1) ==1
'+1'.max(–1) ==1
'1.0'.max(1.00) =='1.0'
'1.00'.max(1.0) =='1.00'
'123456700000'.max(1234567E+5) == '123456700000'
'1234567E+5'.max('123456700000') == '1.234567E+11'

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 133

min(number)

returns the smaller of string and number, which must both be numbers.
If they compare equal (that is, when subtracted, the result is 0), then
string is selected for the result.

The comparison is effected using a numerical comparison with a digits
setting that is either nine or, if greater, the larger of the number of
digits in the mantissas of the two numbers (excluding leading insignif-
icant zeros).

The selected result is formatted by adding zero to the selected number
with a digits setting that is either nine or, if greater, the number of
digits in the mantissa of the number (excluding leading insignificant
zeros). Scientific notation is used, if necessary.

Examples:

0.min(1) ==0
'–1'.min(1) =='–1'
'+1'.min(–1) =='–1'
'1.0'.min(1.00) =='1.0'
'1.00'.min(1.0) =='1.00'
'123456700000'.min(1234567E+5) == '123456700000'
'1234567E+5'.min('123456700000') == '1.234567E+11'

overlay(new[,n[,length[,pad]]])

overlays the string new, padded or truncated to length length, onto a
copy of the target string starting at the nth character; the string with any
overlays is returned. Overlays may extend beyond the end of the ori-
ginal string. If length is specified it must be a non-negative whole
number. If n is greater than the length of the target string, padding is
added before the new string also. The default pad character is a blank,
and the default value for n is 1. n must be greater than 0. The default
value for length is the length of new.

Examples:

'abcdef'.overlay(' ',3) == 'ab def'
'abcdef'.overlay('.',3,2) == 'ab. ef'
'abcd'.overlay('qq') == 'qqcd'
'abcd'.overlay('qq',4) == 'abcqq'
'abc'.overlay('123',5,6,'+') == 'abc+123+++'

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

134 NetRexx Language Definition Part 1

pos(needle[,start])

returns the position of the string needle, in string (the “haystack”),
searching from left to right. If the string needle is not found, or is the
null string, 0 is returned. By default the search starts at the first
character of string (that is, start has the value 1). This may be over-
ridden by specifying start (which must be a positive whole number), the
point at which to start the search; if start is greater than the length of
string then 0 is returned.

Examples:

'Saturday'.pos('day') == 6
'abc def ghi'.pos('x') == 0
'abc def ghi'.pos(' ') == 4
'abc def ghi'.pos(' ',5) == 8

reverse()

returns a copy of string, swapped end for end.

Examples:

 'ABc.'.reverse == '.cBA'
'XYZ '.reverse == ' ZYX'
'Tranquility'.reverse == 'ytiliuqnarT'

right(length[,pad])

returns a string of length length containing the right-most length char-
acters of string – that is, padded with pad characters (or truncated) on
the left as needed. The default pad character is a blank. length must
be a non-negative whole number.

Examples:

'abc d'.right(8) == ' abc d'
'abc def'.right(5) == 'c def'
'12'.right(5,'0') == '00012'

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 135

sequence(final)

returns a string of all characters, in ascending order of encoding,
between and including the character in string and the character in
final. string and final must be single characters; if string is greater than
final, an error is reported.

Examples:

'a'.sequence('f') == 'abcdef'
'\0'.sequence('\x03') == '\x00\x01\x02\x03'
'\ufffe'.sequence('\uffff') == '\ufffe\uffff'

sign()

returns a number that indicates the sign of string, which must be a
number. string is first formatted, just as though the operation
“string+0” had been carried out with sufficient digits to avoid round-
ing. If the number then starts with '–' then '–1' is returned; if it is
'0' then '0' is returned; and otherwise '1' is returned.

Examples:

'12.3'.sign == 1
'0.0'.sign == 0
' –0.307'.sign == –1

space([n[,pad]])

returns a copy of string with the blank-delimited words in string for-
matted with n (and only n) pad characters between each word. n must
be a non-negative whole number. If n is 0, all blanks are removed.
Leading and trailing blanks are always removed. The default for n is
1, and the default pad character is a blank.

Examples:

'abc def '.space == 'abc def'
' abc def '.space(3) == 'abc def'
'abc def '.space(1) == 'abc def'
'abc def '.space(0) == 'abcdef'
'abc def '.space(2,'+') == 'abc++def'

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

136 NetRexx Language Definition Part 1

strip([option[,char]])

returns a copy of string with Leading, Trailing, or Both leading and
trailing characters removed, when the first character of option is L, T,
or B respectively (these may be given in either uppercase or lowercase).
The default is B. The second argument, char, specifies the character to
be removed, with the default being a blank. If given, char must be
exactly one character long.

Examples:

' ab c '.strip == 'ab c'
' ab c '.strip('L') == 'ab c '
' ab c '.strip('t') == ' ab c'
'12.70000'.strip('t',0) == '12.7'
'0012.700'.strip('b',0) == '12.7'

substr(n[,length[,pad]])

returns the sub-string of string that begins at the nth character, and is
of length length, padded with pad characters if necessary. n must be a
positive whole number, and length must be a non-negative whole num-
ber. If n is greater than string.length, then only pad characters can
be returned.

If length is omitted it defaults to be the rest of the string. The default
pad character is a blank.

Examples:

'abc'.substr(2) == 'bc'
'abc'.substr(2,4) == 'bc '
'abc'.substr(5,4) == ' '
'abc'.substr(2,6,'.') == 'bc....'
'abc'.substr(5,6,'.') == '......'

Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting sub-strings, especially if
more than one sub-string is to be extracted from a string.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 137

subword(n[,length])

returns the sub-string of string that starts at the nth word, and is up to
length blank-delimited words long. n must be a positive whole number;
if greater than the number of words in the string then the null string
is returned. length must be a non-negative whole number. If length is
omitted it defaults to be the remaining words in the string. The
returned string will never have leading or trailing blanks, but will
include all blanks between the selected words.

Examples:

'Now is the time'.subword(2,2) == 'is the'
'Now is the time'.subword(3) == 'the time'
'Now is the time'.subword(5) == ''

translate(tableo,tablei[,pad])

returns a copy of string with each character in string either unchanged
or translated to another character.

The translate method acts by searching the input translate table,
tablei, for each character in string. If the character is found in tablei
(the first, leftmost, occurrence being used if there are duplicates) then
the corresponding character in the same position in the output translate
table, tableo, is used in the result string; otherwise the original charac-
ter found in string is used. The result string is always the same length
as string.

The translate tables may be of any length, including the null string.
The output table, tableo, is padded with pad or truncated on the right
as necessary to be the same length as tablei. The default pad is a blank.

Examples:

'abbc'.translate('&','b') == 'a&&c'
'abcdef'.translate('12','ec') == 'ab2d1f'
'abcdef'.translate('12','abcd','.') == '12..ef'
'4123'.translate('abcd','1234') == 'dabc'
'4123'.translate('hods','1234') == 'shod'

Note: The last two examples show how the translate method may be
used to move around the characters in a string. In these examples, any
4-character string could be specified as the first argument and its last
character would be moved to the beginning of the string. Similarly, the
term:

'gh.ef.abcd'.translate(19970827,'abcdefgh')

(which returns “27.08.1997”) shows how a string (in this case perhaps
a date) might be re-formatted and merged with other characters using
the translate method.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

138 NetRexx Language Definition Part 1

trunc([n])

returns the integer part of string, which must be a number, with n dec-
imal places (digits after the decimal point). n must be a non-negative
whole number, and defaults to zero.

The number string is formatted by adding zero with a digits setting that
is either nine or, if greater, the number of digits in the mantissa of the
number (excluding leading insignificant zeros). It is then truncated to
n decimal places (or trailing zeros are added if needed to make up the
specified length). If n is 0 (the default) then an integer with no decimal
point is returned. The result will never be in exponential form.

Examples:

'12.3'.trunc == 12
'127.09782'.trunc(3) == 127.097
'127.1'.trunc(3) == 127.100
'127'.trunc(2) == 127.00
'0'.trunc(2) == 0.00

upper([n[,length]])

returns a copy of string with any lowercase characters in the sub-string
of string that begins at the nth character, and is of length length char-
acters, replaced by their uppercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character
in string). If n is greater than the length of string, the string is returned
unchanged.

length must be a non-negative whole number. If length is not specified,
or is greater than the number of characters from n to the end of the
string, the rest of the string (including the nth character) is assumed.

Examples:

 'Fou–Baa'.upper == 'FOU–BAA'
'Mad Sheep'.upper == 'MAD SHEEP'
'Mad sheep'.upper(5) == 'Mad SHEEP'
'Mad sheep'.upper(5,1) == 'Mad Sheep'
'Mad sheep'.upper(5,4) == 'Mad SHEEp'
'tinganon'.upper(1,1) == 'Tinganon'
''.upper == ''

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 139

verify(reference[,option[,start]])

verifies that string is composed only of characters from reference, by
returning the position of the first character in string that is not also in
reference. If all the characters were found in reference, 0 is returned.

The option may be either 'Nomatch' (the default) or 'Match'. Only
the first character of option is significant and it may be in uppercase or
in lowercase. If 'Match' is specified, the position of the first character
in string that is in reference is returned, or 0 is returned if none of the
characters were found.

The default for start is 1 (that is, the search starts at the first character
of string). This can be overridden by giving a different start point, which
must be positive.

If string is the null string, the method returns 0, regardless of the value
of the option:. Similarly if start is greater than string.length, 0 is
returned.

If reference is the null string, then the returned value is the same as the
value used for start, unless 'Match' is specified as the option, in which
case 0 is returned.

Examples:

'123'.verify('1234567890') == 0
'1Z3'.verify('1234567890') == 2
'AB4T'.verify('1234567890','M') == 3
'1P3Q4'.verify('1234567890','N',3) == 4
'ABCDE'.verify('','n',3) == 3
'AB3CD5'.verify('1234567890','m',4) == 6

word(n)

returns the nth blank-delimited word in string. n must be positive. If
there are fewer than n words in string, the null string is returned. This
method is exactly equivalent to string.subword(n,1).

Examples:

'Now is the time'.word(3) == 'the'
'Now is the time'.word(5) == ''

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

140 NetRexx Language Definition Part 1

wordindex(n)

returns the character position of the nth blank-delimited word in string.
n must be positive. If there are fewer than n words in the string, 0 is
returned.

Examples:

'Now is the time'.wordindex(3) == 8
'Now is the time'.wordindex(6) == 0

wordlength(string,n)

returns the length of the nth blank-delimited word in string. n must be
positive. If there are fewer than n words in the string, 0 is returned.

Examples:

'Now is the time'.wordlength(2) == 2
'Now comes the time'.wordlength(2) == 5
'Now is the time'.wordlength(6) == 0

wordpos(phrase[,start])

searches string for the first occurrence of the sequence of blank-delim-
ited words phrase, and returns the word number of the first word of
phrase in string. Multiple blanks between words in either phrase or
string are treated as a single blank for the comparison, but otherwise
the words must match exactly. Similarly, leading or trailing blanks on
either string are ignored. If phrase is not found, or contains no words,
0 is returned.

By default the search starts at the first word in string. This may be
overridden by specifying start (which must be positive), the word at
which to start the search.

Examples:

'now is the time'.wordpos('the') == 3
'now is the time'.wordpos('The') == 0
'now is the time'.wordpos('is the') == 2
'now is the time'.wordpos('is the') == 2
'now is the time'.wordpos('is time') == 0
'To be or not to be'.wordpos('be') == 2
'To be or not to be'.wordpos('be',3) == 6

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Section 39 Methods for NetRexx strings 141

words()

returns the number of blank-delimited words in string.

Examples:

'Now is the time'.words == 4
' '.words == 0
''.words == 0

x2b()

Hexadecimal to binary. Converts string (a string of at least one hexa-
decimal characters) to an equivalent string of binary digits. Hexadeci-
mal characters may be any decimal digit character (0-9) or any of the
first six alphabetic characters (a-f), in either lowercase or uppercase.

string may be of any length; each hexadecimal character with be con-
verted to a string of four binary digits. The returned string will have a
length that is a multiple of four, and will not include any blanks.

Examples:

'C3'.x2b == '11000011'
'7'.x2b == '0111'
'1C1'.x2b == '000111000001'

x2c()

Hexadecimal to coded character. Converts the string (a string of hexa-
decimal characters) to a single character (packs). Hexadecimal charac-
ters may be any decimal digit character (0-9) or any of the first six
alphabetic characters (a-f), in either lowercase or uppercase.

string must contain at least one hexadecimal character; insignificant
leading zeros are removed, and the string is then padded with leading
zeros if necessary to make a sufficient number of hexadecimal digits to
describe a character encoding for the implementation.

An error results if the encoding described does not produce a valid
character for the implementation (for example, if it has more significant
bits than the implementation’s encoding for characters).

Examples:

'004D'.x2c == 'M' –– ASCII or Unicode
'4d'.x2c == 'M' –– ASCII or Unicode
'A2'.x2c == 's' –– EBCDIC
'0'.x2c == '\0'

The d2c method (see page 127) can be used to convert a NetRexx num-
ber to the encoding of a character.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

142 NetRexx Language Definition Part 1

x2d([n])

Hexadecimal to decimal. Converts the string (a string of hexadecimal
characters) to a decimal number, without rounding. If string is the null
string, 0 is returned.

If n is not specified, string is taken to be an unsigned number.

Examples:

'0E'.x2d == 14
'81'.x2d == 129
'F81'.x2d == 3969
'FF81'.x2d == 65409
'c6f0'.x2d == 50928

If n is specified, string is taken as a signed number expressed in n hex-
adecimal characters. If the most significant (left-most) bit is zero then
the number is positive; otherwise it is a negative number in twos-com-
plement form. In both cases it is converted to a NetRexx number which
may, therefore, be negative. If n is 0, 0 is always returned.

If necessary, string is padded on the left with '0' characters (note, not
“sign-extended”), or truncated on the left, to length n characters; (that
is, as though string.right(n, '0') had been executed.)

Examples:

'81'.x2d(2) == –127
'81'.x2d(4) == 129
'F081'.x2d(4) == –3967
'F081'.x2d(3) == 129
'F081'.x2d(2) == –127
'F081'.x2d(1) == 1
'0031'.x2d(0) == 0

The c2d method (see page 124) can be used to convert a character to a
decimal representation of its encoding.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Appendix A: NetRexx Syntax
Diagrams

This appendix collects together the syntax diagrams of the NetRexx
instructions presented earlier in this book. They include general terms
defined on the following pages:

term Page 13.

expression Page 28.

instruction Page 45.

pattern Page 94.

string Page 5.

symbol Page 7.

template Page 94.

Other terms specific to individual instructions are explained in the section
describing that instruction.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved. 143

144 NetRexx Syntax Diagrams Appendix A

Method call:

symbol (

expression

, expression ...) ;

Assignment:

assignment ;

where assignment is:

term = expression

Keyword instructions:

class name

visibility

modifier

binary

extends classname

uses useslist

implements interfacelist ;

where visibility is one of:

private

public

and modifier is one of:

abstract
final
interface

and useslist and interfacelist are lists of one or more classnames, sepa-
rated by commas.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

NetRexx Syntax Diagrams 145

do

label name

protect term ;

instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where name is a non-numeric symbol

and instructionlist is zero or more instructions.

exit

expression ;

if expression

;

then

; instruction

else

; instruction

import name ;

where name is one or more non-numeric symbols separated by periods,
with an optional trailing period.

iterate

name ;

where name is a non-numeric symbol.

leave

name ;

where name is a non-numeric symbol.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

146 NetRexx Syntax Diagrams Appendix A

loop

label name

protect termp

repetitor

conditional ;

instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where repetitor is one of:

varc = expri to exprt by exprb for exprf
varo over termo
for exprr

forever

and conditional is either of:

while exprw

until expru

and name is a non-numeric symbol

and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

method name

(

arglist)

visibility

modifier

protect

returns termr

signals signallist ;

where arglist is a list of one or more assignments, separated by commas

and visibility is one of:

inheritable
private

public

and modifier is one of:

abstract
constant
final
native
static

and signallist is a list of one or more terms, separated by commas.

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

NetRexx Syntax Diagrams 147

nop ;

numeric















digits exprd

form
scientific
engineering















;

where exprd is an expression.

options wordlist ;

where wordlist is one or more symbols separated by blanks.

package name ;

where name is one or more non-numeric symbols separated by periods.

parse term template ;

where template is one or more non-numeric symbols separated by blanks
or patterns

and a pattern is one of:

literalstring

indicator number

indicator (symbol)

and indicator is one of +, –, or =.

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

148 NetRexx Syntax Diagrams Appendix A

properties

visibility

modifier ;

where visibility is one of:

inheritable
private

public

and modifier is one of:

constant
static
volatile

and there must be at least one visibility or modifier keyword.

return

expression ;

say

expression ;

select

label name

protect termp ;

whenlist

otherwise

; instructionlist

catch

vare = exception ; instructionlist ...

finally

; instructionlist

end

name ;

where name is a non-numeric symbol

and whenlist is one or more whenconstructs

and whenconstruct is:

when expression

; then

; instruction

and instructionlist is zero or more instructions.

signal term ;

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

NetRexx Syntax Diagrams 149

trace

all
methods
off
results

;

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

150 NetRexx Syntax Diagrams Appendix A

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

Index

Special Characters

- continuation character 9
- minus sign

in parsing template 99
subtraction operator 29, 106

-- line comment delimiter 4
/ division operator 29, 107
// remainder operator 29, 109
/* block comment delimiter 4
. (period)

as placeholder in parsing 98
in numbers 104
in terms 13

* multiplication operator 29, 106
- tracing flag 85
*/ block comment delimiter 4
** power operator 29, 108
= tracing flag 85
\ backslash

escape character 6
not operator 31

\\ invalid sequence 8
\< not less than operator 30
\<< strictly not less than operator 31
\= not equal operator 30, 31
\== strictly not equal operator 31
\> not greater than operator 30

\>> strictly not greater than
operator 31

& and operator 31
&& exclusive or operator 31
% integer division operator 29, 108
+ plus sign

addition operator 29, 106
in parsing template 99

++ invalid sequence 8
+++ tracing flag 85
< less than operator 30
<< strictly less than operator 31
<<= strictly less than or equal
operator 31

<= less than or equal operator 30
on types 32

<> less than or greater than
operator 30

= equals sign
assignment indicator 37
equal operator 30, 31
in LOOP instruction 57
in parsing template 99

== strictly equal operator 31
> greater than operator 30
>< greater than or less than
operator 30

>= greater than or equal operator 30

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved. 151

 152 Index

on types 32
>> strictly greater than operator 31
>>= strictly greater than or equal oper-
ator 31

>>> tracing flag 85
>a> tracing flag 85
>p> tracing flag 85
>v> tracing flag 85
| or operator 31
|| concatenation operator 29, 32

A

ABBREV method 121
Abbreviations

testing with ABBREV method 121
ABS method 121
Absolute

column specification in parsing 99
positional pattern 99
value, finding using ABS
method 121

ABSTRACT
on CLASS instruction 47
on METHOD instruction 67

Abstract classes 47
Abstract methods 47, 67
Abuttal concatenation operator 29, 32
Active constructs 55, 56
Addition 29

definition 106
Algebraic precedence 34
Alphabetics

checking with DATATYPE 125
Alphanumerics

checking with DATATYPE 125
AND

logical operator 31
ANSI standard

arithmetic definition 104
Arbitrary precision arithmetic 102
Arguments

of methods 19
on METHOD instruction 65
optional 66
passing to methods 19
provided by caller 65
required 66

Arithmetic 102-113
comparisons 110
errors 112
exceptions 112

implementation independence 112
NUMERIC settings 70
operation rules 106
operators 29, 102, 105
overflow 112
precision 104
underflow 112

Arrays 43
constructors 44
references 44

ASCII
coded character set 3

ASK special word 90
Assignment 36, 37

binary 115
instruction 36, 37
of literals 115
property initialization 87

B

B2X method 122
Backslash character

escape sequence 6
in strings 6
not operator 31

BINARY
See also Conversion
arithmetic 114
checking with DATATYPE 125
conversion to hexadecimal 122
in OPTIONS instruction 72
on CLASS instruction 48
operations 114
values 114

Binary classes 48
assignment 115
control variables 116
LOOP instruction 116
NUMERIC instruction 116

Binary constructors 116
Binary literals 115
Binary numbers 26, 114
Binary operations

dyadic 114
monadic 115
prefix 115

Bits
binary operators 32
checking with DATATYPE 125

Blank 4
adjacent to operator character 8

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 153

adjacent to special character 9
as concatenation operator 29
as type conversion operator 32
operator 29, 32
removal with SPACE method 135
removal with STRIP method 136

Block comments 5
Body

of a loop 57
of classes 46
of group 49
of methods 65
of select 80

Boolean operations 31
boolean type, value of 26
Bottom of program, reaching during
execution 51

Bounded loop 58
controlled 59
over values 61
simple 58

Brackets
in array references 43
in indexed references 13
in indexed strings 42
in terms 13

Built-in methods 120-142
See also Method, built-in

BY phrase of LOOP instruction 57

C

C2D method 124
C2X method 124
Carriage return character

escape sequence 6
Case

of names 10
Casts

See Conversion
CATCH

on DO instruction 50
on LOOP instruction 63
on SELECT instruction 81
use of 118

Caught exceptions 117
CENTER method 122
CENTRE method 122
CHANGESTR method 123
Changing strings

using CHANGESTR 123
using TRANSLATE 137

char
as a string 26, 27

Character 3
appearance 3
conversion to decimal 124
conversion to hexadecimal 124
converting to binary 116
encodings 3, 116
from a number 127, 141
from decimal 127
from hexadecimal 141
glyphs 3
removal with STRIP method 136

Character sets 3
Characters

See Strings
Checked exceptions 119
Class 11

body of 46
definition 87
filename of 91
instances of 23
name of 46
names, case of 10
package of 75
qualified name of 75
short name of 46
starting 46

CLASS instruction 46-49
See also program structure

Classes
abstract 47
and subclasses 48
and superclasses 48
binary 48
final 47
interface 47
standard 47

Clauses 4
continuation of 9
null 36

Coded character 3
conversion to decimal 124
conversion to hexadecimal 124
from decimal 127
from hexadecimal 141

Coded character set
ASCII 3
EBCDIC 3
Unicode 3

Collating sequence, using
SEQUENCE 135

Column specification in parsing 99

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 154 Index

Combination, arithmetic 106
Comma

in array references 43
in indexed strings 42
in method calls 19

Command line options 74
Comments 4

block 5
line 4
nesting 5
starting a program with 5

Comparative operators 30
COMPARE method 123
Comparison

of numbers 30, 110
of strings

using COMPARE 123
of strings and numbers 30

Compiler options 72
Compound terms 14
Concatenation

of strings 29
of types 32

Conditional loops 57
Conditional phrase 58, 62
Console, writing to with SAY 79
CONSTANT

on METHOD instruction 67
on PROPERTIES instruction 78

Constant methods 67
See also Methods, static

Constants 78
used by classes 48
using properties 78

Constructor methods
See Constructors

Constructors 23, 65
array 44
binary 116
default 23
method 65
special 93

Constructs
active 56

Continuation
character 9
of clauses 9

Control variable 59, 61
Controlled loops 59
Conversion

automatic 25
binary constructors 116
binary to hexadecimal 122

character to decimal 124
character to hexadecimal 124
coded character to decimal 124
coded character to
hexadecimal 124

cost of 27
decimal to character 127
decimal to hexadecimal 127
explicit 27
formatting numbers 128
hexadecimal to binary 141
hexadecimal to character 141
hexadecimal to decimal 142
of characters 116
of types 25
of well-known types 25

COPIES method 123
Copying a string using COPIES 123
Counting

See also Arithmetic
strings, using COUNTSTR 124
words, using WORDS 141

COUNTSTR method 124
CROSSREF option 72

D

D2C method 127
D2X method 127
Data

conversions 25
length of 28, 131
terms 13, 28
type checking 28
types 11

DATATYPE method 125
Datatypes 11, 25, 28
Debugging NetRexx programs

See TRACE instruction
Decimal

arithmetic 102-113
conversion to character 127
conversion to hexadecimal 127

Declarations
of variables 38

Deleting
part of a string 126
words from a string 126

Delimiters
for comments 4
for strings 5

Delimiters, clause

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 155

See Semicolons
DELSTR method 126
DELWORD method 126
DIAG option 72
Diagrams, of syntax 2, 143
DIGITS

checking with DATATYPE 125
effect on whole numbers 111
in numbers 104
on NUMERIC instruction 70, 104
rounding when numbers used 112
special word 90

Dimension
of arrays 12
of types 12

Dimensioned types 12
Displaying data

See SAY instruction
Division 29

definition 107
integer 102

DO group 49
naming of 49

DO instruction 49-50
See also grouping
LABEL 49

Double-quote
escape sequence 6
string delimiter 5

Dummy instruction, NOP 70
Duplicate methods 69
Dyadic operators 28

E

E-notation 33, 111
definition 110
in symbols 7

EBCDIC
coded character set 3

ELSE keyword
See IF instruction

Empty reference, null 91
Encodings

binary 116
of characters 3

Encodings, of characters 3
END clause

See also DO instruction
See also LOOP instruction
See also SELECT instruction
specifying control variable 60

End condition of a LOOP loop 59
End-of-file character 4
Engineering notation 71, 111
ENGINEERING value for NUMERIC
FORM 70

EOF character 4
Equality

of objects 31
testing of 30

Equals sign
See = equals sign

Errors during arithmetic 112
Escape sequences in strings 6
Evaluation

of expressions 28
of terms 15

Even/odd rounding 105
Example

Hello World 87
of constructors 24
of exception handling 118
of two classes 88

Exceptions 117
after CATCH clause 119
after FINALLY clause 119
checked 119
during arithmetic 112
during conversions 26
listed on METHOD instruction 69
raising 82
signalling 82
throwing 82

Exclusive OR
logical operator 31

EXISTS method 128
EXIT instruction 51
Exponential notation 33, 71, 102, 111

definition 110
in symbols 7

Exponentiation 29
definition 108

Expressions
evaluation 28
examples 35
results of 28

EXTENDS
on CLASS instruction 48

Extra digits
in numbers 104
in numeric symbols 7, 8
in symbols 7

Extra letters, in symbols 7
Extracting

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 156 Index

a sub-string 136
words from a string 137

F

"False" value 31
FINAL

on CLASS instruction 47
on METHOD instruction 67

Final classes 47
Final methods 67
FINALLY

on DO instruction 50
on LOOP instruction 63
on SELECT instruction 81
reached by LEAVE 56
use of 118

Finding a mismatch using
COMPARE 123

Finding a string in another string 131,
134

Fixed size, of arrays 43
Floating-point numbers, binary 114
Flow control

abnormal, with SIGNAL 82
with DO construct 49
with IF construct 52
with LOOP construct 57
with SELECT construct 80

FOR
phrase of LOOP instruction 57
repetitor on LOOP instruction 57

FOREVER
loops 58
repetitor on LOOP instruction 57

FORM
option of NUMERIC
instruction 70, 111

special word 90
Form feed character 4
FORMAT

method 128
option 72

Formatting
numbers for display 128
numbers with TRUNC 138
of output during tracing 84
text centering 122
text left justification 131
text right justification 134
text spacing 135

Fully-qualified name, of classes 75

Functions
See also Methods, static
numeric arguments of 112
return from 79
used by classes 48

G

Glyphs 3
Group, DO 49
Guard digit in arithmetic 105

H

Hexadecimal
See also Conversion
checking with DATATYPE 125
conversion to binary 141
conversion to character 141
conversion to decimal 142
digits in escapes 7
escape sequence 6

Hyphen
as continuation character 9

I

IF instruction 52
IMPLEMENTS

on CLASS instruction 48
Implied semicolons 9
IMPORT instruction 53
Inclusive OR operator

See OR logical operator
Indefinite loops 57, 58
Indention during tracing 84
Index strings

for sub-values 42
testing for 128

Indexed references
arrays 43
in terms 13
indexed strings 42

Indexed strings 42
testing for 128

Inequality, testing of 30
Infinite loops 57
INHERITABLE

on METHOD instruction 66
on PROPERTIES instruction 77

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 157

INSERT method 130
Inserting a string into another 130
Instance, of a class 23
Instructions 45

assignment 36, 37
CLASS 46
DO 49
EXIT 51
IF 52
IMPORT 53
ITERATE 55
keyword 36, 45
LEAVE 56
LOOP 57
METHOD 65
method call 36
NOP 70
NUMERIC 70
OPTIONS 72
PACKAGE 75
PARSE 76
PROPERTIES 77
RETURN 79
SAY 79
SELECT 80
SIGNAL 82
TRACE 83

Integer arithmetic 102-113
Integer division 29, 102

definition 108
Integers, binary 114
INTERFACE

on CLASS instruction 47
Interface classes 47

properties in 78
Interfaces

implemented by classes 48
Internal functions

return from 79
Interpreter options 72
ITERATE instruction 55

See also LOOP construct
use of variable on 55

J

Java
in reference implementation 1

K

Keyword instructions 36, 45
Keywords 36

mixed case 45

L

LABEL
on DO instruction 49
on LOOP instruction 62
on SELECT instruction 81

Language processor options 72
LASTPOS method 131
Leading blanks

removal with STRIP method 136
Leading zeros

adding with the RIGHT
method 134

removal with STRIP method 136
LEAVE instruction 56

See also DO construct
use of variable on 56

LEFT method 131
Length

method 131
of arrays 18
of comments 5
special word 18, 91

Letters
checking with DATATYPE 125

Line comments 4
Line, displaying 79
Line ends, effect of 9
Line feed character

escape sequence 6
Line numbers, in tracing 84
Literal patterns 97
Literal strings 5

See also Strings
in terms 13

Literals, binary 115
Local variables 39
Locating

a string in another string 131, 134
a word or phrase in a string 140

Logical operations 31
LOGO option 72
LOOP instruction 57-64

See also loops
Loops

See also LOOP instruction

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 158 Index

active 55, 56
execution model 64
in binary classes 116
label 62
modification of 55
naming of 62
repetitive 57, 58
termination of 56

LOWER method 132
Lowercase

checking with DATATYPE 125
names 10

Lowercasing strings 132

M

Mantissa of exponential numbers 110
Matching methods 21
Mathematical method

ABS 121
DATATYPE options 125
FORMAT 128
MAX 132
MIN 133
SIGN 135

MAX method 132
Method 11

argument variables 39
body of 65
calls in terms 13
definition 88
names, case of 10
short name of 65
starting 65

Method, built-in
ABBREV 121
ABS 121
B2X 122
C2D 124
C2X 124
CENTER 122
CENTRE 122
CHANGESTR 123
COMPARE 123
COPIES 123
COUNTSTR 124
D2C 127
D2X 127
DATATYPE 125
DELSTR 126
DELWORD 126
EXISTS 128

FORMAT 128
INSERT 130
LASTPOS 131
LEFT 131
LENGTH 131
LOWER 132
MAX 132
MIN 133
OVERLAY 133
POS 134
REVERSE 134
RIGHT 134
SEQUENCE 135
SIGN 135
SPACE 135
STRIP 136
SUBSTR 136
SUBWORD 137
TRANSLATE 137
TRUNC 138
UPPER 138
VERIFY 139
WORD 139
WORDINDEX 140
WORDLENGTH 140
WORDPOS 140
WORDS 141
X2B 141
X2C 141
X2D 142

Method call instructions 20, 36
METHOD instruction 65-69

See also program structure
Methods 19

abstract 47, 67
arguments of 65
built-in 120-142
constant 67
constructor 23, 65
duplicate 69
final 67
invocation of 19
native 67
NetRexx 120-142
overloading 69
overriding 22
protected 68
resolution of 20
return values 68
searching for 21
special 93
standard 67
static 67

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 159

MIN method 133
Mixed case

checking with DATATYPE 125
names 10

Model
of loop execution 64

Monadic (prefix) operators 28
Moving characters, with TRANSLATE
method 137

Multiplication 29
definition 106

N

Names
case of 10
of variables 37
on ITERATE instructions 55
on LEAVE instructions 56
special

ask 90
digits 90
form 90
length 91
null 91
source 91
super 92
this 92
trace 92
version 93

NATIVE
on METHOD instruction 67

Native methods 67
Negation

of logical values 31
of numbers 29

Nesting of comments 5
NetRexx

language definition 1
syntax diagrams 143

Newline character
escape sequence 6

NOBINARY option 72
NOCROSSREF option 72
NODIAG option 72
NOFORMAT option 72
NOLOGO option 72
NOP instruction 70
NOREPLACE option 73
Normal comparative operators 30
NOSTRICTARGS option 73
NOSTRICTASSIGN option 73

NOSTRICTCASE option 73
NOSTRICTSIGNAL option 73
NOT operator 31
Notation

engineering 71, 111
scientific 71, 111

Notations
in text 2
syntax 2

NOTRACE option 73
NOUTF8 option 73
NOVERBOSE option 74
Null character

escape sequence 6
Null clauses 36
Null instruction, NOP 70
NULL special word 91
Null strings 6
Numbers 33, 102

See also Conversion
arithmetic on 29, 102, 105
as symbols 7
checking with DATATYPE 125
comparison of 30, 110
conversion to character 127, 141
conversion to hexadecimal 127
definition 104, 110
examples of 33
formatting for display 128
in LOOP instruction 57
rounding 128
truncating 138
use of by NetRexx 112

NUMERIC
DIGITS 104
FORM 111
in binary classes 116
instruction 70
part of a number 104, 110

Numeric symbols 7, 13

O

Objects
comparing 31
constructing 23
equality 31

Operators 28
arithmetic 29, 102, 105
blank 29, 32
characters used for 8
comparative 30, 110

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 160 Index

composition of 28
concatenation 29
logical 31
precedence (priorities) of 34
type 32

Option words 72
Optional arguments 66
OPTIONS

instruction 72
on command line 74

OR
logical exclusive 31
logical inclusive 31

OTHERWISE clause
See SELECT instruction

Over loops 61
OVER repetitor on LOOP
instruction 57

Overflow, arithmetic 112
OVERLAY method 133
Overlaying a string onto another 133
Overloaded methods 69
Overriding methods 22

P

Package 11, 75
name of 53, 75

PACKAGE instruction 75
Packing a string

with B2X 122
with X2C 141

Parentheses
adjacent to blanks 9
in expressions 28, 34
in method calls 13, 19
in parsing templates 101
in terms 13
omitting from method calls 13, 14

PARSE
instruction 76
parsing rules 94

Parsing 94-101
absolute columns 99
definition 96
general rules 94, 96
introduction 94
literal patterns 97
patterns 97
positional patterns 99
selecting words 97
variable patterns 101

Parsing templates 94-101
in PARSE instruction 76

Patterns
in parsing 97-101

Period
as placeholder in parsing 98
in numbers 104
in terms 13

POS position method 134
Positional patterns 99
Power operator 29

definition 108
Powers of ten in numbers 33, 110
Precedence of operators 34
Precision

arbitrary 102
of arithmetic 104

Prefix operators 28
definition 106

Primitive types 11, 114
conversions 25

Priorities of operators 34
PRIVATE

on CLASS instruction 46
on METHOD instruction 66
on PROPERTIES instruction 77

Program
filename of 91
prolog 87
structure 87

Programmer’s model of LOOP 64
Programs 87

structure 87
Prolog, of a program 87
Properties 11, 39, 77

case of names 10
in interface classes 78
initialization 87
modifiers 78
naming 77
visibility 77

PROPERTIES instruction 77
PROTECT

on DO instruction 50
on LOOP instruction 63
on METHOD instruction 68
on SELECT instruction 81

Protected methods 68
PUBLIC

on CLASS instruction 46
on METHOD instruction 66
on PROPERTIES instruction 77

Pure numbers 110

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 161

See also Numbers

Q

Qualified name, of classes 75
Qualified types 11
Quotes in strings 5

R

Raising exceptions 82
See also SIGNAL

Re-ordering characters
with TRANSLATE method 137

Real numbers, binary 114
Reference implementation 1
References

in terms 13
null 91
to arrays 44
to current object 92
to indexed strings 42
to methods 19

Relative column specification in
parsing 99

Relative positional pattern 99
Remainder operator 29, 102

definition 109
Repeating a string with COPIES 123
Repetitive loops 58
Repetitor phrase 58
REPLACE option 73
Replacing strings

using CHANGESTR 123
using TRANSLATE 137

Required arguments 66
Residue

See Remainder operator
Resolution of methods 20
Results

of methods 68
returned by RETURN 79
size of 28

Return character
escape sequence 6

Return code, setting on exit 51
RETURN instruction 79
Return string, setting on exit 51
RETURNS

on METHOD instruction 68
REVERSE method 134

Rexx
arithmetic 102
class

conversions 26
methods of 120
NetRexx strings 11
use by PARSE 76

RIGHT method 134
Rounding 102

definition 105
when numbers used 112

Routines
See Methods

Running off the end of a program 51

S

SAY
instruction 79

Scientific notation 71, 111
SCIENTIFIC value for NUMERIC
FORM 70

Search order
for methods 20
for term evaluation 16

Searching a string for a word or
phrase 134, 140

Select
label 81
naming of 81

SELECT instruction 80-81
Semicolons 4

can be omitted 2
implied 9

SEQUENCE method 135
Short name

of classes 46
of methods 65

SIGN method 135
SIGNAL instruction 82
SIGNALS 117

on METHOD instruction 69
Signature

See Type
Significant digits, in arithmetic 104
Signs in parsing templates 99
Simple DO group 49
Simple number 7

See also Numbers
Simple repetitor phrase 58
Simple terms 13
Single-quote

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 162 Index

escape sequence 6
string delimiter 5

SOURCE special word 91
SPACE method 135
Special characters 9

used for operators 8
Special methods 93

SUPER 93
THIS 93

Special words 90
ask 90
digits 90
form 90
length 91
null 91
source 91
super 92
this 92
trace 92
version 93

Square brackets
in indexed references 13

Standard classes 47
Standard methods 67
STATIC

on METHOD instruction 67
on PROPERTIES instruction 78

Static methods 67
used by classes 48

Static variable typing 39
stderr, used by TRACE 84
stdin, reading with ASK 90
stdout, writing to with SAY 79
Strict comparative operators 30
STRICTARGS option 73
STRICTASSIGN option 73
STRICTCASE option 73
STRICTSIGNAL option 73
Strings 5

as literal constants 5
comparison of 30
concatenation of 29
escapes in 6
in terms 13
indexed 42
length of 131
lowercasing 132
moving with TRANSLATE
method 137

null 6
quotes in 5
sub-values of 42
types of 26

uppercasing 138
verifying contents of 139

STRIP method 136
Stub, of term 14
Sub-expressions, in terms 13
Sub-keywords 45
Sub-string, extracting 136
Sub-values, of strings 42
Subclass of a class 48
Subroutines

calling 20
passing back values from 79
return from 79

Substitution
in expressions 28

SUBSTR method 136
Subtraction 29

definition 106
SUBWORD method 137
SUPER

special method 93
special word 92

Superclass of a class 48
Symbol characters

checking with DATATYPE 125
Symbols 7

assigning values to 37
case of 10
in terms 13
numeric 7, 13
use of 37
valid names 7

Syntax checking
See TRACE instruction

Syntax diagrams 143
See also Instructions
notation for 2

Syntax notation 2
System-dependent options 72

T

Tab character 4
escape sequence 6

Tabulation character 4
Templates, parsing 94-101

general rules 94
in PARSE instruction 76

Ten, powers of 110
Terminal, writing to with SAY 79
Terms 13, 28

compound 14

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

 Index 163

evaluation of 15
in assignments 40
on left of = 40
parsing of 76
simple 13
stub of 14

Testing for indexed variables 128
Text formatting

See Formatting
See Words

THEN
following IF clause 52
following WHEN clause 80

THIS
special method 93
special word 92

TO phrase of LOOP instruction 57
Tokens 5
TRACE

See also Interactive tracing
instruction 83
option 73
special word 92

Trace setting
altering with TRACE
instruction 83

Tracing
data identifiers 85
execution of programs 83
line numbers 84

Trailing blanks
removal with STRIP method 136

Trailing zeros 106
TRANSLATE method 137
Translation

See also Case translation
with TRANSLATE method 137

Trapping of exceptions 82
See also SIGNAL

"True" value 31
TRUNC method 138
Truncating numbers 138
Types 11

checking instances of 32
checking with DATATYPE 125
concatenation of 32
conversions 25
declaring 38
dimensioned 12
of terms 28
of values 28
operations on 32
primitive 11, 114

qualified 11
simplification 25

Typing (printing) data
See SAY instruction

U

Underflow, arithmetic 112
Unicode

coded character set 3
escape sequence 6
UTF-8 encoding 73

Unpacking a string
with C2X 124
with X2B 141

UNTIL phrase of LOOP instruction 57
UPPER method 138
Uppercase

checking with DATATYPE 125
names 10

Uppercasing strings 138
USES

on CLASS instruction 48
UTF-8 encoding 73
UTF8 option 73
Utility methods 120-142

V

VALUE
option of TRACE instruction 83

Variable reference
in parsing template 101

Variables 37
controlling loops 59
in parsing patterns 101
indexed 42
local 39
method arguments 39
names of 37
parsing of 76
properties 39
scope of 39
setting new value 37
static typing of 39
subscripts 42
type of 37
valid names 37
visibility 39

VERBOSE option 74
VERBOSEn option 74

Specification 1.00 Copyright (c) IBM Corporation 1997. All rights reserved.

 164 Index

VERIFY method 139
VERSION special word 93
Visibility

of classes 46
of methods 66
of properties 77

VOLATILE
on PROPERTIES instruction 78

W

Well-known conversions 25
WHEN clause

See SELECT instruction
WHILE phrase of LOOP
instruction 57

White space 4
Whole numbers 33

checking with DATATYPE 125
definition 111

WORD method 139
Word processing

See Formatting
See Words

WORDINDEX method 140
WORDLENGTH method 140
WORDPOS method 140
Words

counting, using WORDS 141
deleting from a string 126
extracting from a string 137, 139
finding in a string 140

finding length of 140
in parsing 97
locating in a string 140
special

ask 90
digits 90
form 90
length 91
null 91
source 91
super 92
this 92
trace 92
version 93

WORDS method 141

X

X2B method 141
X2C method 141
X2D method 142
XOR, logical operator 31

Z

Zero character
escape sequence 6

Zeros
adding on the left 134
padding 134
removal with STRIP method 136

Copyright (c) IBM Corporation 1997. All rights reserved. Specification 1.00

