
dragonS
layer Team

Developing and Deploying Web
Applications - Day 2

WebSphere WebSphere WebSphere WebSphere
Application Server Application Server Application Server Application Server

v5.0v5.0v5.0v5.0

© IBM Corporation 2000, 2001, 2002 1

© IBM Corporation 2000, 2001, 2002 2

dragonSlayer TeamdragonSlayer Team

EJB ReviewEJB ReviewEJB ReviewEJB Review

© IBM Corporation 2000, 2001, 2002 3

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

What are Enterprise JavaBeans? What are Enterprise JavaBeans?

EJBs are "Beans" in the sense that they get
runtime services from a container but they are not
JavaBeans
A component architecture for distributed object
systems
A framework for creating extensible, scalable,
object-oriented applications

© IBM Corporation 2000, 2001, 2002 4

JavaBeans and Enterprise JavaBeans are both specifications for component models.

An EJB is not technically a JavaBean, purely because of the differences in the lifecycle requirements
between the two specifications.

JavaBeans must define a public no-argument constructor. On the other hand, the client of an EJB never
sees (and is guaranteed not to) any constructor, since object creation is performed by a factory (via the
enterprise bean’s home interface).

EJBs are distributed objects (by specification).

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Distributed Object SystemsDistributed Object Systems

Other Clients

Web Clients

Web and Component Servers

Enterprise Resources

© IBM Corporation 2000, 2001, 2002 5

EJBs are a perfect fit for assembling distributed applications. This capability takes a whole new
meaning when you run EJBs on WebSphere as it allows you to run your applications across a multitude
of different platforms.

Thanks to this ability you can now scale your applications horizontally and vertically as much as you
need to. The advantage of EJBs is that they are written entirely in Java therefore you can run them
on any platform. The advantage of WebSphere is that it runs on the most popular platforms (Windows,
Linux, AIX, Solaris, NetWare, OS/2, HP-UX, OS/400, and OS/390) giving your application access to
as much computing power as there is available in the market.

EJBs running on WebSphere integrate very well with enterprise-level resources. IBM provides a wide
assortment of connectors to enterprise resources and legacy systems. Some of them are provided to
you as features in Application Developer.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Simplified Programming ModelSimplified Programming Model

EJBs are written in Java
They follow a common programming model
EJBs possess high-level APIs for services
The focus of EJBs is on business logic

© IBM Corporation 2000, 2001, 2002 6

Enterprise JavaBeans is a programming model for development of reusable, portable Java components.
It is really nothing more than a Java class that uses certain programming and naming conventions and can
be customized through properties or its customizer.

EJBs are special, non-visual Java components that run on a server. The programmer doesn’t have to
implement multithreading, concurrency, resource pooling, security, or transaction management. These are
provided by the server runtime.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Characteristics of EJBsCharacteristics of EJBs

Managed at runtime by a container
Can be customized at deployment time
Client access is mediated by the EJB container
and the server
Can be deployed in any EJB compliant container
Can be included in a composite application
without changing the source code or recompiling
A client's view of an EJB is defined by the bean
developer

© IBM Corporation 2000, 2001, 2002 7

The term deploy has a specific meaning in the Enterprise JavaBean paradigm. We’ll describe this in more
detail when we talk about containers.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB Community's Goals for EJB ArchitectureEJB Community's Goals for EJB Architecture

Provide a distributed, OO-based component
architecture

Shield complex system-level issues

Write once, run anywhere

Provide interoperability with non-Java applications

Be compatible with CORBA

© IBM Corporation 2000, 2001, 2002 8

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

The EJB ArchitectureThe EJB Architecture

To help meet the goals of the architecture, the
specification describes:

EJB Servers
EJB Containers
EJB classes and instances
EJB home and remote interfaces
EJB clients

© IBM Corporation 2000, 2001, 2002 9

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB ServersEJB Servers

An EJB Server is a process
that:

Manages EJB Containers
(which manage the beans)
Provides access to system
services
Provides Java-related
services, specifically

A name space accessible
via JNDI
An OTS-based transaction
service

EJB Server

EJB Container

EJB Container

Transaction services
Naming services
Security services
Other services

© IBM Corporation 2000, 2001, 2002 10

An EJB server may provide access to vendor-specific services. In the illustration, "Other Services" means
things like JNDI (the Java Naming and Directory Service) and JTS (the Java Transaction Service). These
are used by EJBs but aren’t part of the EJB specification.

An EJB server may also provide access to special, local services.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB ContainersEJB Containers

Manage EJB classes and instances
Generate code to implement access to the beans
Enforce transactional requirements
Create, initialize, and destroy beans
Manage persistence of durable data

Deliver EJB server services available to the
beans
Containers are transparent to clients

© IBM Corporation 2000, 2001, 2002 11

The word deploy has a specific meaning in the EJB paradigm.

With Enterprise JavaBeans, deploy means telling the container to generate the code it needs to supply the
services the bean needs.

The code you, the application programmer, write is portable. But to run a bean in a specific server and
container, additional code must be created. This code is generated in the deployment step. Thus, you
deploy a bean to a server and container.

You can think of it as installing the bean into the environment. There is no client-side API to determine a
bean’s container. Vendors may distribute beans to containers however they like. This is entirely
implementation-specific.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Containers in an EJB ServerContainers in an EJB Server

Containers are currently provided by the EJB
server itself

The container-to-server interface is not specified in
the 2.0 or 1.1 EJB specifications
Vendors can implement server and container
responsibilities as they see fit

© IBM Corporation 2000, 2001, 2002 12

From the outside looking in, this nesting of beans in containers in servers is transparent; it’s simply a Java
process.

Programmers have no control over any of this. The administrative tools in WebSphere can give you a hint
about how WebSphere does this, but the relationship between beans, containers and servers is
implementation-specific.

Vendors will be able to write containers for other vendors’ servers when the container-server interface is
specified.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Container Services: PersistenceContainer Services: Persistence

Management can be delegated to the container
The bean programmer doesn't need to write
"broker" code
The container generates the necessary classes and
code

Management can be handled by the programmer
if needed

© IBM Corporation 2000, 2001, 2002 13

EJBs offer two ways to handle persistence. It can be delegated to the container, known as
container-managed persistence (CMP), or it can be handled by code explicitly included in the bean by the
developer, called bean-managed persistence (BMP). Both of these will be discussed in more detail later.

A broker is a common piece of software developed to serve as the "data access" layer for persistent
objects. The broker is responsible for saving and restoring the state of an object from the backing store
and for keeping the "live" object consistent with its persistent state.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Container Services: TransactionsContainer Services: Transactions

Management can be delegated to the container
The container is told the transactional requirements
of business methods
The container provides the transaction control code

Management can also be handled by the
programmer if required

© IBM Corporation 2000, 2001, 2002 14

EJBs offer two ways to handle transactions. They can be handled by the container, known as
container-managed transactions, or they can be explicitly handled by the bean developer, using
bean-managed transactions.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Container Services: MessagingContainer Services: Messaging

EJB 2.0 requires that containers are able to
respond to asynchronous messages from a Java
Messaging Service (JMS) Provider

The container is told what JMS resources to listen
to (queue or topics) and how to respond to
messages
The container will invoke the appropriate resources
when a message arrives

© IBM Corporation 2000, 2001, 2002 15

J2EE 1.3 also requires that all J2EE 1.3 compliant application servers have a JMS Provider

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Container Services: OtherContainer Services: Other

Containers offer other services in addition to
persistence and transactions including

Naming
Security

Delegating responsibility for these services to the
container reduces the burden on application
programmers

© IBM Corporation 2000, 2001, 2002 16

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Client Access to EJBsClient Access to EJBs

There are 2 ways that clients can access EJBs
Remotely - where the client can reside in the same
JVM as the EJB Container or in a different JVM on
a different host
Locally - the client must be running in the same
JVM as the EJB container

© IBM Corporation 2000, 2001, 2002 17

Remote access is more flexible. Clients can be anywhere on the network

Local access is more efficient because both client and EJB are in the same JVM and none of the
overhead that's required to handle remote clients is necessary

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB Classes and InstancesEJB Classes and Instances

Construction of EJB applications involves code from three sources
Developer-provided code
Classes and Interfaces defined by the EJB API
Generated code provided by the container(s)

Developer-provided code includes:
An EJB class (a.k.a. "the bean class")
One or both of

Interfaces for remote client access
Home interface (used to find or create beans)
Remote interface (used to access bean's business logic)

Interfaces for local client access
LocalHome interface (used to find or create beans)
Local interface (used to access bean's business logic)

Other pieces depending on the bean

© IBM Corporation 2000, 2001, 2002 18

The EJB API, contained in the Java package javax.ejb, provides the starting point, with interfaces and
classes like javax.ejb.EJBHome and javax.ejb.EJBObject. Developers build on this basic API, extending
interfaces and implementing classes, to write the code that comprises the actual enterprise bean.

Finally, to run the bean in a specific server and container, we need to generate the implementation classes
for the runtime environment. This also allows the server/container to provide the requested services to an
enterprise bean.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Types of Enterprise JavaBeansTypes of Enterprise JavaBeans

Session beans
Associated with a particular client
Created and destroyed by a client (transient)
Do not survive system shutdown

Entity beans
Shared by multiple clients
Persist across multiple invocations
Survive system shutdown

Message Driven Beans
Associated with a JMS resource (queue or topic)
Container invokes when a message arrives
No client interface
Usually calls other EJBs (Session or Entity)

© IBM Corporation 2000, 2001, 2002 19

This slide shows the three bean types, session beans, entity and message driven beans.

Session beans are always associated with a particular client. This association may last only for the duration
of a single method call, or it may last for several method calls.

Entity beans, on the other hand, may be used by multiple clients. The container handles multithreading
issues for you, though.

Message Driven Beans have no client interface. They are associated with a JMS resource and are invoked
by the container when a message arrives on that resource. They tyoically call Session Beans or Entity beans
to perform business logic when invoked

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Local client access - Local Home InterfacesLocal client access - Local Home Interfaces

All EJBs that require local
client access have local
home interfaces

Extend
javax.ejb.EJBLocalHome
Define create() methods
May define remove and
finder methods

Implementation
EJBLocalHome object is
provided by container

javax.ejb.EJBLocalHome
<<interface>>

CounterLocalHome
<<interface>>

create()
create(int)

© IBM Corporation 2000, 2001, 2002 20

Clients get a proxy that implements javax.ejb.EJBLocalHome. The container creates a server-side object
that implements this interface; this is what the client-side proxy calls.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Local client access - Local InterfacesLocal client access - Local Interfaces

All EJBs that require local
client access have local
interfaces

Define the business logic of a
bean
Extend the interface:
javax.ejb.EJBLocalObject
Used by a local client to
access the logic of an EJB

Implementation is provided
by the container

javax.ejb.EJBLocalObject
<<interface>>

Counter
<<interface>>

void increment()
void reset()
int getValue()

© IBM Corporation 2000, 2001, 2002 21

When you write a local interface for an enterprise bean, you extend the javax.ejb.EJBLocalObject
interface.

When your bean is deployed, the container implements this interface in a server-side class,
EJBLocalObject. An instance of this class is generally referred to as "an EJB object."

The local interface is the piece that truly defines the local client’s view of the bean. This interface
provides the client with access to the application logic. In fact, local clients cannot call any business
method that isn’t defined in the local interface.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Remote Client Access - Home InterfacesRemote Client Access - Home Interfaces

All EJBs that require remote
client access have home
interfaces

Extend javax.ejb.EJBHome
Define create() methods
May define remove and
finder methods

Implementation EJBHome
object is provided by
container

java.rmi.Remote
<<interface>>

javax.ejb.EJBHome
<<interface>>

CounterHome
<<interface>>

create()
create(int)

© IBM Corporation 2000, 2001, 2002 22

Clients get a proxy that implements javax.ejb.EJBHome. The container creates a server-side object that
implements this interface; this acts as the "subject" to which the client-side proxy connects.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Remote Client access- Remote InterfacesRemote Client access- Remote Interfaces

All EJBs that require remote
client access have remote
interfaces

Define the business logic of a
bean
Extend the interface:
javax.ejb.EJBObject
Used by a remote client to
access the logic of an EJB

Implementation is provided
by the container

java.rmi.Remote
<<interface>>

javax.ejb.EJBObject
<<interface>>

Counter
<<interface>>

void increment()
void reset()
int getValue()

© IBM Corporation 2000, 2001, 2002 23

When you write a remote interface for an enterprise bean, you extend the javax.ejb.EJBObject interface.

When your bean is deployed, the container implements this interface in a server-side class, EJBObject. An
instance of this class is generally referred to as "an EJB object."

The remote interface is the piece that truly defines the remote client’s view of the bean. This interface
provides the client with access to the application logic. In fact, clients cannot call any business method
that isn’t defined in the remote interface.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Server ArchitectureServer Architecture

EJBs live and run
inside intelligent
containers or servers
EJB containers provide
all of the essential
services and handle the
plumbing following a
well-defined contract

EJB

I know
the

plumbing!

I know
the

business!

EJB Container / Server

© IBM Corporation 2000, 2001, 2002 24

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Remote client accessRemote client access

EJB Server JVM

Container

EJBHome

R
em

ot
e

H
om

e
R

em
ot

e

EJBObject

EJBObject

Enterprise
bean

Enterprise
bean

implements

implements

implements

Client JVM

Remote
Client

Remote
stub

Home
stubH

o
m

e
R

em
ot

e
implements

implements

© IBM Corporation 2000, 2001, 2002 25

Now we are going to look a little bit deeper at the EJB server architecture.

Notice that a client uses a local "proxy" or "stub" to communicate with a remote object. One of the special
remote objects provided in EJB environments is called a "Home".

Clients find the home in a location-independent fashion using the Java Naming and Directory Interface (or
JNDI). The purpose of the home is to provide a mechanism for finding and creating remote EJBs. The client
provides the home with a unique identifier that distinguishes the target EJB in the server environment.

After the client receives an EJB proxy back from the home, it uses it to communicate with the EJB itself. There
are several things about this programming model that should be mentioned.

Our clients do not know what kind of persistence mechanisms or resource managers provide the backing store
for the EJB. A given client accesses all remote EJBs in the same consistent way.

Clients never worry about reading rows from tables or any other backend system APIs. Clients also have an
illusion that EJBs are always in memory.

It might be necessary for the home and container to bring an EJB into storage but this is hidden from clients.
We call this a "single-level store" semantic.

Finally, all clients, whether they be Java clients, ActiveX clients, or something else, follow this same consistent
approach. This is a simple and highly rational approach to programming and it promises to be extremely
productive.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Local client accessLocal client access

EJB Server JVM

Container

EJBLocalHome

Lo
ca

lH
om

e
Lo

ca
l

EJBLocalObject

EJBLocalObject

Enterprise
bean

Enterprise
bean

implements

implements

implements

Lo
ca

l

Local
Client

Local
stub

LocalHome
stub

Lo
ca

lH
om

e
Lo

ca
l

implements

implements

© IBM Corporation 2000, 2001, 2002 26

With Local Access there is no RMI/IIOP involved. Client stubs can call directly into the containers
implementation classes

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Developing and Deploying EJBDeveloping and Deploying EJB

Design and Build the EJB

Deployment
D esc riptor

Create the Deployment
Descriptor

Development

Portable JAR File

Deployment

Descriptor

Deployme nt Descriptor
Updates

1.U pdate 1
2.This too
3.And this one as well
4.All of them
5.Don't forget this

one Update Deployment
Descriptor

Deployment Descriptor
Updates

1.Update 1
2. Thi s too
3. And this one as well
4. All of them
5. Don't forget this one

Install EJB

Deployment

Deployment
Descriptor

Deployment Des cripto r
Updates

1.Update 1
2.This too
3.And this one as well
4.All of them
5.Don't forget this
one

© IBM Corporation 2000, 2001, 2002 27

Development activities are shown here on the left. We start by creating the EJB's bean class, home
interface, and remote interface. Here's where we will implement the bean's business logic.

Incorporating the EJB into a production environment is what we call a deployment activity. This involves
additional updates to the deployment descriptor to add things like access control lists and JNDI location
information related to the home, and there are other things done here that can only be decided during
actual deployment (such as setting environment properties).

The deployment descriptor technique is giving us a "declarative" approach to development. We can literally
customize applications without requiring access to the underlying source code. This declarative approach
with deployment-time configuration is one of the things that makes EJBs simple to develop. It also makes
EJBs more reusable by avoiding a lot of rigid hard-coding.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

We've seen:
What EJBs are
How they work
What the development steps are

© IBM Corporation 2000, 2001, 2002 28

dragonSlayer TeamdragonSlayer Team

Entity BeansEntity BeansEntity BeansEntity Beans

© IBM Corporation 2000, 2001, 2002 29

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Entity BeansEntity Beans

Browser

Servlet

JSP JavaBean(s)

SessionBean EntityBean(s)

Data Store

HTML
Form

View Controller Model

© IBM Corporation 2000, 2001, 2002 30

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

OverviewOverview

When the Session
Facade pattern is used,
every entity bean
requires

A local home interface
A local interface
A bean class
A primary key class

Entity beans can take
advantage of
container-managed
persistence

Bean
Class

Local
Interface

LocalHome
Interface

Entity EJB

Primary Key
Class

© IBM Corporation 2000, 2001, 2002 31

When the Session Facade pattern is used, writing an entity bean consists of writing four components:
The local home interface
The local interface
The bean class
The primary key class.

The local home interface allows a user to create or find instances of the bean.
The local interface gives access to the bean’s business logic.
The bean class is where the business logic is implemented.
The primary key class provides a way to identify beans for future lookup.

Entity beans represent persistent data, and such beans fall into two classes, based on how they managed
persistence. The recommended approach, for simplicity and portability, is to delegate management of
persistence to the container. These beans are said to make use of container-managed persistence, or
CMP. The beans discussed in this unit use CMP.

The other option, which requires much more coding on the part of the application programmer, is to write
the methods in the bean class to manage persistence. This is called bean-managed persistence, or
BMP. Bean-managed persistence requires more specialized coding, and such beans are strongly tied to
their backing data stores, reducing portability.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

General CharacteristicsGeneral Characteristics

An entity bean represents
a persistent business
object
Multiple clients can
concurrently access an
entity bean
Entity beans have a
lifetime beyond the client
and server process

customer lastname address phone

0384673 Lassiter 123 Berg St. 345-7865

1827365 McCulloch 6253 Airport Rd 339-0098

8374890 Marceau 176 Newmarket Av. 367-8761

© IBM Corporation 2000, 2001, 2002 32

The container transparently manages concurrency, transactions, persistence and other services for the
beans that live in it.

Entity beans are persistent; that is, they are stored in some sort of database. They will survive both a
crash and a deliberate shutdown of the server. This is one of the ways in which they differ from session
beans.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Entity Beans and PersistenceEntity Beans and Persistence

Container-Managed Persistence (CMP)
The container is responsible for saving state
You specify the container managed fields
Persistence is independent of the data source

Bean-Managed Persistence (BMP)
You write the code to save the bean's state
The container doesn't need to generate DB calls
Can exploit existing, more powerful persistence
frameworks
Less adaptable: persistence is hard-coded

© IBM Corporation 2000, 2001, 2002 33

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB QLEJB QL

EJB QL is a portable object query specification language
Can write queries that are independent of the underlying database schema
Similar to SQL, applies to CMP entity EJBs
Allows querying on CMP fields
Applies to finder and select methods of CMP Entity beans

EJB QL can be used for two types of methods:
Finder methods

Defined in local and remote homes
Return EJB local or remote interfaces or collections of those
There is no need to provide EJB QL for findByPrimaryKey() method

Select methods
Not for client use, they are meant to be called by the bean class itself
Can return interfaces, but also individual CMP fields (or collections)

Bean developers defines abstract finder and/or select methods
Specifies EJB QL query statement in the deployment descriptor
Container tools to generate query implementation

© IBM Corporation 2000, 2001, 2002 34

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

LocalHome Interfaces for Entity BeansLocalHome Interfaces for Entity Beans

The local home interface for an entity bean:
Allows a client to:

Create new EJBLocalObject instances (with multiple
create methods)
Look up existing EJBLocalObject (with finder
methods)
Remove EJBLocalObject instances

Extends the EJBLocalHome class

© IBM Corporation 2000, 2001, 2002 35

A local home interface consists most importantly of methods to create new beans and to find existing
ones.

Each of the bean-creation methods must be named create(...), and each create(...) method in an entity
bean’s local homeinterface corresponds to an ejbCreate(...) method with the same parameter set in the
bean class.

You can write create(...) methods that fill in all, some, or none of the fields in an entity bean. There is one
default finder method, findByPrimaryKey(key), that must be defined in the local homeinterface. Definition of
others is optional; their names must begin with the word "find." A local home interface can also define
bean-removal methods.

Each create(...) method in the local homeinterface can throw javax.ejb.CreateException, which indicates
that the creation
failed. Each finder method can throw javax.ejb.FinderException to indicate that the lookup failed.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Errand Home ExampleErrand Home Example

 public interface ErrandLocalHome extends javax.ejb.EJBLocalHome {

 Errand create(int argErrandId)
 throws javax.ejb.CreateException,;

 Errand create(com.goforit.errand.ErrandDataBean errand)
 throws javax.ejb.CreateException;

 java.util.Collection findByUserId(String userId)
 throws javax.ejb.FinderException;

 Errand findByPrimaryKey(ErrandKey key)
 throws javax.ejb.FinderException;

 Errand findNewestErrand()
 throws javax.ejb.FinderException;

}

© IBM Corporation 2000, 2001, 2002 36

This is the complete local home interface for the GoForIt Errand entity bean.

Note that all create(...) methods throw the same exceptions and all the finder method throw the same
exceptions.

The home interface has two create(...) methods, one that takes only the primary key of the ERRAND table
(errand id) and one that takes an ErrandDataBean object.

There are three finder methods, the default findByPrimaryKey and two application-specific ones-
findNewestErrand and findByUserId. The first two return an Errand object.

findByUserId(...) returns a Collection of the remote interfaces of all the Errands that are requested by a
given user.

The key thing to remember is that this interface specifies what needs to be done, not how. The container
or the bean determines the how.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Finder MethodsFinder Methods

A local home interface defines one or more finder
methods to look up EJBLocalObjects

Every home interface must define the method
findByPrimaryKey()
Beans can offer lookup by other criteria

The name of a finder method always starts with
the word "find"

Can return the local-interface type or a collection of
local-interface types

© IBM Corporation 2000, 2001, 2002 37

The findByPrimaryKey() method is automatically generated by the "Create EJB" wizard from WSAD. You
must implement any other finder methods, if used.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Finder Method ImplementationFinder Method Implementation

The container cannot fully implement finders
other than findByPrimaryKey

In CMP beans, you must provide EJB QL in the
deployment descriptor to enable the container
building the necessary helper class(es)
In BMP beans the finders are implemented by the
bean provider

© IBM Corporation 2000, 2001, 2002 38

A local home interface can define finders other than the default method, findByPrimaryKey.

The container can implement the default method, but additional methods require an understanding of the
semantics of the application. The EJB 2.0 specification describes a variant of SQL called EJBQL to tell the
container how to implement the finder. EJBQL is defined in terms of the EJB's methods so that the finders
will be completely independent of the underlying database schema

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Implementing a Finder Implementing a Finder

Suppose we defined a finder method for an Errand bean
called findByUserId(String userId)

The container can't implement this without a hint
In EJB 2.0 you provide the hint in the EJB's deployment
descriptor as an EJB QL statement

 select object(o) from Errand o where o.requester = ?1

So when the finder is invoked (i.e. findByUserId("joeg")) the
container will execute an SQL query like:

 SELECT * FROM ERRAND WHERE USERID='joeg'

© IBM Corporation 2000, 2001, 2002 39

The container implements the default method (findByPrimaryKey) but additional methods require an
understanding of the semantics of the application, which means we must provide a hint to the container.

In this example our finder method, findByUserId(), takes one argument and we put that argument into
the query string by using a question mark. These will be substituted, from left to right, with values from the
argument list when the method is called.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Local Interfaces for Entity BeansLocal Interfaces for Entity Beans

The local interface of an entity bean:
Allows a client to invoke the business methods of
the bean
Extends the EJBLocalObject class

The Errand local interface

public interface Errand extends EJBLocalObject {
 public String getStatus();
 public void setStatus(String newStatus) ;
 .
 .
 .
}

© IBM Corporation 2000, 2001, 2002 40

The second component of an entity bean is the local interface.

A local nterface defines the business methods that will be implemented in the bean class. It extends the
EJBLocalObject class, and each method within the interface must declare any application specific
exceptions that it throws- this example does not.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Writing the Bean ClassWriting the Bean Class

Implements javax.ejb.EntityBean

Declare the CMP fields as abstract getter/setter
methods

Implements:
Any lifecycle management methods the bean needs
The business methods defined in the local interface
Any other methods the bean requires

© IBM Corporation 2000, 2001, 2002 41

The third major component of an entity bean is the bean class itself. This is where the
programmer-supplied code resides. The bean class extends EntityBean (rather than Session Bean) and
implements functions that support both the home/local home and remote/local interfaces and provides
any internal helper functions that are needed by the bean class itself.

The bean class is also where the bean’s CMP fields are declare as abstract getter/setter pairs. As you will
see later, there is nothing in the declaration that indicates whether the variables are persistent or not. The
deployment descriptor allows you to indicate the variables subject to container-managed persistence; any
others are considered by the container to be ephemeral. If you wish to make them persistent explicitly in
the bean (bean-managed persistence), you can, but the container will not manage persistence of those
variables for you.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

CMP fields in the Bean ClassCMP fields in the Bean Class

public class ErrandBean implements EntityBean {
 // CMP Fields
 /**

 * Get accessor for persistent attribute: id
 */
public abstract java.lang.Long getId();
/**
 * Set accessor for persistent attribute: id
 */
public abstract void setId(java.lang.Long newId);
/**
 * Get accessor for persistent attribute: category
 */
public abstract java.lang.String getCategory();
/**
 * Set accessor for persistent attribute: category
 */
public abstract void setCategory(java.lang.String newCategory);

 ...
}

© IBM Corporation 2000, 2001, 2002 42

This excerpt from the bean class shows that the bean class implements the javax.ejb.EntityBean interface.
It also shows theCMP fields declared in the bean class as abstract getter/setter pairs. Notice that there’s
nothing here that indicates which of these are to be container-managed for persistence.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Indicating Persistent FieldsIndicating Persistent Fields

The container needs to know which fields in each
bean it will manage

This is done in the deployment descriptor
Nothing in the bean class declaration indicates
persistence

This information is used to generate the
deployment classes for persistence

© IBM Corporation 2000, 2001, 2002 43

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Lifecycle MethodsLifecycle Methods

The bean-creation methods, ejbCreate(...) and
ejbPostCreate(...)

Correspond to create(...) methods in the local home
interface
Argument list must match across triads
Initialize persistent variables in ejbCreate(...)

The bean-management methods, for example,
ejbActivate(), ejbPassivate(), ejbLoad() and
ejbStore()

© IBM Corporation 2000, 2001, 2002 44

The lifecycle methods in the bean class consist of creation and lifecycle management.

In the local home interface, you defined create(...) methods. In the bean class, you will define a pair of
methods that correspond to each create(...) method, called ejbCreate(...) and ejbPostCreate(...). The
argument lists for each triad of create, ejbCreate and ejbPostCreate must match. Of course, the argument
lists across triads can vary.

For Errand, we have two create(...) methods in the home interface, so we will have two corresponding
pairs of ejbCreate and ejbPostCreate in the bean class.

Any variables that are subject to container-managed persistence should be initialized in the ejbCreate(...)
methods. After calling ejbCreate, the container insert the values into the persistent store, and then it calls
ejbPostCreate. In most cases, ejbPostCreate(...) will probably be an empty
method.

If you are using a development tool like WSAD, it will generate the necessary empty methods for you, so
you will generally be able to ignore the ejbPostCreate methods.

The other kind of lifecycle methods you must provide in the bean class are those inherited from the
EntityBean interface: ejbActivate, ejbPassivate, ejbRemove, ejbLoad, ejbStore, setEntityContext, and
unsetEntityContext. Again, a good development tool will generate empty methods, which you can modify
as necessary. In many cases, the only ones you will want to modify are the two dealing with contexts.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Entity State DiagramEntity State Diagram

does not exist

pooled

ready

1. newInstance()
2. setEntityContext(ec)

unsetEntit yContext()

ejbFind<METHOD>()

ejbCreate(args)
ejbPostCreate(args)ejbRemove()

ejbPassivate()

ejbActivate()

ejbLoad() ejbStore()

business method

© IBM Corporation 2000, 2001, 2002 45

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Business MethodsBusiness Methods

The bean class also implements business logic
The local interface defines the methods
The bean class implements the methods

The bean class can also implement private
methods (for example getters and setters)

Not defined in an interface
Not directly available to clients
Used by the bean to do application-specific work

© IBM Corporation 2000, 2001, 2002 46

In addition to the lifecycle-management methods (which support the local home interface), the bean class
implements the business methods defined in the local interface as well as any private methods that the
bean class needs. These methods are not part of any interface publicized to clients, but they may be
used in implementing the methods of the interfaces.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Primary KeyPrimary Key

The bean must designate a field (or fields) to act
as a primary key
The primary key:

Must uniquely identify a bean instance
Must be serializable
Must offer equality and hashing methods

equals(Object o);
hashcode();

May be supplied in a class

© IBM Corporation 2000, 2001, 2002 47

This is the last aspect of writing an entity bean: providing a primary key.

Entity beans, unlike session beans, are uniquely identifiable, and the primary key helps identify a bean.
So far, the components of entity beans have matched those of session beans (home and remote
interfaces, bean classes), but session beans do not have primary, or any other, keys.

A PrimaryKey class must implement the Serializable interface and the methods equals(Object) and
hashCode(). These two methods are needed to implement the isIdentical() method of the EJBObject
class. Two beans are considered identical if they have the same primary key and the same home
interface.

In practice, your PrimaryKey class will probably be generated by WSAD, and then you will modify it if
necessary. Note that you don’t really need a primary key class if you choose as your primary key a
single field whose type already is serializable and implements equals() and hashCode() methods. For
example, a field of type String would work as an out-of-the-box primary key. UserEJB uses an integer
field for its customer key, and VisualAge generates a simple primary key class for it.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Data Mapping with CMPData Mapping with CMP

Container-managed persistence supports various
bean-to-data relationships

The most basic approach maps each persistent
instance variable to a column in a table

Each bean maps to a single table
The table is created during deployment
Each field maps to a simple, fixed SQL type

This is the most common, simple support offered by
most EJB containers

© IBM Corporation 2000, 2001, 2002 48

When the container manages persistence for you, it does so by using a simple mapping of instance
variables to SQL data types. If portability is important, it is best to use these mappings if possible. These
beans can be deployed into any EJB server.

Another option for more complex mapping than this is writing the persistence code yourself, using
bean-managed persistence. This code will be tied closely to the backing data store, which may limit
portability. It is also much harder to write beans with BMP than those with CMP.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Container Managed RelationshipsContainer Managed Relationships

Allows multiple entity beans to have relationships
among themselves
Container implements and supports the
relationship

One-to-One, One-to-Many and Many-to-Many
relationships
Uni- and bi-directional relationships
Can model RDMS foreign key relationships
CMR relationships are defined in the deployment
descriptor

Defined in terms of the local interfaces of the related
beans

© IBM Corporation 2000, 2001, 2002 49

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

ejbSelect... methodsejbSelect... methods

Similar to finders in that they are described using
EJB QL in the deployment descriptor

Declared as abstract in the Bean class

Can return interfaces, collections or a single CMP
field

Not exposed to the client, can only be used in the
Bean class

Example
select o.id from Errand o where o.id > 10

© IBM Corporation 2000, 2001, 2002 50

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

ejbHome ... methodsejbHome ... methods

Methods on the local or remote home that are not
specific to a particular instance

Saves clients the additional step of getting the
remote interface
Must be declared as public
Must not be declared as static

© IBM Corporation 2000, 2001, 2002 51

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

We've seen:
The basics of entity beans with local interfaces
Customer finders with EJB QL
Declaring CMP fields
ejbSelect... and ejbHome... methods

© IBM Corporation 2000, 2001, 2002 52

dragonSlayer TeamdragonSlayer Team

Developing EJBs using Developing EJBs using Developing EJBs using Developing EJBs using
WebSphere Application WebSphere Application WebSphere Application WebSphere Application

Developer Developer Developer Developer

© IBM Corporation 2000, 2001, 2002 53

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

 EJB Development Environment EJB Development Environment

Application Developer provides an EJB development
environment that includes:

Wizards for creating entity beans, session beans and
message driven beans
Management of dependencies between the EJB
implementation classes and the home/remote and local
home/local class interfaces
Generation of EJS Deployment code
Universal Test Client
Visual Editor for EJB Deployment Descriptor
Product CD contains the WebSphere Embedded JMS
Provider for testing Message Driven Beans
Support for both EJB 1.1 and EJB 2.0 development

© IBM Corporation 2000, 2001, 2002 54

EJBs are no different from other objects. You take advantage of the integrated nature of WSAD as you
edit, compile, and debug new EJBs.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Developing EJBs in Application DeveloperDeveloping EJBs in Application Developer

Create EJB Project
Create EJB
Code methods in
generated bean
Promote methods to
local/local home and/or
remote/home interfaces
Generate Deployment
classes
Test EJB

© IBM Corporation 2000, 2001, 2002 55

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB ProjectEJB Project

An EJB Project
corresponds to an EJB
jar file used to deploy
into an Application
Server

Can contain one or
more EJBs
Is contained within an
Enterprise Application
Contains a deployment
descriptor

© IBM Corporation 2000, 2001, 2002 56

WSAD has a special editor for editing the deployment descriptor. This allows developers to make changes
without knowing the details of the XML Schema that is defined for a DD in the EJB specification.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Creating EJB ProjectsCreating EJB Projects

Select

File->New->EJB
Project

from the Application
Developer menu

© IBM Corporation 2000, 2001, 2002 57

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Adding EJBsAdding EJBs

Select File-> New ->
Enterprise Bean from
the main menu
This brings up a wizard
that creates a Session
Bean or a Message
Driven Bean or Entity
Bean including:

A Bean class
A Local Home and/or
Home Interface
A Local and/or Remote
Interface
Container managed
fields for CMP bean

© IBM Corporation 2000, 2001, 2002 58

This first page allows you to name a bean, set the bean type, and choose a project and package for the
generated code.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Defining Bean Class Attributes and InterfacesDefining Bean Class Attributes and Interfaces

Validate names for
home/remote and/or
local home/local
interfaces
Add CMP fields if
needed
Indicate superclass
if using inheritance

© IBM Corporation 2000, 2001, 2002 59

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Defining Bean Class Interfaces and ImportsDefining Bean Class Interfaces and Imports

Define other
interfaces the bean
should implement

© IBM Corporation 2000, 2001, 2002 60

 You can also add import statements and add additional interfaces for your Bean class -- note that you DO
NOT need your bean class to implement your Remote interface -- the framework handles that. When you
press "Finish", the classes and interfaces you have chosen will be generated by the wizard and you will see
them displayed in the Navigator view in WSAD.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Adding methods and fieldsAdding methods and fields

The next step is
to write your
business logic

Add methods to
the Bean class
Use the
standard Java
Editor to do this

© IBM Corporation 2000, 2001, 2002 61

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Promoting MethodsPromoting Methods

The EJB Tooling is
centered around the Bean
class

Clients only see the Remote
and Home Interfaces or the
Local or LocalHome
Interfaces

Write methods in the bean
class and promote them to
the Home, Remote,
LocalHome or Local
Interface

© IBM Corporation 2000, 2001, 2002 62

For remote clients, promoting works in two ways:
(1) If you have a regular method that you want to declare in a Remote interface, just use the "Enterprise Bean->Promote to Remote
Interface" menu selection in the Outline view

(2) If you want to create a new create() method in your Home Interface, start by adding a corresponding ejbCreate(your parameters
here) method in the bean class. Then select "Enterprise Bean->Promote toHome Interface" and the create() method will be added.

Note that these two selections are mutually exclusive based on the method you have selected.
Once a method has been "promoted" the "promotion" icon (an H or an R) will be displayed to the left of the method name.

This is the way you want to build Remote and Home Interfaces -- you should probably not try to work backwards from the Remote
or Home Interface to the Bean Class. However, if you do this, warnings will show you what methods need to be implemented.

For local clients, promoting also works in two ways:
(1) If you have a regular method that you want to declare in a Local interface, just use the "Enterprise Bean->Promote to Local
Interface" menu selection in the Outline view

(2) If you want to create a new create() method in your Local Home Interface, start by adding a corresponding ejbCreate(your
parameters here) method in the bean class. Then select "Enterprise Bean->Promote to Local Home Interface" and the create()
method will be added.

Note that these two selections are mutually exclusive based on the method you have selected.
Once a method has been "promoted" the "promotion" icon (an LH or an L) will be displayed to the left of the method name.

This is the way you want to build Local and LocalHome Interfaces -- you should probably not try to work backwards from the Local
o rLoca Home Interface to the Bean Class. However, if you do this, warnings will show you what methods need to be implemented.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Generating deployment codeGenerating deployment code

After finishing your EJB
code, generate the
deployment code

This will include all the stubs
and EJS classes
Use "Generate Deploy and
RMIC Code" from the J2EE
or Navigator View context
menu
Errors that prevent
generation will show up in
the Tasks view

© IBM Corporation 2000, 2001, 2002 63

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Testing your EJBsTesting your EJBs

Application Developer includes all of the
WebSphere 4.0 and 5.0 EJS code

You can start the processes and an EJS server
within Application Developer
All accessible through Server Configuration pane in
the Server Perspective

When you create a new Enterprise Application
you can add it to a server

Use "Add" from the Server Configuration pane in
the Server Perspective

© IBM Corporation 2000, 2001, 2002 64

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Starting serversStarting servers

Servers can be started implicitly by selecting the
EJB Module in the J2EE View of the J2EE
Perspective and selecting "Run on Server"

Can be started/stopped explicity in the Servers
pane of the Server Perspective

© IBM Corporation 2000, 2001, 2002 65

Since all of the EJB Projects will be deployed to the same naming servic in the Test Environment, you can
have session beans from one EJB Project use entity beans in another project for instance.

The first option starts the Test Client also. The second option doesn't.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJB TestsEJB Tests

You can either run your own EJB client or use the
Application Developer test client

This is a "default client" that allows you to send
messages to an EJB.

Written as a Web Application
You use a browser based UI

In either case watch the Server Console for
messages from the EJB server

© IBM Corporation 2000, 2001, 2002 66

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

The Test ClientThe Test Client

To run the test client use "Run on Server" from the J2EE
Hierarchy or Navigator view of the J2EE Perspective

© IBM Corporation 2000, 2001, 2002 67

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Testing the ConnectionTesting the Connection

© IBM Corporation 2000, 2001, 2002 68

When you start the test client for an EJB Project (as opposed to an individual EJB) the browser .
comes up with the Test Client homepage. Clicking on the JNDI Explorer link will show you a dump of the
JNDI namepace and allow you to connect to an individual EJB by clicking on its JNDI entry.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Testing the Home/Local Home InterfaceTesting the Home/Local Home Interface

© IBM Corporation 2000, 2001, 2002 69

The methods in your Home/Local Home interface (create(), remove(), finders) will be shown under EJB
Reference. You fill in parameters in the Parameters frame and then click on "Invoke". Once you have
successfully executed a method on the Home/Local Home, you can click on "Work with Object" and the
returned Remote/Local Interface(s) will show up on the left under EJB References.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Testing the Local/Remote InterfaceTesting the Local/Remote Interface

© IBM Corporation 2000, 2001, 2002 70

Again, in this page you can select a method, and then add parameters and send the message. If you send a
message that returns a primitive the value will be shown under Last results. If the method call returns a
class, click on "Work with Object" and the object will appear on the left under Object references.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

We've seen:
Creating EJB Projects
Writing EJBs
Deploying EJBs into the WebSphere Test
Environment
Testing EJBs using the Test Client

© IBM Corporation 2000, 2001, 2002 71

© IBM Corporation 2000, 2001, 2002 72

dragonSlayer TeamdragonSlayer Team

Session Beans and Session Beans and Session Beans and Session Beans and
Message Driven BeansMessage Driven BeansMessage Driven BeansMessage Driven Beans

© IBM Corporation 2000, 2001, 2002 73

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Session BeansSession Beans

Browser

Servlet

JSP JavaBean(s)

SessionBean EntityBean(s)

Data Store

HTML
Form

View Controller Model

© IBM Corporation 2000, 2001, 2002 74

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Session beans come in
two flavors

Stateless
Stateful

In any case, a session
bean is not persistent

Not saved in database

Session BeansSession Beans

Bean
Class

Local
Interface

Home
Interface

Session EJB

LocalHome
Interface

Remote
Interface

© IBM Corporation 2000, 2001, 2002 75

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Session Beans as ClientsSession Beans as Clients

A session bean is often a client of an entity bean

Can manipulate several entity bean instances
using the local interface of the entity bean
instances

Simplify client interface by doing transactions
across different entity bean instances

© IBM Corporation 2000, 2001, 2002 76

A session bean typically contacts one or more entity beans, which manipulate recoverable data on its
behalf. Thus, they are clients of the entity beans just like a Java client or a servlet is a client of the session
bean.

When clients are remote, Session-bean access to entity beans is faster than client access since session
beans live on the server. Session beans can do complex manipulations of several entity-bean instances
using local interfaces in a single session-bean method.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Client 2

CustomerController1

CustomerController2

Errand1

Errand2

User1
Errand Table

GoForIt Database

Session Beans
Stateful

or
Stateless

Entity Beans
Bean-Managed Persistence

or
Container-Managed Persistence

Client 1

Session Beans and Entity Beans and WorkSession Beans and Entity Beans and Work

User2
User Table

© IBM Corporation 2000, 2001, 2002 77

Now let's look a little bit closer at the issue of persistence.

As we saw in previous slides there are actually several "flavors" of EJBs and each exhibit different
persistence characteristics depending on deployment tradeoffs and the underlying requirements of the
business domain.

In this example, we have a couple of EJBs that we call CustomerController1 and CustomerController2. They
are instances of a Session Bean called CustomerController.

Notice that we have two clients, each communicating with a different CustomerController bean. These
clients send requests to the CustomerController beans to create errands on behalf of the clients. The
CustomerController beans then communicate with the appropriate Errand and User entity beans to manage
errands and users.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Stateless Session BeansStateless Session Beans

Used for task oriented objects where:
All parameters required are supplied with method
calls
No data is required to be kept between method
calls

The container can:
Choose any available instance to execute a method
Create and remove methods as needed for current
load

© IBM Corporation 2000, 2001, 2002 78

The idea is that stateless session beans of any type are all equivalent.

Any method invocation can run on any available instance. The container keeps a pool of several instances
of a particular session bean class. When a method call comes in, an instance is selected out of the pool and
used.

The size of the pool and how long each instance remains in the pool is determined by the container; this is
all transparent to client code. You should not care when or if this happens.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Building Stateless Session BeansBuilding Stateless Session Beans

The bean should implement the
javax.ejb.SessionBean interface

The bean should have a single ejbCreate()
method with no parameters

You mark the bean as STATELESS in the
deployment descriptor

© IBM Corporation 2000, 2001, 2002 79

When using Application Developer to build stateless session beans you can mark the bean as STATELESS
in either the properties sheet for the bean, or in the create-a-bean wizard. This information becomes part of
the deployment descriptor.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Stateful Session BeansStateful Session Beans

Used for task-oriented objects where state needs
to be kept between invocations
The container is responsible for:

Routing a method invocation to the appropriate
instance
Serializing non-transient state variables when
passivating
Restoring non-transient state when activating

© IBM Corporation 2000, 2001, 2002 80

When a client has a stateful session bean, it is guaranteed that, if it sends a message to that bean, then
all method invocations will go to the same bean. This is handled by the EJB framework; your client code
does not have to do anything special to guarantee that this happens.

Activation and passivation happen when the container decides that it is holding "too many" session beans
in memory. The container implements some policy that says (in effect) that if a bean has not been used
(received a message) within a certain amount of time, it is "passivated" or stored to persistent storage (for
example, to a serialized file).

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Implementing a Session BeanImplementing a Session Bean

Implementing a session bean involves
Implementing a SessionBean interface
Implementing your business logic
Implementing the bean's lifecycle methods

Once you are done, you can deploy and go!

© IBM Corporation 2000, 2001, 2002 81

The lifecycle methods are methods defined in the SessionBean interface. You need to implement all of
them, but what you do in each method depends on the bean; in many cases, these methods will be empty.
The next two slides discuss these methods in more detail.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Lifecycle Methods for Session BeansLifecycle Methods for Session Beans

ejbActivate()
called when bean is activated

ejbPassivate()
called when bean is passivated

ejbRemove()
called when bean is destroyed

setSessionContext(SessionContext ctx)
Called by container to give the bean a context

© IBM Corporation 2000, 2001, 2002 82

The ejbActivate() and ejbPassivate() methods must be implemented, but they do not need to do anything.

When a bean is selected for passivation, the ejbPassivate() method will be called in the bean before the
bean is serialized to a file. Likewise, after a bean is loaded from a serialized file, the ejbActivate() method
is called in that bean.

These methods are generally used to set up and tear down instance variables that cannot be serialized,
either variables that contain transient information (like caches) or non-serializable objects (like AWT
objects or TCP connections).

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Stateless Session Bean LifecycleStateless Session Bean Lifecycle

Does not exist
newInstance(): matched default
constructor
setSessionContext(sc): may be
empty if context not needed
ejbCreate(); handles one time
initialization of resources

Ready (able to handle method
calls)

myMethod(...): implementation of
remote bean methods
ejbRemove(): releases resources
obtained on create

newInstance()
setSessionContext()

ejbCreate()

ejbRemove()

myMethod()Does Not
Exist Ready

© IBM Corporation 2000, 2001, 2002 83

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Creating Stateful BeansCreating Stateful Beans

You can create a stateful bean with multiple
create() methods in the home interface

Use any number of parameters
Each create() method in the home or local home
interface corresponds to an ejbCreate() in the
bean, for example,

public Counter create(int arg1) // defined in home
public void ejbCreate(int arg1) // defined in bean

© IBM Corporation 2000, 2001, 2002 84

The Counter bean is a stateful session bean that comes with WebSphere as part of the example code. It
simply keeps a count for its client.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Passivation/ActivationPassivation/Activation

An EJB Server has the right to manage its
working set

Passivation: saves state of a bean to persistent
storage, then swaps it out
Activation: restores state of a bean from persistent
storage

Not necessary for stateless session beans

© IBM Corporation 2000, 2001, 2002 85

Stateful session beans are one of the reasons we need to be able to swap beans in and out; they take up
room since you must have many instances (one per client) running around. You don’t want them all in
memory at once!

This is known as the "conversational state" of the Session bean.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Stateful Session Bean LifecycleStateful Session Bean Lifecycle

Does not exist
newInstance(): matched
default constructor
setSessionContext(sc): may
be empty if context not
needed
ejbCreate(); handles one
time initialization of
resources

Does Not
Exist

Ready

Passivated

newInstance()
setSessionContext()
ejbCreate()

ejbPassivate()ejbActivate()

ejbRemove()

myMethod()

© IBM Corporation 2000, 2001, 2002 86

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Stateful Session Bean Lifecycle (continued)Stateful Session Bean Lifecycle (continued)

Ready (able to handle
method calls)

<<method>>(...):
implementation of
remote bean methods
ejbRemove(): releases
resources obtained on
create

Does Not
Exist

Ready

Passivated

newInstance()
setSessionContext()
ejbCreate()

ejbPassivate()ejbActivate()

ejbRemove()

myMethod()

© IBM Corporation 2000, 2001, 2002 87

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Message Driven BeansMessage Driven Beans

MDB Basics:
Stateless enterprise beans, server side components
Transactional
Point-to-point and Pub/Sub supported
No remote interface, no remote home

Container activates MDBs as needed

Bean Provider responsibilities
Implement javax.jms.MessageListener interface

onMessage(msg) method performs necessary message processing actions

Application Deployer responsibilities
Associate bean with JMS destinations at deployment

Deployment descriptor holds association information

© IBM Corporation 2000, 2001, 2002 88

Message-driven beans (MDBs) are stateless, server-side, transaction-aware components
for processing asynchronous JMS messages. It supports the two messaging models
namely, Point-to-Point and Publish/Subscibe.
A message-driven bean is a complete enterprise bean, just like a session or entity bean,
but there are some important differences. While a message-driven bean has a bean class
and XML deployment descriptor, it does not have component interfaces. The component
interfaces are absent because the message-driven bean is not accessible via the Java
RMI API; it responds only to asynchronous messages.
It's important to understand that MDBs are not for "client use". There fore they have no
interface and no home, they cannot be "looked up" by a client.
The Bean Provider writes the application code for the Message Driven Bean. All Message
driven beans must implement the javax.jms.MessageListener interface. The onMessage
method contains the business logic that handles the processing of the messages. This
method is called by the container when a message has arrived for the bean to service.
It is the Application Deployer's responsibility to associate the Message driven bean with
the appropriate JMS destinations. This association is done at deployment time.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Benefits of Message Driven BeansBenefits of Message Driven Beans

Automatic consumption of messages
No polling needed in the application code

Reduce application code
Leave JMS resource management to the container

Configuration of JMS destinations and providers

© IBM Corporation 2000, 2001, 2002 89

Message Driven Beans offer a standard way to create a message consumer that is fully
managed by the container. The bean provider only needs to concentrate on writing the
logic that performs the parsing and processing of the message. Typically, the MDB will
delegate the execution of business logic to some other EJB - a Session EJB in most
cases. However, no coding needs to be done to retrieve the message or poll the JMS
destination - no specific coding is needed to provide quality of service (failover, parallel
sessions, etc.) - all this is up to the container to implement and provide.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Message Processing and Business LogicMessage Processing and Business Logic

Provide separation between message processing
and business logic

© IBM Corporation 2000, 2001, 2002 90

By providing a clear separation between message and business processing, it is easier to
implement the Message Driven Beans. Ideally, the Message driven bean parses the
message and then delegates the work to be done to a Business logic session bean. This
design pattern promotes components reusability because the business logic session bean
can be used by a variety of other clients.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

MDB onMessage() exampleMDB onMessage() example

public void onMessage(javax.jms.Message msg) {
try {

 // Retrieve message
ObjectMessage message = (ObjectMessage) msg;
ErrandDataBean errand = (ErrandDataBean)message.getObject();

 // Perform business logic
CustomerControllerLocal customerController =

customerControllerHome.create();
customerController.insertErrand(errand);

} catch (Exception e) {
throw new EJBException(e.getMessage());

}
}

© IBM Corporation 2000, 2001, 2002 91

This is an example of a Message Driven Bean's onMessage method. The message
driven bean parses the message and then delegates the work to a business logic EJB.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

You've seen:
The basics of session beans
The difference between stateless and stateful
beans
The basics of Message Driven Beans

© IBM Corporation 2000, 2001, 2002 92

dragonSlayer TeamdragonSlayer Team

Workload ManagementWorkload ManagementWorkload ManagementWorkload Management

© IBM Corporation 2000, 2001, 2002 93

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Workload Management (WLM)Workload Management (WLM)

What is WLM?
Sharing of work over multiple resources
Improves performance, scalabilty and reliability
Provides failover capability
Can be on single machine or across multiple
machines
Centralizes administration

© IBM Corporation 2000, 2001, 2002 94

WLM is only available in the Network Deploy version, not the Base version

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Vertical ScalingVertical Scaling

Vertical Scaling
Multiple copies of an application server on the same physical
machine
Allows for more efficient allocation of machine's processing
power

App Server 1

Web
Container

EJB
Container

App Server 1

Web
Container

EJB
Container

Node 1

HTTP
Server

Plug-in

© IBM Corporation 2000, 2001, 2002 95

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Horizontal ScalingHorizontal Scaling

Horizontal Scaling
Copies of an application server on multiple physical
machines
Useful in an environment with several smaller, less
powerful machines
Failover support

App Server 1

Web
Container

EJB
Container

Node 1

App Server 1

Web
Container

EJB
Container

Node 2

HTTP
Server

Plug-in

© IBM Corporation 2000, 2001, 2002 96

Horizontal scaling is restricted to machines on the same platform
Vertical and horizontal scaling can be combined for even better performance

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

App Server 1

Web
Container

EJB
Container

Application
Database

Node Agent

App Server 1

Web
Container

EJB
Container

Node Agent

App Server 1

Web
Container

EJB
Container

App Server 1

Web
Container

EJB
Container

Vertical and Horizontal ScalingVertical and Horizontal Scaling

HTTP
Server
Plug-in

© IBM Corporation 2000, 2001, 2002 97

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

What can be Workload Managed ?What can be Workload Managed ?

© IBM Corporation 2000, 2001, 2002 98

Three types of requests can be workload managed in WebSphere v5.0.
HTTP Requests can be shared across multiple HTTP Servers.
This requires a TCP/IP sprayer to take the incoming requests and distribute them.
There are both hardware and software products available to spray TCP/IP requests.
Network Dispatcher is a software solution that is part of the WebSphere Edge Server.
Network Dispatcher applies intelligent load balancing to HTTP requests.
Servlet Requests can be shared across multiple Web Containers.
The WebSphere Plugin to the HTTP Server distributes Servlet requests.
Web Containers can be configured on the same machine or multiple machines.
EJB Requests can be shared across multiple EJB Containers.
The Workload Management Plugin to the Object Request Broker (ORB) distributes
EJB requests.
EJB requests can come from Servlets, Java client applications, or other EJBs.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

EJS WLMEJS WLM

EJB requests are routed to available EJB server
clones, using IIOP
EJB clients are servlets, Java clients or other
EJBs
Requests are routed based on Workload
Management Selection Policy

Web
Client

EJB
Requests

HTTP
Server
Plug-in

HTTP

HTTP
Requests Application

Database

Java
Client

App Svr 2

Web
Container

AS 3, Cl. 2

EJB
Container

AS 3, Cl. 1

EJB
Container

IIOP

IIOP

© IBM Corporation 2000, 2001, 2002 99

.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

What is Workload Managed with EJS WLM?What is Workload Managed with EJS WLM?

Homes of Entity or Session Beans
Instances of Entity Beans
Instances of Stateless Session Beans
Calls to Home Interface of Stateful Session Beans

Enterprise
JavaBeans

Entity
Beans

Container
Managed

Persistence

Bean
Managed

Persistence

Session
Beans

Stateless Stateful

© IBM Corporation 2000, 2001, 2002 100

The creation of Stateful Session Beans is Workload Managed (the calls to the create(...) methods of
the Home interface), but all subsequent calls to the same instance will not be Workload Managed.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Cluster ManagementCluster Management

Definition of a Cluster
Clusters are a set of servers having the same applications installed, and
grouped logically for Workload Management

Purpose of the Cluster
Not all application servers are cluster members, but all cluster members
are application servers
Cluster members:

run the same applications
share workload
can be centrally administered

Creation of a Cluster
Start with an existing server configuration

that server may become the first cluster member
Development/Test environment suggestion: Leave first server out of the
cluster

Additional servers are created from templates
i.e., copies of existing servers

© IBM Corporation 2000, 2001, 2002 101

By default, you can only install one copy of the application server binaries on a machine.
Once those binaries are installed, you can have multiple application servers configured
- the data needed for each additional server is stored in several XML files, and uses up
about 50 K of disk space.
Several application servers can run on a single machine - but there is no requirement
that they all be in the same cluster. Clustering is a logical grouping, not a physical one.
All members of a cluster are nearly identical 'clones' of a common ancestor.
When you create a cluster, you make copies of an existing template. That template will
probably be an application server that you have configured. You are offered the option
of making that server a member of the cluster. It may be wise to keep that server
available only as a template, because the only way to remove a cluster member is to
delete it - keeping the original intact allows you to reuse that configuration to rebuild
from.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Same steps as Installing to base server except:
select a Cluster as the target, rather than select a
server

Nothing changes until Save

Application files (binaries and configuration files)
copied at next synchronization

Behavior can be changed in the console

Servers may be ripple-started
Restarts cluster members one at a time

Installing/Updating applications to a clusterInstalling/Updating applications to a cluster

© IBM Corporation 2000, 2001, 2002 102

Updating applications to a cluster is done in the same manner as updating applications
to a stand-alone server.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Basic WLM RoutingBasic WLM Routing

Edge Server
Routing decision table stored
internally
Configurable with NDAdmin
tool
Multiple intelligent routing
options

HTTP Server Plugin
Routing table part of
plugin-cfg.xml
Configured with Admin web
app or wsadmin scripting tool

WLM-aware Client
Includes Web Container, Java
client, EJB
Routing table supplied by LSD
Configured with Admin web
app or wsadmin scripting tool

© IBM Corporation 2000, 2001, 2002 103

Now we'll address request routing.
Let's first look at the Fair Weather scenario - Assuming that everything works. We'll address
failover scenarios in a few slides.

Edge Server's Network Dispatcher product is an IP sprayer that makes intelligent load
balancing decisions. Using the NDAdmin tool, you can set it up to route to your HTTP servers
based on Round Robin, Statistical Round Robin, Best, Custom Advisor, or Content Based
Routing.

Once the request arrives at an HTTP server, the routing is Weighted Round Robin - the only
configuration option is how much 'weight' to give each server. The routing information, the list
of available servers and their weights, is ultimately stored by the Deployment Manager. The
Node Agent is responsible for storing that information on the local drive for the server process
to use in writing the plugin-cfg.xml file for the HTTP server plugin to read.

WLM-aware Clients include the Web Container, and stand-alone Java clients and EJBs
running from WebSphere containers. The Location Service Daemon runs in the Node Agent
and is responsible for providing clients with the routing table for EJB Containers. Again, the
information comes from the Deployment Manager, and is configured in the Admin Console.
Server weights and the Prefer Local are the configurables.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Weighted routing exampleWeighted routing example

© IBM Corporation 2000, 2001, 2002 104

Weighted routing is fundamentally the same concept for HTTP requests, or for EJB
client requests, so the two are combined on this slide.
When the HTTP Server plugin is generated, servlet request routing weights are written
into the plugin-cfg.xml file, which the HTTP server will reload at configurable intervals.
There is a distinct Routing Table for each cluster. When a client requests an IOR for an
EJB, the Location Service Daemon returns the IOR and a copy of the routing table. The
client uses two in-memory copies of the table - one static, one dynamic.
The table illustrated here is the dynamic one - it has two entries, Server 1 and Server 2.
The initial values are 5 and 3. The first new request will be sent to Server 1, and the
counter for Server 1 will be decremented by one. The next request will be routed to
Server 2, and the count for server 2 will be decremented.
Basically, the routing is Round Robin for all servers with non-zero table values.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Edge Server FailoverEdge Server Failover

Network Dispatcher can
be paired with a backup
machine
Topology is
'Active/Standby'
One machine does all
the work

The other waits for a
failure to begin handling
routing

© IBM Corporation 2000, 2001, 2002 105

Now let's look at what happens when things are not running so smoothly. Failover is
one reason to implement workload management; it effects all the places where routing
decisions are made.
The first routing decision is made outside the WebSphere Application Server's footprint
- in the Edge Server (or other IP spraying technology).
Edge Server can be configured on two machines - they share a heartbeat, and if that
heartbeat fails, the backup server becomes the primary and handles the load.
Having eliminated that as a Single Point of Failure, let's move next to the HTTP server.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

HTTP Server FailoverHTTP Server Failover

Multiple HTTP Servers
provide coverage
Edge Server can route around
failed HTTP server
HTTP Plugin

Every plugin knows about all
web containers
Session key contains address
of server
Sessions get properly routed

Topology is 'Active/Active',
with all HTTP servers
handling load before failover

© IBM Corporation 2000, 2001, 2002 106

Typically, a production environment will have multiple HTTP servers; each of those
HTTP servers will route to multiple WebSphere Application Server instances.
Each plugin knows about all the servers; it has a server list and a back-up server list. If
all the servers in the server list are unavailable, it will route to the backup list.
If any HTTP server fails, the Edge Server will simply route around it. The plugin reads
the cloneID from the session key, and can route the request to it's originating server.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web/Servlet Container FailoverWeb/Servlet Container Failover

HTTP Server Plugin Detects Failure
Marks Container as unavailable
Tries next Cluster member in the Cluster

What about In-flight sessions?
Sessions may be persisted to database
Sessions may be replicated in memory

© IBM Corporation 2000, 2001, 2002 107

What happens if a server process dies? The HTTP server notes the failure and marks
that application server as unavailable, then routes the request to the next cluster
member.

Sessions already in progress will have a server ID for that failed server; the HTTP
server routes them to the next server... What about the session? We can handle that
two ways. Session Persistence to a Database, or internal messaging of session
information.

Database session persistence functions largely as it did in version 4.0.
WebSphere Internal Messaging is new in 5.0,

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

HTTP Session ManagementHTTP Session Management

Multiple mechanisms are provided to manage
HTTP Session State

in-memory session
persistent http session to a database
JMS pub/sub based memory replication of HTTP
Session state between clustered Application
servers

Address different topology requirements
failover, performance, cluster size

© IBM Corporation 2000, 2001, 2002 108

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Server Runtime

Web Container

Session

Server Runtime

Web Container

Session

Server Runtime

Web Container

Session

Server Runtime

Web Container

Session

Pub/Sub Queue

WebSphere
Data Replication
Service (DRS)

HTTP Session: JMS pub/sub based memory replicationHTTP Session: JMS pub/sub based memory replication

© IBM Corporation 2000, 2001, 2002 109

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Session
Database

Server Runtime

Web Container

Session

Server Runtime

Web Container

Session

HTTP Session: Persistent to DatabaseHTTP Session: Persistent to Database

© IBM Corporation 2000, 2001, 2002 110

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

Overview of Workload Management

What can be Workload Managed

Clusters

Weighted Workload Management

Failover

Session replication options

© IBM Corporation 2000, 2001, 2002 111

© IBM Corporation 2000, 2001, 2002 112

dragonSlayer TeamdragonSlayer Team

Web ServicesWeb ServicesWeb ServicesWeb Services

© IBM Corporation 2000, 2001, 2002 113

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

WSDL described interface that defines a
collection of network accessible operations

Shared, open, emerging technology standards -
SOAP, UDDI, WSDL, WSIL etc.
Modular
Self-described
Published
Independently deployable
Loosely coupled
Simple
Business driven
Provide access to business services

What is a Web Service ?What is a Web Service ?

© IBM Corporation 2000, 2001, 2002 114

So, what is a Web Service? Definitions will vary, but here is ours. Simply, an "Interface that
describes a collection of networked accessible operations". For developers, one way to think
of Web Services is as a component model. A fairly coarse grained component model that
gives us a building block from which to build solutions from. It's not a subroutine library or
replacing Java collection classes or C++ libraries or anything else you use. It's function.
Could be a stock quote service, could be something more complicated like a credit
authorization, or perhaps an entire business process like loan authorization, a service
composed of other nested services.
The other way to think about Web Services is how most people talk about them, that is the
mechanism itself..., XML messages sent over the HTTP transport protocol.
Modular by design because inherently they are interface oriented.
Described using a service description language. WSDL (Web Services Description
Language).
Published by making its description available to potential users.
Found by sending queries to that registry and receiving the binding details of the service(s)
that fit the parameters of the query.
Bound by using the information contained in the service description to customize the
connection to be created.
Invoked over a network by using the information contained in the binding details of the
service description and possibly composed with other services into new services.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Revenue benefits
Improved relationships with customers/partners
Work force productivity
Innovation and reduced cycle times
Share processes without sharing technology

Cost reduction
Deliver new business solutions faster
Better information flow and knowledge
Consistent infrastructure
Based on industry standards avoiding costly proprietary implementation
Standards hide underlying implementation allowing for more efficient
debugging/testing

Unification of applications
New ways of accessing old applications
Applications can be integrated without regard to implementation details
Applications can dynamically navigate, discover, and interact over the Internet (loosely
coupled)

Organized information
Targeted, more relevant

Benefits of Web ServicesBenefits of Web Services

© IBM Corporation 2000, 2001, 2002 115

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Roles and FunctionsRoles and Functions

© IBM Corporation 2000, 2001, 2002 116

The Service Registry role owns a directory of all of the services available. The Service
Registry represents a new, potentially very lucrative business model. The Registry owner
could charge a fee for the use of their directory. Service Providers lists (or advertise) the
Service offering in the registry. Service Requesters on the other hand query the Service
Registry about the services available. Once Service Registry provides the binding information
to the requester, it is no longer involved in the communications between the provider and
requester.
The Service Provider has developed services that they make available as Web Service.
These services will be hosted on their Application Server. A service is invoked by a requester
through an XML message. These XML messages are generally carried across the Internet
through a network-neutral standard protocol called Simple Object Access Protocol (SOAP).
The Service Provider describes the service they are making available with a standard
encoding called Web Services Description Language (WSDL).
The Service Requester is the business that requires a certain business function to be
fulfilled. From an architectural perspective, this is the application that is looking for (queries
the Service Registry) and then binds to and invokes the service. The requester has to find
the service before invoking it - this process of discovery involves accessing a directory where the
infomation of what the service does and how to invloke it resides. UDDI addresses this capability

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Developing an Application to provide a Web ServiceDeveloping an Application to provide a Web Service

© IBM Corporation 2000, 2001, 2002 117

Step 1
This involves the design and coding required to implement the Web Service
Step 2
The WSDL Service Interface Definition document defines the interface and mechanics of
the service interaction (e.g. message structures, data types)
This step involves publishing a Service Type definition to the UDDI Registry (stored in a
tModel structure). The tModel contains an element called overviewDoc which references a
URL at which the WSDL Service Interface Definition document is located (the WSDL file is
not stored in the Registry directly). Note that this step might not necessarily be performed
by the service provider. For example, a standards body may publish a Service Type
representing a standard web service interface (a hotel booking interface for example).
Step 3 involves publishing a Service to the UDDI Registry (stored in a businessService
structure within a businessEntity structure). The Service registry entry contains a
bindingTemplate structure whose tModelInstanceInfo element references the Service Type
created in Step 2

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Developing an Application to access a Web ServiceDeveloping an Application to access a Web Service

© IBM Corporation 2000, 2001, 2002 118

Step 1
The developer interrogates the UDDI Registry to find:
a. the Service entry
b. the associated WSDL Service Interface definition (via the referenced Service Type)
c. the network location of the service (this is contained in the accessPoint element
within the bindingTemplate)
Step 2
The Service Proxy contains all of the code that is required to access and invoke a Web
Service. Typically, the development tooling will generate this automatically
The Service Proxy is deployed with a client application
Step 3
The client application is run and uses the Service Proxy to invoke the Web Service
Note: It is possible that the service interface definition is located at run time (called
Runtime Dynamic Binding) rather than at build time as above (Static Binding)

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web Services ToolingWeb Services Tooling

WebSphere Studio Application Developer V5 provides following
actions to assist with Web Services development

Discover - Browse UDDI Registries to locate existing Web Services
Create or Transform - Create Web Services from existing artifacts
Build - Web Services wizards assist you in generating a SOAP proxy to
Web services described in WSDL and in generating Java bean
skeletons from WSDL.
Deploy - Deploy Web Services into the WebSphere Application Server
5.0 or Tomcat test environments using Server Tools.
Test - Test Web Services running locally or remotely in order to get
instant feedback.
Develop - Generate sample applications
Publish - Publish Web Services to public or test UDDI registries

© IBM Corporation 2000, 2001, 2002 119

WebSphere Studio Application Developer V5 provides a feature-rich Web Services tooling
environment. Through wizards, many of the tasks are greatly simplified.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web Services WizardWeb Services Wizard

© IBM Corporation 2000, 2001, 2002 120

The Web Services wizard is used to both create and consume Web Services.
Popup actions (on a context menu) provide entry points into the Web Services wizard

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web Services ExplorerWeb Services Explorer

Web Services Explorer (was IBM UDDI Explorer in previous versions
of Application Developer)

Assists you in discovering and publishing your Web service descriptions
No configuration necessary
Supports UDDI V2 for public, private (intra-enterprise, private
marketplace), and test registries
Based on DB2 or Cloudscape for use in unit test environment
Multiple language support for names and descriptions
Allows Web Services Inspection Language (WSIL) document browsing

WebSphere UDDI Registry
Standalone UDDI registry
One per workspace
Allows you to work solely within one tool throughout Web Service
development/testing cycle

© IBM Corporation 2000, 2001, 2002 121

The Web Services Explorer does not support V1 Registries and is not expected to do so as
defined by the UDDI specifications available at http://www.uddi.org.
The Web Services Explorer is part of WebSphere Studio Application Developer's web
services plugins. There is no configuration necessary to use it. You can simply launch the
explorer, connect to a registry and pick one of the favorites or select a private registry.
Additional information on Web Services Inspection Language can be found on IBM's
developerWorks. The version of WSIL that is supported within the Application Developer is
1.0.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web Services GatewayWeb Services Gateway

Ships with Network Deploy version
Middleware component that provides framework between
Internet and intranet environment during Web Services
invocations
Can be used to subset exposure of Enterprise Web Services
to internet (proxy gateway)
Support for multiple transports and protocols

SOAP/HTTP, SOAP/JMS, Direct Java via RMI-IIOP, Java over
JMS

Benefits
J2EE application
Application server hosts the service proxy
Provides centralized management of Web Services
Handles protocol translation

© IBM Corporation 2000, 2001, 2002 122

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

Web Services GatewayWeb Services Gateway

Client

Public
UDDI

WSGW

UDDI
Registry

Internet
(red zone)

DMZ
(yellow)

Intranet
(blue)

Services
Client

Service
Provider

firewall firewall

SOAP/HTTP

Java/JMS

Service
Provider SOAP/HTTP

SOAP/JMS

publish

query

publish

query

Service
Proxy

Service
Proxy

WSDL1

WSDL1'

WSDL2

WSDL2'

© Copyright International Business Machines Corporation 2001, 2002. All rights
reserved.

© IBM Corporation 2000, 2001, 2002 123

This chart shows the final result of deploying your binding information to the Web Services Gateway.
In the top half of the chart, you have created a Web Service internally and have deployed the binding
information to the Web Services Gateway. The gateway in turn creates a service proxy and a description
file that is made available in a public UDDI. When the client (external in this case) requests that specific
service, it retrieves the binding information from the public UDDI registry and invokes the service based on
the description. The client does not have to be concerned with the implementation details as the Web
Services Gateway hides the implementation.
The gateway handles the Security aspects of this call. There are three primary authentication
mechanisms: HTTP(S) based authentication, servlet-based authentication, and SOAP authentication done
by document signing and verification.
The bottom half of the charts illustrates how an external service could be exposed as an internal service.

Here is a brief description of the protocols illustrated:
1) SOAP/JMS: The JMS message body is a text message, whose text contains a SOAP message which
encodes the input and output messages for the service invocation.
2) Java/JMS: The JMS message body is an object message, and the input and output messages for the
service invocation are written into the message body as serialized java objects.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

JAX-RPC (JSR 101)
Standard programming model
XML-based RPC
Client stub generation and programming model
Standard mappings from WSDL to Java and from Java to WSDL

Web Services for J2EE (JSR 109)
J2EE standard implementation and deployment model for Web
Services
Web Services as resources, J2EE client access
Axis runtime - Stateless Session EJB or Servlet endpoint

Standard Programming Model
portable Web Services applications
clients: EJB, servlet, application client as client to Web Service
servers: Stateless Session Bean and Java Bean

Web Services Security

Web Services Technology PreviewWeb Services Technology Preview

© IBM Corporation 2000, 2001, 2002 124

WebSphere Application Server V5 has the following support for Web Services:

- Apache SOAP 2.3 runtime
- DOM-based parsing
- Relies on Web Services Toolkit or WSAD for emitters (no tooling in the runtime to help write stubs)
- Proprietary programming model

Web Services Technical Preview
- Based on Apache Axis, with IBM extensions
- SAX-based parsing
- Includes command line tooling
- Conforms to Java Web Services standards
- Standards-based programming model
- Applications portable across Application Servers

So, the technology preview items bring performance (Axis, SAX), the J2EE programming model, and a
solid security foundation to the product.

IBM Developer Relations DragonSlayer TeamIBM Developer Relations DragonSlayer Team

SummarySummary

Web Services offer many benefits
Industry standards used - XML, SOAP, WSDL, UDDI, WSIL
Wizard decreases development time and ease the creation
and publication of Web Services
Application Developer tooling allows for working with all
Web Service Roles (Service Registry, Service Provider,
and Service Requester)
The WebSphere UDDI Registry allows testing UDDI access
with a self contained, fully functional UDDI registry
Web Services Gateway provides acts as a proxy and
protocol converter bewteen intranet and internet Web
Services clients and servers

© IBM Corporation 2000, 2001, 2002 125

